WO2024045130A1 - 检测电路及其操作方法 - Google Patents

检测电路及其操作方法 Download PDF

Info

Publication number
WO2024045130A1
WO2024045130A1 PCT/CN2022/116494 CN2022116494W WO2024045130A1 WO 2024045130 A1 WO2024045130 A1 WO 2024045130A1 CN 2022116494 W CN2022116494 W CN 2022116494W WO 2024045130 A1 WO2024045130 A1 WO 2024045130A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
switching element
thermistor
temperature
detection circuit
Prior art date
Application number
PCT/CN2022/116494
Other languages
English (en)
French (fr)
Inventor
张保安
陈梓聪
汪芳
谢立华
文超
李永民
Original Assignee
创科无线普通合伙
张保安
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 创科无线普通合伙, 张保安 filed Critical 创科无线普通合伙
Priority to PCT/CN2022/116494 priority Critical patent/WO2024045130A1/zh
Publication of WO2024045130A1 publication Critical patent/WO2024045130A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop

Definitions

  • the present invention relates generally to a detection circuit and a method of operating the same, and in particular to a detection circuit for a power tool (eg, a motor of a power tool) and a method of operating the same.
  • a power tool eg, a motor of a power tool
  • a power tool typically includes a motor and circuitry for controlling the motor.
  • the circuit includes power supply and ground, and includes various power devices. The temperature of these power devices needs to be monitored to ensure the normal operation of the circuit.
  • Figure 2 shows a voltage source V1 and a ground G1, between which resistors R1 and RT1 are arranged in series.
  • resistor RT1 is a thermistor and can be used as a temperature sensor. RT1 can be used to detect the temperature of the power device. When it is detected that the temperature of the power device exceeds the temperature threshold, the control unit needs to adjust the operation of the circuit and motor.
  • the circuit also includes a circuit pin P1 located between R1 and RT1. This pin can be detected to obtain the voltage value here, and then determine whether the circuit is in an unconnected (or floating or suspended) state.
  • the circuit also includes detection point TP1, which serves as a test point for the circuit.
  • the control unit determines the resistance value of RT1 through the voltage division at point TP1 and then determines the temperature, but the voltage division monitored by the control unit The value is usually a limited range, that is, only a smaller temperature range can be monitored. When the temperature exceeds this temperature range, the voltage division value at point TP1 will exceed the monitoring range of the control unit, resulting in the inability to accurately monitor the power device. temperature.
  • the present invention provides a detection circuit and an operating method thereof, which solve one or more of the above problems.
  • the invention discloses a detection circuit, which includes: a voltage source (V1); a ground (G1); a first resistor (R1), the first end of the first resistor (R1) is connected to the voltage source (V1) ;Thermistor (RT1), the first end of the thermistor (RT1) is connected to the second end of the first resistor (R1); the second resistor (R2), the second resistor (R2) The first end is connected to the connection point between the thermistor (RT1) and the first resistor (R1); a first switching element (Q1), the first switching element (Q1) is connected to the between the second end of the second resistor (R2) and the ground (G1); a second switching element (Q2), the second switching element (Q2) is connected to the third end of the thermistor (RT1) between the two terminals and the ground (G1).
  • the first switching element (Q1) and the second switching element (Q2) are transistors.
  • the thermistor (RT1) is a negative temperature coefficient thermistor.
  • the detection circuit further includes a pin (P1) located between the first resistor (R1) and the thermistor (RT1).
  • the detection circuit further includes a first capacitor ( C1).
  • the detection circuit further includes a drive circuit for controlling the first switching element (Q1)
  • the drive circuit includes: a third resistor (R3) and a second capacitor (C2) , the third resistor (R3) and the second capacitor (C2) are connected in sequence between the control terminal of the first switching element (Q1) and the ground (G1); the fourth resistor (R4), The fourth resistor (R4), the third resistor (R3) and the second capacitor (C2) are connected in parallel between the control end of the first switching element (Q1) and the ground (G1). between.
  • the detection circuit further includes a drive circuit for controlling the second switching element (Q2)
  • the drive circuit includes: a fifth resistor (R5), the fifth resistor ( R5) is connected between the control end of the second switching element (Q2) and the controller of the detection circuit; a sixth resistor (R6), the sixth resistor (R6) is connected between the second switching element (Q2) and the controller of the detection circuit; between the control terminal of (Q2) and the ground (G1).
  • the invention discloses a method for operating a detection circuit as described above.
  • the method includes the step of turning off the first switching element (Q1) and the second switching element (Q2) to detect the heat-sensitive The voltage value at the connection point between resistor (RT1) and said first resistor (R1).
  • the method further includes the steps of turning on the first switching element (Q1) and turning off the second switching element (Q2) to detect the thermistor (RT1) and the voltage value at the connection point between the first resistor (R1).
  • the method further includes the step of turning on the first switching element (Q1) and the second switching element (Q2) to detect the thermistor (RT1) and the The voltage value at the connection point between the first resistor (R1).
  • the method further includes the step of turning off the first switching element (Q1) and turning on the second switching element (Q2) to detect the thermistor (RT1) and the voltage value at the connection point between the first resistor (R1).
  • the method further includes, in the step of turning off the first switching element (Q1) and turning on the second switching element (Q2), when the thermistor (RT1 ) and the first resistor (R1) exceeds a predetermined value, the first switching element (Q1) is turned on to detect the thermistor (RT1) and the first The voltage value at the junction point between resistor (R1) steps.
  • the method further includes: selectively executing one or more of the steps according to the control logic.
  • the invention discloses a control system, which is used to execute the method as described above, wherein the control system selectively executes one or more of the steps according to control logic.
  • the voltage calibration of the voltage source can be realized, the floating inspection of the circuit pins can be realized, and the floating inspection and/or short circuit inspection of the temperature-sensitive resistor in the circuit can be realized.
  • the detection circuit of the present invention has a simple structure, is easy to operate, has low cost, can realize multiple functions, has good versatility, and can be applied to various tools and/or motors, such as power tools and their motors.
  • Figure 1 is a perspective view of an exemplary power tool described herein and its components.
  • Figure 2 is a diagram of a prior art circuit.
  • Figure 3 is a diagram of a first embodiment of the circuit of the invention.
  • Figure 4 is a diagram of a second embodiment of the circuit of the invention.
  • FIG. 5 is an operational flow diagram of the circuit of FIG. 4 .
  • the present invention relates to an electric tool 100 .
  • This article takes a circular saw as an example to describe the concept of the present invention, but it is not limited thereto.
  • the electric tool can also be other types of electric tools known or common in the art, such as jigsaws, track saws, jigsaws and other types.
  • the inventive concept of this article is also applicable to these electrical tools.
  • these electric tools may have various structures and compositions, which will not be described in detail. The following description of the present invention will focus on the aspects involved in the concept of the present invention.
  • FIG. 1 is a perspective view of a power tool according to the present invention.
  • the power tool 100 includes a motor 10 and a control circuit board (PCB) 20 that can be used to control the motor 10 .
  • the figure shows that the PCB 20 is located at the left front of the motor 10. This is only an example.
  • the PCB 20 can be located at any suitable position relative to the motor 10 and be electrically connected to the motor to control it.
  • Motor 10 may be any type of motor, such as a brushless motor, a brushed motor, a DC motor, or an AC motor.
  • FIG. 2 shows the relevant circuit portions in PCB 20. As mentioned before, the figure shows that this part includes the voltage source V1 used to power the circuit and the ground G1. Resistors R1 and RT1 are arranged in series between the voltage source V1 and the ground G1, and the resistor RT1 is also connected in parallel. Capacitor C1 is connected to ground to form an RC loop. Among them, the resistor RT1 is a thermistor or temperature-sensitive resistor, such as an NTC (negative temperature coefficient) thermistor. The resistance value of the NTC thermistor decreases as the temperature increases, so RT1 can be used as a temperature sensor. RT1 is located near the power device (such as MOS tube) in the circuit and is used to detect its temperature. When the temperature of the power device is detected to be too high (for example, when it exceeds the temperature threshold), the micro control unit (MCU) adjusts the circuit and motor accordingly. operation, such as reducing its power, or even interrupting its operation.
  • MCU micro control
  • the circuit also includes circuit pin P1. Since pin P1 is located between R1 and RT1, the voltage measured on the pin is the divided voltage value of RT1 to the voltage of voltage source V1, and this divided voltage value is used to determine the circuit Whether it is in a floating (or floating or suspended) state, the terms "suspended”, “floating” and “suspended” are understood in a broad sense in the electrical field.
  • RT1 can be considered to be in a floating state.
  • the circuit also includes a detection point TP1, which is used as a test point for the circuit. Since point TP1 is located between R1 and RT1, the voltage measured at point TP1 is actually the divided voltage value of RT1 to the voltage of voltage source V1.
  • the microcontrol unit (MCU) can calibrate the voltage of voltage source V1 and determine the floating state of pin P1 and the floating state of RT1 based on the divided voltage value detected at point TP1.
  • the micro control unit (MCU) has an analog-to-digital converter (ADC).
  • ADC analog-to-digital converter
  • RT1 detects the temperature of the power device itself or the nearby ambient temperature. In this article, this temperature can be called the ambient temperature or simply the temperature.
  • the mark Temp_FET is used in the figure to indicate the partial voltage value measured at the test point TP1.
  • the resistance value of RT1 changes with temperature, and the divided voltage of the power supply voltage detected at the test point TP1 is not a constant value, so the micro control unit cannot perform the above functions.
  • the voltage source V1 can provide any voltage to the circuit according to the application, such as a voltage range of 1V (volt) to 5V, a voltage range of 2V to 6V, or 3V, 4V, 3.3V, 4.5V, 5V, 5.3V, etc.; similarly,
  • the resistors R1 and RT1 can have any suitable resistance value.
  • the resistance of R1 can be in the range of 10K ⁇ (ohms) to 30K ⁇ , such as 15K ⁇ , 20K ⁇ , 21K ⁇ , 25K ⁇ , etc., and the resistance of RT1 can be in the range of 20K ⁇ (ohms) to 40K ⁇ .
  • the capacitor C1 can have any suitable capacitance value, such as the range of 0.001 ⁇ F to 0.05 ⁇ F, such as 0.005 ⁇ F, 0.01 ⁇ F, etc. It should be noted that the above voltage values, resistance values and capacitance values are only examples and are not limiting. Those skilled in the art can select various appropriate values according to specific applications.
  • RT1 is an NTC thermistor, connected in series with R1 between the voltage source V1 and the ground G1, so the voltage Temp_FET measured at point TP1 represents the divided voltage value of RT1.
  • the resistance value of RT1, 33K ⁇ refers to the resistance value at the specified temperature.
  • the specified temperature refers to, for example, normal temperature or normal operating state or initial operating state or before starting operation, such as 20°C or 25°C, etc., and its resistance value changes with temperature. It decreases as the temperature increases and increases as the temperature decreases.
  • the partial voltage value Temp_FET of RT1 measured at TP1 is 2.05V; as the temperature increases, the resistance value of RT1 decreases, and the partial voltage value Temp_FET also decreases accordingly; as the temperature decreases, RT1 The resistance value increases, and the voltage divider value Temp_FET also increases accordingly.
  • the ADC detects the partial voltage value Temp_FET at TP1, and uses the partial voltage value and the fixed resistance value of R1 to calculate the resistance value of RT1, and then uses the corresponding relationship between the resistance value of RT1 and the temperature to obtain the temperature detected by RT1 .
  • the voltage detection range of the ADC itself is a limited detection range, with an upper limit and a lower limit, so the detected temperature value is also a temperature range.
  • the ADC will not be able to accurately determine the voltage value of TP1 and the corresponding temperature.
  • the upper limit of the voltage range of the MCU is 2.4V.
  • the resistance value of RT1 itself changes with temperature, when the temperature drops to 15°C, the resistance value of RT1 increases to a certain value. At this time, the resistance value of RT1 The voltage value increases from 2.05V at the specified temperature to 2.4V.
  • 2.4V is the upper limit of the range of the MCU's ADC.
  • the resistance value of RT1 further increases and its partial voltage value Temp_FET further increases from 2.4V and exceeds the upper limit of the MCU's monitoring range and exceeds its range. Therefore, the lowest temperature monitored by the MCU is 15°C.
  • the MCU has a certain lower voltage limit.
  • the maximum temperature monitored is 125°C, so the MCU can only monitor the temperature range from 15°C to 125°C.
  • RT1 is not necessarily an NTC (negative temperature coefficient) thermistor, it can also be a PTC (positive temperature coefficient). coefficient) thermistor.
  • the present invention proposes an improved circuit, that is, the first embodiment of the circuit shown in FIG. 3 .
  • Figure 3 adds a resistor R2 with a fixed resistance value and a transistor Q1, and the resistor R2 and the transistor Q1 are electrically connected in parallel with RT1.
  • Transistor Q1 is equivalent to a switching element, which can be turned on and off.
  • the transistor Q1 can be a diode, a transistor, a field effect transistor, a thyristor, or any combination thereof, and is used to realize on-off control of the circuit.
  • a drive circuit for controlling the transistor Q1 is provided on the left side of the transistor Q1.
  • the drive circuit is connected to the input end or control end of the transistor Q1.
  • the input end or control end is used to control the on/off of the transistor and may be, for example, a base.
  • the drive circuit includes resistors R3, R4, and capacitor C2 that are electrically connected between the ground G1 and the input end of the transistor, where R4 is connected between the input end of the transistor and the ground G1, and R3 and C2 are connected in series between the input end of the transistor and the ground G1. Between them, R3 and C2 are connected in parallel with R4.
  • the MCU controls the on and off of transistor Q1 by controlling the drive circuit.
  • the resistance values of resistors R2, R3, R4 can be any suitable resistance value.
  • the resistance value of R2 as 20K ⁇ as an example, when the transistor Q1 is turned on, the resistors R2 and RT1 are connected in parallel between the resistor R1 and the ground, and then they are connected in series with R1 between the voltage source V1 and the ground G1. At this time The voltage measured at TP1 is the divided voltage of the total resistance of R2 in parallel with RT1. At the same temperature, compared with the divided voltage value of RT1 alone, the total resistance value of R2 in parallel with RT1 is reduced, so the divided voltage value is reduced.
  • the partial voltage value measured at TP1 can still be within the voltage range of the MCU, so that the MCU can monitor voltages below 15 °C temperature, which expands the temperature monitoring range.
  • the expanded temperature monitoring range is specifically determined by the resistance value of resistor R2. The lower the resistance value of R2, the smaller the total resistance value after it is connected in parallel with RT1, and the smaller the partial voltage value measured at TP1, so that a larger temperature can be detected. temperature range.
  • the resistance value of R2 is 20K ⁇ , which expands the temperature monitoring range of the MCU to -40°C to 125°C.
  • the MCU will turn on transistor Q1 and connect R2 and RT1 in parallel, so that the 2.4V limit will be exceeded when it is originally below 15°C in Figure 2
  • the partial voltage value Temp_FET is reduced below the 2.4V limit value in Figure 3. In this way, even if the temperature continues to decrease a certain amount from 15°C, the partial voltage value Temp_FET is still within the range of the MCU.
  • Figure 4 shows a second embodiment of the circuit. Compared with the circuit of Figure 3, Figure 4 adds a transistor Q2, and the transistor Q2 is connected in series between the resistor RT1 and the ground G1.
  • the transistor Q2 is basically the same as the transistor Q1 and has been described above and will not be described again here. Similar to transistor Q1, transistor Q2 also has a drive circuit.
  • the drive circuit is connected to the input end or control end of transistor Q2 and includes R5 and a resistor R6 electrically connected between ground G1 and the input end of the transistor, wherein R5 is connected at the input end of the transistor. and the MCU driver network (not shown).
  • the resistance values of resistors R5 and R6 can be any suitable resistance value. For example, R5 can be 1K ⁇ and R6 can be 200K ⁇ .
  • the MCU controls the on and off of transistor Q2 by controlling the drive circuit.
  • RT1 By adding transistor Q2, RT1 can be cut off, which can remove the influence of changes in the resistance value of RT1 at certain times, thereby achieving functions that cannot be achieved in Figures 2 and 3.
  • the operation process of the circuit of Figure 4 includes the following steps.
  • Step S1 When the circuit starts, turn off Q1 and Q2. At this time, both R2 and RT1 are disconnected. At this time, the voltage value Temp_FET at TP1 is detected. If its voltage value is 3.3V (that is, the voltage of voltage source V1), it indicates The MCU is working normally, that is, the ADC channel function is normal, and the process proceeds to step S2; otherwise, it indicates that the ADC channel function is abnormal and needs to be repaired. It should be pointed out that step S1 is also used to check the floating of pin P1, that is, abnormal function of the ADC channel indicates that pin P1 is in a floating state.
  • Step S2 Turn on Q1, turn off Q2, detect the voltage value Temp_FET at TP1, and calibrate whether the voltage of the voltage source V1 is 3.3V. If so, the process proceeds to step S3.
  • the specific calibration process is: turning off Q2 causes RT1 to be disconnected, turning on Q1 causes R2 and R1 to be connected in series between the voltage source V1 and the ground G1. Since the resistance values of R1 and R2 are equal, the voltage division value Temp_FET at TP1 is Half of the voltage source V1, that is, if the divided voltage value Temp_FET is 1.65V, it means that the voltage of the voltage source V1 is 3.3V, and the calibration is successful.
  • Step S3 Turn on Q1 and Q2.
  • R2 and RT1 are connected in parallel between R1 and ground G1. Detect the voltage value Temp_FET at TP1 and determine whether the voltage value of Temp_FET is greater than the predetermined value. If not, the process proceeds to Step S4.
  • the purpose of step S3 is to detect whether RT1 is in a floating state. Specifically, the voltage value Temp_FET is actually the divided voltage value of the total resistance of RT1 and R2 in parallel. When RT1 is an NTC resistor, the resistance value of RT1 changes with the temperature. Decrease and increase.
  • the resistance value of RT1 When the temperature detected or in RT1 is within a predetermined temperature range, the resistance value of RT1 has a predetermined upper limit value, but when the temperature exceeds a certain threshold and becomes lower and lower, the resistance value of RT1 becomes larger and larger, approaching Infinity is equivalent to being disconnected, and RT1 is in a floating state at this time.
  • the temperature detected by RT1 is set within a predetermined temperature range according to the specific application.
  • the resistance value of RT1 is the predetermined upper limit value
  • the voltage value Temp_FET is the above-mentioned predetermined value.
  • step S3 when it is detected in step S3 that the voltage of the voltage value Temp_FET is greater than the predetermined value, it indicates that RT1 is in an abnormal floating state, that is, the temperature exceeds the predetermined range; if the voltage of the voltage value Temp_FET is not greater than the predetermined value, it indicates that RT1 is in a normal state. Additionally, when the voltage value Temp_FET is zero volts, it indicates that RT1 is shorted.
  • Step S4 Turn off Q1 and turn on Q2.
  • R2 is disconnected.
  • RT1 and R1 are electrically connected in series between the voltage source V1 and the ground G1. Detect the voltage value Temp_FET at TP1. This voltage value is actually a split of RT1. voltage value, calculate the resistance value of RT1 at this time based on the divided voltage value, and use the resistance-temperature relationship of RT1 to calculate the ambient temperature detected or located by RT1.
  • the upper limit of the voltage value Temp_FET monitored by the MCU is 2.4V. Therefore, if the voltage value Temp_FET detected at this time exceeds 2.4V, it indicates that the resistance value of RT1 increases as the temperature decreases. Exceeding the upper limit threshold, that is, the monitored temperature at this time has dropped beyond the predetermined range and the real temperature at this time cannot be accurately known. The partial pressure value of RT1 needs to be reduced to increase the temperature monitoring range. At this time, the process needs to proceed to step S5.
  • Step S5 Turn on Q1 and Q2.
  • R2 and RT1 are connected in parallel between R1 and ground G1. Detect the voltage value Temp_FET at TP1 and calculate the lower temperature value of RT1 at this time.
  • step S5 since the total resistance value is reduced by connecting R2 and RT1 in parallel, the voltage division value Temp_FET at TP1 is reduced. That is, compared with the voltage value Temp_FET at low temperature at this time in step S4, which exceeds 2.4V, due to the addition of R2 and RT1 in parallel, the voltage value Temp_FET decreases from 2.4V, making the voltage value fall within the range of the MCU. .
  • steps S1-S5 do not have to be performed sequentially or simultaneously in the order described. On the contrary, these steps are independent of each other to achieve different functions. Therefore, these steps can be performed independently of each other and according to any Performed sequentially, some of these steps can be combined to be performed in any order. That is, the MCU can selectively execute one or more of steps S1-S5 according to the control logic.
  • the MCU Before the motor 10 is running, the MCU needs to perform a floating check on the pin P1 (for example, step S1); and after the motor is running, the MCU will also continue to perform a floating check on it.
  • the MCU Before the motor 10 runs, the MCU needs to calibrate the voltage of the voltage source V1 (for example, step S2); and after the motor 10 runs, the MCU may no longer perform calibration.
  • the MCU Before the motor 10 runs, the MCU needs to perform a float check and/or short circuit check on RT1 (for example, step S3); and after the motor 10 runs, the MCU will continue to perform a float check and/or short circuit check on it.
  • the MCU needs to monitor the temperature of the power device detected by RT1 and/or the surrounding ambient temperature (for example, steps S4 and/or S5).
  • the ambient temperature can usually be detected through step S4, in which R2 is disconnected,
  • the ambient temperature is determined only by the partial voltage value of RT1.
  • the temperature range monitored by the MCU is, for example, 15°C to 125°C.
  • the MCU switches to step S5, where R2 and RT1 are connected in parallel, and the ambient temperature is determined by the divided voltage value of the total resistance after they are connected in parallel.
  • the temperature range monitored by the MCU is, for example, -40 °C(minus 40°C) to 125°C
  • RT1 is described as an NTC resistor as an example, but RT1 can be a PTC resistor, all of which are applicable to the concept of the present invention and fall within the protection scope of the present invention.
  • control system is also provided.
  • the control system is used to execute the operating method of the circuit of the present invention, and the control system selectively executes one or more of steps S1-S5 according to the control logic.
  • the voltage calibration of the voltage source can be realized, the floating inspection of the circuit pins can be realized, and the floating inspection and/or short circuit inspection of the temperature-sensitive resistor in the circuit can be realized.
  • the detection circuit of the present invention has a simple structure, is easy to operate, has low cost, can realize multiple functions, has good versatility, and can be applied to various tools and/or motors, such as power tools and their motors.

Abstract

本发明提供了一种检测电路及其操作方法。检测电路包括:电压源(V1);接地(G1);第一电阻(R1),所述第一电阻(R1)的第一端连接到所述电压源(V1);热敏电阻(RT1),所述热敏电阻(RT1)的第一端连接到所述第一电阻(R1)的第二端;第二电阻(R2),所述第二电阻(R2)的第一端连接到所述热敏电阻(RT1)和所述第一电阻(R1)之间的连接点处;第一开关元件(Q1),所述第一开关元件(Q1)连接在所述第二电阻(R2)的第二端与所述接地(G1)之间;第二开关元件(Q2),所述第二开关元件(Q2)连接在所述热敏电阻(RT1)的第二端与所述接地(G1)之间。

Description

检测电路及其操作方法 技术领域
本发明总体上涉及一种检测电路及其操作方法,并且具体地涉及一种用于动力工具(例如,动力工具的马达)的检测电路及其操作方法。
背景技术
通常,动力工具包括马达以及用于控制马达的电路。电路包括供电源以及接地,并且包括各种功率器件,这些功率器件的温度需要进行监测以保证电路的正常运行。图2示出了电压源V1以及接地G1,在电压源V1以及接地G1之间依次串联地布置有电阻R1和RT1。其中,电阻RT1为热敏电阻并且可以用作温度传感器。RT1可以用于检测功率器件的温度,当检测到功率器件的温度超过温度阈值时,控制单元需要调节电路以及马达的运行。另外,电路还包括位于R1和RT1之间的电路引脚P1,可以对此引脚进行检测得到此处的电压值,进而判定电路是否为悬空(或称为浮动或悬置)状态。电路还包括检测点TP1,用作对电路的测试点。
由于RT1的电阻值随着温度而变化,因此,在测试点TP1处检测到的电源电压的分压并不是恒定值,据此无法对电压源V1的电压进行校准;其次,由于分压值不恒定,也无法确定引脚P1的浮动状态,并且同样无法确定电阻RT1的浮动状态;此外,控制单元通过点TP1处的分压确定RT1的电阻值进而确定温度,但是控制单元监测的电压分压值通常是有限的范围,亦即只能监测较小的温度范围,当温度超过该温度范围时,点TP1处的电压分压值会超过控制单元的监测范围,导致无法准确地监测功率器件的温度。
发明内容
本发明提供了一种检测电路及其操作方法,解决了上述问题中的一者或多者。
本发明公开了一种检测电路,包括:电压源(V1);接地(G1);第一电阻(R1),所述第一电阻(R1)的第一端连接到所述电压源(V1);热敏电阻(RT1),所述热敏电阻(RT1)的第一端连接到所述第一电阻(R1)的第二端;第二电阻(R2),所述第二电阻(R2)的第一端连接到所述热敏电阻(RT1)和所述第一电阻(R1)之间的连接点处;第一开关元件(Q1),所述第一开关元件(Q1)连接在所述第二电阻(R2)的第二端与所述接地(G1)之间;第二开关元件(Q2),所述第二开关元件(Q2)连接在所述热敏电阻(RT1)的第二端与所述接地(G1)之间。
根据本发明的一种实施方式,所述第一开关元件(Q1)和第二开关元件(Q2)为晶体管。
根据本发明的一种实施方式,所述热敏电阻(RT1)为负温度系数热敏电阻。
根据本发明的一种实施方式,所述检测电路还包括位于所述第一电阻(R1)与所述热敏电阻(RT1)之间的引脚(P1)。
根据本发明的一种实施方式,所述检测电路还包括与所述热敏电阻(RT1)并联地连接在所述第一电阻(R1)与所述接地(G1)之间的第一电容(C1)。
根据本发明的一种实施方式,所述检测电路还包括用于控制所述第一开关元件(Q1)的驱动电路,所述驱动电路包括:第三电阻(R3)和第二电容(C2),所述第三电阻(R3)和所述第二电容(C2)依次连接在所述第一开关元件(Q1)的控制端与所述接地(G1)之间;第四电阻(R4),所述第四电阻(R4)与所述第三电阻(R3)和所述第二电容(C2)并联地连接在所述第一开关元件(Q1)的控制端与所述接地(G1)之间。
根据本发明的一种实施方式,所述检测电路还包括用于控制所述第二开关元件(Q2)的驱动电路,所述驱动电路包括:第五电阻(R5),所述第五电阻(R5)连接在所述第二开关元件(Q2)的控制端与所述检测电路的控制器之间;第六电阻(R6),所述第六电阻(R6)连接 在所述第二开关元件(Q2)的控制端与所述接地(G1)之间。
本发明公开了一种操作如上所述的检测电路的方法,所述方法包括关断所述第一开关元件(Q1)和所述第二开关元件(Q2)的步骤,以检测所述热敏电阻(RT1)和所述第一电阻(R1)之间的连接点处的电压值。
根据本发明的一种实施方式,所述方法还包括接通所述第一开关元件(Q1)并关断所述第二开关元件(Q2)的步骤,以检测所述热敏电阻(RT1)和所述第一电阻(R1)之间的连接点处的电压值。
根据本发明的一种实施方式,所述方法还包括接通所述第一开关元件(Q1)和所述第二开关元件(Q2)的步骤,以检测所述热敏电阻(RT1)和所述第一电阻(R1)之间的连接点处的电压值。
根据本发明的一种实施方式,所述方法还包括关断所述第一开关元件(Q1)并接通所述第二开关元件(Q2)的步骤,以检测所述热敏电阻(RT1)和所述第一电阻(R1)之间的连接点处的电压值。
根据本发明的一种实施方式,所述方法还包括在关断所述第一开关元件(Q1)并接通所述第二开关元件(Q2)的步骤中,当所述热敏电阻(RT1)和所述第一电阻(R1)之间的连接点处的电压值超过预定值时,接通所述第一开关元件(Q1)以检测所述热敏电阻(RT1)和所述第一电阻(R1)之间的连接点处的电压值的步骤。
根据本发明的一种实施方式,所述方法还包括:根据控制逻辑选择性地执行所述步骤中的一个或多个。
本发明公开了一种控制系统,所述控制系统用于执行如上所述的方法,其中,所述控制系统根据控制逻辑选择性地执行一个或多个所述步骤。
根据本发明的检测电路及其操作方法,可以实现对电压源的电压校准,可以实现对电路引脚的浮动检查,还可以实现对电路中的温敏电阻的浮动检查和/或短路检查,此外,还可以扩大温敏电阻的温度监测范围。本发明的检测电路结构简单,容易操作,成本低,可以实现多个功能,通用性好,可以适用于各种工具和/或马达,例如动力 工具及其马达。
附图说明
图1是本文所述的示例性动力工具以及其部件的立体图。
图2是现有技术的电路的图示。
图3是本发明的电路的第一实施例的图示。
图4是本发明的电路的第二实施例的图示。
图5是图4的电路的操作流程图。
具体实施方式
下面结合说明书附图,进一步对本发明的优选实施方式进行详细描述,以下的描述为示例性的,并非对本发明的限制,任何的其他类似情形也都落入本发明的保护范围之中。
本发明涉及一种电动工具100。本文中以圆锯等为例描述本发明的构思,但是不限于此,电动工具也可以是本领域已知或常见的其他类型的电动工具,例如曲线锯、轨道锯、刺锯等其他类型的锯子、钻机、钻锤、冲击钻、刨子、起子、铣刀、磨具、角磨机、振动磨光机、园艺工具和/或多功能工具等,相应地,本文的发明构思同样适用于这些电动工具。此外,这些电动工具可以具有各种结构和组成,对此不再赘述,本发明在下文中将重点描述本发明构思所涉及的方面。
图1是根据本发明的电动工具的透视图。电动工具100包括马达10以及可用于控制马达10的控制电路板(PCB)20。图中示出了PCB 20位于马达10左前方,这仅是示例,PCB 20可以相对于马达10位于任何合适的位置并电联接到马达对其进行控制。马达10可以是任何类型的马达,例如无刷马达、有刷马达、直流马达或交流马达。
图2示出了PCB 20中的相关电路部分。如前所述,图中示出了该部分包括用于对电路供电的电压源V1以及接地G1,在电压源V1以及接地G1之间依次串联地布置有电阻R1和RT1,并且电阻RT1还并联地连接有电容C1以形成RC回路。其中,电阻RT1为热敏电阻或温敏 电阻,例如NTC(负温度系数)热敏电阻,NTC热敏电阻的电阻值随着温度升高而减小,因此RT1可以用作温度传感器。RT1位于电路中的功率器件(例如MOS管)附近并用于检测其温度,当检测到功率器件的温度例如过高时(例如超过温度阈值时),微控制单元(MCU)就此调节电路以及马达的运行,例如降低其功率、或者甚至中断其运行。
另外,电路还包括电路引脚P1,由于引脚P1位于R1和RT1之间,因此在引脚上测量的电压为RT1对电压源V1的电压的分压值,并利用该分压值判定电路是否为悬空(或称为浮动或悬置)状态,术语“悬空”、“浮动”、“悬置”以电学领域中的宽泛含义理解,例如引脚P1的虚焊或者断开连接均引起电路的悬空或浮动;而RT1的连接断开、断路、损坏、在异常状况下操作或者操作异常等均引起RT1的浮动,例如当RT1的电阻值随着温度的变化变得极大而接近断路时,可以认为RT1处于浮动状态。
电路还包括检测点TP1,用作对电路的测试点,由于点TP1位于R1和RT1之间,因此在点TP1处测量的电压实际上为RT1对电压源V1的电压的分压值。微控制单元(MCU)可以根据点TP1处检测的分压值校准电压源V1的电压、确定引脚P1的浮动状态以及RT1的浮动状态。此外,微控制单元(MCU)具有模数转换器(ADC),模数转换器(ADC)根据点TP1处检测的分压值确定RT1的电阻值进而确定温度。RT1检测的是功率器件本身的温度或附近周围的环境温度,在本文中可以将该温度称为环境温度或者简称为温度,图中使用标记Temp_FET表示在测试点TP1处测得的分压值。
如前所述,RT1的电阻值随着温度而变化,在测试点TP1处检测到的电源电压的分压并不是恒定值,因此微控制单元无法执行上述的功能。
电压源V1可以根据应用为电路提供任何电压,例如1V(伏特)至5V的电压范围,2V至6V的电压范围,或者3V、4V、3.3V、4.5V、5V、5.3V等;同理,电阻R1和RT1可以具有任何合适的电阻值,例如,R1的电阻可以为10KΩ(欧姆)至30KΩ的范围,例如15KΩ、 20KΩ、21KΩ、25KΩ等,RT1的电阻可以为20KΩ(欧姆)至40KΩ的范围,例如25KΩ、30KΩ、31KΩ、33KΩ、35KΩ等;电容C1可以具有任何合适的电容值,例如0.001μF至0.05μF的范围,例如0.005μF、0.01μF等。注意的是,上述电压值、电阻值和电容值仅为示例,而不具有限制性,本领域技术人员可以根据具体的应用选择各种合适的值。
下面以V1为3.3V、R1为20KΩ,RT1为33KΩ,C1为0.01μF为例介绍图2的电路。RT1为NTC热敏电阻、与R1串联连接在电压源V1和接地G1之间,因此在点TP1处测量的电压Temp_FET表示RT1的分压值。RT1的电阻值33KΩ指的是在指定温度下的电阻值,指定温度是指例如常温或正常操作状态或初始操作状态或开始操作前,如20℃或25℃等,并且其电阻值随着温度升高而降低,并随着温度降低而增加。在所述指定温度下,在TP1处测得的RT1的分压值Temp_FET为2.05V;随着温度增加,RT1的电阻值减小,分压值Temp_FET也相应减小;随着温度降低,RT1的电阻值增加,分压值Temp_FET也相应地增加。ADC检测TP1处的分压值Temp_FET,并利用该分压值、R1的固定电阻值,计算得到RT1的电阻值,进而利用RT1的电阻值和温度之间的对应关系,得到RT1所检测的温度。然而,ADC本身的电压检测量程是有限的检测范围、具有上限值以及下限值,因此所检测的温度值也是一个温度范围。当TP1处的电压值超出这个范围时,例如超出ADC本身的监测量程时,ADC将无法准确确定TP1的电压值以及相应的温度。
在本示例中,MCU的电压量程上限值为2.4V,考虑到RT1自身的电阻值随温度的变化,当温度降低到15℃时,RT1的电阻值增加到一定值,此时RT1的分压值从指定温度下的2.05V增加到2.4V,2.4V即是MCU的ADC的量程上限。当温度从15℃进一步降低时,RT1的电阻值进一步增加并且其分压值Temp_FET从2.4V进一步增加而超过MCU的监测范围上限,超出了其量程范围,因此MCU监测的最低温度为15℃。同理,MCU具有一定的电压下限,相应地,监测的最高温度 为125℃,因此MCU只能监测15℃至125℃的温度范围。
需要指出的是,MCU的电压量程范围以及温度监测范围仅为示例用于说明,而不具有限制性,并且RT1也不一定是NTC(负温度系数)热敏电阻,也可以是PTC(正温度系数)热敏电阻。
鉴于上述不足和问题,本发明提出一种改进的电路,即图3所示的电路的第一实施例。与图2的电路相比,图3增加了具有固定电阻值的电阻R2以及晶体管Q1,电阻R2以及晶体管Q1与RT1并联电连接。晶体管Q1相当于开关元件,其可以被接通和关断。晶体管Q1可以是二极管、三极管、场效应管或者晶闸管或者它们的任意组合等,用于实现对电路的通断控制。当晶体管Q1接通时,晶体管Q1的电阻很小、可以忽略不计,从而将电阻R2直接电联接在电压源V1和接地G1之间,此时电阻R2与RT1并联连接;当晶体管Q1关断时,其电阻值非常大,从而将电阻R1置于断路状态。晶体管Q1的左侧设置有用于控制晶体管Q1的驱动电路,驱动电路连接到晶体管Q1的输入端或控制端,输入端或控制端用于控制晶体管的通断并且可以是例如基极等。驱动电路包括电联接在接地G1与晶体管的输入端的电阻R3、R4、以及电容C2,其中R4连接在晶体管的输入端与接地G1之间,R3与C2串联地连接在晶体管的输入端与接地G1之间,R3与C2二者与R4并联。MCU通过控制驱动电路来控制晶体管Q1的通断。
如上所述,类似于电阻R1和RT1,电阻R2、R3、R4的电阻值可以为任何合适的电阻值。以R2的电阻值为20KΩ为例,当晶体管Q1接通时,电阻R2与RT1并联连接在电阻R1与接地之间,然后二者与R1串联连接在电压源V1与接地G1之间,此时TP1处测量的电压为R2与RT1并联的总电阻的分压值。在相同的温度下,与单独RT1的分压值相比,R2与RT1并联后的总电阻值减小,因此分压值减小。如此,即使温度降低到15℃以下,虽然RT1的电阻值增加,但是由于并联的R2的存在,TP1处测量的分压值依然可以在MCU的电压量程范围内,这样MCU可以监测到低于15℃的温度,即扩大了温度监测范围。扩大的温度监测范围具体地由电阻R2的电阻值决定,R2的电阻值越低,其 与RT1并联后的总电阻值越小,TP1处测得的分压值越小,如此可以检测更大的温度范围。
在本示例中,R2的电阻值为20KΩ,使得MCU的温度监测范围扩大至-40℃至125℃。具体地,与图2的电路相比,当温度降低至低于15℃时,MCU会接通晶体管Q1,将R2与RT1并联,使得在图2中原本低于15℃时会超过2.4V极限值的分压值Temp_FET在图3中降低为低于2.4V极限值,如此,即使温度从15℃继续降低一定量,分压值Temp_FET依然在MCU的量程范围内。
但是如上参考图2所述,由于RT1的电阻值随着温度变化,因此图3的实施例依然无法执行以下功能:对电压源V1的电压进行校准;确定引脚P1的浮动状态;确定电阻RT1的浮动状态。
图4示出了电路的第二实施例。与图3的电路相比,图4增加了晶体管Q2,晶体管Q2串联连接在电阻RT1与接地G1之间。晶体管Q2与晶体管Q1基本相同,如上已经描述,在此不再赘述。类似于晶体管Q1,晶体管Q2也具有驱动电路,驱动电路连接到晶体管Q2的输入端或控制端,并且包括R5以及电联接在接地G1与晶体管的输入端的电阻R6,其中R5连接在晶体管的输入端与MCU的驱动网络(未示出)之间。如上所述,类似于电阻R1和RT1,电阻R5、R6的电阻值可以为任何合适的电阻值。例如,R5可以为1KΩ,R6可以为200KΩ。类似地,MCU通过控制驱动电路来控制晶体管Q2的通断。
通过增加晶体管Q2,可以将RT1断路,如此可以在某些时刻去除RT1的电阻值变动的影响,从而实现图2和图3不能实现的功能。
如图5所示,图4的电路的操作过程包括以下步骤。
步骤S1:在电路启动时,关断Q1和Q2,此时R2和RT1均被断路,此时检测TP1处的电压值Temp_FET,如果其电压值为3.3V(即电压源V1的电压),表明MCU正常工作,即ADC通道功能正常,则过程进行到步骤S2;否则,表明ADC通道功能异常,需要检修。需要指出的是,步骤S1同样用于检查引脚P1的浮动,即ADC通道功能异常表明引脚P1处于浮动状态。
步骤S2:接通Q1,关断Q2,检测TP1处的电压值Temp_FET,校准电压源V1的电压是否为3.3V,如果是,则过程进行到步骤S3。具体校准过程为:关断Q2导致RT1被断路,接通Q1致使R2与R1串联连接在电压源V1与接地G1之间,由于R1与R2的电阻值相等,因此TP1处的分压值Temp_FET为电压源V1的一半,即如果分压值Temp_FET为1.65V,则表明电压源V1的电压为3.3V,校准成功。
步骤S3:接通Q1和Q2,此时R2和RT1并联连接在R1与接地G1之间,检测TP1处的电压值Temp_FET,确定电压值Temp_FET的电压是否大于预定值,如果否,则过程进行到步骤S4。步骤S3的目的在于检测RT1是否处于浮动状态,具体地,电压值Temp_FET实际上是RT1与R2并联的总电阻的分压值,在RT1为NTC电阻的情况下,RT1的电阻值随着温度的降低而增加。当RT1所检测或处于的温度在预定温度范围内时,RT1的电阻值具有预定的上限值,但是当温度超过某个阈值而越来越低时,RT1的电阻值越来越大,接近无穷大,相当于被断路,此时RT1处于浮动状态。
基于此,根据具体应用将RT1检测的温度设置在预定温度范围内,当RT1处于预定的温度阈值时,此时RT1的电阻值为预定的上限值,并且电压值Temp_FET为上述的预定值。当RT1检测的温度超过预定的温度范围,则RT1的电阻值超过预定的上限值,电压值Temp_FET超过上述的预定电压值。因此当在步骤S3中检测到电压值Temp_FET的电压大于预定值时,表明RT1处于异常浮动状态,亦即温度超出了预定范围;如果电压值Temp_FET的电压不大于预定值,表明RT1处于正常状态。此外,当电压值Temp_FET为零伏时,表明RT1被短路。
步骤S4:关断Q1,接通Q2,此时R2被断路,RT1与R1串联电联接在电压源V1与接地G1之间,检测TP1处的电压值Temp_FET,该电压值实际上是RT1的分压值,根据该分压值计算RT1此时的电阻值,并利用RT1的电阻-温度关系而计算得到RT1所检测或所处于的环境温度。
如前基于图2的示例描述的,MCU监测的电压值Temp_FET的上 限值为2.4V,因此如果此时检测的电压值Temp_FET超过了2.4V,表明RT1的电阻值随着温度的降低而增加超过了上限阈值,即此时监测的温度降低到超出了预定范围而不能准确地知晓此时真实的温度,需要将RT1的分压值降低而增加温度的监测范围,此时需要过程进行到步骤S5。
步骤S5:接通Q1和Q2,此时R2和RT1并联连接在R1与接地G1之间,检测TP1处的电压值Temp_FET,并计算得到RT1此时所处于的较低温度值。在步骤S5中,由于将R2与RT1并联而降低了总的电阻值,因此使得TP1处的电压分压值Temp_FET降低。即相对于步骤S4中在此时低温下的电压值Temp_FET超过了2.4V,由于增加了R2与RT1进行并联,因此,电压值Temp_FET从2.4V降低,使得该电压值落入MCU的量程范围内。
需要指出的是,上述步骤S1-S5不是必须按照所述的顺序依次地或者同时地执行,相反,这些步骤是彼此独立的以实现不同的功能,因此,这些步骤可以彼此单独地执行、按照任何顺序执行、可以组合其中的一些步骤以任何顺序执行。即,MCU可以根据控制逻辑选择性地执行步骤S1-S5中的一个或多个。
在马达10运行之前,MCU需要对引脚P1进行浮动检查(例如,步骤S1);而在马达运行之后,MCU也将继续对其进行浮动检查。
在马达10运行之前,MCU需要校准电压源V1的电压(例如,步骤S2);而在马达运行之后,MCU可以不再进行校准。
在马达10运行之前,MCU需要对RT1进行浮动检查和/或短路检查(例如,步骤S3);而在马达运行之后,MCU也将继续对其进行浮动检查和/或短路检查。
在马达10运行过程中,MCU需要监测RT1所检测的功率器件的温度和/或周围的环境温度(例如,步骤S4和/或S5),通常可以通过步骤S4检测环境温度,其中R2被断路,仅通过RT1的分压值确定环境温度,这种情况下MCU监测的温度范围为例如15℃至125℃。当环境温度低于15℃时,MCU切换到步骤S5,其中R2和RT1并联连接,通 过它们并联后的总电阻的分压值确定环境温度,这种情况下MCU监测的温度范围为例如-40℃(零下40℃)至125℃
此外,需要注意的是,本文中列举的各种电阻值、电压值、电容值以及温度值均是示例,用于说明本发明的构思,而不具有限制性。本领域技术人员可以根据具体的应用合理地设置这些值,并且RT1作为NTC电阻为例进行描述,但是RT1可以是PTC电阻,所有这些均适用于本发明构思并落入本发明的保护范围内。
此外,还提供了一种控制系统,控制系统用于执行本发明的电路的操作方法,并且控制系统根据控制逻辑选择性地执行步骤S1-S5中的一个或多个。
根据本发明的检测电路及其操作方法,可以实现对电压源的电压校准,可以实现对电路引脚的浮动检查,还可以实现对电路中的温敏电阻的浮动检查和/或短路检查,此外,还可以扩大温敏电阻的温度监测范围。本发明的检测电路结构简单,容易操作,成本低,可以实现多个功能,通用性好,可以适用于各种工具和/或马达,例如动力工具及其马达。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种组合、变更或修改,但这些组合、变更和修改均落入本发明的保护范围。

Claims (14)

  1. 一种检测电路,包括:
    电压源(V1);
    接地(G1);
    第一电阻(R1),所述第一电阻(R1)的第一端连接到所述电压源(V1);
    热敏电阻(RT1),所述热敏电阻(RT1)的第一端连接到所述第一电阻(R1)的第二端;
    第二电阻(R2),所述第二电阻(R2)的第一端连接到所述热敏电阻(RT1)和所述第一电阻(R1)之间的连接点处;
    第一开关元件(Q1),所述第一开关元件(Q1)连接在所述第二电阻(R2)的第二端与所述接地(G1)之间;
    第二开关元件(Q2),所述第二开关元件(Q2)连接在所述热敏电阻(RT1)的第二端与所述接地(G1)之间。
  2. 根据权利要求1所述的检测电路,其中,所述第一开关元件(Q1)和第二开关元件(Q2)为晶体管。
  3. 根据权利要求1所述的检测电路,其中,所述热敏电阻(RT1)为负温度系数热敏电阻。
  4. 根据权利要求1所述的检测电路,其中,所述检测电路还包括位于所述第一电阻(R1)与所述热敏电阻(RT1)之间的引脚(P1)。
  5. 根据权利要求1所述的检测电路,其中,所述检测电路还包括与所述热敏电阻(RT1)并联地连接在所述第一电阻(R1)与所述接地(G1)之间的第一电容(C1)。
  6. 根据权利要求1所述的检测电路,其中,所述检测电路还包括用于控制所述第一开关元件(Q1)的驱动电路,所述驱动电路包括:第三电阻(R3)和第二电容(C2),所述第三电阻(R3)和所述第二电容(C2)依次连接在所述第一开关元件(Q1)的控制端与所述接地(G1)之间;第四电阻(R4),所述第四电阻(R4)与所 述第三电阻(R3)和所述第二电容(C2)并联地连接在所述第一开关元件(Q1)的控制端与所述接地(G1)之间。
  7. 根据权利要求1所述的检测电路,其中,所述检测电路还包括用于控制所述第二开关元件(Q2)的驱动电路,所述驱动电路包括:第五电阻(R5),所述第五电阻(R5)连接在所述第二开关元件(Q2)的控制端与所述检测电路的控制器之间;第六电阻(R6),所述第六电阻(R6)连接在所述第二开关元件(Q2)的控制端与所述接地(G1)之间。
  8. 一种用于操作如权利要求1至7中任一项所述的检测电路的方法,所述方法包括关断所述第一开关元件(Q1)和所述第二开关元件(Q2)的步骤,以检测所述热敏电阻(RT1)和所述第一电阻(R1)之间的连接点处的电压值。
  9. 根据权利要求8所述的方法,其中,所述方法还包括接通所述第一开关元件(Q1)并关断所述第二开关元件(Q2)的步骤,以检测所述热敏电阻(RT1)和所述第一电阻(R1)之间的连接点处的电压值。
  10. 根据权利要求8所述的方法,其中,所述方法还包括接通所述第一开关元件(Q1)和所述第二开关元件(Q2)的步骤,以检测所述热敏电阻(RT1)和所述第一电阻(R1)之间的连接点处的电压值。
  11. 根据权利要求8所述的方法,其中,所述方法还包括关断所述第一开关元件(Q1)并接通所述第二开关元件(Q2)的步骤,以检测所述热敏电阻(RT1)和所述第一电阻(R1)之间的连接点处的电压值。
  12. 根据权利要求11所述的方法,其中,所述方法还包括在关断所述第一开关元件(Q1)并接通所述第二开关元件(Q2)的步骤中,当所述热敏电阻(RT1)和所述第一电阻(R1)之间的连接点处的电压值超过预定值时,接通所述第一开关元件(Q1)以检测所述热敏电阻(RT1)和所述第一电阻(R1)之间的连接点处的电压 值的步骤。
  13. 根据权利要求8至12中任一项所述的方法,其中,所述方法还包括:根据控制逻辑选择性地执行所述步骤中的一个或多个。
  14. 一种控制系统,所述控制系统用于执行如权利要求8至13中任一项所述的方法,其中,所述控制系统根据控制逻辑选择性地执行一个或多个所述步骤。
PCT/CN2022/116494 2022-09-01 2022-09-01 检测电路及其操作方法 WO2024045130A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116494 WO2024045130A1 (zh) 2022-09-01 2022-09-01 检测电路及其操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116494 WO2024045130A1 (zh) 2022-09-01 2022-09-01 检测电路及其操作方法

Publications (1)

Publication Number Publication Date
WO2024045130A1 true WO2024045130A1 (zh) 2024-03-07

Family

ID=90100157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116494 WO2024045130A1 (zh) 2022-09-01 2022-09-01 检测电路及其操作方法

Country Status (1)

Country Link
WO (1) WO2024045130A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121825A (ja) * 2007-11-12 2009-06-04 Shindengen Electric Mfg Co Ltd 温度検出回路
CN103234655A (zh) * 2013-04-08 2013-08-07 惠州市亿能电子有限公司 一种采用热敏电阻的bms温度检测电路
CN103427783A (zh) * 2012-05-21 2013-12-04 上海晨兴希姆通电子科技有限公司 热敏电阻的阻抗匹配电路及其构造方法
CN210603648U (zh) * 2019-11-22 2020-05-22 深圳国裕智能电子有限公司 一种电熨斗电池状态检测电路
CN113432743A (zh) * 2021-06-21 2021-09-24 力高(山东)新能源技术有限公司 一种提高温度传感器采集精度的采集电路及方法
CN114526839A (zh) * 2020-10-30 2022-05-24 上海拜骋电器有限公司 一种电池包检测电路、电源管理系统及电池包控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121825A (ja) * 2007-11-12 2009-06-04 Shindengen Electric Mfg Co Ltd 温度検出回路
CN103427783A (zh) * 2012-05-21 2013-12-04 上海晨兴希姆通电子科技有限公司 热敏电阻的阻抗匹配电路及其构造方法
CN103234655A (zh) * 2013-04-08 2013-08-07 惠州市亿能电子有限公司 一种采用热敏电阻的bms温度检测电路
CN210603648U (zh) * 2019-11-22 2020-05-22 深圳国裕智能电子有限公司 一种电熨斗电池状态检测电路
CN114526839A (zh) * 2020-10-30 2022-05-24 上海拜骋电器有限公司 一种电池包检测电路、电源管理系统及电池包控制方法
CN113432743A (zh) * 2021-06-21 2021-09-24 力高(山东)新能源技术有限公司 一种提高温度传感器采集精度的采集电路及方法

Similar Documents

Publication Publication Date Title
US7075762B2 (en) Inverter circuit device with temperature detection circuit
JP5343986B2 (ja) 電子装置
JP4473927B2 (ja) 短絡保護装置
US7542251B2 (en) Auto-protected power modules and methods
US20040155532A1 (en) Method for sensing switch closure to prevent inadvertent startup
JP5719009B2 (ja) 過電圧保護付き出力ドライバ
JP2004096804A (ja) 過熱保護回路
KR20060043676A (ko) 전류 검출 기능이 부가된 반도체 집적 회로, 및 이를이용한 전원 장치
US20070229011A1 (en) Circuit Arrangement and Method for Adjusting the Power Consumption of a Load That Can be Operated by a Direct-Voltage System
US20050099163A1 (en) Temperature manager
WO2024045130A1 (zh) 检测电路及其操作方法
JP2013188128A (ja) リチウムイオン電池の保護回路
US20100097737A1 (en) Load driving device
US7498864B2 (en) Electronic fuse for overcurrent protection
US20060198074A1 (en) Semiconductor integrated-circuit unit with temperature protective circuit
TW201532749A (zh) 電動工具扭力控制裝置
JP4735432B2 (ja) 分析装置の保護回路
JP4148243B2 (ja) 異常検出回路
JP2007189844A (ja) 半導体素子保護回路
CN109188171B (zh) 继电器线圈开路故障检测电路
CN108733122B (zh) 数字输出电路及工业控制设备
CN108736877B (zh) 驱动电路
JP4640834B2 (ja) 信頼性試験装置
CN219574647U (zh) 一种裁布机控制系统
TWI622778B (zh) 檢測裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956955

Country of ref document: EP

Kind code of ref document: A1