WO2024043081A1 - Ink composition, production method for ink composition, and production method for color filter - Google Patents

Ink composition, production method for ink composition, and production method for color filter Download PDF

Info

Publication number
WO2024043081A1
WO2024043081A1 PCT/JP2023/028951 JP2023028951W WO2024043081A1 WO 2024043081 A1 WO2024043081 A1 WO 2024043081A1 JP 2023028951 W JP2023028951 W JP 2023028951W WO 2024043081 A1 WO2024043081 A1 WO 2024043081A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink composition
group
quantum dots
silsesquioxane
alkoxysilane
Prior art date
Application number
PCT/JP2023/028951
Other languages
French (fr)
Japanese (ja)
Inventor
義弘 野島
伸司 青木
一也 鳶島
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2024043081A1 publication Critical patent/WO2024043081A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to an ink composition, a method for producing an ink composition, and a method for producing a color filter.
  • Quantum dots Semiconductor crystal particles with a nano-sized particle diameter are called quantum dots, and the excitons generated by light absorption are confined in a nano-sized region, resulting in discrete energy levels of the semiconductor crystal particles, and their band gap. varies depending on the particle size. Due to these effects, the fluorescent light emission of quantum dots has higher brightness, higher efficiency, and sharper light emission than that of general phosphors. In addition, it has the characteristic that the bandgap changes depending on the particle size, which allows the emission wavelength to be controlled, and is expected to be applied as a wavelength conversion material for solid-state lighting and displays. For example, by using quantum dots as a wavelength conversion material in displays, a wider color gamut and lower power consumption can be achieved than with conventional phosphor materials.
  • quantum dots As a mounting method for using quantum dots as a wavelength conversion material, a method has been proposed in which quantum dots are dispersed in a resin material, and the resin material containing quantum dots is laminated with a transparent film to be incorporated into a backlight unit as a wavelength conversion film.
  • Patent Document 1 a method has been proposed in which quantum dots are dispersed in a resin material, and the resin material containing quantum dots is laminated with a transparent film to be incorporated into a backlight unit as a wavelength conversion film.
  • the quantum dots absorb monochromatic blue light from the backlight unit and emit red or green light, which functions as a color filter and wavelength conversion material.
  • Adaptation to image elements with excellent reproducibility has also been proposed (Patent Document 2).
  • a micro LED display in which the backlight unit is replaced with a micro-sized LED array is attracting attention. In micro LED displays, it is required to form color filters on micro-sized LEDs.
  • inkjet ejects ink from a narrow nozzle, in order to form fine patterning of 100 ⁇ m or less, which is particularly required for applications such as micro LEDs, the nozzle diameter must be reduced to ensure stable ejection and pattern reproducibility. Therefore, there are major restrictions on the characteristics of the ink. For example, there are the viscosity of the ink, the evaporation rate of the ink, the concentration of the quantum dots that are the solid content contained in the ink, and the aggregation and sedimentation of the quantum dots in the resin solution.
  • the quantum dots in the resin composition after pattern formation are present in the resin material, unlike the environment in a solution, they are susceptible to desorption of ligands, and their luminescent properties may deteriorate over time. It becomes a problem.
  • surface coating of quantum dots Patent Document 4
  • encapsulation Patent Document 5
  • polyhedral oligomeric silica have been developed to improve dispersibility in polar solvents and resin materials or to improve stability.
  • Various methods have been attempted, such as sesquioxane ligand (Patent Document 6), but all of the problems include dispersibility in resin materials, especially aggregation suppression and stability at high concentrations where the content of quantum dots is 10% by mass or more. It is difficult to achieve both.
  • the present invention was made in view of the above-mentioned problems, and an object of the present invention is to provide an ink composition containing highly reliable quantum dots that can disperse quantum dots at high concentrations without agglomeration. do.
  • the present invention has been made to achieve the above object, and is an ink composition containing quantum dots, comprising a silsesquioxane polymer in which the quantum dots are copolymerized with silsesquioxane, or
  • the present invention provides an ink composition comprising a silsesquioxane polymer obtained by copolymerizing the quantum dots and an alkoxysilane.
  • quantum dots can be dispersed at a high concentration without agglomeration, and an ink composition containing highly reliable quantum dots can be provided.
  • an ink composition in which the surface of the quantum dots is surface-modified with a silane coupling agent is preferable to use.
  • a silsesquioxane polymer obtained by copolymerizing the quantum dots with silsesquioxane or a silsesquioxane polymer obtained by copolymerizing the quantum dots and an alkoxysilane.
  • the alkoxysilane be an ink composition consisting of two or more types of alkoxysilanes each having a different functional group.
  • the degree of crosslinking of the silsesquioxane polymer can be controlled, the viscosity of the ink composition can be controlled, quantum dots can be dispersed at high concentrations without agglomeration, and reliability is improved.
  • the viscosity can be adjusted according to the manufacturing process.
  • the ink composition is such that the alkoxysilane is composed of at least two types of alkoxysilanes selected from trialkoxysilane, monoalkoxysilane, and dialkoxysilane, and the viscosity of the ink composition is 1500 mPa ⁇ s or less. is preferred.
  • the degree of crosslinking of the silsesquioxane polymer can be controlled, the viscosity of the ink composition can be controlled, quantum dots can be dispersed at high concentrations without agglomeration, and reliability is improved.
  • the viscosity can be adjusted according to the manufacturing process.
  • the silane coupling agent is an ink composition having one or more of an amino group, a thiol group, a carboxyl group, a phosphino group, a phosphine oxide group, and an ammonium ion.
  • a silsesquioxane polymer obtained by copolymerizing the quantum dots with silsesquioxane or a silsesquioxane polymer obtained by copolymerizing the quantum dots and an alkoxysilane.
  • the ink in which the silsesquioxane has a reactive substituent of one or more of vinyl group, acrylic group, methacrylic group, hydroxyl group, phenolic hydroxyl group, epoxy group, glycidyl group, and thiol group as a functional group is a composition.
  • a silsesquioxane polymer obtained by copolymerizing the quantum dots with silsesquioxane or a silsesquioxane polymer obtained by copolymerizing the quantum dots and an alkoxysilane.
  • the ink composition has one or more reactive substituents of a vinyl group, an acrylic group, a methacrylic group, a hydroxyl group, a phenolic hydroxyl group, an epoxy group, a glycidyl group, and a thiol group as a functional group of the alkoxysilane. It is preferable that
  • a silsesquioxane polymer obtained by copolymerizing the quantum dots with silsesquioxane, or a silsesquioxane polymer obtained by copolymerizing the quantum dots and an alkoxysilane can be easily formed.
  • the quantum dots can be dispersed at high concentrations without agglomeration, and an ink composition containing highly reliable quantum dots can be provided.
  • the present invention also provides a method for manufacturing a color filter, which comprises forming a color filter by discharging the ink composition described above onto a substrate using an inkjet method.
  • quantum dots can be dispersed at high concentrations without agglomeration, and an ink composition containing highly reliable quantum dots can be applied onto a substrate by an inkjet method without clogging of nozzles.
  • Color filters can be easily and accurately formed by discharging smoothly without causing any damage.
  • the present invention includes a step of preparing quantum dots, a step of preparing an alkoxysilane, and the alkoxysilane is silsesquioxane connected to the surface of the quantum dot, and the quantum dot and the silsesquioxane are connected to the surface of the quantum dot.
  • a method for producing an ink composition comprising: forming a copolymer comprising:
  • quantum dots can be dispersed at high concentrations without agglomeration, and an ink composition containing highly reliable quantum dots can be easily and reliably produced. can.
  • the method for producing an ink composition is such that the step of preparing the quantum dots includes a step of forming a core, and a step of forming a shell covering the core.
  • quantum dots with a core-shell structure can be easily and reliably produced, quantum dots can be dispersed at high concentrations without agglomeration, and highly reliable quantum dots can be produced.
  • An ink composition comprising:
  • the step of forming the copolymer includes a step of surface-modifying the surface of the quantum dots with a silane coupling agent, and a step of applying the silsesquioxane to the surface of the quantum dots via the silane coupling agent.
  • the method for producing an ink composition preferably includes the step of connecting.
  • a silsesquioxane polymer obtained by copolymerizing the quantum dots with silsesquioxane, or a silsesquioxane obtained by copolymerizing the quantum dots and an alkoxysilane A polymer can be easily formed, quantum dots can be dispersed at high concentration without agglomeration, and an ink composition containing highly reliable quantum dots can be provided.
  • the present invention copolymerizes quantum dots and silsesquioxane, or copolymerizes quantum dots and alkoxysilane to form a silsesquioxane polymer, and crosslinks the silsesquioxane polymer.
  • highly concentrated quantum dots can be dispersed without agglomeration, and an ink composition containing highly reliable quantum dots can be obtained.
  • quantum dots can be dispersed at high concentrations without agglomeration, and the ink composition can contain highly reliable quantum dots.
  • quantum dots can be dispersed at high concentrations without agglomeration, and an ink composition containing highly reliable quantum dots can be produced.
  • quantum dots can be dispersed at high concentrations without agglomeration, and an ink composition containing highly reliable quantum dots can be applied onto a substrate by an inkjet method to avoid clogging of nozzles.
  • Color filters can be easily and accurately formed by discharging smoothly without causing any damage.
  • Embodiments of the present invention will be described below, but the present invention is not limited thereto.
  • an inkjet ink composition that can disperse quantum dots at high concentrations without agglomeration, contains highly reliable quantum dots, and is capable of stable ejection. . Therefore, the inventors of the present invention have conducted extensive studies in order to achieve such a problem. As a result, they came up with an ink composition containing a silsesquioxane polymer obtained by copolymerizing quantum dots and silsesquioxane, or copolymerizing quantum dots and alkoxysilane, and completed the present invention.
  • quantum dots In the present invention, the composition and manufacturing method of quantum dots are not particularly limited, and quantum dots can be selected depending on the purpose.
  • compositions of quantum dots include II-IV group semiconductors, III-V group semiconductors, II-VI group semiconductors, I-III-VI group semiconductors, II-IV-V group semiconductors, group IV semiconductors, and perovskite semiconductors. Ru.
  • the structure of the quantum dot may have a core-only structure or a core-shell structure.
  • core materials include CdSe, CdS, CdTe, InP, InAs, InSb, AlP, AlAs, AlSb, ZnSe, ZnS, ZnTe, Zn 3 P 2 , GaP, GaAs, GaSb, CuInSe 2 , CuInS 2 , CuInTe 2 , CuGaSe 2 , CuGaS 2 , CuGaTe 2 , CuAlSe 2 , CuAlS 2 , CuAlTe 2 , AgInSe 2 , AgInS 2 , AgInTe, AgGaSe 2 , AgGaS 2 , AgGaTe 2 , PbSe, PbS, PbS, PbTe, Si, Ge, graphene, CsPbCl 3 , CsPbBr 3 , CsPbI 3 , CH 3 NH 3 PbCl 3 , and those to which these mixed crystals or do
  • Shell materials include ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, AlSb, BeS, BeSe, BeTe, MgS, Examples include MgSe, MgTe, PbS, PbSe, PbTe, SnS, SnSe, SnTe, CuF, CuCl, CuBr, CuI, and mixed crystals thereof.
  • the quantum dots may be spherical, cubic or rod-shaped.
  • the shape of the quantum dots is not limited and can be freely selected.
  • the particle size of the quantum dots can be appropriately selected depending on the desired wavelength range.
  • the average particle diameter of the quantum dots is preferably 20 nm or less. If the average particle size is larger than this, the quantum size effect cannot be obtained, the luminous efficiency will drop significantly, and the band gap due to the particle size cannot be controlled.
  • the particle size of the quantum dots is calculated from the average value of the directional maximum diameter of 20 or more particles, that is, the Feret diameter, by measuring a particle image obtained with a transmission electron microscope (TEM). I can do it.
  • TEM transmission electron microscope
  • the method for measuring the average particle diameter is not limited to this, and other methods can be used.
  • a ligand may be present on the surface of the quantum dot, and the ligand preferably contains an aliphatic hydrocarbon from the viewpoint of dispersibility.
  • ligands include, for example, oleic acid, stearic acid, palmitic acid, myristic acid, lauric acid, decanoic acid, octanoic acid, oleylamine, stearyl(octadecyl)amine, dodecyl(lauryl)amine, decylamine, octylamine, octadecane.
  • Examples include thiol, hexadecanethiol, tetradecanethiol, dodecanethiol, decanethiol, octanethiol, trioctylphosphine, trioctylphosphine oxide, triphenylphosphine, triphenylphosphine oxide, tributylphosphine, tributylphosphine oxide, etc. They may be used alone or in combination.
  • the surface of the quantum dot is modified with a silane coupling agent.
  • the silane coupling agent preferably has an amino group, a thiol group, a carboxyl group, a phosphino group, a phosphine oxide group, or an ammonium ion.
  • silane coupling agent 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, aminophenyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, 3-mercaptopropyl Triethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyl(dimethoxy)methylsilane, triethoxysilylpropylmaleamidic acid, [(3-triethoxysilyl)propyl]succinic anhydride, X-12-1135( (manufactured by Shin-Etsu Chemical Co., Ltd.), diethylphosphatoethyltriethoxysilane, 3-trihydroxypropylmethylphosphonate sodium salt, and trimethyl[3-(trimethoxysilyl)propyl]ammonium chloride.
  • the ink composition according to the present invention contains a silsesquioxane polymer in which quantum dots are copolymerized with silsesquioxane, or a silsesquioxane polymer in which quantum dots and alkoxysilane are copolymerized.
  • quantum dots surface-modified with a silane coupling agent are copolymerized with silsesquioxane.
  • the method of copolymerization is not particularly limited. For example, by mixing surface-modified quantum dots and silsesquioxane in a mixed solvent of toluene and ethanol, and adding a small amount of water and a catalyst, the quantum dots and silsesquioxane can be copolymerized. I can do it.
  • the type of catalyst is not particularly limited, and acids and alkalis can be used.
  • the catalyst examples include formic acid, hydrochloric acid, nitric acid, acetic acid, maleic acid, aqueous ammonia, aqueous sodium hydroxide solution, and tetramethylammonium hydroxide.
  • the structure of silsesquioxane is not particularly limited and can be appropriately selected depending on the purpose, such as a cage structure, a ladder structure, and a random structure. A random structure is preferable from the viewpoint of dispersibility and uniformity of quantum dots.
  • the functional groups contained in silsesquioxane are not limited, and may be appropriately substituted depending on the purpose.
  • a substituent that can undergo a polymerization reaction or a crosslinking reaction is particularly preferable from the viewpoint of curability.
  • the functional group of silsesquioxane include a vinyl group, an acrylic group, a methacryl group, a hydroxyl group, a phenolic hydroxyl group, an epoxy group, a glycidyl group, and a thiol group.
  • a silsesquioxane polymer is obtained by copolymerizing quantum dots surface-modified with a silane coupling agent and an alkoxysilane.
  • the method of copolymerization is not particularly limited.
  • a method for synthesizing silsesquioxane a method described in Non-Patent Document 1 is known.
  • a silsesquioxane polymer can be obtained by mixing surface-modified quantum dots and alkoxysilane in a mixed solvent of toluene and ethanol, adding a small amount of water and a catalyst, and causing the mixture to react.
  • the type and amount of catalyst added are not particularly limited, and acids and alkalis can be used.
  • the catalyst include formic acid, hydrochloric acid, nitric acid, acetic acid, aqueous ammonia, and tetramethylammonium hydroxide.
  • the silane coupling agent is not particularly limited and can be appropriately selected depending on the desired resin properties.
  • the silane coupling agent preferably has a vinyl group, allyl group, glycidyl group, phenyl group, acrylic group, methacryl group, or thiol group as a functional group. Further, an alkoxyrane having not only one type of functional group but two or more types of functional groups may be used.
  • trimethoxyvinylsilane trimethoxyvinylsilane, triethoxyvinylsilane, trimethoxy(4-vinylphenyl)silane, allyltriethoxysilane, allyltrimethoxysilane, triethoxy(3-glycidyloxypropyl)silane, 3-glycidyloxypropyltrimethoxy Silane, [8-(glycidyloxy)-n-octyl]trimethoxysilane, KBM-573 (manufactured by Shin-Etsu Chemical Co., Ltd.), (3-methacryloyloxypropyl)triethoxysilane, (3-methacryloyloxypropyl)trimethoxysilane, Examples include methoxysilane, 3-(trimethoxysilyl)propyl acrylate, 3-mercaptopropyltriethoxysilane, and 3-mercaptopropyltri
  • Such a silane coupling agent is preferable because it has high coordination to quantum dots and also has high affinity between silsesquioxane and quantum dots. It is also preferable because it becomes possible to control the polarity of the quantum dots and the silsesquioxane polymer, and good compatibility with any solvent of the ink composition can be obtained.
  • the alkoxysilane may include not only trialkoxysilane but also dialkoxysilane and monoalkoxysilane.
  • Trialkoxysilane, dialkoxysilane, and monoalkoxysilane may have the same functional group or different functional groups.
  • dialkoxysilane or monoalkoxysilane it is possible to control the degree of crosslinking of the silsesquioxane obtained by copolymerization, which makes it possible to control the viscosity of the resulting resin composition, which is useful in the manufacturing process. It is also possible to adjust the viscosity accordingly.
  • the crosslinking reaction can be restricted and the viscosity can be lowered.
  • dialkoxysilane or monoalkoxysilane with trialkoxysilane, the degree of crosslinking can be lowered to lower the viscosity.
  • the types and ratios of these alkoxysilanes are not particularly limited and can be appropriately selected depending on the purpose.
  • the viscosity of the ink composition is preferably 1500 mPa ⁇ s or less, particularly preferably 1000 mPa ⁇ s or less.
  • the lower limit of the viscosity is not particularly limited, but is, for example, 1 mPa ⁇ s or more.
  • the viscosity of the ink composition is measured, for example, at 25° C. using a rotational viscometer (DV-I manufactured by Brookfield).
  • the functional group of the alkoxysilane include a reactive substituent of one or more of a vinyl group, an acrylic group, a methacryl group, a hydroxyl group, a phenolic hydroxyl group, an epoxy group, a glycidyl group, and a thiol group.
  • the method for producing an ink composition according to the present invention includes a step 1 of preparing quantum dots, a step 2 of preparing an alkoxysilane, and using the alkoxysilane as silsesquioxane connected to the surface of the quantum dot, and and step 3 of forming a copolymer consisting of quantum dots and the silsesquioxane.
  • Step 1 of preparing quantum dots includes Step 1-1 of forming a core and Step 1-2 of forming a shell covering the core.
  • step 3 of forming a copolymer includes step 3-1 of surface-modifying the surface of the quantum dots with a silane coupling agent, and adding the silsesquioxane to the surface of the quantum dots via the silane coupling agent. It is preferable to have a step 3-2 of connecting to.
  • the ink composition of the present invention contains a copolymer of surface-treated quantum dots and silsesquioxane, a crosslinking agent, and a polymerization initiator, and may also contain a solvent, an antioxidant, a light scattering agent, and the like.
  • the crosslinking agent preferably has two or more functional groups that react with the polymerizable substituent contained in the copolymer of quantum dots and silsesquioxane.
  • the amount of the crosslinking agent added is not particularly limited, and the combination of these functional groups is also not particularly limited, and can be appropriately selected depending on the desired curing characteristics.
  • Examples of radically polymerizable substituents include vinyl groups, acrylic groups, methacrylic groups, and thiol groups, all of which can be suitably used.
  • Examples of the cationically polymerizable substituent include a hydroxyl group, a phenolic hydroxyl group, an epoxy group, a glycidyl group, an oxetanyl group, an isocyanate group, and any of them can be suitably used.
  • crosslinking agent dipentaerythritol hexaacrylate, octavinylsilsesquioxane, 2,4,6,8-tetramethyl 2,4,6,8-tetravinylcyclotetrasiloxane, 2,4,6 trimethyl-2 , 4,6-trivinylcyclotrisiloxane, triallylisocyanurate, trimethylolpropane triacrylate, and N,N'-methylenebis(acrylamide).
  • the scatterer can be selected as appropriate depending on the purpose, such as inorganic particles or organic particles, and the particle size and amount added are adjusted to optimize the light extraction efficiency based on the wavelength of the light source used or the emission wavelength and the structure of the wavelength conversion material. This is desirable.
  • inorganic particles include silica, zirconia, alumina, barium titanate, and barium sulfate
  • organic particles include PMMA, polystyrene, and polycarbonate.
  • the ink composition of the present invention preferably contains a polymerization initiator.
  • the polymerization initiator may be a thermal or photopolymerization initiator, and any of them can be suitably used depending on the polymerization method.
  • the photoradical polymerization initiator in the Irgacure (registered trademark) series commercially available from BASF, for example, Irgacure 290, Irgacure 651, Irgacure 754, Irgacure 184, Irgacure 2959, Irgacure 907, Irgacure 369, Irgacure 379, Irgacure 819, Irgacure 1173, etc.
  • examples of the Darocure (registered trademark) series include TPO, Darocure 1173, and the like.
  • it may contain a known thermal radical polymerization initiator or a photocationic polymerization initiator, and is not particularly limited.
  • the content of the polymerization initiator is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the polymer to be added.
  • the ink composition of the present invention may contain a solvent to improve its coating properties.
  • the solvent is preferably an organic solvent from the viewpoint of compatibility with the quantum dots, and examples thereof include ketones, alkylene glycol ethers, alcohols, and aromatic compounds.
  • ketones such as acetone, methyl ethyl ketone, cyclohexanone
  • alkylene glycol ethers from the group of alkylene glycol ethers: methyl cellosolve (ethylene glycol monomethyl ether), butyl cellosolve (ethylene glycol monobutyl ether), methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, ethylene glycol mono Propyl ether, ethylene glycol monohexyl ether, ethylene glycol dimethyl ether, diethylene glycol ethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, acetic acid propylene glycol monomethyl ether, acetic acid Diethylene glycol methyl ether, diethylene glycol ethyl
  • the group of alcohols such as triethylene glycol isopropyl ether acetate, triethylene glycol butyl acetate, triethylene glycol tert-butyl ether acetate, etc.
  • benzene, toluene, xylene from the group of aromatic solvents.
  • solid components such as quantum dots solidify due to the volatilization of the solvent at the nozzle tip, causing blockage of the nozzle tip and making stable ejection impossible.
  • Organic solvents having a boiling point of 100°C or higher are preferred.
  • propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethylene glycol, propylene glycol, etc. are preferably used.
  • Quantum dot content The content of quantum dots can be adjusted as appropriate depending on the desired emission characteristics.
  • concentration of the quantum dots is preferably adjusted so that the absorption rate of excitation light is 90% or more. Although the optimum concentration varies depending on the characteristics of the quantum dots, it is particularly preferably 10% by weight or more.
  • the method for producing a color filter according to the present invention is a method in which a color filter is formed by discharging the ink composition according to the present invention onto a substrate using an inkjet method.
  • the inkjet method is not particularly limited, and can be appropriately selected depending on the ink characteristics, such as a piezo method, a bubble method, or a valve method. Further, the structure of the inkjet device is similarly not particularly limited, and may be, for example, a single nozzle or a multi-nozzle.
  • the substrate can be selected as appropriate depending on the purpose. Examples include silicon wafers, glass substrates, resin plates, and resin films. Further, in order to improve the adhesion of the pattern, the substrate may be surface-treated with a silane coupling agent or the like.
  • the ink composition according to the present invention can be a mixture of a silsesquioxane polymer and a curable resin.
  • the resin layer is cured after the ink composition is discharged onto the substrate.
  • the resin layer can be cured by UV light irradiation if it is a photocurable resin, or by heating the entire substrate if it is a thermosetting resin. It is preferable to adjust the curing conditions according to the resin material and pattern shape. It is preferable that the thermosetting resin is an acrylic resin having a (meth)acryloyl group in a side chain or a silicone resin containing an acid crosslinkable group.
  • Polymers include polymers derived from acrylic acid, methacrylic acid, acrylic esters, and methacrylic esters, copolymers combining them, polymers with glycidyl (meth)acrylate as a repeating unit, siloxane skeletons, and urethane skeletons. , a silphenylene skeleton, a norbornene skeleton, a fluorene skeleton, and an isocyanurate skeleton can be suitably used, and the polymer to be used may be appropriately selected according to the purpose.
  • polyimide precursors such as acrylic resins, alkyd resins, melamine resins, epoxy resins, silicone resins, polyvinyl alcohol, polyvinylpyrrolidone, polyamides, polyamide-imides, polyimides and their esterification products, tetracarboxylic dianhydrides and diamines.
  • examples include reaction products with.
  • polymerizable substituents are introduced into these polymers, and curing becomes possible when used in combination with a polymerization initiator.
  • radically polymerizable substituents include vinyl groups, acrylic groups, methacrylic groups, and thiol groups, all of which can be suitably used.
  • Examples of the cationically polymerizable substituent include a hydroxyl group, a phenolic hydroxyl group, an epoxy group, a glycidyl group, an oxetanyl group, an isocyanate group, and any of them can be suitably used.
  • Step 1 of preparing quantum dots (Step 1-1 of forming a core: quantum dot core synthesis step) Add 0.23 g (0.9 mmol) of palmitic acid, 0.088 g (0.3 mmol) of indium acetate, and 10 mL of 1-octadecene into a flask, and heat and stir at 100°C under reduced pressure to dissolve the raw materials. Deaeration was performed for 1 hour.
  • Step 1-2 of forming a shell covering the core Quantum dot shell layer synthesis step
  • 2.85 g (4.5 mmol) of zinc stearate and 15 mL of 1-octadecene were added to another flask, heated and stirred at 100°C under reduced pressure, and degassed for 1 hour while dissolving the zinc stearate octadecene.
  • a solution of 0.3 M was prepared, and 3.0 mL (0.9 mmol) was added to the reaction solution after core synthesis, and the mixture was cooled to 200°C.
  • the inside of the flask was again purged with nitrogen, the temperature was raised to 230°C, 0.98 mL (4 mmol) of 1-dodecanethiol was added, and the temperature was maintained for 1 hour.
  • the obtained solution was cooled to room temperature, and a core-shell quantum dot-containing solution made of InP/ZnSe/ZnS was produced.
  • Step 2 of preparing alkoxysilane (3-Mercaptopropyl)triethoxysilane 6mL, trimethoxy(3,3,3-trifluoropropyl)silane 1mL, phenyltrimethoxysilane 3mL and (3-mercaptopropyl)triethoxysilane 6mL and phenyltrimethoxysilane 2mL, ethoxy 2 mL of trimethylsilane and 6 mL of (3-methacryloyloxypropyl)trimethoxysilane and 2 mL of phenyltrimethoxysilane, 2 mL of ethoxytrimethylsilane and 7 mL of 3-aminopropyltrimethoxysilane, 1 mL of dodecyltrimethoxysilane and 2 mL of ethoxytrimethylsilane and (3- 10 mL of methacryloyloxypropyl)trimeth
  • Step 3 of using alkoxysilane as silsesquioxane connected to the surface of quantum dots to form a copolymer consisting of quantum dots and silsesquioxane
  • the mixture was cooled to room temperature, ethanol was added to precipitate the reaction solution, centrifuged, and the supernatant was removed.
  • a similar purification was performed once more and dispersed in toluene.
  • a toluene solution of quantum dots was placed in a nitrogen-substituted flask. 0.24 mL (1.0 mmol) of (3-mercaptopropyl)triethoxysilane was added thereto, and the mixture was stirred at room temperature for 24 hours.
  • Step 3-2 (1) of connecting silsesquioxane to the surface of quantum dots via a silane coupling agent: Copolymerization of quantum dots and silsesquioxane
  • a silane coupling agent Copolymerization of quantum dots and silsesquioxane
  • Step 3-2 (2) of connecting silsesquioxane to the surface of quantum dots via a silane coupling agent: Copolymerization of quantum dots and silsesquioxane 2) Add 6 mL of (3-mercaptopropyl)triethoxysilane, 2 mL of phenyltrimethoxysilane, 2 mL of ethoxytrimethylsilane, and a surface-treated quantum dot solution to a nitrogen-substituted flask so that the solid content concentration is 20 parts by mass, Further, 20 mL of toluene and 10 mL of methanol were added and mixed.
  • Step 3-2 (3) of connecting silsesquioxane to the surface of quantum dots via a silane coupling agent: Copolymerization of quantum dots and alkylsilane 3)
  • Step 3-2 (4) of connecting silsesquioxane to the surface of quantum dots via a silane coupling agent: Copolymerization of quantum dots and alkylsilane 4) 7 mL of 3-aminopropyltrimethoxysilane, 1 mL of dodecyltrimethoxysilane, 2 mL of ethoxytrimethylsilane, and a surface-treated quantum dot solution were added to a nitrogen-substituted flask so that the solid content was 20% by mass, and then toluene was added. 20 mL and 10 mL of methanol were added and mixed.
  • Step 3-2 (Step 3-2 (5) of connecting silsesquioxane to the surface of quantum dots via a silane coupling agent: Copolymerization of quantum dots and alkylsilane 5) 10 mL of (3-methacryloyloxypropyl)trimethoxysilane and the surface-treated quantum dot solution were added to a nitrogen-substituted flask so that the solid content concentration was 20 parts by mass, and 20 mL of toluene and 10 mL of methanol were added and mixed. . Thereto, 4.0 mL of 1.0N hydrochloric acid was added dropwise little by little while stirring at room temperature.
  • Example 1 Quantum dot/silsesquioxane copolymer (1) was weighed so that it contained 20 wt% of quantum dots as a nonvolatile fraction, and octavinylsilsesquioxane was used as a crosslinking agent to crosslink the mercapto groups in the copolymer. The agent was added so that the molar ratio of vinyl groups was 1:1. Further, 1 part by mass of Irgacure 1173 was weighed out and mixed with 100 parts by mass of the nonvolatile content of this mixture. Furthermore, propylene glycol monomethyl ether acetate was added as a solvent so that the solid content concentration was 50% to prepare an ink composition. The viscosity of this ink composition was measured using a rotational viscometer and was 1429 mPa ⁇ s (measured at 25° C.).
  • Example 2 Quantum dot/silsesquioxane copolymer (1) was weighed so that it contained 20 wt% of quantum dots in terms of nonvolatile fraction, and the crosslinking agent (1) was added to the mercapto groups in the copolymer and the crosslinking agent. The molar ratio of vinyl groups was 1:1. Further, 1 part by mass of Irgacure 1173 was weighed out and mixed with 100 parts by mass of the nonvolatile content of this mixture. Furthermore, propylene glycol monomethyl ether acetate was added as a solvent so that the solid content concentration was 50% to prepare an ink composition. The viscosity of this ink composition was measured using a rotational viscometer and was 1047 mPa ⁇ s (measured at 25° C.).
  • Example 3 Quantum dot/silsesquioxane copolymer (1) was weighed so that it contained 20 wt% of quantum dots as a nonvolatile fraction, and crosslinking agent (2) was added as a crosslinking agent to the mercapto groups in the copolymer and the crosslinking agent. The molar ratio of methacrylic groups was 1:1. Further, 1 part by mass of Irgacure 1173 was weighed out and mixed with 100 parts by mass of the nonvolatile content of this mixture. Furthermore, propylene glycol monomethyl ether acetate was added as a solvent so that the solid content concentration was 50% to prepare an ink composition. The viscosity of this ink composition was measured using a rotational viscometer and was 896 mPa ⁇ s (measured at 25° C.).
  • Example 4 Quantum dot/silsesquioxane copolymer (2) was weighed so that it contained 20 wt% of quantum dots as a nonvolatile fraction, and crosslinking agent (1) was added as a crosslinking agent to the mercapto groups in the copolymer and the crosslinking agent. The molar ratio of vinyl groups was 1:1. Furthermore, 1 part by mass of Irgacure 1173 was weighed out and mixed with 100 parts by mass of the nonvolatile content of this mixture. Further, propylene glycol monomethyl ether acetate was added as a solvent so that the solid content concentration was 50% to prepare an ink composition. The viscosity of this ink composition was measured using a rotational viscometer and was 788 mPa ⁇ s (measured at 25° C.).
  • Quantum dot/silsesquioxane copolymer (2) was weighed so that it contained 20 wt% of quantum dots as a nonvolatile fraction, and the crosslinking agent (2) was added to the mercapto groups in the copolymer and the crosslinking agent. The molar ratio of vinyl groups was 1:1. Further, 1 part by mass of Irgacure 1173 was weighed out and mixed with 100 parts by mass of the nonvolatile content of this mixture. Furthermore, propylene glycol monomethyl ether acetate was added as a solvent so that the solid content concentration was 50% to prepare an ink composition. The viscosity of this ink composition was measured using a rotational viscometer and was 1024 mPa ⁇ s (measured at 25° C.).
  • Quantum dot/silsesquioxane copolymer (3) was weighed so that it contained 20 wt% of quantum dots as a nonvolatile fraction, and crosslinking agent (2) was added to the methacrylic group in the copolymer and the crosslinking agent.
  • the molar ratio of methacrylic groups was 1:1.
  • 1 part by mass of Irgacure 1173 was weighed out and mixed with 100 parts by mass of the nonvolatile content of this mixture.
  • propylene glycol monomethyl ether acetate was added as a solvent so that the solid content concentration was 50% to prepare an ink composition.
  • the viscosity of this ink composition was measured using a rotational viscometer and was 652 mPa ⁇ s (measured at 25° C.).
  • Example 7 Weigh the quantum dot/silsesquioxane copolymer (4) so that it contains 20 wt% of quantum dots as a nonvolatile fraction, and mix the crosslinking agent (3) with the amino groups in the copolymer and the crosslinking agent. were added so that the molar ratio of epoxy groups was 1:1. Further, 1 part by mass of Irgacure 1173 was weighed out and mixed with 100 parts by mass of the nonvolatile content of this mixture. Furthermore, propylene glycol monomethyl ether acetate was added as a solvent so that the solid content concentration was 50% to prepare an ink composition. The viscosity of this ink composition was measured using a rotational viscometer and was 795 mPa ⁇ s (measured at 25° C.).
  • Comparative example 2 An ink composition was prepared by changing the solvent in Comparative Example 1 to toluene. The viscosity of this ink composition was measured using a rotational viscometer and was 1411 mPa ⁇ s (measured at 25° C.).
  • Each of the ink compositions obtained in Examples 1 to 7 and Comparative Examples 1 to 2 was discharged onto a glass substrate at a pitch of 150 ⁇ m using an inkjet device (LaboJet-600Bio manufactured by Microjet Co., Ltd.). After the discharge, the substrate was cured by irradiating light with a wavelength of 365 nm and an output of 500 mW/cm 2 in an air atmosphere. When the pattern remaining on the substrate was measured using a laser microscope (Olympus Corporation OLS-4100), it was confirmed that a dot-like pattern with an average thickness of 5 ⁇ m and a pattern size of 50 ⁇ m was formed.
  • Tables 1 and 2 show the evaluation results of Examples and Comparative Examples.
  • An ink composition containing quantum dots comprising a silsesquioxane polymer in which the quantum dots are copolymerized with silsesquioxane, or a silsesquioxane polymer in which the quantum dots and an alkoxysilane are copolymerized.
  • An ink composition comprising an oxane polymer.
  • the alkoxysilane is composed of at least two types of alkoxysilanes selected from trialkoxysilane, monoalkoxysilane, and dialkoxysilane, and the viscosity of the ink composition is 1500 mPa ⁇ s or less.
  • the silsesquioxane has as a functional group one or more reactive substituents of a vinyl group, an acrylic group, a methacrylic group, a hydroxyl group, a phenolic hydroxyl group, an epoxy group, a glycidyl group, and a thiol group.
  • the ink composition according to any one of [1] to [5] above, characterized in that: [7]: The alkoxysilane has one or more reactive substituents as a functional group of a vinyl group, an acrylic group, a methacrylic group, a hydroxyl group, a phenolic hydroxyl group, an epoxy group, a glycidyl group, and a thiol group.
  • a method for producing a color filter which comprises forming a color filter by discharging the ink composition according to any one of [1] to [7] above onto a substrate by an inkjet method.
  • a step of preparing quantum dots a step of preparing an alkoxysilane, the alkoxysilane is silsesquioxane connected to the surface of the quantum dot, and the quantum dot and the silsesquioxane are 1.
  • a method for producing an ink composition comprising: forming a copolymer.
  • the method for producing an ink composition according to [9] above, wherein the step of preparing the quantum dots includes a step of forming a core, and a step of forming a shell covering the core.
  • the step of forming the copolymer includes a step of surface-modifying the surface of the quantum dot with a silane coupling agent, and a step of modifying the surface of the quantum dot with the silsesquioxane via the silane coupling agent.

Abstract

The present invention is an ink composition containing quantum dots and characterized by containing a silsesquioxane polymer obtained by copolymerizing the quantum dots with silsesquioxane or a silsesquioxane polymer obtained by copolymerizing the quantum dots with alkoxysilane. Consequently, provided is an ink composition which contains quantum dots, can disperse the quantum dots in a high concentration without aggregating, and has high reliability.

Description

インク組成物、インク組成物の製造方法及びカラーフィルタの製造方法Ink composition, method for producing ink composition, and method for producing color filter
 本発明は、インク組成物、インク組成物の製造方法及びカラーフィルタの製造方法に関する。 The present invention relates to an ink composition, a method for producing an ink composition, and a method for producing a color filter.
 粒子径がナノサイズである半導体結晶粒子は量子ドットと呼ばれ、光吸収により生じた励起子がナノサイズの領域に閉じ込められることにより半導体結晶粒子のエネルギー準位は離散的となり、またそのバンドギャップは粒子径により変化する。これらの効果により量子ドットの蛍光発光は一般的な蛍光体と比較して高輝度かつ高効率かつその発光はシャープである。
 また、その粒子径によりバンドギャップが変化するという特性から発光波長を制御できるという特徴を有しており、固体照明やディスプレイの波長変換材料としての応用が期待されている。例えば、ディスプレイに量子ドットを波長変換材料として用いることで従来の蛍光体材料よりも広色域化、低消費電力が実現できる。
Semiconductor crystal particles with a nano-sized particle diameter are called quantum dots, and the excitons generated by light absorption are confined in a nano-sized region, resulting in discrete energy levels of the semiconductor crystal particles, and their band gap. varies depending on the particle size. Due to these effects, the fluorescent light emission of quantum dots has higher brightness, higher efficiency, and sharper light emission than that of general phosphors.
In addition, it has the characteristic that the bandgap changes depending on the particle size, which allows the emission wavelength to be controlled, and is expected to be applied as a wavelength conversion material for solid-state lighting and displays. For example, by using quantum dots as a wavelength conversion material in displays, a wider color gamut and lower power consumption can be achieved than with conventional phosphor materials.
 量子ドットを波長変換材料として用いられる実装方法として量子ドットを樹脂材料中に分散させ、透明フィルムで量子ドットを含有した樹脂材料をラミネートすることで波長変換フィルムとしてバックライトユニットに組み込む方法が提案されている(特許文献1)。また、カラーフィルタ材料として量子ドットを用いることでバックライトユニットから青色単色光を量子ドットが吸収し、赤色又は緑色に発光することでカラーフィルタ及び波長変換材料として機能することで高効率化と色再現性の優れた画像素子への適応も提案されている(特許文献2)。
 このバックライトユニットをマイクロサイズのLEDアレイに置き換えられたマイクロLEDディスプレイが注目されている。マイクロLEDディスプレイにおいてはカラーフィルタをマイクロサイズのLED上に形成することが求められる。
 近年、このLEDアレイサイズの微細化が進んでおり、従来以上の量子ドットの微細なパターニングが求められている。また、カラーフィルタ用途では励起光である青色単色光がカラーフィルタから漏れるのを抑制するため、カラーフィルタの光吸収量を高くすることも必要とされている。カラーフィルタの光吸収量を高めるためには量子ドット濃度を高くすることが必要となる。
 量子ドットカラーフィルタをLEDアレイに形成する方法として感光性材料を用いたリソグラフィープロセスが提案されている(特許文献3)。しかし、フォトリソグラフィー法には未硬化部分が無駄になってしまうことから、原料のロスが大きく、ベーク、露光や現像など製造工程も多い。そのため、近年ではインクジェット方式の検討も行われている。インクジェット方式であれば原料のロスは少なく、吐出・硬化だけで作製プロセスが簡便でありコストの面でも競争力がある。
As a mounting method for using quantum dots as a wavelength conversion material, a method has been proposed in which quantum dots are dispersed in a resin material, and the resin material containing quantum dots is laminated with a transparent film to be incorporated into a backlight unit as a wavelength conversion film. (Patent Document 1). In addition, by using quantum dots as a color filter material, the quantum dots absorb monochromatic blue light from the backlight unit and emit red or green light, which functions as a color filter and wavelength conversion material. Adaptation to image elements with excellent reproducibility has also been proposed (Patent Document 2).
A micro LED display in which the backlight unit is replaced with a micro-sized LED array is attracting attention. In micro LED displays, it is required to form color filters on micro-sized LEDs.
In recent years, the size of LED arrays has become smaller, and there is a demand for finer patterning of quantum dots than ever before. Furthermore, in color filter applications, it is also necessary to increase the amount of light absorption of color filters in order to suppress leakage of monochromatic blue light, which is excitation light, from the color filters. In order to increase the amount of light absorbed by the color filter, it is necessary to increase the quantum dot density.
A lithography process using a photosensitive material has been proposed as a method for forming a quantum dot color filter on an LED array (Patent Document 3). However, the photolithography method wastes uncured parts, resulting in a large loss of raw materials, and requires many manufacturing steps such as baking, exposure, and development. Therefore, in recent years, inkjet methods have also been studied. If the inkjet method is used, there is little loss of raw materials, the manufacturing process is simple and requires only ejection and curing, and it is competitive in terms of cost.
特表2013-544018号公報Special table 2013-544018 publication 特開2017-021322号公報Japanese Patent Application Publication No. 2017-021322 特開2021-089347号公報JP2021-089347A 特表2016-518468号公報Special table 2016-518468 publication 特表2013-505346号公報Special Publication No. 2013-505346 特許6283092号公報Patent No. 6283092
 しかしながら、インクジェットは細いノズルからインクを吐出するため、特にマイクロLEDなどの用途で求められる100μm以下の微細なパターニングを形成するためにはノズル径も細くなり、安定した吐出およびパターンの再現性を確保するためにインクの特性に大きな制限が出てくる。例えば、インクの粘度、インクの蒸発速度、またインクに含まれる固形分である量子ドットの濃度や樹脂溶液中の量子ドットの凝集や沈降などがあり、これらが装置・吐出条件に合った適切な範囲内でないとノズル部分やインク供給ラインでの詰まりが発生しやすくなるなどの問題や、さらに連続で吐出していると、吐出特性の変化やばらつきを生じ、画素間での特性ムラの原因ともなる。
 一般的に極性を有するアクリル樹脂やシリコーン樹脂などの樹脂材料はPGMEAやPGME等の極性を持った溶剤に分散されているため、基本的に疎水性である量子ドットとの相溶性が悪く、凝集が発生することも大きな問題となる。凝集はインクジェットノズルや供給ライン内での閉塞の原因となりプロセス上大きな問題となる。
However, since inkjet ejects ink from a narrow nozzle, in order to form fine patterning of 100 μm or less, which is particularly required for applications such as micro LEDs, the nozzle diameter must be reduced to ensure stable ejection and pattern reproducibility. Therefore, there are major restrictions on the characteristics of the ink. For example, there are the viscosity of the ink, the evaporation rate of the ink, the concentration of the quantum dots that are the solid content contained in the ink, and the aggregation and sedimentation of the quantum dots in the resin solution. If the ink is not within this range, there will be problems such as clogging in the nozzle or ink supply line, and continuous ejection will cause changes and variations in the ejection characteristics, which may cause uneven characteristics between pixels. Become.
In general, polar resin materials such as acrylic resins and silicone resins are dispersed in polar solvents such as PGMEA and PGME, so they have poor compatibility with quantum dots, which are basically hydrophobic, and agglomerate. The occurrence of this is also a major problem. Agglomeration causes blockage in inkjet nozzles and supply lines, which poses a major problem in the process.
 また、インクジェット方式において微細化に対応するためにノズルの小口径による塗布が試みられているが、ノズルが小さくなると目詰まりや吐出が不安定性になるなどの問題が発生する。また、量子ドットが疎水性であるために非極性溶媒が用いられるが、一般的に用いられるトルエンやヘキサンなどの非極性溶媒の沸点は低く、蒸発しやすいため、ノズル先端での溶媒蒸発によるノズル閉塞が起こり易くなる。この現象は特に量子ドット濃度が高いほど顕著となる。
 インクの粘度が高いとノズル部分やインク供給ラインでの詰まりが発生しやすくなるなどの問題や、連続で吐出していると吐出特性の変化やばらつきを生じ、画素間での特性ムラの原因となり安定的なパターン形成には低粘度のインクが必須であるが、インク組成物中の硬化性樹脂や量子ドット含有量が高くなると、一般的にインク組成物の粘度は高くなり、工程中での不具合の原因となる。
Further, in the inkjet method, attempts have been made to apply coating using a small diameter nozzle in order to cope with miniaturization, but when the nozzle becomes small, problems such as clogging and unstable ejection occur. In addition, non-polar solvents are used because quantum dots are hydrophobic, but commonly used non-polar solvents such as toluene and hexane have low boiling points and easily evaporate. Blockage is more likely to occur. This phenomenon becomes particularly noticeable as the quantum dot concentration increases.
High viscosity ink can cause problems such as clogging in the nozzles and ink supply lines, and continuous ejection can cause changes and variations in ejection characteristics, causing uneven characteristics between pixels. Low viscosity ink is essential for stable pattern formation, but as the curable resin and quantum dot content in the ink composition increases, the viscosity of the ink composition generally increases, causing problems during the process. This may cause problems.
 さらに、パターン形成後の樹脂組成物中の量子ドットは樹脂材料中に存在しているため溶液中での環境と異なり配位子の脱離などが起こりやすく、経時変化によりその発光特性の劣化も問題となる。
 このような問題に対し、極性を有する溶媒や樹脂材料への分散性を改善あるいは安定性の向上のため量子ドットの表面コーティング(特許文献4)やカプセル化(特許文献5)、多面体オリゴマー状シルセスキオキサンリガンド(特許文献6)など様々な方法が試みられているが、樹脂材料への分散性、特に量子ドットの含有量が10質量%以上の高濃度での凝集抑制および安定性のすべてを両立することは困難である。
Furthermore, since the quantum dots in the resin composition after pattern formation are present in the resin material, unlike the environment in a solution, they are susceptible to desorption of ligands, and their luminescent properties may deteriorate over time. It becomes a problem.
To address these problems, surface coating of quantum dots (Patent Document 4), encapsulation (Patent Document 5), and polyhedral oligomeric silica have been developed to improve dispersibility in polar solvents and resin materials or to improve stability. Various methods have been attempted, such as sesquioxane ligand (Patent Document 6), but all of the problems include dispersibility in resin materials, especially aggregation suppression and stability at high concentrations where the content of quantum dots is 10% by mass or more. It is difficult to achieve both.
 本発明は前述のような問題に鑑みてなされたもので、高濃度で量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含むインク組成物を提供することを目的とする。 The present invention was made in view of the above-mentioned problems, and an object of the present invention is to provide an ink composition containing highly reliable quantum dots that can disperse quantum dots at high concentrations without agglomeration. do.
 本発明は、上記目的を達成するためになされたものであり、量子ドットを含むインク組成物であって、前記量子ドットをシルセスキオキサンと共重合させたシルセスキオキサン重合体、又は、前記量子ドットおよびアルコキシシランを共重合させたシルセスキオキサン重合体を含むものであることを特徴とするインク組成物を提供する。 The present invention has been made to achieve the above object, and is an ink composition containing quantum dots, comprising a silsesquioxane polymer in which the quantum dots are copolymerized with silsesquioxane, or The present invention provides an ink composition comprising a silsesquioxane polymer obtained by copolymerizing the quantum dots and an alkoxysilane.
 このようなインク組成物によれば、高濃度で量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含むインク組成物を提供することができるものとなる。 According to such an ink composition, quantum dots can be dispersed at a high concentration without agglomeration, and an ink composition containing highly reliable quantum dots can be provided.
 このとき、前記量子ドットの表面が、シランカップリング剤により表面修飾されているものであるインク組成物とすることが好ましい。 At this time, it is preferable to use an ink composition in which the surface of the quantum dots is surface-modified with a silane coupling agent.
 このようなインク組成物によれば、前記量子ドットをシルセスキオキサンと共重合させたシルセスキオキサン重合体、又は、前記量子ドットおよびアルコキシシランを共重合させたシルセスキオキサン重合体を容易に形成でき、高濃度で量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含むインク組成物を提供することができるものとなる。 According to such an ink composition, a silsesquioxane polymer obtained by copolymerizing the quantum dots with silsesquioxane, or a silsesquioxane polymer obtained by copolymerizing the quantum dots and an alkoxysilane. This makes it possible to provide an ink composition that can be easily formed, can disperse quantum dots at high concentration without agglomeration, and has highly reliable quantum dots.
 このとき、前記アルコキシシランが、それぞれ官能基の異なる2種類以上のアルコキシシランからなるインク組成物とすることが好ましい。 At this time, it is preferable that the alkoxysilane be an ink composition consisting of two or more types of alkoxysilanes each having a different functional group.
 このようなインク組成物によれば、シルセスキオキサン重合体の架橋度を制御でき、インク組成物の粘度を制御でき、高濃度で量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含むインク組成物を提供することができるものとなる。また、製造工程に合わせて粘度調整できる。 According to such an ink composition, the degree of crosslinking of the silsesquioxane polymer can be controlled, the viscosity of the ink composition can be controlled, quantum dots can be dispersed at high concentrations without agglomeration, and reliability is improved. This makes it possible to provide an ink composition containing quantum dots with a high concentration of quantum dots. In addition, the viscosity can be adjusted according to the manufacturing process.
 このとき、前記アルコキシシランが、トリアルコキシシラン、モノアルコキシシラン、ジアルコキシシランのいずれか少なくとも2種類以上のアルコキシシランからなり、インク組成物の粘度が1500mPa・s以下であるインク組成物とすることが好ましい。 At this time, the ink composition is such that the alkoxysilane is composed of at least two types of alkoxysilanes selected from trialkoxysilane, monoalkoxysilane, and dialkoxysilane, and the viscosity of the ink composition is 1500 mPa·s or less. is preferred.
 このようなインク組成物によれば、シルセスキオキサン重合体の架橋度を制御でき、インク組成物の粘度を制御でき、高濃度で量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含むインク組成物を提供することができるものとなる。また、製造工程に合わせて粘度調整できる。 According to such an ink composition, the degree of crosslinking of the silsesquioxane polymer can be controlled, the viscosity of the ink composition can be controlled, quantum dots can be dispersed at high concentrations without agglomeration, and reliability is improved. This makes it possible to provide an ink composition containing quantum dots with a high concentration of quantum dots. In addition, the viscosity can be adjusted according to the manufacturing process.
 このとき、前記シランカップリング剤が、アミノ基、チオール基、カルボキシル基、ホスフィノ基、ホスフィンオキシド基、アンモニウムイオンのいずれか1種以上を有するインク組成物とすることが好ましい。 At this time, it is preferable that the silane coupling agent is an ink composition having one or more of an amino group, a thiol group, a carboxyl group, a phosphino group, a phosphine oxide group, and an ammonium ion.
 このようなインク組成物によれば、前記量子ドットをシルセスキオキサンと共重合させたシルセスキオキサン重合体、又は、前記量子ドットおよびアルコキシシランを共重合させたシルセスキオキサン重合体を容易に形成でき、高濃度で量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含むインク組成物を提供することができるものとなる。 According to such an ink composition, a silsesquioxane polymer obtained by copolymerizing the quantum dots with silsesquioxane, or a silsesquioxane polymer obtained by copolymerizing the quantum dots and an alkoxysilane. This makes it possible to provide an ink composition that can be easily formed, can disperse quantum dots at high concentration without agglomeration, and has highly reliable quantum dots.
 このとき、前記シルセスキオキサンが官能基として、ビニル基、アクリル基、メタクリル基、水酸基、フェノール性水酸基、エポキシ基、グリシジル基、チオール基のいずれか1種以上の反応性置換基を有するインク組成物とすることが好ましい。 At this time, the ink in which the silsesquioxane has a reactive substituent of one or more of vinyl group, acrylic group, methacrylic group, hydroxyl group, phenolic hydroxyl group, epoxy group, glycidyl group, and thiol group as a functional group. Preferably, it is a composition.
 このようなインク組成物によれば、前記量子ドットをシルセスキオキサンと共重合させたシルセスキオキサン重合体、又は、前記量子ドットおよびアルコキシシランを共重合させたシルセスキオキサン重合体を容易に形成でき、高濃度で量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含むインク組成物を提供することができるものとなる。 According to such an ink composition, a silsesquioxane polymer obtained by copolymerizing the quantum dots with silsesquioxane, or a silsesquioxane polymer obtained by copolymerizing the quantum dots and an alkoxysilane. This makes it possible to provide an ink composition that can be easily formed, can disperse quantum dots at high concentration without agglomeration, and has highly reliable quantum dots.
 このとき、前記アルコキシシランの官能基として、ビニル基、アクリル基、メタクリル基、水酸基、フェノール性水酸基、エポキシ基、グリシジル基、チオール基のいずれか1種以上の反応性置換基を有するインク組成物とすることが好ましい。 At this time, the ink composition has one or more reactive substituents of a vinyl group, an acrylic group, a methacrylic group, a hydroxyl group, a phenolic hydroxyl group, an epoxy group, a glycidyl group, and a thiol group as a functional group of the alkoxysilane. It is preferable that
 このようなインク組成物によれば、前記量子ドットをシルセスキオキサンと共重合させたシルセスキオキサン重合体、又は、前記量子ドットおよびアルコキシシランを共重合させたシルセスキオキサン重合体を容易に形成でき。高濃度で量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含むインク組成物を提供することができるものとなる。 According to such an ink composition, a silsesquioxane polymer obtained by copolymerizing the quantum dots with silsesquioxane, or a silsesquioxane polymer obtained by copolymerizing the quantum dots and an alkoxysilane. Can be easily formed. The quantum dots can be dispersed at high concentrations without agglomeration, and an ink composition containing highly reliable quantum dots can be provided.
 また、本発明は、先に記載のインク組成物をインクジェット法により基板上に吐出してカラーフィルタを形成することを特徴とするカラーフィルタの製造方法を提供する。 The present invention also provides a method for manufacturing a color filter, which comprises forming a color filter by discharging the ink composition described above onto a substrate using an inkjet method.
 このようなカラーフィルタの製造方法によれば、高濃度で量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含むインク組成物をインクジェット法により基板上にノズルの目詰まりをさせることなく、スムーズに吐出してカラーフィルタを容易にかつ正確に形成することができる。 According to this method of manufacturing a color filter, quantum dots can be dispersed at high concentrations without agglomeration, and an ink composition containing highly reliable quantum dots can be applied onto a substrate by an inkjet method without clogging of nozzles. Color filters can be easily and accurately formed by discharging smoothly without causing any damage.
 更に、本発明は、量子ドットを準備する工程と、アルコキシシランを準備する工程と、前記アルコキシシランを前記量子ドットの表面に接続されたシルセスキオキサンとし、前記量子ドットと前記シルセスキオキサンとからなる共重合体を形成する工程と、を有することを特徴とするインク組成物の製造方法を提供する。 Furthermore, the present invention includes a step of preparing quantum dots, a step of preparing an alkoxysilane, and the alkoxysilane is silsesquioxane connected to the surface of the quantum dot, and the quantum dot and the silsesquioxane are connected to the surface of the quantum dot. A method for producing an ink composition is provided, the method comprising: forming a copolymer comprising:
 このようなインク組成物の製造方法によれば、高濃度で量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含むインク組成物を容易にかつ確実に製造することができる。 According to such a method for producing an ink composition, quantum dots can be dispersed at high concentrations without agglomeration, and an ink composition containing highly reliable quantum dots can be easily and reliably produced. can.
 このとき、前記量子ドットを準備する工程が、コアを形成する工程と、前記コアを覆うシェルを形成する工程と、を有するインク組成物の製造方法とすることが好ましい。 At this time, it is preferable that the method for producing an ink composition is such that the step of preparing the quantum dots includes a step of forming a core, and a step of forming a shell covering the core.
 このようなインク組成物の製造方法によれば、コアシェル構造の量子ドットを容易にかつ確実に製造でき、高濃度で量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含むインク組成物を提供することができる。 According to such a method for producing an ink composition, quantum dots with a core-shell structure can be easily and reliably produced, quantum dots can be dispersed at high concentrations without agglomeration, and highly reliable quantum dots can be produced. An ink composition comprising:
 このとき、前記共重合体を形成する工程が、前記量子ドットの表面をシランカップリング剤により表面修飾する工程と、前記シランカップリング剤を介して前記シルセスキオキサンを前記量子ドットの表面に接続する工程と、を有するインク組成物の製造方法とすることが好ましい。 At this time, the step of forming the copolymer includes a step of surface-modifying the surface of the quantum dots with a silane coupling agent, and a step of applying the silsesquioxane to the surface of the quantum dots via the silane coupling agent. The method for producing an ink composition preferably includes the step of connecting.
 このようなインク組成物の製造方法によれば、前記量子ドットをシルセスキオキサンと共重合させたシルセスキオキサン重合体、又は、前記量子ドットおよびアルコキシシランを共重合させたシルセスキオキサン重合体を容易に形成でき、高濃度で量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含むインク組成物を提供することができる。 According to such a method for producing an ink composition, a silsesquioxane polymer obtained by copolymerizing the quantum dots with silsesquioxane, or a silsesquioxane obtained by copolymerizing the quantum dots and an alkoxysilane. A polymer can be easily formed, quantum dots can be dispersed at high concentration without agglomeration, and an ink composition containing highly reliable quantum dots can be provided.
 上記目的を達成するために、本発明は、量子ドットとシルセスキオキサンを共重合させる、あるいは量子ドットとアルコキシシランを共重合させシルセスキオキサン重合体とし、シルセスキオキサン重合体を架橋反応により硬化させることで高濃度の量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含むインク組成物とすることができる。
 本発明のインク組成物によれば、高濃度で量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含むインク組成物とすることができる。
 本発明のインク組成物の製造方法によれば、高濃度で量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含むインク組成物を製造することが可能となる。
 本発明のカラーフィルタの製造方法によれば、高濃度で量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含むインク組成物をインクジェット法により基板上にノズルの目詰まりをさせることなく、スムーズに吐出してカラーフィルタを容易にかつ正確に形成することができる。
In order to achieve the above object, the present invention copolymerizes quantum dots and silsesquioxane, or copolymerizes quantum dots and alkoxysilane to form a silsesquioxane polymer, and crosslinks the silsesquioxane polymer. By curing by reaction, highly concentrated quantum dots can be dispersed without agglomeration, and an ink composition containing highly reliable quantum dots can be obtained.
According to the ink composition of the present invention, quantum dots can be dispersed at high concentrations without agglomeration, and the ink composition can contain highly reliable quantum dots.
According to the method for producing an ink composition of the present invention, quantum dots can be dispersed at high concentrations without agglomeration, and an ink composition containing highly reliable quantum dots can be produced.
According to the method for manufacturing a color filter of the present invention, quantum dots can be dispersed at high concentrations without agglomeration, and an ink composition containing highly reliable quantum dots can be applied onto a substrate by an inkjet method to avoid clogging of nozzles. Color filters can be easily and accurately formed by discharging smoothly without causing any damage.
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 上述のように、高濃度で量子ドットを凝集することなく分散することができ、信頼性の高い量子ドットを含み、かつ安定した吐出が可能なインクジェット用のインク組成物を得るという課題があった。
 そこで、本発明者はこのような課題を達成すべく鋭意検討を重ねた。その結果、量子ドットとシルセスキオキサンの共重合、または、量子ドットおよびアルコキシシランを共重合させたシルセスキオキサン重合体を含むインク組成物に想到し、本発明を完成させた。
Embodiments of the present invention will be described below, but the present invention is not limited thereto.
As mentioned above, there was a problem of obtaining an inkjet ink composition that can disperse quantum dots at high concentrations without agglomeration, contains highly reliable quantum dots, and is capable of stable ejection. .
Therefore, the inventors of the present invention have conducted extensive studies in order to achieve such a problem. As a result, they came up with an ink composition containing a silsesquioxane polymer obtained by copolymerizing quantum dots and silsesquioxane, or copolymerizing quantum dots and alkoxysilane, and completed the present invention.
(量子ドット)
 本発明において、量子ドットの組成や製法は特に制限されず、目的に応じた量子ドットを選択することができる。
(Quantum dot)
In the present invention, the composition and manufacturing method of quantum dots are not particularly limited, and quantum dots can be selected depending on the purpose.
(量子ドットの組成)
 量子ドットの組成としてII-IV族半導体、III-V族半導体、II-VI族半導体、I-III-VI族半導体、II-IV-V族半導体、IV族半導体、ペロブスカイト型半導体などが例示される。
(Composition of quantum dots)
Examples of compositions of quantum dots include II-IV group semiconductors, III-V group semiconductors, II-VI group semiconductors, I-III-VI group semiconductors, II-IV-V group semiconductors, group IV semiconductors, and perovskite semiconductors. Ru.
(量子ドットの構造)
また、量子ドットの構造は、コアのみの構造でも、コアシェル構造を有していてもよい。
(Structure of quantum dots)
Further, the structure of the quantum dot may have a core-only structure or a core-shell structure.
(コア材料)
 具体的にはコア材料としてCdSe,CdS,CdTe,InP,InAs,InSb,AlP,AlAs,AlSb,ZnSe,ZnS,ZnTe,Zn,GaP,GaAs,GaSb,CuInSe,CuInS,CuInTe,CuGaSe,CuGaS,CuGaTe,CuAlSe,CuAlS,CuAlTe,AgInSe,AgInS,AgInTe,AgGaSe,AgGaS,AgGaTe,PbSe,PbS,PbTe,Si,Ge,グラフェン,CsPbCl,CsPbBr,CsPbI,CHNHPbCl、さらにこれらの混晶やドーパントを添加したものが例示される。
(core material)
Specifically, core materials include CdSe, CdS, CdTe, InP, InAs, InSb, AlP, AlAs, AlSb, ZnSe, ZnS, ZnTe, Zn 3 P 2 , GaP, GaAs, GaSb, CuInSe 2 , CuInS 2 , CuInTe 2 , CuGaSe 2 , CuGaS 2 , CuGaTe 2 , CuAlSe 2 , CuAlS 2 , CuAlTe 2 , AgInSe 2 , AgInS 2 , AgInTe, AgGaSe 2 , AgGaS 2 , AgGaTe 2 , PbSe, PbS, PbTe, Si, Ge, graphene, CsPbCl 3 , CsPbBr 3 , CsPbI 3 , CH 3 NH 3 PbCl 3 , and those to which these mixed crystals or dopants are added are exemplified.
(シェル材料)
 シェル材料としてはZnO,ZnS,ZnSe,ZnTe,CdS,CdSe,CdTe,AlN,AlP,AlAs,AlSb,GaN,GaP,GaAs,GaSb,InN,InP,InAs,AlSb,BeS,BeSe,BeTe,MgS,MgSe,MgTe,PbS,PbSe,PbTe,SnS,SnSe,SnTe,CuF,CuCl,CuBr,CuI、さらにこれらの混晶が例示される。
(shell material)
Shell materials include ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, AlSb, BeS, BeSe, BeTe, MgS, Examples include MgSe, MgTe, PbS, PbSe, PbTe, SnS, SnSe, SnTe, CuF, CuCl, CuBr, CuI, and mixed crystals thereof.
(量子ドットの形状)
 量子ドットは球形であっても良く、また立方体状や棒状でも良い。量子ドットの形状は制限されず自由に選択できる。
(Shape of quantum dots)
The quantum dots may be spherical, cubic or rod-shaped. The shape of the quantum dots is not limited and can be freely selected.
(量子ドットの平均粒子径)
 量子ドットの粒子径は目的とする波長範囲に合わせ適宜選択できる。
 量子ドットの平均粒子径は20nm以下であることが望ましい。平均粒子径がそれ以上になると量子サイズ効果が得られなくなり、発光効率の著しい低下や粒子径によるバンドギャップが制御できなくなる。
 量子ドットの粒子径は透過型電子顕微鏡(Transmission Electron Microscope:TEM)により得られる粒子画像を計測し、粒子20個以上の定方向最大径、即ち、フェレ(Feret)径の平均値から計算することができる。もちろん、平均粒子径の測定方法はこれに限定されず、他の方法で測定を行うことが可能である。
(Average particle size of quantum dots)
The particle size of the quantum dots can be appropriately selected depending on the desired wavelength range.
The average particle diameter of the quantum dots is preferably 20 nm or less. If the average particle size is larger than this, the quantum size effect cannot be obtained, the luminous efficiency will drop significantly, and the band gap due to the particle size cannot be controlled.
The particle size of the quantum dots is calculated from the average value of the directional maximum diameter of 20 or more particles, that is, the Feret diameter, by measuring a particle image obtained with a transmission electron microscope (TEM). I can do it. Of course, the method for measuring the average particle diameter is not limited to this, and other methods can be used.
(リガンド)
 量子ドットの表面にはリガンドが存在していてもよく、リガンドは分散性の観点から脂肪族炭化水素を含むことが好ましい。このようなリガンドとしては、例えば、オレイン酸、ステアリン酸、パルミチン酸、ミリスチン酸、ラウリル酸、デカン酸、オクタン酸、オレイルアミン、ステアリル(オクタデシル)アミン、ドデシル(ラウリル)アミン、デシルアミン、オクチルアミン、オクタデカンチオール、ヘキサデカンチオール、テトラデカンチオール、ドデカンチオール、デカンチオール、オクタンチオール、トリオクチルホスフィン、トリオクチルホスフィンオキシド、トリフェニルホスフィン、トリフェニルホスフィンオキシド、トリブチルホスフィン、トリブチルホスフィンオキシド等が挙げられ、これらを1種単独で用いても複数組み合わせても良い。
(ligand)
A ligand may be present on the surface of the quantum dot, and the ligand preferably contains an aliphatic hydrocarbon from the viewpoint of dispersibility. Such ligands include, for example, oleic acid, stearic acid, palmitic acid, myristic acid, lauric acid, decanoic acid, octanoic acid, oleylamine, stearyl(octadecyl)amine, dodecyl(lauryl)amine, decylamine, octylamine, octadecane. Examples include thiol, hexadecanethiol, tetradecanethiol, dodecanethiol, decanethiol, octanethiol, trioctylphosphine, trioctylphosphine oxide, triphenylphosphine, triphenylphosphine oxide, tributylphosphine, tributylphosphine oxide, etc. They may be used alone or in combination.
(シランカップリング剤)
 量子ドット表面を、シランカップリング剤により表面修飾を行うことが好ましい。
 シランカップリング剤としては、アミノ基、チオール基、カルボキシル基、ホスフィノ基、ホスフィンオキシド基、アンモニウムイオンを有するものが好ましい。
 シランカップリング剤としては、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、アミノフェニルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピル(ジメトキシ)メチルシラン、トリエトキシシリルプロピルマレインアミド酸、[(3-トリエトキシシリル)プロピル]コハク酸無水物、X-12-1135(信越化学工業(株)製)、ジエチルホスファトエチルトリエトキシシラン、3-トリヒドロキシプロピルメチルホスホネートナトリウム塩、トリメチル[3-(トリメトキシシリル)プロピル]アンモニウムクロリドなどが例示される。
(Silane coupling agent)
Preferably, the surface of the quantum dot is modified with a silane coupling agent.
The silane coupling agent preferably has an amino group, a thiol group, a carboxyl group, a phosphino group, a phosphine oxide group, or an ammonium ion.
As a silane coupling agent, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, aminophenyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, 3-mercaptopropyl Triethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyl(dimethoxy)methylsilane, triethoxysilylpropylmaleamidic acid, [(3-triethoxysilyl)propyl]succinic anhydride, X-12-1135( (manufactured by Shin-Etsu Chemical Co., Ltd.), diethylphosphatoethyltriethoxysilane, 3-trihydroxypropylmethylphosphonate sodium salt, and trimethyl[3-(trimethoxysilyl)propyl]ammonium chloride.
 本発明に係るインク組成物は、量子ドットをシルセスキオキサンと共重合させたシルセスキオキサン重合体、又は、量子ドットおよびアルコキシシランを共重合させたシルセスキオキサン重合体を含むものである。 The ink composition according to the present invention contains a silsesquioxane polymer in which quantum dots are copolymerized with silsesquioxane, or a silsesquioxane polymer in which quantum dots and alkoxysilane are copolymerized.
(量子ドットをシルセスキオキサンと共重合させたシルセスキオキサン重合体)
 本発明の一実施形態では、シランカップリング剤により表面修飾した量子ドットをシルセスキオキサンと共重合をさせる。共重合の方法は特に制限されない。
 例えば、表面修飾した量子ドットとシルセスキオキサンを、トルエン、エタノールの混合溶媒中で混合し、少量の水、触媒を加えて反応させることで、量子ドットとシルセスキオキサンを共重合させることができる。
 触媒の種類は特に制限されず、酸やアルカリを用いることができる。
 触媒としては、ギ酸、塩酸、硝酸、酢酸、マレイン酸、アンモニア水、水酸化ナトリウム水溶液、水酸化テトラメチルアンモニウムなどが例示される。
 また、シルセスキオキサンは、かご型構造、はしご型構造、ランダム構造など、その構造は特に制限されず、目的に応じ適宜選択できる。量子ドットの分散性、均一性などの観点からランダム構造が好ましい。
 また、シルセスキオキサンに含まれる官能基は制限されず、目的に応じ適宜置換されていてよい。置換基として重合反応や架橋反応を行うことができる置換基が硬化性の観点から特に好ましい。
 シルセスキオキサンの官能基として、ビニル基、アクリル基、メタクリル基、水酸基、フェノール性水酸基、エポキシ基、グリシジル基、チオール基などが例示される。
(Silsesquioxane polymer made by copolymerizing quantum dots with silsesquioxane)
In one embodiment of the present invention, quantum dots surface-modified with a silane coupling agent are copolymerized with silsesquioxane. The method of copolymerization is not particularly limited.
For example, by mixing surface-modified quantum dots and silsesquioxane in a mixed solvent of toluene and ethanol, and adding a small amount of water and a catalyst, the quantum dots and silsesquioxane can be copolymerized. I can do it.
The type of catalyst is not particularly limited, and acids and alkalis can be used.
Examples of the catalyst include formic acid, hydrochloric acid, nitric acid, acetic acid, maleic acid, aqueous ammonia, aqueous sodium hydroxide solution, and tetramethylammonium hydroxide.
Further, the structure of silsesquioxane is not particularly limited and can be appropriately selected depending on the purpose, such as a cage structure, a ladder structure, and a random structure. A random structure is preferable from the viewpoint of dispersibility and uniformity of quantum dots.
Further, the functional groups contained in silsesquioxane are not limited, and may be appropriately substituted depending on the purpose. As a substituent, a substituent that can undergo a polymerization reaction or a crosslinking reaction is particularly preferable from the viewpoint of curability.
Examples of the functional group of silsesquioxane include a vinyl group, an acrylic group, a methacryl group, a hydroxyl group, a phenolic hydroxyl group, an epoxy group, a glycidyl group, and a thiol group.
(量子ドットおよびアルコキシシランを共重合させたシルセスキオキサン重合体)
 本発明の他の実施形態では、シランカップリング剤により表面修飾した量子ドットとアルコキシシランを共重合させシルセスキオキサン重合体とする。共重合の方法は特に制限されない。シルセスキオキサンの合成法として、非特許文献1に記載の方法が知られている。
 例えば、表面修飾した量子ドットとアルコキシシランを、トルエン、エタノールの混合溶媒中で混合し、少量の水、触媒を加えて反応させることで、シルセスキオキサン重合体を得ることができる。
 触媒の種類や添加量は特に制限されず、酸やアルカリを用いることができる。
 触媒としては、ギ酸、塩酸、硝酸、酢酸、アンモニア水、水酸化テトラメチルアンモニウムなどが例示される。
 シランカップリング剤は特に制限されず、目的の樹脂特性に合わせて適宜選択できる。シランカップリング剤としては、官能基にビニル基、アリル基、グリシジル基、フェニル基、アクリル基、メタクリル基、チオール基を有するものが好ましい。
 また、官能基は1種類だけでなく2種類以上の官能基を有するアルコキシランを用いてもよい。
 シランカップリング剤として、トリメトキシビニルシラン、トリエトキシビニルシラン、トリメトキシ(4-ビニルフェニル)シラン、アリルトリエトキシシラン、アリルトリメトキシシラン、トリエトキシ(3-グリシジルオキシプロピル)シラン、3-グリシジルオキシプロピルトリメトキシシラン、[8-(グリシジルオキシ)-n-オクチル]トリメトキシシラン、KBM-573(信越化学工業(株)製)、(3-メタクリロイルオキシプロピル)トリエトキシシラン、(3-メタクリロイルオキシプロピル)トリメトキシシラン、アクリル酸3-(トリメトキシシリル)プロピル、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシランなどが例示される。
 このようなシランカップリング剤であれば、量子ドットへの配位性が高く、シルセスキオキサンと量子ドットとの親和性も高くなることから好ましい。
 また、量子ドットおよびシルセスキオキサン重合体の極性を制御することが可能となり、インク組成物の任意の溶媒との良好な相溶性が得られることからも好ましい。
(silsesquioxane polymer copolymerized with quantum dots and alkoxysilane)
In another embodiment of the present invention, a silsesquioxane polymer is obtained by copolymerizing quantum dots surface-modified with a silane coupling agent and an alkoxysilane. The method of copolymerization is not particularly limited. As a method for synthesizing silsesquioxane, a method described in Non-Patent Document 1 is known.
For example, a silsesquioxane polymer can be obtained by mixing surface-modified quantum dots and alkoxysilane in a mixed solvent of toluene and ethanol, adding a small amount of water and a catalyst, and causing the mixture to react.
The type and amount of catalyst added are not particularly limited, and acids and alkalis can be used.
Examples of the catalyst include formic acid, hydrochloric acid, nitric acid, acetic acid, aqueous ammonia, and tetramethylammonium hydroxide.
The silane coupling agent is not particularly limited and can be appropriately selected depending on the desired resin properties. The silane coupling agent preferably has a vinyl group, allyl group, glycidyl group, phenyl group, acrylic group, methacryl group, or thiol group as a functional group.
Further, an alkoxyrane having not only one type of functional group but two or more types of functional groups may be used.
As a silane coupling agent, trimethoxyvinylsilane, triethoxyvinylsilane, trimethoxy(4-vinylphenyl)silane, allyltriethoxysilane, allyltrimethoxysilane, triethoxy(3-glycidyloxypropyl)silane, 3-glycidyloxypropyltrimethoxy Silane, [8-(glycidyloxy)-n-octyl]trimethoxysilane, KBM-573 (manufactured by Shin-Etsu Chemical Co., Ltd.), (3-methacryloyloxypropyl)triethoxysilane, (3-methacryloyloxypropyl)trimethoxysilane, Examples include methoxysilane, 3-(trimethoxysilyl)propyl acrylate, 3-mercaptopropyltriethoxysilane, and 3-mercaptopropyltrimethoxysilane.
Such a silane coupling agent is preferable because it has high coordination to quantum dots and also has high affinity between silsesquioxane and quantum dots.
It is also preferable because it becomes possible to control the polarity of the quantum dots and the silsesquioxane polymer, and good compatibility with any solvent of the ink composition can be obtained.
 また、アルコキシシランは、トリアルコキシシランのみでなく、ジアルコキシシランやモノアルコキシシランを含んでいてもよい。トリアルコキシシランとジアルコキシシラン、モノアルコキシシランは同一の官能基を有していてもよく、また、異なる官能基を有していてもよい。ジアルコキシシランやモノアルコキシシランを含むことにより共重合により得られるシルセスキオキサンの架橋度を制御することができ、これにより得られる樹脂組成物の粘度を制御することが可能となり、製造工程に合わせて粘度調整をすることが可能となる。例えば、シルセスキオキサン合成時に、前駆体であるトリアルコキシシランに長鎖アルキル基や嵩高い置換基を有するものアルコキシシランと混合することで架橋反応を制限し低粘度化することができる。
 また、トリアルコキシシランにジアルコキシシランまたはモノアルコキシシランを混合することにより、架橋度を下げ低粘度化することもできる。これらのアルコキシシランの種類や比率は特に制限されず、目的に応じ適宜選択できる。
 インク組成物の粘度は、1500mPa・s以下が好ましく、1000mPa・s以下が特に好ましい。なお、粘度の下限は特に限定しないが例えば1mPa・s以上である。インク組成物の粘度は、例えば、回転式粘度計(ブルックフィールド製 DV-I)により25℃で測定する。
 アルコキシシランの官能基として、ビニル基、アクリル基、メタクリル基、水酸基、フェノール性水酸基、エポキシ基、グリシジル基、チオール基のいずれか1種以上の反応性置換基などが例示される。
Further, the alkoxysilane may include not only trialkoxysilane but also dialkoxysilane and monoalkoxysilane. Trialkoxysilane, dialkoxysilane, and monoalkoxysilane may have the same functional group or different functional groups. By including dialkoxysilane or monoalkoxysilane, it is possible to control the degree of crosslinking of the silsesquioxane obtained by copolymerization, which makes it possible to control the viscosity of the resulting resin composition, which is useful in the manufacturing process. It is also possible to adjust the viscosity accordingly. For example, during the synthesis of silsesquioxane, by mixing the precursor trialkoxysilane with an alkoxysilane having a long-chain alkyl group or a bulky substituent, the crosslinking reaction can be restricted and the viscosity can be lowered.
Further, by mixing dialkoxysilane or monoalkoxysilane with trialkoxysilane, the degree of crosslinking can be lowered to lower the viscosity. The types and ratios of these alkoxysilanes are not particularly limited and can be appropriately selected depending on the purpose.
The viscosity of the ink composition is preferably 1500 mPa·s or less, particularly preferably 1000 mPa·s or less. Note that the lower limit of the viscosity is not particularly limited, but is, for example, 1 mPa·s or more. The viscosity of the ink composition is measured, for example, at 25° C. using a rotational viscometer (DV-I manufactured by Brookfield).
Examples of the functional group of the alkoxysilane include a reactive substituent of one or more of a vinyl group, an acrylic group, a methacryl group, a hydroxyl group, a phenolic hydroxyl group, an epoxy group, a glycidyl group, and a thiol group.
 本発明に係るインク組成物の製造方法は、量子ドットを準備する工程1と、アルコキシシランを準備する工程2と、前記アルコキシシランを前記量子ドットの表面に接続されたシルセスキオキサンとし、前記量子ドットと前記シルセスキオキサンとからなる共重合体を形成する工程3と、を有する。
 量子ドットを準備する工程1が、コアを形成する工程1-1と、コアを覆うシェルを形成する工程1-2と、を有することが好ましい。
 また、共重合体を形成する工程3が、量子ドットの表面をシランカップリング剤により表面修飾する工程3-1と、前記シランカップリング剤を介して前記シルセスキオキサンを前記量子ドットの表面に接続する工程3-2と、を有することが好ましい。
The method for producing an ink composition according to the present invention includes a step 1 of preparing quantum dots, a step 2 of preparing an alkoxysilane, and using the alkoxysilane as silsesquioxane connected to the surface of the quantum dot, and and step 3 of forming a copolymer consisting of quantum dots and the silsesquioxane.
Preferably, Step 1 of preparing quantum dots includes Step 1-1 of forming a core and Step 1-2 of forming a shell covering the core.
Further, step 3 of forming a copolymer includes step 3-1 of surface-modifying the surface of the quantum dots with a silane coupling agent, and adding the silsesquioxane to the surface of the quantum dots via the silane coupling agent. It is preferable to have a step 3-2 of connecting to.
 本発明のインク組成物は、表面処理した量子ドットとシルセスキオキサンの共重合体、架橋剤および重合開始剤を含み、その他に溶媒、酸化防止剤、光散乱剤等を含んでも良い。 The ink composition of the present invention contains a copolymer of surface-treated quantum dots and silsesquioxane, a crosslinking agent, and a polymerization initiator, and may also contain a solvent, an antioxidant, a light scattering agent, and the like.
(架橋剤)
 架橋剤として、量子ドットとシルセスキオキサンの共重合体に含まれる重合性の置換基と反応する官能基を2つ以上有するものが好ましい。架橋剤の添加量は特に制限されず、また、これら官能基の組み合わせも特に制限されず、目的とする硬化特性に合わせて適宜選択できる。
 ラジカル重合性の置換基としては、ビニル基、アクリル基、メタクリル基、チオール基等があるがいずれも好適に利用できる。
 カチオン重合性置換基としては、水酸基、フェノール性水酸基、エポキシ基、グリシジル基、オキセタニル基、イソシアネート基等が挙げられるが、いずれも好適に利用できる。
 架橋剤として、ジペンタエリトリトールヘキサアクリラート、オクタビニルシルセスキオキサン、2,4,6,8-テトラメチル2,4,6,8-テトラビニルシクロテトラシロキサン、2,4,6トリメチル-2,4,6-トリビニルシクロトリシロキサン、トリアリルイソシアヌレート、トリアクリル酸トリメチロールプロパン、N,N’-メチレンビス(アクリルアミド)などが例示される。
(Crosslinking agent)
The crosslinking agent preferably has two or more functional groups that react with the polymerizable substituent contained in the copolymer of quantum dots and silsesquioxane. The amount of the crosslinking agent added is not particularly limited, and the combination of these functional groups is also not particularly limited, and can be appropriately selected depending on the desired curing characteristics.
Examples of radically polymerizable substituents include vinyl groups, acrylic groups, methacrylic groups, and thiol groups, all of which can be suitably used.
Examples of the cationically polymerizable substituent include a hydroxyl group, a phenolic hydroxyl group, an epoxy group, a glycidyl group, an oxetanyl group, an isocyanate group, and any of them can be suitably used.
As a crosslinking agent, dipentaerythritol hexaacrylate, octavinylsilsesquioxane, 2,4,6,8-tetramethyl 2,4,6,8-tetravinylcyclotetrasiloxane, 2,4,6 trimethyl-2 , 4,6-trivinylcyclotrisiloxane, triallylisocyanurate, trimethylolpropane triacrylate, and N,N'-methylenebis(acrylamide).
(散乱体)
 散乱体としては無機粒子や有機物粒子など目的に応じ適宜選択でき、また粒子径や添加量は使用する光源の波長あるいは発光波長および波長変換材料の構造から光取り出し効率を最適となるように調整することが望ましい。
 無機粒子としてはシリカやジルコニア、アルミナ、チタン酸バリウム、硫酸バリウムなどが例示でき、有機粒子としてはPMMAやポリスチレン、ポリカーボネートなどが挙げられる。
(Scatterer)
The scatterer can be selected as appropriate depending on the purpose, such as inorganic particles or organic particles, and the particle size and amount added are adjusted to optimize the light extraction efficiency based on the wavelength of the light source used or the emission wavelength and the structure of the wavelength conversion material. This is desirable.
Examples of inorganic particles include silica, zirconia, alumina, barium titanate, and barium sulfate, and examples of organic particles include PMMA, polystyrene, and polycarbonate.
(重合開始剤)
 本発明のインク組成物は、重合開始剤を含むことが好ましい。
 重合開始剤は、熱または光重合開始剤があり、重合方法に合わせていずれも好適に利用できる。
 光ラジカル重合開始剤としては、BASF社から市販されているイルガキュア(Irgacure(登録商標))シリーズでは、例えば、イルガキュア290、イルガキュア651、イルガキュア754、イルガキュア184、イルガキュア2959、イルガキュア907、イルガキュア369、イルガキュア379、イルガキュア819、イルガキュア1173等が挙げられる。
 また、ダロキュア(Darocure(登録商標))シリーズでは、例えば、TPO、ダロキュア1173等が挙げられる。
 その他、公知の熱ラジカル重合開始剤や光カチオン重合開始剤を含んでいてもよく、特に制限されない。
 重合開始剤含有量は、添加する高分子100質量部に対して0.1~10質量部が好ましく、さらに好ましくは0.2~5質量部である。
(Polymerization initiator)
The ink composition of the present invention preferably contains a polymerization initiator.
The polymerization initiator may be a thermal or photopolymerization initiator, and any of them can be suitably used depending on the polymerization method.
As the photoradical polymerization initiator, in the Irgacure (registered trademark) series commercially available from BASF, for example, Irgacure 290, Irgacure 651, Irgacure 754, Irgacure 184, Irgacure 2959, Irgacure 907, Irgacure 369, Irgacure 379, Irgacure 819, Irgacure 1173, etc.
In addition, examples of the Darocure (registered trademark) series include TPO, Darocure 1173, and the like.
In addition, it may contain a known thermal radical polymerization initiator or a photocationic polymerization initiator, and is not particularly limited.
The content of the polymerization initiator is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the polymer to be added.
(溶媒)
 本発明のインク組成物には、その塗布性を向上するために溶媒が含まれても良い。溶剤としては量子ドットとの相溶性の観点から有機溶剤が良く、例えば、ケトン、アルキレングリコールエーテル、アルコールおよび芳香族化合物などが例示される。
 ケトンの群から、アセトン、メチルエチルケトン、シクロヘキサノンなど、アルキレングリコールエーテルの群からのメチルセロソルブ(エチレングリコールモノメチルエーテル)、ブチルセロソルブ(エチレングリコールモノブチルエーテル)、酢酸メチルセロソルブ、酢酸エチルセロソルブ、酢酸ブチルセロソルブ、エチレングリコールモノプロピルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールエチルエーテル、酢酸ジエチレングリコールプロピルエーテル、酢酸ジエチレングリコールイソプロピルエーテル、酢酸ジエチレングリコールブチルエーテル、酢酸ジエチレングリコール第三ブチルエーテル、酢酸トリエチレングリコールメチルエーテル、酢酸トリエチレングリコールエチルエーテル、酢酸トリエチレングリコールプロピルエーテル、酢酸トリエチレングリコールイソプロピルエーテル、酢酸トリエチレングリコールブチルエーテル、酢酸トリエチレングリコール第三ブチルエーテルなど、アルコールの群からのメチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブチルアルコール、3-メチル-3-メトキシブタノールなど、および、芳香族溶媒の群からのベンゼン、トルエン、キシレンが利用できる。
 インクジェット法においては、ノズル先端での溶媒の揮発により、量子ドットなどの固形成分が固化しノズル先端の閉塞が発生し、安定した吐出ができなくなる問題があり、溶媒が揮発しにくいもの、特に、沸点が100℃以上の有機溶媒が好ましい。このような溶媒として、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、エチレングリコール、プロピレングリコールなどが好適に用いられる。
(solvent)
The ink composition of the present invention may contain a solvent to improve its coating properties. The solvent is preferably an organic solvent from the viewpoint of compatibility with the quantum dots, and examples thereof include ketones, alkylene glycol ethers, alcohols, and aromatic compounds.
From the group of ketones, such as acetone, methyl ethyl ketone, cyclohexanone, from the group of alkylene glycol ethers: methyl cellosolve (ethylene glycol monomethyl ether), butyl cellosolve (ethylene glycol monobutyl ether), methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, ethylene glycol mono Propyl ether, ethylene glycol monohexyl ether, ethylene glycol dimethyl ether, diethylene glycol ethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, acetic acid propylene glycol monomethyl ether, acetic acid Diethylene glycol methyl ether, diethylene glycol ethyl ether acetate, diethylene glycol propyl ether acetate, diethylene glycol isopropyl acetate, diethylene glycol butyl acetate, diethylene glycol tert-butyl ether acetate, triethylene glycol methyl ether acetate, triethylene glycol ethyl ether acetate, triethylene glycol propyl ether acetate, Methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butyl alcohol, 3-methyl-3-methoxybutanol, etc. from the group of alcohols, such as triethylene glycol isopropyl ether acetate, triethylene glycol butyl acetate, triethylene glycol tert-butyl ether acetate, etc. , and benzene, toluene, xylene from the group of aromatic solvents.
In the inkjet method, solid components such as quantum dots solidify due to the volatilization of the solvent at the nozzle tip, causing blockage of the nozzle tip and making stable ejection impossible. Organic solvents having a boiling point of 100°C or higher are preferred. As such a solvent, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethylene glycol, propylene glycol, etc. are preferably used.
(量子ドットの含有量)
 量子ドットの含有量は、目的の発光特性に応じ適宜調整できる。量子ドットの濃度としては、励起光の吸収率が90%以上となる様に調整することが好ましい。量子ドットの特性により、最適な濃度は異なるが、10重量%以上が特に好ましい。
(Quantum dot content)
The content of quantum dots can be adjusted as appropriate depending on the desired emission characteristics. The concentration of the quantum dots is preferably adjusted so that the absorption rate of excitation light is 90% or more. Although the optimum concentration varies depending on the characteristics of the quantum dots, it is particularly preferably 10% by weight or more.
 本発明に係るカラーフィルタの製造方法は、本発明に係るインク組成物をインクジェット法により基板上に吐出してカラーフィルタを形成する方法である。 The method for producing a color filter according to the present invention is a method in which a color filter is formed by discharging the ink composition according to the present invention onto a substrate using an inkjet method.
(インクジェット装置、方式、基板)
 上記方法で製造された量子ドットを含むインク組成物を、インクジェット装置により基板上に塗布することにより、カラーフィルタ用途の波長変換材料を得ることができる。
 インクジェットの方式は特に限定されず、ピエゾ式やバブル方式、バルブ方式など、インク特性に合わせて適宜選択できる。
 また、インクジェット装置の構造についても同様に特に制限されず、例えば、シングルノズルでもよく、マルチノズルであってもよい。
 基板は目的に応じ適宜選択できる。例えば、シリコンウェーハやガラス基板、樹脂板、樹脂フィルムなどが例示される。また、基板はパターンの密着性を向上させるため、シランカップリング剤等で基板の表面処理を行ってもよい。
(Inkjet device, method, substrate)
By applying an ink composition containing quantum dots produced by the above method onto a substrate using an inkjet device, a wavelength conversion material for use in color filters can be obtained.
The inkjet method is not particularly limited, and can be appropriately selected depending on the ink characteristics, such as a piezo method, a bubble method, or a valve method.
Further, the structure of the inkjet device is similarly not particularly limited, and may be, for example, a single nozzle or a multi-nozzle.
The substrate can be selected as appropriate depending on the purpose. Examples include silicon wafers, glass substrates, resin plates, and resin films. Further, in order to improve the adhesion of the pattern, the substrate may be surface-treated with a silane coupling agent or the like.
(インク組成物の硬化)
 本発明に係るインク組成物は、シルセスキオキサン重合体と硬化性樹脂の混合物とすることができる。この場合、インク組成物を基板に吐出後、樹脂層を硬化させる。光硬化性樹脂であればUV光照射、熱硬化性樹脂であれば基板ごと加熱することにより樹脂層を硬化させることができる。硬化条件は、樹脂材料やパターン形状に合わせて調整することが好ましい。
 熱硬化性樹脂が側鎖に(メタ)アクリロイル基を有するアクリル樹脂や酸架橋性基含有シリコーン樹脂であることが好ましい。高分子はアクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステルからそれぞれ誘導された重合体や複数を組み合わせた共重合体、グリシジル(メタ)アクリレートを繰り返し単位に持つ高分子、シロキサン骨格、ウレタン骨格、シルフェニレン骨格、ノルボルネン骨格、フルオレン骨格、イソシアヌレート骨格を含む高分子を好適に利用でき、適宜用途に合わせて使用する高分子を選んでよい。例えば、アクリル樹脂、アルキッド樹脂、メラミン樹脂、エポキシ樹脂、シリコーン樹脂、ポリビニルアルコール、ポリビニルピロリドン、ポリアミド、ポリアミド-イミド、ポリイミドなどのポリイミド前駆体およびそのエステル化生成物、テトラカルボン酸二無水物とジアミンとの反応生成物が挙げられる。また、これら高分子には重合性の置換基が導入されており、重合開始剤と組み合わせて使用することで硬化が可能となる。ラジカル重合性の置換基としては、ビニル基、アクリル基、メタクリル基、チオール基等があるがいずれも好適に利用できる。カチオン重合性置換基としては、水酸基、フェノール性水酸基、エポキシ基、グリシジル基、オキセタニル基、イソシアネート基等が挙げられるが、いずれも好適に利用できる。
(Curing of ink composition)
The ink composition according to the present invention can be a mixture of a silsesquioxane polymer and a curable resin. In this case, the resin layer is cured after the ink composition is discharged onto the substrate. The resin layer can be cured by UV light irradiation if it is a photocurable resin, or by heating the entire substrate if it is a thermosetting resin. It is preferable to adjust the curing conditions according to the resin material and pattern shape.
It is preferable that the thermosetting resin is an acrylic resin having a (meth)acryloyl group in a side chain or a silicone resin containing an acid crosslinkable group. Polymers include polymers derived from acrylic acid, methacrylic acid, acrylic esters, and methacrylic esters, copolymers combining them, polymers with glycidyl (meth)acrylate as a repeating unit, siloxane skeletons, and urethane skeletons. , a silphenylene skeleton, a norbornene skeleton, a fluorene skeleton, and an isocyanurate skeleton can be suitably used, and the polymer to be used may be appropriately selected according to the purpose. For example, polyimide precursors such as acrylic resins, alkyd resins, melamine resins, epoxy resins, silicone resins, polyvinyl alcohol, polyvinylpyrrolidone, polyamides, polyamide-imides, polyimides and their esterification products, tetracarboxylic dianhydrides and diamines. Examples include reaction products with. Furthermore, polymerizable substituents are introduced into these polymers, and curing becomes possible when used in combination with a polymerization initiator. Examples of radically polymerizable substituents include vinyl groups, acrylic groups, methacrylic groups, and thiol groups, all of which can be suitably used. Examples of the cationically polymerizable substituent include a hydroxyl group, a phenolic hydroxyl group, an epoxy group, a glycidyl group, an oxetanyl group, an isocyanate group, and any of them can be suitably used.
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。本実施例では、量子ドット材料として、InP/ZnSe/ZnSのコアシェル型量子ドットを用いた。 Hereinafter, the present invention will be explained in more detail by showing Examples and Comparative Examples of the present invention, but the present invention is not limited thereto. In this example, core-shell quantum dots of InP/ZnSe/ZnS were used as the quantum dot material.
(量子ドットを準備する工程1)
(コアを形成する工程1-1:量子ドットコア合成工程)
 フラスコ内にパルミチン酸を0.23g(0.9mmol)、酢酸インジウムを0.088g(0.3mmol)、1-オクタデセンを10mL加え、減圧下、100℃で加熱攪拌を行い、原料を溶解させながら1時間脱気を行った。
 その後、窒素をフラスコ内にパージし、トリストリメチルシリルホスフィンをトリオクチルホスフィンと混合して0.2Mに調整した溶液を0.75mL(0.15mmol)加えて300℃に昇温し、溶液が黄色から赤色に着色し、コア粒子が生成しているのを確認した。
(Step 1 of preparing quantum dots)
(Step 1-1 of forming a core: quantum dot core synthesis step)
Add 0.23 g (0.9 mmol) of palmitic acid, 0.088 g (0.3 mmol) of indium acetate, and 10 mL of 1-octadecene into a flask, and heat and stir at 100°C under reduced pressure to dissolve the raw materials. Deaeration was performed for 1 hour.
After that, nitrogen was purged into the flask, 0.75 mL (0.15 mmol) of a solution prepared by mixing tristrimethylsilylphosphine with trioctylphosphine and adjusted to 0.2M was added, and the temperature was raised to 300°C, and the solution changed from yellow to yellow. It was colored red and it was confirmed that core particles were generated.
(コアを覆うシェルを形成する工程1-2:量子ドットシェル層合成工程)
 次いで、別のフラスコにステアリン酸亜鉛2.85g(4.5mmol)、1-オクタデセン15mLを加え、減圧下、100℃に加熱攪拌を行い、溶解させながら1時間脱気を行ったステアリン酸亜鉛オクタデセン溶液0.3Mを用意し、コア合成後の反応溶液に3.0mL(0.9mmol)添加して200℃まで冷却した。
 次いで、別のフラスコにセレン0.474g(6mmol)、トリオクチルホスフィン4mLを加えて150℃に加熱して溶解させ、セレントリオクチルホスフィン溶液1.5Mを調整し、200℃に冷却しておいたコア合成工程後の反応溶液を320℃まで30分かけて昇温しながら、セレントリオクチルホスフィン溶液を0.1mLずつ合計0.6mL(0.9mmol)添加するように加えて320℃で10分保持した後に室温まで冷却した。
 酢酸亜鉛を0.44g(2.2mmol)加え、減圧下、100℃に加熱攪拌することで溶解させた。再びフラスコ内を窒素でパージして230℃まで昇温し、1-ドデカンチオールを0.98mL(4mmol)添加して1時間保持した。
 得られた溶液を室温まで冷却し、InP/ZnSe/ZnSからなるコアシェル型量子ドット含有溶液を作製した。
(Step 1-2 of forming a shell covering the core: Quantum dot shell layer synthesis step)
Next, 2.85 g (4.5 mmol) of zinc stearate and 15 mL of 1-octadecene were added to another flask, heated and stirred at 100°C under reduced pressure, and degassed for 1 hour while dissolving the zinc stearate octadecene. A solution of 0.3 M was prepared, and 3.0 mL (0.9 mmol) was added to the reaction solution after core synthesis, and the mixture was cooled to 200°C.
Next, 0.474 g (6 mmol) of selenium and 4 mL of trioctylphosphine were added to another flask and heated to 150°C to dissolve them to prepare a 1.5M selenium trioctylphosphine solution, which was cooled to 200°C. While heating the reaction solution after the core synthesis step to 320 °C over 30 minutes, add selenium trioctylphosphine solution in 0.1 mL increments for a total of 0.6 mL (0.9 mmol) and heat at 320 °C for 10 minutes. After being held, it was cooled to room temperature.
0.44 g (2.2 mmol) of zinc acetate was added and dissolved by heating and stirring at 100° C. under reduced pressure. The inside of the flask was again purged with nitrogen, the temperature was raised to 230°C, 0.98 mL (4 mmol) of 1-dodecanethiol was added, and the temperature was maintained for 1 hour.
The obtained solution was cooled to room temperature, and a core-shell quantum dot-containing solution made of InP/ZnSe/ZnS was produced.
(アルコキシシランを準備する工程2)
 (3-メルカプトプロピル)トリエトキシシラン6mL、トリメトキシ(3,3,3-トリフルオロプロピル)シラン1mL、フェニルトリメトキシシラン3mL及び(3-メルカプトプロピル)トリエトキシシラン6mLとフェニルトリメトキシシラン2mL、エトキシトリメチルシラン2mL及び(3-メタクリロイルオキシプロピル)トリメトキシシラン6mLとフェニルトリメトキシシラン2mL、エトキシトリメチルシラン2mL及び3-アミノプロピルトリメトキシシラン7mL、ドデシルトリメトキシシラン1mLとエトキシトリメチルシラン2mL及び(3-メタクリロイルオキシプロピル)トリメトキシシラン10mLを準備した。
(Step 2 of preparing alkoxysilane)
(3-Mercaptopropyl)triethoxysilane 6mL, trimethoxy(3,3,3-trifluoropropyl)silane 1mL, phenyltrimethoxysilane 3mL and (3-mercaptopropyl)triethoxysilane 6mL and phenyltrimethoxysilane 2mL, ethoxy 2 mL of trimethylsilane and 6 mL of (3-methacryloyloxypropyl)trimethoxysilane and 2 mL of phenyltrimethoxysilane, 2 mL of ethoxytrimethylsilane and 7 mL of 3-aminopropyltrimethoxysilane, 1 mL of dodecyltrimethoxysilane and 2 mL of ethoxytrimethylsilane and (3- 10 mL of methacryloyloxypropyl)trimethoxysilane was prepared.
(アルコキシシランを量子ドットの表面に接続されたシルセスキオキサンとし、量子ドットとシルセスキオキサンとからなる共重合体を形成する工程3)
(量子ドットの表面をシランカップリング剤により表面修飾する工程3-1:量子ドットの表面処理)
 反応終了後室温まで冷却し、エタノールを加えて反応溶液を沈殿させ、遠心分離を行い、上澄みを除去した。
 同様な精製をもう一度行い、トルエンに分散させた。
 窒素置換したフラスコに量子ドットのトルエン溶液を入れた。
 ここに(3-メルカプトプロピル)トリエトキシシラン0.24mL(1.0mmol)を加え室温で24時間攪拌した。
(Step 3 of using alkoxysilane as silsesquioxane connected to the surface of quantum dots to form a copolymer consisting of quantum dots and silsesquioxane)
(Step 3-1 of modifying the surface of quantum dots with a silane coupling agent: Surface treatment of quantum dots)
After the reaction was completed, the mixture was cooled to room temperature, ethanol was added to precipitate the reaction solution, centrifuged, and the supernatant was removed.
A similar purification was performed once more and dispersed in toluene.
A toluene solution of quantum dots was placed in a nitrogen-substituted flask.
0.24 mL (1.0 mmol) of (3-mercaptopropyl)triethoxysilane was added thereto, and the mixture was stirred at room temperature for 24 hours.
(シランカップリング剤を介してシルセスキオキサンを量子ドットの表面に接続する工程3-2(1):量子ドットとシルセスキオキサンの共重合1)
 窒素置換したフラスコに(3-メルカプトプロピル)トリエトキシシラン6mL、トリメトキシ(3,3,3-トリフルオロプロピル)シラン1mL、フェニルトリメトキシシラン3mLおよび表面処理を行った量子ドット溶液を固形分濃度として20質量部となる様に添加し、さらにトルエン20mL、メタノール10mLを混合し、室温で攪拌しながら1.0N塩酸4.0mLを少量ずつ滴下した。
 滴下後、室温で60分攪拌し、さらに溶液温度を60℃として還流しながら60分反応させた。
 その後、60℃で180分真空引きし系内の溶媒を留去することで量子ドットとシルセスキオキサンの共重合体(1)が得られた。
(Step 3-2 (1) of connecting silsesquioxane to the surface of quantum dots via a silane coupling agent: Copolymerization of quantum dots and silsesquioxane 1)
In a nitrogen-substituted flask, add 6 mL of (3-mercaptopropyl)triethoxysilane, 1 mL of trimethoxy(3,3,3-trifluoropropyl)silane, 3 mL of phenyltrimethoxysilane, and the surface-treated quantum dot solution as solid concentration. Then, 20 mL of toluene and 10 mL of methanol were mixed, and 4.0 mL of 1.0N hydrochloric acid was added dropwise little by little while stirring at room temperature.
After the dropwise addition, the mixture was stirred at room temperature for 60 minutes, and then the solution temperature was raised to 60° C. and reacted for 60 minutes under reflux.
Thereafter, a copolymer (1) of quantum dots and silsesquioxane was obtained by vacuuming at 60° C. for 180 minutes and distilling off the solvent in the system.
(シランカップリング剤を介してシルセスキオキサンを量子ドットの表面に接続する工程3-2(2):量子ドットとシルセスキオキサンの共重合2)
 窒素置換したフラスコに(3-メルカプトプロピル)トリエトキシシラン6mLとフェニルトリメトキシシラン2mL、エトキシトリメチルシラン2mLおよび表面処理を行った量子ドット溶液を固形分濃度として20質量部となる様に添加し、さらにトルエン20mL、メタノール10mLを加え混合した。
 そこに、室温で攪拌しながら、1.0N塩酸4.0mLを少量ずつ滴下した。
 滴下後、室温で60分攪拌し、さらに溶液温度を60℃として還流しながら60分反応させた。
 その後、40℃で系内を窒素フローさせながら溶媒を留去することで量子ドットとシルセスキオキサンの共重合体(2)が得られた。
(Step 3-2 (2) of connecting silsesquioxane to the surface of quantum dots via a silane coupling agent: Copolymerization of quantum dots and silsesquioxane 2)
Add 6 mL of (3-mercaptopropyl)triethoxysilane, 2 mL of phenyltrimethoxysilane, 2 mL of ethoxytrimethylsilane, and a surface-treated quantum dot solution to a nitrogen-substituted flask so that the solid content concentration is 20 parts by mass, Further, 20 mL of toluene and 10 mL of methanol were added and mixed.
Thereto, 4.0 mL of 1.0N hydrochloric acid was added dropwise little by little while stirring at room temperature.
After the dropwise addition, the mixture was stirred at room temperature for 60 minutes, and then the solution temperature was raised to 60° C. and reacted for 60 minutes under reflux.
Thereafter, the solvent was distilled off while flowing nitrogen through the system at 40° C., thereby obtaining a copolymer (2) of quantum dots and silsesquioxane.
(シランカップリング剤を介してシルセスキオキサンを量子ドットの表面に接続する工程3-2(3):量子ドットとアルキルシランの共重合3)
 窒素置換したフラスコに(3-メタクリロイルオキシプロピル)トリメトキシシラン6mLとフェニルトリメトキシシラン2mL、エトキシトリメチルシラン2mLおよび表面処理を行った量子ドット溶液を固形分濃度として20質量部となる様に添加し、さらにトルエン20mL、メタノール10mLを加え混合した。
 そこに、室温で攪拌しながら、1.0N塩酸4.0mLを少量ずつ滴下した。
 滴下後、室温で60分攪拌し、さらに溶液温度を60℃として還流しながら60分反応させた。
 その後、40℃で系内を窒素フローさせながら溶媒を留去することで、量子ドットとシルセスキオキサンの共重合体(3)が得られた。
(Step 3-2 (3) of connecting silsesquioxane to the surface of quantum dots via a silane coupling agent: Copolymerization of quantum dots and alkylsilane 3)
Add 6 mL of (3-methacryloyloxypropyl)trimethoxysilane, 2 mL of phenyltrimethoxysilane, 2 mL of ethoxytrimethylsilane, and a surface-treated quantum dot solution to a nitrogen-substituted flask so that the solid content was 20 parts by mass. Further, 20 mL of toluene and 10 mL of methanol were added and mixed.
Thereto, 4.0 mL of 1.0N hydrochloric acid was added dropwise little by little while stirring at room temperature.
After the dropwise addition, the mixture was stirred at room temperature for 60 minutes, and then the solution temperature was raised to 60° C. and reacted for 60 minutes under reflux.
Thereafter, the solvent was distilled off while flowing nitrogen through the system at 40° C., thereby obtaining a copolymer (3) of quantum dots and silsesquioxane.
(シランカップリング剤を介してシルセスキオキサンを量子ドットの表面に接続する工程3-2(4):量子ドットとアルキルシランの共重合4)
 窒素置換したフラスコに3-アミノプロピルトリメトキシシラン7mL、ドデシルトリメトキシシラン1mLとエトキシトリメチルシラン2mLおよび表面処理を行った量子ドット溶液を固形分濃度として20質量%となる様に添加し、さらにトルエン20mL、メタノール10mLを加え混合した。
 そこに、室温で攪拌しながら、1.0N塩酸4.0mLを少量ずつ滴下した。
 滴下後、室温で60分攪拌し、さらに溶液温度を60℃として還流しながら60分反応させた。
 その後、40℃で系内を窒素フローさせながら溶媒を留去することで、量子ドットとシルセスキオキサンの共重合体(4)が得られた。
(Step 3-2 (4) of connecting silsesquioxane to the surface of quantum dots via a silane coupling agent: Copolymerization of quantum dots and alkylsilane 4)
7 mL of 3-aminopropyltrimethoxysilane, 1 mL of dodecyltrimethoxysilane, 2 mL of ethoxytrimethylsilane, and a surface-treated quantum dot solution were added to a nitrogen-substituted flask so that the solid content was 20% by mass, and then toluene was added. 20 mL and 10 mL of methanol were added and mixed.
Thereto, 4.0 mL of 1.0N hydrochloric acid was added dropwise little by little while stirring at room temperature.
After the dropwise addition, the mixture was stirred at room temperature for 60 minutes, and then the solution temperature was raised to 60° C. and reacted for 60 minutes under reflux.
Thereafter, the solvent was distilled off while flowing nitrogen through the system at 40° C., thereby obtaining a copolymer (4) of quantum dots and silsesquioxane.
(シランカップリング剤を介してシルセスキオキサンを量子ドットの表面に接続する工程3-2(5):量子ドットとアルキルシランの共重合5)
 窒素置換したフラスコに(3-メタクリロイルオキシプロピル)トリメトキシシラン10mLおよび表面処理を行った量子ドット溶液を固形分濃度として20質量部となる様に添加し、さらにトルエン20mL、メタノール10mLを加え混合した。
 そこに、室温で攪拌しながら、1.0N塩酸4.0mLを少量ずつ滴下した。
 滴下後、室温で60分攪拌し、さらに溶液温度を60℃として還流しながら60分反応させた。
 その後、40℃で系内を窒素フローさせながら溶媒を留去することで、量子ドットとシルセスキオキサンの共重合体(5)が得られた。
(Step 3-2 (5) of connecting silsesquioxane to the surface of quantum dots via a silane coupling agent: Copolymerization of quantum dots and alkylsilane 5)
10 mL of (3-methacryloyloxypropyl)trimethoxysilane and the surface-treated quantum dot solution were added to a nitrogen-substituted flask so that the solid content concentration was 20 parts by mass, and 20 mL of toluene and 10 mL of methanol were added and mixed. .
Thereto, 4.0 mL of 1.0N hydrochloric acid was added dropwise little by little while stirring at room temperature.
After the dropwise addition, the mixture was stirred at room temperature for 60 minutes, and then the solution temperature was raised to 60° C. and reacted for 60 minutes under reflux.
Thereafter, the solvent was distilled off while flowing nitrogen through the system at 40° C., thereby obtaining a copolymer (5) of quantum dots and silsesquioxane.
(シルセスキオキサン架橋剤の合成)
 窒素置換したフラスコにトリメトキシビニルシラン10mL、トルエン20mL、メタノール10mLを混合し、室温で攪拌しながら1.0N塩酸4.0mLを少量ずつ滴下した。
 滴下後、室温で60分攪拌し、さらに溶液温度を60℃として還流しながら60分反応させた。
 その後、60℃で系内の2時間真空引きし、溶媒を留去した。
 フラスコ内にはビニル基を有するシルセスキオキサンが得られた(架橋剤(1))。
(Synthesis of silsesquioxane crosslinking agent)
10 mL of trimethoxyvinylsilane, 20 mL of toluene, and 10 mL of methanol were mixed in a flask purged with nitrogen, and 4.0 mL of 1.0N hydrochloric acid was added dropwise little by little while stirring at room temperature.
After the dropwise addition, the mixture was stirred at room temperature for 60 minutes, and then the solution temperature was raised to 60° C. and reacted for 60 minutes under reflux.
Thereafter, the system was evacuated at 60° C. for 2 hours to distill off the solvent.
Silsesquioxane having a vinyl group was obtained in the flask (crosslinking agent (1)).
 窒素置換したフラスコに(3-メタクリロイルオキシプロピル)トリメトキシシラン10mL、トルエン20mL、メタノール10mLを混合し、室温で攪拌しながら1.0N塩酸4.0mLを少量ずつ滴下した。
 滴下後、室温で60分攪拌し、さらに溶液温度を60℃として還流しながら60分反応させた。
 その後、60℃で系内の2時間真空引きし、溶媒を留去した。
 フラスコ内にはメタクリル基を有するシルセスキオキサンが得られた(架橋剤(2))。
In a flask purged with nitrogen, 10 mL of (3-methacryloyloxypropyl)trimethoxysilane, 20 mL of toluene, and 10 mL of methanol were mixed, and 4.0 mL of 1.0N hydrochloric acid was added dropwise little by little while stirring at room temperature.
After the dropwise addition, the mixture was stirred at room temperature for 60 minutes, and then the solution temperature was raised to 60° C. and reacted for 60 minutes under reflux.
Thereafter, the system was evacuated at 60° C. for 2 hours to distill off the solvent.
Silsesquioxane having methacrylic groups was obtained in the flask (crosslinking agent (2)).
 窒素置換したフラスコに(3-グリシジルオキシプロピル)トリメトキシシラン10mL、トルエン20mL、メタノール10mLを混合し、室温で攪拌しながら1.0N塩酸4.0mLを少量ずつ滴下した。
 滴下後、室温で60分攪拌し、さらに溶液温度を60℃として還流しながら60分反応させた。
 その後、60℃で系内の2時間真空引きし、溶媒を留去した。
 フラスコ内にはグリシジル基を有するシルセスキオキサンが得られた(架橋剤(3))。
In a flask purged with nitrogen, 10 mL of (3-glycidyloxypropyl)trimethoxysilane, 20 mL of toluene, and 10 mL of methanol were mixed, and 4.0 mL of 1.0N hydrochloric acid was added dropwise little by little while stirring at room temperature.
After the dropwise addition, the mixture was stirred at room temperature for 60 minutes, and then the solution temperature was raised to 60° C. and reacted for 60 minutes under reflux.
Thereafter, the system was evacuated at 60° C. for 2 hours to distill off the solvent.
Silsesquioxane having a glycidyl group was obtained in the flask (crosslinking agent (3)).
(実施例1)
 量子ドット・シルセスキオキサン共重合体(1)を不揮発性分比で量子ドットが20wt%含まれるように秤量し、架橋剤としてオクタビニルシルセスキオキサンを共重合体中のメルカプト基と架橋剤のビニル基の比率がモル比として1:1となるよう添加した。
 さらに、この混合物の不揮発性分100質量部に対してIrgacure1173を1質量部秤量して混合した。
 さらに、固形分濃度が50%となる様に溶媒としてプロピレングリコールモノメチルエーテルアセテートを加えてインク組成物とした。 
 このインク組成物の粘度を回転式粘度計により測定すると1429mPa・s(25℃で測定)であった。
(Example 1)
Quantum dot/silsesquioxane copolymer (1) was weighed so that it contained 20 wt% of quantum dots as a nonvolatile fraction, and octavinylsilsesquioxane was used as a crosslinking agent to crosslink the mercapto groups in the copolymer. The agent was added so that the molar ratio of vinyl groups was 1:1.
Further, 1 part by mass of Irgacure 1173 was weighed out and mixed with 100 parts by mass of the nonvolatile content of this mixture.
Furthermore, propylene glycol monomethyl ether acetate was added as a solvent so that the solid content concentration was 50% to prepare an ink composition.
The viscosity of this ink composition was measured using a rotational viscometer and was 1429 mPa·s (measured at 25° C.).
(実施例2)
 量子ドット・シルセスキオキサン共重合体(1)を不揮発性分比で量子ドットが20wt%含まれるように秤量し、架橋剤として架橋剤(1)を共重合体中のメルカプト基と架橋剤のビニル基の比率がモル比として1:1となるよう添加した。
 さらに、この混合物の不揮発性分100質量部に対してIrgacure1173を1質量部秤量して混合した。
 さらに、固形分濃度が50%となる様に溶媒としてプロピレングリコールモノメチルエーテルアセテートを加えてインク組成物とした。 
 このインク組成物の粘度を回転式粘度計により測定すると1047mPa・s(25℃で測定)であった。
(Example 2)
Quantum dot/silsesquioxane copolymer (1) was weighed so that it contained 20 wt% of quantum dots in terms of nonvolatile fraction, and the crosslinking agent (1) was added to the mercapto groups in the copolymer and the crosslinking agent. The molar ratio of vinyl groups was 1:1.
Further, 1 part by mass of Irgacure 1173 was weighed out and mixed with 100 parts by mass of the nonvolatile content of this mixture.
Furthermore, propylene glycol monomethyl ether acetate was added as a solvent so that the solid content concentration was 50% to prepare an ink composition.
The viscosity of this ink composition was measured using a rotational viscometer and was 1047 mPa·s (measured at 25° C.).
(実施例3)
 量子ドット・シルセスキオキサン共重合体(1)を不揮発性分比で量子ドットが20wt%含まれるように秤量し、架橋剤として架橋剤(2)を共重合体中のメルカプト基と架橋剤のメタクリル基の比率がモル比として1:1となるよう添加した。
 さらに、この混合物の不揮発性分100質量部に対してIrgacure1173を1質量部秤量して混合した。
 さらに、固形分濃度が50%となる様に溶媒としてプロピレングリコールモノメチルエーテルアセテートを加えてインク組成物とした。 
 このインク組成物の粘度を回転式粘度計により測定すると896mPa・s(25℃で測定)であった。
(Example 3)
Quantum dot/silsesquioxane copolymer (1) was weighed so that it contained 20 wt% of quantum dots as a nonvolatile fraction, and crosslinking agent (2) was added as a crosslinking agent to the mercapto groups in the copolymer and the crosslinking agent. The molar ratio of methacrylic groups was 1:1.
Further, 1 part by mass of Irgacure 1173 was weighed out and mixed with 100 parts by mass of the nonvolatile content of this mixture.
Furthermore, propylene glycol monomethyl ether acetate was added as a solvent so that the solid content concentration was 50% to prepare an ink composition.
The viscosity of this ink composition was measured using a rotational viscometer and was 896 mPa·s (measured at 25° C.).
(実施例4)
 量子ドット・シルセスキオキサン共重合体(2)を不揮発性分比で量子ドットが20wt%含まれるように秤量し、架橋剤として架橋剤(1)を共重合体中のメルカプト基と架橋剤のビニル基の比率がモル比として1:1となるよう添加した。
 さらに、この混合物の不揮発性分100質量部に対してIrgacure1173を1質量部秤量して混合した。
 さらに、固形分濃度が50%となる様に溶媒としてプロピレングリコールモノメチルエーテルアセテートを加えてインク組成物とした。 
 このインク組成物の粘度を回転式粘度計により測定すると788mPa・s(25℃で測定)であった。
(Example 4)
Quantum dot/silsesquioxane copolymer (2) was weighed so that it contained 20 wt% of quantum dots as a nonvolatile fraction, and crosslinking agent (1) was added as a crosslinking agent to the mercapto groups in the copolymer and the crosslinking agent. The molar ratio of vinyl groups was 1:1.
Furthermore, 1 part by mass of Irgacure 1173 was weighed out and mixed with 100 parts by mass of the nonvolatile content of this mixture.
Further, propylene glycol monomethyl ether acetate was added as a solvent so that the solid content concentration was 50% to prepare an ink composition.
The viscosity of this ink composition was measured using a rotational viscometer and was 788 mPa·s (measured at 25° C.).
(実施例5)
 量子ドット・シルセスキオキサン共重合体(2)を不揮発性分比で量子ドットが20wt%含まれるように秤量し、架橋剤として架橋剤(2)を共重合体中のメルカプト基と架橋剤のビニル基の比率がモル比として1:1となるよう添加した。
 さらに、この混合物の不揮発性分100質量部に対してIrgacure1173を1質量部秤量して混合した。
 さらに、固形分濃度が50%となる様に溶媒としてプロピレングリコールモノメチルエーテルアセテートを加えてインク組成物とした。 
 このインク組成物の粘度を回転式粘度計により測定すると1024mPa・s(25℃で測定)であった。
(Example 5)
Quantum dot/silsesquioxane copolymer (2) was weighed so that it contained 20 wt% of quantum dots as a nonvolatile fraction, and the crosslinking agent (2) was added to the mercapto groups in the copolymer and the crosslinking agent. The molar ratio of vinyl groups was 1:1.
Further, 1 part by mass of Irgacure 1173 was weighed out and mixed with 100 parts by mass of the nonvolatile content of this mixture.
Furthermore, propylene glycol monomethyl ether acetate was added as a solvent so that the solid content concentration was 50% to prepare an ink composition.
The viscosity of this ink composition was measured using a rotational viscometer and was 1024 mPa·s (measured at 25° C.).
(実施例6)
 量子ドット・シルセスキオキサン共重合体(3)を不揮発性分比で量子ドットが20wt%含まれるように秤量し、架橋剤として架橋剤(2)を共重合体中のメタクリル基と架橋剤のメタクリル基の比率がモル比として1:1となるよう添加した。
 さらに、この混合物の不揮発性分100質量部に対してIrgacure1173を1質量部秤量して混合した。
 さらに、固形分濃度が50%となる様に溶媒としてプロピレングリコールモノメチルエーテルアセテートを加えてインク組成物とした。 
 このインク組成物の粘度を回転式粘度計により測定すると652mPa・s(25℃で測定)であった。
(Example 6)
Quantum dot/silsesquioxane copolymer (3) was weighed so that it contained 20 wt% of quantum dots as a nonvolatile fraction, and crosslinking agent (2) was added to the methacrylic group in the copolymer and the crosslinking agent. The molar ratio of methacrylic groups was 1:1.
Further, 1 part by mass of Irgacure 1173 was weighed out and mixed with 100 parts by mass of the nonvolatile content of this mixture.
Furthermore, propylene glycol monomethyl ether acetate was added as a solvent so that the solid content concentration was 50% to prepare an ink composition.
The viscosity of this ink composition was measured using a rotational viscometer and was 652 mPa·s (measured at 25° C.).
(実施例7)
 量子ドット・シルセスキオキサン共重合体(4)を不揮発性分比で量子ドットが20wt%含まれるように秤量し、架橋剤として架橋剤(3)を共重合体中のアミノ基と架橋剤のエポキシ基の比率がモル比として1:1となるよう添加した。
 さらに、この混合物の不揮発性分100質量部に対してIrgacure1173を1質量部秤量して混合した。
 さらに、固形分濃度が50%となる様に溶媒としてプロピレングリコールモノメチルエーテルアセテートを加えてインク組成物とした。 
 このインク組成物の粘度を回転式粘度計により測定すると795mPa・s(25℃で測定)であった。
(Example 7)
Weigh the quantum dot/silsesquioxane copolymer (4) so that it contains 20 wt% of quantum dots as a nonvolatile fraction, and mix the crosslinking agent (3) with the amino groups in the copolymer and the crosslinking agent. were added so that the molar ratio of epoxy groups was 1:1.
Further, 1 part by mass of Irgacure 1173 was weighed out and mixed with 100 parts by mass of the nonvolatile content of this mixture.
Furthermore, propylene glycol monomethyl ether acetate was added as a solvent so that the solid content concentration was 50% to prepare an ink composition.
The viscosity of this ink composition was measured using a rotational viscometer and was 795 mPa·s (measured at 25° C.).
(比較例1)
 表面処理のみを行った量子ドットを不揮発性分比で量子ドットが20wt%含まれるように秤量し、架橋剤として架橋剤(1)を表面処理QD溶液中のメルカプト基と架橋剤のビニル基の比率がモル比として1:1となるよう添加した。
 さらに、この混合物の不揮発性分100質量部に対してIrgacure1173を1質量部秤量して混合した。
 さらに、固形分濃度が50%となる様に溶媒としてプロピレングリコールモノメチルエーテルアセテートを加えてインク組成物とした。 
 このインク組成物の粘度を回転式粘度計により測定すると1393mPa・s(25℃で測定)であった。
(Comparative example 1)
Quantum dots subjected to surface treatment alone were weighed so that they contained 20 wt% of quantum dots in terms of nonvolatile fraction, and crosslinking agent (1) was added as a crosslinking agent to the mercapto group in the surface treatment QD solution and the vinyl group of the crosslinking agent. They were added so that the molar ratio was 1:1.
Further, 1 part by mass of Irgacure 1173 was weighed out and mixed with 100 parts by mass of the nonvolatile content of this mixture.
Furthermore, propylene glycol monomethyl ether acetate was added as a solvent so that the solid content concentration was 50% to prepare an ink composition.
The viscosity of this ink composition was measured using a rotational viscometer and was 1393 mPa·s (measured at 25° C.).
(比較例2)
 比較例1の溶媒をトルエンに変更してインク組成物とした。 
 このインク組成物の粘度を回転式粘度計により測定すると1411mPa・s(25℃で測定)であった。
(Comparative example 2)
An ink composition was prepared by changing the solvent in Comparative Example 1 to toluene.
The viscosity of this ink composition was measured using a rotational viscometer and was 1411 mPa·s (measured at 25° C.).
 実施例1~7および比較例1~2により得られたインク組成物それぞれを、インクジェット装置(株式会社マイクロジェット製 LaboJet-600Bio)によりガラス基板上に150μmピッチで吐出した。
 吐出後の基板を大気雰囲気下で波長365nm、出力500mW/cmの光を照射し硬化させた。
 基板上に残ったパターンをレーザー顕微鏡(オリンパス株式会社 OLS-4100)により測定すると平均厚み5μm、パターンサイズ50μmのドット状パターンが形成されていることを確認した。
Each of the ink compositions obtained in Examples 1 to 7 and Comparative Examples 1 to 2 was discharged onto a glass substrate at a pitch of 150 μm using an inkjet device (LaboJet-600Bio manufactured by Microjet Co., Ltd.).
After the discharge, the substrate was cured by irradiating light with a wavelength of 365 nm and an output of 500 mW/cm 2 in an air atmosphere.
When the pattern remaining on the substrate was measured using a laser microscope (Olympus Corporation OLS-4100), it was confirmed that a dot-like pattern with an average thickness of 5 μm and a pattern size of 50 μm was formed.
(吐出安定性)
 1列に10か所のパターンを5列連続して吐出させ、この連続運転時のノズルや供給ラインの詰まりやインクの吐出不良が起こり、吐出が不安定になったものを×として評価した。
(分散性評価)
 パターン中の凝集物の確認を電子顕微鏡により確認を行った。
1μm以上の大きさの凝集物があるものを×、凝集物がないもしくは1μm未満の大きさであるものを○として評価した。
(Discharge stability)
A pattern of 10 locations per row was continuously ejected in 5 rows, and when the nozzle or supply line became clogged or the ink ejected poorly during the continuous operation, and the ejection became unstable, it was evaluated as "×".
(Dispersibility evaluation)
Aggregates in the pattern were confirmed using an electron microscope.
Those with aggregates with a size of 1 μm or more were evaluated as ×, and those with no aggregates or with a size of less than 1 μm were evaluated as ○.
(パターン性評価)
 形成したアイランドパターンを観察し、パターンのサイズおよび形状の不揃い、あるいはパターンの欠けやパターンサイズのずれなどの不良が発生したものを×として評価した。
(Pattern evaluation)
The formed island patterns were observed, and those in which defects such as irregularity in pattern size and shape, chipping of the pattern, or deviation in pattern size occurred were evaluated as "×".
(形成したパターンの発光特性評価)
 株式会社堀場テクノサービス製のLabRAM 時間 Evоlutiоnを用いて、上記実施例、比較例で作製したパターン付きサンプルに457nmのレーザー光(0.03mW)を照射し、光変換されたアイランドパターン領域を測定し、光変換された光の発光強度、発光波長、半値幅を測定した。
(Evaluation of luminescence characteristics of formed pattern)
Using LabRAM Time Evolution manufactured by Horiba Techno Service Co., Ltd., the patterned samples prepared in the above Examples and Comparative Examples were irradiated with 457 nm laser light (0.03 mW), and the photoconverted island pattern area was measured. , the emission intensity, emission wavelength, and half-width of the photoconverted light were measured.
(信頼性評価)
 得られたパターンを85℃、85%RH(相対湿度)条件で250時間処理を行い、処理後の蛍光発光効率を測定し、初期からの減少率を確認しその信頼性を評価した。
(Reliability evaluation)
The resulting pattern was treated at 85° C. and 85% RH (relative humidity) for 250 hours, and the fluorescence efficiency after treatment was measured to confirm the rate of decrease from the initial level and evaluate its reliability.
 表1および表2に実施例及び比較例の評価結果を示す。 Tables 1 and 2 show the evaluation results of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、2の結果より、比較例は、粘度や凝集の発生によりノズルが詰まりインク組成物の吐出が不安定となった、またそれに伴いパターン不良の発生も確認された。 From the results in Tables 1 and 2, it was confirmed that in the comparative example, the nozzle was clogged due to the occurrence of viscosity and agglomeration, making the ejection of the ink composition unstable, and pattern defects were also observed.
 一方で、実施例は、吐出が安定しパターン不良がなく、良好なパターニング性を示した。
 また、信頼性試験結果を比較すると、実施例はいずれも比較例よりも安定性が改善しており、経時変化が抑制されていることがわかる。
On the other hand, in Examples, the ejection was stable, there were no pattern defects, and good patterning properties were exhibited.
Further, when comparing the reliability test results, it can be seen that the stability of the Examples is improved compared to the Comparative Example, and the change over time is suppressed.
 以上のように、本発明におけるインク組成物を用いることで、波長変換材料は、発光特性の安定でありかつ信頼性が高いものが得られることが確認された。 As described above, it was confirmed that by using the ink composition of the present invention, a wavelength conversion material with stable luminescent properties and high reliability could be obtained.
 本明細書は、以下の態様を包含する。
 [1]:量子ドットを含むインク組成物であって、前記量子ドットをシルセスキオキサンと共重合させたシルセスキオキサン重合体、又は、前記量子ドットおよびアルコキシシランを共重合させたシルセスキオキサン重合体を含むものであることを特徴とするインク組成物。
 [2]:前記量子ドットの表面が、シランカップリング剤により表面修飾されているものであることを特徴とする上記[1]のインク組成物。
 [3]:前記アルコキシシランが、それぞれ官能基の異なる2種類以上のアルコキシシランからなることを特徴とする上記[1]又は上記[2]のインク組成物。
[4]:前記アルコキシシランが、トリアルコキシシラン、モノアルコキシシラン、ジアルコキシシランのいずれか少なくとも2種類以上のアルコキシシランからなり、インク組成物の粘度が1500mPa・s以下であることを特徴とする上記[1]、上記[2]又は上記[3]のインク組成物。
 [5]:前記シランカップリング剤が、アミノ基、チオール基、カルボキシル基、ホスフィノ基、ホスフィンオキシド基、アンモニウムイオンのいずれか1種以上を有することを特徴とする上記[2]のインク組成物。
[6]:前記シルセスキオキサンが官能基として、ビニル基、アクリル基、メタクリル基、水酸基、フェノール性水酸基、エポキシ基、グリシジル基、チオール基のいずれか1種以上の反応性置換基を有することを特徴とする上記[1]~上記[5]のいずれかのインク組成物。
 [7]:前記アルコキシシランの官能基として、ビニル基、アクリル基、メタクリル基、水酸基、フェノール性水酸基、エポキシ基、グリシジル基、チオール基のいずれか1種以上の反応性置換基を有することを特徴とする上記[1]~上記[6]のいずれかのインク組成物。
 [8]:上記[1]~上記[7]のいずれかのインク組成物をインクジェット法により基板上に吐出してカラーフィルタを形成することを特徴とするカラーフィルタの製造方法。
 [9]:量子ドットを準備する工程と、アルコキシシランを準備する工程と、前記アルコキシシランを前記量子ドットの表面に接続されたシルセスキオキサンとし、前記量子ドットと前記シルセスキオキサンとからなる共重合体を形成する工程と、を有することを特徴とするインク組成物の製造方法。
 [10]:前記量子ドットを準備する工程が、コアを形成する工程と、前記コアを覆うシェルを形成する工程と、を有することを特徴とする上記[9]のインク組成物の製造方法。
 [11]:前記共重合体を形成する工程が、前記量子ドットの表面をシランカップリング剤により表面修飾する工程と、前記シランカップリング剤を介して前記シルセスキオキサンを前記量子ドットの表面に接続する工程と、を有することを特徴とする上記[9]又は上記[10]のインク組成物の製造方法。
The specification includes the following aspects.
[1]: An ink composition containing quantum dots, comprising a silsesquioxane polymer in which the quantum dots are copolymerized with silsesquioxane, or a silsesquioxane polymer in which the quantum dots and an alkoxysilane are copolymerized. An ink composition comprising an oxane polymer.
[2]: The ink composition of [1] above, wherein the surface of the quantum dots is surface-modified with a silane coupling agent.
[3]: The ink composition of [1] or [2] above, wherein the alkoxysilane is composed of two or more types of alkoxysilanes each having a different functional group.
[4]: The alkoxysilane is composed of at least two types of alkoxysilanes selected from trialkoxysilane, monoalkoxysilane, and dialkoxysilane, and the viscosity of the ink composition is 1500 mPa·s or less. The ink composition of the above [1], the above [2] or the above [3].
[5]: The ink composition of [2] above, wherein the silane coupling agent has one or more of an amino group, a thiol group, a carboxyl group, a phosphino group, a phosphine oxide group, and an ammonium ion. .
[6]: The silsesquioxane has as a functional group one or more reactive substituents of a vinyl group, an acrylic group, a methacrylic group, a hydroxyl group, a phenolic hydroxyl group, an epoxy group, a glycidyl group, and a thiol group. The ink composition according to any one of [1] to [5] above, characterized in that:
[7]: The alkoxysilane has one or more reactive substituents as a functional group of a vinyl group, an acrylic group, a methacrylic group, a hydroxyl group, a phenolic hydroxyl group, an epoxy group, a glycidyl group, and a thiol group. The ink composition according to any one of the above [1] to [6].
[8]: A method for producing a color filter, which comprises forming a color filter by discharging the ink composition according to any one of [1] to [7] above onto a substrate by an inkjet method.
[9]: a step of preparing quantum dots, a step of preparing an alkoxysilane, the alkoxysilane is silsesquioxane connected to the surface of the quantum dot, and the quantum dot and the silsesquioxane are 1. A method for producing an ink composition, comprising: forming a copolymer.
[10]: The method for producing an ink composition according to [9] above, wherein the step of preparing the quantum dots includes a step of forming a core, and a step of forming a shell covering the core.
[11]: The step of forming the copolymer includes a step of surface-modifying the surface of the quantum dot with a silane coupling agent, and a step of modifying the surface of the quantum dot with the silsesquioxane via the silane coupling agent. The method for producing an ink composition according to [9] or [10] above, characterized by comprising the step of connecting to.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiments. The above-mentioned embodiments are illustrative, and any embodiment that has substantially the same configuration as the technical idea stated in the claims of the present invention and has similar effects is the present invention. covered within the technical scope of.

Claims (11)

  1.  量子ドットを含むインク組成物であって、前記量子ドットをシルセスキオキサンと共重合させたシルセスキオキサン重合体、又は、前記量子ドットおよびアルコキシシランを共重合させたシルセスキオキサン重合体を含むものであることを特徴とするインク組成物。 An ink composition containing quantum dots, wherein the quantum dots are copolymerized with a silsesquioxane polymer, or the quantum dots and an alkoxysilane are copolymerized. An ink composition comprising:
  2.  前記量子ドットの表面が、シランカップリング剤により表面修飾されているものであることを特徴とする請求項1に記載のインク組成物。 The ink composition according to claim 1, wherein the surface of the quantum dot is surface-modified with a silane coupling agent.
  3.  前記アルコキシシランが、それぞれ官能基の異なる2種類以上のアルコキシシランからなることを特徴とする請求項1に記載のインク組成物。 The ink composition according to claim 1, wherein the alkoxysilane is composed of two or more types of alkoxysilanes each having a different functional group.
  4.  前記アルコキシシランが、トリアルコキシシラン、モノアルコキシシラン、ジアルコキシシランのいずれか少なくとも2種類以上のアルコキシシランからなり、インク組成物の粘度が1500mPa・s以下であることを特徴とする請求項1に記載のインク組成物。 2. The ink composition according to claim 1, wherein the alkoxysilane is composed of at least two types of alkoxysilanes selected from trialkoxysilane, monoalkoxysilane, and dialkoxysilane, and the viscosity of the ink composition is 1500 mPa·s or less. The ink composition described.
  5.  前記シランカップリング剤が、アミノ基、チオール基、カルボキシル基、ホスフィノ基、ホスフィンオキシド基、アンモニウムイオンのいずれか1種以上を有することを特徴とする請求項2に記載のインク組成物。 The ink composition according to claim 2, wherein the silane coupling agent has one or more of an amino group, a thiol group, a carboxyl group, a phosphino group, a phosphine oxide group, and an ammonium ion.
  6.  前記シルセスキオキサンが官能基として、ビニル基、アクリル基、メタクリル基、水酸基、フェノール性水酸基、エポキシ基、グリシジル基、チオール基のいずれか1種以上の反応性置換基を有することを特徴とする請求項1に記載のインク組成物。 The silsesquioxane has, as a functional group, one or more reactive substituents selected from a vinyl group, an acrylic group, a methacrylic group, a hydroxyl group, a phenolic hydroxyl group, an epoxy group, a glycidyl group, and a thiol group. The ink composition according to claim 1.
  7.  前記アルコキシシランの官能基として、ビニル基、アクリル基、メタクリル基、水酸基、フェノール性水酸基、エポキシ基、グリシジル基、チオール基のいずれか1種以上の反応性置換基を有することを特徴とする請求項1に記載のインク組成物。 A claim characterized in that the functional group of the alkoxysilane has one or more reactive substituents of a vinyl group, an acrylic group, a methacrylic group, a hydroxyl group, a phenolic hydroxyl group, an epoxy group, a glycidyl group, and a thiol group. Item 1. The ink composition according to item 1.
  8.  請求項1~7のいずれか1項に記載のインク組成物をインクジェット法により基板上に吐出してカラーフィルタを形成することを特徴とするカラーフィルタの製造方法。 A method for producing a color filter, comprising discharging the ink composition according to any one of claims 1 to 7 onto a substrate by an inkjet method to form a color filter.
  9.  量子ドットを準備する工程と、
     アルコキシシランを準備する工程と、
     前記アルコキシシランを前記量子ドットの表面に接続されたシルセスキオキサンとし、前記量子ドットと前記シルセスキオキサンとからなる共重合体を形成する工程と、を有することを特徴とするインク組成物の製造方法。
    a step of preparing quantum dots,
    preparing an alkoxysilane;
    An ink composition characterized by comprising the step of using the alkoxysilane as silsesquioxane connected to the surface of the quantum dot, and forming a copolymer consisting of the quantum dot and the silsesquioxane. manufacturing method.
  10.  前記量子ドットを準備する工程が、
     コアを形成する工程と、
     前記コアを覆うシェルを形成する工程と、を有することを特徴とする請求項9に記載のインク組成物の製造方法。
    The step of preparing the quantum dots includes:
    a step of forming a core;
    10. The method for producing an ink composition according to claim 9, further comprising the step of forming a shell that covers the core.
  11.  前記共重合体を形成する工程が、
     前記量子ドットの表面をシランカップリング剤により表面修飾する工程と、
     前記シランカップリング剤を介して前記シルセスキオキサンを前記量子ドットの表面に接続する工程と、を有することを特徴とする請求項9に記載のインク組成物の製造方法。
    The step of forming the copolymer comprises:
    surface-modifying the surface of the quantum dot with a silane coupling agent;
    10. The method for producing an ink composition according to claim 9, further comprising the step of connecting the silsesquioxane to the surface of the quantum dot via the silane coupling agent.
PCT/JP2023/028951 2022-08-23 2023-08-08 Ink composition, production method for ink composition, and production method for color filter WO2024043081A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-132342 2022-08-23
JP2022132342 2022-08-23

Publications (1)

Publication Number Publication Date
WO2024043081A1 true WO2024043081A1 (en) 2024-02-29

Family

ID=90013122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028951 WO2024043081A1 (en) 2022-08-23 2023-08-08 Ink composition, production method for ink composition, and production method for color filter

Country Status (1)

Country Link
WO (1) WO2024043081A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505773A (en) * 2004-06-08 2008-02-28 ナノシス・インク. Post-deposition encapsulation of nanostructures, compositions, devices and systems comprising said nanostructures
JP2015127733A (en) * 2013-12-27 2015-07-09 Jsr株式会社 Radiation-sensitive resin composition, cured film, light-emitting element, and method for forming light-emitting layer
JP2016521251A (en) * 2013-03-14 2016-07-21 ナノシス・インク. Polyhedral oligomeric silsesquioxane nanocrystal stabilizing ligand
JP2017504710A (en) * 2014-01-06 2017-02-09 ナノコ テクノロジーズ リミテッド Surface modified nanoparticles
WO2021256109A1 (en) * 2020-06-15 2021-12-23 信越化学工業株式会社 Method for producing quantum dots

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505773A (en) * 2004-06-08 2008-02-28 ナノシス・インク. Post-deposition encapsulation of nanostructures, compositions, devices and systems comprising said nanostructures
JP2016521251A (en) * 2013-03-14 2016-07-21 ナノシス・インク. Polyhedral oligomeric silsesquioxane nanocrystal stabilizing ligand
JP2015127733A (en) * 2013-12-27 2015-07-09 Jsr株式会社 Radiation-sensitive resin composition, cured film, light-emitting element, and method for forming light-emitting layer
JP2017504710A (en) * 2014-01-06 2017-02-09 ナノコ テクノロジーズ リミテッド Surface modified nanoparticles
WO2021256109A1 (en) * 2020-06-15 2021-12-23 信越化学工業株式会社 Method for producing quantum dots

Similar Documents

Publication Publication Date Title
TWI817951B (en) Ink composition and manufacturing method thereof, light conversion layer and color filter
CN109652076B (en) Composition, quantum dot polymer composite, layered structure including the same, and electronic device
US11198814B2 (en) Method for producing photoluminescent particles
JP7294864B2 (en) Ink composition, light conversion layer and color filter
JP2019086745A (en) Ink composition, light conversion layer, and color filter
JP2020506428A (en) Quantum dot dispersion, self-luminous photosensitive resin composition, color filter, and image display device
CN114787075A (en) Composition comprising a fatty acid ester and a fatty acid ester
JP7024383B2 (en) Ink composition, light conversion layer and color filter
CN113166645B (en) Ink composition, light conversion layer, and color filter
CN113677765A (en) Composition comprising a metal oxide and a metal oxide
WO2022244668A1 (en) Ink composition, light conversion layer, color filter, and light conversion film
CN113286866A (en) Inkjet ink for color filter, light conversion layer, and color filter
WO2022244669A1 (en) Ink composition, light conversion layer, color filter, and light conversion film
WO2024043081A1 (en) Ink composition, production method for ink composition, and production method for color filter
KR102319874B1 (en) Solvent-free quantumdot composition, manufacturing method thereof and cured film, color filter and display device using the same
WO2021161860A1 (en) Composition containing semiconductor nanoparticles, color filter, and image display device
JP2021165837A (en) Composition containing semiconductor nanoparticle, color filter, and image display device
WO2024075580A1 (en) Quantum dot-containing composition and method for producing same
JP7238445B2 (en) Ink composition, light conversion layer, color filter, and method for forming luminescent pixel portion
JP7020014B2 (en) Ink composition, light conversion layer and color filter
WO2022181430A1 (en) Color filter inkjet ink composition, cured material, phototransformation layer, and color filter
JP2024054513A (en) Quantum dot-containing composition and method for producing same
JP7243073B2 (en) Ink composition and cured product thereof, light conversion layer, and color filter
JP2022000687A (en) Composition containing semiconductor nanoparticles, color filter, and image display device
JP2021152652A (en) Semiconductor nanoparticle-containing composition, color filter, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857194

Country of ref document: EP

Kind code of ref document: A1