WO2024043047A1 - Conductive particles, production method therefor, and conductive member - Google Patents

Conductive particles, production method therefor, and conductive member Download PDF

Info

Publication number
WO2024043047A1
WO2024043047A1 PCT/JP2023/028688 JP2023028688W WO2024043047A1 WO 2024043047 A1 WO2024043047 A1 WO 2024043047A1 JP 2023028688 W JP2023028688 W JP 2023028688W WO 2024043047 A1 WO2024043047 A1 WO 2024043047A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive particles
group
particles
protrusions
Prior art date
Application number
PCT/JP2023/028688
Other languages
French (fr)
Japanese (ja)
Inventor
圭代 大畑
昭紘 久持
裕之 稲葉
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Publication of WO2024043047A1 publication Critical patent/WO2024043047A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber

Definitions

  • the present invention relates to conductive particles, a method for producing the same, and a conductive material containing the conductive particles.
  • Conductive particles used as conductive materials for anisotropic conductive materials such as anisotropic conductive films and anisotropic conductive pastes are generally conductive particles in which a conductive layer made of metal is formed on the surface of a core particle. It is being BACKGROUND OF THE INVENTION In connection with the miniaturization and refinement of electronic devices in recent years, electrical connections between electrodes and wiring are made using conductive layers of conductive particles to connect electrode terminals at minute pitches.
  • Patent Document 1 describes that when the conductive particles are used for electrical connection between electrodes by forming a plurality of polygonal columnar protrusions on the conductive layer of the conductive particles, the conductive particles are It is stated that it can be efficiently placed on the electrode and that damage to the electrode caused by conductive particles can be suppressed.
  • Patent Document 2 by forming a plurality of protrusions in the shape of a polyhedron rather than a polygonal column in a conductive layer of conductive particles, even if the electrodes are connected at low voltage, the connection resistance can be efficiently lowered after connection.
  • Patent Document 3 discloses that when a conductive layer of conductive particles has a plurality of protrusions, and at least some of the plurality of protrusions are plate-shaped, the electrodes are connected. Conductive particles are described that do not flow excessively and can improve continuity reliability and insulation reliability.
  • Patent Documents 1 to 3 all attempt to solve the problem by designing the shape of the protrusion formed on the conductive layer in accordance with the desired effect. In this way, studies are being conducted to create conductive particles that have desired characteristics by varying the shape of the protrusions.
  • the contact efficiency between the conductive particles can be increased, and the amount of conductive particles can be reduced. Further, when an oxide film exists on the electrode surface, the oxide film is broken by the protrusions, thereby enabling conduction and suppressing electrical resistance. It is said that by providing protrusions on the conductive layer in this manner, it is possible to lower the connection resistance and increase the reliability of conduction when connecting the electrodes.
  • the present inventors conducted intensive studies on the protrusions of conductive particles, and found that the connection resistance of conductive particles in which the variation in the height of the protrusions was controlled within a certain range was small, and short circuits were suppressed.
  • the present invention was completed based on this discovery.
  • the present invention provides conductive particles having a core particle and a conductive layer having a plurality of protrusions on the surface of the core particle, and in which the variation in height of the protrusions is 0.01 or more and 0.25 or less. It provides:
  • the present invention a step of forming a conductive layer on the surface of the core material particles; forming protrusions protruding from the surface of the conductive layer, and
  • the present invention provides a method for producing conductive particles, which includes a step of leveling the height of the protrusions.
  • conductive particles are provided that have a small connection resistance value and excellent insulation properties, and therefore have excellent connection reliability with suppressed short circuits. Further, according to the present invention, there is provided a method for producing conductive particles that have a small connection resistance value and excellent insulation properties, and therefore have excellent connection reliability in which short circuits are suppressed.
  • FIG. 2 is a conceptual diagram of conductive particles having protrusions.
  • 1 is a SEM photograph of conductive particles obtained in Example 1.
  • 3 is a SEM photograph of conductive particles obtained in Example 3.
  • 3 is a SEM photograph of conductive particles obtained in Example 4.
  • 3 is a SEM photograph of conductive particles obtained in Comparative Example 2.
  • the conductive particle of the present invention (hereinafter also referred to as "the present conductive particle”) has a core particle and a conductive layer having a plurality of protrusions on the surface of the core particle, and the conductive layer has a plurality of protrusions.
  • the height variation is 0.01 or more and 0.25 or less. If the height variation of the protrusions of the conductive particles is large, it is thought that the contact between the conductive particles and the electrode becomes uneven, and the connection resistance increases. Furthermore, if the height of the protrusion varies greatly, a short circuit may occur due to unexpected conduction. In the present conductive particles, the variation in the height of the protrusions is controlled within a certain range, and as a result, it is thought that the connection resistance is small, short circuits are suppressed, and the connection reliability is improved.
  • the core material particles (hereinafter also referred to as “core material particles”) included in the present conductive particles may be particulate, and the material may be inorganic or organic.
  • Inorganic substances include metal particles such as gold, silver, copper, nickel, palladium, and solder, alloys of these metals, glass, ceramics, silica, metal or nonmetal oxides or their hydrates, and metal silicates such as aluminosilicates. Examples include salts, metal carbides, metal nitrides, metal carbonates, metal sulfates, metal phosphates, metal sulfides, metal acid salts, metal halides, and carbon.
  • organic substances include natural fibers, natural resins, thermoplastic resins such as polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylic esters, polyacrylonitrile, polyacetals, ionomers, polyesters, and alkyd resins. , phenol resin, urea resin, benzoguanamine resin, melamine resin, xylene resin, silicone resin, epoxy resin, diallyl phthalate resin, and other thermosetting resins. These may be used alone or in combination of two or more.
  • the material of the present core material particles may be either one of the above-mentioned inorganic substances and organic substances, or may be both inorganic substances and organic substances.
  • the core material particle is composed of a material consisting of both an inorganic substance and an organic substance
  • the presence of the inorganic substance and the organic substance in the core material particle includes, for example, a core made of an inorganic substance and an organic substance covering the surface of the core.
  • examples include a core-shell type structure, such as an embodiment including a shell, or an embodiment including a core made of an organic substance and a shell made of an inorganic substance covering the surface of the core.
  • examples include a structure in which inorganic substances and organic substances are mixed in one core particle, or a blend type structure in which they are randomly fused.
  • the present core material particles are preferably made of a material containing an organic substance, and more preferably made of a material containing both an inorganic substance and an organic substance.
  • the inorganic substance is glass, ceramic, silica, metal or nonmetal oxide or its hydrate, metal silicate such as aluminosilicate, metal carbide, metal.
  • metal silicate such as aluminosilicate, metal carbide, metal.
  • the organic substance is preferably a natural fiber, a natural resin, a thermoplastic resin such as polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylic acid ester, polyacrylonitrile, polyacetal, ionomer, or polyester.
  • a core material made of such a material it is possible to improve the dispersion stability between particles, and also to develop appropriate elasticity and improve conduction when electrically connecting electronic circuits. .
  • the organic substance does not have a glass transition temperature or the organic substance has a glass transition temperature of over 100°C, so that the shape of the core particle is easily maintained. This is preferable because it is easy to maintain the shape of the core material particles in the process of forming the metal film.
  • the glass transition temperature can be determined, for example, as the intersection of the original baseline and the tangent of the inflection point in the baseline-shifted portion of the DSC curve obtained by differential scanning calorimetry (hereinafter also referred to as "DSC").
  • organic substance When the organic substance is a highly crosslinked resin, almost no baseline shift may be observed even if the glass transition temperature is measured up to 200° C. using the above method.
  • such an organic substance is also referred to as an organic substance that does not have a glass transition temperature.
  • an organic substance that does not have such a glass transition temperature may be used as the material of the core material particles.
  • the organic substance that does not have a glass transition temperature can be copolymerized with a crosslinkable monomer and a monomer constituting the thermoplastic resin or thermosetting resin exemplified above.
  • crosslinkable monomers examples include tetramethylene di(meth)acrylate, ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, ethylene oxide di(meth)acrylate, and tetraethylene oxide.
  • Examples include silane-containing monomers, triallyl isocyanurate, diallyl phthalate, diallylacrylamide, diallyl ether, and other monomers. Particularly in the field of COG (Chip on Glass), such highly crosslinked resins are preferably used as materials for core particles because they are hard.
  • COG Chip on Glass
  • the shape of the core material particles may be amorphous, spherical, fibrous, hollow, plate-like, or acicular, but is usually spherical.
  • the present core material particle may have a large number of protrusions on its surface.
  • the shape of the core material particles is preferably spherical from the viewpoint of excellent filling properties and ease of coating metal.
  • the present conductive particles have a conductive layer on the surface of the present core particle, and the conductive layer has a plurality of protrusions.
  • the conductive layer of the present conductive particles is made of a conductive metal. Examples of metals constituting the conductive layer include gold, platinum, silver, copper, iron, zinc, nickel, tin, lead, antimony, bismuth, cobalt, indium, titanium, germanium, aluminum, chromium, palladium, tungsten, and molybdenum.
  • examples include metal compounds such as ITO and solder.
  • gold, silver, copper, nickel, palladium, rhodium, and solder are preferred because they have low electrical resistance, and nickel, gold, palladium, nickel alloys, gold alloys, and palladium alloys are particularly preferred.
  • One type of metal may be used, or a combination of two or more types may be used.
  • the conductive layer of the present conductive particles may have a single layer structure or a laminated structure consisting of multiple layers.
  • the outermost layer preferably contains at least one member selected from the group consisting of nickel, gold, silver, copper, and palladium. Palladium and alloys thereof are preferred.
  • nickel, gold, silver, copper, or alloys of palladium and phosphorus such as nickel alloys, gold alloys, silver alloys, copper alloys, and palladium alloys are preferred, and nickel-phosphorus alloys and palladium-phosphorus alloys are more preferred.
  • the outermost layer of the conductive layer is more preferably an electroless nickel-phosphorus plating layer formed by an electroless method in the manufacturing method described below.
  • the conductive layer of the present conductive particles may cover the entire surface of the present core particle, or may cover only a portion thereof.
  • the coated portion may be continuous, or may be discontinuously coated, for example, in the form of islands.
  • the thickness of the conductive layer of the present conductive particles is preferably 0.1 nm or more and 2,000 nm or less, and more preferably 1 nm or more and 1,500 nm or less, from the viewpoint of the electrical properties of the obtained conductive particles. Note that the height of the protrusions of the conductive layer is not included in the thickness of the conductive layer herein.
  • the thickness of the conductive layer can be measured by cutting the particle to be measured into two and observing the cross section of the cut using a scanning electron microscope (SEM), and the thickness of the conductive layer is within the above range. It is preferable that it be within.
  • the protrusions (hereinafter also referred to as "main protrusions") possessed by the conductive layer of the present conductive particles have a variation in height of 0.01 or more and 0.25 or less.
  • the height variation is a value obtained by dividing the standard deviation of the heights of the protrusions by the average value of the heights of the protrusions, and is expressed by the following formula (1).
  • the standard deviation of the height can be determined by the following formula (2), and the average height value is the arithmetic mean value of the heights of the projections determined by the following formula (3).
  • the variation in height of the main protrusion is more preferably 0.05 or more and 0.20 or less.
  • the height of the protrusion is determined from the highest point of the top of the protrusion to the point that hits the base of the protrusion toward the center of the conductive particle if the conductive particle is spherical.
  • the shortest distance between By measuring all the heights of the protrusions of each conductive particle for 20 different conductive particles observed by SEM observation and substituting it into each of the above formulas, the variation in the height of the protrusions can be determined. .
  • the highest apex is the height of the protrusion.
  • the average height of the projections of the conductive particles is preferably 20 nm or more and 1,000 nm or less, more preferably 50 nm or more and 800 nm or less.
  • the number of projections per conductive particle is preferably 1 or more and 20,000 or less, more preferably 5 or more and 5,000 or less, although it depends on the particle size of the conductive particle.
  • the length of the base of the protrusion is preferably 5 nm or more and 1,000 nm or less, more preferably 10 nm or more and 800 nm or less.
  • the average height of the protrusions is determined by calculating the heights of the protrusions in the same manner as described above, and using equation (3) above.
  • the average length of the base of the protrusion refers to the length along the surface 6 of the lower conductive layer at the portion where the protrusion is formed in FIGS. 1A and 1B.
  • the length of the base of the protrusion is the arithmetic mean value of the lengths of all the bases of the protrusion of each conductive particle for 20 different conductive particles observed by SEM observation.
  • the shape of the top portion of the protrusion is preferably substantially planar from the viewpoint of more uniform contact between the conductive particles and the electrode.
  • substantially planar includes a complete plane and a surface having a curved surface having a radius of curvature, which will be described later.
  • the length of the crown portion is preferably 10 nm or more and 500 nm or less, more preferably 20 nm or more and 400 nm or less.
  • the length of the substantially planar top portion is the shortest distance connecting both ends of the substantially planar top portion in the cross section of the protrusion, as determined by SEM observation of the cross section of the conductive particle. For example, in FIGS. 1(a) and 1(b), the length of the straight line connecting the ends 5a and 5b of the flat portion 5, in which the top of the head is substantially flat, is the length of the top of the head.
  • the length of the top portion of the substantially planar main projection is determined by calculating the length of the top portion of the cross section of all the projections of each conductive particle for the cross sections of 20 different conductive particles observed by SEM observation. The arithmetic mean value of the measured values.
  • the number of protrusions depends on the particle size of the conductive particles, but from the viewpoint of the conductivity of the conductive particles, the number of protrusions per conductive particle is preferably 2 or more and 20,000 or less on average, More preferably, the number is 5 or more and 5,000 or less. Note that the number of protrusions is an arithmetic mean value of values measured for 20 different conductive particles observed by SEM observation.
  • the radius of curvature of the top of the head is Ra
  • the radius of curvature of the surface 6 of the lower layer of the conductive layer at the portion where the main protrusion is formed is Rb.
  • the ratio of Ra (Ra/Rb) is 0.15 or more and 1.20 or less, particularly 0.20 or more and 1.00 or less.
  • Ra can be the radius of a circumscribed circle that circumscribes the top portion of the cross section of each protrusion in a cross section of a conductive particle observed by SEM observation, for example.
  • Rb can be, for example, the radius of a circumscribed circle circumscribing the surface of the lower layer of the conductive layer, that is, substantially the radius of the core material particle, for a cross section of the conductive particle observed by SEM observation.
  • the total area of the substantially planar portions of the tops of the protrusions per conductive particle is large. That is, the ratio S2/S1 of the total area of the top portion of the projection, S2, to the projected area of one conductive particle, S1, is preferably 0.50 or more, particularly 0.55 or more.
  • S2/S1 is less than 1, preferably 0.95 or less, more preferably 0.90 or less, from the viewpoint of confirming that substantially planar protrusions are formed.
  • the projected area of the conductive particles, S1, and the sum of the areas of the tops of the protrusions, S2, are measured by importing the SEM photographic image into an automatic image analysis device (Luzex (registered trademark) AP, manufactured by Nireco Co., Ltd.) be able to.
  • the shape of at least one of the main protrusions is preferably an irregular shape from the viewpoint of preventing short circuits.
  • the amorphous shape of the protrusion means that when the parietal portion of the protrusion is viewed from the side opposite to the base, the parietal portion is surrounded by a plurality of curved lines having different curvatures.
  • the top of the head of the projection When the top of the head of the projection is viewed from the side opposite to the base, the top of the head preferably has a shape other than circular or polygonal.
  • the number of irregularly shaped protrusions per one present conductive particle is more preferably 10 or more, and even more preferably 20 or more. Alternatively, the number of irregularly shaped protrusions is more preferably 90% or more, and even more preferably 95% or more, assuming that the total number of protrusions included in one conductive particle is 100%.
  • the protrusion is in a continuous body with the conductive layer formed on the surface of the core material particle. That is, it is preferable that the main protrusion is made of metal or an alloy like the conductive layer.
  • a continuum here means that the conductive layer and the main protrusion are made of the same material, and there are no parts such as seams that impair the sense of unity between the conductive layer and the main protrusion. . Since the conductive layer and the main protrusion form a continuous body, the strength of the main protrusion is ensured, so that even if pressure is applied during use of the present conductive particles, the base of the main protrusion is less likely to be damaged. More preferably, the protrusion is made of the same metal or alloy as the metal or alloy that constitutes the conductive layer formed on the surface of the core particle.
  • the average particle diameter of the conductive particles is preferably 0.1 ⁇ m or more and 50 ⁇ m or less, more preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • the average particle diameter of the conductive particles is an arithmetic mean value obtained by arbitrarily extracting 200 particles through SEM observation and measuring the particle diameter at a magnification of 10,000 times.
  • the diameter of the conductive particles is the diameter of a circle obtained by projecting the conductive particles onto a plane, and does not include the height of the protrusion.
  • the particle diameter is the longest length of the line segments that intersect the image of the conductive particles projected onto a plane.
  • the shape of the present conductive particles is appropriately selected depending on the shape of the present core material particles.
  • the shape of the present conductive particles may be the same as or different from the shape of the present core material particles, but from the viewpoint of manufacturing efficiency, it is preferable that both have the same shape.
  • Examples of the shape of the conductive particles include spherical, fibrous, hollow, plate-like, acicular, and amorphous shapes.
  • the shape of the conductive particles is preferably spherical from the viewpoint of excellent filling properties and connectivity.
  • the present conductive particles can be manufactured, for example, by a manufacturing method including the following steps (hereinafter also referred to as "this manufacturing method").
  • a step of forming a conductive layer on the surface of the core material particle A step of forming a protrusion protruding from the surface on the conductive layer
  • a dry method such as a vapor deposition method, a sputtering method, a mechanochemical method, a hybridization method, etc. is applied to the surface of the core material particles.
  • a conductive layer is formed on the surface of the core particle by either a wet method using an electrolytic plating method, an electroless plating method, or the like. Further, a conductive layer may be formed on the surface of the core material particles by combining these methods.
  • the core material particles to be used may be the core material particles described above, and preferred materials and shapes are as described above.
  • the conductive layer forming step it is preferable to form a conductive layer on the surface of the core particle by an electroless plating method from the viewpoint that it is easy to obtain conductive particles having desired particle characteristics.
  • the conductive layer is preferably an electroless nickel alloy plating layer formed by an electroless method, and more preferably an electroless nickel-phosphorus plating layer.
  • the surface of the core material particles preferably has the ability to trap noble metal ions, or is surface-modified so as to have the ability to trap noble metal ions.
  • the noble metal ion is a palladium or silver ion. Having the ability to capture noble metal ions means being able to capture noble metal ions in the form of a chelate or salt.
  • the surface of the core material particle has the ability to trap noble metal ions.
  • the method described in JP-A-61-64882 for example, can be used.
  • Core material particles having the ability to capture noble metal ions or whose surfaces have been modified so as to have the ability to capture noble metal ions are used as the core material particles, and the noble metal is supported on the surface of the core material particles.
  • the present core material particles are dispersed in a dilute acidic aqueous solution of a noble metal salt such as palladium chloride or silver nitrate. This causes the noble metal ions to be captured on the surface of the core material particles.
  • the concentration of the noble metal salt is typically in the range of 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 2 moles per m 2 of surface area of the core particles.
  • the core material particles in which precious metal ions have been captured are separated from the aqueous solution and washed with water.
  • the core material particles are suspended in water, and a reducing agent is added thereto to perform a reduction treatment of noble metal ions.
  • a reducing agent for example, sodium hypophosphite, sodium borohydroxide, potassium borohydride, dimethylamine borane, hydrazine, formalin, etc. are used, and the reducing agent is selected from these based on the constituent material of the intended conductive layer. It is preferable that
  • tin ions Before capturing noble metal ions on the surface of the core particles, tin ions may be adsorbed on the surface of the particles and sensitization treatment may be performed for the purpose of increasing adhesion with the noble metal.
  • the surface-modified core particles as described above may be placed in an aqueous solution of stannous chloride and stirred for a predetermined period of time.
  • a conductive layer is formed on the surface of the core particles.
  • a step of forming protrusions protruding from the upper surface of the conductive layer is performed.
  • the protrusion forming step is preferably performed subsequent to the conductive layer forming step described below.
  • the conductive layer forming step is preferably an electroless nickel plating method in which an aqueous slurry of the core particles is mixed with an electroless nickel plating bath containing a dispersant, a nickel salt, a reducing agent, a complexing agent, and the like.
  • self-decomposition of the plating solution occurs simultaneously with the formation of the conductive layer on the core particles.
  • This self-decomposition occurs in the vicinity of the core material particles, so when the conductive layer is formed, the self-decomposed products are captured on the surface of the core material particles, producing nuclei of microprotrusions, and at the same time, the conductive layer is formed.
  • a protrusion grows in a protrusion forming step described below.
  • the core material particles are sufficiently dispersed in water preferably in a range of 0.1 to 500 g/L, more preferably 1 to 300 g/L to prepare an aqueous slurry. is preferable.
  • the dispersion operation can be carried out using conventional stirring, high-speed stirring, or a shearing dispersion device such as a colloid mill or homogenizer. Further, ultrasonic waves may be used in combination with the dispersion operation. If necessary, a dispersant such as a surfactant may be added during the dispersion operation.
  • the aqueous slurry of the core material particles subjected to the dispersion operation is added to an electroless nickel plating solution containing a nickel salt, a reducing agent, a complexing agent, various additives, etc., and electroless plating is performed.
  • examples of the above-mentioned dispersants include nonionic surfactants, zwitterionic surfactants, and/or water-soluble polymers.
  • nonionic surfactant polyoxyalkylene ether surfactants such as polyethylene glycol, polyoxyethylene alkyl ether, and polyoxyethylene alkylphenyl ether can be used.
  • zwitterionic surfactant betaine-based surfactants such as alkyldimethylacetic acid betaine, alkyldimethylcarboxymethylacetic acid betaine, and alkyldimethylaminoacetic acid betaine can be used.
  • water-soluble polymer polyvinyl alcohol, polyvinylpyrrolidinone, hydroxyethylcellulose, etc.
  • dispersants can be used alone or in combination of two or more.
  • the amount of the dispersant to be used depends on its type, but is generally 0.5 to 30 g/L based on the volume of the electroless nickel plating solution. In particular, it is preferable that the amount of the dispersant used is in the range of 1 to 10 g/L based on the volume of the electroless nickel plating solution, from the viewpoint of further improving the adhesion of the conductive layer.
  • nickel salt for example, nickel chloride, nickel sulfate, or nickel acetate is used, and the concentration thereof is preferably in the range of 0.1 to 50 g/L.
  • the reducing agent is used to reduce noble metal ions, and is selected based on the constituent material of the intended conductive layer. Examples of reducing agents include phosphorus compounds and boron compounds. When using, for example, sodium hypophosphite as the phosphorus compound, its concentration is preferably in the range of 0.1 to 50 g/L.
  • complexing agents include carboxylic acids or carboxylic acid salts such as citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, gluconic acid or their alkali metal salts or ammonium salts, amino acids such as glycine, ethylene diamine, alkyl amines, etc.
  • Compounds having a complexing effect on nickel ions are used, such as amino acid, other ammonium, EDTA or pyrophosphoric acid (salt). These can be used alone or in combination of two or more. Its concentration preferably ranges from 1 to 100 g/L, more preferably from 5 to 50 g/L.
  • the preferred pH of the electroless nickel plating solution at this stage is in the range of 3 to 14.
  • the electroless nickel plating reaction begins immediately upon addition of the aqueous slurry of core particles and is accompanied by the generation of hydrogen gas.
  • the conductive layer forming step ends when the generation of hydrogen gas is completely no longer observed.
  • the thickness of the conductive layer can be controlled by adjusting the concentration, pH, etc. of the nickel salt, dispersant, complexing agent, etc. if necessary, in the conductive layer forming step, and the preferred thickness range of the conductive layer is It can be done.
  • the protrusions are preferably formed by adding a nickel salt, a reducing agent, and an alkali to the electroless nickel plating solution used in the conductive layer forming step using the electroless nickel plating method.
  • the method of adding nickel salt, reducing agent and alkali is, for example, (i) using a first aqueous solution containing one of a nickel salt, a reducing agent, and an alkali and a second aqueous solution containing the remaining two, or (ii) using a first aqueous solution containing a nickel salt, a second aqueous solution containing a reducing agent, and a third aqueous solution containing an alkali; is preferable.
  • Each aqueous solution (i) or (ii) is added to the electroless nickel plating solution at the same time, and the addition is continued to perform electroless nickel plating successively.
  • each aqueous solution When the addition of each aqueous solution is interrupted, the plating reaction stops, and when each solution is added, the plating reaction starts again.
  • the amount of each aqueous solution added By adjusting the amount of each aqueous solution added, it is possible to control the thickness of the conductive layer formed to a desired thickness, and furthermore, it is possible to control the thickness of the conductive layer to be formed to a desired thickness. part is formed.
  • first aqueous solution containing a nickel salt and a second aqueous solution containing a reducing agent and an alkali it is preferable to use a first aqueous solution containing a nickel salt and a second aqueous solution containing a reducing agent and an alkali, but the combination is not limited to this.
  • the first aqueous solution does not contain a reducing agent or alkali
  • the second aqueous solution does not contain a nickel salt.
  • nickel salt and reducing agent those mentioned above can be used.
  • alkali for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide can be used.
  • the first to third aqueous solutions each contain a nickel salt, a reducing agent, and an alkali, and each aqueous solution does not contain the other two components.
  • the alkali used is the same as in the case (i) above.
  • the concentration of nickel salt in the aqueous solution is preferably from 10 to 1,000 g/L, more preferably from 50 to 500 g/L.
  • the concentration of the reducing agent is preferably 100 to 1,000 g/L, more preferably 100 to 800 g/L.
  • a boron compound as a reducing agent, it is preferably from 5 to 200 g/L, more preferably from 10 to 100 g/L.
  • the amount is preferably from 5 to 200 g/L, more preferably from 10 to 100 g/L.
  • the concentration of alkali is preferably from 5 to 500 g/L, more preferably from 10 to 200 g/L.
  • the protrusion forming step may be performed continuously after the conductive layer forming step, or after the conductive layer forming step is completed, the core particles on which the conductive layer is formed are separated from the electroless nickel plating solution, and then the protrusions are formed.
  • a forming step may also be performed.
  • the core material particles on which the conductive layer is formed from the electroless nickel plating solution the core material particles on which the conductive layer is formed and the plating solution are separated by a method such as filtration after the conductive layer forming step is completed.
  • the core material particles on which the conductive layer has been formed are newly dispersed in water to prepare an aqueous slurry, and a complexing agent is added thereto at a concentration of preferably 1 to 100 g/L, more preferably 5 to 50 g/L.
  • An aqueous slurry is prepared by adding an aqueous solution in which the dispersant is preferably dissolved in a range of 0.5 to 30 g/L, more preferably 1 to 10 g/L.
  • the aqueous solution described in (i) or (ii) above may be added to the prepared aqueous slurry to perform the protrusion forming step. In this way, a conductive layer having protrusions can be formed.
  • the conductive particles having protrusions formed in the protrusion forming step have their protrusions leveled in height in a step of leveling the protrusions (hereinafter also referred to as "leveling step").
  • the present conductive particles can be obtained by adjusting the height variation of the protrusions within the above range through the leveling step.
  • the height of the protrusion formed in the protrusion forming process is reduced by polishing the top portion of the protrusion obtained in the protrusion forming process, thereby reducing the variation in the height of the protrusion. can be within a predetermined range.
  • Examples of methods for polishing the top portions of the protrusions include mixing media used in a ball mill, bead mill, etc. and conductive particles obtained in the protrusion forming process, and mixing an abrasive with conductive particles obtained in the protrusion forming process.
  • the material of the mixed media is preferably a material that has a hardness comparable to or higher than that of the material of the protrusions of the conductive particles.
  • the mixing method include a method using a stirrer with stirring blades, a method of mixing in a container that rotates or revolves or both, a method of mixing in a container that vibrates, and the like.
  • the material of the mixed media include zirconia, zircon, agate, alumina, iron, stainless steel, and glass.
  • examples of the abrasive include diamond, boron nitride, silicon carbide, aluminum oxide, and the like.
  • the method for mixing with the abrasive may be the same as the method for mixing the mixed media and conductive particles.
  • the method for mixing the conductive particles may be the same as the method for mixing the mixed media and the conductive particles.
  • the material of the flat surface is preferably a material having a hardness comparable to or higher than that of the material of the protrusions of the conductive particles.
  • the conductive particles obtained in the protrusion forming step may be rotated and moved on the plane so that the conductive particles obtained in the protrusion forming step fall on the inclined plane.
  • the conductive particles obtained in the protrusion forming step may be moved in the opposite direction on a plane that moves in a fixed direction.
  • the relationship between the polishing conditions and the height of the protrusions is measured in advance, and the polishing conditions are adjusted in advance so that the variation in the height of the protrusions is within the range of the present conductive particles. may be determined.
  • variations in the height of the protrusions may be measured over time, and based on the results, the polishing may be terminated when the variations in the height of the protrusions fall within the range of the present conductive particles.
  • the height of the protrusion can be set within the preferable range.
  • the protrusion in the process of reducing the height of the protrusion in the leveling process, can be made substantially planar by polishing the protrusion so that the protrusion has a flat top.
  • the radius of curvature of the top portion of the protrusion, Ra, and the radius of curvature, Rb, of the outer surface of the conductive layer can be adjusted to the preferable value. It can be a relationship.
  • this manufacturing method is further carried out under a vacuum of 1,000 Pa or less, preferably 0.01 Pa to 900 Pa, particularly preferably 0.1 Pa to 500 Pa, and 200°C to 600°C, preferably 250°C to 500°C. , particularly preferably at a temperature of 300°C to 450°C.
  • a vacuum of 1,000 Pa or less, preferably 0.01 Pa to 900 Pa, particularly preferably 0.1 Pa to 500 Pa, and 200°C to 600°C, preferably 250°C to 500°C. , particularly preferably at a temperature of 300°C to 450°C.
  • the degree of vacuum in the present invention is an absolute pressure, that is, a value when absolute vacuum is set to zero.
  • the heat treatment time in the heat treatment step is preferably 0.1 to 10 hours, more preferably 0.5 to 5 hours.
  • this processing time it is possible to suppress an increase in manufacturing costs, and also to suppress deterioration of the core material particles and conductive layer due to thermal history, thereby reducing the influence on quality.
  • the heat treatment time is the time from when the target treatment temperature is reached until the heat treatment is completed.
  • the heat treatment step may be performed while the conductive particles are left standing, or may be performed while stirring.
  • heat treatment is performed with the conductive particles left still, it is preferable to leave the conductive particles still with a thickness of 0.1 mm to 100 mm. By allowing the conductive layer to stand still at this thickness, the conductive layer can be successfully heated, and manufacturing costs can be suppressed.
  • the heat treatment step is performed while the container containing the conductive particles is reduced to a vacuum, and then left standing or while being stirred.
  • the gas phase of the container containing the conductive particles may be replaced with an inert gas such as nitrogen, and then the pressure may be reduced to vacuum, or the pressure may be reduced to vacuum as is. Further, the heat treatment may be performed multiple times if necessary.
  • the heat treatment step is performed for 5 to 60 minutes, more preferably for 10 to 50 minutes, after reaching a degree of vacuum of 1,000 Pa or less, preferably 0.01 to 900 Pa, particularly preferably 0.1 to 500 Pa, at room temperature. It is preferable to hold the temperature for 1 minute and then raise the temperature to the processing temperature. By this operation, it is possible to prevent the conductive layer from being oxidized by the heating atmosphere, oxygen, moisture, etc. in the conductive particles, and therefore the connection resistance can be made low.
  • the temperature it is preferable to lower the temperature to 50° C. or lower, further to 40° C. or lower, while maintaining the degree of vacuum, and then release the vacuum.
  • the reason for this is that if the vacuum is opened at a temperature immediately after the heat treatment, oxidation of the conductive layer will be promoted if oxygen or moisture is present in the atmosphere, which may increase the connection resistance.
  • the vacuum may be opened in the normal atmosphere from the viewpoint of manufacturing cost, but from the viewpoint of preventing oxidation of the conductive layer, inert gas such as nitrogen, argon, helium, etc., or non-oxidizing gas such as hydrogen-nitrogen mixed gas may be used. It is more preferable to purge the toxic gas.
  • the present conductive particles can be suitably used as a conductive material such as a conductive filler in a conductive adhesive, as described below.
  • the surface of the conductive material containing the present conductive particles and insulating resin (hereinafter also referred to as "the present conductive material") may be further coated with an insulating resin to prevent short circuits between the conductive particles. is preferred.
  • the insulating resin coating is designed to prevent the surface of the conductive particles from being exposed as much as possible when no pressure is applied, and to prevent the coating from being destroyed by the heat and pressure applied when bonding two electrodes using a conductive adhesive.
  • the conductive particles are formed so that at least the protrusions on the surface thereof are exposed.
  • the thickness of the insulating resin can be approximately 0.1 to 0.5 ⁇ m.
  • the insulating resin may cover the entire surface of the conductive particles, or may cover only a part of the surface of the conductive particles.
  • the insulating resin examples include phenol resin, urea resin, melamine resin, allyl resin, furan resin, polyester resin, epoxy resin, silicone resin, polyamide-imide resin, polyimide resin, polyurethane resin, fluororesin, polyethylene, polypropylene, and polybutylene.
  • Polyolefin resins such as polyalkyl (meth)acrylate resins, poly(meth)acrylic acid resins, polystyrene resins, acrylonitrile-styrene-butadiene resins, vinyl resins, polyamide resins, polycarbonate resins, polyacetal resins, ionomer resins, polyethersulfone resins , polyphenyl oxide resin, polysulfone resin, polyvinylidene fluoride resin, ethyl cellulose resin, and cellulose acetate resin.
  • polyalkyl (meth)acrylate resins such as polyalkyl (meth)acrylate resins, poly(meth)acrylic acid resins, polystyrene resins, acrylonitrile-styrene-butadiene resins, vinyl resins, polyamide resins, polycarbonate resins, polyacetal resins, ionomer resins, polyethersulfone resins , polyphenyl oxide
  • Methods for coating the surface of conductive particles with an insulating resin to form an insulating coating layer include chemical methods such as coacervation method, interfacial polymerization method, in situ polymerization method, and liquid curing coating method, and spray drying method. , physico-mechanical methods such as air suspension coating method, vacuum evaporation coating method, dry blend method, hybridization method, electrostatic coalescence method, melt dispersion cooling method and inorganic encapsulation method, physical chemistry such as interfacial precipitation method. There are various methods.
  • the organic polymer constituting the insulating resin may contain a monomer component containing an ionic group in the polymer structure from the viewpoint of improving adhesion with conductive particles, provided that it is non-conductive. .
  • the monomer component containing an ionic group may be either a crosslinkable monomer component or a non-crosslinkable monomer component. It is preferable that the organic polymer is formed using a monomer component in which at least one of the crosslinkable monomer component and the non-crosslinkable monomer component has an ionic group.
  • the term "monomer component" refers to a structure derived from a monomer in an organic polymer, and is a component derived from the monomer.
  • the ionic group exists in the organic polymer constituting the insulating resin. Further, it is preferable that the ionic group is chemically bonded to a monomer component constituting the organic polymer.
  • the presence or absence of ionic groups at the interface of organic polymers can be determined by scanning electron microscopy when an insulating resin containing an organic polymer with ionic groups is formed on the surface of conductive particles. This can be determined by whether or not it is attached to the surface of the particle.
  • Examples of the ionic group include onium-based functional groups such as a phosphonium group, an ammonium group, and a sulfonium group.
  • onium-based functional groups such as a phosphonium group, an ammonium group, and a sulfonium group.
  • ammonium groups or phosphonium groups are preferable from the viewpoint of improving the adhesion between the conductive particles and the insulating resin and forming conductive particles that have both insulation properties and continuity reliability at a high level. More preferably, it is a phosphonium group.
  • onium-based functional group examples include those represented by the following general formula (1).
  • X is a phosphorus atom, a nitrogen atom, or a sulfur atom
  • R may be the same or different, and R is a hydrogen atom, a linear, branched, or cyclic alkyl or aryl group.
  • n is 1 when X is a nitrogen atom or a phosphorus atom, and is 0 when X is a sulfur atom. * is a bond.
  • Examples of counter ions for ionic groups include halide ions.
  • Examples of halide ions include Cl ⁇ , F ⁇ , Br ⁇ , I ⁇ .
  • the linear alkyl group represented by R includes, for example, a linear alkyl group having 1 to 20 carbon atoms, and specifically, a methyl group, an ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, Examples include n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-icosyl group, and the like.
  • the branched alkyl group represented by R includes, for example, a branched alkyl group having 3 to 8 carbon atoms, and specifically, isopropyl group, isobutyl group, Examples include s-butyl group, t-butyl group, isopentyl group, s-pentyl group, t-pentyl group, isohexyl group, s-hexyl group, t-hexyl group, and ethylhexyl group.
  • the cyclic alkyl group represented by R includes cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, and cyclooctadecyl group. Can be mentioned.
  • examples of the aryl group represented by R include a phenyl group, a benzyl group, a tolyl group, an o-xylyl group, and the like.
  • R is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. More preferably, it is a group. Further, in general formula (1), it is also more preferable that R is a linear alkyl group.
  • the organic polymers having ionic groups constituting the insulating resins are expressed by the following general formula (2) or general formula (3). It is preferable to have the structural unit shown below.
  • X, R and n have the same meanings as in general formula (1) above.
  • m is an integer from 0 to 5.
  • An ⁇ represents a monovalent anion. When m is 0, it indicates that X is directly bonded to the benzene ring.
  • X, R and n have the same meanings as in general formula (1) above.
  • An ⁇ represents a monovalent anion.
  • m 1 is an integer of 1 or more and 5 or less.
  • R 5 is a hydrogen atom or a methyl group.
  • R in the general formula (2) and the general formula (3) the above description of the functional group of R in the general formula (1) can be applied as appropriate.
  • the ionic group may be bonded to the CH group of the benzene ring of general formula (2) at any of the para, ortho, and meta positions, and is preferably bonded to the para position.
  • the monovalent An 2 ⁇ is preferably a halide ion. Examples of halide ions include Cl ⁇ , F ⁇ , Br ⁇ , I ⁇ .
  • m is preferably an integer of 0 or more and 2 or less, more preferably 0 or 1, and particularly preferably 1.
  • m 1 is preferably 1 or more and 3 or less, more preferably 1 or 2, and most preferably 2.
  • the organic polymer having an ionic group is preferably constituted by containing a monomer component having, for example, an onium-based functional group and an ethylenically unsaturated bond. From the viewpoint of facilitating monomer acquisition and polymer synthesis and increasing the manufacturing efficiency of the insulating resin, it is also preferable that the organic polymer having an ionic group contains a non-crosslinkable monomer component.
  • non-crosslinking monomers having an onium-based functional group and an ethylenically unsaturated bond include N,N-dimethylaminoethyl methacrylate, N,N-dimethylaminopropylacrylamide, and N,N,N-trimethyl -N-2-Methacryloyloxyethylammonium chloride and other ammonium group-containing monomers; methacrylic acid phenyldimethylsulfonium methyl sulfate and other sulfonium group-containing monomers; 4-(vinylbenzyl)triethylphosphonium chloride, 4-(vinylbenzyl)trimethyl Phosphonium chloride, 4-(vinylbenzyl)tributylphosphonium chloride, 4-(vinylbenzyl)trioctylphosphonium chloride, 4-(vinylbenzyl)triphenylphosphonium chloride, 2-(methacroyloxyethyl)
  • the organic polymer constituting the insulating resin may have an ionic group bonded to all of the monomer components, or may have an ionic group bonded to a part of all the constituent units of the organic polymer. .
  • the proportion of the monomer component to which the ionic group is bonded is preferably 0.01 mol% or more and 99 mol% or less, and 0.01 mol% or more and 99 mol% or less. More preferably, it is .02 mol% or more and 95 mol% or less.
  • the organic polymer when the organic polymer has an ethylenically unsaturated bond, a structure derived from one ethylenically unsaturated bond is counted as a constituent unit of one monomer.
  • the ionic group is contained in both the crosslinkable monomer and the non-crosslinkable monomer, the proportion of the monomer components is the total amount thereof.
  • Examples of the form of the coating with the insulating resin include a form in which a plurality of insulating fine particles made of the insulating resin are arranged in a layered form, or a form in which the insulating resin forms a continuous film.
  • the conductive particles coated with the insulating fine particles are thermocompressed between the electrodes, and the insulating fine particles melt, deform, peel, or move on the surface of the conductive particles, causing heat to be generated.
  • the metal surface of the conductive particles in the crimped portion is exposed, thereby enabling conduction between the electrodes and providing connectivity.
  • conduction in the direction other than the thermocompression bonding direction is prevented because the surface of the conductive particles is generally covered with the insulating fine particles.
  • the insulating fine particles contain the ionic group on their surface, they easily adhere to the conductive particles, and this allows a sufficient proportion of the surface of the conductive particles to be covered with the insulating fine particles. Peeling of the insulating fine particles from the particles is effectively prevented. Therefore, the short-circuit prevention effect of the insulating fine particles in a direction different from that between the opposing electrodes is likely to be exhibited, and an improvement in insulation in this direction can be expected.
  • the shape of the insulating fine particles is not particularly limited, and may be spherical or may have a shape other than spherical. Examples of shapes other than spherical include fibrous, hollow, plate-like, and needle-like. Further, the insulating fine particles may have many protrusions on their surfaces or may have an irregular shape. Spherical insulating fine particles are preferred from the viewpoint of adhesion to conductive particles and ease of synthesis.
  • the average particle diameter of the insulating fine particles is preferably 10 nm or more and 3,000 nm or less, more preferably 15 nm or more and 2,000 nm or less.
  • the average particle diameter of the insulating fine particles is a value measured by observation using a scanning electron microscope, and specifically, it is measured by the method described in the Examples described below.
  • the particle size distribution of the insulating fine particles measured by the above method usually has a range.
  • the width of the particle size distribution of powder is expressed by the coefficient of variation (hereinafter also referred to as "C.V.") shown by the following formula (4).
  • C. V. (%) (standard deviation/average particle diameter) x 100...(4)
  • This C. V. The larger C. is, the wider the particle size distribution is. V. The smaller the particle size distribution, the sharper the particle size distribution.
  • C. of the insulating fine particles used in this conductive material. V. is preferably 0.1% or more and 20% or less, more preferably 0.5% or more and 15% or less, particularly preferably 1% or more and 10% or less.
  • C. V. By having the amount within this range, there is an advantage that the thickness of the coating layer made of the insulating fine particles can be made uniform.
  • the insulating resin may be in a continuous film form.
  • the continuous film is an insulating resin having an ionic group
  • the surface of the conductive particles is exposed when the continuous film is melted, deformed, or peeled off by thermocompression bonding the conductive particles between the electrodes. It enables conduction between electrodes and provides connectivity.
  • the present conductive particles are bonded by thermocompression between electrodes, the continuous film is torn, and a large number of the present conductive particles have their surfaces exposed.
  • the state of coverage of the conductive particles with the continuous film is generally maintained, so conduction in a direction other than the thermocompression bonding direction is prevented.
  • the insulating resin is a continuous film, a continuous film having ionic groups on the surface is preferable.
  • the thickness of the continuous film is preferably 10 nm or more in terms of improving insulation in a direction different from that between opposing electrodes, and 3,000 nm or less is preferable in terms of ease of conduction between opposing electrodes. It is preferable. From this point of view, the thickness of the continuous film is preferably 10 nm or more and 3,000 nm or less, more preferably 15 nm or more and 2,000 nm or less.
  • the ionic group in the continuous film forms part of the chemical structure of the insulating resin as part of the insulating resin that constitutes the continuous film.
  • the ionic group is preferably contained in the structure of at least one constituent unit of the insulating resin constituting the continuous film.
  • the ionic group is preferably chemically bonded to the insulating resin constituting the continuous film, and more preferably to a side chain of the insulating resin.
  • the continuous film obtained by coating the present conductive particles with insulating fine particles having an ionic group on the surface and then heating the insulating fine particles is preferably a continuous film obtained by dissolving the insulating fine particles in an organic solvent.
  • the insulating fine particles having ionic groups tend to adhere closely to the present conductive particles, and as a result, the surface of the present conductive particles is covered with a sufficient proportion of the insulating fine particles, and the present conductive particles This makes it easier to prevent the insulating fine particles from peeling off from the conductive particles. Therefore, the continuous film obtained by heating or melting the insulating fine particles covering the present conductive particles can have a uniform thickness and a high coverage ratio on the surface of the conductive particles.
  • the present conductive particles may be treated with a surface treatment agent from the viewpoint of increasing affinity with the insulating resin and improving adhesion.
  • a surface treatment agent examples include benzotriazole compounds, titanium compounds, higher fatty acids or derivatives thereof, phosphoric esters, and phosphorous esters. These may be used alone or in combination as necessary.
  • the surface treatment agent may or may not be chemically bonded to the surface of the present conductive particles.
  • the surface treatment agent only needs to be present on the surface of the present conductive particles, and in that case, it may be present on the entire surface of the present conductive particles or only on a part of the surface.
  • triazole compounds examples include compounds having a nitrogen-containing heterocyclic structure having three nitrogen atoms in a five-membered ring.
  • triazole-based compounds include compounds having a triazole monocyclic structure that is not fused with other rings, as well as compounds having a ring structure in which a triazole ring and another ring are fused.
  • examples of other rings include a benzene ring and a naphthalene ring.
  • benzotriazole compounds which are compounds having a structure in which a triazole ring and a benzene ring are condensed.
  • benzotriazole compounds include those represented by the following general formula (4).
  • R 11 is a negative charge, a hydrogen atom, an alkali metal, an optionally substituted alkyl group, an amino group, a formyl group, a hydroxyl group, an alkoxy group, a sulfonic acid group, or a silyl group.
  • R 12 , R 13 , R 14 and R 15 are each independently a hydrogen atom, a halogen atom, an optionally substituted alkyl group, a carboxyl group, a hydroxyl group or a nitro group.
  • Examples of the alkali metal represented by R 11 in the general paper formula (4) include lithium, sodium, potassium, and the like.
  • the alkali metal represented by R 11 is an alkali metal cation, and when R 11 in general formula (4) is an alkali metal, the bond between R 11 and the nitrogen atom may be an ionic bond.
  • the alkyl group represented by R 11 , R 12 , R 13 , R 14 and R 15 in general formula (4) includes those having 1 to 20 carbon atoms, and those having 1 to 12 carbon atoms are particularly preferable.
  • the alkyl group may be substituted, and examples of the substituent include an amino group, an alkoxy group, a carboxyl group, a hydroxyl group, an aldehyde group, a nitro group, a sulfonic acid group, a quaternary ammonium group, a sulfonium group, a sulfonyl group, Examples include phosphonium groups, cyano groups, fluoroalkyl groups, mercapto groups, and halogen atoms.
  • the alkoxy group represented by R 11 preferably has 1 to 12 carbon atoms.
  • the carbon number of the alkoxy group as a substituent of the alkyl group represented by R 12 , R 13 , R 14 and R 15 is 1 to 12.
  • the halogen atom represented by R 12 , R 13 , R 14 and R 15 in general formula (4) include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • triazole compounds include 1,2,3-triazole, 1,2,4-triazole, 3-amino-1H-1,2,4-triazole, and 5-triazole compounds having a triazole monocyclic structure.
  • -mercapto-1H-1,2,3-triazole sodium 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, 3-amino-5-mercapto-1,2,4-triazole
  • benzotriazole 1-methyl-1H-benzotriazole, 4-methyl-1H-benzotriazole, 5-methyl-1H-benzotriazole, 4-methyl-1H-benzotriazole, which has a ring structure in which a triazole ring and another ring are fused -Carboxy-1H-benzotriazole, 5-carboxy-1H-benzotriazole, 5-ethyl-1H-benzotriazole, 5-propyl-1H-benzotriazole, 5,6-dimethyl-1H-benzotri
  • a compound having a structure represented by the following general formula (5) can easily obtain affinity between the insulating resin and the conductive particles when it is present on the surface of the conductive particles. It is particularly preferred because it is easily dispersed in a solvent and the surface of the conductive particles can be uniformly treated.
  • R 21 is a divalent or trivalent group
  • R 22 is an aliphatic hydrocarbon group having 2 to 30 carbon atoms, an aryl group having 6 to 22 carbon atoms, or a carbon It is an arylalkyl group having 7 or more atoms and 23 or less atoms
  • R 21 is a divalent
  • q is 1
  • R 21 is a trivalent group
  • q is 2.
  • * represents a bond.
  • Examples of the aliphatic hydrocarbon group having 4 to 28 carbon atoms represented by R22 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group. , decyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, henicosyl group, docosyl group, and the like.
  • Examples of unsaturated aliphatic hydrocarbon groups include alkenyl groups such as dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, nonadecenyl group, icosenyl group, eicosenyl group, henicosenyl group, and docosenyl group. It will be done.
  • Examples of the aryl group having 6 to 22 carbon atoms include phenyl group, tolyl group, naphthyl group, anthryl group, and the like.
  • the arylalkyl group having 7 or more and 23 or less carbon atoms include a benzyl group, a phenethyl group, a naphthylmethyl group, and the like.
  • the hydrophobic group a linear or branched aliphatic hydrocarbon group is particularly preferable, and a linear aliphatic hydrocarbon group is especially preferable.
  • the aliphatic hydrocarbon group as the hydrophobic group is particularly preferably one having 4 or more and 28 or less carbon atoms, and most preferably one having 6 or more and 24 or less carbon atoms. preferable.
  • Examples of the divalent group represented by R 21 include -O-, -COO-, -OCO-, -OSO 2 -, and the like.
  • Examples of the trivalent group represented by R 21 include -P(OH)(O-) 2 and -OPO(OH)-OPO(O-) 2 .
  • * is a bond, and the bond may be bonded to the metal film of the conductive particle or to another group or the like.
  • groups in this case include hydrocarbon groups, and specifically, alkyl groups having 1 to 12 carbon atoms.
  • titanium-based compounds having the structure represented by the general formula (5) compounds having a structure in which R 21 in the general formula (5) is a divalent group are easy to obtain and have good conductive properties of conductive particles. It is preferable because it can be processed without damaging it.
  • a structure in which R 21 is a divalent group in the general formula (5) is represented by the following general formula (6).
  • R 21 is a group selected from -O-, -COO-, -OCO-, -OSO 2 -, and p, r and R 22 have the same meanings as in general formula (II). be.
  • r is preferably 2 or 3 from the viewpoint of improving the adhesion between the insulating resin and the conductive layer, and most preferably r is 3.
  • titanate compounds used in the surface treatment include isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl (dioctyl phosphite) titanate, and tetraisopropyl bis( dioctyl phosphite) titanate, tetraoctyl bis(ditridecyl phosphite) titanate, tetra(2,2-diallyloxymethyl-1-butyl) bis(ditridecyl) phosphite titanate, bis(dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate, etc., and these can be used alone or in combination of two or more.
  • the higher fatty acids are preferably saturated or unsaturated straight-chain or branched mono- or polycarboxylic acids, more preferably saturated or unsaturated straight-chain or branched monocarboxylic acids, and saturated or unsaturated straight-chain or branched monocarboxylic acids. More preferred are chain monocarboxylic acids.
  • the fatty acid preferably has 7 or more carbon atoms. Further, the term "derivative" refers to a salt or amide of the fatty acid.
  • the higher fatty acid or its derivative used for the surface treatment preferably has 7 to 23 carbon atoms, more preferably 10 to 20 carbon atoms.
  • Such higher fatty acids or their derivatives include, for example, saturated fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, and stearic acid; unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, and arachidonic acid; Examples include metal salts or amides of.
  • Metal salts of higher fatty acids include alkali metals, alkaline earth metals, transition metals such as Zr, Cr, Mn, Fe, Co, Ni, Cu, Ag, and other metals other than transition metals such as Al and Zn.
  • Examples include salts, preferably polyvalent metal salts such as Al, Zn, W, and V.
  • Higher fatty acid metal salts may be mono-, di-, tri-, tetra-, etc. depending on the valence of the metal.
  • the higher fatty acid metal salt may be any combination thereof.
  • phosphoric acid ester and the phosphorous acid ester those having an alkyl group having 6 to 22 carbon atoms are preferably used.
  • phosphoric esters include hexyl phosphate, heptyl phosphate, monooctyl phosphate, monononyl ester, monodecyl phosphate, monoundecyl phosphate, monododecyl phosphate, and phosphoric acid.
  • examples include acid monotridecyl ester, phosphoric acid monotradecyl ester, phosphoric acid monopentadecyl ester, and the like.
  • phosphite examples include phosphite hexyl ester, phosphite heptyl ester, phosphite monooctyl ester, phosphite monononyl ester, phosphite monodecyl ester, phosphite monoundecyl ester, Examples include phosphorous acid monododecyl ester, phosphorous acid monotridecyl ester, phosphorous acid monotradecyl ester, phosphorous acid monopentadecyl ester, and the like.
  • the surface treatment agent used in the surface treatment is preferably a triazole compound or a titanium compound, especially benzotriazole or 4-carboxylic compound, from the viewpoint of having excellent affinity with the insulating resin and increasing the coverage of the insulating resin.
  • Particularly preferred are benzotriazole, isopropyl triisostearoyl titanate, and tetraisopropyl (dioctyl phosphite) titanate.
  • the method of treating the present conductive particles with a surface treatment agent is obtained by dispersing the present conductive particles in a solution of the surface treatment agent and then filtering the solution. Before being treated with a surface treatment agent, the conductive particles may be treated with another treatment agent or may be untreated.
  • the concentration of the surface treatment agent in the solution of the surface treatment agent in which the present conductive particles are dispersed is, for example, 0.01% by mass or more and 10.0% by mass or less.
  • the solvent for the solution of the surface treatment agent is water, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, isopentyl alcohol, cyclohexanol, acetone, methyl Ketones such as isobutyl ketone, methyl ethyl ketone, methyl-n-butyl ketone, esters such as methyl acetate, ethyl acetate, ethers such as diethyl ether, ethylene glycol monoethyl ether, normal hexane, cyclohexanone, toluene, 1,4 -dioxane, N,N-dimethylformamide, tetrahydrofuran and the like. It is preferable that the surface-treated conductive particles that have been dispersed and filtered are dispersed again in a solvent to remove excess surface treatment agent.
  • the surface treatment of the present conductive particles with a surface treatment agent can be carried out by mixing the present conductive particles, the surface treatment agent, and a solvent at room temperature.
  • the conductive particles and the surface treatment agent may be mixed in a solvent and then heated to promote the reaction.
  • the heating temperature is, for example, 30°C or higher and 50°C or lower.
  • conductive particles have low connection resistance and excellent connection reliability, so they can be used, for example, in anisotropic conductive films (ACF), heat seal connectors (HSC), and LSI chip circuits for driving electrodes of liquid crystal display panels. It is preferably used as a conductive material for connection to a substrate.
  • the conductive material the present conductive particles may be used as they are, or the present conductive particles may be dispersed in a binder resin to form a conductive material. Further, as the conductive material, the present conductive material may be used as it is, or the present conductive material may be used after being dispersed in a binder resin.
  • Other forms of the conductive material are not particularly limited, and in addition to those described above, examples include forms such as an anisotropic conductive paste, a conductive adhesive, and an anisotropic conductive ink.
  • binder resin examples include thermoplastic resins and thermosetting resins.
  • thermoplastic resins include acrylic resins, styrene resins, ethylene-vinyl acetate resins, styrene-butadiene block copolymers, etc.
  • thermosetting resins include epoxy resins, phenol resins, urea resins, Examples include polyester resin, urethane resin, polyimide resin, and the like.
  • the conductive material may optionally contain a tackifier, a reactive aid, an epoxy resin curing agent, a metal oxide, a photoinitiator, a sensitizer, and a curing agent.
  • a tackifier e.g., a reactive aid
  • an epoxy resin curing agent e.g., a polystyrene resin
  • a metal oxide e.g., a metal oxide
  • a photoinitiator e.g., a photoinitiator
  • a sensitizer e.g., a curing agent that can be blended.
  • the amount of conductive particles to be used may be appropriately determined depending on the application, but from the viewpoint of making it easier to obtain electrical continuity without the conductive particles coming into contact with each other, for example, 100 mass of the conductive material is used. It is preferably 0.01 parts by mass or more and 50 parts by mass or less, particularly 0.03 parts by mass or more and 40 parts by mass or less.
  • the conductive particles of the present invention are particularly suitable for use as a conductive filler in conductive adhesives.
  • the conductive adhesive described above is preferably used as an anisotropic conductive adhesive that is placed between two substrates on which a conductive base material is formed, and that adheres and conducts the conductive base materials by applying heat and pressure.
  • This anisotropically conductive adhesive contains the conductive particles of the present invention and an adhesive resin.
  • the adhesive resin can be used without any particular limitation as long as it is insulating and is used as an adhesive resin. It may be either a thermoplastic resin or a thermosetting resin, and preferably one that exhibits adhesive performance when heated. Such adhesive resins include, for example, thermoplastic types, thermosetting types, ultraviolet curing types, and the like.
  • thermosetting types which exhibit intermediate properties between thermoplastic types and thermosetting types, and composite types of thermosetting types and ultraviolet curing types.
  • adhesive resins can be selected as appropriate depending on the surface characteristics of the circuit board or the like to which they are adhered and the manner in which they are used.
  • an adhesive resin containing a thermosetting resin is preferable because it has excellent material strength after bonding.
  • the adhesive resin examples include ethylene-vinyl acetate copolymer, carboxyl-modified ethylene-vinyl acetate copolymer, ethylene-isobutyl acrylate copolymer, polyamide, polyimide, polyester, polyvinyl ether, polyvinyl butyral, and polyurethane.
  • SBS block copolymer carboxyl-modified SBS copolymer, SIS copolymer, SEBS copolymer, maleic acid-modified SEBS copolymer, polybutadiene rubber, chloroprene rubber, carboxyl-modified chloroprene rubber, styrene-butadiene rubber, isobutylene- One or two types selected from isoprene copolymer, acrylonitrile-butadiene rubber (hereinafter referred to as NBR), carboxyl-modified NBR, amine-modified NBR, epoxy resin, epoxy ester resin, acrylic resin, phenol resin, silicone resin, etc. Examples include those prepared using the above-mentioned combinations as main ingredients.
  • thermoplastic resins because they have excellent reworkability.
  • Epoxy resin is preferred as the thermosetting resin.
  • epoxy resins are most preferred because they have high adhesive strength, excellent heat resistance, and electrical insulation, and have low melt viscosity, allowing connection at low pressure.
  • any commonly used epoxy resin can be used as long as it is a polyvalent epoxy resin having two or more epoxy groups in one molecule.
  • specific examples include novolac resins such as phenol novolac and cresol novolac, polyhydric phenols such as bisphenol A, bisphenol F, bisphenol AD, resorcinol, and bishydroxydiphenyl ether, ethylene glycol, neopentyl glycol, glycerin, and trimethylolpropane.
  • epichlorohydrin or 2-methylepichlorohydrin obtained by reacting epichlorohydrin or 2-methylepichlorohydrin with polyhydric alcohols such as polypropylene glycol, polyamino compounds such as ethylenediamine, triethylenetetramine, and aniline, and polyhydric carboxy compounds such as adipic acid, phthalic acid, and isophthalic acid.
  • polyhydric alcohols such as polypropylene glycol
  • polyamino compounds such as ethylenediamine, triethylenetetramine, and aniline
  • polyhydric carboxy compounds such as adipic acid, phthalic acid, and isophthalic acid.
  • An example is a glycidyl type epoxy resin.
  • Other examples include aliphatic and alicyclic epoxy resins such as dicyclopentadiene epoxide and butadiene dimer diepoxide. These can be used alone or in a mixture of two or more.
  • the amount of conductive particles used in the anisotropic conductive adhesive is usually 0.1 to 30 parts by mass, preferably 0.5 to 25 parts by mass, and more preferably 1 to 20 parts by mass per 100 parts by mass of the adhesive resin component. Department. When the amount of conductive particles used is within this range, increase in connection resistance and melt viscosity can be suppressed, connection reliability can be improved, and connection anisotropy can be sufficiently ensured.
  • the anisotropically conductive adhesive may contain additives known in the art.
  • the blending amount can also be within the range known in the technical field.
  • additives include, for example, tackifiers, reactive aids, epoxy resin hardeners, metal oxides, photoinitiators, sensitizers, hardeners, vulcanizing agents, deterioration inhibitors, heat-resistant additives, and heat-resistant additives. Examples include conduction improvers, softeners, colorants, various coupling agents, and metal deactivators.
  • tackifier examples include rosin, rosin derivatives, terpene resins, terpene phenol resins, petroleum resins, coumaron-indene resins, styrene resins, isoprene resins, alkylphenol resins, xylene resins, and the like.
  • reactive auxiliary agent or crosslinking agent examples include polyols, isocyanates, melamine resins, urea resins, utropins, amines, acid anhydrides, and peroxides.
  • epoxy resin curing agent any one having two or more active hydrogen atoms per minute can be used without particular limitation.
  • polyamino compounds such as diethylenetriamine, triethylenetetramine, metaphenylenediamine, dicyandiamide, and polyamidoamine
  • organic acid anhydrides such as phthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and pyromellitic anhydride
  • novolac resins such as phenol novolac and cresol novolac. These can be used alone or in combination of two or more.
  • a latent curing agent may be used if necessary.
  • latent curing agent examples include imidazole type, hydrazide type, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, etc., and modified products thereof. These can be used alone or as a mixture of two or more.
  • anisotropic conductive adhesive is manufactured using manufacturing equipment commonly used in the technical field. For example, conductive particles and adhesive resin, as well as curing agents and various additives as necessary, are mixed together in an organic solvent if the adhesive resin is a thermosetting resin, or by mixing in an organic solvent if the adhesive resin is a thermoplastic resin. It is produced by melt-kneading at a temperature higher than the softening point of the agent resin, specifically preferably about 50 to 130°C, more preferably about 60 to 110°C.
  • the anisotropically conductive adhesive thus obtained may be applied by coating or in the form of a film.
  • the connected structure according to the present invention is obtained by connecting two circuit boards using the conductive particles according to the present invention or the conductive material according to the present invention.
  • Examples of the form of the connection structure include a connection structure between a flexible printed circuit board and a glass substrate, a connection structure between a semiconductor chip and a flexible printed circuit board, a connection structure between a semiconductor chip and a glass substrate, and the like.
  • Average particle diameter 200 particles are arbitrarily extracted from a scanning electron microscope (SEM) photograph of the measurement target, the particle diameter is measured at a magnification of 10,000 times, and the arithmetic mean value is calculated as the average particle size. The diameter was taken as the diameter.
  • Thickness of conductive layer Conductive particles were cut into two, and the cross section of the cut end was observed and measured using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • Example 1 Pretreatment of core material particles Spherical styrene-acrylate-silica composite resin particles having an average particle diameter of 2.0 ⁇ m were used as core material particles. 9 g of the solution was added to 200 mL of an aqueous conditioner solution ("Cleaner Conditioner 231" manufactured by Rohm & Haas Electronic Materials) with stirring. The concentration of the conditioner aqueous solution was 40 mL/L. Subsequently, the solution was stirred for 30 minutes while applying ultrasonic waves at a liquid temperature of 60° C. to perform surface modification and dispersion treatment of the core material particles.
  • aqueous conditioner solution (“Cleaner Conditioner 231" manufactured by Rohm & Haas Electronic Materials)
  • This aqueous solution was filtered, and the core material particles, which had been repulped and washed once, were made into a 200 mL slurry. 0.1 g of stannous chloride was added to this slurry. The mixture was stirred at room temperature for 5 minutes to perform a sensitization treatment in which tin ions were adsorbed onto the surface of the core particles. Subsequently, this aqueous solution was filtered, and the core particles, which had been repulped and washed once with water, were made into a 200 mL slurry and maintained at 60°C. 1.5 mL of a 0.11 mol/L palladium chloride aqueous solution was added to this slurry. The mixture was stirred at 60° C.
  • plating solution 5g/L sodium tartrate, 2g/L nickel sulfate hexahydrate, 10g/L trisodium citrate, 0.1g/L sodium hypophosphite, and 2g/L 3L of electroless nickel-phosphorus plating solution was prepared from an aqueous solution containing polyethylene glycol, and the temperature was raised to 70°C.
  • Electroless plating treatment The slurry of the pretreated core material particles was poured into this electroless plating bath, stirred for 5 minutes, and it was confirmed that hydrogen bubbling had stopped. To this slurry, 420 mL of a 224 g/L nickel sulfate aqueous solution, 420 mL of a mixed aqueous solution containing 210 g/L sodium hypophosphite, and 80 g/L sodium hydroxide were quantitatively added at an addition rate of 2.5 mL/min. Electroless plating was started by continuous fractional addition using a pump.
  • the obtained conductive particles were placed in a rectangular container so as to have a thickness of 5 mm. This was placed in a vacuum heating furnace (manufactured by Denken High Dental Co., Ltd., KDF-75), and the degree of vacuum was set to 10 Pa and maintained for 10 minutes. Thereafter, the temperature was increased and heat treatment was performed at 390° C. for 2 hours. After the heat treatment, the mixture was allowed to cool to room temperature (25° C.), and then the vacuum was released by purging nitrogen gas to obtain heat-treated conductive particles. A SEM photograph of the obtained conductive particles is shown in FIG. The average particle diameter of the obtained conductive particles was 2.2 ⁇ m, the thickness of the conductive layer was 110 nm, and the height of the protrusions was 100.8 nm. Table 1 shows the physical property values of the obtained conductive particles.
  • Example 2 (1) Pretreatment of core material particles The same operation as in Example 1 was performed except that resin particles with an average particle diameter of 2.0 ⁇ m (manufactured by Nissan Chemical Co., Ltd., Optobeads) were used as core material particles, and pretreatment was completed. A slurry of core material particles was obtained. (2) Preparation of plating solution An electroless plating solution was prepared in the same manner as in Example 1 (2). (3) Electroless plating treatment The same operation as in Example 1 (3) was performed to obtain conductive particles having protrusions. (4) Protrusion treatment The same operation as in Example 1 (4) was performed to obtain conductive particles with a protrusion height of 101 nm.
  • Example 2 Vacuum heat treatment The same operation as in Example 1 was performed to obtain heat-treated conductive particles.
  • the average particle diameter of the obtained conductive particles was 2.2 ⁇ m
  • the thickness of the conductive layer was 94.8 nm
  • the height of the protrusions was 101 nm.
  • Table 1 shows the physical property values of the obtained conductive particles.
  • Example 3 The same operations as in Example 1 were performed up to (3) electroless plating treatment in Example 1 to obtain conductive particles having protrusions.
  • (4) Protrusion treatment The same operation as in Example 1 was performed except that the obtained conductive particles were crushed for 3 hours to obtain conductive particles having a protrusion height of 145.3 nm.
  • (5) Vacuum heat treatment The same operation as in Example 1 was performed to obtain heat-treated conductive particles.
  • a SEM photograph of the obtained conductive particles is shown in FIG. The average particle diameter of the obtained conductive particles was 2.2 ⁇ m, the thickness of the conductive layer was 97.8 nm, and the height of the protrusions was 145.3 nm.
  • Table 1 shows the physical property values of the obtained conductive particles.
  • Example 4 The same operations as in Example 1 were performed up to (3) electroless plating treatment in Example 1 to obtain conductive particles having protrusions.
  • (4) Protrusion treatment The same operation as in Example 1 was performed except that the obtained conductive particles were crushed at 80 rpm for 4 hours using a zirconia ball, and the conductive particles with a protrusion height of 115.6 nm were obtained. Particles were obtained.
  • (5) Vacuum heat treatment The same operation as in Example 1 was performed to obtain heat-treated conductive particles. A SEM photograph of the obtained conductive particles is shown in FIG. The average particle diameter of the obtained conductive particles was 2.2 ⁇ m, the thickness of the conductive layer was 95.8 nm, and the height of the protrusions was 115.6 nm. Table 1 shows the physical property values of the obtained conductive particles.
  • Example 1 In Example 1, conductive particles were obtained by performing the same operations as in Example 1 except that (4) the planar protrusion treatment was not performed. Table 1 shows the physical property values of the obtained conductive particles.
  • Example 2 The same operations as in Example 1 were performed up to (3) electroless plating treatment in Example 1 to obtain conductive particles having protrusions. (4) Protrusion treatment The same operation as in Example 1 was performed except that the obtained conductive particles were crushed for 1 hour to obtain conductive particles with a protrusion height of 174.9 nm. (5) Vacuum heat treatment The same operation as in Example 1 was performed to obtain heat-treated conductive particles. A SEM photograph of the obtained conductive particles is shown in FIG. The average particle diameter of the obtained conductive particles was 2.2 ⁇ m, the thickness of the conductive layer was 99.9 nm, and the height of the protrusions was 174.9 nm. Table 1 shows the physical property values of the obtained conductive particles.
  • connection resistance and insulation were evaluated by the following method.
  • An insulating adhesive prepared by mixing 100 parts by mass of an epoxy resin, 150 parts by mass of a curing agent, and 70 parts by mass of toluene, and 15 parts by mass of conductive particles obtained in Examples or Comparative Examples are mixed, An insulating paste was obtained. This paste was applied onto a siliconized polyester film using a bar coater, and then the paste was dried to form a thin film on the film.
  • the obtained thin film-forming film was placed between a glass substrate on which aluminum electrodes were vapor-deposited and a polyimide film substrate on which copper electrode patterns were formed at a pitch of 50 ⁇ m, and then pressure-bonded to prepare a sample for measuring continuity resistance. Created. An electrical connection was made to the obtained sample for measuring conduction resistance, and the connection resistance value of this sample was measured at room temperature (25° C., 50% RH) to evaluate the connection resistance.
  • the connection resistance was evaluated using a multimeter R6552 (manufactured by Advantest Co., Ltd.) according to the following criteria. The results are shown in Table 2.
  • Resistance value is less than 2 ⁇ ⁇ : Resistance value is 2 ⁇ or more and less than 5 ⁇ ⁇ : Resistance value is 5 ⁇ or more
  • the conductive particles obtained in the examples have a lower connection resistance value and superior insulation properties than the conductive particles obtained in the comparative examples.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

The present invention provides conductive particles which have a small connection resistance value and have excellent insulation performance, and with which short circuit is inhibited, and thus exhibit excellent connection reliability. The conductive particles each have a core material particle, and a conductive layer having a plurality of projection parts on the surface of the core material particle. The height variation of the projection parts is 0.01-0.25.

Description

導電性粒子、その製造方法および導電性材料Conductive particles, their manufacturing method and conductive materials
 本発明は、導電性粒子、その製造方法および前記導電性粒子を含む導電性材料に関する。 The present invention relates to conductive particles, a method for producing the same, and a conductive material containing the conductive particles.
 異方性導電フィルムや異方性導電ペーストといった異方性導電材料の導電性材料として用いられる導電性粒子としては、一般に芯材粒子の表面に金属からなる導電層を形成した導電性粒子が知られている。近年の電子機器類の極小化や精細化に伴う微小ピッチの電極端子間の接続には、導電性粒子の導電層により電極や配線間の電気的な接続が行なわれている。 Conductive particles used as conductive materials for anisotropic conductive materials such as anisotropic conductive films and anisotropic conductive pastes are generally conductive particles in which a conductive layer made of metal is formed on the surface of a core particle. It is being BACKGROUND OF THE INVENTION In connection with the miniaturization and refinement of electronic devices in recent years, electrical connections between electrodes and wiring are made using conductive layers of conductive particles to connect electrode terminals at minute pitches.
 この導電性粒子の導電層として、無電解めっき法によるニッケル等の金属めっきにより芯材粒子の表面に作成された皮膜がしばしば用いられており、目的とする特性を発現させるために様々な工夫がなされている。その一例として特許文献1には、導電性粒子の導電層に複数の多角柱状の突起部を形成することにより、導電性粒子を電極間の電気的な接続に用いた場合に、導電性粒子を電極上に効率的に配置でき、導電性粒子による電極の損傷を抑えることができると記載されている。また特許文献2では、導電性粒子の導電層に多角柱状ではない複数の多面体状の突起部を形成することにより、電極間を低圧で接続したとしても、接続後に接続抵抗を効率的に低くすることができる導電性粒子を提案している。さらに特許文献3には、導電性粒子の導電層に複数の突起部を有し、この複数の突起部の少なくとも一部が板状である突起部を形成することにより、電極間を接続した時に導電性粒子が過度に流れ難く、導通信頼性と絶縁信頼性とを高めることができる導電性粒子が記載されている。 As the conductive layer of these conductive particles, a film created on the surface of the core particle by electroless plating with metal such as nickel is often used, and various techniques are used to achieve the desired characteristics. being done. As an example, Patent Document 1 describes that when the conductive particles are used for electrical connection between electrodes by forming a plurality of polygonal columnar protrusions on the conductive layer of the conductive particles, the conductive particles are It is stated that it can be efficiently placed on the electrode and that damage to the electrode caused by conductive particles can be suppressed. Furthermore, in Patent Document 2, by forming a plurality of protrusions in the shape of a polyhedron rather than a polygonal column in a conductive layer of conductive particles, even if the electrodes are connected at low voltage, the connection resistance can be efficiently lowered after connection. We have proposed conductive particles that can Further, Patent Document 3 discloses that when a conductive layer of conductive particles has a plurality of protrusions, and at least some of the plurality of protrusions are plate-shaped, the electrodes are connected. Conductive particles are described that do not flow excessively and can improve continuity reliability and insulation reliability.
 前記特許文献1ないし特許文献3は、いずれも導電層に形成される突起部の形状を、目的とする効果に合わせて設計することで課題の解決を試みている。このように突起部の形状を異なるものにすることで、所望される特性の付与された導電性粒子が検討されている。 Patent Documents 1 to 3 all attempt to solve the problem by designing the shape of the protrusion formed on the conductive layer in accordance with the desired effect. In this way, studies are being conducted to create conductive particles that have desired characteristics by varying the shape of the protrusions.
特開2015-149277号公報Japanese Patent Application Publication No. 2015-149277 特開2016-119302号公報Japanese Patent Application Publication No. 2016-119302 特開2017-212033号公報JP 2017-212033 Publication
 突起部を有する導電層を芯材粒子の表面に形成した導電性粒子を用いることで、導電性粒子同士の接触効率が高くなり、導電性粒子の量を削減することが可能となる。また電極面に酸化皮膜が存在する場合、酸化皮膜を突起部により破ることで導通が可能となり電気抵抗を抑えることができる。
 このように導電層に突起部を設けることで電極間の接続時に接続抵抗を低くすることや導通信頼性を高めることが可能となるとされている。
By using conductive particles in which a conductive layer having protrusions is formed on the surface of the core particle, the contact efficiency between the conductive particles can be increased, and the amount of conductive particles can be reduced. Further, when an oxide film exists on the electrode surface, the oxide film is broken by the protrusions, thereby enabling conduction and suppressing electrical resistance.
It is said that by providing protrusions on the conductive layer in this manner, it is possible to lower the connection resistance and increase the reliability of conduction when connecting the electrodes.
 しかしながら、電子機器類のさらなる極小化および精細化の要求に伴い、従来の突起部を有する導電性粒子のさらなる接続抵抗の低減に加えて絶縁個所での短絡防止が求められている。 However, with the demand for further miniaturization and refinement of electronic devices, there is a need to further reduce the connection resistance of the conventional conductive particles having protrusions, as well as to prevent short circuits at insulated parts.
 したがって本発明の目的は、接続抵抗値が小さく絶縁性に優れ、短絡が抑制された接続信頼性に優れる導電性粒子を提供することにある。また本発明の目的は接続抵抗値が小さく絶縁性に優れた短絡が抑制された接続信頼性に優れる導電性粒子の製造方法を提供することである。 Therefore, an object of the present invention is to provide conductive particles that have a small connection resistance value, excellent insulation properties, suppressed short circuits, and excellent connection reliability. Another object of the present invention is to provide a method for producing conductive particles that have a small connection resistance value, excellent insulation properties, suppressed short circuits, and excellent connection reliability.
 本発明者らは、上記課題を解決すべく導電性粒子が有する突起部に関して鋭意検討した結果、突起部の高さのばらつきを一定範囲に制御した導電性粒子の接続抵抗が小さく短絡が抑制されることを見出し、本発明を完成した。 In order to solve the above-mentioned problems, the present inventors conducted intensive studies on the protrusions of conductive particles, and found that the connection resistance of conductive particles in which the variation in the height of the protrusions was controlled within a certain range was small, and short circuits were suppressed. The present invention was completed based on this discovery.
 すなわち本発明は、芯材粒子と、突起部を複数有する導電層を前記芯材粒子の表面に有し、前記突起部の高さのばらつきが0.01以上0.25以下である導電性粒子を提供するものである。 That is, the present invention provides conductive particles having a core particle and a conductive layer having a plurality of protrusions on the surface of the core particle, and in which the variation in height of the protrusions is 0.01 or more and 0.25 or less. It provides:
 また本発明は、
 芯材粒子の表面に導電層を形成する工程、
 前記導電層に表面から突出した突起部を形成する工程、および、
 前記突起部の高さを平準化する工程
 を有する導電性粒子の製造方法を提供するものである。
Moreover, the present invention
a step of forming a conductive layer on the surface of the core material particles;
forming protrusions protruding from the surface of the conductive layer, and
The present invention provides a method for producing conductive particles, which includes a step of leveling the height of the protrusions.
 本発明によれば、接続抵抗値が小さく絶縁性に優れることから、短絡が抑制された接続信頼性に優れる導電性粒子が提供される。また本発明によれば、接続抵抗値が小さく絶縁性に優れることから、短絡が抑制された接続信頼性に優れる導電性粒子の製造方法が提供される。 According to the present invention, conductive particles are provided that have a small connection resistance value and excellent insulation properties, and therefore have excellent connection reliability with suppressed short circuits. Further, according to the present invention, there is provided a method for producing conductive particles that have a small connection resistance value and excellent insulation properties, and therefore have excellent connection reliability in which short circuits are suppressed.
突起部を有する導電性粒子の概念図である。FIG. 2 is a conceptual diagram of conductive particles having protrusions. 実施例1で得られた導電性粒子のSEM写真である。1 is a SEM photograph of conductive particles obtained in Example 1. 実施例3で得られた導電性粒子のSEM写真である。3 is a SEM photograph of conductive particles obtained in Example 3. 実施例4で得られた導電性粒子のSEM写真である。3 is a SEM photograph of conductive particles obtained in Example 4. 比較例2で得られた導電性粒子のSEM写真である。3 is a SEM photograph of conductive particles obtained in Comparative Example 2.
 以下、本発明をその好ましい実施形態に基づき説明する。本発明の導電性粒子(以下、「本導電性粒子」とも記す。)は、芯材粒子と、突起部を複数有する導電層を前記芯材粒子の表面に有しており、前記突起部の高さのばらつきが0.01以上0.25以下である。
 導電性粒子が有する突起部の高さのばらつきが大きいと、導電性粒子と電極との接触が不均一になると考えられ、接続抵抗が大きくなると考えられる。また突起部の高さのばらつきが大きいと予期せぬ導通による短絡が発生する場合がある。
 本導電性粒子は突起部の高さのばらつきが一定範囲に制御されており、その結果、接続抵抗が小さく短絡が抑えられ、接続信頼性が向上したと考えられる。
Hereinafter, the present invention will be explained based on its preferred embodiments. The conductive particle of the present invention (hereinafter also referred to as "the present conductive particle") has a core particle and a conductive layer having a plurality of protrusions on the surface of the core particle, and the conductive layer has a plurality of protrusions. The height variation is 0.01 or more and 0.25 or less.
If the height variation of the protrusions of the conductive particles is large, it is thought that the contact between the conductive particles and the electrode becomes uneven, and the connection resistance increases. Furthermore, if the height of the protrusion varies greatly, a short circuit may occur due to unexpected conduction.
In the present conductive particles, the variation in the height of the protrusions is controlled within a certain range, and as a result, it is thought that the connection resistance is small, short circuits are suppressed, and the connection reliability is improved.
 本導電性粒子が有する芯材粒子(以下、「本芯材粒子」とも記す。)は、粒子状であればよく、材質は無機物でも有機物であってもよい。無機物としては、金、銀、銅、ニッケル、パラジウム、ハンダ等の金属粒子、これら金属の合金、ガラス、セラミック、シリカ、金属または非金属の酸化物またはその含水物、アルミノ珪酸塩等の金属珪酸塩、金属炭化物、金属窒化物、金属炭酸塩、金属硫酸塩、金属リン酸塩、金属硫化物、金属酸塩、金属ハロゲン化物および炭素等が挙げられる。
 一方、有機物としては、例えば、天然繊維、天然樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリブテン、ポリアミド、ポリアクリル酸エステル、ポリアクリルニトリル、ポリアセタール、アイオノマー、ポリエステル等の熱可塑性樹脂、アルキッド樹脂、フェノール樹脂、尿素樹脂、ベンゾグアナミン樹脂、メラミン樹脂、キシレン樹脂、シリコーン樹脂、エポキシ樹脂、ジアリルフタレート樹脂等の熱硬化性樹脂が挙げられる。これらは単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
The core material particles (hereinafter also referred to as "core material particles") included in the present conductive particles may be particulate, and the material may be inorganic or organic. Inorganic substances include metal particles such as gold, silver, copper, nickel, palladium, and solder, alloys of these metals, glass, ceramics, silica, metal or nonmetal oxides or their hydrates, and metal silicates such as aluminosilicates. Examples include salts, metal carbides, metal nitrides, metal carbonates, metal sulfates, metal phosphates, metal sulfides, metal acid salts, metal halides, and carbon.
On the other hand, examples of organic substances include natural fibers, natural resins, thermoplastic resins such as polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylic esters, polyacrylonitrile, polyacetals, ionomers, polyesters, and alkyd resins. , phenol resin, urea resin, benzoguanamine resin, melamine resin, xylene resin, silicone resin, epoxy resin, diallyl phthalate resin, and other thermosetting resins. These may be used alone or in combination of two or more.
 本芯材粒子の材質は、上述した無機物および有機物のいずれか一方でもよく、無機物および有機物の双方でもよい。芯材粒子が無機物および有機物の双方からなる材質で構成されている場合、芯材粒子における無機物および有機物の存在態様としては、例えば、無機物からなるコアと、該コアの表面を被覆する有機物からなるシェルとを備える態様、あるいは、有機物からなるコアと、該コアの表面を被覆する無機物からなるシェルとを備える態様等のコアシェル型の構成等が挙げられる。これらのほか、一つの芯材粒子中に、無機物と有機物が混在している構成か、あるいはランダムに融合しているブレンド型の構成等が挙げられる。 The material of the present core material particles may be either one of the above-mentioned inorganic substances and organic substances, or may be both inorganic substances and organic substances. When the core material particle is composed of a material consisting of both an inorganic substance and an organic substance, the presence of the inorganic substance and the organic substance in the core material particle includes, for example, a core made of an inorganic substance and an organic substance covering the surface of the core. Examples include a core-shell type structure, such as an embodiment including a shell, or an embodiment including a core made of an organic substance and a shell made of an inorganic substance covering the surface of the core. In addition to these, examples include a structure in which inorganic substances and organic substances are mixed in one core particle, or a blend type structure in which they are randomly fused.
 本芯材粒子は、有機物を含む材質から構成されているのが好ましく、無機物および有機物の双方からなる材質で構成されていることがより好ましい。無機物および有機物の双方からなる材質で構成されている場合、前記無機物は、ガラス、セラミック、シリカ、金属または非金属の酸化物またはその含水物、アルミノ珪酸塩等の金属珪酸塩、金属炭化物、金属窒化物、金属炭酸塩、金属硫酸塩、金属リン酸塩、金属硫化物、金属酸塩、金属ハロゲン化物および炭素であることが好ましい。また、前記有機物は天然繊維、天然樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリブテン、ポリアミド、ポリアクリル酸エステル、ポリアクリルニトリル、ポリアセタール、アイオノマー、ポリエステル等の熱可塑性樹脂であることが好ましい。このような材質からなる芯材を用いることによって、粒子同士の分散安定性を高めることができ、また、電子回路の電気的接続の際に、適度な弾性を発現させて導通を高めることができる。 The present core material particles are preferably made of a material containing an organic substance, and more preferably made of a material containing both an inorganic substance and an organic substance. When the material is composed of both an inorganic substance and an organic substance, the inorganic substance is glass, ceramic, silica, metal or nonmetal oxide or its hydrate, metal silicate such as aluminosilicate, metal carbide, metal. Preference is given to nitrides, metal carbonates, metal sulfates, metal phosphates, metal sulfides, metal acid salts, metal halides and carbon. Further, the organic substance is preferably a natural fiber, a natural resin, a thermoplastic resin such as polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylic acid ester, polyacrylonitrile, polyacetal, ionomer, or polyester. By using a core material made of such a material, it is possible to improve the dispersion stability between particles, and also to develop appropriate elasticity and improve conduction when electrically connecting electronic circuits. .
 本芯材粒子として有機物を含む材質から構成されている場合、前記有機物はガラス転移温度を有しないか、または、ガラス転移温度が100℃超である有機物が、芯材粒子の形状が維持されやすいことや金属皮膜を形成する工程において芯材粒子の形状を維持しやすい点から、好ましい。ガラス転移温度は、例えば、示差走査熱量測定(以下、「DSC」とも記す。)により得られるDSC曲線のベースラインシフト部分における元のベースラインと変曲点の接線の交点として求めることができる。 When the core particles are made of a material containing an organic substance, the organic substance does not have a glass transition temperature or the organic substance has a glass transition temperature of over 100°C, so that the shape of the core particle is easily maintained. This is preferable because it is easy to maintain the shape of the core material particles in the process of forming the metal film. The glass transition temperature can be determined, for example, as the intersection of the original baseline and the tangent of the inflection point in the baseline-shifted portion of the DSC curve obtained by differential scanning calorimetry (hereinafter also referred to as "DSC").
 有機物が高度に架橋した樹脂であるときは、前記方法にて200℃までガラス転移温度の測定を試みても、ベースラインシフトはほとんど観測されない場合がある。本明細書中ではこのような有機物を、ガラス転移温度を有しない有機物ともいう。本芯材粒子は、このようなガラス転移温度を有しない有機物を芯材粒子の材質として用いてもよい。ガラス転移温度を有しない有機物は、前記で例示した熱可塑性樹脂または熱硬化性樹脂を構成する単量体と架橋性の単量体を共重合し得ることができる。架橋性の単量体としては、テトラメチレンジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレンオキシドジ(メタ)アクリレート、テトラエチレンオキシド(メタ)アクリレート、1,6-ヘキサンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリメテロールプロパントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリジ(メタ)アクリレート等の多官能(メタ)アクリレート、ジビニルベンゼン、ジビニルトルエン等の多官能ビニル系単量体、ビニルトリメトキシシラン、トリメトキシシリルスチレン、γ-(メタ)アクリロキシプロピルトリメトキシシラン等のシラン含有系単量体、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル等の単量体が挙げられる。特にCOG(Chip on Glass)分野では、このような高度に架橋した樹脂は硬質であるという観点から、芯材粒子の材質として使用するのが好ましい。 When the organic substance is a highly crosslinked resin, almost no baseline shift may be observed even if the glass transition temperature is measured up to 200° C. using the above method. In this specification, such an organic substance is also referred to as an organic substance that does not have a glass transition temperature. For the present core material particles, an organic substance that does not have such a glass transition temperature may be used as the material of the core material particles. The organic substance that does not have a glass transition temperature can be copolymerized with a crosslinkable monomer and a monomer constituting the thermoplastic resin or thermosetting resin exemplified above. Examples of crosslinkable monomers include tetramethylene di(meth)acrylate, ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, ethylene oxide di(meth)acrylate, and tetraethylene oxide. (meth)acrylate, 1,6-hexane di(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, trimetherolpropane tri(meth)acrylate, tetramethylolmethane di( meth)acrylate, tetramethylolmethanetri(meth)acrylate, tetramethylolmethanetetra(meth)acrylate, tetramethylolpropanetetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, glycerol di(meth)acrylate, glycerol tridi( Polyfunctional (meth)acrylates such as meth)acrylates, polyfunctional vinyl monomers such as divinylbenzene and divinyltoluene, vinyltrimethoxysilane, trimethoxysilylstyrene, γ-(meth)acryloxypropyltrimethoxysilane, etc. Examples include silane-containing monomers, triallyl isocyanurate, diallyl phthalate, diallylacrylamide, diallyl ether, and other monomers. Particularly in the field of COG (Chip on Glass), such highly crosslinked resins are preferably used as materials for core particles because they are hard.
 本芯材粒子の形状は不定形でもよく、球状、繊維状、中空状、板状または針状でもよいが、通常、球状である。本芯材粒子はその表面に多数の突起を有してもよい。本芯材粒子の形状は、充填性に優れ、金属を被覆しやすいという観点から、球状が好ましい。 The shape of the core material particles may be amorphous, spherical, fibrous, hollow, plate-like, or acicular, but is usually spherical. The present core material particle may have a large number of protrusions on its surface. The shape of the core material particles is preferably spherical from the viewpoint of excellent filling properties and ease of coating metal.
 本導電性粒子は前記本芯材粒子の表面に導電層を有し、前記導電層は複数の突起部を有する。
 本導電性粒子が有する導電層は導電性を有する金属からなる。導電層を構成する金属としては、例えば、金、白金、銀、銅、鉄、亜鉛、ニッケル、スズ、鉛、アンチモン、ビスマス、コバルト、インジウム、チタン、ゲルマニウム、アルミニウム、クロム、パラジウム、タングステン、モリブデン、カルシウム、マグネシウム、ロジウム、ナトリウム、イリジウム、ベリリウム、ルテニウム、カリウム、カドミウム、オスミウム、リチウム、ルビジウム、ガリウム、タリウム、タンタル、セシウム、トリウム、ストロンチウム、ポロニウム、ジルコニウム、バリウム、マンガン等の金属またはこれらの合金のほか、ITO、ハンダ等の金属化合物等が挙げられる。なかでも金、銀、銅、ニッケル、パラジウム、ロジウムまたはハンダが、電気抵抗が少ないため好ましく、とりわけ、ニッケル、金、パラジウム、ニッケル合金、金合金およびパラジウム合金がより好ましい。金属は1種でもよく、2種以上を組み合わせて用いることもできる。
The present conductive particles have a conductive layer on the surface of the present core particle, and the conductive layer has a plurality of protrusions.
The conductive layer of the present conductive particles is made of a conductive metal. Examples of metals constituting the conductive layer include gold, platinum, silver, copper, iron, zinc, nickel, tin, lead, antimony, bismuth, cobalt, indium, titanium, germanium, aluminum, chromium, palladium, tungsten, and molybdenum. , calcium, magnesium, rhodium, sodium, iridium, beryllium, ruthenium, potassium, cadmium, osmium, lithium, rubidium, gallium, thallium, tantalum, cesium, thorium, strontium, polonium, zirconium, barium, manganese, etc., or metals such as these. In addition to alloys, examples include metal compounds such as ITO and solder. Among them, gold, silver, copper, nickel, palladium, rhodium, and solder are preferred because they have low electrical resistance, and nickel, gold, palladium, nickel alloys, gold alloys, and palladium alloys are particularly preferred. One type of metal may be used, or a combination of two or more types may be used.
 本導電性粒子が有する導電層は、単層構造であっても、複数層からなる積層構造であってもよい。複数層からなる積層構造である場合には、最表層が、ニッケル、金、銀、銅、パラジウムからなる群から選ばれる少なくとも1種を含んでいるのが好ましく、ニッケル、金、銀、銅、パラジウムおよびこれらの合金が好ましい。合金の場合、ニッケル、金、銀、銅、またはパラジウムとリンの合金であるニッケル合金、金合金、銀合金、銅合金およびパラジウム合金が好ましく、ニッケル-リン合金、パラジウム-リン合金がより好ましい。導電層の最外層は後述する製造方法において、無電解法で形成された無電解ニッケル-リンめっき層がより好ましい。 The conductive layer of the present conductive particles may have a single layer structure or a laminated structure consisting of multiple layers. In the case of a laminated structure consisting of multiple layers, the outermost layer preferably contains at least one member selected from the group consisting of nickel, gold, silver, copper, and palladium. Palladium and alloys thereof are preferred. In the case of alloys, nickel, gold, silver, copper, or alloys of palladium and phosphorus such as nickel alloys, gold alloys, silver alloys, copper alloys, and palladium alloys are preferred, and nickel-phosphorus alloys and palladium-phosphorus alloys are more preferred. The outermost layer of the conductive layer is more preferably an electroless nickel-phosphorus plating layer formed by an electroless method in the manufacturing method described below.
 また本導電性粒子が有する導電層は、本芯材粒子の表面全体を被覆していてもよく、その一部のみを被覆していてもよい。本芯材粒子の表面の一部のみを被覆している場合は、被覆部位が連続していてもよく、例えばアイランド状に不連続に被覆していてもよい。 Furthermore, the conductive layer of the present conductive particles may cover the entire surface of the present core particle, or may cover only a portion thereof. When only a part of the surface of the present core particle is coated, the coated portion may be continuous, or may be discontinuously coated, for example, in the form of islands.
 本導電性粒子の導電層の厚みは、得られる導電性粒子の電気特性の観点から、0.1nm以上2,000nm以下が好ましく、1nm以上1,500nm以下がより好ましい。なお、導電層が有する突起部の高さは、ここでいう導電層の厚みに含まないものとする。導電層の厚みは、測定対象の粒子を2つに切断し、その切り口の断面を走査型電子顕微鏡(Scanning Electron Microscope:SEM)で観察して測定することができ、導電層の厚みは前記範囲内であることが好ましい。 The thickness of the conductive layer of the present conductive particles is preferably 0.1 nm or more and 2,000 nm or less, and more preferably 1 nm or more and 1,500 nm or less, from the viewpoint of the electrical properties of the obtained conductive particles. Note that the height of the protrusions of the conductive layer is not included in the thickness of the conductive layer herein. The thickness of the conductive layer can be measured by cutting the particle to be measured into two and observing the cross section of the cut using a scanning electron microscope (SEM), and the thickness of the conductive layer is within the above range. It is preferable that it be within.
 本導電性粒子の導電層が有する突起部(以下、「本突起部」とも記す。」)は、その高さのばらつきが0.01以上0.25以下である。なお高さのばらつきとは、突起部の高さの標準偏差を突起部の高さの平均値で除した値であり、下記式(1)で表される。高さの標準偏差は下記式(2)により求めることができ、高さの平均値は下記式(3)で求められる突起部の高さの算術平均値である。このばらつきの値が前記範囲内であることで、導電性粒子と電極との接触がより均一なものになり、接続安定性の向上に繋がる。 The protrusions (hereinafter also referred to as "main protrusions") possessed by the conductive layer of the present conductive particles have a variation in height of 0.01 or more and 0.25 or less. Note that the height variation is a value obtained by dividing the standard deviation of the heights of the protrusions by the average value of the heights of the protrusions, and is expressed by the following formula (1). The standard deviation of the height can be determined by the following formula (2), and the average height value is the arithmetic mean value of the heights of the projections determined by the following formula (3). When the value of this variation is within the above range, the contact between the conductive particles and the electrode becomes more uniform, leading to improved connection stability.
 
Figure JPOXMLDOC01-appb-I000001
 
Figure JPOXMLDOC01-appb-I000001
 
Figure JPOXMLDOC01-appb-I000002
 
Figure JPOXMLDOC01-appb-I000002
 
Figure JPOXMLDOC01-appb-I000003
 
Figure JPOXMLDOC01-appb-I000003
 本突起部の高さのばらつきは、0.05以上0.20以下がより好ましい。
 突起部の高さは、導電性粒子の断面をSEM観察したときに、導電性粒子が球状の場合、突起頭頂部分の最も高い点から導電性粒子の中心方向に向かって突起の基部に当たる点までの最短距離をいう。SEM観察により観察された20個の異なる導電性粒子について各導電性粒子の突起部の全ての高さを測定し、前記各式に代入することで突起部の高さのばらつきを求めることができる。なお、突起部が複数の頂点を有する場合、最も高い頂点をその突起部の高さとする。
The variation in height of the main protrusion is more preferably 0.05 or more and 0.20 or less.
When the cross section of the conductive particle is observed with SEM, the height of the protrusion is determined from the highest point of the top of the protrusion to the point that hits the base of the protrusion toward the center of the conductive particle if the conductive particle is spherical. The shortest distance between By measuring all the heights of the protrusions of each conductive particle for 20 different conductive particles observed by SEM observation and substituting it into each of the above formulas, the variation in the height of the protrusions can be determined. . In addition, when a protrusion has a plurality of vertices, the highest apex is the height of the protrusion.
 本導電性粒子が有する突起部の高さの平均は、好ましくは20nm以上1,000nm以下、より好ましくは50nm以上800nm以下である。突起の数は、導電性粒子の粒径にもよるが、導電性粒子1つ当たり、好ましくは1個以上20,000個以下、さらに好ましくは5個以上5,000個以下である。
 また、突起部の基部の長さは、好ましくは5nm以上1,000nm以下、さらに好ましくは10nm以上800nm以下である。
The average height of the projections of the conductive particles is preferably 20 nm or more and 1,000 nm or less, more preferably 50 nm or more and 800 nm or less. The number of projections per conductive particle is preferably 1 or more and 20,000 or less, more preferably 5 or more and 5,000 or less, although it depends on the particle size of the conductive particle.
Further, the length of the base of the protrusion is preferably 5 nm or more and 1,000 nm or less, more preferably 10 nm or more and 800 nm or less.
 突起部の高さの平均は前記と同様にして突起部の高さを求め、前記式(3)により求められる。
 突起部の基部の平均長さは、図1の(a)および(b)において突起部が形成されている部位の導電層下層の表面6に沿う長さをいう。突起部の基部の長さは、SEM観察により観察された20個の異なる導電性粒子について各導電性粒子の突起部の全ての基部の長さを測定した値の算術平均値である。
The average height of the protrusions is determined by calculating the heights of the protrusions in the same manner as described above, and using equation (3) above.
The average length of the base of the protrusion refers to the length along the surface 6 of the lower conductive layer at the portion where the protrusion is formed in FIGS. 1A and 1B. The length of the base of the protrusion is the arithmetic mean value of the lengths of all the bases of the protrusion of each conductive particle for 20 different conductive particles observed by SEM observation.
 本突起部の頭頂部分の形状は略平面状が、導電性粒子と電極との接触がより均一なものになるという観点から好ましい。ここで略平面状とは、完全な平面および後述する曲率半径を有する曲面を有する面を包含する。例えば、図1(a)に示す完全な平面部5に対して、図1(b)に示す、後述する曲率半径の範囲内である曲面を有する平面部5も、本明細書においては略平面状の概念に含まれる。 The shape of the top portion of the protrusion is preferably substantially planar from the viewpoint of more uniform contact between the conductive particles and the electrode. Here, the term "substantially planar" includes a complete plane and a surface having a curved surface having a radius of curvature, which will be described later. For example, in contrast to the completely flat part 5 shown in FIG. 1(a), the flat part 5 shown in FIG. included in the concept of
 本突起部の頭頂部分が略平面状の場合、頭頂部分の長さは、好ましくは10nm以上500nm以下、さらに好ましくは20nm以上400nm以下である。略平面状の頭頂部分の長さは、導電性粒子の断面をSEM観察し、突起部の断面において頭頂部分が略平面状である頭頂部分の両端を結ぶ最短距離である。例えば、図1(a)および(b)において、頭頂部分が略平面状である平面部5の端5aおよび端5bを結ぶ直線の長さが頭頂部分の長さである。略平面状の本突起部の頭頂部分の長さは、SEM観察により観察された20個の異なる導電性粒子の断面について、各導電性粒子の全ての突起部の断面の頭頂部分の長さを測定した値の算術平均値とする。 When the crown portion of the main protrusion is substantially planar, the length of the crown portion is preferably 10 nm or more and 500 nm or less, more preferably 20 nm or more and 400 nm or less. The length of the substantially planar top portion is the shortest distance connecting both ends of the substantially planar top portion in the cross section of the protrusion, as determined by SEM observation of the cross section of the conductive particle. For example, in FIGS. 1(a) and 1(b), the length of the straight line connecting the ends 5a and 5b of the flat portion 5, in which the top of the head is substantially flat, is the length of the top of the head. The length of the top portion of the substantially planar main projection is determined by calculating the length of the top portion of the cross section of all the projections of each conductive particle for the cross sections of 20 different conductive particles observed by SEM observation. The arithmetic mean value of the measured values.
 本突起部の数は、本導電性粒子の粒径にもよるが、導電性粒子の導電性の観点から、本導電性粒子1つ当たり、平均で好ましくは2個以上20,000個以下、さらに好ましくは5個以上5,000個以下である。なお突起の数は、SEM観察により観察された20個の異なる導電性粒子について測定した値の算術平均値である。 The number of protrusions depends on the particle size of the conductive particles, but from the viewpoint of the conductivity of the conductive particles, the number of protrusions per conductive particle is preferably 2 or more and 20,000 or less on average, More preferably, the number is 5 or more and 5,000 or less. Note that the number of protrusions is an arithmetic mean value of values measured for 20 different conductive particles observed by SEM observation.
 本突起部の頭頂部分が略平面状である場合、頭頂部分の曲率半径をRaとし、本突起部が形成された部位の導電層の下層の表面6の曲率半径をRbとしたときに、Rbに対するRaの比率(Ra/Rb)が0.15以上1.20以下、特に0.20以上1.00以下であることが好ましい。突起部の頭頂部分が、前記範囲を満たす曲率半径を有することで、本導電性粒子と電極との接触がより均一となり、接続安定性の向上に繋がる。なお、Raは、例えばSEM観察により観察される導電性粒子の断面について、各突起部の断面の頭頂部分に外接する外接円の半径とすることができる。Rbは、例えばSEM観察により観察される導電性粒子の断面について、導電層の下層の表面に外接する外接円の半径、すなわち、実質的に芯材粒子の半径とすることができる。 When the top of the main protrusion is approximately planar, the radius of curvature of the top of the head is Ra, and the radius of curvature of the surface 6 of the lower layer of the conductive layer at the portion where the main protrusion is formed is Rb. It is preferable that the ratio of Ra (Ra/Rb) is 0.15 or more and 1.20 or less, particularly 0.20 or more and 1.00 or less. When the top portion of the protrusion has a radius of curvature that satisfies the above range, the contact between the conductive particles and the electrode becomes more uniform, leading to improved connection stability. Note that Ra can be the radius of a circumscribed circle that circumscribes the top portion of the cross section of each protrusion in a cross section of a conductive particle observed by SEM observation, for example. Rb can be, for example, the radius of a circumscribed circle circumscribing the surface of the lower layer of the conductive layer, that is, substantially the radius of the core material particle, for a cross section of the conductive particle observed by SEM observation.
 本突起部の高さが前記範囲であることによって、本導電性粒子と電極との接触が均一になり、かつ本突起部の頭頂部分が略平面である場合、本導電性粒子の近傍に存在する他の導電性粒子との接触が抑えられ、短絡防止に繋がると考えられる。この観点から、導電性粒子1個当たりの突起部の頭頂部分の略平面状である部分の総和の面積が広いことが好ましい。すなわち、1個の導電性粒子の投影面積、S1、に対する、突起部の頭頂部分の面積の総和、S2の比、S2/S1、が0.50以上、特に0.55以上が好ましい。なお、S2/S1は1未満であり、略平面状の突起が形成されていることが確認できる観点から、0.95以下が好ましく、0.90以下がより好ましい。導電性粒子の投影面積、S1、および突起部の頭頂部分の面積の総和、S2、はSEM写真画像を自動画像解析装置(株式会社ニレコ製、ルーゼックス(登録商標)AP)に取り込むことにより測定することができる。 If the height of the protrusion is within the above range, the contact between the conductive particles and the electrode is uniform, and the top of the protrusion is approximately flat, the presence of the conductive particles in the vicinity of the conductive particles. It is thought that contact with other conductive particles is suppressed, leading to prevention of short circuits. From this point of view, it is preferable that the total area of the substantially planar portions of the tops of the protrusions per conductive particle is large. That is, the ratio S2/S1 of the total area of the top portion of the projection, S2, to the projected area of one conductive particle, S1, is preferably 0.50 or more, particularly 0.55 or more. Note that S2/S1 is less than 1, preferably 0.95 or less, more preferably 0.90 or less, from the viewpoint of confirming that substantially planar protrusions are formed. The projected area of the conductive particles, S1, and the sum of the areas of the tops of the protrusions, S2, are measured by importing the SEM photographic image into an automatic image analysis device (Luzex (registered trademark) AP, manufactured by Nireco Co., Ltd.) be able to.
 また本突起部の少なくとも一つの形状は、短絡防止の観点から、不定形が好ましい。本突起部が不定形とは本突起部の頭頂部分を基部と反対側から見た時、頭頂部分が曲率が異なる複数の曲線で囲まれている形状である。本突起部の頭頂部分を基部と反対側から見た時、頭頂部分は円形状および多角形状以外の形状が好ましい。
 形状が不定形の本突起部の数は本導電性粒子1個当たり、10個以上がより好ましく、20個以上がさらに好ましい。または本導電性粒子1個が有する本突起部の合計数を100%として、形状が不定形の突起部の数は90%以上がより好ましく、95%以上がさらに好ましい。
Further, the shape of at least one of the main protrusions is preferably an irregular shape from the viewpoint of preventing short circuits. The amorphous shape of the protrusion means that when the parietal portion of the protrusion is viewed from the side opposite to the base, the parietal portion is surrounded by a plurality of curved lines having different curvatures. When the top of the head of the projection is viewed from the side opposite to the base, the top of the head preferably has a shape other than circular or polygonal.
The number of irregularly shaped protrusions per one present conductive particle is more preferably 10 or more, and even more preferably 20 or more. Alternatively, the number of irregularly shaped protrusions is more preferably 90% or more, and even more preferably 95% or more, assuming that the total number of protrusions included in one conductive particle is 100%.
 本突起部は、本芯材粒子の表面に形成されている導電層と連続体になっていることが好ましい。すなわち、本突起部は導電層と同様に金属または合金から構成されているのが好ましい。ここでいう連続体とは、導電層と本突起部とが同一の材料から構成され、導電層と本突起部との間に継ぎ目等の一体感を損なうような部位が存在しないことを意味する。導電層と本突起部が連続体になっていることで、本突起部の強度が確保されるので、本導電性粒子の使用時に圧力が加わっても本突起部の基部が破損し難くなる。
 本突起部は、芯材粒子の表面に形成されている導電層を構成する金属または合金と同じ金属または合金から構成されているのがより好ましい。
It is preferable that the protrusion is in a continuous body with the conductive layer formed on the surface of the core material particle. That is, it is preferable that the main protrusion is made of metal or an alloy like the conductive layer. A continuum here means that the conductive layer and the main protrusion are made of the same material, and there are no parts such as seams that impair the sense of unity between the conductive layer and the main protrusion. . Since the conductive layer and the main protrusion form a continuous body, the strength of the main protrusion is ensured, so that even if pressure is applied during use of the present conductive particles, the base of the main protrusion is less likely to be damaged.
More preferably, the protrusion is made of the same metal or alloy as the metal or alloy that constitutes the conductive layer formed on the surface of the core particle.
 本導電性粒子の平均粒子径は、好ましくは0.1μm以上50μm以下、より好ましくは1μm以上30μm以下である。導電性粒子の平均粒子径が上記範囲内であることで、対向電極間とは異なる方向での短絡を発生させることなく、対向電極間での導通をより確保しやすくなる。なお、本発明において、導電性粒子の平均粒子径は、SEM観察により任意に200個の粒子を抽出して、倍率10,000倍にて粒子径を測定した算術平均の値である。導電性粒子が球状の場合、導電性粒子の直径は導電性粒子を平面に投影した円の直径であり、突起部の高さは含まない。導電性粒子が球状でない場合、粒子径は、導電性粒子を平面に投影した像を横断する線分のうち最も長い長さである。 The average particle diameter of the conductive particles is preferably 0.1 μm or more and 50 μm or less, more preferably 1 μm or more and 30 μm or less. When the average particle diameter of the conductive particles is within the above range, conduction between the opposing electrodes can be more easily ensured without causing a short circuit in a direction different from that between the opposing electrodes. In the present invention, the average particle diameter of the conductive particles is an arithmetic mean value obtained by arbitrarily extracting 200 particles through SEM observation and measuring the particle diameter at a magnification of 10,000 times. When the conductive particles are spherical, the diameter of the conductive particles is the diameter of a circle obtained by projecting the conductive particles onto a plane, and does not include the height of the protrusion. When the conductive particles are not spherical, the particle diameter is the longest length of the line segments that intersect the image of the conductive particles projected onto a plane.
 本導電性粒子の形状は、前記本芯材粒子の形状により、適宜選択される。本導電性粒子の形状は本芯材粒子の形状と同じでも、異なっていてもよいが、製造効率の観点から、両者は同じ形状が好ましい。本導電性粒子の形状は、例えば、球状、繊維状、中空状、板状、針状または不定形が挙げられる。本導電性粒子の形状は、充填性、接続性に優れるという観点から、球状が好ましい。 The shape of the present conductive particles is appropriately selected depending on the shape of the present core material particles. The shape of the present conductive particles may be the same as or different from the shape of the present core material particles, but from the viewpoint of manufacturing efficiency, it is preferable that both have the same shape. Examples of the shape of the conductive particles include spherical, fibrous, hollow, plate-like, acicular, and amorphous shapes. The shape of the conductive particles is preferably spherical from the viewpoint of excellent filling properties and connectivity.
 前記本導電性粒子の製造は例えば、以下の工程を含む製造方法(以下、「本製造方法」とも記す。)により製造することができる。
 芯材粒子の表面に導電層を形成する工程
 前記導電層に表面から突出した突起部を形成する工程
 前記突起部の高さを平準化する工程
The present conductive particles can be manufactured, for example, by a manufacturing method including the following steps (hereinafter also referred to as "this manufacturing method").
A step of forming a conductive layer on the surface of the core material particle A step of forming a protrusion protruding from the surface on the conductive layer A step of leveling the height of the protrusion
 芯材粒子の表面に導電層を形成する工程(以下、「導電層形成工程」とも記す。)では、芯材粒子の表面に蒸着法、スパッタ法、メカノケミカル法、ハイブリダイゼーション法等の乾式法、または電解めっき法、無電解めっき法等を利用する湿式法のいずれかの方法により芯材粒子の表面に導電層が形成される。また、これらの方法を組み合わせて芯材粒子の表面に導電層を形成してもよい。
 用いる芯材粒子は前記本芯材粒子を用いればよく、好ましい材質、形状は前記のとおりである。
In the step of forming a conductive layer on the surface of the core material particles (hereinafter also referred to as "conductive layer forming step"), a dry method such as a vapor deposition method, a sputtering method, a mechanochemical method, a hybridization method, etc. is applied to the surface of the core material particles. A conductive layer is formed on the surface of the core particle by either a wet method using an electrolytic plating method, an electroless plating method, or the like. Further, a conductive layer may be formed on the surface of the core material particles by combining these methods.
The core material particles to be used may be the core material particles described above, and preferred materials and shapes are as described above.
 導電層形成工程は、無電解めっき法により芯材粒子の表面に導電層を形成することが、所望の粒子特性を有する導電性粒子を得るのが容易であるという観点から好ましく、無電解めっき法が、所望の粒子特性を有する導電性粒子を得るのが容易であとともに、後述する突起部の形成が容易であるという観点から、より好ましい。特に、導電層は無電解法により形成された無電解ニッケル合金めっき層が好ましく、無電解ニッケル-リンめっき層がより好ましい。 In the conductive layer forming step, it is preferable to form a conductive layer on the surface of the core particle by an electroless plating method from the viewpoint that it is easy to obtain conductive particles having desired particle characteristics. However, it is more preferable from the viewpoints that it is easy to obtain conductive particles having desired particle characteristics and it is also easy to form protrusions described below. In particular, the conductive layer is preferably an electroless nickel alloy plating layer formed by an electroless method, and more preferably an electroless nickel-phosphorus plating layer.
 以下、導電層としてニッケル-リン合金めっき層を形成する導電層形成工程について説明する。
 導電層形成工程で無電解めっき法を用いる場合、芯材粒子は、その表面が貴金属イオンの捕捉能を有するか、または貴金属イオンの捕捉能を有するように表面改質されていることが好ましい。貴金属イオンは、パラジウムや銀のイオンであることが好ましい。貴金属イオンの捕捉能を有するとは、貴金属イオンをキレートまたは塩として捕捉し得ることをいう。例えば芯材粒子の表面に、アミノ基、イミノ基、アミド基、イミド基、シアノ基、水酸基、ニトリル基、カルボキシル基などが存在する場合には、該芯材粒子の表面は貴金属イオンの捕捉能を有する。貴金属イオンの捕捉能を有するように表面改質する場合には、例えば特開昭61-64882号公報記載の方法を用いることができる。
The conductive layer forming process of forming a nickel-phosphorous alloy plating layer as a conductive layer will be described below.
When electroless plating is used in the conductive layer forming step, the surface of the core material particles preferably has the ability to trap noble metal ions, or is surface-modified so as to have the ability to trap noble metal ions. Preferably, the noble metal ion is a palladium or silver ion. Having the ability to capture noble metal ions means being able to capture noble metal ions in the form of a chelate or salt. For example, when an amino group, an imino group, an amide group, an imido group, a cyano group, a hydroxyl group, a nitrile group, a carboxyl group, etc. are present on the surface of the core material particle, the surface of the core material particle has the ability to trap noble metal ions. has. When the surface is modified to have the ability to trap noble metal ions, the method described in JP-A-61-64882, for example, can be used.
 貴金属イオンの捕捉能を有するか、または貴金属イオンの捕捉能を有するように表面改質された芯材粒子を本芯材粒子として用い、その表面に貴金属を担持させる。具体的には、本芯材粒子を塩化パラジウムや硝酸銀のような貴金属塩の希薄な酸性水溶液に分散させる。これによって貴金属イオンを本芯材粒子の表面に捕捉させる。貴金属塩の濃度は通常、本芯材粒子の表面積1m当たり1×10-7から1×10-2モルの範囲である。貴金属イオンが捕捉された本芯材粒子は水溶液から分離され水洗される。引き続き、本芯材粒子を水に懸濁させ、これに還元剤を加えて貴金属イオンの還元処理を行う。これによって本芯材粒子の表面に貴金属を坦持させる。還元剤は、例えば次亜リン酸ナトリウム、水酸化ホウ素ナトリウム、水素化ホウ素カリウム、ジメチルアミンボラン、ヒドラジン、ホルマリン等が用いられ、これらのうちから、目的とする導電層の構成材料に基づいて選択されることが好ましい。 Core material particles having the ability to capture noble metal ions or whose surfaces have been modified so as to have the ability to capture noble metal ions are used as the core material particles, and the noble metal is supported on the surface of the core material particles. Specifically, the present core material particles are dispersed in a dilute acidic aqueous solution of a noble metal salt such as palladium chloride or silver nitrate. This causes the noble metal ions to be captured on the surface of the core material particles. The concentration of the noble metal salt is typically in the range of 1×10 −7 to 1×10 −2 moles per m 2 of surface area of the core particles. The core material particles in which precious metal ions have been captured are separated from the aqueous solution and washed with water. Subsequently, the core material particles are suspended in water, and a reducing agent is added thereto to perform a reduction treatment of noble metal ions. This causes the noble metal to be supported on the surface of the core material particles. As the reducing agent, for example, sodium hypophosphite, sodium borohydroxide, potassium borohydride, dimethylamine borane, hydrazine, formalin, etc. are used, and the reducing agent is selected from these based on the constituent material of the intended conductive layer. It is preferable that
 貴金属イオンを本芯材粒子の表面に捕捉させる前に、錫イオンを粒子の表面に吸着させ、貴金属との密着性を高める目的で感受性化処理を施してもよい。錫イオンを粒子の表面に吸着させるには、例えば前記のような表面改質された本芯材粒子を塩化第一錫の水溶液に投入し所定時間攪拌すればよい。 Before capturing noble metal ions on the surface of the core particles, tin ions may be adsorbed on the surface of the particles and sensitization treatment may be performed for the purpose of increasing adhesion with the noble metal. In order to adsorb tin ions on the surface of the particles, for example, the surface-modified core particles as described above may be placed in an aqueous solution of stannous chloride and stirred for a predetermined period of time.
 このようにして前処理が施された本芯材粒子を導電層形成工程に供することで本芯材粒子の表面に導電層が形成される。導電層形成工程後、導電層の上面から突出した突起部を形成する工程(以下、「突起部形成工程」とも記す。)を行う。 By subjecting the core particles pretreated in this manner to a conductive layer forming step, a conductive layer is formed on the surface of the core particles. After the conductive layer forming step, a step of forming protrusions protruding from the upper surface of the conductive layer (hereinafter also referred to as "protrusion forming step") is performed.
 突起部形成工程は、以下の導電層形成工程に引き続き突起部形成工程を行うのが好ましい。
 導電層形成工程は、本芯材粒子の水性スラリーと、分散剤、ニッケル塩、還元剤および錯化剤などを含んだ無電解ニッケルめっき浴とを混合する無電解ニッケルめっき法が好ましい。無電解ニッケルめっき法による導電層形成工程では、本芯材粒子上への導電層の形成と同時にめっき液の自己分解が起こる。この自己分解は、本芯材粒子の近傍で生じるため、導電層の形成時に自己分解物が本芯材粒子の表面上に捕捉されることによって、微小突起の核が生成し、それと同時に導電層の形成がなされる。生成した微小突起の核を基点として、後述する突起部形成工程により突起部が成長する。
The protrusion forming step is preferably performed subsequent to the conductive layer forming step described below.
The conductive layer forming step is preferably an electroless nickel plating method in which an aqueous slurry of the core particles is mixed with an electroless nickel plating bath containing a dispersant, a nickel salt, a reducing agent, a complexing agent, and the like. In the conductive layer forming step using the electroless nickel plating method, self-decomposition of the plating solution occurs simultaneously with the formation of the conductive layer on the core particles. This self-decomposition occurs in the vicinity of the core material particles, so when the conductive layer is formed, the self-decomposed products are captured on the surface of the core material particles, producing nuclei of microprotrusions, and at the same time, the conductive layer is formed. Using the generated microprotrusion nucleus as a starting point, a protrusion grows in a protrusion forming step described below.
 無電解ニッケルめっき法による導電層形成工程では、本芯材粒子を好ましくは0.1から500g/L、さらに好ましくは1から300g/Lの範囲で水に十分に分散させ、水性スラリーを調製するのが好ましい。分散操作は、通常攪拌、高速攪拌またはコロイドミルまたはホモジナイザーのような剪断分散装置を用いて行うことができる。また、分散操作に超音波を併用してもかまわない。必要に応じ、分散操作においては界面活性剤などの分散剤を添加する場合もある。次いで、ニッケル塩、還元剤、錯化剤および各種添加剤などを含んだ無電解ニッケルめっき液に、分散操作を行った芯材粒子の水性スラリーを添加し、無電解めっき法を行う。 In the conductive layer forming step using the electroless nickel plating method, the core material particles are sufficiently dispersed in water preferably in a range of 0.1 to 500 g/L, more preferably 1 to 300 g/L to prepare an aqueous slurry. is preferable. The dispersion operation can be carried out using conventional stirring, high-speed stirring, or a shearing dispersion device such as a colloid mill or homogenizer. Further, ultrasonic waves may be used in combination with the dispersion operation. If necessary, a dispersant such as a surfactant may be added during the dispersion operation. Next, the aqueous slurry of the core material particles subjected to the dispersion operation is added to an electroless nickel plating solution containing a nickel salt, a reducing agent, a complexing agent, various additives, etc., and electroless plating is performed.
 前述した分散剤としては、例えば非イオン界面活性剤、両性イオン界面活性剤および/または水溶性高分子が挙げられる。
 非イオン界面活性剤としては、ポリエチレングリコール、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテルなどのポリオキシアルキレンエーテル系の界面活性剤を用いることができる。
 両性イオン界面活性剤としては、アルキルジメチル酢酸ベタイン、アルキルジメチルカルボキシメチル酢酸ベタイン、アルキルジメチルアミノ酢酸ベタインなどのベタイン系の界面活性剤を用いることができる。
 水溶性高分子としては、ポリビニルアルコール、ポリビニルピロリジノン、ヒドロキシエチルセルロースなどを用いることができる。
 これらの分散剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。分散剤の使用量は、その種類にもよるが、一般に、無電解ニッケルめっき液の体積に対して0.5から30g/Lである。特に、分散剤の使用量が無電解ニッケルめっき液の体積に対して1から10g/Lの範囲であると、導電層の密着性が一層向上する観点から好ましい。
Examples of the above-mentioned dispersants include nonionic surfactants, zwitterionic surfactants, and/or water-soluble polymers.
As the nonionic surfactant, polyoxyalkylene ether surfactants such as polyethylene glycol, polyoxyethylene alkyl ether, and polyoxyethylene alkylphenyl ether can be used.
As the zwitterionic surfactant, betaine-based surfactants such as alkyldimethylacetic acid betaine, alkyldimethylcarboxymethylacetic acid betaine, and alkyldimethylaminoacetic acid betaine can be used.
As the water-soluble polymer, polyvinyl alcohol, polyvinylpyrrolidinone, hydroxyethylcellulose, etc. can be used.
These dispersants can be used alone or in combination of two or more. The amount of the dispersant to be used depends on its type, but is generally 0.5 to 30 g/L based on the volume of the electroless nickel plating solution. In particular, it is preferable that the amount of the dispersant used is in the range of 1 to 10 g/L based on the volume of the electroless nickel plating solution, from the viewpoint of further improving the adhesion of the conductive layer.
 ニッケル塩としては、例えば塩化ニッケル、硫酸ニッケルまたは酢酸ニッケルなどが用いられ、その濃度は0.1から50g/Lの範囲とすることが好ましい。
 還元剤としては、貴金属イオンの還元に用いられ、目的とする導電層の構成材料に基づいて選択される。還元剤としてリン化合物およびホウ素化合物が挙げられる。リン化合物として例えば次亜リン酸ナトリウムを用いる場合、その濃度は、0.1から50g/Lの範囲であることが好ましい。
As the nickel salt, for example, nickel chloride, nickel sulfate, or nickel acetate is used, and the concentration thereof is preferably in the range of 0.1 to 50 g/L.
The reducing agent is used to reduce noble metal ions, and is selected based on the constituent material of the intended conductive layer. Examples of reducing agents include phosphorus compounds and boron compounds. When using, for example, sodium hypophosphite as the phosphorus compound, its concentration is preferably in the range of 0.1 to 50 g/L.
 錯化剤としては、例えばクエン酸、ヒドロキシ酢酸、酒石酸、リンゴ酸、乳酸、グルコン酸若しくはそのアルカリ金属塩やアンモニウム塩などのカルボン酸またはカルボン酸塩、グリシンなどのアミノ酸、エチレンジアミン、アルキルアミンなどのアミン酸、その他のアンモニウム、EDTAまたはピロリン酸(塩)など、ニッケルイオンに対し錯化作用のある化合物が使用される。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。その濃度は好ましくは1から100g/L、さらに好ましくは5から50g/Lの範囲である。
 この段階での好ましい無電解ニッケルめっき液のpHは、3から14の範囲である。無電解ニッケルめっき反応は、芯材粒子の水性スラリーを添加すると速やかに始まり、水素ガスの発生を伴う。導電層形成工程は、その水素ガスの発生が完全に認められなくなった時点をもって終了とする。
 導電層の厚みは前記導電層形成工程において、ニッケル塩、必要に応じて分散剤、錯化剤等の濃度、pH等を調整することで制御することができ、前記導電層の好ましい厚みの範囲とすることができる。
Examples of complexing agents include carboxylic acids or carboxylic acid salts such as citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, gluconic acid or their alkali metal salts or ammonium salts, amino acids such as glycine, ethylene diamine, alkyl amines, etc. Compounds having a complexing effect on nickel ions are used, such as amino acid, other ammonium, EDTA or pyrophosphoric acid (salt). These can be used alone or in combination of two or more. Its concentration preferably ranges from 1 to 100 g/L, more preferably from 5 to 50 g/L.
The preferred pH of the electroless nickel plating solution at this stage is in the range of 3 to 14. The electroless nickel plating reaction begins immediately upon addition of the aqueous slurry of core particles and is accompanied by the generation of hydrogen gas. The conductive layer forming step ends when the generation of hydrogen gas is completely no longer observed.
The thickness of the conductive layer can be controlled by adjusting the concentration, pH, etc. of the nickel salt, dispersant, complexing agent, etc. if necessary, in the conductive layer forming step, and the preferred thickness range of the conductive layer is It can be done.
 次いで、前記の導電層形成工程の後に、突起部形成工程を行う。突起部形成工程では、ニッケル塩、還元剤およびアルカリを前記無電解ニッケルめっき法による導電層形成工程の無電解ニッケルめっき液に添加することで突起部を形成するのが好ましい。
ニッケル塩、還元剤およびアルカリの添加方法は、例えば、
(i)ニッケル塩、還元剤およびアルカリのうちの1種を含む第1の水溶液と、残りの2種を含む第2の水溶液を用いる、または、
(ii)ニッケル塩を含む第1の水溶液と、還元剤を含む第2の水溶液と、アルカリを含む第3の水溶液とを用いる、
のが好ましい。
 前記(i)または(ii)の各水溶液を同時に無電解ニッケルめっき液に添加し、さらに添加を継続することで無電解ニッケルめっきを引き続き行う。各水溶液の添加を中断するとめっき反応が停止し、添加すると再びめっき反応が始まる。各水溶液の添加量を調整することによって、形成される導電層を所望の膜厚に制御することができ、さらに前記導電層形成工程で導電層の表面に生成した微小突起の核を起点として突起部が形成される。
 無電解ニッケルめっき液への前記水溶液の添加終了後、水素ガスの発生が完全に認められなくなってから暫く液温を保持しながら攪拌を継続して反応を完結させる。
Next, after the conductive layer forming step, a protrusion forming step is performed. In the protrusion forming step, the protrusions are preferably formed by adding a nickel salt, a reducing agent, and an alkali to the electroless nickel plating solution used in the conductive layer forming step using the electroless nickel plating method.
The method of adding nickel salt, reducing agent and alkali is, for example,
(i) using a first aqueous solution containing one of a nickel salt, a reducing agent, and an alkali and a second aqueous solution containing the remaining two, or
(ii) using a first aqueous solution containing a nickel salt, a second aqueous solution containing a reducing agent, and a third aqueous solution containing an alkali;
is preferable.
Each aqueous solution (i) or (ii) is added to the electroless nickel plating solution at the same time, and the addition is continued to perform electroless nickel plating successively. When the addition of each aqueous solution is interrupted, the plating reaction stops, and when each solution is added, the plating reaction starts again. By adjusting the amount of each aqueous solution added, it is possible to control the thickness of the conductive layer formed to a desired thickness, and furthermore, it is possible to control the thickness of the conductive layer to be formed to a desired thickness. part is formed.
After the addition of the aqueous solution to the electroless nickel plating solution is completed and the generation of hydrogen gas is completely no longer observed, stirring is continued while maintaining the solution temperature for a while to complete the reaction.
 前記の(i)の場合には、ニッケル塩を含む第1の水溶液と、還元剤およびアルカリを含む第2の水溶液とを用いることが好ましいが、この組合せに限られない。この場合には、第1の水溶液には還元剤およびアルカリは含まれず、第2の水溶液にはニッケル塩は含まれない。ニッケル塩および還元剤としては、先に述べたものを用いることができる。アルカリとしては、例えば水酸化ナトリウムや水酸化カリウム等のアルカリ金属の水酸化物を用いることができる。 In the case of (i) above, it is preferable to use a first aqueous solution containing a nickel salt and a second aqueous solution containing a reducing agent and an alkali, but the combination is not limited to this. In this case, the first aqueous solution does not contain a reducing agent or alkali, and the second aqueous solution does not contain a nickel salt. As the nickel salt and reducing agent, those mentioned above can be used. As the alkali, for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide can be used.
 前記の(ii)の場合には、第1から第3の水溶液にニッケル塩、還元剤およびアルカリがそれぞれ含まれ、かつ各水溶液には当該成分以外の他の2成分は含まれない。用いられるアルカリは前記の(i)の場合と同じである。 In the case of (ii) above, the first to third aqueous solutions each contain a nickel salt, a reducing agent, and an alkali, and each aqueous solution does not contain the other two components. The alkali used is the same as in the case (i) above.
 前記(i)および(ii)の場合のいずれであっても、水溶液中のニッケル塩の濃度は10から1,000g/Lが好ましく、50から500g/Lがより好ましい。
 還元剤の濃度は、還元剤としてリン化合物を用いる場合、100から1、000g/Lが好ましく、100から800g/Lがより好ましい。還元剤としてホウ素化合物を用いる場合、5から200g/Lが好ましく、10から100g/Lがより好ましい。還元剤としてヒドラジンまたはその誘導体を用いる場合、5から200g/Lが好ましく、10から100g/Lがより好ましい。
 アルカリの濃度は5から500g/Lが好ましく、10から200g/Lがより好ましい。
In either case (i) or (ii) above, the concentration of nickel salt in the aqueous solution is preferably from 10 to 1,000 g/L, more preferably from 50 to 500 g/L.
When a phosphorus compound is used as the reducing agent, the concentration of the reducing agent is preferably 100 to 1,000 g/L, more preferably 100 to 800 g/L. When using a boron compound as a reducing agent, it is preferably from 5 to 200 g/L, more preferably from 10 to 100 g/L. When using hydrazine or a derivative thereof as a reducing agent, the amount is preferably from 5 to 200 g/L, more preferably from 10 to 100 g/L.
The concentration of alkali is preferably from 5 to 500 g/L, more preferably from 10 to 200 g/L.
 突起部形成工程は、導電層形成工程の終了後に連続して行うか、導電層形成工程終了後、一旦、導電層が形成された芯材粒子を前記無電解ニッケルめっき液から分離後、突起部形成工程を行ってもよい。導電層が形成された芯材粒子を前記無電解ニッケルめっき液から分離する場合、導電層形成工程の終了後、濾過などの方法によって導電層が形成された芯材粒子とめっき液とを分別すればよい。分別後、導電層が形成された芯材粒子を新たに水に分散させて水性スラリーを調製し、そこに錯化剤を好ましくは1から100g/L、さらに好ましくは5から50g/Lの濃度範囲で溶解した水溶液を添加し、分散剤を好ましくは0.5から30g/L、さらに好ましくは1から10g/Lの範囲で溶解し水性スラリーを調製する。調製された前記水性スラリーに前記(i)または(ii)に記載の水溶液を添加し、突起部形成工程を行ってもよい。このようにして、突起部を有する導電層を形成することができる。 The protrusion forming step may be performed continuously after the conductive layer forming step, or after the conductive layer forming step is completed, the core particles on which the conductive layer is formed are separated from the electroless nickel plating solution, and then the protrusions are formed. A forming step may also be performed. When separating the core material particles on which the conductive layer is formed from the electroless nickel plating solution, the core material particles on which the conductive layer is formed and the plating solution are separated by a method such as filtration after the conductive layer forming step is completed. Bye. After separation, the core material particles on which the conductive layer has been formed are newly dispersed in water to prepare an aqueous slurry, and a complexing agent is added thereto at a concentration of preferably 1 to 100 g/L, more preferably 5 to 50 g/L. An aqueous slurry is prepared by adding an aqueous solution in which the dispersant is preferably dissolved in a range of 0.5 to 30 g/L, more preferably 1 to 10 g/L. The aqueous solution described in (i) or (ii) above may be added to the prepared aqueous slurry to perform the protrusion forming step. In this way, a conductive layer having protrusions can be formed.
 前記突起部形成工程で突起部を形成された導電性粒子は、突起部の高さを平準化する工程(以下、「平準化工程」とも記す。)により突起部の高さを平準化する。平準化工程により突起部の高さのばらつきを前記範囲とすることで本導電性粒子が得られる。
 平準化工程では、前記突起部形成工程で得られた突起部の頭頂部分を研磨する方法により、突起部形成工程で形成した突起部の高さを低くすることで、突起部の高さのばらつきを所定の範囲とすることできる。
The conductive particles having protrusions formed in the protrusion forming step have their protrusions leveled in height in a step of leveling the protrusions (hereinafter also referred to as "leveling step"). The present conductive particles can be obtained by adjusting the height variation of the protrusions within the above range through the leveling step.
In the leveling process, the height of the protrusion formed in the protrusion forming process is reduced by polishing the top portion of the protrusion obtained in the protrusion forming process, thereby reducing the variation in the height of the protrusion. can be within a predetermined range.
 突起部の頭頂部分を研磨する方法としては、例えば、ボールミル、ビーズミル等で使用される混合メディアと突起部形成工程で得られた導電性粒子とを混合する方法、研磨剤と突起部形成工程で得られた導電性粒子とを混合する方法、突起部形成工程で得られた導電性粒子同士を混合する方法、突起部形成工程で得られた導電性粒子をベルト等の平面上を回転させる方法等が挙げられる。 Examples of methods for polishing the top portions of the protrusions include mixing media used in a ball mill, bead mill, etc. and conductive particles obtained in the protrusion forming process, and mixing an abrasive with conductive particles obtained in the protrusion forming process. A method of mixing the conductive particles obtained in the protrusion forming step, a method of mixing the conductive particles obtained in the protrusion forming step, a method of rotating the conductive particles obtained in the protrusion forming step on a flat surface such as a belt. etc.
 混合メディアと導電性粒子を混合する場合、混合メディアの材質としては、導電性粒子の突起部の材質と同程度またはそれ以上の硬度を有する材質が好ましい。混合方法は攪拌翼を有する撹拌機を用いる方法、自転または公転またはその両方の運動を行う容器内で混合する方法、振動する容器内で混合する方法等が挙げられる。
 混合メディアの材質としては、例えば、ジルコニア、ジルコン、メノウ、アルミナ、鉄、ステンレス、ガラス等が挙げられる。
When mixed media and conductive particles are mixed, the material of the mixed media is preferably a material that has a hardness comparable to or higher than that of the material of the protrusions of the conductive particles. Examples of the mixing method include a method using a stirrer with stirring blades, a method of mixing in a container that rotates or revolves or both, a method of mixing in a container that vibrates, and the like.
Examples of the material of the mixed media include zirconia, zircon, agate, alumina, iron, stainless steel, and glass.
 研磨剤と突起部形成工程で得られた導電性粒子とを混合する場合、研磨剤としてはダイヤモンド、窒化ホウ素、炭化ケイ素、酸化アルミニウム等が挙げられる。研磨剤との混合方法は、前記混合メディアと導電性粒子を混合する方法と同じ方法が挙げられる。
 導電性粒子同士を混合する方法としても、前記混合メディアと導電性粒子を混合する方法と同じ方法が挙げられる。
When the abrasive and the conductive particles obtained in the protrusion forming step are mixed, examples of the abrasive include diamond, boron nitride, silicon carbide, aluminum oxide, and the like. The method for mixing with the abrasive may be the same as the method for mixing the mixed media and conductive particles.
The method for mixing the conductive particles may be the same as the method for mixing the mixed media and the conductive particles.
 突起部形成工程で得られた導電性粒子をベルト等の平面上を回転させる場合、平面の材質は導電性粒子の突起部の材質と同程度またはそれ以上の硬度を有する材質が好ましい。傾斜をつけた平面上を突起部形成工程で得られた導電性粒子が落下するようにして突起部形成工程で得られた導電性粒子を回転させて平面上を運動させてもよい。また一定の方向に移動する平面上を突起部形成工程で得られた導電性粒子を逆方向へ移動させてもよい。 When the conductive particles obtained in the protrusion forming step are rotated on a flat surface such as a belt, the material of the flat surface is preferably a material having a hardness comparable to or higher than that of the material of the protrusions of the conductive particles. The conductive particles obtained in the protrusion forming step may be rotated and moved on the plane so that the conductive particles obtained in the protrusion forming step fall on the inclined plane. Alternatively, the conductive particles obtained in the protrusion forming step may be moved in the opposite direction on a plane that moves in a fixed direction.
 前記研磨する各方法で、研磨の条件と突起部との高さの関係を予め測定しておき、突起部の高さのばらつきが本導電性粒子の範囲内となるように、事前に研磨条件を決定してもよい。また研磨しながら経時的に突起部の高さのばらつきを測定し、その結果に基づき突起部の高さのばらつきが本導電性粒子の範囲内となった時点で研磨を終了させてもよい。また同様にして突起部の高さを前記好ましい範囲とすることができる。 For each of the polishing methods described above, the relationship between the polishing conditions and the height of the protrusions is measured in advance, and the polishing conditions are adjusted in advance so that the variation in the height of the protrusions is within the range of the present conductive particles. may be determined. Alternatively, while polishing, variations in the height of the protrusions may be measured over time, and based on the results, the polishing may be terminated when the variations in the height of the protrusions fall within the range of the present conductive particles. Similarly, the height of the protrusion can be set within the preferable range.
 平準化工程で突起部の高さを低くする過程で、突起部の頭頂部分が平面状となるように突起部を研磨することで突起部の頭頂部分を略平面状とすることができる。また本芯材粒子の表面の曲率に合わせて突起部の高さを低くすることで、突起部の頭頂部分の曲率半径、Ra、と導電層の外表面の曲率半径、Rb、とを前記好ましい関係とすることができる。 In the process of reducing the height of the protrusion in the leveling process, the protrusion can be made substantially planar by polishing the protrusion so that the protrusion has a flat top. In addition, by reducing the height of the protrusion in accordance with the curvature of the surface of the core material particle, the radius of curvature of the top portion of the protrusion, Ra, and the radius of curvature, Rb, of the outer surface of the conductive layer can be adjusted to the preferable value. It can be a relationship.
 本製造方法は前記平準化工程の後、さらに1,000Pa以下、好ましくは0.01Paから900Pa、特に好ましくは0.1Paから500Paの真空下、200℃から600℃、好ましくは250℃から500℃、特に好ましくは300℃から450℃の温度で加熱処理する工程を含んでもよい。
 このような真空状態を保ちつつ導電性粒子を加熱することで、高温下であっても導電層の金属が副反応し難く、結晶化が進行するため電気抵抗が低くなり、電気的な導通性に優れたものとなる。なお、本発明における真空度は絶対圧、すなわち絶対真空を0としたときの値である。
After the leveling step, this manufacturing method is further carried out under a vacuum of 1,000 Pa or less, preferably 0.01 Pa to 900 Pa, particularly preferably 0.1 Pa to 500 Pa, and 200°C to 600°C, preferably 250°C to 500°C. , particularly preferably at a temperature of 300°C to 450°C.
By heating the conductive particles while maintaining such a vacuum state, the metal in the conductive layer is unlikely to undergo side reactions even at high temperatures, and crystallization progresses, resulting in lower electrical resistance and improved electrical conductivity. Becomes excellent. Note that the degree of vacuum in the present invention is an absolute pressure, that is, a value when absolute vacuum is set to zero.
 加熱処理する工程での加熱処理時間は0.1時間から10時間が好ましく、0.5時間から5時間がさらに好ましい。この処理時間を採用することで、製造コストの増大を抑制することができ、また熱履歴による芯材粒子や導電層の変性が抑制され、品質に及ぼす影響を小さくできる。なお加熱処理時間は、目的とする処理温度に達してから加熱処理が終了するまでの時間である。 The heat treatment time in the heat treatment step is preferably 0.1 to 10 hours, more preferably 0.5 to 5 hours. By employing this processing time, it is possible to suppress an increase in manufacturing costs, and also to suppress deterioration of the core material particles and conductive layer due to thermal history, thereby reducing the influence on quality. Note that the heat treatment time is the time from when the target treatment temperature is reached until the heat treatment is completed.
 加熱処理する工程は、導電性粒子を静置させた状態で行ってもよく、撹拌しながら行ってもよい。導電性粒子を静置させた状態で加熱処理を行う場合、導電性粒子を0.1mmから100mmの厚さで静置させておくことが好ましい。この厚さで静置させておくことで、導電層への加熱処理が首尾よく行われ、製造コストを抑制することができる。 The heat treatment step may be performed while the conductive particles are left standing, or may be performed while stirring. When heat treatment is performed with the conductive particles left still, it is preferable to leave the conductive particles still with a thickness of 0.1 mm to 100 mm. By allowing the conductive layer to stand still at this thickness, the conductive layer can be successfully heated, and manufacturing costs can be suppressed.
 加熱処理する工程は、導電性粒子を入れた容器を真空にまで減圧した後、静置した状態でまたは撹拌しながら行う。この際、導電性粒子を入れた容器の気相部を窒素等の不活性ガスで置換してから真空にまで減圧してもよいし、そのまま真空にまで減圧してもよい。また加熱処理は、必要により複数回行ってもよい。 The heat treatment step is performed while the container containing the conductive particles is reduced to a vacuum, and then left standing or while being stirred. At this time, the gas phase of the container containing the conductive particles may be replaced with an inert gas such as nitrogen, and then the pressure may be reduced to vacuum, or the pressure may be reduced to vacuum as is. Further, the heat treatment may be performed multiple times if necessary.
 また加熱処理する工程は、常温にて1,000Pa以下、好ましくは0.01から900Pa、特に好ましくは0.1から500Paの真空度に到達してから、5から60分間、さらには10から50分間の時間で保持した後、処理温度まで昇温することが好ましい。この操作により、加熱雰囲気や導電性粒子中の酸素や水分等による導電層の酸化を防止することができるため、接続抵抗を低いものにすることができる。 The heat treatment step is performed for 5 to 60 minutes, more preferably for 10 to 50 minutes, after reaching a degree of vacuum of 1,000 Pa or less, preferably 0.01 to 900 Pa, particularly preferably 0.1 to 500 Pa, at room temperature. It is preferable to hold the temperature for 1 minute and then raise the temperature to the processing temperature. By this operation, it is possible to prevent the conductive layer from being oxidized by the heating atmosphere, oxygen, moisture, etc. in the conductive particles, and therefore the connection resistance can be made low.
 前記加熱処理する工程の後、前記真空度を保持したまま50℃以下、さらには40℃以下まで降温してから真空を開放することが好ましい。この理由としては、加熱処理直後の温度で真空を開放すると、雰囲気中に酸素や水分が存在した場合に導電層の酸化が促進されてしまうため接続抵抗が高くなる恐れがあるためである。また真空の開放は、製造コストの面から通常の大気中によるものでもよいが、導電層の酸化防止の観点から窒素、アルゴン、ヘリウム等の不活性ガスや、水素-窒素混合ガス等の非酸化性ガスをパージすることで行うことがより好ましい。 After the heat treatment step, it is preferable to lower the temperature to 50° C. or lower, further to 40° C. or lower, while maintaining the degree of vacuum, and then release the vacuum. The reason for this is that if the vacuum is opened at a temperature immediately after the heat treatment, oxidation of the conductive layer will be promoted if oxygen or moisture is present in the atmosphere, which may increase the connection resistance. In addition, the vacuum may be opened in the normal atmosphere from the viewpoint of manufacturing cost, but from the viewpoint of preventing oxidation of the conductive layer, inert gas such as nitrogen, argon, helium, etc., or non-oxidizing gas such as hydrogen-nitrogen mixed gas may be used. It is more preferable to purge the toxic gas.
 本導電性粒子は、後述するように導電性接着剤の導電性フィラーのような導電性材料として好適に用いることができる。本導電性粒子と絶縁樹脂を含む導電性材料(以下、「本導電性材料」とも記す。)は、導電性粒子間のショートの発生を防止するため、その表面をさらに絶縁樹脂で被覆するのが好ましい。絶縁樹脂の被覆は、圧力等を加えない状態では導電性粒子の表面が極力露出しないように、かつ導電性接着剤を用いて2枚の電極を接着する際に加えられる熱および圧力によって破壊され、導電性粒子の表面のうち少なくとも突起部が露出するように形成される。絶縁樹脂の厚さは0.1から0.5μm程度とすることができる。絶縁樹脂は導電性粒子の表面全体を覆っていてもよいし、導電性粒子の表面の一部を覆っているだけでもよい。 The present conductive particles can be suitably used as a conductive material such as a conductive filler in a conductive adhesive, as described below. The surface of the conductive material containing the present conductive particles and insulating resin (hereinafter also referred to as "the present conductive material") may be further coated with an insulating resin to prevent short circuits between the conductive particles. is preferred. The insulating resin coating is designed to prevent the surface of the conductive particles from being exposed as much as possible when no pressure is applied, and to prevent the coating from being destroyed by the heat and pressure applied when bonding two electrodes using a conductive adhesive. , the conductive particles are formed so that at least the protrusions on the surface thereof are exposed. The thickness of the insulating resin can be approximately 0.1 to 0.5 μm. The insulating resin may cover the entire surface of the conductive particles, or may cover only a part of the surface of the conductive particles.
 絶縁樹脂としては、例えば、フェノール樹脂、ユリア樹脂、メラミン樹脂、アリル樹脂、フラン樹脂、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂、ポリアミド-イミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、フッ素樹脂、ポリエチレン、ポリプロピレン、ポリブチレン等のポリオレフィン樹脂、ポリアルキル(メタ)アクリレート樹脂、ポリ(メタ)アクリル酸樹脂、ポリスチレン樹脂、アクリロニトリル-スチレン-ブタジエン樹脂、ビニル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、アイオノマー樹脂、ポリエーテルスルホン樹脂、ポリフェニルオキシド樹脂、ポリスルホン樹脂、ポリフッ化ビニリデン樹脂、エチルセルロース樹脂および酢酸セルロース樹脂等の有機ポリマーからなる樹脂を挙げることができる。 Examples of the insulating resin include phenol resin, urea resin, melamine resin, allyl resin, furan resin, polyester resin, epoxy resin, silicone resin, polyamide-imide resin, polyimide resin, polyurethane resin, fluororesin, polyethylene, polypropylene, and polybutylene. Polyolefin resins such as polyalkyl (meth)acrylate resins, poly(meth)acrylic acid resins, polystyrene resins, acrylonitrile-styrene-butadiene resins, vinyl resins, polyamide resins, polycarbonate resins, polyacetal resins, ionomer resins, polyethersulfone resins , polyphenyl oxide resin, polysulfone resin, polyvinylidene fluoride resin, ethyl cellulose resin, and cellulose acetate resin.
 導電性粒子の表面を絶縁樹脂で被覆し、絶縁被覆層を形成する方法としては、コアセルベーション法、界面重合法、in situ重合法および液中硬化被覆法等の化学的方法、スプレードライング法、気中懸濁被覆法、真空蒸着被覆法、ドライブレンド法、ハイブリダイゼーション法、静電的合体法、融解分散冷却法および無機質カプセル化法等の物理機械的方法、界面沈澱法等の物理化学的方法が挙げられる。 Methods for coating the surface of conductive particles with an insulating resin to form an insulating coating layer include chemical methods such as coacervation method, interfacial polymerization method, in situ polymerization method, and liquid curing coating method, and spray drying method. , physico-mechanical methods such as air suspension coating method, vacuum evaporation coating method, dry blend method, hybridization method, electrostatic coalescence method, melt dispersion cooling method and inorganic encapsulation method, physical chemistry such as interfacial precipitation method. There are various methods.
 前記絶縁樹脂を構成する有機ポリマーは、非導電性であることを条件として、導電性粒子との密着性向上の観点から、ポリマーの構造中にイオン性基を含むモノマー成分を含んでいてもよい。イオン性基を含むモノマー成分は、架橋性モノマー成分または、非架橋性モノマー成分のいずれでもよい。架橋性モノマー成分および非架橋性モノマー成分の少なくとも1種がイオン性基を有するモノマー成分を用いて、有機ポリマーが形成されていることが好ましい。なお「モノマー成分」とは、有機ポリマー中のモノマーに由来する構造を指し、モノマーから誘導される成分である。イオン性基を含むモノマーを重合に供することによって、イオン性基を含むモノマー成分を構成単位として含む有機ポリマーが形成される。 The organic polymer constituting the insulating resin may contain a monomer component containing an ionic group in the polymer structure from the viewpoint of improving adhesion with conductive particles, provided that it is non-conductive. . The monomer component containing an ionic group may be either a crosslinkable monomer component or a non-crosslinkable monomer component. It is preferable that the organic polymer is formed using a monomer component in which at least one of the crosslinkable monomer component and the non-crosslinkable monomer component has an ionic group. Note that the term "monomer component" refers to a structure derived from a monomer in an organic polymer, and is a component derived from the monomer. By subjecting a monomer containing an ionic group to polymerization, an organic polymer containing the monomer component containing an ionic group as a constitutional unit is formed.
 イオン性基は、絶縁樹脂を構成する有機ポリマー中に存在することが好ましい。また、イオン性基は、有機ポリマーを構成するモノマー成分に化学結合していることが好ましい。イオン性基が有機ポリマーの界面に存在するか否かは、イオン性基を有する有機ポリマーを含む絶縁樹脂を導電性粒子の表面に形成したときに、走査型電子顕微鏡観察によって絶縁樹脂が導電性粒子の表面に付着しているか否かによって判断することができる。 It is preferable that the ionic group exists in the organic polymer constituting the insulating resin. Further, it is preferable that the ionic group is chemically bonded to a monomer component constituting the organic polymer. The presence or absence of ionic groups at the interface of organic polymers can be determined by scanning electron microscopy when an insulating resin containing an organic polymer with ionic groups is formed on the surface of conductive particles. This can be determined by whether or not it is attached to the surface of the particle.
 イオン性基としては、例えば、ホスホニウム基、アンモニウム基、スルホニウム基等のオニウム系官能基が挙げられる。これらのうち、導電性粒子および絶縁樹脂の密着性を高めて、絶縁性と導通信頼性とを高いレベルで兼ね備えた導電性粒子を形成する観点から、アンモニウム基またはホスホニウム基であることが好ましく、ホスホニウム基であることがさらに好ましい。 Examples of the ionic group include onium-based functional groups such as a phosphonium group, an ammonium group, and a sulfonium group. Among these, ammonium groups or phosphonium groups are preferable from the viewpoint of improving the adhesion between the conductive particles and the insulating resin and forming conductive particles that have both insulation properties and continuity reliability at a high level. More preferably, it is a phosphonium group.
 オニウム系官能基は、下記一般式(1)で表されるものが好ましく挙げられる。 Preferable examples of the onium-based functional group include those represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
 
なお前記一般式(1)中、Xはリン原子、窒素原子、または硫黄原子であり、Rは同じであっても異なっていてもよく、水素原子、直鎖状、分岐鎖状若しくは環状のアルキル基、またはアリール基である。nは、Xが窒素原子、リン原子の場合は1であり、Xが硫黄原子の場合は0である。*は結合手である。
Figure JPOXMLDOC01-appb-C000004

In the general formula (1), X is a phosphorus atom, a nitrogen atom, or a sulfur atom, and R may be the same or different, and R is a hydrogen atom, a linear, branched, or cyclic alkyl or aryl group. n is 1 when X is a nitrogen atom or a phosphorus atom, and is 0 when X is a sulfur atom. * is a bond.
 イオン性基に対する対イオンとしては、例えばハロゲン化物イオンが挙げられる。ハロゲン化物イオンの例としては、Cl、F、Br、Iが挙げられる。 Examples of counter ions for ionic groups include halide ions. Examples of halide ions include Cl , F , Br , I .
 前記一般式(1)中、Rで表される直鎖状のアルキル基としては、例えば炭素数1以上20以下の直鎖状アルキル基が挙げられ、具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-イコシル基等が挙げられる。 In the general formula (1), the linear alkyl group represented by R includes, for example, a linear alkyl group having 1 to 20 carbon atoms, and specifically, a methyl group, an ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, Examples include n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-icosyl group, and the like.
 前記一般式(1)中、Rで表される分岐鎖状のアルキル基としては、例えば炭素数3以上8以下の分岐鎖状アルキル基が挙げられ、具体的には、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、s-ペンチル基、t-ペンチル基、イソヘキシル基、s-ヘキシル基、t-ヘキシル基、エチルヘキシル基等が挙げられる。 In the general formula (1), the branched alkyl group represented by R includes, for example, a branched alkyl group having 3 to 8 carbon atoms, and specifically, isopropyl group, isobutyl group, Examples include s-butyl group, t-butyl group, isopentyl group, s-pentyl group, t-pentyl group, isohexyl group, s-hexyl group, t-hexyl group, and ethylhexyl group.
 前記一般式(1)中、Rで表される環状のアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロオクタデシル基といったシクロアルキル基等が挙げられる。 In the general formula (1), the cyclic alkyl group represented by R includes cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, and cyclooctadecyl group. Can be mentioned.
 前記一般式(1)中、Rで表されるアリール基としては、フェニル基、ベンジル基、トリル基、o-キシリル基等が挙げられる。 In the general formula (1), examples of the aryl group represented by R include a phenyl group, a benzyl group, a tolyl group, an o-xylyl group, and the like.
 前記一般式(1)中、Rは、炭素数1以上12以下のアルキル基であることが好ましく、炭素数1以上10以下のアルキル基であることがより好ましく、炭素数1以上8以下のアルキル基であることがさらに好ましい。また、一般式(1)中、Rが直鎖状アルキル基であることもさらに好ましい。オニウム系官能基がこのような構成となっていることによって、絶縁樹脂と導電性粒子との密着性を高めて絶縁性を確保するとともに、熱圧着時における導通信頼性を一層高めることができる。 In the general formula (1), R is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. More preferably, it is a group. Further, in general formula (1), it is also more preferable that R is a linear alkyl group. By having such a structure of the onium-based functional group, it is possible to improve the adhesion between the insulating resin and the conductive particles to ensure insulation, and to further improve the reliability of conduction during thermocompression bonding.
 モノマーの入手およびポリマーの合成を容易にするとともに、絶縁樹脂の製造効率を高める観点から、絶縁樹脂を構成するイオン性基を有する有機ポリマーは、下記一般式(2)または一般式(3)で表される構成単位を有することが好ましい。 In order to facilitate the acquisition of monomers and synthesis of polymers, as well as to increase the production efficiency of insulating resins, the organic polymers having ionic groups constituting the insulating resins are expressed by the following general formula (2) or general formula (3). It is preferable to have the structural unit shown below.
Figure JPOXMLDOC01-appb-C000005
 
なお一般式(2)中、X、Rおよびnは前記一般式(1)と同義である。mは0以上5以下の整数である。Anは一価のアニオンを示す。mが0の場合はXがベンゼン環に直接結合していることを示す。
Figure JPOXMLDOC01-appb-C000005

In general formula (2), X, R and n have the same meanings as in general formula (1) above. m is an integer from 0 to 5. An represents a monovalent anion. When m is 0, it indicates that X is directly bonded to the benzene ring.
Figure JPOXMLDOC01-appb-C000006
 
なお一般式(3)中、X、Rおよびnは前記一般式(1)と同義である。Anは一価のアニオンを示す。mは1以上5以下の整数である。Rは、水素原子またはメチル基である。
Figure JPOXMLDOC01-appb-C000006

In general formula (3), X, R and n have the same meanings as in general formula (1) above. An represents a monovalent anion. m 1 is an integer of 1 or more and 5 or less. R 5 is a hydrogen atom or a methyl group.
 前記一般式(2)および前記一般式(3)中のRの例としては、上述した一般式(1)中のRの官能基の説明が適宜適用される。イオン性基は、一般式(2)のベンゼン環のCH基に対しパラ位、オルト位、メタ位の何れに結合していてもよく、パラ位に結合することが好ましい。一般式(2)および一般式(3)中、一価のAnとしてはハロゲン化物イオンが好適に挙げられる。ハロゲン化物イオンの例としては、Cl、F、Br、Iが挙げられる。 As an example of R in the general formula (2) and the general formula (3), the above description of the functional group of R in the general formula (1) can be applied as appropriate. The ionic group may be bonded to the CH group of the benzene ring of general formula (2) at any of the para, ortho, and meta positions, and is preferably bonded to the para position. In the general formulas (2) and (3), the monovalent An 2 is preferably a halide ion. Examples of halide ions include Cl , F , Br , I .
 また、一般式(2)において、mは0以上2以下の整数が好ましく、0または1がより好ましく、1が特に好ましい。一般式(3)においてmは1以上3以下が好ましく、1または2がより好ましく、2が最も好ましい。 In general formula (2), m is preferably an integer of 0 or more and 2 or less, more preferably 0 or 1, and particularly preferably 1. In general formula (3), m 1 is preferably 1 or more and 3 or less, more preferably 1 or 2, and most preferably 2.
 イオン性基を有する有機ポリマーは、例えばオニウム系の官能基を有し且つエチレン性不飽和結合を有するモノマー成分を含んで構成されることが好ましい。モノマーの入手およびポリマーの合成を容易にし、絶縁樹脂の製造効率を高める観点から、イオン性基を有する有機ポリマーは、非架橋性モノマー成分を含むことも好ましい。 The organic polymer having an ionic group is preferably constituted by containing a monomer component having, for example, an onium-based functional group and an ethylenically unsaturated bond. From the viewpoint of facilitating monomer acquisition and polymer synthesis and increasing the manufacturing efficiency of the insulating resin, it is also preferable that the organic polymer having an ionic group contains a non-crosslinkable monomer component.
 オニウム系の官能基を有し且つエチレン性不飽和結合を有する非架橋性モノマーとしては、例えば、N,N-ジメチルアミノエチルメタクリレート、N,N-ジメチルアミノプロピルアクリルアミド、N,N,N-トリメチル-N-2-メタクリロイルオキシエチルアンモニウムクロライド等のアンモニウム基含有モノマー;メタクリル酸フェニルジメチルスルホニウムメチル硫酸塩等のスルホニウム基を有するモノマー;4-(ビニルベンジル)トリエチルホスホニウムクロライド、4-(ビニルベンジル)トリメチルホスホニウムクロライド、4-(ビニルベンジル)トリブチルホスホニウムクロライド、4-(ビニルベンジル)トリオクチルホスホニウムクロライド、4-(ビニルベンジル)トリフェニルホスホニウムクロライド、2-(メタクロイルオキシエチル)トリメチルホスホニウムクロライド、2-(メタクロイルオキシエチル)トリエチルホスホニウムクロライド、2-(メタクロイルオキシエチル)トリブチルホスホニウムクロライド、2-(メタクロイルオキシエチル)トリオクチルホスホニウムクロライド、2-(メタクロイルオキシエチル)トリフェニルホスホニウムクロライド等のホスホニウム基を有するモノマーなどが挙げられる。イオン性基を有する有機ポリマーには、2種以上の非架橋性モノマー成分が含まれていてもよい。 Examples of non-crosslinking monomers having an onium-based functional group and an ethylenically unsaturated bond include N,N-dimethylaminoethyl methacrylate, N,N-dimethylaminopropylacrylamide, and N,N,N-trimethyl -N-2-Methacryloyloxyethylammonium chloride and other ammonium group-containing monomers; methacrylic acid phenyldimethylsulfonium methyl sulfate and other sulfonium group-containing monomers; 4-(vinylbenzyl)triethylphosphonium chloride, 4-(vinylbenzyl)trimethyl Phosphonium chloride, 4-(vinylbenzyl)tributylphosphonium chloride, 4-(vinylbenzyl)trioctylphosphonium chloride, 4-(vinylbenzyl)triphenylphosphonium chloride, 2-(methacroyloxyethyl)trimethylphosphonium chloride, 2-( Phosphonium groups such as methacroyloxyethyl)triethylphosphonium chloride, 2-(methacloyloxyethyl)tributylphosphonium chloride, 2-(methacloyloxyethyl)trioctylphosphonium chloride, 2-(methacloyloxyethyl)triphenylphosphonium chloride, etc. Examples include monomers having the following. The organic polymer having an ionic group may contain two or more types of non-crosslinkable monomer components.
 絶縁樹脂を構成する有機ポリマーは、モノマー成分の全てにイオン性基が結合したものであってもよく、あるいは、有機ポリマーの全構成単位中の一部にイオン性基が結合していてもよい。有機ポリマーの全構成単位中の一部にイオン性基が結合している場合、イオン性基が結合したモノマー成分の割合は、0.01モル%以上99モル%以下であることが好ましく、0.02モル%以上95モル%以下であることがより好ましい。ここで、有機ポリマー中のモノマー成分の数は、有機ポリマーがエチレン性不飽和結合を有する場合、一つのエチレン性不飽和結合に由来する構造を一つのモノマーの構成単位としてカウントする。イオン性基が架橋性モノマーおよび非架橋性モノマーの双方に含まれる場合、モノマー成分の割合はその総量とする。 The organic polymer constituting the insulating resin may have an ionic group bonded to all of the monomer components, or may have an ionic group bonded to a part of all the constituent units of the organic polymer. . When an ionic group is bonded to a part of the total structural units of the organic polymer, the proportion of the monomer component to which the ionic group is bonded is preferably 0.01 mol% or more and 99 mol% or less, and 0.01 mol% or more and 99 mol% or less. More preferably, it is .02 mol% or more and 95 mol% or less. Here, for the number of monomer components in the organic polymer, when the organic polymer has an ethylenically unsaturated bond, a structure derived from one ethylenically unsaturated bond is counted as a constituent unit of one monomer. When the ionic group is contained in both the crosslinkable monomer and the non-crosslinkable monomer, the proportion of the monomer components is the total amount thereof.
 絶縁樹脂による被覆の形態としては、絶縁樹脂からなる絶縁性微粒子が複数、層状に配置された形態、或いは、絶縁樹脂が連続皮膜となっている形態が挙げられる。 Examples of the form of the coating with the insulating resin include a form in which a plurality of insulating fine particles made of the insulating resin are arranged in a layered form, or a form in which the insulating resin forms a continuous film.
 前記絶縁樹脂が絶縁性微粒子からなる場合、絶縁性微粒子で被覆された導電性粒子を電極間で熱圧着することで絶縁性微粒子が溶融、変形、剥離または導電性粒子表面を移動することにより熱圧着された部分における導電性粒子の金属表面が露出し、これにより電極間での導通を可能として接続性が得られる。一方、導電性粒子における熱圧着方向以外の方向を向く表面部分は、絶縁性微粒子による導電性粒子表面の被覆状態が概ね維持されているため、熱圧着方向以外の方向における導通が防止される。 When the insulating resin is made of insulating fine particles, the conductive particles coated with the insulating fine particles are thermocompressed between the electrodes, and the insulating fine particles melt, deform, peel, or move on the surface of the conductive particles, causing heat to be generated. The metal surface of the conductive particles in the crimped portion is exposed, thereby enabling conduction between the electrodes and providing connectivity. On the other hand, in the surface portion of the conductive particles facing in a direction other than the thermocompression bonding direction, conduction in the direction other than the thermocompression bonding direction is prevented because the surface of the conductive particles is generally covered with the insulating fine particles.
 絶縁性微粒子は、その表面に前記イオン性基を含むことにより、導電性粒子に密着しやすく、これによって導電性粒子表面における絶縁性微粒子に被覆される割合を十分なものにできるとともに、導電性粒子からの絶縁性微粒子の剥離などが効果的に防止される。このため、絶縁性微粒子による対向電極間と異なる方向における短絡防止効果が発揮されやすく、当該方向での絶縁性の向上が期待できる。 Since the insulating fine particles contain the ionic group on their surface, they easily adhere to the conductive particles, and this allows a sufficient proportion of the surface of the conductive particles to be covered with the insulating fine particles. Peeling of the insulating fine particles from the particles is effectively prevented. Therefore, the short-circuit prevention effect of the insulating fine particles in a direction different from that between the opposing electrodes is likely to be exhibited, and an improvement in insulation in this direction can be expected.
 絶縁性微粒子の形状は、特に制限はなく、球状であってもよく、或いは球状以外の形状であってもよい。球状以外の形状としては例えば、繊維状、中空状、板状または針状が挙げられる。また絶縁性微粒子はその表面に多数の突起部を有するものまたは不定形のものであってもよい。導電性粒子への付着性の点や合成の容易性の点で球状の絶縁性微粒子が好ましい。 The shape of the insulating fine particles is not particularly limited, and may be spherical or may have a shape other than spherical. Examples of shapes other than spherical include fibrous, hollow, plate-like, and needle-like. Further, the insulating fine particles may have many protrusions on their surfaces or may have an irregular shape. Spherical insulating fine particles are preferred from the viewpoint of adhesion to conductive particles and ease of synthesis.
 絶縁性微粒子の平均粒子径は、好ましくは10nm以上3,000nm以下、より好ましくは15nm以上2,000nm以下である。絶縁性微粒子の平均粒子径が前記範囲内であることで、得られる被覆粒子が対向電極間とは異なる方向での短絡を発生させることなく、対向電極間での導通を確保しやすい。絶縁性微粒子の平均粒子径は、走査型電子顕微鏡を用いた観察において測定した値であり、具体的には後述する実施例に記載の方法にて測定される。 The average particle diameter of the insulating fine particles is preferably 10 nm or more and 3,000 nm or less, more preferably 15 nm or more and 2,000 nm or less. When the average particle diameter of the insulating fine particles is within the above range, the resulting coated particles can easily ensure conduction between the opposing electrodes without causing a short circuit in a direction different from that between the opposing electrodes. The average particle diameter of the insulating fine particles is a value measured by observation using a scanning electron microscope, and specifically, it is measured by the method described in the Examples described below.
 前記の方法によって測定された絶縁性微粒子の粒度分布は通常、幅を有する。一般に、粉体の粒度分布の幅は、下記式(4)で示される変動係数(Coefficient of Variation、以下「C.V.」とも記載する)により表される。
   C.V.(%)=(標準偏差/平均粒子径)×100・・・(4)
 このC.V.が大きければ粒度分布の幅が広く、一方、C.V.が小さければ粒度分布がシャープである。本導電性材料に用いる絶縁性微粒子のC.V.は0.1%以上20%以下が好ましく、0.5%以上15%以下がより好ましく、1%以上10%以下が特に好ましい。C.V.がこの範囲であることにより、絶縁性微粒子による被覆層の厚みを均一にできる利点がある。
The particle size distribution of the insulating fine particles measured by the above method usually has a range. Generally, the width of the particle size distribution of powder is expressed by the coefficient of variation (hereinafter also referred to as "C.V.") shown by the following formula (4).
C. V. (%) = (standard deviation/average particle diameter) x 100...(4)
This C. V. The larger C. is, the wider the particle size distribution is. V. The smaller the particle size distribution, the sharper the particle size distribution. C. of the insulating fine particles used in this conductive material. V. is preferably 0.1% or more and 20% or less, more preferably 0.5% or more and 15% or less, particularly preferably 1% or more and 10% or less. C. V. By having the amount within this range, there is an advantage that the thickness of the coating layer made of the insulating fine particles can be made uniform.
 また、前記の絶縁性微粒子が層状に配置された形態に替えて、絶縁樹脂が連続皮膜である形態であってもよい。連続被膜がイオン性基を有する絶縁樹脂である場合、本導電性粒子を電極間で熱圧着することで連続皮膜が溶融、変形または剥離することにより本導電性粒子の表面が露出し、これにより電極間での導通を可能とし接続性が得られる。特に、本導電性粒子を電極間で熱圧着することで連続皮膜が破け、表面が露出した本導電性粒子が多くなる。
 一方、導電性粒子における熱圧着方向とは異なる方向を向く表面部分では、連続皮膜による本導電性粒子の被覆状態が概ね維持されているため、熱圧着方向以外の方向における導通が防止される。絶縁樹脂が連続被膜の場合、表面にイオン性基を有する連続被膜が好ましい。
Further, instead of the above-mentioned form in which the insulating fine particles are arranged in a layered manner, the insulating resin may be in a continuous film form. When the continuous film is an insulating resin having an ionic group, the surface of the conductive particles is exposed when the continuous film is melted, deformed, or peeled off by thermocompression bonding the conductive particles between the electrodes. It enables conduction between electrodes and provides connectivity. In particular, when the present conductive particles are bonded by thermocompression between electrodes, the continuous film is torn, and a large number of the present conductive particles have their surfaces exposed.
On the other hand, in the surface portion of the conductive particles facing in a direction different from the thermocompression bonding direction, the state of coverage of the conductive particles with the continuous film is generally maintained, so conduction in a direction other than the thermocompression bonding direction is prevented. When the insulating resin is a continuous film, a continuous film having ionic groups on the surface is preferable.
 連続皮膜の厚さは、10nm以上であることが、対向電極間と異なる方向における絶縁性の向上の点から好ましく、3,000nm以下であることが、対向電極間での導通しやすさの点で好ましい。この点から、連続皮膜の厚さは、10nm以上3,000nm以下であることが好ましく、15nm以上2,000nm以下であることがより好ましい。 The thickness of the continuous film is preferably 10 nm or more in terms of improving insulation in a direction different from that between opposing electrodes, and 3,000 nm or less is preferable in terms of ease of conduction between opposing electrodes. It is preferable. From this point of view, the thickness of the continuous film is preferably 10 nm or more and 3,000 nm or less, more preferably 15 nm or more and 2,000 nm or less.
 絶縁性微粒子と同様、連続皮膜においてイオン性基は、連続皮膜を構成する絶縁樹脂の一部として、絶縁樹脂の化学構造の一部をなしていることが好ましい。連続皮膜においてイオン性基は、連続皮膜を構成する絶縁樹脂の構成単位の少なくとも1種の構造中に含有されていることが好ましい。イオン性基は、連続皮膜を構成する絶縁樹脂に化学結合していることが好ましく、より好ましくは絶縁樹脂の側鎖に結合している。 Similar to the insulating fine particles, it is preferable that the ionic group in the continuous film forms part of the chemical structure of the insulating resin as part of the insulating resin that constitutes the continuous film. In the continuous film, the ionic group is preferably contained in the structure of at least one constituent unit of the insulating resin constituting the continuous film. The ionic group is preferably chemically bonded to the insulating resin constituting the continuous film, and more preferably to a side chain of the insulating resin.
 本導電性材料が絶縁樹脂の連続皮膜を有する場合、本導電性粒子を、その表面にイオン性基を有する絶縁性微粒子で被覆した後、該絶縁性微粒子を加熱させて得られた連続皮膜、または、該絶縁性微粒子を有機溶剤により溶解させて得られた連続皮膜であることが好ましい。前記のとおり、イオン性基を有する絶縁性微粒子は、本導電性粒子に対し密着しやすく、これによって本導電性粒子表面における絶縁性微粒子に被覆される割合が十分なものになるとともに、本導電性粒子からの絶縁性微粒子の剥離が防止されやすくなる。このため、本導電性粒子を被覆する絶縁性微粒子を加熱または溶解して得られた連続皮膜は、厚みが均一で且つ導電性粒子表面における被覆割合を高いものとすることができる。 When the present conductive material has a continuous film of an insulating resin, the continuous film obtained by coating the present conductive particles with insulating fine particles having an ionic group on the surface and then heating the insulating fine particles, Alternatively, it is preferably a continuous film obtained by dissolving the insulating fine particles in an organic solvent. As mentioned above, the insulating fine particles having ionic groups tend to adhere closely to the present conductive particles, and as a result, the surface of the present conductive particles is covered with a sufficient proportion of the insulating fine particles, and the present conductive particles This makes it easier to prevent the insulating fine particles from peeling off from the conductive particles. Therefore, the continuous film obtained by heating or melting the insulating fine particles covering the present conductive particles can have a uniform thickness and a high coverage ratio on the surface of the conductive particles.
 本導電性粒子は、前記絶縁樹脂との親和性を高めて密着性が向上する観点から、表面処理剤で処理してもよい。
 前記表面処理剤としては、例えば、ベンゾトリアゾール系化合物、チタン系化合物、高級脂肪酸またはその誘導体、リン酸エステルおよび亜リン酸エステル等が挙げられる。これらは単独で用いてもよいし、必要に応じて複数を組み合わせて用いてもよい。
The present conductive particles may be treated with a surface treatment agent from the viewpoint of increasing affinity with the insulating resin and improving adhesion.
Examples of the surface treatment agent include benzotriazole compounds, titanium compounds, higher fatty acids or derivatives thereof, phosphoric esters, and phosphorous esters. These may be used alone or in combination as necessary.
 前記表面処理剤は、本導電性粒子における表面と化学的に結合していてもよく、結合していなくてもよい。表面処理剤は、本導電性粒子の表面に存在していればよく、その場合、本導電性粒子の表面全体に存在していてもよく、表面の一部にのみ存在していてもよい。 The surface treatment agent may or may not be chemically bonded to the surface of the present conductive particles. The surface treatment agent only needs to be present on the surface of the present conductive particles, and in that case, it may be present on the entire surface of the present conductive particles or only on a part of the surface.
 前記トリアゾール系化合物としては、5員環に3つの窒素原子を有する含窒素複素環構造を有する化合物が挙げられる。 Examples of the triazole compounds include compounds having a nitrogen-containing heterocyclic structure having three nitrogen atoms in a five-membered ring.
 トリアゾール系化合物としては、他の環と縮合していないトリアゾール単環構造を有する化合物のほか、トリアゾール環と他の環とが縮合した環構造を有する化合物が挙げられる。他の環としては、ベンゼン環、ナフタレン環が挙げられる。 Examples of triazole-based compounds include compounds having a triazole monocyclic structure that is not fused with other rings, as well as compounds having a ring structure in which a triazole ring and another ring are fused. Examples of other rings include a benzene ring and a naphthalene ring.
 中でも、絶縁樹脂との密着性に優れることから、トリアゾール環と他の環とが縮合した環構造を有する化合物が好ましく、とりわけトリアゾール環とベンゼン環が縮合した構造を有する化合物であるベンゾトリアゾール系化合物が好ましい。
 ベンゾトリアゾール系化合物としては、下記一般式(4)で表されるものが挙げられる。
Among these, compounds having a ring structure in which a triazole ring and another ring are condensed are preferable because they have excellent adhesion with the insulating resin, and in particular, benzotriazole compounds, which are compounds having a structure in which a triazole ring and a benzene ring are condensed. is preferred.
Examples of benzotriazole compounds include those represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000007
 
前記一般式(4)中、R11は、負電荷、水素原子、アルカリ金属、置換されていてもよいアルキル基、アミノ基、ホルミル基、ヒドロキシル基、アルコキシ基、スルホン酸基またはシリル基であり、R12、R13、R14およびR15はそれぞれ独立に、水素原子、ハロゲン原子、置換されていてもよいアルキル基、カルボキシル基、ヒドロキシル基またはニトロ基である。
Figure JPOXMLDOC01-appb-C000007

In the general formula (4), R 11 is a negative charge, a hydrogen atom, an alkali metal, an optionally substituted alkyl group, an amino group, a formyl group, a hydroxyl group, an alkoxy group, a sulfonic acid group, or a silyl group. , R 12 , R 13 , R 14 and R 15 are each independently a hydrogen atom, a halogen atom, an optionally substituted alkyl group, a carboxyl group, a hydroxyl group or a nitro group.
 前記一般紙式(4)におけるR11で表されるアルカリ金属としては、リチウム、ナトリウム、カリウム等が挙げられる。R11で表されるアルカリ金属は、アルカリ金属陽イオンであり、一般式(4)におけるR11がアルカリ金属である場合、R11と窒素原子との結合はイオン結合となっていてもよい。
 一般式(4)におけるR11、R12、R13、R14およびR15で表されるアルキル基としては、炭素数1から20のものが挙げられ、炭素数1から12が特に好ましい。当該アルキル基は、置換されていてもよく、置換基としてはアミノ基、アルコキシ基、カルボキシル基、ヒドロキシル基、アルデヒド基、ニトロ基、スルホン酸基、第四級アンモニウム基、スルホニウム基、スルホニル基、ホスホニウム基、シアノ基、フルオロアルキル基、メルカプト基、およびハロゲン原子が挙げられる。
 R11で表されるアルコキシ基としては、炭素数が1から12のものが好ましく挙げられる。
 また、R12、R13、R14およびR15で表されるアルキル基の置換基としてのアルコキシ基の炭素数は1から12であることが好ましい。一般式(4)におけるR12、R13、R14およびR15で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
Examples of the alkali metal represented by R 11 in the general paper formula (4) include lithium, sodium, potassium, and the like. The alkali metal represented by R 11 is an alkali metal cation, and when R 11 in general formula (4) is an alkali metal, the bond between R 11 and the nitrogen atom may be an ionic bond.
The alkyl group represented by R 11 , R 12 , R 13 , R 14 and R 15 in general formula (4) includes those having 1 to 20 carbon atoms, and those having 1 to 12 carbon atoms are particularly preferable. The alkyl group may be substituted, and examples of the substituent include an amino group, an alkoxy group, a carboxyl group, a hydroxyl group, an aldehyde group, a nitro group, a sulfonic acid group, a quaternary ammonium group, a sulfonium group, a sulfonyl group, Examples include phosphonium groups, cyano groups, fluoroalkyl groups, mercapto groups, and halogen atoms.
The alkoxy group represented by R 11 preferably has 1 to 12 carbon atoms.
Moreover, it is preferable that the carbon number of the alkoxy group as a substituent of the alkyl group represented by R 12 , R 13 , R 14 and R 15 is 1 to 12. Examples of the halogen atom represented by R 12 , R 13 , R 14 and R 15 in general formula (4) include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
 具体的なトリアゾール系化合物としては、トリアゾール単環構造を有する化合物として1,2,3-トリアゾ-ル、1,2,4-トリアゾール、3-アミノ-1H-1,2,4-トリアゾール、5-メルカプト-1H-1,2,3-トリアゾールナトリウム、4-アミノ-3-ヒドラジノ-5-メルカプト-1,2,4-トリアゾール、3-アミノ-5-メルカプト-1,2,4-トリアゾール、が挙げられるほか、トリアゾール環と他の環とが縮合した環構造を有するベンゾトリアゾール、1-メチル-1H-ベンゾトリアゾール、4-メチル-1H-ベンゾトリアゾール、5-メチル-1H-ベンゾトリアゾール、4-カルボキシ-1H-ベンゾトリアゾール、5-カルボキシ-1H-ベンゾトリアゾール、5-エチル-1H-ベンゾトリアゾール、5-プロピル-1H-ベンゾトリアゾール、5,6-ジメチル-1H-ベンゾトリアゾール、1-アミノベンゾトリアゾール、5-ニトロベンゾトリアゾール、5-クロロベンゾトリアゾール、4,5,6,7-テトラブロモベンゾトリアゾール、1-ヒドロキシベンゾトリアゾール、1-(メトキシメチル)-1H-ベンゾトリアゾール、1H-ベンゾトリアゾール-1-メタノール、1H-ベンゾトリアゾール-1-カルボキシアルデヒド、1-(クロロメチル)-1H-ベンゾトリアゾール、1-ヒドロキシ-6-(トリフルオロメチル)ベンゾトリアゾール、ベンゾトリアゾールブチルエステル、4-カルボキシル-1H-ベンゾトリアゾールブチルエステル、4-カルボキシル-1H-ベンゾトリアゾールオクチルエステル、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]メチルベンゾトリアゾール、2,2’-[[(メチル-1H-ベンゾトリアゾール-1-イル)メチル]イミノ]ビスエタノール、テトラブチルホスホニウムベンゾトリアゾラート、1H-ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロホスファート、1H-ベンゾトリアゾール-1-イルオキシトリピロリジノホスホニウムヘキサフルオロホスファート、1-(ホルムアミドメチル)-1H-ベンゾトリアゾール、1-[ビス(ジメチルアミノ)メチレン]-1H-ベンゾトリアゾリウム3-オキシドヘキサフルオロホスファート、1-[ビス(ジメチルアミノ)メチレン]-1H-ベンゾトリアゾリウム3-オキシドテトラフルオロボラート、(6-クロロ-1H-ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウムヘキサフルオロホスファート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-ビス(テトラメチレン)ウロニウムヘキサフルオロホスファート、O-(6-クロロベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロボラート、O-(6-クロロベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-ビス(ペンタメチレン)ウロニウムヘキサフルオロホスファート、1-(トリメチルシリル)-1H-ベンゾトリアゾール、1-[2-(トリメチルシリル)エトキシカルボニルオキシ]ベンゾトリアゾール、1-(トリフルオロメタンスルホニル)-1H-ベンゾトリアゾール、(トリフルオロアセチル)ベンゾトリアゾール、トリス(1H-ベンゾトリアゾール-1-イル)メタン、9-(1H-ベンゾトリアゾール-1-イルメチル)-9H-カルバゾール、[(1H-ベンゾトリアゾール-1-イル)メチル]トリフェニルホスホニウムクロリド、1-(イソシアノメチル)-1H-ベンゾトリアゾール、1-[(9H-フルオレン-9-イルメトキシ)カルボニルオキシ]ベンゾトリアゾール、1,2,3-ベンゾトリアゾールナトリウム塩、ナフトトリアゾール等が挙げられる。 Specific triazole compounds include 1,2,3-triazole, 1,2,4-triazole, 3-amino-1H-1,2,4-triazole, and 5-triazole compounds having a triazole monocyclic structure. -mercapto-1H-1,2,3-triazole sodium, 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, 3-amino-5-mercapto-1,2,4-triazole, In addition, benzotriazole, 1-methyl-1H-benzotriazole, 4-methyl-1H-benzotriazole, 5-methyl-1H-benzotriazole, 4-methyl-1H-benzotriazole, which has a ring structure in which a triazole ring and another ring are fused -Carboxy-1H-benzotriazole, 5-carboxy-1H-benzotriazole, 5-ethyl-1H-benzotriazole, 5-propyl-1H-benzotriazole, 5,6-dimethyl-1H-benzotriazole, 1-aminobenzo Triazole, 5-nitrobenzotriazole, 5-chlorobenzotriazole, 4,5,6,7-tetrabromobenzotriazole, 1-hydroxybenzotriazole, 1-(methoxymethyl)-1H-benzotriazole, 1H-benzotriazole- 1-methanol, 1H-benzotriazole-1-carboxaldehyde, 1-(chloromethyl)-1H-benzotriazole, 1-hydroxy-6-(trifluoromethyl)benzotriazole, benzotriazole butyl ester, 4-carboxyl-1H -benzotriazole butyl ester, 4-carboxyl-1H-benzotriazole octyl ester, 1-[N,N-bis(2-ethylhexyl)aminomethyl]methylbenzotriazole, 2,2'-[[(methyl-1H-benzo triazol-1-yl)methyl]imino]bisethanol, tetrabutylphosphonium benzotriazolate, 1H-benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate, 1H-benzotriazol-1-yloxy Tripyrrolidinophosphonium hexafluorophosphate, 1-(formamidomethyl)-1H-benzotriazole, 1-[bis(dimethylamino)methylene]-1H-benzotriazolium 3-oxide hexafluorophosphate, 1-[bis (dimethylamino)methylene]-1H-benzotriazolium 3-oxide tetrafluoroborate, (6-chloro-1H-benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate, O-(benzotriazole- 1-yl)-N,N,N',N'-bis(tetramethylene)uronium hexafluorophosphate, O-(6-chlorobenzotriazol-1-yl)-N,N,N',N' -Tetramethyluronium tetrafluoroborate, O-(6-chlorobenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate, O-(benzotriazole-1 -yl)-N,N,N',N'-bis(pentamethylene)uronium hexafluorophosphate, 1-(trimethylsilyl)-1H-benzotriazole, 1-[2-(trimethylsilyl)ethoxycarbonyloxy]benzo Triazole, 1-(trifluoromethanesulfonyl)-1H-benzotriazole, (trifluoroacetyl)benzotriazole, tris(1H-benzotriazol-1-yl)methane, 9-(1H-benzotriazol-1-ylmethyl)-9H -Carbazole, [(1H-benzotriazol-1-yl)methyl]triphenylphosphonium chloride, 1-(isocyanomethyl)-1H-benzotriazole, 1-[(9H-fluoren-9-ylmethoxy)carbonyloxy]benzo Examples include triazole, 1,2,3-benzotriazole sodium salt, naphthotriazole, and the like.
 前記チタン系化合物としては、例えば下記一般式(5)で表される構造を有する化合物が、導電性粒子の表面に有する場合に絶縁樹脂と導電性粒子との親和性を容易に得られる点や溶媒に分散し易く導電性粒子表面を均一に処理できる点で特に好ましい。 As the titanium-based compound, for example, a compound having a structure represented by the following general formula (5) can easily obtain affinity between the insulating resin and the conductive particles when it is present on the surface of the conductive particles. It is particularly preferred because it is easily dispersed in a solvent and the surface of the conductive particles can be uniformly treated.
Figure JPOXMLDOC01-appb-C000008
 
前記一般式(5)中、R21は2価または3価の基であり、R22は炭素原子数2以上30以下の脂肪族炭化水素基、炭素原子数6以上22以下のアリール基または炭素原子数7以上23以下のアリールアルキル基であり、pおよびrはそれぞれ1以上3以下の整数であり、p+r=4を満たし、qは1または2である整数であり、R21が2価の基である場合、qは1であり、R21が3価の基である場合、qは2である。qが2である場合、複数のR22は同一であっても異なってもよい。*は結合手を表す。
Figure JPOXMLDOC01-appb-C000008

In the general formula (5), R 21 is a divalent or trivalent group, and R 22 is an aliphatic hydrocarbon group having 2 to 30 carbon atoms, an aryl group having 6 to 22 carbon atoms, or a carbon It is an arylalkyl group having 7 or more atoms and 23 or less atoms, p and r are each an integer of 1 or more and 3 or less, satisfies p+r=4, q is an integer of 1 or 2, and R 21 is a divalent When R 21 is a group, q is 1; when R 21 is a trivalent group, q is 2. When q is 2, multiple R 22s may be the same or different. * represents a bond.
 R22で表される炭素原子数4以上28以下の脂肪族炭化水素基の例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基等が挙げられる。不飽和脂肪族炭化水素基の例としては、アルケニル基として、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、ノナデセニル基、イコセニル基、エイコセニル基、ヘンイコセニル基、ドコセニル基が挙げられる。
 炭素原子数6以上22以下のアリール基としては、フェニル基、トリル基、ナフチル基、アントリル基等が挙げられる。
 炭素原子数7以上23以下のアリールアルキル基としては、ベンジル基、フェネチル基、ナフチルメチル基等が挙げられる。
 疎水性基としては直鎖状または分岐鎖状の脂肪族炭化水素基が特に好ましく、直鎖状の脂肪族炭化水素基がとりわけ好ましい。
 絶縁樹脂と導電性粒子との親和性を高める点から、疎水性基としての脂肪族炭化水素基としては、特に炭素原子数4以上28以下のものがさらに好ましく、6以上24以下のものが最も好ましい。
Examples of the aliphatic hydrocarbon group having 4 to 28 carbon atoms represented by R22 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group. , decyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, henicosyl group, docosyl group, and the like. Examples of unsaturated aliphatic hydrocarbon groups include alkenyl groups such as dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, nonadecenyl group, icosenyl group, eicosenyl group, henicosenyl group, and docosenyl group. It will be done.
Examples of the aryl group having 6 to 22 carbon atoms include phenyl group, tolyl group, naphthyl group, anthryl group, and the like.
Examples of the arylalkyl group having 7 or more and 23 or less carbon atoms include a benzyl group, a phenethyl group, a naphthylmethyl group, and the like.
As the hydrophobic group, a linear or branched aliphatic hydrocarbon group is particularly preferable, and a linear aliphatic hydrocarbon group is especially preferable.
From the viewpoint of increasing the affinity between the insulating resin and the conductive particles, the aliphatic hydrocarbon group as the hydrophobic group is particularly preferably one having 4 or more and 28 or less carbon atoms, and most preferably one having 6 or more and 24 or less carbon atoms. preferable.
 R21で表される2価の基としては、-O-、-COO-、-OCO-、-OSO-等が挙げられる。R21で表される3価の基としては、-P(OH)(O-)、-OPO(OH)-OPO(O-)等が挙げられる。 Examples of the divalent group represented by R 21 include -O-, -COO-, -OCO-, -OSO 2 -, and the like. Examples of the trivalent group represented by R 21 include -P(OH)(O-) 2 and -OPO(OH)-OPO(O-) 2 .
 前記一般式(5)において*は結合手であり、当該結合手は導電性粒子の金属皮膜に結合していてもよく、或いは、他の基等に結合していてもよい。その場合の他の基等としては、例えば、炭化水素基が挙げられ、具体的には炭素原子数1以上12以下のアルキル基が挙げられる。 In the general formula (5), * is a bond, and the bond may be bonded to the metal film of the conductive particle or to another group or the like. Examples of other groups in this case include hydrocarbon groups, and specifically, alkyl groups having 1 to 12 carbon atoms.
 一般式(5)で表される構造を有するチタン系化合物としては、一般式(5)におけるR21が2価の基である構造を有する化合物が、入手容易性や導電性粒子の導電特性を損なうことなく処理できる点で好ましい。一般式(5)においてR21が2価の基である構造は、下記一般式(6)で表される。 As titanium-based compounds having the structure represented by the general formula (5), compounds having a structure in which R 21 in the general formula (5) is a divalent group are easy to obtain and have good conductive properties of conductive particles. It is preferable because it can be processed without damaging it. A structure in which R 21 is a divalent group in the general formula (5) is represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000009
 
前記一般式(6)中、R21は、-O-、-COO-、-OCO-、-OSO-から選ばれる基であり、p、rおよびR22は一般式(II)と同義である。
Figure JPOXMLDOC01-appb-C000009

In the general formula (6), R 21 is a group selected from -O-, -COO-, -OCO-, -OSO 2 -, and p, r and R 22 have the same meanings as in general formula (II). be.
 一般式(5)および(6)において、rは2または3であることが、絶縁樹脂と導電層の密着性が上がる観点で好ましく、rが3であることが最も好ましい。 In general formulas (5) and (6), r is preferably 2 or 3 from the viewpoint of improving the adhesion between the insulating resin and the conductive layer, and most preferably r is 3.
 前記表面処理に用いられるチタネート系化合物の具体例としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピル(ジオクチルホスファイト)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等が挙げられ、これらは1種または2種以上で用いることができる。
 なお、これらのチタネート系化合物は、例えば、味の素ファインテクノ株式会社から市販されている。
Specific examples of the titanate compounds used in the surface treatment include isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl (dioctyl phosphite) titanate, and tetraisopropyl bis( dioctyl phosphite) titanate, tetraoctyl bis(ditridecyl phosphite) titanate, tetra(2,2-diallyloxymethyl-1-butyl) bis(ditridecyl) phosphite titanate, bis(dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate, etc., and these can be used alone or in combination of two or more.
Note that these titanate compounds are commercially available from Ajinomoto Fine Techno Co., Ltd., for example.
 高級脂肪酸としては、飽和または不飽和の直鎖または分枝鎖のモノまたはポリカルボン酸が好ましく、飽和または不飽和の直鎖または分枝鎖のモノカルボン酸がさらに好ましく、飽和または不飽和の直鎖モノカルボン酸が一層好ましい。脂肪酸は、その炭素数が好ましくは7以上である。また、誘導体とは、前記脂肪酸の塩またはアミドを指す。 The higher fatty acids are preferably saturated or unsaturated straight-chain or branched mono- or polycarboxylic acids, more preferably saturated or unsaturated straight-chain or branched monocarboxylic acids, and saturated or unsaturated straight-chain or branched monocarboxylic acids. More preferred are chain monocarboxylic acids. The fatty acid preferably has 7 or more carbon atoms. Further, the term "derivative" refers to a salt or amide of the fatty acid.
 前記表面処理に用いられる高級脂肪酸またはその誘導体は、高級脂肪酸の炭素数が好ましくは7から23であり、さらに好ましくは10から20である。このような高級脂肪酸またはその誘導体としては、例えばカプリン酸、ラウリル酸、ミリスチン酸、パルミチン酸、ステアリン酸等の飽和脂肪酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸、またはこれらの金属塩若しくはアミド等が挙げられる。高級脂肪酸の金属塩としては、アルカリ金属、アルカリ土類金属、Zr、Cr、Mn、Fe、Co、Ni、Cu、Ag等の遷移金属、およびAl、Zn等の遷移金属以外の他の金属の塩が挙げられ、好ましくはAl、Zn、W、V等の多価金属塩である。高級脂肪酸金属塩は、金属の価数に応じて、モノ体、ジ体、トリ体、テトラ体等であり得る。高級脂肪酸金属塩は、これらの任意の組み合わせであってもよい。 The higher fatty acid or its derivative used for the surface treatment preferably has 7 to 23 carbon atoms, more preferably 10 to 20 carbon atoms. Such higher fatty acids or their derivatives include, for example, saturated fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, and stearic acid; unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, and arachidonic acid; Examples include metal salts or amides of. Metal salts of higher fatty acids include alkali metals, alkaline earth metals, transition metals such as Zr, Cr, Mn, Fe, Co, Ni, Cu, Ag, and other metals other than transition metals such as Al and Zn. Examples include salts, preferably polyvalent metal salts such as Al, Zn, W, and V. Higher fatty acid metal salts may be mono-, di-, tri-, tetra-, etc. depending on the valence of the metal. The higher fatty acid metal salt may be any combination thereof.
 リン酸エステルおよび亜リン酸エステルとしては、炭素数6から22のアルキル基を有するものが、好ましく用いられる。
 リン酸エステルとしては、例えば、リン酸ヘキシルエステル、リン酸ヘプチルエステル、リン酸モノオクチルエステル、リン酸モノノニルエステル、リン酸モノデシルエステル、リン酸モノウンデシルエステル、リン酸モノドデシルエステル、リン酸モノトリデシルエステル、リン酸モノテトラデシルエステル、リン酸モノペンタデシルエステル等が挙げられる。
 亜リン酸エステルとしては、例えば、亜リン酸ヘキシルエステル、亜リン酸ヘプチルエステル、亜リン酸モノオクチルエステル、亜リン酸モノノニルエステル、亜リン酸モノデシルエステル、亜リン酸モノウンデシルエステル、亜リン酸モノドデシルエステル、亜リン酸モノトリデシルエステル、亜リン酸モノテトラデシルエステル、亜リン酸モノペンタデシルエステル等が挙げられる。
As the phosphoric acid ester and the phosphorous acid ester, those having an alkyl group having 6 to 22 carbon atoms are preferably used.
Examples of phosphoric esters include hexyl phosphate, heptyl phosphate, monooctyl phosphate, monononyl ester, monodecyl phosphate, monoundecyl phosphate, monododecyl phosphate, and phosphoric acid. Examples include acid monotridecyl ester, phosphoric acid monotradecyl ester, phosphoric acid monopentadecyl ester, and the like.
Examples of the phosphite include phosphite hexyl ester, phosphite heptyl ester, phosphite monooctyl ester, phosphite monononyl ester, phosphite monodecyl ester, phosphite monoundecyl ester, Examples include phosphorous acid monododecyl ester, phosphorous acid monotridecyl ester, phosphorous acid monotradecyl ester, phosphorous acid monopentadecyl ester, and the like.
 前記表面処理において用いる表面処理剤は、絶縁樹脂との親和性に優れ、また、絶縁樹脂の被覆率を高める効果の観点から、トリアゾール系化合物、チタン系化合物が好ましく、特にベンゾトリアゾール、4-カルボキシベンゾトリアゾール、イソプロピルトリイソステアロイルチタネート、テトライソプロピル(ジオクチルホスファイト)チタネートが特に好ましい。 The surface treatment agent used in the surface treatment is preferably a triazole compound or a titanium compound, especially benzotriazole or 4-carboxylic compound, from the viewpoint of having excellent affinity with the insulating resin and increasing the coverage of the insulating resin. Particularly preferred are benzotriazole, isopropyl triisostearoyl titanate, and tetraisopropyl (dioctyl phosphite) titanate.
 本導電性粒子を表面処理剤により処理する方法は、本導電性粒子を表面処理剤の溶液中で分散させた後、ろ過することで得られる。表面処理剤による処理前において、本導電性粒子は別の処理剤で処理されていてもよく、未処理であってもよい。
 本導電性粒子を分散させた表面処理剤の溶液中の表面処理剤の濃度は、例えば0.01質量%以上10.0質量%以下である。また表面処理剤の溶液の溶媒は、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、イソペンチルアルコール、シクロヘキサノール、などのアルコール類、アセトン、メチルイソブチルケトン、メチルエチルケトン、メチル-n-ブチルケトン、などのケトン類、酢酸メチル、酢酸エチル、などのエステル類、ジエチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類、ノルマルヘキサン、シクロヘキサノン、トルエン、1,4-ジオキサン、N,N-ジメチルホルムアミド、テトラヒドロフラン等が挙げられる。分散、ろ過した表面処理後の本導電性粒子は、再度溶媒中に分散させて過剰の表面処理剤を除去することが好ましい。
The method of treating the present conductive particles with a surface treatment agent is obtained by dispersing the present conductive particles in a solution of the surface treatment agent and then filtering the solution. Before being treated with a surface treatment agent, the conductive particles may be treated with another treatment agent or may be untreated.
The concentration of the surface treatment agent in the solution of the surface treatment agent in which the present conductive particles are dispersed is, for example, 0.01% by mass or more and 10.0% by mass or less. The solvent for the solution of the surface treatment agent is water, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, isopentyl alcohol, cyclohexanol, acetone, methyl Ketones such as isobutyl ketone, methyl ethyl ketone, methyl-n-butyl ketone, esters such as methyl acetate, ethyl acetate, ethers such as diethyl ether, ethylene glycol monoethyl ether, normal hexane, cyclohexanone, toluene, 1,4 -dioxane, N,N-dimethylformamide, tetrahydrofuran and the like. It is preferable that the surface-treated conductive particles that have been dispersed and filtered are dispersed again in a solvent to remove excess surface treatment agent.
 本導電性粒子の表面処理剤による表面処理は、室温で本導電性粒子と表面処理剤と溶媒を混合することにより処理することができる。あるいは、本導電性粒子と表面処理剤を溶媒中で混合後、加熱して反応を促進してもよい。加熱温度は例えば30℃以上50℃以下である。 The surface treatment of the present conductive particles with a surface treatment agent can be carried out by mixing the present conductive particles, the surface treatment agent, and a solvent at room temperature. Alternatively, the conductive particles and the surface treatment agent may be mixed in a solvent and then heated to promote the reaction. The heating temperature is, for example, 30°C or higher and 50°C or lower.
 本導電性粒子は、接続抵抗が低く、且つ、接続信頼性にも優れるため、例えば異方性導電フィルム(ACF)やヒートシールコネクタ(HSC)、液晶ディスプレーパネルの電極を駆動用LSIチップの回路基板へ接続するための導電性材料として好適に使用される。導電性材料としては、本導電性粒子をそのまま使用してもよいし、本導電性粒子をバインダー樹脂に分散して導電性材料としてもよい。また導電性材料として本導電性材料をそのまま用いてもよいし、本導電性材料をバインダー樹脂に分散して用いてもよい。導電性材料のその他の形態は特に限定されず、上記したものの他には、例えば、異方性導電ペースト、導電性接着剤、異方性導電インク等の形態が挙げられる。 These conductive particles have low connection resistance and excellent connection reliability, so they can be used, for example, in anisotropic conductive films (ACF), heat seal connectors (HSC), and LSI chip circuits for driving electrodes of liquid crystal display panels. It is preferably used as a conductive material for connection to a substrate. As the conductive material, the present conductive particles may be used as they are, or the present conductive particles may be dispersed in a binder resin to form a conductive material. Further, as the conductive material, the present conductive material may be used as it is, or the present conductive material may be used after being dispersed in a binder resin. Other forms of the conductive material are not particularly limited, and in addition to those described above, examples include forms such as an anisotropic conductive paste, a conductive adhesive, and an anisotropic conductive ink.
 前記バインダー樹脂としては、熱可塑性樹脂または熱硬化性樹脂等が挙げられる。熱可塑性樹脂としては、例えば、アクリル樹脂、スチレン樹脂、エチレン-酢酸ビニル樹脂、スチレン-ブタジエンブロック共重合体等が挙げられ、熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、尿素樹脂、ポリエステル樹脂、ウレタン樹脂、ポリイミド樹脂等が挙げられる。 Examples of the binder resin include thermoplastic resins and thermosetting resins. Examples of thermoplastic resins include acrylic resins, styrene resins, ethylene-vinyl acetate resins, styrene-butadiene block copolymers, etc., and examples of thermosetting resins include epoxy resins, phenol resins, urea resins, Examples include polyester resin, urethane resin, polyimide resin, and the like.
 前記導電性材料は、本発明の導電性粒子およびバインダー樹脂の他に、必要に応じて粘着付与剤、反応性助剤、エポキシ樹脂硬化剤、金属酸化物、光開始剤、増感剤、硬化剤、加硫剤、劣化防止剤、耐熱添加剤、熱伝導向上剤、軟化剤、着色剤、各種カップリング剤または金属不活性剤等を配合することができる。 In addition to the conductive particles and binder resin of the present invention, the conductive material may optionally contain a tackifier, a reactive aid, an epoxy resin curing agent, a metal oxide, a photoinitiator, a sensitizer, and a curing agent. Agents, vulcanizing agents, deterioration inhibitors, heat-resistant additives, thermal conductivity improvers, softeners, coloring agents, various coupling agents, metal deactivators, and the like can be blended.
 前記導電性材料において、導電性粒子の使用量は、用途に応じて適宜決定すればよいが、導電性粒子同士が接触することなく電気的導通を得やすくする観点から、例えば導電性材料100質量部に対して0.01質量部以上50質量部以下、特に0.03質量部以上40質量部以下であることが好ましい。 In the conductive material, the amount of conductive particles to be used may be appropriately determined depending on the application, but from the viewpoint of making it easier to obtain electrical continuity without the conductive particles coming into contact with each other, for example, 100 mass of the conductive material is used. It is preferably 0.01 parts by mass or more and 50 parts by mass or less, particularly 0.03 parts by mass or more and 40 parts by mass or less.
 本発明の導電性粒子は、上記した導電性材料の形態の中でも、特に、導電性接着剤の導電性フィラーとして好適に用いられる。 Among the forms of the above-mentioned conductive materials, the conductive particles of the present invention are particularly suitable for use as a conductive filler in conductive adhesives.
 前記の導電性接着剤は、導電性基材が形成された2枚の基板間に配置され、加熱加圧によって前記導電性基材を接着して導通する異方導電性接着剤として好ましく用いられる。この異方導電性接着剤は、本発明の導電性粒子と接着剤樹脂とを含む。接着剤樹脂としては、絶縁性で、かつ接着剤樹脂として用いられているものであれば、特に制限なく使用できる。熱可塑性樹脂および熱硬化性のいずれであってもよく、加熱によって接着性能が発現するものが好ましい。そのような接着剤樹脂には、例えば熱可塑性タイプ、熱硬化性タイプ、紫外線硬化タイプ等がある。また、熱可塑性タイプと熱硬化性タイプとの中間的な性質を示す、いわゆる半熱硬化性タイプ、熱硬化性タイプと紫外線硬化タイプとの複合タイプ等がある。これらの接着剤樹脂は被着対象である回路基板等の表面特性や使用形態に合わせて適宜選択できる。特に、熱硬化性樹脂を含んで構成される接着剤樹脂が、接着後の材料的強度に優れる点から好ましい。 The conductive adhesive described above is preferably used as an anisotropic conductive adhesive that is placed between two substrates on which a conductive base material is formed, and that adheres and conducts the conductive base materials by applying heat and pressure. . This anisotropically conductive adhesive contains the conductive particles of the present invention and an adhesive resin. The adhesive resin can be used without any particular limitation as long as it is insulating and is used as an adhesive resin. It may be either a thermoplastic resin or a thermosetting resin, and preferably one that exhibits adhesive performance when heated. Such adhesive resins include, for example, thermoplastic types, thermosetting types, ultraviolet curing types, and the like. Additionally, there are so-called semi-thermosetting types, which exhibit intermediate properties between thermoplastic types and thermosetting types, and composite types of thermosetting types and ultraviolet curing types. These adhesive resins can be selected as appropriate depending on the surface characteristics of the circuit board or the like to which they are adhered and the manner in which they are used. In particular, an adhesive resin containing a thermosetting resin is preferable because it has excellent material strength after bonding.
 接着剤樹脂としては、具体的には、エチレン-酢酸ビニル共重合体、カルボキシル変性エチレン-酢酸ビニル共重合体、エチレン-イソブチルアクリレート共重合体、ポリアミド、ポリイミド、ポリエステル、ポリビニルエーテル、ポリビニルブチラール、ポリウレタン、SBSブロック共重合体、カルボキシル変性SBS共重合体、SIS共重合体、SEBS共重合体、マレイン酸変性SEBS共重合体、ポリブタジエンゴム、クロロプレンゴム、カルボキシル変性クロロプレンゴム、スチレン-ブタジエンゴム、イソブチレン-イソプレン共重合体、アクリロニトリル-ブタジエンゴム(以下、NBRと表す。)、カルボキシル変性NBR、アミン変性NBR、エポキシ樹脂、エポキシエステル樹脂、アクリル樹脂、フェノール樹脂またはシリコーン樹脂などから選ばれる1種または2種以上の組合せにより得られるものを主剤として調製されたものが挙げられる。これらのうち、熱可塑性樹脂としては、スチレン-ブタジエンゴムやSEBSなどがリワーク性に優れるので好ましい。熱硬化性樹脂としては、エポキシ樹脂が好ましい。これらのうち接着力が高く、耐熱性、電気絶縁性に優れ、しかも溶融粘度が低く、低圧力で接続が可能であるという利点から、エポキシ樹脂が最も好ましい。 Specific examples of the adhesive resin include ethylene-vinyl acetate copolymer, carboxyl-modified ethylene-vinyl acetate copolymer, ethylene-isobutyl acrylate copolymer, polyamide, polyimide, polyester, polyvinyl ether, polyvinyl butyral, and polyurethane. , SBS block copolymer, carboxyl-modified SBS copolymer, SIS copolymer, SEBS copolymer, maleic acid-modified SEBS copolymer, polybutadiene rubber, chloroprene rubber, carboxyl-modified chloroprene rubber, styrene-butadiene rubber, isobutylene- One or two types selected from isoprene copolymer, acrylonitrile-butadiene rubber (hereinafter referred to as NBR), carboxyl-modified NBR, amine-modified NBR, epoxy resin, epoxy ester resin, acrylic resin, phenol resin, silicone resin, etc. Examples include those prepared using the above-mentioned combinations as main ingredients. Among these, styrene-butadiene rubber, SEBS, and the like are preferred as thermoplastic resins because they have excellent reworkability. Epoxy resin is preferred as the thermosetting resin. Among these, epoxy resins are most preferred because they have high adhesive strength, excellent heat resistance, and electrical insulation, and have low melt viscosity, allowing connection at low pressure.
 前記のエポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する多価エポキシ樹脂であれば、一般に用いられているエポキシ樹脂が使用可能である。具体的なものとしては、フェノールノボラック、クレゾールノボラック等のノボラック樹脂、ビスフェノールA、ビスフェノールF、ビスフェノールAD、レゾルシン、ビスヒドロキシジフェニルエーテル等の多価フェノール類、エチレングリコール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ポリプロピレングリコール等の多価アルコール類、エチレンジアミン、トリエチレンテトラミン、アニリン等のポリアミノ化合物、アジピン酸、フタル酸、イソフタル酸等の多価カルボキシ化合物等とエピクロルヒドリンまたは2-メチルエピクロルヒドリンを反応させて得られるグリシジル型のエポキシ樹脂が例示される。また、ジシクロペンタジエンエポキサイド、ブタジエンダイマージエポキサイド等の脂肪族および脂環族エポキシ樹脂等が挙げられる。これらは1種を単独でまたは2種以上混合して使用することができる。 As the epoxy resin, any commonly used epoxy resin can be used as long as it is a polyvalent epoxy resin having two or more epoxy groups in one molecule. Specific examples include novolac resins such as phenol novolac and cresol novolac, polyhydric phenols such as bisphenol A, bisphenol F, bisphenol AD, resorcinol, and bishydroxydiphenyl ether, ethylene glycol, neopentyl glycol, glycerin, and trimethylolpropane. , obtained by reacting epichlorohydrin or 2-methylepichlorohydrin with polyhydric alcohols such as polypropylene glycol, polyamino compounds such as ethylenediamine, triethylenetetramine, and aniline, and polyhydric carboxy compounds such as adipic acid, phthalic acid, and isophthalic acid. An example is a glycidyl type epoxy resin. Other examples include aliphatic and alicyclic epoxy resins such as dicyclopentadiene epoxide and butadiene dimer diepoxide. These can be used alone or in a mixture of two or more.
 なお、前記各種の接着樹脂としては、NaやCl等の不純物イオンや加水分解性塩素などが低減された高純度品を用いることが、イオンマイグレーションの防止の観点から好ましい。 In addition, from the viewpoint of preventing ion migration, it is preferable to use high-purity products with reduced impurity ions such as Na + and Cl - and hydrolyzable chlorine as the various adhesive resins.
 異方導電性接着剤における導電性粒子の使用量は、接着剤樹脂成分100質量部に対し通常0.1から30質量部、好ましくは0.5から25質量部、より好ましくは1から20質量部である。導電性粒子の使用量がこの範囲内にあることにより、接続抵抗や溶融粘度が高くなることが抑制され、接続信頼性を向上させ、接続の異方性を十分に確保することができる。 The amount of conductive particles used in the anisotropic conductive adhesive is usually 0.1 to 30 parts by mass, preferably 0.5 to 25 parts by mass, and more preferably 1 to 20 parts by mass per 100 parts by mass of the adhesive resin component. Department. When the amount of conductive particles used is within this range, increase in connection resistance and melt viscosity can be suppressed, connection reliability can be improved, and connection anisotropy can be sufficiently ensured.
 前記の異方導電性接着剤には、上述した導電性粒子および接着剤樹脂の他に、当該技術分野において、公知の添加剤を配合することができる。その配合量も当該技術分野において公知の範囲内とすることができる。他の添加剤としては、例えば粘着付与剤、反応性助剤、エポキシ樹脂硬化剤、金属酸化物、光開始剤、増感剤、硬化剤、加硫剤、劣化防止剤、耐熱添加剤、熱伝導向上剤、軟化剤、着色剤、各種カップリング剤または金属不活性剤などを例示することができる。 In addition to the conductive particles and adhesive resin described above, the anisotropically conductive adhesive may contain additives known in the art. The blending amount can also be within the range known in the technical field. Other additives include, for example, tackifiers, reactive aids, epoxy resin hardeners, metal oxides, photoinitiators, sensitizers, hardeners, vulcanizing agents, deterioration inhibitors, heat-resistant additives, and heat-resistant additives. Examples include conduction improvers, softeners, colorants, various coupling agents, and metal deactivators.
 粘着付与剤としては、例えばロジン、ロジン誘導体、テルペン樹脂、テルペンフェノール樹脂、石油樹脂、クマロン-インデン樹脂、スチレン系樹脂、イソプレン系樹脂、アルキルフェノール樹脂、キシレン樹脂などが挙げられる。反応性助剤すなわち架橋剤としては、例えばポリオール、イソシアネート類、メラミン樹脂、尿素樹脂、ウトロピン類、アミン類、酸無水物、過酸化物などが挙げられる。エポキシ樹脂硬化剤としては、1分中に2個以上の活性水素を有するものであれば特に制限なく使用できる。具体的なものとしては、例えばジエチレントリアミン、トリエチレンテトラミン、メタフェニレンジアミン、ジシアンジアミド、ポリアミドアミン等のポリアミノ化合物;無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、無水ピロメリット酸等の有機酸無水物;フェノールノボラック、クレゾールノボラック等のノボラック樹脂等が挙げられる。これらは1種を単独でまたは2種以上を混合して使用することができる。また、必要に応じて潜在性硬化剤を用いてもよい。使用できる潜在性硬化剤としては、例えば、イミダゾール系、ヒドラジド系、三フッ化ホウ素-アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等およびこれらの変性物が挙げられる。これらは1種を単独でまたは2種以上の混合体として使用できる。 Examples of the tackifier include rosin, rosin derivatives, terpene resins, terpene phenol resins, petroleum resins, coumaron-indene resins, styrene resins, isoprene resins, alkylphenol resins, xylene resins, and the like. Examples of the reactive auxiliary agent or crosslinking agent include polyols, isocyanates, melamine resins, urea resins, utropins, amines, acid anhydrides, and peroxides. As the epoxy resin curing agent, any one having two or more active hydrogen atoms per minute can be used without particular limitation. Specific examples include polyamino compounds such as diethylenetriamine, triethylenetetramine, metaphenylenediamine, dicyandiamide, and polyamidoamine; organic acid anhydrides such as phthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and pyromellitic anhydride; Examples include novolac resins such as phenol novolac and cresol novolac. These can be used alone or in combination of two or more. Furthermore, a latent curing agent may be used if necessary. Examples of the latent curing agent that can be used include imidazole type, hydrazide type, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, etc., and modified products thereof. These can be used alone or as a mixture of two or more.
 前記の異方導電性接着剤は、当該技術分野において通常使用されている製造装置を用いて製造される。例えば、導電性粒子および接着剤樹脂並びに必要に応じ硬化剤や各種添加剤を配合し、接着剤樹脂が熱硬化性樹脂の場合は有機溶媒中で混合することにより、熱可塑性樹脂の場合は接着剤樹脂の軟化点以上の温度で、具体的には好ましくは約50から130℃程度、さらに好ましくは約60から110℃程度で溶融混練することにより製造される。このようにして得られた異方導電性接着剤は、塗布してもよいし、フィルム状にして適用してもよい。 The above-mentioned anisotropic conductive adhesive is manufactured using manufacturing equipment commonly used in the technical field. For example, conductive particles and adhesive resin, as well as curing agents and various additives as necessary, are mixed together in an organic solvent if the adhesive resin is a thermosetting resin, or by mixing in an organic solvent if the adhesive resin is a thermoplastic resin. It is produced by melt-kneading at a temperature higher than the softening point of the agent resin, specifically preferably about 50 to 130°C, more preferably about 60 to 110°C. The anisotropically conductive adhesive thus obtained may be applied by coating or in the form of a film.
 本発明にかかる接続構造体は、本発明にかかる導電性粒子、または本発明にかかる導電性材料を用いて二つの回路基板同士を接続することにより得られるものである。前記接続構造体の形態としては、例えば、フレキシブルプリント基板とガラス基板との接続構造体、半導体チップとフレキシブルプリント基板との接続構造体、半導体チップとガラス基板との接続構造体等が挙げられる。 The connected structure according to the present invention is obtained by connecting two circuit boards using the conductive particles according to the present invention or the conductive material according to the present invention. Examples of the form of the connection structure include a connection structure between a flexible printed circuit board and a glass substrate, a connection structure between a semiconductor chip and a flexible printed circuit board, a connection structure between a semiconductor chip and a glass substrate, and the like.
 以下、実施例により本発明をさらに説明する。しかしながら本発明の範囲はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be further explained with reference to Examples. However, the scope of the present invention is not limited to these examples.
 例中の特性は下記の方法により測定した。
(1)平均粒子径
 測定対象の走査型電子顕微鏡(SEM)写真から、任意に200個の粒子を抽出して、倍率10、000倍にて粒子径を測定し、その算術平均値を平均粒子径とした。
(2)導電層の厚み
 導電性粒子を2つに切断し、その切り口の断面を走査型電子顕微鏡(SEM)で観察して測定した。
(3)突起部の高さのばらつき
 SEM観察により観察される導電性粒子の断面について、突起部の高さを計測し、下記式(1)により求めた。
 
Figure JPOXMLDOC01-appb-I000010
(4)曲率半径
 SEM観察により観察される導電性粒子の断面について、各突起部の断面の頭頂部分に外接する外接円の半径をRaとし、導電層の下層の表面に外接する外接円の半径をRbとして計測した。
(5)導電性粒子の投影面積及び突起部の頭頂部分の面積
 導電性粒子のSEM写真画像を自動画像解析装置(株式会社ニレコ製、ルーゼックス(登録商標)AP)に取り込むことにより測定した。
The properties in the examples were measured by the following methods.
(1) Average particle diameter 200 particles are arbitrarily extracted from a scanning electron microscope (SEM) photograph of the measurement target, the particle diameter is measured at a magnification of 10,000 times, and the arithmetic mean value is calculated as the average particle size. The diameter was taken as the diameter.
(2) Thickness of conductive layer Conductive particles were cut into two, and the cross section of the cut end was observed and measured using a scanning electron microscope (SEM).
(3) Variation in the height of the protrusions The height of the protrusions was measured with respect to the cross section of the conductive particles observed by SEM observation, and was determined by the following formula (1).

Figure JPOXMLDOC01-appb-I000010
(4) Radius of curvature Regarding the cross section of the conductive particle observed by SEM observation, let Ra be the radius of the circumscribed circle circumscribing the top part of the cross section of each protrusion, and the radius of the circumscribed circle circumscribing the surface of the lower layer of the conductive layer. was measured as Rb.
(5) Projected area of conductive particles and area of top of protrusion It was measured by importing a SEM photographic image of the conductive particles into an automatic image analysis device (Luzex (registered trademark) AP, manufactured by Nireco Co., Ltd.).
〔実施例1〕
(1)芯材粒子の前処理
 平均粒子径2.0μmの球状スチレン-アクリレート-シリカ複合系樹脂粒子を芯材粒子として用いた。その9gを、200mLのコンディショナー水溶液(ローム・アンド・ハース電子材料製の「クリーナーコンディショナー231」)に攪拌しながら投入した。コンディショナー水溶液の濃度は40mL/Lであった。引き続き、液温60℃で超音波を与えながら30分間攪拌して芯材粒子の表面改質および分散処理を行った。この水溶液を濾過し、一回リパルプ水洗した芯材粒子を200mLのスラリーにした。このスラリーへ塩化第一錫0.1gを投入した。常温で5分間攪拌し、錫イオンを芯材粒子の表面に吸着させる感受性化処理を行った。引き続きこの水溶液を濾過し、一回リパルプ水洗した芯材粒子を200mLのスラリーにして60℃に維持した。このスラリーへ0.11mol/Lの塩化パラジウム水溶液1.5mLを投入した。60℃で5分間撹拌し、パラジウムイオンを芯材粒子の表面に捕捉させる活性化処理を行った。引き続きこの水溶液を濾過し、一回リパルプ湯洗した芯材粒子を100mLのスラリーにし、0.5g/Lジメチルアミンボラン水溶液10mLを加え、超音波を与えながら2分間撹拌して前処理済み芯材粒子のスラリーを得た。
[Example 1]
(1) Pretreatment of core material particles Spherical styrene-acrylate-silica composite resin particles having an average particle diameter of 2.0 μm were used as core material particles. 9 g of the solution was added to 200 mL of an aqueous conditioner solution ("Cleaner Conditioner 231" manufactured by Rohm & Haas Electronic Materials) with stirring. The concentration of the conditioner aqueous solution was 40 mL/L. Subsequently, the solution was stirred for 30 minutes while applying ultrasonic waves at a liquid temperature of 60° C. to perform surface modification and dispersion treatment of the core material particles. This aqueous solution was filtered, and the core material particles, which had been repulped and washed once, were made into a 200 mL slurry. 0.1 g of stannous chloride was added to this slurry. The mixture was stirred at room temperature for 5 minutes to perform a sensitization treatment in which tin ions were adsorbed onto the surface of the core particles. Subsequently, this aqueous solution was filtered, and the core particles, which had been repulped and washed once with water, were made into a 200 mL slurry and maintained at 60°C. 1.5 mL of a 0.11 mol/L palladium chloride aqueous solution was added to this slurry. The mixture was stirred at 60° C. for 5 minutes to perform an activation treatment in which palladium ions were captured on the surface of the core particles. Subsequently, this aqueous solution was filtered, the core material particles that had been repulped and washed once were made into a 100 mL slurry, 10 mL of a 0.5 g/L dimethylamine borane aqueous solution was added, and the mixture was stirred for 2 minutes while applying ultrasonic waves to obtain the pretreated core material. A slurry of particles was obtained.
(2)めっき液の調製
 5g/Lの酒石酸ナトリウム、2g/Lの硫酸ニッケル六水和物、10g/Lのクエン酸3ナトリウム、0.1g/Lの次亜リン酸ナトリウム、および2g/Lのポリエチレングリコールを溶解した水溶液からなる3Lの無電解ニッケル-リンめっき液を調製し、70℃に昇温した。
(2) Preparation of plating solution 5g/L sodium tartrate, 2g/L nickel sulfate hexahydrate, 10g/L trisodium citrate, 0.1g/L sodium hypophosphite, and 2g/L 3L of electroless nickel-phosphorus plating solution was prepared from an aqueous solution containing polyethylene glycol, and the temperature was raised to 70°C.
(3)無電解めっき処理
 この無電解めっき浴に、前記前処理済み芯材粒子のスラリーを投入し、5分間攪拌して水素の発泡が停止するのを確認した。このスラリーに、224g/Lの硫酸ニッケル水溶液420mLと、210g/Lの次亜リン酸ナトリウムおよび80g/Lの水酸化ナトリウムを含む混合水溶液420mLを、添加速度はいずれも2.5mL/分として定量ポンプによって連続的に分別添加し、無電解めっきを開始した。硫酸ニッケル水溶液と、次亜リン酸ナトリウムおよび水酸化ナトリウムの混合水溶液のそれぞれ全量を添加した後、70℃の温度を保持しながら5分間攪拌を継続した。次いで液を濾過し、濾過物を3回洗浄した後、110℃の真空乾燥機で乾燥して、突起部有する導電性粒子を得た。
(3) Electroless plating treatment The slurry of the pretreated core material particles was poured into this electroless plating bath, stirred for 5 minutes, and it was confirmed that hydrogen bubbling had stopped. To this slurry, 420 mL of a 224 g/L nickel sulfate aqueous solution, 420 mL of a mixed aqueous solution containing 210 g/L sodium hypophosphite, and 80 g/L sodium hydroxide were quantitatively added at an addition rate of 2.5 mL/min. Electroless plating was started by continuous fractional addition using a pump. After adding the entire amounts of the nickel sulfate aqueous solution and the mixed aqueous solution of sodium hypophosphite and sodium hydroxide, stirring was continued for 5 minutes while maintaining the temperature at 70°C. Next, the liquid was filtered, and the filtered material was washed three times and then dried in a vacuum dryer at 110° C. to obtain conductive particles having protrusions.
(4)突起部処理
 得られた導電性粒子をボールミル容器にアルミナボールと一緒に20g入れ、エタノールを入れ80rpmで6時間解砕した後、ボールとスラリーを分離して、110℃の真空乾燥機で乾燥して突起部高さの低い導電性粒子を得た。得られた導電性粒子の突起部高さは100.8nmだった。
(4) Protrusion treatment Put 20g of the obtained conductive particles together with alumina balls into a ball mill container, add ethanol and crush at 80 rpm for 6 hours, separate the balls and slurry, and dry in a vacuum dryer at 110°C. After drying, conductive particles with low protrusion height were obtained. The height of the protrusions of the obtained conductive particles was 100.8 nm.
(5)真空加熱処理
 得られた導電性粒子を、5mmの厚さとなるように角型状の容器内に入れた。これを真空加熱炉(デンケン・ハイデンタル社製、KDF-75)に入れ、真空度を10Paとして10分間保持した。その後、昇温して390℃で2時間の加熱処理を行った。加熱処理後、室温(25℃)まで放冷した後、窒素ガスをパージすることにより真空を開放して加熱処理済みの導電性粒子を得た。得られた導電性粒子のSEM写真を図2に示す。得られた導電性粒子の平均粒子径は2.2μm、導電層の厚みは110nmであり、突起部高さは100.8nmであった。得られた導電性粒子の物性値を表1に示す。
(5) Vacuum heat treatment The obtained conductive particles were placed in a rectangular container so as to have a thickness of 5 mm. This was placed in a vacuum heating furnace (manufactured by Denken High Dental Co., Ltd., KDF-75), and the degree of vacuum was set to 10 Pa and maintained for 10 minutes. Thereafter, the temperature was increased and heat treatment was performed at 390° C. for 2 hours. After the heat treatment, the mixture was allowed to cool to room temperature (25° C.), and then the vacuum was released by purging nitrogen gas to obtain heat-treated conductive particles. A SEM photograph of the obtained conductive particles is shown in FIG. The average particle diameter of the obtained conductive particles was 2.2 μm, the thickness of the conductive layer was 110 nm, and the height of the protrusions was 100.8 nm. Table 1 shows the physical property values of the obtained conductive particles.
〔実施例2〕
(1)芯材粒子の前処理
 平均粒子径2.0μmの樹脂粒子(日産化学株式会社製、オプトビーズ)を芯材粒子として使用したこと以外は実施例1と同じ操作を行い、前処理済み芯材粒子のスラリーを得た。
(2)めっき液の調製
 実施例1(2)と同様にして無電解めっき液の調製を行った。
(3)無電解めっき処理
 実施例1(3)と同じ操作を行い、突起部を有する導電性粒子を得た。
(4)突起部処理
 実施例1(4)と同じ操作を行い、突起部高さが101nmの導電性粒子を得た。
(5)真空加熱処理
 実施例1と同じ操作を行い、加熱処理済みの導電性粒子を得た。得られた導電性粒子の平均粒子径は2.2μm、導電層の厚みは94.8nmであり、突起部高さは101nmであった。得られた導電性粒子の物性値を表1に示す。
[Example 2]
(1) Pretreatment of core material particles The same operation as in Example 1 was performed except that resin particles with an average particle diameter of 2.0 μm (manufactured by Nissan Chemical Co., Ltd., Optobeads) were used as core material particles, and pretreatment was completed. A slurry of core material particles was obtained.
(2) Preparation of plating solution An electroless plating solution was prepared in the same manner as in Example 1 (2).
(3) Electroless plating treatment The same operation as in Example 1 (3) was performed to obtain conductive particles having protrusions.
(4) Protrusion treatment The same operation as in Example 1 (4) was performed to obtain conductive particles with a protrusion height of 101 nm.
(5) Vacuum heat treatment The same operation as in Example 1 was performed to obtain heat-treated conductive particles. The average particle diameter of the obtained conductive particles was 2.2 μm, the thickness of the conductive layer was 94.8 nm, and the height of the protrusions was 101 nm. Table 1 shows the physical property values of the obtained conductive particles.
〔実施例3〕
 実施例1の(3)無電解めっき処理まで、実施例1と同じ操作を行い、突起部を有する導電性粒子を得た。
(4)突起部処理
 得られた導電性粒子を3時間解砕したこと以外は実施例1と同じ操作を行い、突起部高さが145.3nmの導電性粒子を得た。
(5)真空加熱処理
 実施例1と同じ操作を行い、加熱処理済みの導電性粒子を得た。得られた導電性粒子のSEM写真を図3に示す。得られた導電性粒子の平均粒子径は2.2μm、導電層の厚みは97.8nmであり、突起部高さは145.3nmであった。得られた導電性粒子の物性値を表1に示す。
[Example 3]
The same operations as in Example 1 were performed up to (3) electroless plating treatment in Example 1 to obtain conductive particles having protrusions.
(4) Protrusion treatment The same operation as in Example 1 was performed except that the obtained conductive particles were crushed for 3 hours to obtain conductive particles having a protrusion height of 145.3 nm.
(5) Vacuum heat treatment The same operation as in Example 1 was performed to obtain heat-treated conductive particles. A SEM photograph of the obtained conductive particles is shown in FIG. The average particle diameter of the obtained conductive particles was 2.2 μm, the thickness of the conductive layer was 97.8 nm, and the height of the protrusions was 145.3 nm. Table 1 shows the physical property values of the obtained conductive particles.
〔実施例4〕
 実施例1の(3)無電解めっき処理まで、実施例1と同じ操作を行い、突起部を有する導電性粒子を得た。
(4)突起部処理
 得られた導電性粒子を、ジルコニアボールを使用して80rpmで4時間解砕したこと以外は実施例1と同じ操作を行い、突起部高さが115.6nmの導電性粒子を得た。
(5)真空加熱処理
 実施例1と同じ操作を行い、加熱処理済みの導電性粒子を得た。得られた導電性粒子のSEM写真を図4に示す。得られた導電性粒子の平均粒子径は2.2μm、導電層の厚みは95.8nmであり、突起部高さは115.6nmであった。得られた導電性粒子の物性値を表1に示す。
[Example 4]
The same operations as in Example 1 were performed up to (3) electroless plating treatment in Example 1 to obtain conductive particles having protrusions.
(4) Protrusion treatment The same operation as in Example 1 was performed except that the obtained conductive particles were crushed at 80 rpm for 4 hours using a zirconia ball, and the conductive particles with a protrusion height of 115.6 nm were obtained. Particles were obtained.
(5) Vacuum heat treatment The same operation as in Example 1 was performed to obtain heat-treated conductive particles. A SEM photograph of the obtained conductive particles is shown in FIG. The average particle diameter of the obtained conductive particles was 2.2 μm, the thickness of the conductive layer was 95.8 nm, and the height of the protrusions was 115.6 nm. Table 1 shows the physical property values of the obtained conductive particles.
〔比較例1〕
 実施例1において、(4)平面突起部処理を行わなかったこと以外は実施例1と同じ操作を行い、導電性粒子を得た。得られた導電性粒子の物性値を表1に示す。
[Comparative example 1]
In Example 1, conductive particles were obtained by performing the same operations as in Example 1 except that (4) the planar protrusion treatment was not performed. Table 1 shows the physical property values of the obtained conductive particles.
〔比較例2〕
 実施例1の(3)無電解めっき処理まで、実施例1と同じ操作を行い、突起部を有する導電性粒子を得た。
(4)突起部処理
 得られた導電性粒子を1時間解砕したこと以外は実施例1と同じ操作を行い、突起部高さが174.9nmの導電性粒子を得た。
(5)真空加熱処理
 実施例1と同じ操作を行い、加熱処理済みの導電性粒子を得た。得られた導電性粒子のSEM写真を図5に示す。得られた導電性粒子の平均粒子径は2.2μm、導電層の厚みは99.9nmであり、突起部高さは174.9nmであった。得られた導電性粒子の物性値を表1に示す。
[Comparative example 2]
The same operations as in Example 1 were performed up to (3) electroless plating treatment in Example 1 to obtain conductive particles having protrusions.
(4) Protrusion treatment The same operation as in Example 1 was performed except that the obtained conductive particles were crushed for 1 hour to obtain conductive particles with a protrusion height of 174.9 nm.
(5) Vacuum heat treatment The same operation as in Example 1 was performed to obtain heat-treated conductive particles. A SEM photograph of the obtained conductive particles is shown in FIG. The average particle diameter of the obtained conductive particles was 2.2 μm, the thickness of the conductive layer was 99.9 nm, and the height of the protrusions was 174.9 nm. Table 1 shows the physical property values of the obtained conductive particles.
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
〔接続抵抗性および絶縁性の評価〕
 実施例および比較例の導電性粒子を用いて、接続抵抗性および絶縁性の評価を以下の方法で行った。
 100質量部のエポキシ樹脂、150質量部の硬化剤および70質量部のトルエンを混合した絶縁性接着剤と、15質量部の実施例または比較例で得られた導電性粒子とを混合して、絶縁性ペーストを得た。このペーストをシリコーン処理ポリエステルフィルム上にバーコーターを用いて塗布し、その後、ペーストを乾燥させて、フィルム上に薄膜を形成した。得られた薄膜形成フィルムを、全面にアルミニウム電極を蒸着させたガラス基板と、銅電極パターンが50μmピッチに形成されたポリイミドフィルム基板との間に配して圧着し、導通抵抗測定用のサンプルを作製した。得られた導通抵抗測定用のサンプルに電気接続を行い、このサンプルの接続抵抗値を室温下(25℃・50%RH)で測定し、接続抵抗性の評価を行った。なお、接続抵抗性はマルチメーターR6552(株式会社アドバンテスト製)を用いて以下の基準で評価した。結果を表2に示す。
○:抵抗値が2Ω未満
△:抵抗値が2Ω以上5Ω未満
×:抵抗値が5Ω以上
[Evaluation of connection resistance and insulation]
Using the conductive particles of Examples and Comparative Examples, connection resistance and insulation were evaluated by the following method.
An insulating adhesive prepared by mixing 100 parts by mass of an epoxy resin, 150 parts by mass of a curing agent, and 70 parts by mass of toluene, and 15 parts by mass of conductive particles obtained in Examples or Comparative Examples are mixed, An insulating paste was obtained. This paste was applied onto a siliconized polyester film using a bar coater, and then the paste was dried to form a thin film on the film. The obtained thin film-forming film was placed between a glass substrate on which aluminum electrodes were vapor-deposited and a polyimide film substrate on which copper electrode patterns were formed at a pitch of 50 μm, and then pressure-bonded to prepare a sample for measuring continuity resistance. Created. An electrical connection was made to the obtained sample for measuring conduction resistance, and the connection resistance value of this sample was measured at room temperature (25° C., 50% RH) to evaluate the connection resistance. The connection resistance was evaluated using a multimeter R6552 (manufactured by Advantest Co., Ltd.) according to the following criteria. The results are shown in Table 2.
○: Resistance value is less than 2Ω △: Resistance value is 2Ω or more and less than 5Ω ×: Resistance value is 5Ω or more
 また、前記導通抵抗測定用のサンプル100個において、短絡が発生した割合で絶縁性の評価を行った。絶縁性は以下の方法で評価した。結果を表2に示す。
○:短絡発生率が5%未満
△:短絡発生率が5%以上30%未満
×:短絡発生率が30%以上
Furthermore, in the 100 samples for measuring conduction resistance, insulation properties were evaluated based on the percentage of short circuits that occurred. Insulation properties were evaluated using the following method. The results are shown in Table 2.
○: Short circuit occurrence rate is less than 5% △: Short circuit occurrence rate is 5% or more and less than 30% ×: Short circuit occurrence rate is 30% or more
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000012
 
 この結果から、実施例で得られた導電性粒子は、比較例で得られた導電性粒子に比べて、接続抵抗値が低く、絶縁性にも優れていることが判る。 From these results, it can be seen that the conductive particles obtained in the examples have a lower connection resistance value and superior insulation properties than the conductive particles obtained in the comparative examples.
 1・・・導電性粒子
 2・・・芯材粒子
 3・・・導電層
 4・・・突起部
 5・・・突起部平面部
 5a及び5b・・・平面部の端
 6・・・導電層の下層の表面
 
 
DESCRIPTION OF SYMBOLS 1... Conductive particle 2... Core material particle 3... Conductive layer 4... Protrusion part 5... Protrusion flat part 5a and 5b... End of flat part 6... Conductive layer surface of the lower layer of

Claims (13)

  1.  芯材粒子と、突起部を複数有する導電層を前記芯材粒子の表面に有し、前記突起部の高さのばらつきが0.01以上0.25以下である導電性粒子。 A conductive particle having a core particle and a conductive layer having a plurality of protrusions on the surface of the core particle, and a variation in the height of the protrusions is 0.01 or more and 0.25 or less.
  2.  前記突起部の頭頂部分が略平面状である請求項1に記載の導電性粒子。 The conductive particle according to claim 1, wherein the top portion of the protrusion has a substantially planar shape.
  3.  前記突起部の頭頂部分の曲率半径をRa、前記突起部が形成された部位の導電層の下層の表面の曲率半径をRbとしたときに、Rbに対するRaの比率(Ra/Rb)が0.15以上1.20以下である請求項1に記載の導電性粒子。 When the radius of curvature of the top portion of the protrusion is Ra, and the radius of curvature of the surface of the lower layer of the conductive layer at the portion where the protrusion is formed is Rb, the ratio of Ra to Rb (Ra/Rb) is 0. The conductive particles according to claim 1, which have a particle size of 15 or more and 1.20 or less.
  4.  前記導電性粒子の投影面積に対する前記突起部の頭頂部分の面積の総和の比が0.50以上である請求項1に記載の導電性粒子。 The conductive particles according to claim 1, wherein the ratio of the total area of the top portions of the projections to the projected area of the conductive particles is 0.50 or more.
  5.  前記導電層がニッケル、金、パラジウムからなる群から選ばれる少なくとも1種を含む請求項1に記載の導電性粒子。 The conductive particles according to claim 1, wherein the conductive layer contains at least one selected from the group consisting of nickel, gold, and palladium.
  6.  平均粒子径が0.1μm以上50μm以下である請求項1に記載の導電性粒子。 The conductive particles according to claim 1, having an average particle diameter of 0.1 μm or more and 50 μm or less.
  7.  前記導電層の厚みが0.1nm以上2,000nm以下である請求項1に記載の導電性粒子。 The conductive particles according to claim 1, wherein the conductive layer has a thickness of 0.1 nm or more and 2,000 nm or less.
  8.  前記突起部の高さが20nm以上1,000nm以下である請求項1に記載の導電性粒子。 The conductive particle according to claim 1, wherein the height of the protrusion is 20 nm or more and 1,000 nm or less.
  9.  前記突起部の少なくとも一つの形状が不定形である請求項1に記載の導電性粒子。 The conductive particle according to claim 1, wherein the shape of at least one of the protrusions is amorphous.
  10.  請求項1から9のいずれか1項に記載の導電性粒子と絶縁性樹脂を含む導電性材料。 A conductive material comprising the conductive particles according to any one of claims 1 to 9 and an insulating resin.
  11.  芯材粒子の表面に導電層を形成する工程、
     前記導電層に表面から突出した突起部を形成する工程、および、
     前記突起部の高さを平準化する工程
     を有する導電性粒子の製造方法。
    a step of forming a conductive layer on the surface of the core material particles;
    forming protrusions protruding from the surface of the conductive layer, and
    A method for producing conductive particles, comprising the step of leveling the height of the protrusions.
  12.  前記突起部を形成する工程が、無電解ニッケルめっき浴の自己分解物を核として導電層に突起部を形成する請求項11に記載の導電性粒子の製造方法。 12. The method for producing conductive particles according to claim 11, wherein the step of forming the protrusions forms the protrusions on the conductive layer using autolyzed products of an electroless nickel plating bath as nuclei.
  13.  前記突起部の高さを平準化する工程が、前記突起部を形成する工程で得られた突起部の頭頂部分を研磨して前記突起部の高さを平準化する請求項11または12に記載の導電性粒子の製造方法。
     
     
    13. The step of leveling the height of the projection includes polishing the top portion of the projection obtained in the step of forming the projection to level the height of the projection. A method for producing conductive particles.

PCT/JP2023/028688 2022-08-25 2023-08-07 Conductive particles, production method therefor, and conductive member WO2024043047A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-134210 2022-08-25
JP2022134210A JP2024030952A (en) 2022-08-25 2022-08-25 Conductive particles, production method therefor, and conductive material

Publications (1)

Publication Number Publication Date
WO2024043047A1 true WO2024043047A1 (en) 2024-02-29

Family

ID=90013110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028688 WO2024043047A1 (en) 2022-08-25 2023-08-07 Conductive particles, production method therefor, and conductive member

Country Status (3)

Country Link
JP (1) JP2024030952A (en)
TW (1) TW202411468A (en)
WO (1) WO2024043047A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125649A (en) * 2011-12-14 2013-06-24 Nippon Shokubai Co Ltd Conductive fine particle and anisotropic conductive material
JP2014130824A (en) * 2014-02-04 2014-07-10 Nippon Chem Ind Co Ltd Conductive powder, conductive material containing the same, and manufacturing method of conductive particle
JP2016201364A (en) * 2016-06-09 2016-12-01 日本化学工業株式会社 Conductive particle and conductive material containing the same
WO2021246523A1 (en) * 2020-06-04 2021-12-09 積水化学工業株式会社 Conductive parti cles, conductive material, and connection structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125649A (en) * 2011-12-14 2013-06-24 Nippon Shokubai Co Ltd Conductive fine particle and anisotropic conductive material
JP2014130824A (en) * 2014-02-04 2014-07-10 Nippon Chem Ind Co Ltd Conductive powder, conductive material containing the same, and manufacturing method of conductive particle
JP2016201364A (en) * 2016-06-09 2016-12-01 日本化学工業株式会社 Conductive particle and conductive material containing the same
WO2021246523A1 (en) * 2020-06-04 2021-12-09 積水化学工業株式会社 Conductive parti cles, conductive material, and connection structure

Also Published As

Publication number Publication date
TW202411468A (en) 2024-03-16
JP2024030952A (en) 2024-03-07

Similar Documents

Publication Publication Date Title
JP5973257B2 (en) Conductive particles and conductive material containing the same
TWI570750B (en) Conductive particle and conductive material having the same
JP6263228B2 (en) Conductive particles and conductive material containing the same
WO2021235435A1 (en) Electrically conductive particle, and electrically conductive material and connection structure obtained using same
JP7091523B2 (en) Conductive particles, conductive materials and connecting structures using them
WO2024043047A1 (en) Conductive particles, production method therefor, and conductive member
WO2021095803A1 (en) Conductive particles, method for manufacturing same, and conductive material containing same
WO2021095804A1 (en) Electrically conductive particles, production method for same, and electrically conductive material including same
JP7041305B2 (en) Conductive particles, conductive materials and connecting structures using them
WO2023013465A1 (en) Conductive particle, production method thereof and conductive material
WO2021235434A1 (en) Electroconductive particles, and electroconductive material and connection structure using same
WO2024101306A1 (en) Conductive particles, method for manufacturing same, conductive material, and connection structure using same
WO2021235433A1 (en) Method for producing electrically conductive particles, and electrically conductive particles
JP7095127B2 (en) Manufacturing method of conductive particles and conductive particles
JP2022126363A (en) Method for producing coated particles
JP2022126362A (en) Method for producing coated particles
JP2022137362A (en) Coated particles and conductive material containing the same
JP2024027592A (en) Coated particle and conductive material including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857161

Country of ref document: EP

Kind code of ref document: A1