WO2023013465A1 - Conductive particle, production method thereof and conductive material - Google Patents

Conductive particle, production method thereof and conductive material Download PDF

Info

Publication number
WO2023013465A1
WO2023013465A1 PCT/JP2022/028716 JP2022028716W WO2023013465A1 WO 2023013465 A1 WO2023013465 A1 WO 2023013465A1 JP 2022028716 W JP2022028716 W JP 2022028716W WO 2023013465 A1 WO2023013465 A1 WO 2023013465A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive particles
group
particles
particles according
Prior art date
Application number
PCT/JP2022/028716
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 稲葉
哲 高橋
直也 田杉
圭代 星野
昭紘 久持
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to KR1020247006550A priority Critical patent/KR20240033287A/en
Priority to CN202280054091.XA priority patent/CN117795626A/en
Publication of WO2023013465A1 publication Critical patent/WO2023013465A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Definitions

  • the present invention relates to conductive particles, methods for producing the same, and conductive materials.
  • a conductive particle used as a conductive material for an anisotropic conductive material such as an anisotropic conductive film or an anisotropic conductive paste
  • a conductive layer made of a metal is formed on the surface of a core particle. This conductive layer provides electrical connection between electrodes and wiring.
  • a nickel plating film formed by an electroless plating method is often used as the conductive layer of the conductive particles.
  • a method of effectively lowering the connection resistance when electrodes are electrically connected by unevenly distributing the concentration of phosphorus in a conductive layer containing nickel and phosphorus has been proposed (for example, see Patent Documents 1 to 3).
  • Patent Documents 1 to 3 As a method for unevenly distributing the concentration of phosphorus in the conductive layer, nickel plating films with different phosphorus concentrations are obtained by changing the pH of the nickel plating solution during electroless plating in the examples. is described.
  • Patent Document 4 describes that the metal film may be composed of multiple layers by performing electroless plating in multiple stages in the formation of the metal film.
  • the technical significance of the conductive layer being composed of multiple layers of metal films, and it is only mentioned as one of general techniques.
  • JP 2013-214511 A International Publication No. 2013/108842 pamphlet International Publication No. 2014/054572 Pamphlet WO 2010/035708 pamphlet
  • the plating is generally performed by dropping a nickel plating solution into the slurry of the core particles.
  • the conventional method of adding the nickel plating solution in multiple steps there is room for improvement in the adhesion of the nickel plating film to the core particles. That is, when the conductive particles obtained by the above-described conventional method are used for connection between electrodes, the peeling of the nickel plating film caused by the compressive deformation of the conductive particles during connection causes the connection resistance between the electrodes.
  • problems such as an increase in the connection reliability and a decrease in connection reliability.
  • an object of the present invention is to provide conductive particles that can reduce the connection resistance between electrodes and have excellent connection reliability by improving the adhesion of the nickel plating film to the core particles. That's what it is.
  • the present inventors have found that by slowing the formation rate of the plating film on the surface of the core material particles in the early stage of the plating process rather than the late stage, nickel plating can be performed more effectively than before. It was found that the adhesion of the nickel-plated film to the core particles is improved because the film is formed densely. In addition, it was found that the conductive particles having the nickel plating film formed in this way as a conductive layer have excellent resistance to large currents, so that connection resistance is low and connection reliability is also excellent. We have completed the present invention.
  • the withstand current value per conductive particle is 1 mA or more when the compressibility is less than 5%, and the compression Provided is a conductive particle having a withstand current value of 10 mA or more per conductive particle when the ratio is 5% or more.
  • the present invention includes a first step of mixing an aqueous slurry of core particles and an electroless nickel plating bath containing a dispersant, a nickel salt, a reducing agent and a complexing agent, and performing electroless nickel plating;
  • An aqueous solution containing a nickel salt, an aqueous solution containing a reducing agent, and an aqueous solution containing an alkali are continuously added to the liquid obtained in one step while controlling the addition amount so as to change the plating deposition rate once or more.
  • a second step of electroless nickel plating is provided.
  • the present invention it is possible to provide conductive particles with excellent adhesion to core particles, low connection resistance, and excellent connection reliability, and a method for producing the conductive particles.
  • FIG. 4 is an SEM photograph of the conductive particles obtained in Example 2.
  • the conductive particles of the present invention have a withstand current value of 1 mA or more, preferably 1.5 mA per conductive particle when the compressibility is less than 5%, particularly when the compressibility is 1% or more and less than 5%.
  • the withstand current value per conductive particle is 10 mA or more, preferably 15 mA or more.
  • the connection resistance is low and the connection reliability is excellent because the resistance to large current is excellent.
  • the withstand current value in the present invention means the withstand current value per conductive particle with the desired compressibility using a conductive fine particle electrical property measuring device (hereinafter sometimes referred to as a VI device). Measured.
  • the VI device may be any device capable of measuring the voltage-current characteristics and/or current capacity while the compressibility of the conductive particles is kept constant. can be used.
  • the withstand current value in the present invention is a value obtained by measuring one conductive particle.
  • the conductive particles of the present invention preferably have a withstand current value of 0.5 mA or more, particularly 1 mA or more per conductive particle when the compressibility is 1% or more and 4% or less. At the initial stage when the compressibility is small when the electrodes are pressure-connected, the withstand current value per conductive particle is within the above range, so that the connection resistance is low and the connection reliability is excellent. become particles.
  • the conductive particles of the present invention preferably have a withstand current value of 15 mA or more, particularly 20 mA or more per conductive particle when the compressibility is 10% or more and 50% or less. Further, it is more preferable that the withstand current value per conductive particle is 20 mA or more when the compressibility is 30%. In the middle and late stages of pressurizing and connecting the electrodes, the withstand current value per conductive particle is within the above range, so that the resistance to large currents is excellent, so the connection resistance is low and the connection reliability is improved. become excellent.
  • the conductive particles of the present invention have a higher withstand current value in the middle and late stages of compression when the compression rate is 5% or more than in the early stage of compression when the compression rate is less than 5%. It is believed that this is because the conductive layer of the conductive particles obtained by the method for producing the conductive particles of the present invention, which will be described later, is formed of a dense film, so that the adhesion of the film to the core particles increases. This makes it difficult for the conductive layer to peel off or break due to deformation of the conductive particles that occur when the electrodes are pressure-connected, leading to excellent resistance to large currents, low connection resistance, and high connection reliability. The inventors of the present invention believe that the effect of the present invention, which is also excellent, can be achieved.
  • the conductive particles are obtained by forming a conductive layer on the surface of core particles.
  • core material particles as long as they are in the form of particles, inorganic substances or organic substances can be used without particular limitation.
  • Inorganic core particles include metal particles such as gold, silver, copper, nickel, palladium, solder, alloys, glass, ceramics, silica, metal or non-metal oxides (including hydrous), and aluminosilicates. metal silicates, metal carbides, metal nitrides, metal carbonates, metal sulfates, metal phosphates, metal sulfides, metal acid salts, metal halides and carbon containing metals.
  • organic core particles include, for example, thermoplastic materials such as natural fibers, natural resins, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylate, polyacrylonitrile, polyacetal, ionomer, and polyester.
  • thermosetting resins such as resins, alkyd resins, phenol resins, urea resins, benzoguanamine resins, melamine resins, xylene resins, silicone resins, epoxy resins, and diallyl phthalate resins. These may be used alone or in combination of two or more.
  • the core particles may be composed of a material composed of both an inorganic substance and an organic substance instead of the material composed of either one of the inorganic substance and the organic substance described above.
  • the mode of existence of the inorganic substance and the organic substance in the core particles includes, for example, a core made of an inorganic substance and an inorganic substance coating the surface of the core.
  • a core-shell type configuration such as an embodiment having a core made of an organic substance and a shell made of an inorganic substance covering the surface of the core, may be mentioned.
  • a blend type configuration in which an inorganic substance and an organic substance are mixed or fused at random in one core particle can be used.
  • the core particles are preferably composed of an organic substance or a material composed of both an inorganic substance and an organic substance, and more preferably composed of a material composed of both an inorganic substance and an organic substance.
  • the inorganic substances include glass, ceramics, silica, metal or non-metal oxides (including hydrates), metal silicates including aluminosilicates, metal carbides, metal nitrides, metal carbonates, metal sulfates, metal phosphorus. Acid salts, metal sulfides, metal acid salts, metal halides and carbon are preferred.
  • the organic material is preferably thermoplastic resin such as natural fiber, natural resin, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylate, polyacrylonitrile, polyacetal, ionomer, and polyester.
  • thermoplastic resin such as natural fiber, natural resin, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylate, polyacrylonitrile, polyacetal, ionomer, and polyester.
  • the core particles When an organic substance is used as the core particles, it is preferable that the core particles have no glass transition temperature or that the glass transition temperature is higher than 100° C., because the shape of the core particles can be easily maintained, and the core particles can be used in the step of forming the metal coating. This is preferable because the shape of the material particles can be easily maintained.
  • the glass transition temperature can be determined, for example, as the intersection of the original baseline and the tangent of the inflection point in the baseline shift portion of the DSC curve obtained by differential scanning calorimetry (DSC).
  • the core particles When an organic substance is used as the core particles and the organic substance is a highly crosslinked resin, almost no baseline shift is observed even if the glass transition temperature is measured up to 200°C by the above method.
  • such particles are also referred to as particles having no glass transition temperature, and such core particles may be used in the present invention.
  • a specific example of the core particle material having no glass transition temperature can be obtained by copolymerizing the above-exemplified monomers constituting the organic matter with a crosslinkable monomer.
  • crosslinkable monomers include tetramethylene di(meth)acrylate, ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, ethylene oxide di(meth)acrylate, tetraethylene oxide (meth)acrylate, 1,6-hexanedi(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethane di( meth) acrylate, tetramethylolmethane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, tetramethylolpropane tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, glycerol di
  • Monomers such as silane-containing monomers, triallyl isocyanurate, diallyl phthalate, diallyl acrylamide, and diallyl ether can be used.
  • core material particles made of such a hard organic material are often used.
  • the core particles are spherical.
  • the core particles may have a shape other than spherical, such as fibrous, hollow, plate-like or needle-like, and may have many protrusions on their surface or be amorphous.
  • spherical core particles are preferred in terms of excellent filling properties and easy metal coating.
  • the conductive layer formed on the surface of the core particles is made of a conductive metal.
  • Metals constituting the conductive layer include, for example, gold, platinum, silver, copper, iron, zinc, nickel, tin, lead, antimony, bismuth, cobalt, indium, titanium, germanium, aluminum, chromium, palladium, tungsten, molybdenum.
  • metal compounds such as ITO and solder can be used.
  • gold, silver, copper, nickel, palladium, rhodium, and solder are preferred because of their low electrical resistance, and nickel, gold, nickel alloys, and gold alloys are particularly preferred.
  • One kind of metal may be used, or two or more kinds of metals may be used in combination.
  • the conductive layer may have a single-layer structure or a multilayer structure consisting of multiple layers.
  • the outermost layer is at least one selected from nickel, gold, silver, copper, palladium, nickel alloys, gold alloys, silver alloys, copper alloys and palladium alloys. preferable.
  • the conductive layer may not cover the entire surface of the core particles, and may cover only a part of them.
  • the coated portion may be continuous, or may be discontinuously coated, for example, like an island.
  • the thickness of the conductive layer is preferably 0.1 nm or more and 2000 nm or less, more preferably 1 nm or more and 1500 nm or less.
  • the conductive particles have excellent electrical properties.
  • the conductive particles have protrusions, which will be described later, the height of the protrusions is not included in the thickness of the conductive layer.
  • the thickness of the conductive layer can be measured by cutting the particle to be measured into two and observing the cross section of the cut end with a scanning electron microscope (SEM).
  • the average particle size of the conductive particles is preferably 0.1 ⁇ m or more and 50 ⁇ m or less, more preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • the average particle size of the conductive particles is a value measured by SEM observation. Specifically, the average particle size of the conductive particles is measured by the method described in Examples.
  • the particle diameter is the diameter of the circular conductive particle image. When the conductive particles are not spherical, the particle diameter refers to the largest length (maximum length) of line segments that cross the conductive particle image.
  • the height of the protrusions is preferably 20 nm or more and 1000 nm or less, more preferably 50 nm or less and 800 nm or less.
  • the number of protrusions depends on the particle size of the conductive particles, it is preferable that the number of protrusions per conductive particle is 1 to 20,000, more preferably 5 to 5,000. It is advantageous in terms of further improving conductivity.
  • the length of the base of the projection is preferably 5 nm or more and 1000 nm or less, more preferably 10 nm or more and 800 nm or less.
  • the length of the base of the protrusion refers to the length along the surface of the conductive particle at the site where the protrusion is formed when observing the cross section of the particle with an SEM. means the shortest distance to In addition, when one projection has a plurality of vertices, the highest apex is taken as the height of the projection.
  • the length of the base of the protrusion and the height of the protrusion are taken as the arithmetic mean value of the values measured for 20 different particles observed by electron microscopy.
  • the shape of the conductive particles is not particularly limited, although it depends on the shape of the core particles.
  • it may be fibrous, hollow, plate-like, or needle-like, and may have many projections on its surface or be amorphous.
  • a spherical shape or a shape having a large number of projections on the outer surface is preferable from the viewpoint of excellent filling properties and connectivity.
  • Methods for forming a conductive layer on the surface of the core particles include dry methods such as vapor deposition, sputtering, mechanochemical methods, and hybridization, and wet methods such as electroplating and electroless plating. mentioned. Alternatively, these methods may be combined to form a conductive layer on the surface of the core particles.
  • the conductive particles are obtained by forming an electroless nickel-phosphorus plating layer as a conductive layer on the surface of the core particles.
  • the surfaces of the core particles have the ability to capture noble metal ions, or are surface-modified so as to have the ability to capture noble metal ions.
  • the noble metal ions are preferably palladium or silver ions. Having the ability to capture noble metal ions means being able to capture noble metal ions as chelates or salts.
  • the surface of the core material particle has an ability to trap noble metal ions.
  • the method described in Japanese Patent Application Laid-Open No. 61-64882, for example, can be used.
  • a noble metal is supported on the surface thereof.
  • the core particles are dispersed in a dilute acidic aqueous solution of a noble metal salt such as palladium chloride or silver nitrate. This traps the noble metal ions on the surface of the particles.
  • a noble metal salt concentration in the range of 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 2 mol/m 2 of particle surface area is sufficient.
  • the core particles with trapped noble metal ions are separated from the system and washed with water. Subsequently, the core particles are suspended in water, and a reducing agent is added to reduce the noble metal ions. This allows the noble metal to be carried on the surfaces of the core particles.
  • sodium hypophosphite sodium borohydride, potassium borohydride, dimethylamine borane, hydrazine, formalin, etc. are used, and selected from these based on the constituent material of the target conductive layer. preferably.
  • a sensitization treatment may be performed to adsorb tin ions to the surface of the particles.
  • the surface-modified core particles may be put into an aqueous solution of stannous chloride and stirred for a predetermined time.
  • the core particles that have been pretreated in this manner are subjected to a process for forming a conductive layer.
  • a process for forming a conductive layer having projections and a process for forming a conductive layer with a smooth surface.
  • a process for forming a conductive layer having projections will be described.
  • the first step is an electroless nickel plating step in which an aqueous slurry of core particles is mixed with an electroless nickel plating bath containing a dispersant, a nickel salt, a reducing agent, a complexing agent, and the like.
  • self-decomposition of the plating bath occurs simultaneously with the formation of the conductive layer on the core particles.
  • the self-decomposition product is captured on the surface of the core particles during the formation of the conductive layer, thereby generating the nucleus of the microprojections and simultaneously forming the conductive layer. done.
  • the projection grows from the nucleus of the generated minute projection as a base point.
  • the aforementioned core particles are sufficiently dispersed in water preferably in the range of 0.1 to 500 g/L, more preferably 1 to 300 g/L, to prepare an aqueous slurry.
  • the dispersing operation can be carried out using ordinary stirring, high-speed stirring, or a shear dispersing device such as a colloid mill or homogenizer. Also, ultrasonic waves may be used in combination with the dispersing operation. If necessary, a dispersing agent such as a surfactant may be added in the dispersing operation.
  • an aqueous slurry of the dispersed core particles is added to an electroless nickel plating bath containing a nickel salt, a reducing agent, a complexing agent, various additives, and the like, to carry out the first step of electroless plating.
  • Examples of the aforementioned dispersant include nonionic surfactants, zwitterionic surfactants and/or water-soluble polymers.
  • nonionic surfactant polyoxyalkylene ether-based surfactants such as polyethylene glycol, polyoxyethylene alkyl ether, and polyoxyethylene alkylphenyl ether can be used.
  • amphoteric surfactant betaine-based surfactants such as betaine alkyldimethylacetate, betaine alkyldimethylcarboxymethylacetate, and betaine alkyldimethylaminoacetate can be used.
  • Polyvinyl alcohol, polyvinylpyrrolidinone, hydroxyethyl cellulose and the like can be used as the water-soluble polymer.
  • the amount of the dispersant used is generally 0.5 to 30 g/L with respect to the volume of the liquid (electroless nickel plating bath), depending on the type. In particular, it is preferable that the amount of the dispersant used is in the range of 1 to 10 g/L with respect to the volume of the liquid (electroless nickel plating bath), from the viewpoint of further improving the adhesion of the conductive layer.
  • nickel salt for example, nickel chloride, nickel sulfate, nickel acetate, or the like is used, and its concentration is preferably in the range of 0.1 to 50 g/L.
  • reducing agent for example, one similar to that used for reducing the noble metal ions described above can be used, and the reducing agent is selected based on the constituent material of the intended underlying film.
  • concentration is preferably in the range of 0.1 to 50 g/L.
  • Complexing agents include, for example, citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, carboxylic acids (salts) such as gluconic acid or its alkali metal salts and ammonium salts, amino acids such as glycine, amines such as ethylenediamine and alkylamines.
  • carboxylic acids such as gluconic acid or its alkali metal salts and ammonium salts
  • amino acids such as glycine
  • amines such as ethylenediamine and alkylamines.
  • Compounds with a complexing effect on nickel ions are used, such as acids, other ammonium, EDTA or pyrophosphate (salts). These can be used individually by 1 type or in combination of 2 or more types. Its concentration preferably ranges from 1 to 100 g/L, more preferably from 5 to 50 g/L.
  • the preferred pH of the electroless nickel plating bath at this stage is in the range of 3-14.
  • the electroless nickel plating reaction begins immediately upon addition of the aqueous slurry of core particles and is accompanied by the evolution of hydrogen gas. The first step is terminated when the generation of hydrogen gas is completely stopped.
  • an aqueous solution containing a nickel salt, an aqueous solution containing a reducing agent, and an aqueous solution containing an alkali are added to the liquid obtained in the first step, and the plating deposition rate is increased once or more, preferably twice or more.
  • the electroless nickel plating treatment is performed by continuously adding while controlling the addition amount so as to change.
  • these aqueous solutions are added simultaneously and continuously to the liquid obtained in the first step.
  • Addition of each of the aqueous solutions to the liquid obtained in the first step is performed so that the initial plating deposition rate is 0.05 nm / min or more and 1.5 nm / min or less, particularly 0.1 nm / min or more and 1.2 nm / min or less. It is preferable to carry out while controlling the addition amount so that By setting the initial plating deposition rate within this range, the nickel plating film is deposited more densely on the surface of the core material particles, and the adhesion of the obtained conductive layer is improved.
  • the plating deposition rate is changed once or more.
  • the plating deposition rate after the change is preferably 0.3 nm / min or more and 3.0 nm / min or less, particularly 0.5 nm / min or more and 2.5 nm / min or less. It is preferable to control the amount of each aqueous solution added. By setting the plating deposition rate after the change within this range, it is possible to quickly form a conductive layer with a desired thickness on the dense nickel plating film obtained at the beginning. It is possible to reduce the industrial production cost while having excellent properties.
  • the plating deposition speed may be changed two or more times.
  • the plating deposition rate after the two-time change is preferably 0.3 nm/min or more and 3.0 nm/min or less, particularly 0.5 nm/min or more and 2.5 nm/min or less.
  • the second step it is preferable to control the amount of each of the aqueous solutions added so as to increase the plating deposition rate. That is, it is preferable to increase the plating deposition rate by increasing the amount of each aqueous solution added per unit time.
  • the reaction is completed by continuing stirring while maintaining the liquid temperature for a while after the generation of hydrogen gas is completely stopped.
  • the second step from the viewpoint of forming a dense film, it is preferable to add an aqueous solution containing a nickel salt and a mixed aqueous solution containing a reducing agent and an alkali to the liquid obtained in the first step.
  • the nickel salt concentration in the aqueous solution containing the nickel salt is preferably 10 to 1000 g/L, particularly 50 to 500 g/L.
  • the concentration of the reducing agent in the aqueous solution containing the reducing agent is preferably 100 to 1000 g/L, particularly 100 to 800 g/L when a phosphorus compound is used as the reducing agent.
  • a boron compound is used as the reducing agent, it is preferably 5 to 200 g/L, particularly preferably 10 to 100 g/L.
  • hydrazine or a derivative thereof is used as the reducing agent, it is preferably 5 to 200 g/L, particularly 10 to 100 g/L.
  • the alkali concentration in the alkali-containing aqueous solution is preferably 5 to 500 g/L, more preferably 10 to 200 g/L.
  • the second step is performed continuously after the first step is completed, but instead of this, the first step and the second step may be performed intermittently.
  • the core particles and the plating solution are separated by a method such as filtration, and the core particles are newly dispersed in water to prepare an aqueous slurry, in which a complexing agent is added.
  • a complexing agent is added.
  • a second step of dissolving within the above range to prepare an aqueous slurry and adding each of the above aqueous solutions to the aqueous slurry may be performed.
  • a conductive layer having projections can be formed.
  • a conductive layer having a smooth surface can be formed by reducing the concentration of nickel salt in the electroless nickel plating bath in the first step of forming the conductive layer having protrusions.
  • nickel chloride, nickel sulfate, nickel acetate, or the like is used as the nickel salt, and the concentration thereof is preferably in the range of 0.01 to 0.5 g/L.
  • a conductive layer having a smooth surface can be formed by a method of performing the first step and the second step other than reducing the concentration of the nickel salt in the electroless nickel plating bath.
  • the conductive particles of the present invention are obtained by heating the conductive particles obtained by the above-described method under a vacuum of 1000 Pa or less, further 0.01 to 900 Pa, particularly 0.01 to 500 Pa, at 200 to 600 ° C., further 250 to 500 ° C. , particularly preferably by heat treatment at a temperature of 300 to 450°C.
  • the degree of vacuum in the present invention is a value when the absolute pressure, that is, the absolute vacuum is 0.
  • the heat treatment time is preferably 0.1 to 10 hours, more preferably 0.5 to 5 hours. By adopting this treatment time, it is possible to suppress an increase in manufacturing cost, and to suppress the denaturation of the core material particles and the conductive layer due to heat history, thereby reducing the influence on quality.
  • This heat treatment time is the time from reaching the target treatment temperature to the end of the heat treatment.
  • the heat treatment may be performed while the conductive particles are left standing, or may be performed while stirring.
  • the heat treatment is performed while the conductive particles are left standing, it is preferable to leave them standing at a thickness of 0.1 mm to 100 mm.
  • the heat treatment is performed while standing still or while stirring.
  • the gas phase portion of the container containing the conductive particles may be replaced with an inert gas such as nitrogen and then evacuated, or the container may be evacuated as it is. Further, the heat treatment may be performed multiple times, if necessary.
  • the heat treatment is performed for 5 to 60 minutes, further 10 to 50 minutes after reaching a vacuum degree of 1000 Pa or less, preferably 0.01 to 900 Pa, particularly preferably 0.01 to 500 Pa at room temperature. After holding, it is preferable to raise the temperature to the treatment temperature. This operation can prevent the conductive layer from being oxidized due to oxygen, moisture, etc. in the heating atmosphere and the conductive particles, so that the connection resistance can be reduced.
  • the vacuum After the heat treatment, it is preferable to release the vacuum after the temperature is lowered to 50° C. or lower, further to 40° C. or lower while maintaining the degree of vacuum.
  • the reason for this is that if the vacuum is released at the temperature immediately after the heat treatment, the oxidation of the conductive layer is accelerated in the presence of oxygen or moisture in the atmosphere, which may increase the connection resistance. From the viewpoint of manufacturing costs, the vacuum may be released in the normal atmosphere. It is more preferable to carry out by purging the gas. Thus, the conductive particles of the present invention are obtained.
  • the surface thereof can be further coated with an insulating resin in order to prevent short circuits between the conductive particles.
  • the insulating resin coating is designed so that the surfaces of the conductive particles are not exposed as much as possible when no pressure is applied, and the coating is destroyed by the heat and pressure applied when the two electrodes are adhered using a conductive adhesive. , are formed such that at least the projections of the surface of the conductive particles are exposed.
  • the thickness of the insulating resin can be about 0.1 to 0.5 ⁇ m.
  • the insulating resin may cover the entire surface of the conductive particles, or may cover only a portion of the surfaces of the conductive particles.
  • the insulating resin one widely known in the technical field can be used. Examples include phenolic resins, urea resins, melamine resins, allyl resins, furan resins, polyester resins, epoxy resins, silicone resins, polyamide-imide resins, polyimide resins, polyurethane resins, fluorine resins, polyolefin resins (e.g. polyethylene).
  • Methods for forming an insulating coating layer on the surface of the conductive particles include chemical methods such as a coacervation method, an interfacial polymerization method, an in situ polymerization method and a liquid curing coating method, a spray drying method, and an air suspension coating method.
  • chemical methods such as a coacervation method, an interfacial polymerization method, an in situ polymerization method and a liquid curing coating method, a spray drying method, and an air suspension coating method.
  • physico-mechanical methods such as vacuum deposition coating method, dry blending method, hybridization method, electrostatic coalescence method, melt-dispersion cooling method and inorganic encapsulation method, and physico-chemical methods such as interfacial precipitation method.
  • the organic polymer that constitutes the insulating resin may contain, as a monomer component, a compound containing an ionic group in the polymer structure, provided that it is non-conductive.
  • a compound containing an ionic group may be a crosslinkable monomer or a non-crosslinkable monomer. That is, it is preferable that the organic polymer is formed using a compound in which at least one of the crosslinkable monomer and the non-crosslinkable monomer has an ionic group.
  • a "monomer component” refers to a structure derived from a monomer in an organic polymer, and is a component derived from the monomer. By subjecting the monomer to polymerization, an organic polymer containing the monomer component as a structural unit is formed.
  • the ionic group is preferably present at the interface of the organic polymer that constitutes the insulating resin. Moreover, it is preferable that the ionic group is chemically bonded to the monomer component constituting the organic polymer. Whether or not the ionic group exists at the interface of the organic polymer can be determined by observing the insulating resin with a scanning electron microscope when the insulating resin containing the organic polymer having the ionic group is formed on the surface of the conductive particles. It can be determined by whether it adheres to the surface of the particles.
  • ionic groups include onium-based functional groups such as phosphonium groups, ammonium groups, and sulfonium groups.
  • onium-based functional groups such as phosphonium groups, ammonium groups, and sulfonium groups.
  • an ammonium group or a phosphonium group is preferable from the viewpoint of increasing the adhesion between the conductive particles and the insulating resin and forming conductive particles having both insulation and conduction reliability at a high level.
  • a phosphonium group is more preferred.
  • the onium-based functional group is preferably represented by the following general formula (1).
  • R may be the same or different, a hydrogen atom, a linear, branched or cyclic alkyl group, or an aryl group n is 1 when X is a nitrogen atom or a phosphorus atom, and 0 when X is a sulfur atom.* is a bond.
  • Counter ions for ionic groups include, for example, halide ions.
  • halide ions include Cl ⁇ , F ⁇ , Br ⁇ , I ⁇ .
  • the straight-chain alkyl group represented by R includes, for example, a straight-chain alkyl group having 1 to 20 carbon atoms, specifically, a methyl group, an ethyl group, n- Propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n- tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-icosyl group and the like.
  • the branched-chain alkyl group represented by R includes, for example, a branched-chain alkyl group having 3 to 8 carbon atoms, specifically isopropyl group, isobutyl group, s- butyl group, t-butyl group, isopentyl group, s-pentyl group, t-pentyl group, isohexyl group, s-hexyl group, t-hexyl group, ethylhexyl group and the like.
  • examples of the cyclic alkyl group represented by R include cycloalkyl groups such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclooctadecyl group. .
  • examples of the aryl group represented by R include a phenyl group, a benzyl group, a tolyl group, an o-xylyl group, and the like.
  • R is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. is more preferable. Further, in general formula (1), it is more preferable that R is a linear alkyl group.
  • Such a configuration of the onium-based functional group can enhance the adhesion between the insulating resin and the conductive particles to ensure insulation, and can further enhance reliability of conduction during thermocompression bonding.
  • the organic polymer having an ionic group that constitutes the insulating resin is represented by the following general formula (2) or general formula (3). It is preferable to have the represented structural unit.
  • X, R and n have the same definitions as in the general formula (1) above.
  • m is an integer of 0 to 5.
  • An ⁇ represents a monovalent anion.
  • X, R and n have the same definitions as in the above general formula (1).
  • An - represents a monovalent anion.
  • m 1 is an integer of 1 or more and 5 or less.
  • R 5 is a hydrogen atom or is a methyl group.
  • R in formulas (2) and (3) the description of the functional group of R in general formula (1) described above is appropriately applied.
  • the ionic group may be bonded to the CH group of the benzene ring of formula (2) at any of the para-, ortho-, and meta-positions, preferably at the para-position.
  • the monovalent An ⁇ is preferably a halide ion. Examples of halide ions include Cl ⁇ , F ⁇ , Br ⁇ , I ⁇ .
  • m is preferably an integer of 0 or more and 2 or less, more preferably 0 or 1, and particularly preferably 1.
  • m1 is preferably 1 or more and 3 or less, more preferably 1 or 2, and most preferably 2.
  • the organic polymer having an ionic group preferably contains, for example, a monomer component having an onium-based functional group and an ethylenically unsaturated bond.
  • the organic polymer having an ionic group preferably contains a non-crosslinkable monomer component from the viewpoint of facilitating the availability of monomers, facilitating the synthesis of polymers, and increasing the efficiency of manufacturing insulating resins.
  • Non-crosslinkable monomers having an onium-based functional group and an ethylenically unsaturated bond include, for example, N,N-dimethylaminoethyl methacrylate, N,N-dimethylaminopropylacrylamide, N,N,N-trimethyl -Ammonium group-containing monomers such as N-2-methacryloyloxyethylammonium chloride; monomers having a sulfonium group such as phenyldimethylsulfonium methyl methacrylate sulfate; 4-(vinylbenzyl)triethylphosphonium chloride, 4-(vinylbenzyl)trimethyl Phosphonium chloride, 4-(vinylbenzyl) tributylphosphonium chloride, 4-(vinylbenzyl)trioctylphosphonium chloride, 4-(vinylbenzyl)triphenylphosphonium chloride, 2-(methacryloyloxye
  • the ionic group may be bonded to all of the monomer components, or the ionic group may be bonded to a part of all structural units of the organic polymer. good.
  • the ratio of the monomer component to which the ionic group is bonded is preferably 0.01 mol% or more and 99 mol% or less. It is more preferably 0.02 mol % or more and 95 mol % or less.
  • the ionic group is contained in both the crosslinkable monomer and the non-crosslinkable monomer, the ratio of the monomer components is the total amount.
  • Examples of the form of coating with the insulating resin include a form in which a plurality of insulating fine particles are arranged in layers, or a continuous insulating film.
  • the insulating fine particles are melted, deformed, peeled off, or moved on the conductive particle surface by thermocompression bonding the conductive particles coated with the insulating fine particles between the electrodes.
  • the metal surface of the conductive particles is exposed in the crimped portion, thereby enabling conduction between the electrodes and providing connectivity.
  • the surface portion of the conductive particles facing in a direction other than the direction of the thermocompression bonding is generally kept covered with the insulating fine particles, so that the conduction in the direction other than the direction of the thermocompression bonding is prevented. .
  • the insulating fine particles By including the ionic group on the surface of the insulating fine particles, the insulating fine particles easily adhere to the conductive particles. Peeling of the insulating fine particles from the particles is effectively prevented. For this reason, the short-circuit prevention effect by the insulating fine particles is likely to be exhibited in a direction different from that between the opposed electrodes, and an improvement in insulation in this direction can be expected.
  • the shape of the insulating fine particles is not particularly limited, and may be spherical or may have a shape other than spherical. Examples of shapes other than spherical include fibrous, hollow, plate-like and needle-like. Also, the insulating fine particles may have a large number of protrusions on their surface or may be amorphous. Spherical insulating microparticles are preferred in terms of adhesion to conductive particles and ease of synthesis.
  • the average particle diameter (D) of the insulating fine particles is preferably 10 nm or more and 3,000 nm or less, more preferably 15 nm or more and 2,000 nm or less.
  • the average particle diameter of the insulating fine particles is within the above range, the obtained coated particles do not cause a short circuit in a direction different from that between the opposing electrodes, and it is easy to ensure conduction between the opposing electrodes.
  • the average particle size of the insulating fine particles is a value measured by observation using a scanning electron microscope, and specifically measured by the method described in Examples below.
  • C.V. coefficient of variation
  • C. V. (%) (standard deviation/average particle size) x 100 (1)
  • This C.I. V. A large C.I. indicates a broad particle size distribution, while a C.I. V. A small value indicates a sharp particle size distribution.
  • the coated particles of this embodiment are made of C.I. V. is preferably from 0.1% to 20%, more preferably from 0.5% to 15%, and most preferably from 1% to 10%. C. V. is within this range, there is an advantage that the thickness of the coating layer of the insulating fine particles can be made uniform.
  • the insulating resin may be a continuous film made of a polymer and having an ionic group instead of the one made of the insulating fine particles.
  • the insulating resin is a continuous film having an ionic group, the continuous film is melted, deformed, or peeled off by thermocompression bonding the conductive particles between the electrodes, thereby exposing the metal surface of the conductive particles. It enables conduction between the electrodes and obtains connectivity. In particular, there are many cases where the metal surface is exposed due to breakage of the continuous film due to thermocompression bonding of the conductive particles between the electrodes.
  • the conductive particles are generally covered with the continuous film, so that conduction in directions other than the direction of the thermocompression bonding is prevented.
  • the continuous film also preferably has ionic groups on its surface.
  • the thickness of the continuous film is preferably 10 nm or more from the viewpoint of improving insulation in a direction different from that between the opposing electrodes, and is preferably 3,000 nm or less in terms of ease of conduction between the opposing electrodes. is preferred. From this point of view, the thickness of the continuous film is preferably 10 nm or more and 3,000 nm or less, more preferably 15 nm or more and 2,000 nm or less.
  • the ionic group in the continuous film, preferably forms part of the chemical structure of the substance as part of the substance that constitutes the continuous film.
  • the ionic group is preferably contained in the structure of at least one structural unit of the polymer constituting the continuous film.
  • the ionic groups are preferably chemically bonded to the polymer forming the continuous film, more preferably to side chains of the polymer.
  • the insulating resin is a continuous film
  • it is preferably a continuous film obtained by coating conductive particles with insulating fine particles having ionic groups on their surfaces and then heating the insulating fine particles.
  • it is preferably a continuous film obtained by dissolving the insulating fine particles in an organic solvent.
  • the insulating fine particles having an ionic group easily adhere to the conductive particles. It becomes easy to prevent the insulating fine particles from peeling off. Therefore, the continuous film obtained by heating or dissolving the insulating fine particles covering the conductive particles can have a uniform thickness and a high coating ratio on the surfaces of the conductive particles.
  • the conductive particles according to the production method of the present invention may be treated with a surface treatment agent for the purpose of enhancing affinity with the insulating resin and improving adhesion.
  • a surface treatment agent examples include benzotriazole-based compounds, titanium-based compounds, higher fatty acids or their derivatives, phosphates and phosphites. These may be used alone, or may be used in combination as necessary.
  • the surface treatment agent may or may not be chemically bonded to the metal on the surface of the conductive particles.
  • the surface-treating agent may be present on the surface of the conductive particles, in which case it may be present on the entire surface of the conductive particles, or may be present only on a part of the surface.
  • triazole-based compound examples include compounds having a nitrogen-containing heterocyclic structure having three nitrogen atoms in a five-membered ring.
  • triazole-based compounds include compounds having a triazole monocyclic structure that is not condensed with other rings, as well as compounds having a ring structure in which a triazole ring and another ring are condensed.
  • Other rings include a benzene ring and a naphthalene ring.
  • a compound having a ring structure in which a triazole ring and another ring are condensed is preferable because it has excellent adhesion to an insulating resin, and in particular, a benzotriazole-based compound, which is a compound having a structure in which a triazole ring and a benzene ring are condensed. is preferred.
  • Benzotriazole compounds include those represented by the following general formula (I).
  • R 11 is a negative charge, hydrogen atom, alkali metal, optionally substituted alkyl group, amino group, formyl group, hydroxyl group, alkoxy group, sulfonic acid group or silyl group;
  • R 12 , R 13 , R 14 and R 15 are each independently a hydrogen atom, a halogen atom, an optionally substituted alkyl group, a carboxyl group, a hydroxyl group or a nitro group.
  • Alkali metals represented by R 11 in formula (I) include lithium, sodium, potassium and the like.
  • the alkali metal represented by R 11 is an alkali metal cation, and when R 11 in formula (I) is an alkali metal, the bond between R 11 and the nitrogen atom may be an ionic bond.
  • the alkyl groups represented by R 11 , R 12 , R 13 , R 14 and R 15 in formula (I) include those having 1 to 20 carbon atoms, with 1 to 12 carbon atoms being particularly preferred.
  • the alkyl group may be substituted, and examples of substituents include an amino group, an alkoxy group, a carboxyl group, a hydroxyl group, an aldehyde group, a nitro group, a sulfonic acid group, a quaternary ammonium group, a sulfonium group, a sulfonyl group, Phosphonium groups, cyano groups, fluoroalkyl groups, mercapto groups, and halogen atoms are included.
  • the alkoxy group represented by R 11 preferably has 1 to 12 carbon atoms.
  • the alkoxy group as a substituent of the alkyl group represented by R 12 , R 13 , R 14 and R 15 preferably has 1 to 12 carbon atoms.
  • Halogen atoms represented by R 12 , R 13 , R 14 and R 15 in formula (I) include fluorine, chlorine, bromine and iodine atoms.
  • triazole compounds include 1,2,3-triazole, 1,2,4-triazole, 3-amino-1H-1,2,4-triazole, 5 - mercapto-1H-1,2,3-triazole sodium, 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, 3-amino-5-mercapto-1,2,4-triazole,
  • benzotriazole having a ring structure in which a triazole ring and another ring are condensed, 1-methyl-1H-benzotriazole, 4-methyl-1H-benzotriazole, 5-methyl-1H-benzotriazole, 4 -carboxy-1H-benzotriazole, 5-carboxy-1H-benzotriazole, 5-ethyl-1H-benzotriazole, 5-propyl-1H-benzotriazole, 5,6-dimethyl-1H-benzotriazole, 1-aminobenzo triazole, 5-nitrobenzotriazole, 5-chloro
  • titanium-based compound for example, when a compound having a structure represented by general formula (II) is present on the surface of the conductive particles, affinity between the insulating resin and the conductive particles can be easily obtained, and solvent It is particularly preferable in that it can be easily dispersed in a liquid and the surfaces of the conductive particles can be treated uniformly.
  • R 21 is a divalent or trivalent group
  • R 22 is an aliphatic hydrocarbon group having 2 to 30 carbon atoms, an aryl group having 6 to 22 carbon atoms, or a an arylalkyl group
  • q is an integer of 1 or 2
  • R 21 is a divalent group
  • q is 1
  • R 21 is a trivalent group
  • q is 2.
  • multiple R 22 may be the same or different, and * represents a bond.
  • Examples of aliphatic hydrocarbon groups having 4 to 28 carbon atoms represented by R 22 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group and nonyl group. , decyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, henicosyl group, docosyl group and the like.
  • Examples of unsaturated aliphatic hydrocarbon groups include alkenyl groups such as dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, nonadecenyl, icosenyl, eicosenyl, henicosenyl, and docosenyl. be done.
  • Examples of the aryl group having 6 to 22 carbon atoms include a phenyl group, a tolyl group, a naphthyl group, an anthryl group and the like.
  • the arylalkyl group having 7 or more and 23 or less carbon atoms include a benzyl group, a phenethyl group and a naphthylmethyl group.
  • the hydrophobic group a linear or branched aliphatic hydrocarbon group is particularly preferable, and a linear aliphatic hydrocarbon group is particularly preferable.
  • the aliphatic hydrocarbon group as the hydrophobic group preferably has 4 to 28 carbon atoms, most preferably 6 to 24 carbon atoms. preferable.
  • the divalent group represented by R 21 includes -O-, -COO-, -OCO-, -OSO 2 - and the like.
  • Examples of the trivalent group represented by R 21 include -P(OH)(O-) 2 and -OPO(OH)-OPO(O-) 2 .
  • * is a bond, and the bond may be bonded to the metal film of the conductive particles, or may be bonded to other groups.
  • Other groups in that case include, for example, hydrocarbon groups, specifically alkyl groups having 1 to 12 carbon atoms.
  • a compound having a structure in which R 21 in the general formula (II) is a divalent group has excellent availability and conductive properties of the conductive particles. It is preferable in that it can be processed without damaging it.
  • a structure in which R 21 is a divalent group in general formula (II) is represented by general formula (III) below.
  • R 21 is a group selected from —O—, —COO—, —OCO— and —OSO 2 —, and p, r and R 22 are the same as defined in general formula (II).
  • r is preferably 2 or 3 from the viewpoint of increasing the adhesion between the insulating resin and the conductive layer, and r is most preferably 3.
  • titanate-based coupling agents used in the present invention include isopropyltriisostearoyl titanate, isopropyltridodecylbenzenesulfonyltitanate, isopropyltris(dioctylpyrophosphate)titanate, tetraisopropyl(dioctylphosphite)titanate, tetraisopropylbis (dioctylphosphite) titanate, tetraoctylbis(ditridecylphosphite) titanate, tetra(2,2-diallyloxymethyl-1-butyl)bis(ditridecyl)phosphite titanate, bis(dioctylpyrophosphate)oxyacetate titanate, Bis(dioctyl pyrophosphate) ethylene titanate and the like can be mentioned, and these can be used alone or in combination
  • the higher fatty acid is preferably a saturated or unsaturated linear or branched mono- or polycarboxylic acid, more preferably a saturated or unsaturated linear or branched monocarboxylic acid, A saturated or unsaturated linear monocarboxylic acid is more preferred.
  • the fatty acid preferably has 7 or more carbon atoms.
  • a derivative refers to a salt or an amide of the fatty acid.
  • the higher fatty acid or derivative thereof used in the present invention preferably has 7 to 23 carbon atoms, more preferably 10 to 20 carbon atoms.
  • Examples of such higher fatty acids or derivatives thereof include saturated fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid and stearic acid; unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid and arachidonic acid; metal salts or amides of Metal salts of higher fatty acids include alkali metals, alkaline earth metals, transition metals such as Zr, Cr, Mn, Fe, Co, Ni, Cu and Ag, and metals other than transition metals such as Al and Zn.
  • the higher fatty acid metal salt can be mono-, di-, tri-, tetra-, etc., depending on the valence of the metal.
  • the higher fatty acid metal salt may be any combination of these.
  • Phosphate esters include, for example, hexyl phosphate, heptyl phosphate, monooctyl phosphate, monononyl phosphate, monodecyl phosphate, monoundecyl phosphate, monododecyl phosphate, acid monotridecyl ester, phosphate monotetradecyl ester, phosphate monopentadecyl ester, and the like.
  • phosphites examples include hexyl phosphite, heptyl phosphite, monooctyl phosphite, monononyl phosphite, monodecyl phosphite, monoundecyl phosphite, monododecyl phosphite, monotridecyl phosphite, monotetradecyl phosphite, monopentadecyl phosphite and the like.
  • the surface treatment agent is preferably a triazole-based compound or a titanium-based compound, particularly benzotriazole and 4-carboxylate, because they have excellent affinity with the insulating resin and are highly effective in increasing the coverage of the insulating resin.
  • Benzotriazole, isopropyltriisostearoyl titanate, tetraisopropyl(dioctylphosphite) titanate are particularly preferred.
  • a method of treating the conductive particles with the surface treatment agent is obtained by dispersing the conductive particles in a solution of the surface treatment agent and then filtering. Before the treatment with the surface treatment agent, the conductive particles may be treated with another treatment agent or may be untreated.
  • the concentration of the surface treatment agent in the solution of the surface treatment agent in which the conductive particles are dispersed is 0.01% by mass or more and 10.0% by mass or less.
  • Solvents in the surface treatment agent solution include alcohols such as water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, isopentyl alcohol, cyclohexanol, acetone, methyl Ketones such as isobutyl ketone, methyl ethyl ketone, methyl-n-butyl ketone, esters such as methyl acetate, ethyl acetate, ethers such as diethyl ether, ethylene glycol monoethyl ether, normal hexane, cyclohexanone, toluene, 1,4 -dioxane, N,N-dimethylformamide, tetrahydrofuran and the like. It is preferable to re-disperse the dispersed and filtered conductive particles after the surface treatment in a solvent to remove the excess surface treatment agent.
  • the surface treatment of the conductive particles with a surface treatment agent can be performed by mixing the conductive particles, surface treatment agent and solvent at room temperature.
  • the conductive particles and the surface treatment agent may be mixed in a solvent and then heated to promote the reaction.
  • the heating temperature is, for example, 30° C. or higher and 50° C. or lower.
  • the conductive particles of the present invention have low connection resistance and excellent connection reliability. It is suitably used as a conductive material for connection to a circuit board.
  • the conductive material include the use of the conductive particles of the present invention as they are, and the use of the conductive particles of the present invention dispersed in a binder resin.
  • Other forms of the conductive material are not particularly limited, and examples thereof include forms such as anisotropic conductive paste, conductive adhesive, and anisotropic conductive ink.
  • binder resin examples include thermoplastic resins and thermosetting resins.
  • thermoplastic resins include acrylic resins, styrene resins, ethylene-vinyl acetate resins, styrene-butadiene block copolymers, etc.
  • thermosetting resins include epoxy resins, phenol resins, urea resins, polyester resins, urethane resins, polyimide resins, and the like.
  • the conductive material may include, if necessary, a tackifier, a reactive aid, an epoxy resin curing agent, a metal oxide, a photoinitiator, a sensitizer, and a curing agent. agents, vulcanizing agents, antidegradants, heat resistant additives, thermal conductivity improvers, softeners, coloring agents, various coupling agents, metal deactivators, and the like.
  • the amount of the conductive particles used may be appropriately determined according to the application. 0.01 to 50 parts by mass, particularly preferably 0.03 to 40 parts by mass.
  • the conductive particles of the present invention are particularly suitable for use as a conductive filler for a conductive adhesive.
  • the conductive adhesive is preferably used as an anisotropic conductive adhesive that is placed between two substrates on which conductive substrates are formed, and adheres and conducts the conductive substrates by heating and pressurizing.
  • This anisotropic conductive adhesive contains the conductive particles of the present invention and an adhesive resin.
  • the adhesive resin any resin that is insulative and is used as an adhesive resin can be used without particular limitation. Either a thermoplastic resin or a thermosetting resin may be used, and a material exhibiting adhesion performance upon heating is preferable.
  • adhesive resins include, for example, thermoplastic types, thermosetting types, ultraviolet curing types, and the like.
  • thermosetting type composite type of thermosetting type and ultraviolet curing type, etc.
  • adhesive resins can be appropriately selected according to the surface characteristics of the circuit board or the like to be adhered and the mode of use.
  • an adhesive resin containing a thermosetting resin is preferable from the viewpoint of excellent material strength after bonding.
  • adhesive resins include ethylene-vinyl acetate copolymer, carboxyl-modified ethylene-vinyl acetate copolymer, ethylene-isobutyl acrylate copolymer, polyamide, polyimide, polyester, polyvinyl ether, polyvinyl butyral, and polyurethane.
  • SBS block copolymer carboxyl-modified SBS copolymer, SIS copolymer, SEBS copolymer, maleic acid-modified SEBS copolymer, polybutadiene rubber, chloroprene rubber, carboxyl-modified chloroprene rubber, styrene-butadiene rubber, isobutylene- One or two selected from isoprene copolymer, acrylonitrile-butadiene rubber (hereinafter referred to as NBR), carboxyl-modified NBR, amine-modified NBR, epoxy resin, epoxy ester resin, acrylic resin, phenol resin, silicone resin, etc. Examples include those prepared using the above combination as the main ingredient.
  • thermoplastic resin styrene-butadiene rubber, SEBS, and the like are preferable as the thermoplastic resin because they are excellent in reworkability.
  • Epoxy resin is preferable as the thermosetting resin.
  • epoxy resins are most preferable because of their advantages of high adhesion, excellent heat resistance and electrical insulation, low melt viscosity, and low pressure connection.
  • epoxy resin a generally used epoxy resin can be used as long as it is a polyvalent epoxy resin having two or more epoxy groups in one molecule.
  • novolak resins such as phenol novolak and cresol novolak
  • polyhydric phenols such as bisphenol A, bisphenol F, bisphenol AD, resorcinol, and bishydroxydiphenyl ether
  • ethylene glycol, neopentyl glycol, glycerin, and trimethylolpropane novolak resins such as phenol novolak and cresol novolak
  • polyhydric phenols such as bisphenol A, bisphenol F, bisphenol AD, resorcinol, and bishydroxydiphenyl ether
  • ethylene glycol neopentyl glycol
  • glycerin glycerin
  • trimethylolpropane trimethylolpropane
  • polyhydric alcohols such as polypropylene glycol, polyamino compounds such as ethylenediamine, triethylenetetramine, and aniline, polyvalent carboxy compounds such as adipic acid, phthalic acid, and isophthalic acid, and epichlorohydrin or 2-methylepichlorohydrin.
  • a glycidyl type epoxy resin is exemplified.
  • aliphatic and alicyclic epoxy resins such as dicyclopentadiene epoxide and butadiene dimer diepoxide. These can be used individually by 1 type or in mixture of 2 or more types.
  • the amount of the conductive particles used in the anisotropic conductive adhesive is usually 0.1 to 30 parts by mass, preferably 0.5 to 25 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the resin component of the adhesive. Department. When the amount of the conductive particles used is within this range, it is possible to suppress increases in connection resistance and melt viscosity, improve connection reliability, and sufficiently ensure anisotropy in connection.
  • the anisotropically conductive adhesive may contain additives known in the art.
  • the blending amount thereof can also be within the range known in the technical field.
  • additives include, for example, tackifiers, reactive aids, epoxy resin curing agents, metal oxides, photoinitiators, sensitizers, curing agents, vulcanizing agents, antidegradants, heat resistant additives, heat Conductivity improvers, softeners, colorants, various coupling agents, metal deactivators, and the like can be exemplified.
  • tackifiers include rosin, rosin derivatives, terpene resins, terpene phenol resins, petroleum resins, coumarone-indene resins, styrene resins, isoprene resins, alkylphenol resins, and xylene resins.
  • reactive aids, ie, cross-linking agents include polyols, isocyanates, melamine resins, urea resins, utropines, amines, acid anhydrides, peroxides and the like. Any epoxy resin curing agent having two or more active hydrogens per minute can be used without particular limitation.
  • polyamino compounds such as diethylenetriamine, triethylenetetramine, metaphenylenediamine, dicyandiamide, and polyamidoamine
  • organic acid anhydrides such as phthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and pyromellitic anhydride
  • substances such as phenol novolak and cresol novolak.
  • Usable latent curing agents include, for example, imidazole-based, hydrazide-based, boron trifluoride-amine complexes, sulfonium salts, amine imides, polyamine salts, dicyandiamide, and modified products thereof. These can be used individually by 1 type or as a mixture of 2 or more types.
  • the anisotropic conductive adhesive described above is manufactured using manufacturing equipment commonly used in the technical field. For example, by blending conductive particles and adhesive resin, and if necessary, a curing agent and various additives, and mixing in an organic solvent when the adhesive resin is a thermosetting resin, adhesion is achieved in the case of a thermoplastic resin. It is produced by melt-kneading at a temperature higher than the softening point of the agent resin, specifically preferably about 50 to 130°C, more preferably about 60 to 110°C.
  • the anisotropically conductive adhesive thus obtained may be applied or applied in the form of a film.
  • connection structure according to the present invention is obtained by connecting two circuit boards using the conductive particles according to the present invention or the conductive material according to the present invention.
  • Examples of the form of the connection structure include a connection structure between a flexible printed circuit board and a glass substrate, a connection structure between a semiconductor chip and a flexible printed circuit board, a connection structure between a semiconductor chip and a glass substrate, and the like.
  • Example 1 Pretreatment Spherical styrene-acrylate-silica composite resin particles having an average particle size of 3.0 ⁇ m were used as core particles. 9 g of the solution was added to 200 mL of an aqueous conditioner solution (“Cleaner Conditioner 231” manufactured by Rohm and Haas Electronic Materials Co., Ltd.) with stirring. The concentration of the aqueous conditioner solution was 40 mL/L. Subsequently, the core material particles were subjected to surface modification and dispersion treatment by stirring for 30 minutes while applying ultrasonic waves at a liquid temperature of 60°C. This aqueous solution was filtered, and the core particles that had been repulp washed once were made into 200 mL of slurry.
  • an aqueous conditioner solution (“Cleaner Conditioner 231” manufactured by Rohm and Haas Electronic Materials Co., Ltd.) with stirring. The concentration of the aqueous conditioner solution was 40 mL/L.
  • the core material particles were subjected to surface modification and
  • stannous chloride 0.1 g was added to the slurry.
  • the mixture was stirred at room temperature for 5 minutes to carry out a sensitization treatment in which tin ions were adsorbed on the surfaces of the core particles. Subsequently, this aqueous solution was filtered, and the once repulped water-washed core particles were made into a slurry of 200 mL and maintained at 60°C. 1.5 mL of a 0.11 mol/L palladium chloride aqueous solution was added to this slurry. The mixture was stirred at 60° C. for 5 minutes to perform an activation treatment to trap palladium ions on the surfaces of the core particles.
  • this aqueous solution is filtered, and the core particles that have been repulp hot water washed once are made into a slurry of 100 mL, 10 mL of a 0.5 g/L dimethylamine borane aqueous solution is added, and the pretreated core material is stirred for 2 minutes while applying ultrasonic waves. A slurry of particles was obtained.
  • a mixed aqueous solution containing 224 g / L nickel sulfate aqueous solution, 210 g / L sodium hypophosphite and 80 g / L sodium hydroxide was added at an addition rate of 2.0 mL / min for 60 minutes. It was continuously added fractionally by a metering pump. The plating deposition rate in this operation was 0.55 nm/min, and the thickness of the resulting conductive layer was 33 nm.
  • an aqueous nickel sulfate solution and a mixed aqueous solution of sodium hypophosphite and sodium hydroxide were added continuously and fractionally for 60 minutes at an addition rate of 4.1 mL/min using a metering pump.
  • the plating deposition rate in this operation was 1.12 nm/min, and the thickness of the conductive layer obtained was 67 nm.
  • the obtained electroless plating treatment solution was continuously stirred for 5 minutes while maintaining the temperature of 70°C. Next, the liquid was filtered, and the filtrate was washed three times and then dried in a vacuum dryer at 110°C to obtain conductive particles having an electroless nickel-phosphorus plating layer formed on the surface of the core particles as a conductive layer. rice field.
  • the obtained conductive particles had an average particle size of 3.2 ⁇ m, and the conductive layer had a thickness of 100 nm and had projections.
  • Example 2 Electroless plating treatment in Example 1 was performed by the following operation.
  • the slurry of the pretreated core particles was added to the electroless plating bath and stirred for 5 minutes to confirm that hydrogen bubbling stopped.
  • a mixed aqueous solution containing 224 g / L nickel sulfate aqueous solution, 210 g / L sodium hypophosphite and 80 g / L sodium hydroxide was added at an addition rate of 1.0 mL / min for 45 minutes. It was continuously added fractionally by a metering pump.
  • the plating deposition rate in this operation was 0.3 nm/min, and the thickness of the conductive layer obtained was 13.5 nm.
  • an aqueous solution of nickel sulfate and a mixed aqueous solution of sodium hypophosphite and sodium hydroxide were added continuously and fractionally for 60 minutes at an addition rate of 2.25 mL/min using a metering pump.
  • the plating deposition rate in this operation was 0.6 nm/min, and the thickness of the resulting conductive layer was 36 nm.
  • an aqueous nickel sulfate solution and a mixed aqueous solution of sodium hypophosphite and sodium hydroxide were added continuously and fractionally for 45 minutes at an addition rate of 3.25 mL/min using a metering pump.
  • the plating deposition rate in this operation was 1.0 nm/min, and the thickness of the resulting conductive layer was 45 nm.
  • the obtained electroless plating treatment solution was continuously stirred for 5 minutes while maintaining the temperature of 70°C. Next, the liquid was filtered, and the filtrate was washed three times and then dried in a vacuum dryer at 110°C to obtain conductive particles having an electroless nickel-phosphorus plating layer formed on the surface of the core particles as a conductive layer. rice field.
  • the obtained conductive particles had an average particle diameter of 3.19 ⁇ m, a thickness of the conductive layer of 94.5 nm, and had projections.
  • Example 3 The conductive particles obtained in Example 2 were placed in a rectangular container so as to have a thickness of 5 mm. This is placed in a vacuum heating furnace (KDF-75 manufactured by Denken-High Dental Co., Ltd.), heated from room temperature to 390° C. at a heating rate of 5° C./min under a vacuum of 10 Pa, and then heat-treated at this temperature for 2 hours. did After the heat treatment, the pressure was brought to atmospheric pressure by purging with nitrogen, and then cooled to room temperature at a cooling rate of 3° C./min by blowing in nitrogen gas to obtain heat-treated conductive particles. The obtained conductive particles had an average particle diameter of 3.19 ⁇ m, a thickness of the conductive layer of 94.5 nm, and had projections.
  • KDF-75 manufactured by Denken-High Dental Co., Ltd.
  • Example 1 Conductive particles were obtained in the same manner as in Example 1, except that (3) the electroless plating treatment in Example 1 was replaced with the following operation.
  • the slurry of the pretreated core particles was added to the electroless plating bath and stirred for 5 minutes to confirm that hydrogen bubbling stopped.
  • a mixed aqueous solution containing 224 g / L nickel sulfate aqueous solution, 210 g / L sodium hypophosphite and 80 g / L sodium hydroxide was added at an addition rate of 12.2 mL / min for 30 minutes. Continuous fractional addition was performed by a metering pump, and electroless plating treatment was performed.
  • the plating deposition rate in this operation was 3.3 nm/min.
  • the obtained electroless plating treatment solution was continuously stirred for 5 minutes while maintaining the temperature of 70°C. Next, the liquid was filtered, and the filtrate was washed three times and then dried in a vacuum dryer at 110°C to obtain conductive particles having an electroless nickel-phosphorus plating layer formed on the surface of the core particles as a conductive layer. rice field.
  • the obtained conductive particles had an average particle size of 3.2 ⁇ m, and the conductive layer had a thickness of 100 nm and had projections.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Conductive particles are provided which, while having excellent connection reliability, enable reducing connection resistance between electrodes by improving adhesion of a nickel plating film to core particles. In these conductive particles, which comprise a conductive layer formed on the surface of core particles, the withstand current value per single conductive particle when the compression rate is less than 5% is at least 1mA, and the withstand current value per single conductive particle when the compression rate is greater than or equal 5% is at least 10mA. These conductive particles enable film formation on the surface of the core particle at a stage earlier than the late-stage plating treatment.

Description

導電性粒子、その製造方法及び導電性材料Conductive particles, method for producing the same, and conductive material
 本発明は、導電性粒子、その製造方法及び導電性材料に関する。 The present invention relates to conductive particles, methods for producing the same, and conductive materials.
 異方性導電フィルムや異方性導電ペーストといった異方性導電材料の導電性材料として用いられる導電性粒子としては、一般に芯材粒子の表面に金属からなる導電層を形成したものが知られており、この導電層により電極や配線間の電気的な接続を行っている。 As a conductive particle used as a conductive material for an anisotropic conductive material such as an anisotropic conductive film or an anisotropic conductive paste, it is generally known that a conductive layer made of a metal is formed on the surface of a core particle. This conductive layer provides electrical connection between electrodes and wiring.
 この導電性粒子の導電層としては、無電解めっき法によるニッケルめっき皮膜がしばしば用いられているが、目的とする特性を発現させるために、様々な工夫がなされている。その一例として、ニッケルとリンとを含む導電層中のリンの濃度を偏在化させることにより、電極間を電気的に接続した場合に、接続抵抗を効果的に低くする方法が提案されている(例えば、特許文献1~3参照)。これらの特許文献では、導電層中のリンの濃度を偏在化させる方法として、実施例において無電解めっき処理中にニッケルめっき液のpHを変化させることにより、リン濃度の異なるニッケルめっき皮膜を得ることが記載されている。また、特許文献4には、金属皮膜の形成において、無電解めっきを多段階で行うことにより金属皮膜を複層の膜から構成してもよいことが記載されている。しかしながら、導電層が複層の金属皮膜から構成されることによる技術的意義についての記載はなく、一般的な技術の1つとして触れられているのみである。 As the conductive layer of the conductive particles, a nickel plating film formed by an electroless plating method is often used. As an example, a method of effectively lowering the connection resistance when electrodes are electrically connected by unevenly distributing the concentration of phosphorus in a conductive layer containing nickel and phosphorus has been proposed ( For example, see Patent Documents 1 to 3). In these patent documents, as a method for unevenly distributing the concentration of phosphorus in the conductive layer, nickel plating films with different phosphorus concentrations are obtained by changing the pH of the nickel plating solution during electroless plating in the examples. is described. Further, Patent Document 4 describes that the metal film may be composed of multiple layers by performing electroless plating in multiple stages in the formation of the metal film. However, there is no description of the technical significance of the conductive layer being composed of multiple layers of metal films, and it is only mentioned as one of general techniques.
特開2013-214511号公報JP 2013-214511 A 国際公開第2013/108842号パンフレットInternational Publication No. 2013/108842 pamphlet 国際公開第2014/054572号パンフレットInternational Publication No. 2014/054572 Pamphlet 国際公開第2010/035708号パンフレットWO 2010/035708 pamphlet
 無電解ニッケルめっき処理により芯材粒子の表面にニッケルめっき皮膜を形成する方法において、一般的にはニッケルめっき液を芯材粒子のスラリーに滴下することでめっき処理を行うが、上記特許文献で提案されている複数回に分けてニッケルめっき液を添加する方法では、芯材粒子へのニッケルめっき皮膜の密着性に改善の余地があった。すなわち、上記した従来の方法により得られた導電性粒子を電極間の接続に用いた場合に、接続時の導電性粒子の圧縮変形により生じるニッケルめっき皮膜の剥離が原因となり、電極間の接続抵抗が高くなる問題や接続信頼性が低くなる問題が生じていた。 In the method of forming a nickel plating film on the surface of the core particles by electroless nickel plating, the plating is generally performed by dropping a nickel plating solution into the slurry of the core particles. In the conventional method of adding the nickel plating solution in multiple steps, there is room for improvement in the adhesion of the nickel plating film to the core particles. That is, when the conductive particles obtained by the above-described conventional method are used for connection between electrodes, the peeling of the nickel plating film caused by the compressive deformation of the conductive particles during connection causes the connection resistance between the electrodes. However, there were problems such as an increase in the connection reliability and a decrease in connection reliability.
 したがって本発明の目的は、芯材粒子へのニッケルめっき皮膜の密着性を向上させることにより、電極間の接続抵抗を低くすることができつつ、接続信頼性にも優れた導電性粒子を提供することにある。 Therefore, an object of the present invention is to provide conductive particles that can reduce the connection resistance between electrodes and have excellent connection reliability by improving the adhesion of the nickel plating film to the core particles. That's what it is.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、芯材粒子表面でのめっき皮膜の形成速度を、めっき処理の後期よりも初期の方で遅くすることにより、従来よりもニッケルめっき皮膜が緻密に形成することから、芯材粒子へのニッケルめっき皮膜の密着性が上がることを見出した。また、このようにして形成されたニッケルめっき皮膜を導電層として有する導電性粒子は、大電流に対する耐性に優れることから、接続抵抗が低く、且つ、接続信頼性にも優れるものとなること見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors have found that by slowing the formation rate of the plating film on the surface of the core material particles in the early stage of the plating process rather than the late stage, nickel plating can be performed more effectively than before. It was found that the adhesion of the nickel-plated film to the core particles is improved because the film is formed densely. In addition, it was found that the conductive particles having the nickel plating film formed in this way as a conductive layer have excellent resistance to large currents, so that connection resistance is low and connection reliability is also excellent. We have completed the present invention.
 すなわち本発明は、芯材粒子の表面に導電層が形成されてなる導電性粒子において、圧縮率が5%未満のときの該導電性粒子1個当たりの耐電流値が1mA以上であり、圧縮率が5%以上のときの該導電性粒子1個当たりの耐電流値が10mA以上である導電性粒子を提供するものである。 That is, in the present invention, in conductive particles in which a conductive layer is formed on the surface of core particles, the withstand current value per conductive particle is 1 mA or more when the compressibility is less than 5%, and the compression Provided is a conductive particle having a withstand current value of 10 mA or more per conductive particle when the ratio is 5% or more.
 また本発明は、芯材粒子の水性スラリーと、分散剤、ニッケル塩、還元剤及び錯化剤を含む無電解ニッケルめっき浴とを混合し、無電解ニッケルめっき処理する第1工程、及び、第1工程で得られた液に、ニッケル塩を含む水溶液、還元剤を含む水溶液及びアルカリを含む水溶液を、めっき析出速度を1回以上変化させるように添加量を制御しながら連続的に添加して無電解ニッケルめっき処理する第2工程、を有することを特徴とする導電性粒子の製造方法を提供するものである。 Further, the present invention includes a first step of mixing an aqueous slurry of core particles and an electroless nickel plating bath containing a dispersant, a nickel salt, a reducing agent and a complexing agent, and performing electroless nickel plating; An aqueous solution containing a nickel salt, an aqueous solution containing a reducing agent, and an aqueous solution containing an alkali are continuously added to the liquid obtained in one step while controlling the addition amount so as to change the plating deposition rate once or more. A second step of electroless nickel plating is provided.
 本発明によれば、芯材粒子への密着性に優れ、接続抵抗が低く、且つ、接続信頼性にも優れる導電性粒子、及び該導電性粒子を製造する方法を提供することができる。 According to the present invention, it is possible to provide conductive particles with excellent adhesion to core particles, low connection resistance, and excellent connection reliability, and a method for producing the conductive particles.
実施例2で得られた導電性粒子のSEM写真である。4 is an SEM photograph of the conductive particles obtained in Example 2. FIG.
 本発明の導電性粒子は、圧縮率が5%未満のとき、特に圧縮率が1%以上5%未満のときの該導電性粒子1個当たりの耐電流値が1mA以上、好ましくは1.5mA以上であり、圧縮率が5%以上のとき、特に圧縮率5%以上50%以下のときの該導電性粒子1個当たりの耐電流値が10mA以上、好ましくは15mA以上を示すものである。導電性粒子1個当たりの耐電流値が上記範囲内にあることで、大電流に対する耐性に優れることから、接続抵抗が低く、且つ、接続信頼性に優れるものとなる。 The conductive particles of the present invention have a withstand current value of 1 mA or more, preferably 1.5 mA per conductive particle when the compressibility is less than 5%, particularly when the compressibility is 1% or more and less than 5%. As described above, when the compressibility is 5% or more, particularly when the compressibility is 5% or more and 50% or less, the withstand current value per conductive particle is 10 mA or more, preferably 15 mA or more. When the withstand current value per conductive particle is within the above range, the connection resistance is low and the connection reliability is excellent because the resistance to large current is excellent.
 本発明における耐電流値とは、導電性微粒子電気特性測定装置(以下、V-I装置ということもある。)を用いて、目的とする圧縮率の導電性粒子1個当たりの耐電流値を測定したものである。V-I装置は、導電性粒子の圧縮率を1定に保持した状態で、電圧-電流特性、及び/又は電流容量が測定可能な装置であればよく、例えば、特開平10-221388号公報に記載の装置を用いることができる。本発明における耐電流値は、導電性粒子1個を測定した値である。 The withstand current value in the present invention means the withstand current value per conductive particle with the desired compressibility using a conductive fine particle electrical property measuring device (hereinafter sometimes referred to as a VI device). Measured. The VI device may be any device capable of measuring the voltage-current characteristics and/or current capacity while the compressibility of the conductive particles is kept constant. can be used. The withstand current value in the present invention is a value obtained by measuring one conductive particle.
 本発明の導電性粒子は、前記圧縮率が1%以上4%以下のときの導電性粒子1個当たりの耐電流値が0.5mA以上、特に1mA以上であることが好ましい。電極を加圧接続する際の圧縮率が小さい初期の段階で、導電性粒子1個当たりの耐電流値が前記範囲であることにより、接続抵抗が低く、且つ、接続信頼性にも優れる導電性粒子となる。 The conductive particles of the present invention preferably have a withstand current value of 0.5 mA or more, particularly 1 mA or more per conductive particle when the compressibility is 1% or more and 4% or less. At the initial stage when the compressibility is small when the electrodes are pressure-connected, the withstand current value per conductive particle is within the above range, so that the connection resistance is low and the connection reliability is excellent. become particles.
 本発明の導電性粒子は、前記圧縮率が10%以上50%以下のときの導電性粒子1個当たりの耐電流値が15mA以上、特に20mA以上であることが好ましい。また、前記圧縮率が30%のときの導電性粒子1個当たりの耐電流値が20mA以上であることがより好ましい。電極を加圧接続する中後期の段階で、導電性粒子1個当たりの耐電流値が前記範囲であることにより、大電流に対する耐性に優れることから、接続抵抗が低く、且つ、接続信頼性に優れるものとなる。 The conductive particles of the present invention preferably have a withstand current value of 15 mA or more, particularly 20 mA or more per conductive particle when the compressibility is 10% or more and 50% or less. Further, it is more preferable that the withstand current value per conductive particle is 20 mA or more when the compressibility is 30%. In the middle and late stages of pressurizing and connecting the electrodes, the withstand current value per conductive particle is within the above range, so that the resistance to large currents is excellent, so the connection resistance is low and the connection reliability is improved. become excellent.
 本発明の導電性粒子は、上述のように圧縮率が5%未満の圧縮初期よりも、圧縮率が5%以上の圧縮中後期において耐電流値が高い。これは、後述する本発明の導電性粒子の製造方法により得られる導電性粒子の導電層が緻密な皮膜により形成されるために、芯材粒子への皮膜の密着性が上がると考えられ、これにより電極を加圧接続するときに生ずる導電性粒子の変形による導電層の剥離や破損が生じ難くなることから、大電流に対する耐性に優れることに繋がり、接続抵抗が低く、且つ、接続信頼性にも優れるという本発明の効果を奏するものになると本発明者らは考えている。 As described above, the conductive particles of the present invention have a higher withstand current value in the middle and late stages of compression when the compression rate is 5% or more than in the early stage of compression when the compression rate is less than 5%. It is believed that this is because the conductive layer of the conductive particles obtained by the method for producing the conductive particles of the present invention, which will be described later, is formed of a dense film, so that the adhesion of the film to the core particles increases. This makes it difficult for the conductive layer to peel off or break due to deformation of the conductive particles that occur when the electrodes are pressure-connected, leading to excellent resistance to large currents, low connection resistance, and high connection reliability. The inventors of the present invention believe that the effect of the present invention, which is also excellent, can be achieved.
 前記導電性粒子は、芯材粒子の表面に導電層が形成されてなるものである。
 前記芯材粒子としては、粒子状であれば、無機物であっても有機物であっても特に制限なく用いることができる。無機物の芯材粒子としては、金、銀、銅、ニッケル、パラジウム、ハンダ等の金属粒子、合金、ガラス、セラミック、シリカ、金属又は非金属の酸化物(含水物も含む)、アルミノ珪酸塩を含む金属珪酸塩、金属炭化物、金属窒化物、金属炭酸塩、金属硫酸塩、金属リン酸塩、金属硫化物、金属酸塩、金属ハロゲン化物及び炭素等が挙げられる。一方、有機物の芯材粒子としては、例えば、天然繊維、天然樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリブテン、ポリアミド、ポリアクリル酸エステル、ポリアクリルニトリル、ポリアセタール、アイオノマー、ポリエステル等の熱可塑性樹脂、アルキッド樹脂、フェノール樹脂、尿素樹脂、ベンゾグアナミン樹脂、メラミン樹脂、キシレン樹脂、シリコーン樹脂、エポキシ樹脂、ジアリルフタレート樹脂等の熱硬化性樹脂が挙げられる。これらは単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
The conductive particles are obtained by forming a conductive layer on the surface of core particles.
As the core material particles, as long as they are in the form of particles, inorganic substances or organic substances can be used without particular limitation. Inorganic core particles include metal particles such as gold, silver, copper, nickel, palladium, solder, alloys, glass, ceramics, silica, metal or non-metal oxides (including hydrous), and aluminosilicates. metal silicates, metal carbides, metal nitrides, metal carbonates, metal sulfates, metal phosphates, metal sulfides, metal acid salts, metal halides and carbon containing metals. On the other hand, organic core particles include, for example, thermoplastic materials such as natural fibers, natural resins, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylate, polyacrylonitrile, polyacetal, ionomer, and polyester. thermosetting resins such as resins, alkyd resins, phenol resins, urea resins, benzoguanamine resins, melamine resins, xylene resins, silicone resins, epoxy resins, and diallyl phthalate resins. These may be used alone or in combination of two or more.
 芯材粒子は、上述した無機物及び有機物のいずれか一方からなる材質に代えて、無機物及び有機物の双方からなる材質で構成されていてもよい。芯材粒子が無機物及び有機物の双方からなる材質で構成されている場合、芯材粒子における無機物及び有機物の存在態様としては、例えば、無機物からなるコアと、該コアの表面を被覆する無機物からなるシェルとを備える態様、あるいは、有機物からなるコアと、該コアの表面を被覆する無機物からなるシェルとを備える態様等のコアシェル型の構成等が挙げられる。これらのほか、1つの芯材粒子中に、無機物と有機物が混合されているか、あるいはランダムに融合しているブレンド型の構成等が挙げられる。 The core particles may be composed of a material composed of both an inorganic substance and an organic substance instead of the material composed of either one of the inorganic substance and the organic substance described above. In the case where the core particles are composed of a material comprising both an inorganic substance and an organic substance, the mode of existence of the inorganic substance and the organic substance in the core particles includes, for example, a core made of an inorganic substance and an inorganic substance coating the surface of the core. Alternatively, a core-shell type configuration, such as an embodiment having a core made of an organic substance and a shell made of an inorganic substance covering the surface of the core, may be mentioned. In addition to these, a blend type configuration in which an inorganic substance and an organic substance are mixed or fused at random in one core particle can be used.
 芯材粒子は、有機物或いは無機物及び有機物の双方からなる材質で構成されていることが好ましく、無機物及び有機物の双方からなる材質で構成されていることがより好ましい。前記無機物は、ガラス、セラミック、シリカ、金属又は非金属の酸化物(含水物も含む)、アルミノ珪酸塩を含む金属珪酸塩、金属炭化物、金属窒化物、金属炭酸塩、金属硫酸塩、金属リン酸塩、金属硫化物、金属酸塩、金属ハロゲン化物及び炭素であることが好ましい。また、前記有機物は天然繊維、天然樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリブテン、ポリアミド、ポリアクリル酸エステル、ポリアクリルニトリル、ポリアセタール、アイオノマー、ポリエステル等の熱可塑性樹脂であることが好ましい。このような材質からなる芯材を用いることによって、粒子同士の分散安定性を高めることができ、また、電子回路の電気的接続の際に、適度な弾性を発現させて導通を高めることができる。 The core particles are preferably composed of an organic substance or a material composed of both an inorganic substance and an organic substance, and more preferably composed of a material composed of both an inorganic substance and an organic substance. The inorganic substances include glass, ceramics, silica, metal or non-metal oxides (including hydrates), metal silicates including aluminosilicates, metal carbides, metal nitrides, metal carbonates, metal sulfates, metal phosphorus. Acid salts, metal sulfides, metal acid salts, metal halides and carbon are preferred. The organic material is preferably thermoplastic resin such as natural fiber, natural resin, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylate, polyacrylonitrile, polyacetal, ionomer, and polyester. By using a core material made of such a material, it is possible to improve the dispersion stability of the particles, and to develop appropriate elasticity and enhance conduction when electrically connecting an electronic circuit. .
 芯材粒子として有機物を用いる場合、ガラス転移温度を有しないか、又は、ガラス転移温度が100℃超であることが、芯材粒子の形状が維持されやすいことや金属皮膜を形成する工程において芯材粒子の形状を維持しやすい点から好ましい。ガラス転移温度は、例えば、示差走査熱量測定(DSC)により得られるDSC曲線のベースラインシフト部分における元のベースラインと変曲点の接線の交点として求めることができる。 When an organic substance is used as the core particles, it is preferable that the core particles have no glass transition temperature or that the glass transition temperature is higher than 100° C., because the shape of the core particles can be easily maintained, and the core particles can be used in the step of forming the metal coating. This is preferable because the shape of the material particles can be easily maintained. The glass transition temperature can be determined, for example, as the intersection of the original baseline and the tangent of the inflection point in the baseline shift portion of the DSC curve obtained by differential scanning calorimetry (DSC).
 芯材粒子として有機物を用いる場合において、その有機物が高度に架橋した樹脂であるときは、前記方法にて200℃までガラス転移温度の測定を試みても、ベースラインシフトはほとんど観測されない。本明細書中ではこのような粒子を、ガラス転移温度を有しない粒子ともいい、本発明においては、このような芯材粒子を用いてもよい。ガラス転移温度を有しない芯材粒子材料の具体例としては、前記で例示した有機物を構成する単量体に架橋性の単量体を併用して共重合させて得ることができる。架橋性の単量体としては、テトラメチレンジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレンオキシドジ(メタ)アクリレート、テトラエチレンオキシド(メタ)アクリレート、1,6-ヘキサンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリメテロールプロパントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリジ(メタ)アクリレート等の多官能(メタ)アクリレート、ジビニルベンゼン、ジビニルトルエン等の多官能ビニル系単量体、ビニルトリメトキシシラン、トリメトキシシリルスチレン、γ-(メタ)アクリロキシプロピルトリメトキシシラン等のシラン含有系単量体、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル等の単量体が挙げられる。特にCOG(Chip on Glass)分野ではこのような硬質な有機材料による芯材粒子が多く使用される。 When an organic substance is used as the core particles and the organic substance is a highly crosslinked resin, almost no baseline shift is observed even if the glass transition temperature is measured up to 200°C by the above method. In the present specification, such particles are also referred to as particles having no glass transition temperature, and such core particles may be used in the present invention. A specific example of the core particle material having no glass transition temperature can be obtained by copolymerizing the above-exemplified monomers constituting the organic matter with a crosslinkable monomer. Examples of crosslinkable monomers include tetramethylene di(meth)acrylate, ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, ethylene oxide di(meth)acrylate, tetraethylene oxide (meth)acrylate, 1,6-hexanedi(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethane di( meth) acrylate, tetramethylolmethane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, tetramethylolpropane tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, glycerol di(meth)acrylate, glycerol tridi( Polyfunctional (meth)acrylates such as meth)acrylates, polyfunctional vinyl monomers such as divinylbenzene and divinyltoluene, vinyltrimethoxysilane, trimethoxysilylstyrene, γ-(meth)acryloxypropyltrimethoxysilane, etc. Monomers such as silane-containing monomers, triallyl isocyanurate, diallyl phthalate, diallyl acrylamide, and diallyl ether can be used. Especially in the field of COG (Chip on Glass), core material particles made of such a hard organic material are often used.
 芯材粒子の形状に特に制限はない。一般に、芯材粒子は球状である。しかし、芯材粒子は球状以外の形状、例えば、繊維状、中空状、板状又は針状であってもよく、その表面に多数の突起を有するもの又は不定形のものであってもよい。本発明においては、充填性に優れる、金属を被覆しやすいといった点で、球状の芯材粒子が好ましい。 There are no particular restrictions on the shape of the core particles. Generally, the core particles are spherical. However, the core particles may have a shape other than spherical, such as fibrous, hollow, plate-like or needle-like, and may have many protrusions on their surface or be amorphous. In the present invention, spherical core particles are preferred in terms of excellent filling properties and easy metal coating.
 芯材粒子の表面に形成される導電層は、導電性を有する金属からなるものである。導電層を構成する金属としては、例えば、金、白金、銀、銅、鉄、亜鉛、ニッケル、スズ、鉛、アンチモン、ビスマス、コバルト、インジウム、チタン、ゲルマニウム、アルミニウム、クロム、パラジウム、タングステン、モリブデン、カルシウム、マグネシウム、ロジウム、ナトリウム、イリジウム、ベリリウム、ルテニウム、カリウム、カドミウム、オスミウム、リチウム、ルビジウム、ガリウム、タリウム、タンタル、セシウム、トリウム、ストロンチウム、ポロニウム、ジルコニウム、バリウム、マンガン等の金属又はこれらの合金のほか、ITO、ハンダ等の金属化合物等が挙げられる。なかでも金、銀、銅、ニッケル、パラジウム、ロジウム又はハンダが、電気抵抗が少ないため好ましく、とりわけ、ニッケル、金、ニッケル合金又は金合金が好適に用いられる。金属は1種でもよく、2種以上を組み合わせて用いることもできる。 The conductive layer formed on the surface of the core particles is made of a conductive metal. Metals constituting the conductive layer include, for example, gold, platinum, silver, copper, iron, zinc, nickel, tin, lead, antimony, bismuth, cobalt, indium, titanium, germanium, aluminum, chromium, palladium, tungsten, molybdenum. , calcium, magnesium, rhodium, sodium, iridium, beryllium, ruthenium, potassium, cadmium, osmium, lithium, rubidium, gallium, thallium, tantalum, cesium, thorium, strontium, polonium, zirconium, barium, manganese and other metals or these In addition to alloys, metal compounds such as ITO and solder can be used. Among them, gold, silver, copper, nickel, palladium, rhodium, and solder are preferred because of their low electrical resistance, and nickel, gold, nickel alloys, and gold alloys are particularly preferred. One kind of metal may be used, or two or more kinds of metals may be used in combination.
 導電層は、単層構造であっても、複数層からなる積層構造であってもよい。複数層からなる積層構造である場合には、最表層が、ニッケル、金、銀、銅、パラジウム、ニッケル合金、金合金、銀合金、銅合金及びパラジウム合金から選ばれる少なくとも1種であることが好ましい。 The conductive layer may have a single-layer structure or a multilayer structure consisting of multiple layers. In the case of a laminated structure consisting of multiple layers, the outermost layer is at least one selected from nickel, gold, silver, copper, palladium, nickel alloys, gold alloys, silver alloys, copper alloys and palladium alloys. preferable.
 また導電層は、芯材粒子の表面全体を被覆していなくてもよく、その一部のみを被覆していてもよい。芯材粒子の表面の一部のみを被覆している場合は、被覆部位が連続していてもよく、例えばアイランド状に不連続に被覆していてもよい。 Further, the conductive layer may not cover the entire surface of the core particles, and may cover only a part of them. When only a part of the surface of the core particles is coated, the coated portion may be continuous, or may be discontinuously coated, for example, like an island.
 導電層の厚みは、0.1nm以上2000nm以下であることが好ましく、1nm以上1500nm以下であることがより好ましい。導電層の厚みが上記範囲内にあることで、電気特性に優れる導電性粒子となる。導電性粒子が後述する突起を有する場合、突起の高さは、ここでいう導電層の厚みに含まないものとする。なお、本発明において、導電層の厚みは、測定対象の粒子を2つに切断し、その切り口の断面を走査型電子顕微鏡(Scanning Electron Microscope:SEM)で観察して測定することができる。 The thickness of the conductive layer is preferably 0.1 nm or more and 2000 nm or less, more preferably 1 nm or more and 1500 nm or less. When the thickness of the conductive layer is within the above range, the conductive particles have excellent electrical properties. When the conductive particles have protrusions, which will be described later, the height of the protrusions is not included in the thickness of the conductive layer. In the present invention, the thickness of the conductive layer can be measured by cutting the particle to be measured into two and observing the cross section of the cut end with a scanning electron microscope (SEM).
 導電性粒子の平均粒子径は、好ましくは0.1μm以上50μm以下、より好ましくは1μm以上30μm以下である。導電性粒子の平均粒子径が上記範囲内であることで、対向電極間とは異なる方向での短絡を発生させることなく、対向電極間での導通を確保しやすい。なお、本発明において、導電性粒子の平均粒子径は、SEM観察により測定した値である。具体的には、導電性粒子の平均粒子径は実施例に記載の方法にて測定される。なお、粒子径は、円形の導電性粒子像の径である。導電性粒子が球状でない場合、粒子径は、導電性粒子像を横断する線分のうち最も大きい長さ(最大長さ)をいう。 The average particle size of the conductive particles is preferably 0.1 μm or more and 50 μm or less, more preferably 1 μm or more and 30 μm or less. When the average particle size of the conductive particles is within the above range, it is easy to ensure conduction between the opposing electrodes without causing a short circuit in a direction different from that between the opposing electrodes. In addition, in the present invention, the average particle size of the conductive particles is a value measured by SEM observation. Specifically, the average particle size of the conductive particles is measured by the method described in Examples. The particle diameter is the diameter of the circular conductive particle image. When the conductive particles are not spherical, the particle diameter refers to the largest length (maximum length) of line segments that cross the conductive particle image.
 導電性粒子がその表面に突起を有する場合、すなわち、導電層の外表面が突起を有する形状である場合、突起の高さは、好ましくは20nm以上1000nm以下、更に好ましくは50nm800nm以下である。突起の数は、導電性粒子の粒径にもよるが、導電性粒子1つ当たり、好ましくは1個以上20000個以下、更に好ましくは5個以上5000個以下であることが、導電性粒子の導電性を一層向上させる点で有利である。また、突起の基部の長さは、好ましくは5nm以上1000nm以下、更に好ましくは10nm以上800nm以下である。突起の基部の長さは、粒子の断面をSEM観察したときに、突起が形成されている部位における導電性粒子の表面に沿う長さをいい、突起の高さは、突起の基部から突起頂点までの最短距離をいう。なお、1つの突起に複数の頂点がある場合は、最も高い頂点をその突起の高さとする。突起の基部の長さ及び突起の高さは、電子顕微鏡により観察された20個の異なる粒子について測定した値の算術平均値とする。 When the conductive particles have protrusions on their surfaces, that is, when the outer surface of the conductive layer has protrusions, the height of the protrusions is preferably 20 nm or more and 1000 nm or less, more preferably 50 nm or less and 800 nm or less. Although the number of protrusions depends on the particle size of the conductive particles, it is preferable that the number of protrusions per conductive particle is 1 to 20,000, more preferably 5 to 5,000. It is advantageous in terms of further improving conductivity. The length of the base of the projection is preferably 5 nm or more and 1000 nm or less, more preferably 10 nm or more and 800 nm or less. The length of the base of the protrusion refers to the length along the surface of the conductive particle at the site where the protrusion is formed when observing the cross section of the particle with an SEM. means the shortest distance to In addition, when one projection has a plurality of vertices, the highest apex is taken as the height of the projection. The length of the base of the protrusion and the height of the protrusion are taken as the arithmetic mean value of the values measured for 20 different particles observed by electron microscopy.
 導電性粒子の形状は、芯材粒子の形状にもよるが、特に制限はない。例えば、繊維状、中空状、板状又は針状であってもよく、その表面に多数の突起を有するもの又は不定形のものであってもよい。本発明においては、充填性、接続性に優れるという点で、球状又は外表面に多数の突起を有する形状であることが好ましい。 The shape of the conductive particles is not particularly limited, although it depends on the shape of the core particles. For example, it may be fibrous, hollow, plate-like, or needle-like, and may have many projections on its surface or be amorphous. In the present invention, a spherical shape or a shape having a large number of projections on the outer surface is preferable from the viewpoint of excellent filling properties and connectivity.
 芯材粒子の表面に導電層を形成する方法としては、蒸着法、スパッタ法、メカノケミカル法、ハイブリダイゼーション法等を利用する乾式法、電解めっき法、無電解めっき法等を利用する湿式法が挙げられる。また、これらの方法を組み合わせて芯材粒子の表面に導電層を形成してもよい。 Methods for forming a conductive layer on the surface of the core particles include dry methods such as vapor deposition, sputtering, mechanochemical methods, and hybridization, and wet methods such as electroplating and electroless plating. mentioned. Alternatively, these methods may be combined to form a conductive layer on the surface of the core particles.
 本発明においては、無電解めっき法により芯材粒子の表面に導電層を形成することが、所望の粒子特性を有する導電性粒子を得るのが容易であるため好ましい。特に、導電性粒子が、芯材粒子の表面に導電層として無電解ニッケル-リンめっき層を形成したものであることが好ましい。 In the present invention, it is preferable to form a conductive layer on the surface of the core material particles by electroless plating because it is easy to obtain conductive particles having desired particle properties. In particular, it is preferable that the conductive particles are obtained by forming an electroless nickel-phosphorus plating layer as a conductive layer on the surface of the core particles.
 以下、本発明の導電性粒子の製造方法の好ましい実施形態を説明する。
 無電解めっき法により芯材粒子の表面に導電層を形成する場合、芯材粒子は、その表面が貴金属イオンの捕捉能を有するか、又は貴金属イオンの捕捉能を有するように表面改質されることが好ましい。貴金属イオンは、パラジウムや銀のイオンであることが好ましい。貴金属イオンの捕捉能を有するとは、貴金属イオンをキレート又は塩として捕捉し得ることをいう。例えば芯材粒子の表面に、アミノ基、イミノ基、アミド基、イミド基、シアノ基、水酸基、ニトリル基、カルボキシル基などが存在する場合には、該芯材粒子の表面は貴金属イオンの捕捉能を有する。貴金属イオンの捕捉能を有するように表面改質する場合には、例えば特開昭61-64882号公報記載の方法を用いることができる。
Preferred embodiments of the method for producing conductive particles of the present invention are described below.
When the conductive layer is formed on the surface of the core particles by electroless plating, the surfaces of the core particles have the ability to capture noble metal ions, or are surface-modified so as to have the ability to capture noble metal ions. is preferred. The noble metal ions are preferably palladium or silver ions. Having the ability to capture noble metal ions means being able to capture noble metal ions as chelates or salts. For example, when an amino group, an imino group, an amide group, an imide group, a cyano group, a hydroxyl group, a nitrile group, a carboxyl group, or the like is present on the surface of the core material particle, the surface of the core material particle has an ability to trap noble metal ions. have In the case of modifying the surface so that it has the ability to capture noble metal ions, the method described in Japanese Patent Application Laid-Open No. 61-64882, for example, can be used.
 このような芯材粒子を用い、その表面に貴金属を担持させる。具体的には、芯材粒子を塩化パラジウムや硝酸銀のような貴金属塩の希薄な酸性水溶液に分散させる。これによって貴金属イオンを粒子の表面に捕捉させる。貴金属塩の濃度は粒子の表面積1m当たり1×10-7~1×10-2モルの範囲で十分である。貴金属イオンが捕捉された芯材粒子は系から分離され水洗される。引き続き、芯材粒子を水に懸濁させ、これに還元剤を加えて貴金属イオンの還元処理を行う。これによって芯材粒子の表面に貴金属を坦持させる。還元剤は、例えば次亜リン酸ナトリウム、水酸化ホウ素ナトリウム、水素化ホウ素カリウム、ジメチルアミンボラン、ヒドラジン、ホルマリン等が用いられ、これらのうちから、目的とする導電層の構成材料に基づいて選択されることが好ましい。 Using such a core material particle, a noble metal is supported on the surface thereof. Specifically, the core particles are dispersed in a dilute acidic aqueous solution of a noble metal salt such as palladium chloride or silver nitrate. This traps the noble metal ions on the surface of the particles. A noble metal salt concentration in the range of 1×10 −7 to 1×10 −2 mol/m 2 of particle surface area is sufficient. The core particles with trapped noble metal ions are separated from the system and washed with water. Subsequently, the core particles are suspended in water, and a reducing agent is added to reduce the noble metal ions. This allows the noble metal to be carried on the surfaces of the core particles. As the reducing agent, for example, sodium hypophosphite, sodium borohydride, potassium borohydride, dimethylamine borane, hydrazine, formalin, etc. are used, and selected from these based on the constituent material of the target conductive layer. preferably.
 貴金属イオンを芯材粒子の表面に補足させる前に、錫イオンを粒子の表面に吸着させる感受性化処理を施してもよい。錫イオンを粒子の表面に吸着させるには、例えば表面改質処理された芯材粒子を塩化第一錫の水溶液に投入し所定時間攪拌すればよい。 Before allowing precious metal ions to be trapped on the surface of the core particles, a sensitization treatment may be performed to adsorb tin ions to the surface of the particles. In order to adsorb tin ions on the surface of the particles, for example, the surface-modified core particles may be put into an aqueous solution of stannous chloride and stirred for a predetermined time.
 このようにして前処理が施された芯材粒子について、導電層の形成処理を行う。導電層の形成処理として、突起を有する導電層を形成する処理、及び表面が平滑な導電層を形成する処理の2種類があるが、まず、突起を有する導電層を形成する処理について説明する。 The core particles that have been pretreated in this manner are subjected to a process for forming a conductive layer. There are two types of conductive layer forming processes: a process for forming a conductive layer having projections and a process for forming a conductive layer with a smooth surface. First, the process for forming a conductive layer having projections will be described.
 本発明の導電性粒子の製造方法にかかる突起を有する導電層を形成する処理においては、以下の第1工程、及び第2工程を行う。
 第1工程は、芯材粒子の水性スラリーと、分散剤、ニッケル塩、還元剤及び錯化剤などを含んだ無電解ニッケルめっき浴とを混合する無電解ニッケルめっき工程である。かかる第1工程では、芯材粒子上への導電層の形成と同時にめっき浴の自己分解が起こる。この自己分解は、芯材粒子の近傍で生じるため、導電層の形成時に自己分解物が芯材粒子表面上に捕捉されることによって、微小突起の核が生成し、それと同時に導電層の形成がなされる。生成した微小突起の核を基点として、突起が成長する。
In the process of forming a conductive layer having protrusions according to the method for producing conductive particles of the present invention, the following first step and second step are performed.
The first step is an electroless nickel plating step in which an aqueous slurry of core particles is mixed with an electroless nickel plating bath containing a dispersant, a nickel salt, a reducing agent, a complexing agent, and the like. In the first step, self-decomposition of the plating bath occurs simultaneously with the formation of the conductive layer on the core particles. Since this self-decomposition occurs in the vicinity of the core particles, the self-decomposition product is captured on the surface of the core particles during the formation of the conductive layer, thereby generating the nucleus of the microprojections and simultaneously forming the conductive layer. done. The projection grows from the nucleus of the generated minute projection as a base point.
 第1工程では、前述した芯材粒子を好ましくは0.1~500g/L、更に好ましくは1~300g/Lの範囲で水に十分に分散させ、水性スラリーを調製する。分散操作は、通常攪拌、高速攪拌又はコロイドミル若しくはホモジナイザーのような剪断分散装置を用いて行うことができる。また、分散操作に超音波を併用してもかまわない。必要に応じ、分散操作においては界面活性剤などの分散剤を添加する場合もある。次いで、ニッケル塩、還元剤、錯化剤及び各種添加剤などを含んだ無電解ニッケルめっき浴に、分散操作を行った芯材粒子の水性スラリーを添加し、無電解めっき第1工程を行う。 In the first step, the aforementioned core particles are sufficiently dispersed in water preferably in the range of 0.1 to 500 g/L, more preferably 1 to 300 g/L, to prepare an aqueous slurry. The dispersing operation can be carried out using ordinary stirring, high-speed stirring, or a shear dispersing device such as a colloid mill or homogenizer. Also, ultrasonic waves may be used in combination with the dispersing operation. If necessary, a dispersing agent such as a surfactant may be added in the dispersing operation. Next, an aqueous slurry of the dispersed core particles is added to an electroless nickel plating bath containing a nickel salt, a reducing agent, a complexing agent, various additives, and the like, to carry out the first step of electroless plating.
 前述した分散剤としては、例えば非イオン界面活性剤、両性イオン界面活性剤及び/又は水溶性高分子が挙げられる。非イオン界面活性剤としては、ポリエチレングリコール、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテルなどのポリオキシアルキレンエーテル系の界面活性剤を用いることができる。両性イオン界面活性剤としては、アルキルジメチル酢酸ベタイン、アルキルジメチルカルボキシメチル酢酸ベタイン、アルキルジメチルアミノ酢酸ベタインなどのベタイン系の界面活性剤を用いることができる。水溶性高分子としては、ポリビニルアルコール、ポリビニルピロリジノン、ヒドロキシエチルセルロースなどを用いることができる。これらの分散剤は、1種を単独で又は2種以上を組み合わせて用いることができる。分散剤の使用量は、その種類にもよるが、一般に、液体(無電解ニッケルめっき浴)の体積に対して0.5~30g/Lである。特に、分散剤の使用量が液体(無電解ニッケルめっき浴)の体積に対して1~10g/Lの範囲であると、導電層の密着性が一層向上する観点から好ましい。 Examples of the aforementioned dispersant include nonionic surfactants, zwitterionic surfactants and/or water-soluble polymers. As the nonionic surfactant, polyoxyalkylene ether-based surfactants such as polyethylene glycol, polyoxyethylene alkyl ether, and polyoxyethylene alkylphenyl ether can be used. As the amphoteric surfactant, betaine-based surfactants such as betaine alkyldimethylacetate, betaine alkyldimethylcarboxymethylacetate, and betaine alkyldimethylaminoacetate can be used. Polyvinyl alcohol, polyvinylpyrrolidinone, hydroxyethyl cellulose and the like can be used as the water-soluble polymer. These dispersants can be used singly or in combination of two or more. The amount of the dispersant used is generally 0.5 to 30 g/L with respect to the volume of the liquid (electroless nickel plating bath), depending on the type. In particular, it is preferable that the amount of the dispersant used is in the range of 1 to 10 g/L with respect to the volume of the liquid (electroless nickel plating bath), from the viewpoint of further improving the adhesion of the conductive layer.
 ニッケル塩としては、例えば塩化ニッケル、硫酸ニッケル又は酢酸ニッケルなどが用いられ、その濃度は0.1~50g/Lの範囲とすることが好ましい。還元剤としては、例えば先に述べた貴金属イオンの還元に用いられているものと同様のものを用いることができ、目的とする下地皮膜の構成材料に基づいて選択される。還元剤としてリン化合物、例えば次亜リン酸ナトリウムを用いる場合、その濃度は、0.1~50g/Lの範囲であることが好ましい。 As the nickel salt, for example, nickel chloride, nickel sulfate, nickel acetate, or the like is used, and its concentration is preferably in the range of 0.1 to 50 g/L. As the reducing agent, for example, one similar to that used for reducing the noble metal ions described above can be used, and the reducing agent is selected based on the constituent material of the intended underlying film. When a phosphorus compound such as sodium hypophosphite is used as the reducing agent, its concentration is preferably in the range of 0.1 to 50 g/L.
 錯化剤としては、例えばクエン酸、ヒドロキシ酢酸、酒石酸、リンゴ酸、乳酸、グルコン酸若しくはそのアルカリ金属塩やアンモニウム塩などのカルボン酸(塩)、グリシンなどのアミノ酸、エチレンジアミン、アルキルアミンなどのアミン酸、その他のアンモニウム、EDTA又はピロリン酸(塩)など、ニッケルイオンに対し錯化作用のある化合物が使用される。これらは1種を単独で又は2種以上を組み合わせて用いることができる。その濃度は好ましくは1~100g/L、更に好ましくは5~50g/Lの範囲である。この段階での好ましい無電解ニッケルめっき浴のpHは、3~14の範囲である。無電解ニッケルめっき反応は、芯材粒子の水性スラリーを添加すると速やかに始まり、水素ガスの発生を伴う。第1工程は、その水素ガスの発生が完全に認められなくなった時点をもって終了とする。 Complexing agents include, for example, citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, carboxylic acids (salts) such as gluconic acid or its alkali metal salts and ammonium salts, amino acids such as glycine, amines such as ethylenediamine and alkylamines. Compounds with a complexing effect on nickel ions are used, such as acids, other ammonium, EDTA or pyrophosphate (salts). These can be used individually by 1 type or in combination of 2 or more types. Its concentration preferably ranges from 1 to 100 g/L, more preferably from 5 to 50 g/L. The preferred pH of the electroless nickel plating bath at this stage is in the range of 3-14. The electroless nickel plating reaction begins immediately upon addition of the aqueous slurry of core particles and is accompanied by the evolution of hydrogen gas. The first step is terminated when the generation of hydrogen gas is completely stopped.
 次いで第2工程においては、前記の第1工程で得られた液に、ニッケル塩を含む水溶液、還元剤を含む水溶液及びアルカリを含む水溶液を、めっき析出速度を1回以上、好ましくは2回以上変化させるように添加量を制御しながら連続的に添加して無電解ニッケルめっき処理を行う。第2工程においては、これらの水溶液をそれぞれ同時にかつ連続的に、第1工程で得られた液に添加する。 Next, in the second step, an aqueous solution containing a nickel salt, an aqueous solution containing a reducing agent, and an aqueous solution containing an alkali are added to the liquid obtained in the first step, and the plating deposition rate is increased once or more, preferably twice or more. The electroless nickel plating treatment is performed by continuously adding while controlling the addition amount so as to change. In the second step, these aqueous solutions are added simultaneously and continuously to the liquid obtained in the first step.
 前記各水溶液の第1工程で得られた液への添加は、最初のめっき析出速度が0.05nm/分以上1.5nm/分以下、特に0.1nm/分以上1.2nm/分以下となるように添加量を制御しながら行うことが好ましい。最初のめっき析出速度をこの範囲にすることで、芯材粒子表面におけるニッケルめっき皮膜がより緻密に析出するため、得られる導電層の密着性が上がる。 Addition of each of the aqueous solutions to the liquid obtained in the first step is performed so that the initial plating deposition rate is 0.05 nm / min or more and 1.5 nm / min or less, particularly 0.1 nm / min or more and 1.2 nm / min or less. It is preferable to carry out while controlling the addition amount so that By setting the initial plating deposition rate within this range, the nickel plating film is deposited more densely on the surface of the core material particles, and the adhesion of the obtained conductive layer is improved.
 本発明の導電性粒子の製造方法にかかる第2工程では、めっき析出速度を1回以上変化させる。変化後のめっき析出速度は0.3nm/分以上3.0nm/分以下、特に0.5nm/分以上2.5nm/分以下とすることが好ましく、めっき析出速度が前記範囲となるように前記各水溶液の添加量を制御することが好ましい。変化後のめっき析出速度をこの範囲にすることで、最初に得られた緻密なニッケルめっき皮膜の上に、素早く所望の膜厚の導電層を形成することができるため、得られる導電層の密着性が優れたものでありつつ、工業的な製造コストを抑えることが可能になる。 In the second step of the method for producing conductive particles of the present invention, the plating deposition rate is changed once or more. The plating deposition rate after the change is preferably 0.3 nm / min or more and 3.0 nm / min or less, particularly 0.5 nm / min or more and 2.5 nm / min or less. It is preferable to control the amount of each aqueous solution added. By setting the plating deposition rate after the change within this range, it is possible to quickly form a conductive layer with a desired thickness on the dense nickel plating film obtained at the beginning. It is possible to reduce the industrial production cost while having excellent properties.
 本発明の導電性粒子の製造方法にかかる第2工程では、めっき析出速度を2回以上変化させてもよい。2回変化後のめっき析出速度は0.3nm/分以上3.0nm/分以下、特に0.5nm/分以上2.5nm/分以下であることが好ましい。めっき析出速度をこの範囲にすることで、最初に得られた緻密なニッケルめっき皮膜の上に、素早く所望の膜厚の導電層を形成することができるため、得られる導電層の密着性が優れたものでありつつ、工業的な製造コストを抑えることが可能になる。 In the second step of the method for producing conductive particles of the present invention, the plating deposition speed may be changed two or more times. The plating deposition rate after the two-time change is preferably 0.3 nm/min or more and 3.0 nm/min or less, particularly 0.5 nm/min or more and 2.5 nm/min or less. By setting the plating deposition rate within this range, it is possible to quickly form a conductive layer of the desired thickness on the first dense nickel plating film, so that the resulting conductive layer has excellent adhesion. It is possible to hold down the industrial manufacturing cost while maintaining the low cost.
 前記第2工程では、めっき析出速度を高く変化させるように前記各水溶液の添加量を制御することが好ましい。すなわち、前記各水溶液の単位時間当たりの添加量を増加させることで、めっき析出速度を高く変化させることが好ましい。 In the second step, it is preferable to control the amount of each of the aqueous solutions added so as to increase the plating deposition rate. That is, it is preferable to increase the plating deposition rate by increasing the amount of each aqueous solution added per unit time.
 前記第2工程においては、前記各水溶液の添加終了後、水素ガスの発生が完全に認められなくなってから暫く液温を保持しながら攪拌を継続して反応を完結させる。 In the second step, after the completion of the addition of each of the aqueous solutions, the reaction is completed by continuing stirring while maintaining the liquid temperature for a while after the generation of hydrogen gas is completely stopped.
 前記第2工程において、緻密な膜を形成させる観点からニッケル塩を含む水溶液と、還元剤及びアルカリを含む混合水溶液とを、前記第1工程で得られた液に添加することが好ましい。 In the second step, from the viewpoint of forming a dense film, it is preferable to add an aqueous solution containing a nickel salt and a mixed aqueous solution containing a reducing agent and an alkali to the liquid obtained in the first step.
 前記ニッケル塩を含む水溶液中のニッケル塩の濃度は10~1000g/L、特に50~500g/Lであることが好ましい。前記還元剤を含む水溶液中の還元剤の濃度は、還元剤としてリン化合物を用いる場合、100~1000g/L、特に100~800g/Lであることが好ましい。還元剤としてホウ素化合物を用いる場合、5~200g/L、特に10~100g/Lであることが好ましい。還元剤としてヒドラジン又はその誘導体を用いる場合、5~200g/L、特に10~100g/Lであることが好ましい。前記アルカリを含む水溶液中のアルカリの濃度は5~500g/L、特に10~200g/Lであることが好ましい。 The nickel salt concentration in the aqueous solution containing the nickel salt is preferably 10 to 1000 g/L, particularly 50 to 500 g/L. The concentration of the reducing agent in the aqueous solution containing the reducing agent is preferably 100 to 1000 g/L, particularly 100 to 800 g/L when a phosphorus compound is used as the reducing agent. When a boron compound is used as the reducing agent, it is preferably 5 to 200 g/L, particularly preferably 10 to 100 g/L. When hydrazine or a derivative thereof is used as the reducing agent, it is preferably 5 to 200 g/L, particularly 10 to 100 g/L. The alkali concentration in the alkali-containing aqueous solution is preferably 5 to 500 g/L, more preferably 10 to 200 g/L.
 第2工程は、第1工程の終了後に連続して行うが、これに代えて、第1工程と第2工程とを断続して行ってもよい。この場合には、第1工程の終了後、濾過などの方法によって芯材粒子とめっき液とを分別し、新たに芯材粒子を水に分散させて水性スラリーを調製し、そこに錯化剤を好ましくは1~100g/L、更に好ましくは5~50g/Lの濃度範囲で溶解した水溶液を添加し、分散剤を好ましくは0.5~30g/L、更に好ましくは1~10g/Lの範囲で溶解し水性スラリーを調製して、該水性スラリーに前記の各水溶液を添加する第2工程を行う方法でもよい。このようにして、突起を有する導電層が形成できる。 The second step is performed continuously after the first step is completed, but instead of this, the first step and the second step may be performed intermittently. In this case, after the completion of the first step, the core particles and the plating solution are separated by a method such as filtration, and the core particles are newly dispersed in water to prepare an aqueous slurry, in which a complexing agent is added. is preferably dissolved in a concentration range of 1 to 100 g/L, more preferably 5 to 50 g/L. A second step of dissolving within the above range to prepare an aqueous slurry and adding each of the above aqueous solutions to the aqueous slurry may be performed. Thus, a conductive layer having projections can be formed.
 以下では、本発明の導電性粒子の製造方法にかかる表面が平滑な導電層を形成する処理について説明する。
 表面が平滑な導電層の形成は、上記突起を有する導電層を形成する処理の第1工程における無電解ニッケルめっき浴中のニッケル塩の濃度を薄くすることで行うことができる。すなわち、ニッケル塩としては、例えば塩化ニッケル、硫酸ニッケル又は酢酸ニッケルなどが用いられ、その濃度を好ましくは0.01~0.5g/Lの範囲とする。無電解ニッケルめっき浴中のニッケル塩の濃度を薄くすること以外の上記第1工程、及び第2工程を行う方法により、表面が平滑な導電層を形成できる。
The process for forming a conductive layer having a smooth surface according to the method for producing conductive particles of the present invention will be described below.
A conductive layer having a smooth surface can be formed by reducing the concentration of nickel salt in the electroless nickel plating bath in the first step of forming the conductive layer having protrusions. For example, nickel chloride, nickel sulfate, nickel acetate, or the like is used as the nickel salt, and the concentration thereof is preferably in the range of 0.01 to 0.5 g/L. A conductive layer having a smooth surface can be formed by a method of performing the first step and the second step other than reducing the concentration of the nickel salt in the electroless nickel plating bath.
 本発明の導電性粒子は、上述した方法により得られた導電性粒子を、1000Pa以下、さらに0.01~900Pa、特に0.01~500Paの真空下、200~600℃、さらに250~500℃、特に300~450℃の温度で加熱処理することにより得ることが好ましい。このような真空状態を保ちつつ導電性粒子を加熱することで、導電層の金属の結晶化が進行するため電気抵抗が低くなり、電気的な導通性に優れたものとなる。なお、本発明における真空度は絶対圧、すなわち絶対真空を0としたときの値である。 The conductive particles of the present invention are obtained by heating the conductive particles obtained by the above-described method under a vacuum of 1000 Pa or less, further 0.01 to 900 Pa, particularly 0.01 to 500 Pa, at 200 to 600 ° C., further 250 to 500 ° C. , particularly preferably by heat treatment at a temperature of 300 to 450°C. By heating the conductive particles while maintaining such a vacuum state, the crystallization of the metal of the conductive layer proceeds, so that the electrical resistance is lowered and the electrical conductivity is excellent. The degree of vacuum in the present invention is a value when the absolute pressure, that is, the absolute vacuum is 0.
 加熱処理時間は0.1~10時間であることが好ましく、0.5~5時間であることが更に好ましい。この処理時間を採用することで、製造コストの増大を抑制することができ、また熱履歴による芯材粒子や導電層の変性が抑制され、品質に及ぼす影響を小さくできる。この加熱処理時間は、目的とする処理温度に達してから加熱処理が終了するまでの時間である。 The heat treatment time is preferably 0.1 to 10 hours, more preferably 0.5 to 5 hours. By adopting this treatment time, it is possible to suppress an increase in manufacturing cost, and to suppress the denaturation of the core material particles and the conductive layer due to heat history, thereby reducing the influence on quality. This heat treatment time is the time from reaching the target treatment temperature to the end of the heat treatment.
 加熱処理は、導電性粒子を静置させた状態で行ってもよく、撹拌しながら行ってもよい。導電性粒子を静置させた状態で加熱処理を行う場合、0.1mm~100mmの厚さで静置させておくことが好ましい。この厚さで静置させておくことで、導電層への加熱処理が首尾よく行われ、製造コストを抑制することができる。 The heat treatment may be performed while the conductive particles are left standing, or may be performed while stirring. When the heat treatment is performed while the conductive particles are left standing, it is preferable to leave them standing at a thickness of 0.1 mm to 100 mm. By allowing the conductive layer to stand still at this thickness, the heat treatment of the conductive layer can be performed successfully, and the manufacturing cost can be suppressed.
 加熱処理は、導電性粒子を入れた容器を真空引きした後、静置した状態で又は撹拌しながら行う。この際、導電性粒子を入れた容器の気相部を窒素等の不活性ガスで置換してから真空引きしてもよいし、そのまま真空引きしてもよい。また加熱処理は、必要により複数回行ってもよい。 After the container containing the conductive particles is evacuated, the heat treatment is performed while standing still or while stirring. At this time, the gas phase portion of the container containing the conductive particles may be replaced with an inert gas such as nitrogen and then evacuated, or the container may be evacuated as it is. Further, the heat treatment may be performed multiple times, if necessary.
 また加熱処理は、常温にて1000Pa以下、好ましくは0.01~900Pa、特に好ましくは0.01~500Paの真空度に到達してから、5~60分間、更には10~50分間の時間で保持した後、処理温度まで昇温することが好ましい。この操作により、加熱雰囲気や導電性粒子中の酸素や水分等による導電層の酸化を防止することができるため、接続抵抗を低いものにすることができる。 In addition, the heat treatment is performed for 5 to 60 minutes, further 10 to 50 minutes after reaching a vacuum degree of 1000 Pa or less, preferably 0.01 to 900 Pa, particularly preferably 0.01 to 500 Pa at room temperature. After holding, it is preferable to raise the temperature to the treatment temperature. This operation can prevent the conductive layer from being oxidized due to oxygen, moisture, etc. in the heating atmosphere and the conductive particles, so that the connection resistance can be reduced.
 加熱処理後は、前記真空度を保持したまま50℃以下、更には40℃以下まで降温してから真空を開放することが好ましい。この理由としては、加熱処理直後の温度で真空を開放すると、雰囲気中に酸素や水分が存在した場合に導電層の酸化が促進されてしまうため接続抵抗が高くなる恐れがあるためである。また真空の開放は、製造コストの面から通常の大気中によるものでもよいが、導電層の酸化防止の観点から窒素、アルゴン、ヘリウム等の不活性ガスや、水素-窒素混合ガス等の非酸化性ガスをパージすることで行うことがより好ましい。
 このようにして、本発明の導電性粒子が得られる。
After the heat treatment, it is preferable to release the vacuum after the temperature is lowered to 50° C. or lower, further to 40° C. or lower while maintaining the degree of vacuum. The reason for this is that if the vacuum is released at the temperature immediately after the heat treatment, the oxidation of the conductive layer is accelerated in the presence of oxygen or moisture in the atmosphere, which may increase the connection resistance. From the viewpoint of manufacturing costs, the vacuum may be released in the normal atmosphere. It is more preferable to carry out by purging the gas.
Thus, the conductive particles of the present invention are obtained.
 本発明の導電性粒子は、後述するように導電性接着剤の導電性フィラーとして用いる場に、導電性粒子間のショートの発生を防止するため、その表面を更に絶縁樹脂で被覆することができる。絶縁樹脂の被覆は、圧力等を加えない状態では導電性粒子の表面が極力露出しないように、かつ導電性接着剤を用いて2枚の電極を接着する際に加えられる熱及び圧力によって破壊され、導電性粒子の表面のうち少なくとも突起が露出するように形成される。絶縁樹脂の厚さは0.1~0.5μm程度とすることができる。絶縁樹脂は導電性粒子の表面全体を覆っていてもよいし、導電性粒子の表面の一部を覆っているだけでもよい。 When the conductive particles of the present invention are used as a conductive filler of a conductive adhesive as described later, the surface thereof can be further coated with an insulating resin in order to prevent short circuits between the conductive particles. . The insulating resin coating is designed so that the surfaces of the conductive particles are not exposed as much as possible when no pressure is applied, and the coating is destroyed by the heat and pressure applied when the two electrodes are adhered using a conductive adhesive. , are formed such that at least the projections of the surface of the conductive particles are exposed. The thickness of the insulating resin can be about 0.1 to 0.5 μm. The insulating resin may cover the entire surface of the conductive particles, or may cover only a portion of the surfaces of the conductive particles.
 絶縁樹脂としては、当該技術分野で公知のものを広く用いることができる。その一例を示せば、フェノール樹脂、ユリア樹脂、メラミン樹脂、アリル樹脂、フラン樹脂、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂、ポリアミド-イミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、フッ素樹脂、ポリオレフィン樹脂(例:ポリエチレン、ポリプロピレン、ポリブチレン)、ポリアルキル(メタ)アクリレート樹脂、ポリ(メタ)アクリル酸樹脂、ポリスチレン樹脂、アクリロニトリル-スチレン-ブタジエン樹脂、ビニル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、アイオノマー樹脂、ポリエーテルスルホン樹脂、ポリフェニルオキシド樹脂、ポリスルホン樹脂、ポリフッ化ビニリデン樹脂、エチルセルロース樹脂及び酢酸セルロース樹脂等の有機ポリマーからなる樹脂を挙げることができる。 As the insulating resin, one widely known in the technical field can be used. Examples include phenolic resins, urea resins, melamine resins, allyl resins, furan resins, polyester resins, epoxy resins, silicone resins, polyamide-imide resins, polyimide resins, polyurethane resins, fluorine resins, polyolefin resins (e.g. polyethylene). , polypropylene, polybutylene), polyalkyl(meth)acrylate resin, poly(meth)acrylic acid resin, polystyrene resin, acrylonitrile-styrene-butadiene resin, vinyl resin, polyamide resin, polycarbonate resin, polyacetal resin, ionomer resin, polyether sulfone Resins, resins made of organic polymers such as polyphenyl oxide resins, polysulfone resins, polyvinylidene fluoride resins, ethyl cellulose resins and cellulose acetate resins can be mentioned.
 導電性粒子の表面に絶縁被覆層を形成する方法としては、コアセルベーション法、界面重合法、in situ重合法及び液中硬化被覆法等の化学的方法、スプレードライング法、気中懸濁被覆法、真空蒸着被覆法、ドライブレンド法、ハイブリダイゼーション法、静電的合体法、融解分散冷却法及び無機質カプセル化法等の物理機械的方法、界面沈澱法等の物理化学的方法が挙げられる。 Methods for forming an insulating coating layer on the surface of the conductive particles include chemical methods such as a coacervation method, an interfacial polymerization method, an in situ polymerization method and a liquid curing coating method, a spray drying method, and an air suspension coating method. physico-mechanical methods such as vacuum deposition coating method, dry blending method, hybridization method, electrostatic coalescence method, melt-dispersion cooling method and inorganic encapsulation method, and physico-chemical methods such as interfacial precipitation method.
 前記絶縁樹脂を構成する有機ポリマーは、非導電性であることを条件として、ポリマーの構造中にイオン性基を含む化合物をモノマー成分として含んでいてもよい。イオン性基を含む化合物は、架橋性モノマーであってもよく、非架橋性モノマーであってもよい。つまり、架橋性モノマー及び非架橋性モノマーの少なくとも1種がイオン性基を有する化合物を用いて、有機ポリマーが形成されていることが好ましい。「モノマー成分」とは、有機ポリマー中のモノマーに由来する構造を指し、モノマーから誘導される成分である。モノマーを重合に供することによって、該モノマー成分を構成単位として含む有機ポリマーが形成される。 The organic polymer that constitutes the insulating resin may contain, as a monomer component, a compound containing an ionic group in the polymer structure, provided that it is non-conductive. A compound containing an ionic group may be a crosslinkable monomer or a non-crosslinkable monomer. That is, it is preferable that the organic polymer is formed using a compound in which at least one of the crosslinkable monomer and the non-crosslinkable monomer has an ionic group. A "monomer component" refers to a structure derived from a monomer in an organic polymer, and is a component derived from the monomer. By subjecting the monomer to polymerization, an organic polymer containing the monomer component as a structural unit is formed.
 イオン性基は、絶縁樹脂を構成する有機ポリマーの界面に存在することが好ましい。また、イオン性基は、有機ポリマーを構成するモノマー成分に化学結合していることが好ましい。イオン性基が有機ポリマーの界面に存在するか否かは、イオン性基を有する有機ポリマーを含む絶縁樹脂を導電性粒子の表面に形成したときに、走査型電子顕微鏡観察によって絶縁樹脂が導電性粒子の表面に付着しているか否かによって判断することができる。 The ionic group is preferably present at the interface of the organic polymer that constitutes the insulating resin. Moreover, it is preferable that the ionic group is chemically bonded to the monomer component constituting the organic polymer. Whether or not the ionic group exists at the interface of the organic polymer can be determined by observing the insulating resin with a scanning electron microscope when the insulating resin containing the organic polymer having the ionic group is formed on the surface of the conductive particles. It can be determined by whether it adheres to the surface of the particles.
 イオン性基としては、例えば、ホスホニウム基、アンモニウム基、スルホニウム基等のオニウム系官能基が挙げられる。これらのうち、導電性粒子及び絶縁樹脂の密着性を高めて、絶縁性と導通信頼性とを高いレベルで兼ね備えた導電性粒子を形成する観点から、アンモニウム基又はホスホニウム基であることが好ましく、ホスホニウム基であることが更に好ましい。 Examples of ionic groups include onium-based functional groups such as phosphonium groups, ammonium groups, and sulfonium groups. Among these, an ammonium group or a phosphonium group is preferable from the viewpoint of increasing the adhesion between the conductive particles and the insulating resin and forming conductive particles having both insulation and conduction reliability at a high level. A phosphonium group is more preferred.
 オニウム系官能基は、下記一般式(1)で表されるものが好ましく挙げられる。 The onium-based functional group is preferably represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
 
(式中、Xはリン原子、窒素原子、又は硫黄原子であり、Rは同じであっても異なっていてもよく、水素原子、直鎖状、分岐鎖状若しくは環状のアルキル基、又はアリール基である。nは、Xが窒素原子、リン原子の場合は1であり、Xが硫黄原子の場合は0である。*は結合手である。)
Figure JPOXMLDOC01-appb-C000001

(Wherein, X is a phosphorus atom, a nitrogen atom, or a sulfur atom, R may be the same or different, a hydrogen atom, a linear, branched or cyclic alkyl group, or an aryl group n is 1 when X is a nitrogen atom or a phosphorus atom, and 0 when X is a sulfur atom.* is a bond.)
 イオン性基に対する対イオンとしては、例えばハロゲン化物イオンが挙げられる。ハロゲン化物イオンの例としては、Cl、F、Br、Iが挙げられる。 Counter ions for ionic groups include, for example, halide ions. Examples of halide ions include Cl , F , Br , I .
 式(1)中、Rで表される直鎖状のアルキル基としては、例えば炭素数1以上20以下の直鎖状アルキル基が挙げられ、具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-イコシル基等が挙げられる。 In formula (1), the straight-chain alkyl group represented by R includes, for example, a straight-chain alkyl group having 1 to 20 carbon atoms, specifically, a methyl group, an ethyl group, n- Propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n- tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-icosyl group and the like.
 式(1)中、Rで表される分岐鎖状のアルキル基としては、例えば炭素数3以上8以下の分岐鎖状アルキル基が挙げられ、具体的には、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、s-ペンチル基、t-ペンチル基、イソヘキシル基、s-ヘキシル基、t-ヘキシル基、エチルヘキシル基等が挙げられる。 In formula (1), the branched-chain alkyl group represented by R includes, for example, a branched-chain alkyl group having 3 to 8 carbon atoms, specifically isopropyl group, isobutyl group, s- butyl group, t-butyl group, isopentyl group, s-pentyl group, t-pentyl group, isohexyl group, s-hexyl group, t-hexyl group, ethylhexyl group and the like.
 式(1)中、Rで表される環状のアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロオクタデシル基といったシクロアルキル基等が挙げられる。 In formula (1), examples of the cyclic alkyl group represented by R include cycloalkyl groups such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclooctadecyl group. .
 式(1)中、Rで表されるアリール基としては、フェニル基、ベンジル基、トリル基、o-キシリル基等が挙げられる。 In formula (1), examples of the aryl group represented by R include a phenyl group, a benzyl group, a tolyl group, an o-xylyl group, and the like.
 一般式(1)中、Rは、炭素数1以上12以下のアルキル基であることが好ましく、炭素数1以上10以下のアルキル基であることがより好ましく、炭素数1以上8以下のアルキル基であることが更に好ましい。また、一般式(1)中、Rが直鎖状アルキル基であることも更に好ましい。オニウム系官能基がこのような構成となっていることによって、絶縁樹脂と導電性粒子との密着性を高めて絶縁性を確保するとともに、熱圧着時における導通信頼性を一層高めることができる。 In general formula (1), R is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. is more preferable. Further, in general formula (1), it is more preferable that R is a linear alkyl group. Such a configuration of the onium-based functional group can enhance the adhesion between the insulating resin and the conductive particles to ensure insulation, and can further enhance reliability of conduction during thermocompression bonding.
 モノマーの入手及びポリマーの合成を容易にするとともに、絶縁樹脂の製造効率を高める観点から、絶縁樹脂を構成するイオン性基を有する有機ポリマーは、下記一般式(2)又は一般式(3)で表される構成単位を有することが好ましい。 From the viewpoint of facilitating the availability of monomers and the synthesis of polymers and improving the production efficiency of insulating resins, the organic polymer having an ionic group that constitutes the insulating resin is represented by the following general formula (2) or general formula (3). It is preferable to have the represented structural unit.
Figure JPOXMLDOC01-appb-C000002
 
(式中、X、R及びnは前記一般式(1)と同義である。mは0以上5以下の整数である。Anは一価のアニオンを示す。)
Figure JPOXMLDOC01-appb-C000002

(Wherein, X, R and n have the same definitions as in the general formula (1) above. m is an integer of 0 to 5. An represents a monovalent anion.)
Figure JPOXMLDOC01-appb-C000003
 
(式中、X、R及びnは前記一般式(1)と同義である。Anは一価のアニオンを示す。mは1以上5以下の整数である。Rは、水素原子又はメチル基である。)
Figure JPOXMLDOC01-appb-C000003

(Wherein, X, R and n have the same definitions as in the above general formula (1). An - represents a monovalent anion. m 1 is an integer of 1 or more and 5 or less. R 5 is a hydrogen atom or is a methyl group.)
 式(2)及び式(3)中のRの例としては、上述した一般式(1)中のRの官能基の説明が適宜適用される。イオン性基は、式(2)のベンゼン環のCH基に対しパラ位、オルト位、メタ位の何れに結合していてもよく、パラ位に結合することが好ましい。式(2)及び式(3)中、一価のAnとしてはハロゲン化物イオンが好適に挙げられる。ハロゲン化物イオンの例としては、Cl、F、Br、Iが挙げられる。 As examples of R in formulas (2) and (3), the description of the functional group of R in general formula (1) described above is appropriately applied. The ionic group may be bonded to the CH group of the benzene ring of formula (2) at any of the para-, ortho-, and meta-positions, preferably at the para-position. In the formulas (2) and (3), the monovalent An is preferably a halide ion. Examples of halide ions include Cl , F , Br , I .
 また、一般式(2)において、mは0以上2以下の整数が好ましく、0又は1がより好ましく、1が特に好ましい。一般式(3)においてmは1以上3以下が好ましく、1又は2がより好ましく、2が最も好ましい。 In general formula (2), m is preferably an integer of 0 or more and 2 or less, more preferably 0 or 1, and particularly preferably 1. In general formula (3), m1 is preferably 1 or more and 3 or less, more preferably 1 or 2, and most preferably 2.
 イオン性基を有する有機ポリマーは、例えばオニウム系の官能基を有し且つエチレン性不飽和結合を有するモノマー成分を含んで構成されることが好ましい。モノマーの入手及びポリマーの合成を容易にし、絶縁樹脂の製造効率を高める観点から、イオン性基を有する有機ポリマーは、非架橋性モノマー成分を含むことも好ましい。 The organic polymer having an ionic group preferably contains, for example, a monomer component having an onium-based functional group and an ethylenically unsaturated bond. The organic polymer having an ionic group preferably contains a non-crosslinkable monomer component from the viewpoint of facilitating the availability of monomers, facilitating the synthesis of polymers, and increasing the efficiency of manufacturing insulating resins.
 オニウム系の官能基を有し且つエチレン性不飽和結合を有する非架橋性モノマーとしては、例えば、N,N-ジメチルアミノエチルメタクリレート、N,N-ジメチルアミノプロピルアクリルアミド、N,N,N-トリメチル-N-2-メタクリロイルオキシエチルアンモニウムクロライド等のアンモニウム基含有モノマー;メタクリル酸フェニルジメチルスルホニウムメチル硫酸塩等のスルホニウム基を有するモノマー;4-(ビニルベンジル)トリエチルホスホニウムクロライド、4-(ビニルベンジル)トリメチルホスホニウムクロライド、4-(ビニルベンジル)トリブチルホスホニウムクロライド、4-(ビニルベンジル)トリオクチルホスホニウムクロライド、4-(ビニルベンジル)トリフェニルホスホニウムクロライド、2-(メタクロイルオキシエチル)トリメチルホスホニウムクロライド、2-(メタクロイルオキシエチル)トリエチルホスホニウムクロライド、2-(メタクロイルオキシエチル)トリブチルホスホニウムクロライド、2-(メタクロイルオキシエチル)トリオクチルホスホニウムクロライド、2-(メタクロイルオキシエチル)トリフェニルホスホニウムクロライド等のホスホニウム基を有するモノマーなどが挙げられる。イオン性基を有する有機ポリマーには、2種以上の非架橋性モノマー成分が含まれていてもよい。 Non-crosslinkable monomers having an onium-based functional group and an ethylenically unsaturated bond include, for example, N,N-dimethylaminoethyl methacrylate, N,N-dimethylaminopropylacrylamide, N,N,N-trimethyl -Ammonium group-containing monomers such as N-2-methacryloyloxyethylammonium chloride; monomers having a sulfonium group such as phenyldimethylsulfonium methyl methacrylate sulfate; 4-(vinylbenzyl)triethylphosphonium chloride, 4-(vinylbenzyl)trimethyl Phosphonium chloride, 4-(vinylbenzyl) tributylphosphonium chloride, 4-(vinylbenzyl)trioctylphosphonium chloride, 4-(vinylbenzyl)triphenylphosphonium chloride, 2-(methacryloyloxyethyl)trimethylphosphonium chloride, 2-( Phosphonium groups such as methacryloyloxyethyl)triethylphosphonium chloride, 2-(methacryloyloxyethyl)tributylphosphonium chloride, 2-(methacryloyloxyethyl)trioctylphosphonium chloride, and 2-(methacryloyloxyethyl)triphenylphosphonium chloride Examples include monomers having The organic polymer having ionic groups may contain two or more non-crosslinking monomer components.
 絶縁樹脂を構成する有機ポリマーにおいては、モノマー成分の全てにイオン性基が結合したものであってもよく、あるいは、有機ポリマーの全構成単位中の一部にイオン性基が結合していてもよい。有機ポリマーの全構成単位中の一部にイオン性基が結合している場合、イオン性基が結合したモノマー成分の割合は、0.01モル%以上99モル%以下であることが好ましく、0.02モル%以上95モル%以下であることがより好ましい。ここで、有機ポリマー中のモノマー成分の数は、一つのエチレン性不飽和結合に由来する構造を一つのモノマーの構成単位としてカウントする。イオン性基が架橋性モノマー及び非架橋性モノマーの双方に含まれる場合、モノマー成分の割合はその総量とする。 In the organic polymer constituting the insulating resin, the ionic group may be bonded to all of the monomer components, or the ionic group may be bonded to a part of all structural units of the organic polymer. good. When an ionic group is bonded to a portion of all structural units of the organic polymer, the ratio of the monomer component to which the ionic group is bonded is preferably 0.01 mol% or more and 99 mol% or less. It is more preferably 0.02 mol % or more and 95 mol % or less. Here, for the number of monomer components in the organic polymer, the structure derived from one ethylenically unsaturated bond is counted as one constituent unit of the monomer. When the ionic group is contained in both the crosslinkable monomer and the non-crosslinkable monomer, the ratio of the monomer components is the total amount.
 絶縁樹脂による被覆の形態としては、複数の絶縁性微粒子が層状に配置された形態、或いは、絶縁性の連続皮膜が挙げられる。 Examples of the form of coating with the insulating resin include a form in which a plurality of insulating fine particles are arranged in layers, or a continuous insulating film.
 前記絶縁樹脂が絶縁性微粒子からなる場合、絶縁性微粒子で被覆された導電性粒子を電極間で熱圧着することで絶縁性微粒子が溶融、変形、剥離又は導電性粒子表面を移動することにより熱圧着された部分における導電性粒子の金属表面が露出し、これにより電極間での導通を可能として接続性が得られる。一方、該導電性粒子における熱圧着方向以外の方向を向く表面部分は、絶縁性微粒子による導電性粒子表面の被覆状態が概ね維持されているため、熱圧着方向以外の方向における導通が防止される。 When the insulating resin is composed of insulating fine particles, the insulating fine particles are melted, deformed, peeled off, or moved on the conductive particle surface by thermocompression bonding the conductive particles coated with the insulating fine particles between the electrodes. The metal surface of the conductive particles is exposed in the crimped portion, thereby enabling conduction between the electrodes and providing connectivity. On the other hand, the surface portion of the conductive particles facing in a direction other than the direction of the thermocompression bonding is generally kept covered with the insulating fine particles, so that the conduction in the direction other than the direction of the thermocompression bonding is prevented. .
 絶縁性微粒子は、その表面に前記イオン性基を含むことにより、導電性粒子に密着しやすく、これによって導電性粒子表面における絶縁性微粒子に被覆される割合を十分なものにできるとともに、導電性粒子からの絶縁性微粒子の剥離などが効果的に防止される。このため、絶縁性微粒子による対向電極間と異なる方向における短絡防止効果が発揮されやすく、当該方向での絶縁性の向上が期待できる。 By including the ionic group on the surface of the insulating fine particles, the insulating fine particles easily adhere to the conductive particles. Peeling of the insulating fine particles from the particles is effectively prevented. For this reason, the short-circuit prevention effect by the insulating fine particles is likely to be exhibited in a direction different from that between the opposed electrodes, and an improvement in insulation in this direction can be expected.
 絶縁性微粒子の形状は、特に制限はなく、球状であってもよく、或いは球状以外の形状であってもよい。球状以外の形状としては例えば、繊維状、中空状、板状又は針状が挙げられる。また絶縁性微粒子はその表面に多数の突起を有するもの又は不定形のものであってもよい。導電性粒子への付着性の点や合成の容易性の点で球状の絶縁性微粒子が好ましい。 The shape of the insulating fine particles is not particularly limited, and may be spherical or may have a shape other than spherical. Examples of shapes other than spherical include fibrous, hollow, plate-like and needle-like. Also, the insulating fine particles may have a large number of protrusions on their surface or may be amorphous. Spherical insulating microparticles are preferred in terms of adhesion to conductive particles and ease of synthesis.
 絶縁性微粒子の平均粒子径(D)は、好ましくは10nm以上3,000nm以下、より好ましくは15nm以上2,000nm以下である。絶縁性微粒子の平均粒子径が上記範囲内であることで、得られる被覆粒子が対向電極間とは異なる方向での短絡を発生させることなく、対向電極間での導通を確保しやすい。なお、本発明において、絶縁性微粒子の平均粒子径は、走査型電子顕微鏡を用いた観察において測定した値であり、具体的には後述する実施例に記載の方法にて測定される。 The average particle diameter (D) of the insulating fine particles is preferably 10 nm or more and 3,000 nm or less, more preferably 15 nm or more and 2,000 nm or less. When the average particle diameter of the insulating fine particles is within the above range, the obtained coated particles do not cause a short circuit in a direction different from that between the opposing electrodes, and it is easy to ensure conduction between the opposing electrodes. In the present invention, the average particle size of the insulating fine particles is a value measured by observation using a scanning electron microscope, and specifically measured by the method described in Examples below.
 前述の方法によって測定された絶縁性微粒子の粒度分布には幅がある。一般に、粉体の粒度分布の幅は、下記計算式(1)で示される変動係数(Coefficient of Variation、以下「C.V.」とも記載する)により表される。
   C.V.(%)=(標準偏差/平均粒子径)×100・・・(1)
 このC.V.が大きいということは粒度分布の幅が広いことを示し、一方、C.V.が小さいということは粒度分布がシャープであることを示す。本実施形態の被覆粒子は、C.V.が好ましくは0.1%以上20%以下、より好ましくは0.5%以上15%以下、最も好ましくは1%以上10%以下の絶縁性微粒子を用いることが望ましい。C.V.がこの範囲であることにより、絶縁性微粒子による被覆層の厚みを均一にできる利点がある。
There is a wide range in the particle size distribution of the insulating fine particles measured by the method described above. In general, the width of the particle size distribution of powder is represented by the coefficient of variation (hereinafter also referred to as "C.V.") shown by the following formula (1).
C. V. (%) = (standard deviation/average particle size) x 100 (1)
This C.I. V. A large C.I. indicates a broad particle size distribution, while a C.I. V. A small value indicates a sharp particle size distribution. The coated particles of this embodiment are made of C.I. V. is preferably from 0.1% to 20%, more preferably from 0.5% to 15%, and most preferably from 1% to 10%. C. V. is within this range, there is an advantage that the thickness of the coating layer of the insulating fine particles can be made uniform.
 また、絶縁樹脂としては、前記の絶縁性微粒子からなるものに替えて、ポリマーからなりイオン性基を有する連続皮膜であってもよい。絶縁樹脂が、イオン性基を有する連続皮膜である場合、導電性粒子を電極間で熱圧着することで該連続皮膜が溶融、変形又は剥離することにより導電性粒子の金属表面が露出し、これにより電極間での導通を可能とし接続性が得られる。特に、導電性粒子を電極間で熱圧着することで連続皮膜が破けることにより金属表面が露出する場合が多い。一方、導電性粒子における熱圧着方向とは異なる方向を向く表面部分では、連続皮膜による導電性粒子の被覆状態が概ね維持されているため、熱圧着方向以外の方向における導通が防止される。該連続皮膜もイオン性基を表面に有することが好ましい。 In addition, the insulating resin may be a continuous film made of a polymer and having an ionic group instead of the one made of the insulating fine particles. When the insulating resin is a continuous film having an ionic group, the continuous film is melted, deformed, or peeled off by thermocompression bonding the conductive particles between the electrodes, thereby exposing the metal surface of the conductive particles. It enables conduction between the electrodes and obtains connectivity. In particular, there are many cases where the metal surface is exposed due to breakage of the continuous film due to thermocompression bonding of the conductive particles between the electrodes. On the other hand, in the surface portion of the conductive particles facing in a direction different from the direction of the thermocompression bonding, the conductive particles are generally covered with the continuous film, so that conduction in directions other than the direction of the thermocompression bonding is prevented. The continuous film also preferably has ionic groups on its surface.
 連続皮膜の厚さは、10nm以上であることが、対向電極間と異なる方向における絶縁性の向上の点から好ましく、3,000nm以下であることが、対向電極間での導通しやすさの点で好ましい。この点から、連続皮膜の厚さは、10nm以上3,000nm以下であることが好ましく、15nm以上2,000nm以下であることがより好ましい。 The thickness of the continuous film is preferably 10 nm or more from the viewpoint of improving insulation in a direction different from that between the opposing electrodes, and is preferably 3,000 nm or less in terms of ease of conduction between the opposing electrodes. is preferred. From this point of view, the thickness of the continuous film is preferably 10 nm or more and 3,000 nm or less, more preferably 15 nm or more and 2,000 nm or less.
 絶縁性微粒子と同様、連続皮膜においてイオン性基は、連続皮膜を構成する物質の一部として、該物質の化学構造の一部をなしていることが好ましい。連続皮膜においてイオン性基は、連続皮膜を構成するポリマーの構成単位の少なくとも1種の構造中に含有されていることが好ましい。イオン性基は、連続皮膜を構成するポリマーに化学結合していることが好ましく、より好ましくはポリマーの側鎖に結合している。 As with the insulating fine particles, in the continuous film, the ionic group preferably forms part of the chemical structure of the substance as part of the substance that constitutes the continuous film. In the continuous film, the ionic group is preferably contained in the structure of at least one structural unit of the polymer constituting the continuous film. The ionic groups are preferably chemically bonded to the polymer forming the continuous film, more preferably to side chains of the polymer.
 絶縁樹脂が連続皮膜である場合、導電性粒子を、その表面にイオン性基を有する絶縁性微粒子で被覆した後、該絶縁性微粒子を加熱させて得られた連続皮膜であることが好ましい。または、該絶縁性微粒子を有機溶剤により溶解させて得られた連続皮膜であることが好ましい。上述したように、イオン性基を有する絶縁性微粒子は、導電性粒子に対し密着しやすく、これによって導電性粒子表面における絶縁性微粒子に被覆される割合が十分なものになるとともに、導電性粒子からの絶縁性微粒子の剥離が防止されやすくなる。このため、導電性粒子を被覆する絶縁性微粒子を加熱又は溶解して得られた連続皮膜は、厚みが均一で且つ導電性粒子表面における被覆割合の高いものとすることができる。 When the insulating resin is a continuous film, it is preferably a continuous film obtained by coating conductive particles with insulating fine particles having ionic groups on their surfaces and then heating the insulating fine particles. Alternatively, it is preferably a continuous film obtained by dissolving the insulating fine particles in an organic solvent. As described above, the insulating fine particles having an ionic group easily adhere to the conductive particles. It becomes easy to prevent the insulating fine particles from peeling off. Therefore, the continuous film obtained by heating or dissolving the insulating fine particles covering the conductive particles can have a uniform thickness and a high coating ratio on the surfaces of the conductive particles.
 また本発明の製造方法にかかる導電性粒子は、前記絶縁樹脂との親和性を高めて密着性を優れたものにする目的で、表面処理剤で処理してもよい。
 前記表面処理剤としては、例えば、ベンゾトリアゾール系化合物、チタン系化合物、高級脂肪酸又はその誘導体、リン酸エステル及び亜リン酸エステル等が挙げられる。これらは単独で用いてもよいし、必要に応じて複数を組み合わせて用いてもよい。
Further, the conductive particles according to the production method of the present invention may be treated with a surface treatment agent for the purpose of enhancing affinity with the insulating resin and improving adhesion.
Examples of the surface treatment agent include benzotriazole-based compounds, titanium-based compounds, higher fatty acids or their derivatives, phosphates and phosphites. These may be used alone, or may be used in combination as necessary.
 前記表面処理剤は、導電性粒子における表面の金属と化学的に結合していてもよく、結合していなくてもよい。表面処理剤は、導電性粒子の表面に存在していればよく、その場合、導電性粒子の表面全体に存在していてもよく、表面の一部にのみ存在していてもよい。 The surface treatment agent may or may not be chemically bonded to the metal on the surface of the conductive particles. The surface-treating agent may be present on the surface of the conductive particles, in which case it may be present on the entire surface of the conductive particles, or may be present only on a part of the surface.
 前記トリアゾール系化合物としては、5員環に3つの窒素原子を有する含窒素複素環構造を有する化合物が挙げられる。 Examples of the triazole-based compound include compounds having a nitrogen-containing heterocyclic structure having three nitrogen atoms in a five-membered ring.
 トリアゾール系化合物としては、他の環と縮合していないトリアゾール単環構造を有する化合物のほか、トリアゾール環と他の環とが縮合した環構造を有する化合物が挙げられる。他の環としては、ベンゼン環、ナフタレン環が挙げられる。 Examples of triazole-based compounds include compounds having a triazole monocyclic structure that is not condensed with other rings, as well as compounds having a ring structure in which a triazole ring and another ring are condensed. Other rings include a benzene ring and a naphthalene ring.
 中でも、絶縁樹脂との密着性に優れることから、トリアゾール環と他の環とが縮合した環構造を有する化合物が好ましく、とりわけトリアゾール環とベンゼン環が縮合した構造を有する化合物であるベンゾトリアゾール系化合物が好ましい。
 ベンゾトリアゾール系化合物としては、下記一般式(I)で表されるものが挙げられる。
Among them, a compound having a ring structure in which a triazole ring and another ring are condensed is preferable because it has excellent adhesion to an insulating resin, and in particular, a benzotriazole-based compound, which is a compound having a structure in which a triazole ring and a benzene ring are condensed. is preferred.
Benzotriazole compounds include those represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000004
 
(式中、R11は、負電荷、水素原子、アルカリ金属、置換されていてもよいアルキル基、アミノ基、ホルミル基、ヒドロキシル基、アルコキシ基、スルホン酸基又はシリル基であり、R12、R13、R14及びR15はそれぞれ独立に、水素原子、ハロゲン原子、置換されていてもよいアルキル基、カルボキシル基、ヒドロキシル基又はニトロ基である。)
Figure JPOXMLDOC01-appb-C000004

(wherein R 11 is a negative charge, hydrogen atom, alkali metal, optionally substituted alkyl group, amino group, formyl group, hydroxyl group, alkoxy group, sulfonic acid group or silyl group; R 12 , R 13 , R 14 and R 15 are each independently a hydrogen atom, a halogen atom, an optionally substituted alkyl group, a carboxyl group, a hydroxyl group or a nitro group.)
 式(I)におけるR11で表されるアルカリ金属としては、リチウム、ナトリウム、カリウム等が挙げられる。R11で表されるアルカリ金属は、アルカリ金属陽イオンであり、式(I)におけるR11がアルカリ金属である場合、R11と窒素原子との結合はイオン結合となっていてもよい。
 式(I)におけるR11、R12、R13、R14及びR15で表されるアルキル基としては、炭素数1~20のものが挙げられ、炭素数1~12が特に好ましい。当該アルキル基は、置換されていてもよく、置換基としてはアミノ基、アルコキシ基、カルボキシル基、ヒドロキシル基、アルデヒド基、ニトロ基、スルホン酸基、第四級アンモニウム基、スルホニウム基、スルホニル基、ホスホニウム基、シアノ基、フルオロアルキル基、メルカプト基、及びハロゲン原子が挙げられる。
 R11で表されるアルコキシ基としては、炭素数が1~12のものが好ましく挙げられる。
 また、R12、R13、R14及びR15で表されるアルキル基の置換基としてのアルコキシ基の炭素数は1~12であることが好ましい。式(I)におけるR12、R13、R14及びR15で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
Alkali metals represented by R 11 in formula (I) include lithium, sodium, potassium and the like. The alkali metal represented by R 11 is an alkali metal cation, and when R 11 in formula (I) is an alkali metal, the bond between R 11 and the nitrogen atom may be an ionic bond.
The alkyl groups represented by R 11 , R 12 , R 13 , R 14 and R 15 in formula (I) include those having 1 to 20 carbon atoms, with 1 to 12 carbon atoms being particularly preferred. The alkyl group may be substituted, and examples of substituents include an amino group, an alkoxy group, a carboxyl group, a hydroxyl group, an aldehyde group, a nitro group, a sulfonic acid group, a quaternary ammonium group, a sulfonium group, a sulfonyl group, Phosphonium groups, cyano groups, fluoroalkyl groups, mercapto groups, and halogen atoms are included.
The alkoxy group represented by R 11 preferably has 1 to 12 carbon atoms.
The alkoxy group as a substituent of the alkyl group represented by R 12 , R 13 , R 14 and R 15 preferably has 1 to 12 carbon atoms. Halogen atoms represented by R 12 , R 13 , R 14 and R 15 in formula (I) include fluorine, chlorine, bromine and iodine atoms.
 具体的なトリアゾール系化合物としては、トリアゾール単環構造を有する化合物として1,2,3-トリアゾ-ル、1,2,4-トリアゾール、3-アミノ-1H-1,2,4-トリアゾール、5-メルカプト-1H-1,2,3-トリアゾールナトリウム、4-アミノ-3-ヒドラジノ-5-メルカプト-1,2,4-トリアゾール、3-アミノ-5-メルカプト-1,2,4-トリアゾール、が挙げられるほか、トリアゾール環と他の環とが縮合した環構造を有するベンゾトリアゾール、1-メチル-1H-ベンゾトリアゾール、4-メチル-1H-ベンゾトリアゾール、5-メチル-1H-ベンゾトリアゾール、4-カルボキシ-1H-ベンゾトリアゾール、5-カルボキシ-1H-ベンゾトリアゾール、5-エチル-1H-ベンゾトリアゾール、5-プロピル-1H-ベンゾトリアゾール、5,6-ジメチル-1H-ベンゾトリアゾール、1-アミノベンゾトリアゾール、5-ニトロベンゾトリアゾール、5-クロロベンゾトリアゾール、4,5,6,7-テトラブロモベンゾトリアゾール、1-ヒドロキシベンゾトリアゾール、1-(メトキシメチル)-1H-ベンゾトリアゾール、1H-ベンゾトリアゾール-1-メタノール、1H-ベンゾトリアゾール-1-カルボキシアルデヒド、1-(クロロメチル)-1H-ベンゾトリアゾール、1-ヒドロキシ-6-(トリフルオロメチル)ベンゾトリアゾール、ベンゾトリアゾールブチルエステル、4-カルボキシル-1H-ベンゾトリアゾールブチルエステル、4-カルボキシル-1H-ベンゾトリアゾールオクチルエステル、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]メチルベンゾトリアゾール、2,2’-[[(メチル-1H-ベンゾトリアゾール-1-イル)メチル]イミノ]ビスエタノール、テトラブチルホスホニウムベンゾトリアゾラート、1H-ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロホスファート、1H-ベンゾトリアゾール-1-イルオキシトリピロリジノホスホニウムヘキサフルオロホスファート、1-(ホルムアミドメチル)-1H-ベンゾトリアゾール、1-[ビス(ジメチルアミノ)メチレン]-1H-ベンゾトリアゾリウム3-オキシドヘキサフルオロホスファート、1-[ビス(ジメチルアミノ)メチレン]-1H-ベンゾトリアゾリウム3-オキシドテトラフルオロボラート、(6-クロロ-1H-ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウムヘキサフルオロホスファート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-ビス(テトラメチレン)ウロニウムヘキサフルオロホスファート、O-(6-クロロベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロボラート、O-(6-クロロベンゾトリアゾール-1-イル)-N,N,N‘,N’-テトラメチルウロニウムヘキサフルオロホスファート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-ビス(ペンタメチレン)ウロニウムヘキサフルオロホスファート、1-(トリメチルシリル)-1H-ベンゾトリアゾール、1-[2-(トリメチルシリル)エトキシカルボニルオキシ]ベンゾトリアゾール、1-(トリフルオロメタンスルホニル)-1H-ベンゾトリアゾール、(トリフルオロアセチル)ベンゾトリアゾール、トリス(1H-ベンゾトリアゾール-1-イル)メタン、9-(1H-ベンゾトリアゾール-1-イルメチル)-9H-カルバゾール、[(1H-ベンゾトリアゾール-1-イル)メチル]トリフェニルホスホニウムクロリド、1-(イソシアノメチル)-1H-ベンゾトリアゾール、1-[(9H-フルオレン-9-イルメトキシ)カルボニルオキシ]ベンゾトリアゾール、1,2,3-ベンゾトリアゾールナトリウム塩、ナフトトリアゾール等が挙げられる。 Specific triazole compounds include 1,2,3-triazole, 1,2,4-triazole, 3-amino-1H-1,2,4-triazole, 5 - mercapto-1H-1,2,3-triazole sodium, 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, 3-amino-5-mercapto-1,2,4-triazole, In addition, benzotriazole having a ring structure in which a triazole ring and another ring are condensed, 1-methyl-1H-benzotriazole, 4-methyl-1H-benzotriazole, 5-methyl-1H-benzotriazole, 4 -carboxy-1H-benzotriazole, 5-carboxy-1H-benzotriazole, 5-ethyl-1H-benzotriazole, 5-propyl-1H-benzotriazole, 5,6-dimethyl-1H-benzotriazole, 1-aminobenzo triazole, 5-nitrobenzotriazole, 5-chlorobenzotriazole, 4,5,6,7-tetrabromobenzotriazole, 1-hydroxybenzotriazole, 1-(methoxymethyl)-1H-benzotriazole, 1H-benzotriazole- 1-methanol, 1H-benzotriazole-1-carboxaldehyde, 1-(chloromethyl)-1H-benzotriazole, 1-hydroxy-6-(trifluoromethyl)benzotriazole, benzotriazole butyl ester, 4-carboxyl-1H -benzotriazole butyl ester, 4-carboxyl-1H-benzotriazole octyl ester, 1-[N,N-bis(2-ethylhexyl)aminomethyl]methylbenzotriazole, 2,2'-[[(methyl-1H-benzo triazol-1-yl)methyl]imino]bisethanol, tetrabutylphosphonium benzotriazolate, 1H-benzotriazol-1-yloxy tris(dimethylamino)phosphonium hexafluorophosphate, 1H-benzotriazol-1-yloxy tripyrrolidinophosphonium hexafluorophosphate, 1-(formamidomethyl)-1H-benzotriazole, 1-[bis(dimethylamino)methylene]-1H-benzotriazolium 3-oxide hexafluorophosphate, 1-[bis (dimethylamino)methylene]-1H-benzotriazolium 3-oxide tet Lafluoroborate, (6-chloro-1H-benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate, O-(benzotriazol-1-yl)-N,N,N',N'-bis (Tetramethylene)uronium hexafluorophosphate, O-(6-chlorobenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate, O-(6-chloro benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate, O-(benzotriazol-1-yl)-N,N,N',N'-bis( pentamethylene)uronium hexafluorophosphate, 1-(trimethylsilyl)-1H-benzotriazole, 1-[2-(trimethylsilyl)ethoxycarbonyloxy]benzotriazole, 1-(trifluoromethanesulfonyl)-1H-benzotriazole, ( trifluoroacetyl)benzotriazole, tris(1H-benzotriazol-1-yl)methane, 9-(1H-benzotriazol-1-ylmethyl)-9H-carbazole, [(1H-benzotriazol-1-yl)methyl] triphenylphosphonium chloride, 1-(isocyanomethyl)-1H-benzotriazole, 1-[(9H-fluoren-9-ylmethoxy)carbonyloxy]benzotriazole, 1,2,3-benzotriazole sodium salt, naphthotriazole, etc. is mentioned.
 前記チタン系化合物としては、例えば一般式(II)で表される構造を有する化合物が、導電性粒子の表面に有する場合に絶縁樹脂と導電性粒子との親和性を容易に得られる点や溶媒に分散し易く導電性粒子表面を均一に処理できる点で特に好ましい。 As the titanium-based compound, for example, when a compound having a structure represented by general formula (II) is present on the surface of the conductive particles, affinity between the insulating resin and the conductive particles can be easily obtained, and solvent It is particularly preferable in that it can be easily dispersed in a liquid and the surfaces of the conductive particles can be treated uniformly.
Figure JPOXMLDOC01-appb-C000005
 
(R21は2価又は3価の基であり、R22は炭素原子数2以上30以下の脂肪族炭化水素基、炭素原子数6以上22以下のアリール基又は炭素原子数7以上23以下のアリールアルキル基であり、p及びrはそれぞれ1以上3以下の整数であり、p+r=4を満たし、qは1又は2である整数であり、R21が2価の基である場合、qは1であり、R21が3価の基である場合、qは2である。qが2である場合、複数のR22は同一であっても異なってもよい。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000005

(R 21 is a divalent or trivalent group, R 22 is an aliphatic hydrocarbon group having 2 to 30 carbon atoms, an aryl group having 6 to 22 carbon atoms, or a an arylalkyl group, p and r are each an integer of 1 or more and 3 or less, satisfying p+r=4, q is an integer of 1 or 2, and when R 21 is a divalent group, q is 1 and R 21 is a trivalent group, q is 2. When q is 2, multiple R 22 may be the same or different, and * represents a bond. )
 R22で表される炭素原子数4以上28以下の脂肪族炭化水素基の例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基等が挙げられる。不飽和脂肪族炭化水素基の例としては、アルケニル基として、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、ノナデセニル基、イコセニル基、エイコセニル基、ヘンイコセニル基、ドコセニル基が挙げられる。
 炭素原子数6以上22以下のアリール基としては、フェニル基、トリル基、ナフチル基、アントリル基等が挙げられる。
 炭素原子数7以上23以下のアリールアルキル基としては、ベンジル基、フェネチル基、ナフチルメチル基等が挙げられる。
 疎水性基としては直鎖状又は分岐鎖状の脂肪族炭化水素基が特に好ましく、直鎖状の脂肪族炭化水素基がとりわけ好ましい。
 絶縁樹脂と導電性粒子との親和性を高める点から、疎水性基としての脂肪族炭化水素基としては、特に炭素原子数4以上28以下のものが更に好ましく、6以上24以下のものが最も好ましい。
Examples of aliphatic hydrocarbon groups having 4 to 28 carbon atoms represented by R 22 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group and nonyl group. , decyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, henicosyl group, docosyl group and the like. Examples of unsaturated aliphatic hydrocarbon groups include alkenyl groups such as dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, nonadecenyl, icosenyl, eicosenyl, henicosenyl, and docosenyl. be done.
Examples of the aryl group having 6 to 22 carbon atoms include a phenyl group, a tolyl group, a naphthyl group, an anthryl group and the like.
Examples of the arylalkyl group having 7 or more and 23 or less carbon atoms include a benzyl group, a phenethyl group and a naphthylmethyl group.
As the hydrophobic group, a linear or branched aliphatic hydrocarbon group is particularly preferable, and a linear aliphatic hydrocarbon group is particularly preferable.
From the viewpoint of increasing the affinity between the insulating resin and the conductive particles, the aliphatic hydrocarbon group as the hydrophobic group preferably has 4 to 28 carbon atoms, most preferably 6 to 24 carbon atoms. preferable.
 R21で表される2価の基としては、-O-、-COO-、-OCO-、-OSO-等が挙げられる。R21で表される3価の基としては、-P(OH)(O-)、-OPO(OH)-OPO(O-)等が挙げられる。 The divalent group represented by R 21 includes -O-, -COO-, -OCO-, -OSO 2 - and the like. Examples of the trivalent group represented by R 21 include -P(OH)(O-) 2 and -OPO(OH)-OPO(O-) 2 .
 一般式(II)において*は結合手であり、当該結合手は導電性粒子の金属皮膜に結合していてもよく、或いは、他の基等に結合していてもよい。その場合の他の基等としては、例えば、炭化水素基が挙げられ、具体的には炭素原子数1以上12以下のアルキル基が挙げられる。 In general formula (II), * is a bond, and the bond may be bonded to the metal film of the conductive particles, or may be bonded to other groups. Other groups in that case include, for example, hydrocarbon groups, specifically alkyl groups having 1 to 12 carbon atoms.
 一般式(II)で表される構造を有するチタン系化合物としては、一般式(II)におけるR21が2価の基である構造を有する化合物が、入手容易性や導電性粒子の導電特性を損なうことなく処理できる点で好ましい。一般式(II)においてR21が2価の基である構造は、下記一般式(III)で表される。 As the titanium-based compound having the structure represented by the general formula (II), a compound having a structure in which R 21 in the general formula (II) is a divalent group has excellent availability and conductive properties of the conductive particles. It is preferable in that it can be processed without damaging it. A structure in which R 21 is a divalent group in general formula (II) is represented by general formula (III) below.
Figure JPOXMLDOC01-appb-C000006
 
(R21は、-O-、-COO-、-OCO-、-OSO-から選ばれる基であり、p、r及びR22は一般式(II)と同義である。)
Figure JPOXMLDOC01-appb-C000006

(R 21 is a group selected from —O—, —COO—, —OCO— and —OSO 2 —, and p, r and R 22 are the same as defined in general formula (II).)
 一般式(II)及び(III)において、rは2又は3であることが、絶縁樹脂と導電層の密着性が上がる観点で好ましく、rが3であることが最も好ましい。 In general formulas (II) and (III), r is preferably 2 or 3 from the viewpoint of increasing the adhesion between the insulating resin and the conductive layer, and r is most preferably 3.
 本発明に用いられるチタネート系カップリング剤の具体例としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピル(ジオクチルホスファイト)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等が挙げられ、これらは1種又は2種以上で用いることができる。
 なお、これらのチタネート系カップリング剤は、例えば、味の素ファインテクノ株式会社から市販されている。
Specific examples of titanate-based coupling agents used in the present invention include isopropyltriisostearoyl titanate, isopropyltridodecylbenzenesulfonyltitanate, isopropyltris(dioctylpyrophosphate)titanate, tetraisopropyl(dioctylphosphite)titanate, tetraisopropylbis (dioctylphosphite) titanate, tetraoctylbis(ditridecylphosphite) titanate, tetra(2,2-diallyloxymethyl-1-butyl)bis(ditridecyl)phosphite titanate, bis(dioctylpyrophosphate)oxyacetate titanate, Bis(dioctyl pyrophosphate) ethylene titanate and the like can be mentioned, and these can be used alone or in combination of two or more.
These titanate-based coupling agents are commercially available from Ajinomoto Fine-Techno Co., Ltd., for example.
 高級脂肪酸としては、飽和又は不飽和の直鎖又は分枝鎖のモノ又はポリカルボン酸であることが好ましく、飽和又は不飽和の直鎖又は分枝鎖のモノカルボン酸であることが更に好ましく、飽和又は不飽和の直鎖モノカルボン酸であることが一層好ましい。脂肪酸は、その炭素数が好ましくは7以上である。また、誘導体とは、前記脂肪酸の塩又はアミドを指す。 The higher fatty acid is preferably a saturated or unsaturated linear or branched mono- or polycarboxylic acid, more preferably a saturated or unsaturated linear or branched monocarboxylic acid, A saturated or unsaturated linear monocarboxylic acid is more preferred. The fatty acid preferably has 7 or more carbon atoms. Moreover, a derivative refers to a salt or an amide of the fatty acid.
 本発明に用いられる高級脂肪酸又はその誘導体は、高級脂肪酸の炭素数が好ましくは7~23であり、更に好ましくは10~20である。このような高級脂肪酸又はその誘導体としては、例えばカプリン酸、ラウリル酸、ミリスチン酸、パルミチン酸、ステアリン酸等の飽和脂肪酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸、又はこれらの金属塩若しくはアミド等が挙げられる。高級脂肪酸の金属塩としては、アルカリ金属、アルカリ土類金属、Zr、Cr、Mn、Fe、Co、Ni、Cu、Ag等の遷移金属、及びAl、Zn等の遷移金属以外の他の金属の塩が挙げられ、好ましくはAl、Zn、W、V等の多価金属塩である。高級脂肪酸金属塩は、金属の価数に応じて、モノ体、ジ体、トリ体、テトラ体等であり得る。高級脂肪酸金属塩は、これらの任意の組み合わせであってもよい。 The higher fatty acid or derivative thereof used in the present invention preferably has 7 to 23 carbon atoms, more preferably 10 to 20 carbon atoms. Examples of such higher fatty acids or derivatives thereof include saturated fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid and stearic acid; unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid and arachidonic acid; metal salts or amides of Metal salts of higher fatty acids include alkali metals, alkaline earth metals, transition metals such as Zr, Cr, Mn, Fe, Co, Ni, Cu and Ag, and metals other than transition metals such as Al and Zn. salts, preferably polyvalent metal salts such as Al, Zn, W, V and the like. The higher fatty acid metal salt can be mono-, di-, tri-, tetra-, etc., depending on the valence of the metal. The higher fatty acid metal salt may be any combination of these.
 リン酸エステル及び亜リン酸エステルとしては、炭素数6~22のアルキル基を有するものが、好ましく用いられる。
 リン酸エステルとしては、例えば、リン酸ヘキシルエステル、リン酸ヘプチルエステル、リン酸モノオクチルエステル、リン酸モノノニルエステル、リン酸モノデシルエステル、リン酸モノウンデシルエステル、リン酸モノドデシルエステル、リン酸モノトリデシルエステル、リン酸モノテトラデシルエステル、リン酸モノペンタデシルエステル等が挙げられる。
 亜リン酸エステルとしては、例えば、亜リン酸ヘキシルエステル、亜リン酸ヘプチルエステル、亜リン酸モノオクチルエステル、亜リン酸モノノニルエステル、亜リン酸モノデシルエステル、亜リン酸モノウンデシルエステル、亜リン酸モノドデシルエステル、亜リン酸モノトリデシルエステル、亜リン酸モノテトラデシルエステル、亜リン酸モノペンタデシルエステル等が挙げられる。
As the phosphate and phosphite, those having an alkyl group of 6 to 22 carbon atoms are preferably used.
Phosphate esters include, for example, hexyl phosphate, heptyl phosphate, monooctyl phosphate, monononyl phosphate, monodecyl phosphate, monoundecyl phosphate, monododecyl phosphate, acid monotridecyl ester, phosphate monotetradecyl ester, phosphate monopentadecyl ester, and the like.
Examples of phosphites include hexyl phosphite, heptyl phosphite, monooctyl phosphite, monononyl phosphite, monodecyl phosphite, monoundecyl phosphite, monododecyl phosphite, monotridecyl phosphite, monotetradecyl phosphite, monopentadecyl phosphite and the like.
 本発明において、表面処理剤は、絶縁樹脂との親和性に優れ、また、絶縁樹脂の被覆率を高める効果が高い点で、トリアゾール系化合物、チタン系化合物が好ましく、特にベンゾトリアゾール、4-カルボキシベンゾトリアゾール、イソプロピルトリイソステアロイルチタネート、テトライソプロピル(ジオクチルホスファイト)チタネートが特に好ましい。 In the present invention, the surface treatment agent is preferably a triazole-based compound or a titanium-based compound, particularly benzotriazole and 4-carboxylate, because they have excellent affinity with the insulating resin and are highly effective in increasing the coverage of the insulating resin. Benzotriazole, isopropyltriisostearoyl titanate, tetraisopropyl(dioctylphosphite) titanate are particularly preferred.
 導電性粒子を表面処理剤により処理する方法は、導電性粒子を表面処理剤の溶液中で分散させた後、ろ過することで得られる。表面処理剤による処理前において、導電性粒子は別の処理剤で処理されていてもよく、未処理であってもよい。
 導電性粒子を分散させる表面処理剤の溶液(導電性粒子を含む溶液)における表面処理剤の濃度としては、0.01質量%以上10.0質量%以下が挙げられる。また表面処理剤の溶液における溶媒は、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、イソペンチルアルコール、シクロヘキサノール、などのアルコール類、アセトン、メチルイソブチルケトン、メチルエチルケトン、メチル-n-ブチルケトン、などのケトン類、酢酸メチル、酢酸エチル、などのエステル類、ジエチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類、ノルマルヘキサン、シクロヘキサノン、トルエン、1,4-ジオキサン、N,N-ジメチルホルムアミド、テトラヒドロフラン等が挙げられる。分散、ろ過した表面処理後の導電性粒子は、再度溶媒中に分散させて過剰の表面処理剤を除去することが好ましい。
A method of treating the conductive particles with the surface treatment agent is obtained by dispersing the conductive particles in a solution of the surface treatment agent and then filtering. Before the treatment with the surface treatment agent, the conductive particles may be treated with another treatment agent or may be untreated.
The concentration of the surface treatment agent in the solution of the surface treatment agent in which the conductive particles are dispersed (solution containing the conductive particles) is 0.01% by mass or more and 10.0% by mass or less. Solvents in the surface treatment agent solution include alcohols such as water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, isopentyl alcohol, cyclohexanol, acetone, methyl Ketones such as isobutyl ketone, methyl ethyl ketone, methyl-n-butyl ketone, esters such as methyl acetate, ethyl acetate, ethers such as diethyl ether, ethylene glycol monoethyl ether, normal hexane, cyclohexanone, toluene, 1,4 -dioxane, N,N-dimethylformamide, tetrahydrofuran and the like. It is preferable to re-disperse the dispersed and filtered conductive particles after the surface treatment in a solvent to remove the excess surface treatment agent.
 導電性粒子の表面処理剤による表面処理は、室温で導電性粒子と表面処理剤と溶媒を混合することにより処理することができる。あるいは、導電性粒子と表面処理剤を溶媒中で混合後、加熱して反応を促進してもよい。加熱温度は例えば30℃以上50℃以下が挙げられる。 The surface treatment of the conductive particles with a surface treatment agent can be performed by mixing the conductive particles, surface treatment agent and solvent at room temperature. Alternatively, the conductive particles and the surface treatment agent may be mixed in a solvent and then heated to promote the reaction. The heating temperature is, for example, 30° C. or higher and 50° C. or lower.
 本発明の導電性粒子は、接続抵抗が低く、且つ、接続信頼性にも優れるため、例えば異方性導電フィルム(ACF)やヒートシールコネクタ(HSC)、液晶ディスプレーパネルの電極を駆動用LSIチップの回路基板へ接続するための導電性材料として好適に使用される。該導電性材料としては、本発明の導電性粒子のそのままの使用、又は本発明の導電性粒子をバインダー樹脂に分散してなるものが挙げられる。導電性材料のその他の形態は特に限定されず、上記したものの他には、例えば、異方性導電ペースト、導電性接着剤、異方性導電インク等の形態が挙げられる。 The conductive particles of the present invention have low connection resistance and excellent connection reliability. It is suitably used as a conductive material for connection to a circuit board. Examples of the conductive material include the use of the conductive particles of the present invention as they are, and the use of the conductive particles of the present invention dispersed in a binder resin. Other forms of the conductive material are not particularly limited, and examples thereof include forms such as anisotropic conductive paste, conductive adhesive, and anisotropic conductive ink.
 前記バインダー樹脂としては、熱可塑性樹脂又は熱硬化性樹脂等が挙げられる。熱可塑性樹脂としては、例えば、アクリル樹脂、スチレン樹脂、エチレン-酢酸ビニル樹脂、スチレン-ブタジエンブロック共重合体等が挙げられ、熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、尿素樹脂、ポリエステル樹脂、ウレタン樹脂、ポリイミド樹脂等が挙げられる。 Examples of the binder resin include thermoplastic resins and thermosetting resins. Examples of thermoplastic resins include acrylic resins, styrene resins, ethylene-vinyl acetate resins, styrene-butadiene block copolymers, etc. Examples of thermosetting resins include epoxy resins, phenol resins, urea resins, polyester resins, urethane resins, polyimide resins, and the like.
 前記導電性材料は、本発明の導電性粒子及びバインダー樹脂の他に、必要に応じて粘着付与剤、反応性助剤、エポキシ樹脂硬化剤、金属酸化物、光開始剤、増感剤、硬化剤、加硫剤、劣化防止剤、耐熱添加剤、熱伝導向上剤、軟化剤、着色剤、各種カップリング剤又は金属不活性剤等を配合することができる。 In addition to the conductive particles and the binder resin of the present invention, the conductive material may include, if necessary, a tackifier, a reactive aid, an epoxy resin curing agent, a metal oxide, a photoinitiator, a sensitizer, and a curing agent. agents, vulcanizing agents, antidegradants, heat resistant additives, thermal conductivity improvers, softeners, coloring agents, various coupling agents, metal deactivators, and the like.
 前記導電性材料において、導電性粒子の使用量は、用途に応じて適宜決定すればよいが、導電性粒子同士が接触することなく電気的導通を得やすくする観点から、例えば導電性材料100質量部に対して0.01質量部以上50質量部以下、特に0.03質量部以上40質量部以下であることが好ましい。 In the conductive material, the amount of the conductive particles used may be appropriately determined according to the application. 0.01 to 50 parts by mass, particularly preferably 0.03 to 40 parts by mass.
 本発明の導電性粒子は、上記した導電性材料の形態の中でも、特に、導電性接着剤の導電性フィラーとして好適に用いられる。 Among the forms of the conductive material described above, the conductive particles of the present invention are particularly suitable for use as a conductive filler for a conductive adhesive.
 前記の導電性接着剤は、導電性基材が形成された2枚の基板間に配置され、加熱加圧によって前記導電性基材を接着して導通する異方導電性接着剤として好ましく用いられる。この異方導電性接着剤は、本発明の導電性粒子と接着剤樹脂とを含む。接着剤樹脂としては、絶縁性で、かつ接着剤樹脂として用いられているものであれば、特に制限なく使用できる。熱可塑性樹脂及び熱硬化性のいずれであってもよく、加熱によって接着性能が発現するものが好ましい。そのような接着剤樹脂には、例えば熱可塑性タイプ、熱硬化性タイプ、紫外線硬化タイプ等がある。また、熱可塑性タイプと熱硬化性タイプとの中間的な性質を示す、いわゆる半熱硬化性タイプ、熱硬化性タイプと紫外線硬化タイプとの複合タイプ等がある。これらの接着剤樹脂は被着対象である回路基板等の表面特性や使用形態に合わせて適宜選択できる。特に、熱硬化性樹脂を含んで構成される接着剤樹脂が、接着後の材料的強度に優れる点から好ましい。 The conductive adhesive is preferably used as an anisotropic conductive adhesive that is placed between two substrates on which conductive substrates are formed, and adheres and conducts the conductive substrates by heating and pressurizing. . This anisotropic conductive adhesive contains the conductive particles of the present invention and an adhesive resin. As the adhesive resin, any resin that is insulative and is used as an adhesive resin can be used without particular limitation. Either a thermoplastic resin or a thermosetting resin may be used, and a material exhibiting adhesion performance upon heating is preferable. Such adhesive resins include, for example, thermoplastic types, thermosetting types, ultraviolet curing types, and the like. In addition, there are so-called semi-thermosetting type, composite type of thermosetting type and ultraviolet curing type, etc., which exhibit intermediate properties between thermoplastic type and thermosetting type. These adhesive resins can be appropriately selected according to the surface characteristics of the circuit board or the like to be adhered and the mode of use. In particular, an adhesive resin containing a thermosetting resin is preferable from the viewpoint of excellent material strength after bonding.
 接着剤樹脂としては、具体的には、エチレン-酢酸ビニル共重合体、カルボキシル変性エチレン-酢酸ビニル共重合体、エチレン-イソブチルアクリレート共重合体、ポリアミド、ポリイミド、ポリエステル、ポリビニルエーテル、ポリビニルブチラール、ポリウレタン、SBSブロック共重合体、カルボキシル変性SBS共重合体、SIS共重合体、SEBS共重合体、マレイン酸変性SEBS共重合体、ポリブタジエンゴム、クロロプレンゴム、カルボキシル変性クロロプレンゴム、スチレン-ブタジエンゴム、イソブチレン-イソプレン共重合体、アクリロニトリル-ブタジエンゴム(以下、NBRと表す。)、カルボキシル変性NBR、アミン変性NBR、エポキシ樹脂、エポキシエステル樹脂、アクリル樹脂、フェノール樹脂又はシリコーン樹脂などから選ばれる1種又は2種以上の組合せにより得られるものを主剤として調製されたものが挙げられる。これらのうち、熱可塑性樹脂としては、スチレン-ブタジエンゴムやSEBSなどがリワーク性に優れるので好ましい。熱硬化性樹脂としては、エポキシ樹脂が好ましい。これらのうち接着力が高く、耐熱性、電気絶縁性に優れ、しかも溶融粘度が低く、低圧力で接続が可能であるという利点から、エポキシ樹脂が最も好ましい。 Specific examples of adhesive resins include ethylene-vinyl acetate copolymer, carboxyl-modified ethylene-vinyl acetate copolymer, ethylene-isobutyl acrylate copolymer, polyamide, polyimide, polyester, polyvinyl ether, polyvinyl butyral, and polyurethane. , SBS block copolymer, carboxyl-modified SBS copolymer, SIS copolymer, SEBS copolymer, maleic acid-modified SEBS copolymer, polybutadiene rubber, chloroprene rubber, carboxyl-modified chloroprene rubber, styrene-butadiene rubber, isobutylene- One or two selected from isoprene copolymer, acrylonitrile-butadiene rubber (hereinafter referred to as NBR), carboxyl-modified NBR, amine-modified NBR, epoxy resin, epoxy ester resin, acrylic resin, phenol resin, silicone resin, etc. Examples include those prepared using the above combination as the main ingredient. Among these, styrene-butadiene rubber, SEBS, and the like are preferable as the thermoplastic resin because they are excellent in reworkability. Epoxy resin is preferable as the thermosetting resin. Among these resins, epoxy resins are most preferable because of their advantages of high adhesion, excellent heat resistance and electrical insulation, low melt viscosity, and low pressure connection.
 前記のエポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する多価エポキシ樹脂であれば、一般に用いられているエポキシ樹脂が使用可能である。具体的なものとしては、フェノールノボラック、クレゾールノボラック等のノボラック樹脂、ビスフェノールA、ビスフェノールF、ビスフェノールAD、レゾルシン、ビスヒドロキシジフェニルエーテル等の多価フェノール類、エチレングリコール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ポリプロピレングリコール等の多価アルコール類、エチレンジアミン、トリエチレンテトラミン、アニリン等のポリアミノ化合物、アジピン酸、フタル酸、イソフタル酸等の多価カルボキシ化合物等とエピクロルヒドリン又は2-メチルエピクロルヒドリンを反応させて得られるグリシジル型のエポキシ樹脂が例示される。また、ジシクロペンタジエンエポキサイド、ブタジエンダイマージエポキサイド等の脂肪族及び脂環族エポキシ樹脂等が挙げられる。これらは1種を単独で又は2種以上混合して使用することができる。 As the epoxy resin, a generally used epoxy resin can be used as long as it is a polyvalent epoxy resin having two or more epoxy groups in one molecule. Specific examples include novolak resins such as phenol novolak and cresol novolak, polyhydric phenols such as bisphenol A, bisphenol F, bisphenol AD, resorcinol, and bishydroxydiphenyl ether, ethylene glycol, neopentyl glycol, glycerin, and trimethylolpropane. , polyhydric alcohols such as polypropylene glycol, polyamino compounds such as ethylenediamine, triethylenetetramine, and aniline, polyvalent carboxy compounds such as adipic acid, phthalic acid, and isophthalic acid, and epichlorohydrin or 2-methylepichlorohydrin. A glycidyl type epoxy resin is exemplified. Also included are aliphatic and alicyclic epoxy resins such as dicyclopentadiene epoxide and butadiene dimer diepoxide. These can be used individually by 1 type or in mixture of 2 or more types.
 なお、上述した各種の接着樹脂としては、不純物イオン(NaやCl等)や加水分解性塩素などが低減された高純度品を用いることが、イオンマイグレーションの防止の観点から好ましい。 From the viewpoint of preventing ion migration, it is preferable to use high-purity products in which impurity ions (Na, Cl, etc.) and hydrolyzable chlorine are reduced as the various adhesive resins described above.
 異方導電性接着剤における導電性粒子の使用量は、接着剤樹脂成分100質量部に対し通常0.1~30質量部、好ましくは0.5~25質量部、より好ましくは1~20質量部である。導電性粒子の使用量がこの範囲内にあることにより、接続抵抗や溶融粘度が高くなることが抑制され、接続信頼性を向上させ、接続の異方性を十分に確保することができる。 The amount of the conductive particles used in the anisotropic conductive adhesive is usually 0.1 to 30 parts by mass, preferably 0.5 to 25 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the resin component of the adhesive. Department. When the amount of the conductive particles used is within this range, it is possible to suppress increases in connection resistance and melt viscosity, improve connection reliability, and sufficiently ensure anisotropy in connection.
 前記の異方導電性接着剤には、上述した導電性粒子及び接着剤樹脂の他に、当該技術分野において、公知の添加剤を配合することができる。その配合量も当該技術分野において公知の範囲内とすることができる。他の添加剤としては、例えば粘着付与剤、反応性助剤、エポキシ樹脂硬化剤、金属酸化物、光開始剤、増感剤、硬化剤、加硫剤、劣化防止剤、耐熱添加剤、熱伝導向上剤、軟化剤、着色剤、各種カップリング剤又は金属不活性剤などを例示することができる。 In addition to the conductive particles and adhesive resin described above, the anisotropically conductive adhesive may contain additives known in the art. The blending amount thereof can also be within the range known in the technical field. Other additives include, for example, tackifiers, reactive aids, epoxy resin curing agents, metal oxides, photoinitiators, sensitizers, curing agents, vulcanizing agents, antidegradants, heat resistant additives, heat Conductivity improvers, softeners, colorants, various coupling agents, metal deactivators, and the like can be exemplified.
 粘着付与剤としては、例えばロジン、ロジン誘導体、テルペン樹脂、テルペンフェノール樹脂、石油樹脂、クマロン-インデン樹脂、スチレン系樹脂、イソプレン系樹脂、アルキルフェノール樹脂、キシレン樹脂などが挙げられる。反応性助剤すなわち架橋剤としては、例えばポリオール、イソシアネート類、メラミン樹脂、尿素樹脂、ウトロピン類、アミン類、酸無水物、過酸化物などが挙げられる。エポキシ樹脂硬化剤としては、1分中に2個以上の活性水素を有するものであれば特に制限なく使用できる。具体的なものとしては、例えばジエチレントリアミン、トリエチレンテトラミン、メタフェニレンジアミン、ジシアンジアミド、ポリアミドアミン等のポリアミノ化合物;無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、無水ピロメリット酸等の有機酸無水物;フェノールノボラック、クレゾールノボラック等のノボラック樹脂等が挙げられる。これらは1種を単独で又は2種以上を混合して使用することができる。また、必要に応じて潜在性硬化剤を用いてもよい。使用できる潜在性硬化剤としては、例えば、イミダゾール系、ヒドラジド系、三フッ化ホウ素-アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等及びこれらの変性物が挙げられる。これらは1種を単独で又は2種以上の混合体として使用できる。 Examples of tackifiers include rosin, rosin derivatives, terpene resins, terpene phenol resins, petroleum resins, coumarone-indene resins, styrene resins, isoprene resins, alkylphenol resins, and xylene resins. Examples of reactive aids, ie, cross-linking agents, include polyols, isocyanates, melamine resins, urea resins, utropines, amines, acid anhydrides, peroxides and the like. Any epoxy resin curing agent having two or more active hydrogens per minute can be used without particular limitation. Specific examples include polyamino compounds such as diethylenetriamine, triethylenetetramine, metaphenylenediamine, dicyandiamide, and polyamidoamine; organic acid anhydrides such as phthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and pyromellitic anhydride; substances; novolak resins such as phenol novolak and cresol novolak. These can be used individually by 1 type or in mixture of 2 or more types. Moreover, you may use a latent hardening|curing agent as needed. Usable latent curing agents include, for example, imidazole-based, hydrazide-based, boron trifluoride-amine complexes, sulfonium salts, amine imides, polyamine salts, dicyandiamide, and modified products thereof. These can be used individually by 1 type or as a mixture of 2 or more types.
 前記の異方導電性接着剤は、当該技術分野において通常使用されている製造装置を用いて製造される。例えば、導電性粒子及び接着剤樹脂並びに必要に応じ硬化剤や各種添加剤を配合し、接着剤樹脂が熱硬化性樹脂の場合は有機溶媒中で混合することにより、熱可塑性樹脂の場合は接着剤樹脂の軟化点以上の温度で、具体的には好ましくは約50~130℃程度、更に好ましくは約60~110℃程度で溶融混練することにより製造される。このようにして得られた異方導電性接着剤は、塗布してもよいし、フィルム状にして適用してもよい。 The anisotropic conductive adhesive described above is manufactured using manufacturing equipment commonly used in the technical field. For example, by blending conductive particles and adhesive resin, and if necessary, a curing agent and various additives, and mixing in an organic solvent when the adhesive resin is a thermosetting resin, adhesion is achieved in the case of a thermoplastic resin. It is produced by melt-kneading at a temperature higher than the softening point of the agent resin, specifically preferably about 50 to 130°C, more preferably about 60 to 110°C. The anisotropically conductive adhesive thus obtained may be applied or applied in the form of a film.
 本発明にかかる接続構造体は、本発明にかかる導電性粒子、又は本発明にかかる導電性材料を用いて2つの回路基板同士を接続することにより得られるものである。前記接続構造体の形態としては、例えば、フレキシブルプリント基板とガラス基板との接続構造体、半導体チップとフレキシブルプリント基板との接続構造体、半導体チップとガラス基板との接続構造体等が挙げられる。 The connection structure according to the present invention is obtained by connecting two circuit boards using the conductive particles according to the present invention or the conductive material according to the present invention. Examples of the form of the connection structure include a connection structure between a flexible printed circuit board and a glass substrate, a connection structure between a semiconductor chip and a flexible printed circuit board, a connection structure between a semiconductor chip and a glass substrate, and the like.
 以下、実施例により本発明を更に説明する。しかしながら本発明の範囲はこれらの実施例に限定されるものではない。例中の特性は下記の方法により測定した。
(1)平均粒子径
 測定対象の走査型電子顕微鏡(SEM)写真から、任意に200個の粒子を抽出して、倍率10,000倍にて粒子径を測定し、その算術平均値を平均粒子径とした。
(2)導電層の厚み
 導電性粒子を2つに切断し、その切り口の断面を走査型電子顕微鏡(SEM)で観察して測定した。
The present invention will be further described with reference to the following examples. However, the scope of the invention is not limited to these examples. Properties in the examples were measured by the following methods.
(1) Average particle size From the scanning electron microscope (SEM) photograph of the measurement object, 200 particles are arbitrarily extracted, the particle size is measured at a magnification of 10,000 times, and the arithmetic average value is the average particle diameter.
(2) Thickness of Conductive Layer The conductive particles were cut in two, and the cross section of the cut end was observed and measured with a scanning electron microscope (SEM).
〔実施例1〕
(1)前処理
 平均粒子径3.0μmの球状スチレン-アクリレート-シリカ複合系樹脂粒子を芯材粒子として用いた。その9gを、200mLのコンディショナー水溶液(ローム・アンド・ハース電子材料製の「クリーナーコンディショナー231」)に攪拌しながら投入した。コンディショナー水溶液の濃度は40mL/Lであった。引き続き、液温60℃で超音波を与えながら30分間攪拌して芯材粒子の表面改質及び分散処理を行った。この水溶液を濾過し、1回リパルプ水洗した芯材粒子を200mLのスラリーにした。このスラリーへ塩化第一錫0.1gを投入した。常温で5分間攪拌し、錫イオンを芯材粒子の表面に吸着させる感受性化処理を行った。引き続きこの水溶液を濾過し、1回リパルプ水洗した芯材粒子を200mLのスラリーにして60℃に維持した。このスラリーへ0.11mol/Lの塩化パラジウム水溶液1.5mLを投入した。60℃で5分間撹拌し、パラジウムイオンを芯材粒子の表面に捕捉させる活性化処理を行った。引き続きこの水溶液を濾過し、1回リパルプ湯洗した芯材粒子を100mLのスラリーにし、0.5g/Lジメチルアミンボラン水溶液10mLを加え、超音波を与えながら2分間撹拌して前処理済み芯材粒子のスラリーを得た。
(2)めっき浴の調製
 5g/Lの酒石酸ナトリウム、2g/Lの硫酸ニッケル六水和物、10g/Lのクエン酸3ナトリウム、0.1g/Lの次亜リン酸ナトリウム、及び2g/Lのポリエチレングリコールを溶解した水溶液からなる無電解ニッケル-リンめっき浴3Lを調製し、70℃に昇温した。
(3)無電解めっき処理
 この無電解めっき浴に、前記前処理済み芯材粒子のスラリーを投入し、5分間攪拌して水素の発泡が停止するのを確認した。
 このスラリーに、224g/Lの硫酸ニッケル水溶液と、210g/Lの次亜リン酸ナトリウム及び80g/Lの水酸化ナトリウムを含む混合水溶液を、添加速度をいずれも2.0mL/分として60分間、定量ポンプによって連続的に分別添加した。この操作におけるめっき析出速度は0.55nm/分、得られた導電層の厚みは33nmであった。
 次いで、硫酸ニッケル水溶液と、次亜リン酸ナトリウム及び水酸化ナトリウムの混合水溶液を、添加速度をいずれも4.1mL/分として60分間、定量ポンプによって連続的に分別添加した。この操作におけるめっき析出速度は1.12nm/分、得られた導電層の厚みは67nmであった。
 得られた無電解めっき処理液を、70℃の温度を保持しながら5分間攪拌を継続した。次いで液を濾過し、濾過物を3回洗浄した後、110℃の真空乾燥機で乾燥して、芯材粒子の表面に導電層として無電解ニッケル-リンめっき層を形成した導電性粒子を得た。得られた導電性粒子の平均粒子径は3.2μm、導電層の厚みは100nmであり突起を有していた。
[Example 1]
(1) Pretreatment Spherical styrene-acrylate-silica composite resin particles having an average particle size of 3.0 μm were used as core particles. 9 g of the solution was added to 200 mL of an aqueous conditioner solution (“Cleaner Conditioner 231” manufactured by Rohm and Haas Electronic Materials Co., Ltd.) with stirring. The concentration of the aqueous conditioner solution was 40 mL/L. Subsequently, the core material particles were subjected to surface modification and dispersion treatment by stirring for 30 minutes while applying ultrasonic waves at a liquid temperature of 60°C. This aqueous solution was filtered, and the core particles that had been repulp washed once were made into 200 mL of slurry. 0.1 g of stannous chloride was added to the slurry. The mixture was stirred at room temperature for 5 minutes to carry out a sensitization treatment in which tin ions were adsorbed on the surfaces of the core particles. Subsequently, this aqueous solution was filtered, and the once repulped water-washed core particles were made into a slurry of 200 mL and maintained at 60°C. 1.5 mL of a 0.11 mol/L palladium chloride aqueous solution was added to this slurry. The mixture was stirred at 60° C. for 5 minutes to perform an activation treatment to trap palladium ions on the surfaces of the core particles. Subsequently, this aqueous solution is filtered, and the core particles that have been repulp hot water washed once are made into a slurry of 100 mL, 10 mL of a 0.5 g/L dimethylamine borane aqueous solution is added, and the pretreated core material is stirred for 2 minutes while applying ultrasonic waves. A slurry of particles was obtained.
(2) Preparation of plating bath 5 g/L sodium tartrate, 2 g/L nickel sulfate hexahydrate, 10 g/L trisodium citrate, 0.1 g/L sodium hypophosphite, and 2 g/L 3 L of an electroless nickel-phosphorus plating bath consisting of an aqueous solution in which polyethylene glycol was dissolved was prepared and heated to 70°C.
(3) Electroless Plating Treatment The slurry of the pretreated core particles was added to the electroless plating bath and stirred for 5 minutes to confirm that hydrogen bubbling stopped.
To this slurry, a mixed aqueous solution containing 224 g / L nickel sulfate aqueous solution, 210 g / L sodium hypophosphite and 80 g / L sodium hydroxide was added at an addition rate of 2.0 mL / min for 60 minutes. It was continuously added fractionally by a metering pump. The plating deposition rate in this operation was 0.55 nm/min, and the thickness of the resulting conductive layer was 33 nm.
Next, an aqueous nickel sulfate solution and a mixed aqueous solution of sodium hypophosphite and sodium hydroxide were added continuously and fractionally for 60 minutes at an addition rate of 4.1 mL/min using a metering pump. The plating deposition rate in this operation was 1.12 nm/min, and the thickness of the conductive layer obtained was 67 nm.
The obtained electroless plating treatment solution was continuously stirred for 5 minutes while maintaining the temperature of 70°C. Next, the liquid was filtered, and the filtrate was washed three times and then dried in a vacuum dryer at 110°C to obtain conductive particles having an electroless nickel-phosphorus plating layer formed on the surface of the core particles as a conductive layer. rice field. The obtained conductive particles had an average particle size of 3.2 μm, and the conductive layer had a thickness of 100 nm and had projections.
〔実施例2〕
 実施例1における(3)無電解めっき処理を次の操作で行った。
 前記無電解めっき浴に、前記前処理済み芯材粒子のスラリーを投入し、5分間攪拌して水素の発泡が停止するのを確認した。
 このスラリーに、224g/Lの硫酸ニッケル水溶液と、210g/Lの次亜リン酸ナトリウム及び80g/Lの水酸化ナトリウムを含む混合水溶液を、添加速度をいずれも1.0mL/分として45分間、定量ポンプによって連続的に分別添加した。この操作におけるめっき析出速度は0.3nm/分、得られた導電層の厚みは13.5nmであった。
 次いで、硫酸ニッケル水溶液と、次亜リン酸ナトリウム及び水酸化ナトリウムの混合水溶液を、添加速度をいずれも2.25mL/分として60分間、定量ポンプによって連続的に分別添加した。この操作におけるめっき析出速度は0.6nm/分、得られた導電層の厚みは36nmであった。
 更に、硫酸ニッケル水溶液と、次亜リン酸ナトリウム及び水酸化ナトリウムの混合水溶液を、添加速度をいずれも3.25mL/分として45分間、定量ポンプによって連続的に分別添加した。この操作におけるめっき析出速度は1.0nm/分、得られた導電層の厚みは45nmであった。
 得られた無電解めっき処理液を、70℃の温度を保持しながら5分間攪拌を継続した。次いで液を濾過し、濾過物を3回洗浄した後、110℃の真空乾燥機で乾燥して、芯材粒子の表面に導電層として無電解ニッケル-リンめっき層を形成した導電性粒子を得た。得られた導電性粒子の平均粒子径は3.19μm、導電層の厚みは94.5nmであり突起を有していた。
[Example 2]
(3) Electroless plating treatment in Example 1 was performed by the following operation.
The slurry of the pretreated core particles was added to the electroless plating bath and stirred for 5 minutes to confirm that hydrogen bubbling stopped.
To this slurry, a mixed aqueous solution containing 224 g / L nickel sulfate aqueous solution, 210 g / L sodium hypophosphite and 80 g / L sodium hydroxide was added at an addition rate of 1.0 mL / min for 45 minutes. It was continuously added fractionally by a metering pump. The plating deposition rate in this operation was 0.3 nm/min, and the thickness of the conductive layer obtained was 13.5 nm.
Next, an aqueous solution of nickel sulfate and a mixed aqueous solution of sodium hypophosphite and sodium hydroxide were added continuously and fractionally for 60 minutes at an addition rate of 2.25 mL/min using a metering pump. The plating deposition rate in this operation was 0.6 nm/min, and the thickness of the resulting conductive layer was 36 nm.
Further, an aqueous nickel sulfate solution and a mixed aqueous solution of sodium hypophosphite and sodium hydroxide were added continuously and fractionally for 45 minutes at an addition rate of 3.25 mL/min using a metering pump. The plating deposition rate in this operation was 1.0 nm/min, and the thickness of the resulting conductive layer was 45 nm.
The obtained electroless plating treatment solution was continuously stirred for 5 minutes while maintaining the temperature of 70°C. Next, the liquid was filtered, and the filtrate was washed three times and then dried in a vacuum dryer at 110°C to obtain conductive particles having an electroless nickel-phosphorus plating layer formed on the surface of the core particles as a conductive layer. rice field. The obtained conductive particles had an average particle diameter of 3.19 μm, a thickness of the conductive layer of 94.5 nm, and had projections.
〔実施例3〕
 実施例2で得られた導電性粒子を、5mmの厚さとなるように角型状の容器内に入れた。これを真空加熱炉(デンケン・ハイデンタル社製、KDF-75)に入れ、10Paの真空下、室温から昇温速度5℃/分で390℃まで加熱し、その後この温度で2時間の加熱処理を行った。加熱処理後、窒素パージにより大気圧にした後、窒素ガスを吹き込むことにより降温速度3℃/分で室温まで冷却して加熱処理済みの導電性粒子を得た。得られた導電性粒子の平均粒子径は3.19μm、導電層の厚みは94.5nmであり突起を有していた。
[Example 3]
The conductive particles obtained in Example 2 were placed in a rectangular container so as to have a thickness of 5 mm. This is placed in a vacuum heating furnace (KDF-75 manufactured by Denken-High Dental Co., Ltd.), heated from room temperature to 390° C. at a heating rate of 5° C./min under a vacuum of 10 Pa, and then heat-treated at this temperature for 2 hours. did After the heat treatment, the pressure was brought to atmospheric pressure by purging with nitrogen, and then cooled to room temperature at a cooling rate of 3° C./min by blowing in nitrogen gas to obtain heat-treated conductive particles. The obtained conductive particles had an average particle diameter of 3.19 μm, a thickness of the conductive layer of 94.5 nm, and had projections.
〔比較例1〕
 実施例1における(3)無電解めっき処理に代えて次の操作を行った以外は、実施例1と同様にして導電性粒子を得た。
 前記無電解めっき浴に、前記前処理済み芯材粒子のスラリーを投入し、5分間攪拌して水素の発泡が停止するのを確認した。
 このスラリーに、224g/Lの硫酸ニッケル水溶液と、210g/Lの次亜リン酸ナトリウム及び80g/Lの水酸化ナトリウムを含む混合水溶液を、添加速度をいずれも12.2mL/分として30分間、定量ポンプによって連続的に分別添加し、無電解めっき処理を行った。この操作におけるめっき析出速度は3.3nm/分であった。
 得られた無電解めっき処理液を、70℃の温度を保持しながら5分間攪拌を継続した。次いで液を濾過し、濾過物を3回洗浄した後、110℃の真空乾燥機で乾燥して、芯材粒子の表面に導電層として無電解ニッケル-リンめっき層を形成した導電性粒子を得た。得られた導電性粒子の平均粒子径は3.2μm、導電層の厚みは100nmであり突起を有していた。
[Comparative Example 1]
Conductive particles were obtained in the same manner as in Example 1, except that (3) the electroless plating treatment in Example 1 was replaced with the following operation.
The slurry of the pretreated core particles was added to the electroless plating bath and stirred for 5 minutes to confirm that hydrogen bubbling stopped.
To this slurry, a mixed aqueous solution containing 224 g / L nickel sulfate aqueous solution, 210 g / L sodium hypophosphite and 80 g / L sodium hydroxide was added at an addition rate of 12.2 mL / min for 30 minutes. Continuous fractional addition was performed by a metering pump, and electroless plating treatment was performed. The plating deposition rate in this operation was 3.3 nm/min.
The obtained electroless plating treatment solution was continuously stirred for 5 minutes while maintaining the temperature of 70°C. Next, the liquid was filtered, and the filtrate was washed three times and then dried in a vacuum dryer at 110°C to obtain conductive particles having an electroless nickel-phosphorus plating layer formed on the surface of the core particles as a conductive layer. rice field. The obtained conductive particles had an average particle size of 3.2 μm, and the conductive layer had a thickness of 100 nm and had projections.
(耐電流性及び密着性の評価)
〔耐電流性の評価〕
 導電微粒子電気特性装置(V-I装置、特開平10-221388号公報に記載の装置を参考にして自作した装置)を用いて、測定対象となる圧縮率にて導電性粒子1個当たりに流れる電流値(mA)を測定した。
(Evaluation of current resistance and adhesion)
[Evaluation of current resistance]
Using a conductive particle electrical property device (VI device, self-made device with reference to the device described in JP-A-10-221388), flow per conductive particle at the compressibility to be measured A current value (mA) was measured.
〔密着性の評価〕
 導電性粒子0.5gと、直径1.0mmのジルコニアボール20gと、エタノール20gとをポリ容器に入れ、ボールミル処理機を用いて、200rpmで10分間回転処理した。その後、濾過、乾燥して導電性粒子を得た。得られた導電性粒子のうち200個を走査型電子顕微鏡で観察し、導電層の密着性を以下の通りに評価した。
○:導電層の剥がれが0個
△:導電層の剥がれが1~5個
×:導電層の剥がれが5個超
[Evaluation of Adhesion]
0.5 g of conductive particles, 20 g of zirconia balls with a diameter of 1.0 mm, and 20 g of ethanol were placed in a polyethylene container and rotated at 200 rpm for 10 minutes using a ball mill processor. Then, it was filtered and dried to obtain conductive particles. 200 of the obtained conductive particles were observed with a scanning electron microscope, and the adhesion of the conductive layer was evaluated as follows.
○: 0 pieces of peeling of the conductive layer △: 1 to 5 pieces of peeling of the conductive layer ×: more than 5 pieces of peeling of the conductive layer
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 表1の結果から、実施例で得られた導電性粒子の方が、比較例で得られた導電性粒子と比べて、耐電流特性及び導電層の密着性に優れていることが判る。
 
From the results in Table 1, it can be seen that the conductive particles obtained in Examples are superior to the conductive particles obtained in Comparative Examples in current resistance characteristics and adhesion of the conductive layer.

Claims (13)

  1.  芯材粒子の表面に導電層が形成されてなる導電性粒子において、圧縮率が5%未満のときの該導電性粒子1個当たりの耐電流値が1mA以上であり、圧縮率が5%以上のときの該導電性粒子1個当たりの耐電流値が10mA以上である導電性粒子。 In the conductive particles in which a conductive layer is formed on the surface of the core particles, the withstand current value per conductive particle is 1 mA or more when the compressibility is less than 5%, and the compressibility is 5% or more. A conductive particle having a withstand current value of 10 mA or more per conductive particle at the time of
  2.  前記圧縮率が1%以上4%以下のときの導電性粒子1個当たりの耐電流値が0.5mA以上である請求項1に記載の導電性粒子。 The conductive particles according to claim 1, wherein the withstand current value per conductive particle is 0.5 mA or more when the compressibility is 1% or more and 4% or less.
  3.  前記圧縮率が10%以上50%以下のときの導電性粒子1個当たりの耐電流値が15mA以上である請求項1又は2に記載の導電性粒子。 The conductive particles according to claim 1 or 2, wherein the withstand current value per conductive particle is 15 mA or more when the compressibility is 10% or more and 50% or less.
  4.  前記圧縮率が30%のときの導電性粒子1個当たりの耐電流値が20mA以上である請求項1~3の何れか1項に記載の導電性粒子。 The conductive particles according to any one of claims 1 to 3, wherein the withstand current value per conductive particle is 20 mA or more when the compressibility is 30%.
  5.  前記導電層が外表面に突起を有する請求項1~4の何れか1項に記載の導電性粒子。 The conductive particles according to any one of claims 1 to 4, wherein the conductive layer has projections on the outer surface.
  6.  前記導電層がニッケル、金、ニッケル合金及び金合金から選ばれる少なくとも1種である請求項1~5の何れか1項に記載の導電性粒子。 The conductive particles according to any one of claims 1 to 5, wherein the conductive layer is at least one selected from nickel, gold, nickel alloys and gold alloys.
  7.  請求項1~6の何れか1項に記載の導電性粒子と絶縁性樹脂とを含む導電性材料。 A conductive material containing the conductive particles according to any one of claims 1 to 6 and an insulating resin.
  8.  芯材粒子の水性スラリーと、分散剤、ニッケル塩、還元剤及び錯化剤を含む無電解ニッケルめっき浴とを混合し、無電解ニッケルめっき処理する第1工程、及び、
     第1工程で得られた液に、ニッケル塩を含む水溶液、還元剤を含む水溶液及びアルカリを含む水溶液を、めっき析出速度を1回以上変化させるように添加量を制御しながら連続的に添加して無電解ニッケルめっき処理する第2工程、
    を有する導電性粒子の製造方法。
    A first step of mixing an aqueous slurry of core material particles with an electroless nickel plating bath containing a dispersant, a nickel salt, a reducing agent and a complexing agent, and performing electroless nickel plating;
    An aqueous solution containing a nickel salt, an aqueous solution containing a reducing agent, and an aqueous solution containing an alkali are continuously added to the liquid obtained in the first step while controlling the addition amount so as to change the plating deposition rate once or more. A second step of electroless nickel plating treatment,
    A method for producing conductive particles having
  9.  第2工程における最初のめっき析出速度が、0.05nm/分以上1.5nm/分以下となるように添加量を制御する請求項8に記載の導電性粒子の製造方法。 The method for producing conductive particles according to claim 8, wherein the addition amount is controlled so that the initial plating deposition rate in the second step is 0.05 nm/min or more and 1.5 nm/min or less.
  10.  第2工程における変化後のめっき析出速度が、0.3nm/分以上3.0nm/分以下となるように添加量を制御する請求項8又は9に記載の導電性粒子の製造方法。 The method for producing conductive particles according to claim 8 or 9, wherein the addition amount is controlled so that the plating deposition rate after the change in the second step is 0.3 nm/min or more and 3.0 nm/min or less.
  11.  前記めっき析出速度を2回以上変化させるように添加量を制御する請求項8~10の何れか1項に記載の導電性粒子の製造方法。 The method for producing conductive particles according to any one of claims 8 to 10, wherein the addition amount is controlled so as to change the plating deposition rate twice or more.
  12.  めっき析出速度を高く変化させるように添加量を制御する請求項8~11の何れか1項に記載の導電性粒子の製造方法。 The method for producing conductive particles according to any one of claims 8 to 11, wherein the amount added is controlled so as to change the plating deposition rate to a high level.
  13.  前記第2工程において、ニッケル塩を含む水溶液と、還元剤及びアルカリを含む混合水溶液とを、前記第1工程の液に添加する請求項8~12の何れか1項に記載の導電性粒子の製造方法。
     
    The conductive particles according to any one of claims 8 to 12, wherein in the second step, an aqueous solution containing a nickel salt and a mixed aqueous solution containing a reducing agent and an alkali are added to the liquid in the first step. Production method.
PCT/JP2022/028716 2021-08-02 2022-07-26 Conductive particle, production method thereof and conductive material WO2023013465A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247006550A KR20240033287A (en) 2021-08-02 2022-07-26 Conductive particles, their production method, and conductive materials
CN202280054091.XA CN117795626A (en) 2021-08-02 2022-07-26 Conductive particle, method for producing same, and conductive material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-126676 2021-08-02
JP2021126676A JP2023021663A (en) 2021-08-02 2021-08-02 Conductive particle, production method thereof and conductive material

Publications (1)

Publication Number Publication Date
WO2023013465A1 true WO2023013465A1 (en) 2023-02-09

Family

ID=85154466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028716 WO2023013465A1 (en) 2021-08-02 2022-07-26 Conductive particle, production method thereof and conductive material

Country Status (4)

Country Link
JP (1) JP2023021663A (en)
KR (1) KR20240033287A (en)
CN (1) CN117795626A (en)
WO (1) WO2023013465A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095803A1 (en) * 2019-11-15 2021-05-20 日本化学工業株式会社 Conductive particles, method for manufacturing same, and conductive material containing same
WO2021095804A1 (en) * 2019-11-15 2021-05-20 日本化学工業株式会社 Electrically conductive particles, production method for same, and electrically conductive material including same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422563B2 (en) 2008-09-25 2014-02-19 宇部エクシモ株式会社 Metal film forming method, conductive particles and method for producing the same
CN103782351B (en) 2012-01-20 2016-07-06 积水化学工业株式会社 Electroconductive particle, conductive material and connection structural bodies
JP6084868B2 (en) 2012-03-09 2017-02-22 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
WO2014054572A1 (en) 2012-10-02 2014-04-10 積水化学工業株式会社 Conductive particle, conductive material and connecting structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095803A1 (en) * 2019-11-15 2021-05-20 日本化学工業株式会社 Conductive particles, method for manufacturing same, and conductive material containing same
WO2021095804A1 (en) * 2019-11-15 2021-05-20 日本化学工業株式会社 Electrically conductive particles, production method for same, and electrically conductive material including same

Also Published As

Publication number Publication date
CN117795626A (en) 2024-03-29
JP2023021663A (en) 2023-02-14
KR20240033287A (en) 2024-03-12

Similar Documents

Publication Publication Date Title
TWI602201B (en) Conductive particles, conductive material and method for producing conductive particles
TWI570750B (en) Conductive particle and conductive material having the same
WO2021235435A1 (en) Electrically conductive particle, and electrically conductive material and connection structure obtained using same
JP6263228B2 (en) Conductive particles and conductive material containing the same
JP7091523B2 (en) Conductive particles, conductive materials and connecting structures using them
WO2023013465A1 (en) Conductive particle, production method thereof and conductive material
WO2021095803A1 (en) Conductive particles, method for manufacturing same, and conductive material containing same
WO2021095804A1 (en) Electrically conductive particles, production method for same, and electrically conductive material including same
JP7041305B2 (en) Conductive particles, conductive materials and connecting structures using them
WO2024043047A1 (en) Conductive particles, production method therefor, and conductive member
JP7426885B2 (en) Conductive particles, their manufacturing method, and conductive materials containing them
WO2021235434A1 (en) Electroconductive particles, and electroconductive material and connection structure using same
WO2021235433A1 (en) Method for producing electrically conductive particles, and electrically conductive particles
JP7095127B2 (en) Manufacturing method of conductive particles and conductive particles
WO2024101306A1 (en) Conductive particles, method for manufacturing same, conductive material, and connection structure using same
JP7426884B2 (en) Conductive particles, their manufacturing method, and conductive materials containing them
JP2022126363A (en) Method for producing coated particles
JP2022137362A (en) Coated particles and conductive material containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280054091.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247006550

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22852889

Country of ref document: EP

Kind code of ref document: A1