WO2024042911A1 - 高周波モジュールおよび通信装置 - Google Patents

高周波モジュールおよび通信装置 Download PDF

Info

Publication number
WO2024042911A1
WO2024042911A1 PCT/JP2023/026002 JP2023026002W WO2024042911A1 WO 2024042911 A1 WO2024042911 A1 WO 2024042911A1 JP 2023026002 W JP2023026002 W JP 2023026002W WO 2024042911 A1 WO2024042911 A1 WO 2024042911A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
balanced
selection
high frequency
amplifier
Prior art date
Application number
PCT/JP2023/026002
Other languages
English (en)
French (fr)
Inventor
正和 溝神
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024042911A1 publication Critical patent/WO2024042911A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving

Definitions

  • the present invention relates to a high frequency module and a communication device.
  • Patent Document 1 discloses a differential amplification type power amplifier circuit (high frequency module).
  • a balance transformer that converts the balanced signals outputted from the two amplifiers into an unbalanced signal is arranged at the output ends of the two amplifiers, and a filter is connected to the unbalanced terminal of the balance transformer.
  • the power amplifier circuit disclosed in Patent Document 1 requires a high frequency module in which a plurality of filters and a switch for switching the plurality of filters are arranged.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a high-power compatible high-frequency module and communication device that can reduce power consumption and downsize.
  • a high frequency module includes a first amplifier and a second amplifier that constitute a differential amplification type amplifier circuit, a first common terminal, a first selection terminal, and a second common terminal.
  • a first switch having a selection terminal; a second switch having a second common terminal, a third selection terminal and a fourth selection terminal; a first switch having a first balanced terminal, a second balanced terminal and a first unbalanced terminal; a first filter having a passband including one band; a second filter having a third balanced terminal, a fourth balanced terminal and a second unbalanced terminal and having a passband including a second band;
  • 1 common terminal is connected to the output end of the first amplifier, a second common terminal is connected to the output end of the second amplifier, the first selection terminal is connected to the first balanced terminal, and the second selection terminal is connected to the third balanced terminal.
  • the third selection terminal is connected to the second balanced terminal, and the fourth selection terminal is connected to the fourth balanced terminal.
  • FIG. 1 is a circuit configuration diagram of a high frequency module and a communication device according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a connection configuration of a switch and a filter according to the embodiment.
  • FIG. 3 is a diagram showing an example of the electrode configuration of the filter according to the embodiment.
  • FIG. 4 is a diagram comparing the required power values of the high frequency modules according to the embodiment and the comparative example.
  • FIG. 5 is a circuit configuration diagram of a high frequency module and a communication device according to a modification.
  • FIG. 6 is a plan view of the high frequency module according to the embodiment.
  • to be connected means not only the case of being directly connected by a connecting terminal and/or a wiring conductor, but also the case of being electrically connected through other circuit elements. do.
  • connected between A and B and “connected between A and B” mean connected to A and B on a path connecting A and B.
  • a "route” is a transmission line composed of wiring through which a high-frequency signal propagates, electrodes directly connected to the wiring, and terminals directly connected to the wiring or the electrodes. means.
  • circuit element A (or wiring A) and circuit element B (or wiring B) are arranged adjacent to each other (or adjacent to each other) on the module board means that the module board is flat. When viewed from above, this means that no other circuit element (and wiring) is arranged between circuit element A (or wiring A) and circuit element B (or wiring B).
  • FIG. 1 is a circuit configuration diagram of a high frequency module 1 and a communication device 4 according to an embodiment.
  • the communication device 4 corresponds to a so-called user terminal (UE: User Equipment), and is typically a mobile phone, a smartphone, a tablet computer, or the like.
  • UE User Equipment
  • Such a communication device 4 includes a high frequency module 1, an antenna 2, and an RF signal processing circuit (RFIC: Radio Frequency Integrated Circuit) 3.
  • RFIC Radio Frequency Integrated Circuit
  • the high frequency module 1 transmits high frequency signals between the antenna 2 and the RFIC 3.
  • the circuit configuration of the high frequency module 1 will be described later.
  • the antenna 2 is connected to the antenna connection terminal 100 of the high frequency module 1.
  • Antenna 2 receives a high frequency signal from high frequency module 1 and outputs it to the outside.
  • the RFIC 3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 processes a transmission signal input from a baseband signal processing circuit (BBIC: Baseband Integrated Circuit: not shown) by up-converting, etc., and converts the transmission signal generated by the signal processing into a signal. , output to the transmission path of the high frequency module 1. Further, the RFIC 3 processes the received signal input via the reception path of the high frequency module 1 by down-converting or the like, and outputs the received signal generated by the signal processing to the BBIC.
  • BBIC Baseband Integrated Circuit
  • the RFIC 3 controls the switch circuit 20 and the switch 40 that the high frequency module 1 has. Note that a part or all of the control function of the RFIC 3 may be configured outside the RFIC 3, for example, in the BBIC or the high frequency module 1.
  • the antenna 2 is not an essential component.
  • the high frequency module 1 includes a power amplifier circuit 10, a switch circuit 20, filters 31, 32, and 33, a switch 40, matching circuits 51 and 52, a signal input terminal 110, and an antenna connection.
  • a terminal 100 is provided.
  • the power amplifier circuit 10 is an example of a differential amplification type amplifier circuit, converts an unbalanced signal input from the signal input terminal 110 into two balanced signals, and amplifies the two balanced signals.
  • Power amplification circuit 10 includes amplifiers 11, 12, and 13, and a transformer 15.
  • the transformer 15 is an example of a transformer, and has a primary coil and a secondary coil that electromagnetically couple with each other.
  • One end of the primary coil is connected to a signal input terminal 110 via an amplifier 13, and the other end of the primary coil is connected to ground.
  • one end of the secondary coil is connected to the input terminal of the amplifier 11, and the other end of the secondary coil is connected to the input terminal of the amplifier 12.
  • the transformer 15 converts an unbalanced signal input to one end of the primary coil into two balanced signals having opposite phases, and outputs the two balanced signals from both ends of the secondary coil.
  • the amplifier 11 is an example of a first amplifier, is connected between the transformer 15 and the switch 21 of the switch circuit 20, and is capable of amplifying balanced signals of the first band, second band, and third band.
  • the amplifier 12 is an example of a second amplifier, is connected between the transformer 15 and the switch 22 of the switch circuit 20, and is capable of amplifying balanced signals of the first band, second band, and third band.
  • Amplifiers 11 and 12 constitute a differential amplification type amplifier circuit.
  • the amplifier 13 is connected between the signal input terminal 110 and the transformer 15, and is capable of amplifying unbalanced signals in the first band, second band, and third band.
  • Each of the amplifiers 11 to 13 has an amplification transistor.
  • the amplification transistor is, for example, a bipolar transistor such as a heterojunction bipolar transistor (HBT), or a field effect transistor such as a metal-oxide-semiconductor field effect transistor (MOSFET).
  • HBT heterojunction bipolar transistor
  • MOSFET metal-oxide-semiconductor field effect transistor
  • Examples of the material of the amplification transistor include Si, GaAs, SiGe, and GaN.
  • the power amplifier circuit 10 may not include the amplifier 13; in this case, for example, an unbalanced signal output from the RFIC 3 is input to one end of the primary coil of the transformer 15. Further, the power amplification circuit 10 does not need to include the transformer 15 and the amplifier 13, and in this case, for example, a pair of balanced signals output from the RFIC 3 are input to the amplifiers 11 and 12, respectively.
  • the switch circuit 20 includes switches 21 and 22.
  • the switch 21 is an example of a first switch, and includes a common terminal 21a (first common terminal), a selection terminal 21b (first selection terminal), a selection terminal 21c (second selection terminal), and a selection terminal 21d.
  • the switch 21 switches the connection between the common terminal 21a and the selection terminal 21b, the connection between the common terminal 21a and the selection terminal 21c, and the connection between the common terminal 21a and the selection terminal 21d.
  • the switch 21 is an SP3T (Single Pole 3 Throw) type switch.
  • the switch 22 is an example of a second switch, and has a common terminal 22a (second common terminal), a selection terminal 22b (third selection terminal), a selection terminal 22c (fourth selection terminal), and a selection terminal 22d.
  • the switch 22 switches the connection between the common terminal 22a and the selection terminal 22b, the connection between the common terminal 22a and the selection terminal 22c, and the connection between the common terminal 22a and the selection terminal 22d.
  • the switch 22 is an SP3T type switch.
  • the filter 31 is an example of a first filter, and has a pass band including the first band.
  • the filter 31 has a balanced terminal 31a (first balanced terminal), a balanced terminal 31b (second balanced terminal), and an unbalanced terminal 31c (first unbalanced terminal).
  • the filter 32 is an example of a second filter, and has a pass band including the second band.
  • the filter 32 has a balanced terminal 32a (third balanced terminal), a balanced terminal 32b (fourth balanced terminal), and an unbalanced terminal 32c (second unbalanced terminal).
  • the filter 33 has a pass band including the third band.
  • Filter 33 has a balanced terminal 33a, a balanced terminal 33b, and an unbalanced terminal 33c.
  • the filters 31 to 33 are, for example, an elastic wave filter using a surface acoustic wave (SAW), an elastic wave filter using a bulk acoustic wave (BAW), an LC resonance filter, and a dielectric filter. It may be any of the above, and is not limited to these. Note that detailed structural examples of the filters 31 to 33 will be described later using FIG. 3.
  • SAW surface acoustic wave
  • BAW bulk acoustic wave
  • LC resonance filter LC resonance filter
  • dielectric filter dielectric filter
  • the first band, second band, and third band are radio access technologies (RAT) predefined by standardization organizations (for example, 3GPP (registered trademark) and IEEE (Institute of Electrical and Electronics Engineers), etc.).
  • RAT radio access technologies
  • This is a frequency band for communication systems built using technology.
  • Examples of the communication system include, but are not limited to, a 5G-NR (5th Generation New Radio) system, an LTE (Long Term Evolution) system, and a WLAN (Wireless Local Area Network) system.
  • the matching circuit 51 is connected between the output end of the amplifier 11 and the common terminal 21a.
  • Matching circuit 52 is connected between the output end of amplifier 12 and common terminal 22a.
  • the output impedance of the power amplifier circuit 10 is set low so that it can output a high-power signal.
  • the input impedances of the switch circuit 20 and filters 31 to 33 connected to the subsequent stage are set near the reference impedance (50 ⁇ ). Therefore, matching circuits 51 and 52 perform impedance matching between amplifiers 11 and 12, switch circuit 20, and filters 31 to 33.
  • the switch 40 is an example of a third switch, and is connected between the antenna connection terminal 100 and the filters 31 to 33, and switches connection and disconnection between the antenna connection terminal 100 and the filter 31, and connects and disconnects the antenna connection terminal 100 and the filter 31. 32, and between the antenna connection terminal 100 and the filter 33.
  • the common terminal 21a is connected to the output end of the amplifier 11 via a matching circuit 51, and the common terminal 22a is connected to the output end of the amplifier 12 via a matching circuit 52. Further, the selection terminal 21b is connected to the balanced terminal 31a, the selection terminal 21c is connected to the balanced terminal 32a, and the selection terminal 21d is connected to the balanced terminal 33a. Also. The selection terminal 22b is connected to the balanced terminal 31b, the selection terminal 22c is connected to the balanced terminal 32b, and the selection terminal 22d is connected to the balanced terminal 33b.
  • the high frequency module 1 balanced signals are transmitted to all signal paths from the amplifiers 11 and 12 to the filters 31 to 33.
  • the signal power transmitted through each signal path can be reduced, and power consumption can be reduced.
  • the power durability of the switch circuit 20 and the filters 31 to 33 can be reduced, so the switch circuit 20 and the filters 31 to 33 can be made smaller. Therefore, it is possible to provide a high frequency module 1 that can reduce power consumption and size.
  • no transformer is connected between the output ends of the amplifiers 11 and 12 and the input ends of the filters 31 to 33.
  • a transformer that converts a balanced signal to an unbalanced signal is not arranged in the signal path from the amplifiers 11 and 12 to the filters 31 to 33, so the high frequency module 1 can be further miniaturized.
  • the high frequency module 1 does not need to include the matching circuits 51 and 52 and the switch 40.
  • the number of filters may be two or more, and if n filters are arranged, the switches 21 and 22 are each SPnT type switches.
  • the common terminal 21a and the selection terminal 21b are in a connected state, and the common terminal 22a and the selection terminal 22b are in a connected state.
  • the high frequency module 1 amplifies and transmits the second band signal
  • the common terminal 21a and the selection terminal 21c are in a connected state
  • the common terminal 22a and the selection terminal 22c are in a connected state.
  • the high frequency module 1 amplifies and transmits the third band signal
  • the common terminal 21a and the selection terminal 21d are connected, and the common terminal 22a and the selection terminal 22d are connected.
  • the first band signal passes through the filter 31 by switching the switch circuit 20. Furthermore, when transmitting a second band signal, the second band signal passes through the filter 32 by switching the switch circuit 20 . Furthermore, when transmitting a third band signal, the third band signal passes through the filter 33 by switching the switch circuit 20 .
  • switch circuit 20 In the switch 21, one or more semiconductors are connected in series between the common terminal 21a and the selection terminal 21b, between the common terminal 21a and the selection terminal 21c, and between the common terminal 21a and the selection terminal 21d. elements are connected. In the switch 22, one or more terminals connected in series are connected between the common terminal 22a and the selection terminal 22b, between the common terminal 22a and the selection terminal 22c, and between the common terminal 22a and the selection terminal 22d. of semiconductor elements are connected. Each of the one or more semiconductor elements is, for example, a FET (Field Effect Transistor) configured with a source electrode, a drain electrode, and a gate electrode. Note that each of the one or more semiconductor elements may be a bipolar transistor, a diode, or the like.
  • FET Field Effect Transistor
  • the number of series connections of one or more semiconductor elements is defined as the number of stacks. At this time, the number of stacks of one or more semiconductor elements connected in series between the common terminal 21a and the selection terminal 21b, and the number of stacks of one or more semiconductor elements connected between the common terminal 22a and the selection terminal 22b. is equal. Also, the number of stacks of one or more semiconductor elements connected in series between the common terminal 21a and the selection terminal 21c, and the number of stacks of one or more semiconductor elements connected between the common terminal 22a and the selection terminal 22c. are equal. Also, the number of stacks of one or more semiconductor elements connected in series between the common terminal 21a and the selection terminal 21d, and the number of stacks of one or more semiconductor elements connected between the common terminal 22a and the selection terminal 22d. are equal.
  • the on-resistance of the path connecting the common terminal 21a and the selection terminal 21b is equal to the on-resistance of the path connecting the common terminal 22a and the selection terminal 22b.
  • the balanced signal flowing in the path connecting the common terminal 21a and the selection terminal 21b and the balanced signal flowing in the path connecting the common terminal 22a and the selection terminal 22b are simultaneously input to the balanced terminals 31a and 31b of the filter 31, respectively. This makes it possible to increase the degree of balance between the pair of balanced signals passing through the filter 31.
  • the on-resistance of the path connecting the common terminal 21a and the selection terminal 21c is equal to the on-resistance of the path connecting the common terminal 22a and the selection terminal 22c.
  • the balanced signal flowing in the path connecting the common terminal 21a and the selection terminal 21c and the balanced signal flowing in the path connecting the common terminal 22a and the selection terminal 22c are simultaneously input to the balanced terminals 32a and 32b of the filter 32, respectively. This makes it possible to increase the degree of balance between the pair of balanced signals passing through the filter 32.
  • the on-resistance of the path connecting the common terminal 21a and the selection terminal 21d is equal to the on-resistance of the path connecting the common terminal 22a and the selection terminal 22d.
  • the balanced signal flowing in the path connecting the common terminal 21a and the selection terminal 21d and the balanced signal flowing in the path connecting the common terminal 22a and the selection terminal 22d are simultaneously input to the balanced terminals 33a and 33b of the filter 33, respectively. This makes it possible to increase the degree of balance between the pair of balanced signals passing through the filter 33.
  • FIG. 2 is a diagram showing an example of a connection configuration of the switch circuit 20 and filters 31 to 33 according to the embodiment.
  • each of the switches 21 and 22 is an SP3T type switch, and the switches 21 and 22 are arranged apart (separately). Therefore, the wires connecting the switches 21 and 22 and the filters 31 to 33 partially intersect.
  • the switch circuit 20 has one DP6T (Double Pole 6 Throw) type switch. That is, the switches 21 and 22 are integrated, and the selection terminals 21b, 21c, and 21d and the selection terminals 22b, 22c, and 22d are arranged alternately. By optimizing the arrangement of the selection terminals in this manner, the wiring connecting the switches 21 and 22 and the filters 31 to 33 can be prevented from crossing each other. As a result, in the configuration example shown in FIG. 2(b), the degree of balance between the pair of balanced signals input to the filters 31 to 33 is improved compared to the configuration example shown in FIG. , it becomes possible to further increase the value.
  • DP6T Double Pole 6 Throw
  • the part of the switch circuit 20 that includes the common terminal 21a, selection terminals 21b, 21c, and 21d is defined as the switch 21, and includes the common terminal 22a, selection terminals 22b, 22c, and 22d.
  • the part is defined as a switch 22.
  • Each of filters 31-33 is a balanced filter having two balanced terminals and one unbalanced terminal.
  • FIG. 3 is a diagram showing an example of the electrode configuration of the filter 31 according to the embodiment.
  • the filter 31 includes, for example, a piezoelectric substrate (not shown), IDT (InterDigital Transducer) electrodes 310, 320, 330, 340, and 350 formed on the substrate, and reflective This is a longitudinally coupled surface acoustic wave filter having electrodes 360 and 370.
  • Each of the IDT electrodes 310 to 350 is composed of a pair of comb-shaped electrodes.
  • the above-mentioned comb-shaped electrode is composed of a plurality of electrode fingers arranged parallel to each other and a busbar electrode that connects one end of each electrode finger. A pair of comb-shaped electrodes are formed.
  • one of a pair of comb-like electrodes is dividedly connected to two busbar electrodes.
  • the IDT electrodes 310 to 350 are arranged adjacent to each other in the order of IDT electrodes 340, 320, 310, 330, and 350 in a direction perpendicular to the extending direction of the electrode fingers.
  • the reflective electrodes 360 and 370 are arranged at both ends of the IDT electrodes 310 to 350 so as to sandwich the IDT electrodes 310 to 350 therebetween.
  • the balance terminal 31a is connected to the bus bar electrode on the right side of one of the pair of comb-shaped electrodes that constitute the IDT electrode 350 and one of the pair of comb-shaped electrodes that constitute the IDT electrode 310.
  • the balance terminal 31b is connected to one of the pair of comb-shaped electrodes that constitute the IDT electrode 340 and to the left side electrode of one of the pair of comb-shaped electrodes that constitute the IDT electrode 310.
  • the unbalanced terminal 31c is connected to one of the pair of comb-shaped electrodes that constitute the IDT electrode 320 and to one of the pair of comb-shaped electrodes that constitute the IDT electrode 330.
  • the other of the pair of comb-shaped electrodes forming the IDT electrode 310, the other of the pair of comb-shaped electrodes forming the IDT electrode 320, the other of the pair of comb-shaped electrodes forming the IDT electrode 330, and the IDT electrode 340 The other of the pair of comb-shaped electrodes forming the IDT electrode 350 and the other of the pair of comb-shaped electrodes forming the IDT electrode 350 are connected to ground.
  • the filter 31 can convert a pair of balanced signals inputted from the balanced terminals 31a and 31b into an unbalanced signal using the five IDT electrodes, and output the unbalanced signal from the unbalanced terminal 31c. . Further, the filter 31 can convert an unbalanced signal inputted from the unbalanced terminal 31c into a pair of balanced signals using five IDT electrodes, and output the signals from the balanced terminals 31a and 31b. Note that the filter 31 has a function of filtering an input high-frequency signal and a balanced-to-unbalanced conversion function using five IDT electrodes. Therefore, by disposing a balanced filter such as the filter 31 in the high frequency module 1, there is no need to separately dispose a balanced-unbalanced conversion element such as a transformer.
  • a balanced filter using a longitudinally coupled elastic wave resonator is not limited to having the electrode configuration shown in FIG. 3.
  • a balanced filter using a longitudinally coupled elastic wave resonator has at least three IDT electrodes lined up in the elastic wave propagation direction, with the IDT electrode placed in the center connected to an unbalanced terminal, and the IDT electrode placed at both ends connected to an unbalanced terminal. Each IDT electrode may be connected to a balanced terminal.
  • the balanced filter can be configured using a ladder type surface acoustic wave resonator or can also be configured using a bulk acoustic wave resonator.
  • filters 32 and 33 also have an electrode configuration similar to that of the filter 31 shown in FIG. 3.
  • FIG. 4 is a diagram comparing the required power values at each node of the high frequency module according to the embodiment and the comparative example.
  • FIG. 4A shows node a (output end of power amplifier circuit 10), node b (input end of switch circuit 20), node c (output end of switch circuit 20), and node c (output end of switch circuit 20) of high frequency module 1 according to the present embodiment. (end), and the required power value at node d (output end of filters 31 to 33).
  • 4B also shows node a (output end of power amplifier circuit 10), node a' (output end of transformer 540), and node b (input end of switch 24) of high frequency module 500 according to the comparative example. ), the required power values at node c (output end of switch 24), and node d (output end of filters 531 to 533) are shown.
  • the high frequency module 500 according to a comparative example includes a power amplifier circuit 10, a transformer 540, a switch 24, filters 531, 532, and 533, a matching circuit 56, and a signal input terminal. 110.
  • the high frequency module 500 further includes an antenna connection terminal 100 and a switch 40.
  • the high frequency module 500 according to the comparative example differs from the high frequency module 1 according to the embodiment in the circuit configuration connected to the output end of the power amplifier circuit 10.
  • a description of the configuration of the power amplifier circuit 10 will be omitted.
  • the transformer 540 has a primary coil and a secondary coil that electromagnetically couple with each other. One end of the primary coil is connected to the output end of amplifier 11 , and the other end of the primary coil is connected to the output end of amplifier 12 . Further, one end of the secondary coil is connected to the switch 24 via a matching circuit 56, and the other end of the secondary coil is connected to ground.
  • the transformer 540 converts a pair of balanced signals input to both ends of the primary coil into an unbalanced signal, and outputs the unbalanced signal from one end of the secondary coil.
  • the switch 24 has a common terminal 24a and selection terminals 24b, 24c and 24d.
  • the switch 24 switches the connection between the common terminal 24a and the selection terminal 24b, the connection between the common terminal 24a and the selection terminal 24c, and the connection between the common terminal 24a and the selection terminal 24d.
  • the switch 24 is an SP3T type switch.
  • the filter 531 has a pass band including the first band, and has two unbalanced terminals.
  • Filter 532 has a passband that includes the second band and has two unbalanced terminals.
  • Filter 533 has a passband including the third band and has two unbalanced terminals.
  • Each of the filters 531 to 533 filters the input unbalanced signal in each frequency band, and outputs the filter as an unbalanced signal.
  • the matching circuit 56 is connected between the output end of the transformer 540 and the common terminal 24a.
  • the common terminal 24a is connected to one end of the secondary coil of the transformer 540 via a matching circuit 56. Further, the selection terminal 24b is connected to the unbalanced terminal of the filter 531, the selection terminal 24c is connected to the unbalanced terminal of the filter 532, and the selection terminal 24d is connected to the unbalanced terminal of the filter 533.
  • the high frequency module 500 has a circuit configuration in which one unbalanced signal is transmitted in the path from the input end of the matching circuit 56 to the output ends of the filters 531 to 533.
  • each of the filters 31 to 33 combines a pair of balanced signals and converts them into one unbalanced signal, the power coupling gain of the unbalanced terminal to each balanced terminal is 3 dB.
  • the insertion loss of each of the filters 31 to 33 is 1.2 dB
  • each balanced terminal (node c) in the filters 31 to 33 requires a power value of 26.2 dBm (28 dBm-3 dB+1.2 dB).
  • a power value of 30.0 dBm (29.7 dBm+0.3 dB) is required at the output end (node a') of the transformer 540. Since the transformer 540 combines a pair of balanced signals and converts them into one unbalanced signal, the power coupling gain of one end of the secondary coil to each terminal of the primary coil is 3 dB. On the other hand, if the coupling loss between the primary coil and the secondary coil of the transformer 540 is 1.0 dB, then at each of the output ends of the amplifier 11 and the output end of the amplifier 12 (node a), the loss is 28.0 dBm (30.0 dBm). -3dB+1.0dB) is required.
  • the insertion loss (0.3 dB) of the switches 21 and 22 in the high frequency module 1 according to the embodiment is smaller than the insertion loss (0.5 dB) of the switch 24 in the high frequency module 500 according to the comparative example because of the durability. This is because the number of stacks of one or more semiconductor elements connected in series between the common terminal and the selection terminal is reduced due to the reduction in power consumption.
  • the high frequency module 1 has a lower power value at node c by 3.0 dB and a lower power value at node b. is 3.2 dB lower, and it can be seen that the power value at node a is 1.2 dB lower. That is, in the high frequency module 1 according to the embodiment, compared to the high frequency module 500 according to the comparative example, the input power of the filters 31 to 33 is 3.0 dB lower, the input power of the switches 21 and 22 is 3.2 dB lower, The output power of amplifiers 11 and 12 is lowered by 1.2 dB.
  • the power applied to the filters 31 to 33 and the switch circuit 20 can be approximately halved, so transmission loss can be reduced and the filters 31 to 33 can be made smaller.
  • the transmission loss of the high frequency module 1 can be reduced. This improves the power efficiency of the high frequency module 1.
  • the impedance required at the output end of the power amplifier circuit 10 can be increased, so power efficiency can be further improved.
  • FIG. 5 is a circuit configuration diagram of a high frequency module 1A and a communication device 4A according to a modification.
  • a communication device 4A according to this modification includes a high frequency module 1A, an antenna 2, and an RFIC 3.
  • the communication device 4A according to this modification differs from the communication device 4 according to the embodiment in the circuit configuration of the high frequency module 1A. Therefore, the circuit configuration of the high frequency module 1A according to this modification will be described below.
  • the high frequency module 1A includes a power amplifier circuit 10A, a switch circuit 20A, filter circuits 31A, 32A and 33A, a switch 40, and matching circuits 511, 512, 51m, 521, 522 and 52m. , a signal input terminal 110, and an antenna connection terminal 100.
  • the high frequency module 1A according to this modification has a circuit configuration that transmits a pair of balanced signals, whereas the high frequency module 1 according to the embodiment transmits m pairs (m is an integer of 2 or more) of balanced signals. The difference is that it has a circuit configuration that
  • the description of the same configuration as the high frequency module 1 according to the embodiment will be omitted, and the explanation will focus on the different configuration.
  • the power amplifier circuit 10A is an example of a differential amplification type amplifier circuit, converts an unbalanced signal input from the signal input terminal 110 into m pairs of balanced signals, and amplifies the m pairs of balanced signals.
  • the power amplifier circuit 10A includes amplifiers 111, 112, and 11m, amplifiers 121, 122, and 12m, an amplifier 13, and a transformer 15.
  • the transformer 15 is an example of a transformer, and has a primary coil and a secondary coil that electromagnetically couple with each other.
  • One end of the primary coil is connected to a signal input terminal 110 via an amplifier 13, and the other end of the primary coil is connected to ground.
  • one end of the secondary coil is connected to the input ends of amplifiers 111, 112, and 11m, and the other end of the secondary coil is connected to the input ends of amplifiers 121, 122, and 12m.
  • the transformer 15 converts an unbalanced signal input to one end of the primary coil into two balanced signals having opposite phases, and outputs the two balanced signals from both ends of the secondary coil.
  • Each of the amplifiers 111, 112, and 11m is an example of a first amplifier, and is connected between the transformer 15 and the switch circuit 20A, and is capable of amplifying balanced signals of the first band, second band, and third band. It is. Note that when the amplifiers 111, 112, and 11m are written, they indicate m first amplifiers.
  • Each of the amplifiers 121, 122, and 12m is an example of a second amplifier, and is connected between the transformer 15 and the switch circuit 20A, and is capable of amplifying balanced signals of the first band, the second band, and the third band. It is. Note that when the amplifiers 121, 122, and 12m are written, they indicate m second amplifiers. Amplifiers 111, 112, and 11m and amplifiers 121, 122, and 12m constitute a differential amplification type amplifier circuit.
  • the switch circuit 20A includes m first switches and m second switches.
  • the first of the m first switches has a common terminal 251 (first common terminal), a selection terminal 271p (first selection terminal), a selection terminal 281p (second selection terminal), and a selection terminal 291p.
  • the second of the m first switches has a common terminal 252 (first common terminal), a selection terminal 272p (first selection terminal), a selection terminal 282p (second selection terminal), and a selection terminal 292p.
  • the m-th of the m first switches has a common terminal 25m (first common terminal), a selection terminal 27mp (first selection terminal), a selection terminal 28mp (second selection terminal), and a selection terminal 29mp.
  • Each of the m first switches switches the connection between the first common terminal and one of the three selection terminals.
  • the first of the m second switches has a common terminal 261 (second common terminal), a selection terminal 271n (third selection terminal), a selection terminal 281n (fourth selection terminal), and a selection terminal 291n.
  • the second of the m second switches has a common terminal 262 (second common terminal), a selection terminal 272n (third selection terminal), a selection terminal 282n (fourth selection terminal), and a selection terminal 292n.
  • the m-th of the m second switches has a common terminal 26m (second common terminal), a selection terminal 27mn (third selection terminal), a selection terminal 28mn (fourth selection terminal), and a selection terminal 29mn.
  • Each of the m second switches switches the connection between the second common terminal and one of the three selection terminals.
  • Each of the m first switches and m second switches is an SP3T type switch.
  • the filter circuit 31A includes filters 311, 312, and 31m, and has m first filters.
  • Each of the filters 311, 312, and 31m is an example of a first filter, and has a passband including the first band.
  • Each of filters 311, 312 and 31m has two balanced terminals (a first balanced terminal and a second balanced terminal) and an unbalanced terminal (first unbalanced terminal). Note that when the filters 311, 312, and 31m are written, they indicate m first filters.
  • the filter circuit 32A includes filters 321, 322, and 32m, and has m second filters.
  • Each of the filters 321, 322, and 32m is an example of a second filter, and has a pass band including the second band.
  • Each of the filters 321, 322 and 32m has two balanced terminals (a third balanced terminal and a fourth balanced terminal) and an unbalanced terminal (a second unbalanced terminal). Note that when the filters 321, 322, and 32m are written, they indicate m second filters.
  • the filter circuit 33A includes filters 331, 332, and a filter 33m. Each of filters 331, 332, and 33m has a passband that includes the third band. Each of filters 331, 332 and 33m has two balanced terminals and an unbalanced terminal.
  • the matching circuit 511 is connected between the output end of the amplifier 111 and the common terminal 251.
  • Matching circuit 512 is connected between the output end of amplifier 112 and common terminal 252.
  • the matching circuit 51m is connected between the output end of the amplifier 11m and the common terminal 25m.
  • Matching circuit 521 is connected between the output end of amplifier 121 and common terminal 261.
  • Matching circuit 522 is connected between the output end of amplifier 122 and common terminal 262.
  • the matching circuit 52m is connected between the output end of the amplifier 12m and the common terminal 26m.
  • the common terminal 251 (first common terminal) is connected to the output terminal of the amplifier 111 (first amplifier) via the matching circuit 511, and the common terminal 252 (first common terminal) is connected to the output terminal of the amplifier 111 (first amplifier) via the matching circuit 512. 1 amplifier), and the common terminal 25m is connected to the output end of the amplifier 11m via a matching circuit 51m.
  • the common terminal 261 (second common terminal) is connected to the output terminal of the amplifier 121 (second amplifier) via the matching circuit 521, and the common terminal 262 (second common terminal) is connected to the output terminal of the amplifier 121 (second amplifier) via the matching circuit 522. (second amplifier), and the common terminal 26m is connected to the output end of the amplifier 12m via a matching circuit 52m.
  • the selection terminal 271p (first selection terminal) is connected to one of the two balanced terminals (first balanced terminal) of the filter 311 (first filter), and the selection terminal 281p (second selection terminal) is connected to the filter 321 (second filter). ), and the selection terminal 291p is connected to one of the two balanced terminals of the filter 331 (third balanced terminal).
  • the selection terminal 271n (third selection terminal) is connected to the other of the two balanced terminals (second balanced terminal) of the filter 311 (first filter), and the selection terminal 281n (fourth selection terminal) is connected to the other of the two balanced terminals (second balanced terminal) of the filter 321 (second filter). ) is connected to the other of the two balanced terminals (fourth balanced terminal), and the selection terminal 291n is connected to the other of the two balanced terminals of the filter 331.
  • the selection terminal 272p (first selection terminal) is connected to one of the two balanced terminals (first balanced terminal) of the filter 312 (first filter), and the selection terminal 282p (second selection terminal) is connected to the filter 322 (second filter). ), and the selection terminal 292p is connected to one of the two balanced terminals of the filter 332 (third balanced terminal).
  • the selection terminal 272n (third selection terminal) is connected to the other of the two balanced terminals (second balanced terminal) of the filter 312 (first filter), and the selection terminal 282n (fourth selection terminal) is connected to the other of the two balanced terminals (second balanced terminal) of the filter 322 (second filter). ), and the selection terminal 292n is connected to the other of the two balanced terminals of the filter 332 (fourth balanced terminal).
  • the selection terminal 27mp (first selection terminal) is connected to one of the two balanced terminals (first balanced terminal) of the filter 31m (first filter), and the selection terminal 28mp (second selection terminal) is connected to the filter 32m (second filter). ), and the selection terminal 29mp is connected to one of the two balanced terminals of the filter 33m.
  • the selection terminal 27mn (third selection terminal) is connected to the other of the two balanced terminals (second balanced terminal) of the filter 31m (first filter), and the selection terminal 28mn (fourth selection terminal) is connected to the other of the two balanced terminals (second balanced terminal) of the filter 31m (first filter). ) is connected to the other of the two balanced terminals (fourth balanced terminal), and the selection terminal 29mn is connected to the other of the two balanced terminals of the filter 33m.
  • the unbalanced terminals (first unbalanced terminals) of the filters 311, 312, and 31m are connected to each other.
  • Unbalanced terminals (second unbalanced terminals) of filters 321, 322, and 32m are connected to each other.
  • the unbalanced terminals of filters 331, 332 and 33m are connected to each other.
  • the high frequency module 1A balanced signals are transmitted to all signal paths from the output end of the power amplifier circuit 10A to the filter circuits 31A to 33A.
  • the signal power transmitted through each signal path can be reduced, and power consumption can be reduced.
  • the power durability of the switch circuit 20A and the filter circuits 31A to 33A can be reduced, so that the switch circuit 20A and the filter circuits 31A to 33A can be made smaller. Therefore, it is possible to provide a high frequency module 1A that can reduce power consumption and size.
  • the output power of each of the filter circuits 31A, 32A, and 33A is assumed to be P FIL (dBm).
  • the powers of m filters including the filters 311, 312, and 31m are combined, so the power combination gain of the filter circuit 31A is m ⁇ 3 (dB).
  • the power coupling gains of filter circuits 32A and 33A are each m ⁇ 3 (dB).
  • the insertion loss of each filter is defined as IL FIL (dB).
  • the insertion loss between one common terminal and one selection terminal in the switch circuit 20A is assumed to be IL SW .
  • ILMN be the matching loss of each matching circuit.
  • PA_O is expressed by the following formulas 1 to 3, respectively.
  • P FIL _I P FIL - (m ⁇ 3)+IL FIL (Formula 1)
  • P SW _I P FIL - (m ⁇ 3)+IL FIL +IL SW (Formula 2)
  • P PA _O P FIL -(m ⁇ 3)+IL FIL +IL SW +IL MN (Formula 3)
  • FIG. 6 is a plan view of the high frequency module 1 according to the embodiment. This figure shows the arrangement of circuit components when the main surface of the module board 90 is seen through from the positive direction of the z-axis. Note that in FIG. 6, some of the wiring connecting the module board 90 and each circuit component are omitted.
  • the high frequency module 1 further includes a module board 90.
  • the module board 90 has a first main surface and a second main surface facing each other, and is a board on which circuit components constituting the high frequency module 1 are mounted.
  • Examples of the module substrate 90 include a Low Temperature Co-fired Ceramics (LTCC) substrate having a laminated structure of a plurality of dielectric layers, a High Temperature Co-fired Ceramics (HTCC) substrate, A component-embedded board, a board having a redistribution layer (RDL), a printed circuit board, or the like is used.
  • LTCC Low Temperature Co-fired Ceramics
  • HTCC High Temperature Co-fired Ceramics
  • RDL redistribution layer
  • a power amplifier circuit 10, a switch circuit 20, a switch 40, matching circuits 51 and 52, filters 31, 32 and 33, an antenna connection terminal 100, and a signal input terminal 110 are arranged on the first main surface of the module board 90. There is. Note that at least one of the above circuit components may be arranged on the second main surface of the module board 90 or inside the module board 90.
  • the amplifiers 11 and 12 may be included in the first semiconductor IC. Further, the transformer 15 may also be formed in the first semiconductor IC. According to this, the high frequency module 1 can be downsized.
  • the switch circuit 20 may be included in the second semiconductor IC.
  • the first semiconductor IC and the second semiconductor IC are configured using, for example, CMOS (Complementary Metal Oxide Semiconductor), and specifically may be manufactured by an SOI (Silicon on Insulator) process. Further, the first semiconductor IC and the second semiconductor IC may be made of at least one of GaAs, SiGe, and GaN. Note that the semiconductor materials of the first semiconductor IC and the second semiconductor IC are not limited to the materials described above.
  • the output end of the amplifier 11 and the common terminal 21a are connected via the wiring 101, the wiring 151, the matching circuit 51, the wiring 153, and the wiring 103.
  • the wiring 101, the wiring 151, the wiring 153, and the wiring 103 are collectively defined as a first wiring.
  • the output end of the amplifier 12 and the common terminal 22a are connected via the wiring 102, the wiring 152, the matching circuit 52, the wiring 154, and the wiring 104.
  • the wiring 102, the wiring 152, the wiring 154, and the wiring 104 are collectively defined as a second wiring.
  • Wirings 151, 152, 153, and 154 are formed on the first main surface or inside the module board 90.
  • Wiring lines 101 and 102 are formed in a first semiconductor IC that includes power amplifier circuit 10.
  • Wiring lines 103 and 104 are formed in a second semiconductor IC including switch circuit 20.
  • the first wiring and the second wiring are arranged adjacent to each other. According to this, power leakage and unnecessary wave leakage caused by imbalance between a pair of balanced signals transmitted through the first wiring and the second wiring can be suppressed.
  • the first wiring has the same wiring length as the second wiring. According to this, it is possible to further suppress power leakage and unnecessary wave leakage caused by imbalance between a pair of balanced signals transmitted through the first wiring and the second wiring.
  • the first wiring and the second wiring do not have to have exactly the same wiring length, and the total wiring length of the wirings 151 and 153 among the first wirings is equal to the total wiring length of the wirings 152 and 154 among the second wirings. may be the same as the total wiring length. According to this, power leakage and unnecessary wave leakage can be suppressed in the wiring formed on the module board 90.
  • the balanced terminal 31a of the filter 31 and the selection terminal 21b of the switch circuit 20 are connected via a wiring 134 (third wiring), and the balanced terminal 31b and selection terminal 22b are connected via a wiring 135 (fourth wiring). It is connected.
  • the balanced terminal 32a and selection terminal 21c of the filter 32 are connected through a wiring 136 (third wiring), and the balanced terminal 32b and selection terminal 22c are connected through a wiring 137 (fourth wiring).
  • the balanced terminal 33a and the selection terminal 21d of the filter 33 are connected through a wiring 138 (third wiring), and the balanced terminal 33b and the selection terminal 22d are connected through a wiring 139 (fourth wiring). .
  • the switch 40 and filter 31 are connected via wiring 131, the switch 40 and filter 32 are connected via wiring 132, and the switch 40 and filter 33 are connected via wiring 133.
  • the wirings 131, 132, 133, 134, 135, 136, 137, 138, and 139 are formed on the first main surface or inside the module board 90.
  • the wiring 134 and the wiring 135 are placed adjacent to each other, the wiring 136 and the wiring 137 are placed adjacent to each other, and the wiring 138 and the wiring 139 are placed adjacent to each other. According to this, power leakage and unnecessary wave leakage caused by imbalance between a pair of balanced signals transmitted through the third wiring and the fourth wiring can be suppressed.
  • the wiring 134 has the same wiring length as the wiring 135, the wiring 136 has the same wiring length as the wiring 137, and the wiring 138 has the same wiring length as the wiring 139. According to this, it is possible to further suppress power leakage and unnecessary wave leakage caused by imbalance between a pair of balanced signals transmitted through the first wiring and the second wiring.
  • the high frequency module 1 includes the amplifiers 11 and 12 forming a differential amplification type amplifier circuit, the switch 21 having the common terminal 21a, the selection terminals 21b and 21c, the common terminal 22a, and the selection terminal.
  • the selection terminal 21c is connected to the balanced terminal 32a, the selection terminal 22b is connected to the balanced terminal 31b, and the selection terminal 22c is connected to the balanced terminal 32b.
  • balanced signals are transmitted to all signal paths from the amplifiers 11 and 12 to the filters 31 to 33.
  • the signal power transmitted through each signal path can be reduced, and power consumption can be reduced.
  • the power durability of the switches 21, 22 and the filters 31-33 can be reduced, and the switches 21, 22 and the filters 31-33 can be made smaller. Therefore, it is possible to provide a high frequency module 1 that can reduce power consumption and size.
  • the switch 21 switches the connection between the common terminal 21a and the selection terminal 21b and the connection between the common terminal 21a and the selection terminal 21c
  • the switch 22 switches the connection between the common terminal 22a and the selection terminal 22b. and switching the connection between the common terminal 22a and the selection terminal 22c, and when the common terminal 21a and the selection terminal 21b are connected, the common terminal 22a and the selection terminal 22b are connected, and the common terminal 21a and the selection terminal 21c may be connected, the common terminal 22a and the selection terminal 22c may be connected.
  • the first band signal passes through the filter 31 by the switching operation of the switches 21 and 22. Further, when transmitting a second band signal, the second band signal passes through the filter 32 by switching operations of the switches 21 and 22.
  • each of the switches 21 and 22 is composed of a plurality of semiconductor elements, and the number of stacks of one or more semiconductor elements connected in series between the common terminal 21a and the selection terminal 21b, and the number of stacks of the common
  • the number of stacks of one or more semiconductor elements connected between the terminal 22a and the selection terminal 22b is equal to the number of stacks of one or more semiconductor elements connected between the common terminal 21a and the selection terminal 21c.
  • the number of stacks of one or more semiconductor elements connected between the common terminal 22a and the selection terminal 22c may be equal.
  • the on-resistance of the path connecting the common terminal 21a and the selection terminal 21b is equal to the on-resistance of the path connecting the common terminal 22a and the selection terminal 22b.
  • the balanced signal flowing in the path connecting the common terminal 21a and the selection terminal 21b and the balanced signal flowing in the path connecting the common terminal 22a and the selection terminal 22b are simultaneously input to the balanced terminals 31a and 31b of the filter 31, respectively. This makes it possible to increase the degree of balance between the pair of balanced signals passing through the filter 31.
  • the on-resistance of the path connecting the common terminal 21a and the selection terminal 21c is equal to the on-resistance of the path connecting the common terminal 22a and the selection terminal 22c.
  • the balanced signal flowing in the path connecting the common terminal 21a and the selection terminal 21c and the balanced signal flowing in the path connecting the common terminal 22a and the selection terminal 22c are simultaneously input to the balanced terminals 32a and 32b of the filter 32, respectively. This makes it possible to increase the degree of balance between the pair of balanced signals passing through the filter 32.
  • the high frequency module 1 further includes a signal input terminal 110 and a transformer 15 having a primary coil and a secondary coil, one end of the primary coil is connected to the signal input terminal 110, and the primary coil The other end may be connected to ground, one end of the secondary coil may be connected to the input end of amplifier 11, and the other end of the secondary coil may be connected to the input end of amplifier 12.
  • the amplifiers 11 and 12 may be configured by a first semiconductor IC, and the transformer 15 may be included in the first semiconductor IC.
  • the high frequency module 1 can be downsized.
  • the high frequency module 1 may further include an antenna connection terminal 100 and a switch 40 connected between the antenna connection terminal 100 and the filters 31 and 32.
  • a transformer may not be connected between the output end of the amplifier 11 and the output end of the amplifier 12, and the input end of the filter 31 and the input end of the filter 32.
  • a transformer that converts a balanced signal to an unbalanced signal is not arranged in the signal path from the amplifiers 11 and 12 to the filters 31 and 32, so the high frequency module 1 can be further miniaturized.
  • the high frequency module 1A includes a plurality of first amplifiers (amplifiers 111, 112, 11m), a plurality of second amplifiers (amplifiers 121, 122, 12m), a plurality of first switches, and a plurality of first switches.
  • a second switch a plurality of first filters (filters 311, 312, 31m), and a plurality of second filters (filters 321, 322, 32m), and the input terminal of each of the plurality of first amplifiers is , the input terminals of the plurality of second amplifiers are connected to each other, the first common terminal of one of the plurality of first switches is connected to the output terminal of one of the plurality of first amplifiers, and the plurality of second amplifiers are connected to each other.
  • Another first common terminal of the first switch is connected to another output terminal of the plurality of first amplifiers, and one second common terminal of one of the plurality of second switches is connected to one of the plurality of second amplifiers.
  • the other one second common terminal of the plurality of second switches is connected to the other one output end of the plurality of second amplifiers, and the one first selection terminal of one of the plurality of first switches one second selection terminal of one of the plurality of first switches is connected to one third balanced terminal of one of the plurality of second filters, one of the plurality of first switches
  • the other one first selection terminal of the plurality of first filters is connected to the other one first balanced terminal of the plurality of first filters, and the other one second selection terminal of the plurality of first switches is connected to the other one of the plurality of second filters.
  • a third selection terminal of one of the plurality of second switches is connected to a second balanced terminal of one of the plurality of first filters, and a fourth selection terminal of one of the plurality of second switches is connected to a third balanced terminal of one of the plurality of second switches.
  • the selection terminal is connected to a fourth balanced terminal of one of the plurality of second filters, and the third selection terminal of another one of the plurality of second switches is connected to a second balanced terminal of another one of the plurality of first filters.
  • the fourth selection terminal of the other one of the plurality of second switches is connected to the fourth balanced terminal of the other one of the plurality of second filters, and the first unbalanced terminals of each of the plurality of first filters are connected to each other. and the second unbalanced terminals of each of the plurality of second filters may be connected to each other.
  • balanced signals are transmitted to all signal paths from the output ends of the plurality of first amplifiers and the plurality of second amplifiers to the plurality of first filters and the plurality of second filters.
  • the signal power transmitted through each signal path can be reduced, and power consumption can be reduced.
  • the power durability of the plurality of first switches, the plurality of second switches, the plurality of first filters, and the plurality of second filters can be reduced, and these can be made smaller. Therefore, it is possible to provide a high frequency module 1A that can reduce power consumption and size.
  • the high frequency module 1 further includes a module board 90 on which amplifiers 11 and 12, switches 21 and 22, and filters 31 and 32 are arranged, and a first wiring connecting the output end of the amplifier 11 and the common terminal 21a. and the second wiring connecting the output end of the amplifier 12 and the common terminal 22a may be arranged adjacent to each other.
  • the first wiring may have the same wiring length as the second wiring.
  • the third wiring connecting the selection terminal 21b and the balanced terminal 31a and the fourth wiring connecting the selection terminal 22b and the balanced terminal 31b may be arranged adjacent to each other.
  • the third wiring may have the same wiring length as the fourth wiring.
  • the amplifiers 11 and 12 are included in a first semiconductor IC placed on the module substrate 90
  • the switches 21 and 22 are included in a second semiconductor IC placed on the module substrate 90
  • Each of the filters 31 and 32 may be arranged on the module substrate 90.
  • the high frequency module 1 can be downsized.
  • the communication device 4 includes an RFIC 3 that processes a high frequency signal, and a high frequency module 1 that transmits the high frequency signal between the RFIC 3 and the antenna 2.
  • the effects of the high frequency module 1 can be realized by the communication device 4.
  • the high frequency module and the communication device according to the embodiment have been described above by citing the embodiment and the modified examples, but the high frequency module and the communication device according to the present invention are limited to the above embodiment and the modified example. isn't it.
  • the present invention also includes modifications obtained by applying the above and various devices incorporating the above-mentioned high frequency module and communication device.
  • the first switch switches the connection between the first common terminal and the first selection terminal and the connection between the first common terminal and the second selection terminal
  • the second switch switches the connection between the second common terminal and the third selection terminal and the connection between the second common terminal and the fourth selection terminal
  • the connection between the first common terminal and the first selection terminal and the connection between the second common terminal and the third selection terminal are performed simultaneously
  • the high frequency module according to ⁇ 1> wherein the connection between the first common terminal and the second selection terminal and the connection between the second common terminal and the fourth selection terminal are performed simultaneously.
  • Each of the first switch and the second switch is composed of a plurality of semiconductor elements, the number of stacks of one or more semiconductor elements connected in series between the first common terminal and the first selection terminal; and the number of stacks of one or more semiconductor elements connected in series between the second common terminal and the third selection terminal.
  • the number of stacks of semiconductor devices is equal to the number of stacks of one or more semiconductor elements connected between the first common terminal and the second selection terminal; and the number of stacks of one or more semiconductor elements connected between the second common terminal and the fourth selection terminal.
  • ⁇ 4> moreover, a signal input terminal, A transformer having a primary coil and a secondary coil, one end of the primary coil is connected to the signal input terminal, The other end of the primary coil is connected to ground, One end of the secondary coil is connected to an input end of the first amplifier, The high frequency module according to any one of ⁇ 1> to ⁇ 3>, wherein the other end of the secondary coil is connected to the input end of the second amplifier.
  • the first amplifier and the second amplifier are configured with a first semiconductor IC,
  • ⁇ 6> moreover, antenna connection terminal,
  • ⁇ 8> a plurality of the first amplifiers; a plurality of said second amplifiers; a plurality of the first switches; a plurality of said second switches; a plurality of the first filters; A plurality of said second filters, Input terminals of each of the plurality of first amplifiers are connected to each other, Input terminals of each of the plurality of second amplifiers are connected to each other,
  • the first common terminal of one of the plurality of first switches is connected to an output terminal of one of the plurality of first amplifiers,
  • the other one of the first common terminals of the plurality of first switches is connected to the other one output terminal of the plurality of first amplifiers,
  • the second common terminal of one of the plurality of second switches is connected to an output terminal of one of the plurality of second amplifiers,
  • the other one of the second common terminals of the plurality of second switches is connected to the other one output terminal of the plurality of second amplifiers,
  • the first selection terminal of one of the plurality of first switches is connected to the first balanced
  • ⁇ 9> moreover, comprising a module board on which the first amplifier, the second amplifier, the first switch, the second switch, the first filter, and the second filter are arranged, A first wiring connecting the output end of the first amplifier and the first common terminal and a second wiring connecting the output end of the second amplifier and the second common terminal are arranged adjacent to each other,
  • the high frequency module according to any one of ⁇ 1> to ⁇ 8>.
  • a third wiring connecting the first selection terminal and the first balanced terminal and a fourth wiring connecting the third selection terminal and the second balanced terminal are arranged adjacently, ⁇ 9> or The high frequency module according to ⁇ 10>.
  • the first amplifier and the second amplifier are included in a first semiconductor IC disposed on the module substrate,
  • the first switch and the second switch are included in a second semiconductor IC arranged on the module substrate,
  • the high frequency module according to any one of ⁇ 9> to ⁇ 12>, wherein each of the first filter and the second filter is disposed on the module substrate.
  • ⁇ 14> a signal processing circuit that processes high frequency signals
  • a communication device comprising: the high frequency module according to any one of ⁇ 1> to ⁇ 13>, which transmits the high frequency signal between the signal processing circuit and the antenna.
  • the present invention can be widely used in communication devices such as mobile phones as a high frequency module placed in a multi-band front end section.
  • RFIC RF signal processing circuit
  • RFIC RF signal processing circuit
  • Communication device 10A Power amplifier circuit 11, 12, 13, 111, 112, 11m, 121, 122, 12m Amplifier 15, 540 Transformer 20, 20A Switch circuit 21, 22, 24, 40 Switch 21a, 22a, 24a, 251, 252, 25m, 261, 262, 26m Common terminal 21b, 21c, 21d, 22b, 22c, 22d, 24b, 24c, 24d, 271n, 271p, 272n, 272p, 27mn, 27mp, 281n, 281p, 282n , 282p, 28mn, 28mp, 291n, 291p, 292n, 292p, 29mn, 29mp Selection terminal 31, 32, 33, 311, 312, 31m, 321, 322, 32m, 331, 332, 33m, 531, 532, 533 Filter 31A, 32A, 33A Filter circuit 31a, 31b, 32a, 32b, 33a,

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

高周波モジュール(1)は、差動増幅型の増幅回路を構成する増幅器(11および12)と、共通端子(21a)、選択端子(21bおよび21c)を有するスイッチ(21)と、共通端子(22a)、選択端子(22bおよび22c)を有するスイッチ(22)と、平衡端子(31a、31b)および非平衡端子(31c)を有し、第1バンドを含む通過帯域を有するフィルタ(31)と、平衡端子(32a、32b)および非平衡端子(32c)を有し、第2バンドを含む通過帯域を有するフィルタ(32)と、を備え、共通端子(21a)は増幅器(11)の出力端に接続され、共通端子(22a)は増幅器(12)の出力端に接続され、選択端子(21b)は平衡端子(31a)に接続され、選択端子(21c)は平衡端子(32a)に接続され、選択端子(22b)は平衡端子(31b)に接続され、選択端子(22c)は平衡端子(32b)に接続されている。

Description

高周波モジュールおよび通信装置
 本発明は、高周波モジュールおよび通信装置に関する。
 特許文献1には、差動増幅型の電力増幅回路(高周波モジュール)が開示されている。2つの増幅器の出力端には、当該2つの増幅器から出力される平衡信号を非平衡信号に変換するバランストランスが配置され、当該バランストランスの非平衡端子にフィルタが接続されている。
特開2010-103851号公報
 3GPP(登録商標)(3rd Generation Partnership Project)において、ハイパワーの送信信号を出力するマルチバンド対応の高周波モジュールが要求されている。この要求に対応するには、特許文献1に開示された電力増幅回路に、複数のフィルタおよび当該複数のフィルタを切り替えるスイッチが配置された高周波モジュールが必要となる。
 しかしながら、上記高周波モジュールにおいてハイパワー対応とすると消費電力が増大し、スイッチおよびフィルタには高耐電力性が要求される。スイッチおよびフィルタの耐電力性を高めるべく面積を増大させると伝送損失が増大する。
 本発明は、上記課題を解決するためになされたものであって、低消費電力化および小型化が可能なハイパワー対応の高周波モジュールおよび通信装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る高周波モジュールは、差動増幅型の増幅回路を構成する第1増幅器および第2増幅器と、第1共通端子、第1選択端子および第2選択端子を有する第1スイッチと、第2共通端子、第3選択端子および第4選択端子を有する第2スイッチと、第1平衡端子、第2平衡端子および第1非平衡端子を有し、第1バンドを含む通過帯域を有する第1フィルタと、第3平衡端子、第4平衡端子および第2非平衡端子を有し、第2バンドを含む通過帯域を有する第2フィルタと、を備え、第1共通端子は第1増幅器の出力端に接続され、第2共通端子は第2増幅器の出力端に接続され、第1選択端子は第1平衡端子に接続され、第2選択端子は第3平衡端子に接続され、第3選択端子は第2平衡端子に接続され、第4選択端子は第4平衡端子に接続されている。
 本発明によれば、低消費電力化および小型化が可能なハイパワー対応の高周波モジュールおよび通信装置を提供することが可能となる。
図1は、実施の形態に係る高周波モジュールおよび通信装置の回路構成図である。 図2は、実施の形態に係るスイッチおよびフィルタの接続構成例を示す図である。 図3は、実施の形態に係るフィルタの電極構成の一例を示す図である。 図4は、実施の形態および比較例に係る高周波モジュールの必要電力値を比較した図である。 図5は、変形例に係る高周波モジュールおよび通信装置の回路構成図である。 図6は、実施の形態に係る高周波モジュールの平面図である。
 以下、本発明の実施の形態について詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態等は、一例であり、本発明を限定する主旨ではない。以下の実施例および変形例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略または簡略化する場合がある。
 また、本開示において、平行および垂直等の要素間の関係性を示す用語、および、矩形状等の要素の形状を示す用語、ならびに、数値範囲は、厳格な意味のみを表すのではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する。
 また、本開示において、「接続される」とは、接続端子および/または配線導体で直接接続される場合だけでなく、他の回路素子を介して電気的に接続される場合も含むことを意味する。また、「AとBとの間に接続される」、「AおよびBの間に接続される」とは、AおよびBを結ぶ経路上でAおよびBと接続されることを意味する。
 また、本開示において、「経路」とは、高周波信号が伝搬する配線、当該配線に直接接続された電極、および当該配線または当該電極に直接接続された端子等で構成された伝送線路であることを意味する。
 また、本開示において、「部品Aが経路Bに直列配置される」とは、部品Aの信号入力端および信号出力端の双方が、経路Bを構成する配線、電極、または端子に接続されていることを意味する。
 また、本開示の部品配置において、モジュール基板に回路素子A(または配線A)と回路素子B(または配線B)とが隣接配置されている(または隣り合っている)とは、モジュール基板を平面視した場合、回路素子A(または配線A)と回路素子B(または配線B)との間に、他の回路素子(および配線)が配置されていないことを意味する。
 (実施の形態)
 [1.高周波モジュール1および通信装置4の回路構成]
 本実施の形態に係る高周波モジュール1およびそれを備える通信装置4の回路構成について、図1を参照しながら説明する。図1は、実施の形態に係る高周波モジュール1および通信装置4の回路構成図である。
 [1.1 通信装置4の回路構成]
 通信装置4は、いわゆるユーザ端末(UE:User Equipment)に相当し、典型的には、携帯電話、スマートフォン、タブレットコンピュータ等である。このような通信装置4は、高周波モジュール1と、アンテナ2と、RF信号処理回路(RFIC:Radio Frequency Integrated Circuit)3と、を備える。
 高周波モジュール1は、アンテナ2とRFIC3との間で高周波信号を伝送する。高周波モジュール1の回路構成については後述する。
 アンテナ2は高周波モジュール1のアンテナ接続端子100に接続される。アンテナ2は、高周波モジュール1から高周波信号を受信して外部に出力する。
 RFIC3は、高周波信号を処理する信号処理回路の一例である。具体的には、RFIC3は、ベースバンド信号処理回路(BBIC:Baseband Integrated Circuit:図示せず)から入力された送信信号をアップコンバート等により信号処理し、当該信号処理して生成された送信信号を、高周波モジュール1の送信経路に出力する。また、RFIC3は、高周波モジュール1の受信経路を介して入力された受信信号を、ダウンコンバート等により信号処理し、当該信号処理して生成された受信信号をBBICへ出力する。
 また、RFIC3は、高周波モジュール1が有するスイッチ回路20およびスイッチ40を制御する。なお、RFIC3の制御機能の一部または全部は、RFIC3の外部に構成されてもよく、例えば、BBICまたは高周波モジュール1に構成されてもよい。
 なお、本実施の形態に係る通信装置4において、アンテナ2は必須の構成要素ではない。
 [1.2 高周波モジュール1の回路構成]
 次に、高周波モジュール1の回路構成について説明する。図1に示すように、高周波モジュール1は、電力増幅回路10と、スイッチ回路20と、フィルタ31、32および33と、スイッチ40と、整合回路51および52と、信号入力端子110と、アンテナ接続端子100と、を備える。
 電力増幅回路10は、差動増幅型の増幅回路の一例であり、信号入力端子110から入力された非平衡信号を2つの平衡信号に変換し、当該2つの平衡信号を増幅する。電力増幅回路10は、増幅器11、12および13と、トランス15と、を備える。
 トランス15は、トランスフォーマの一例であり、互いに電磁界結合する一次側コイルおよび二次側コイルを有している。一次側コイルの一端は、増幅器13を介して信号入力端子110に接続され、一次側コイルの他端はグランドに接続されている。また、二次側コイルの一端は増幅器11の入力端に接続され、二次側コイルの他端は増幅器12の入力端に接続されている。トランス15は、一次側コイルの一端に入力された非平衡信号を、互いに逆相となる2つの平衡信号に変換し、当該2つの平衡信号を二次側コイルの両端から出力する。
 増幅器11は、第1増幅器の一例であり、トランス15とスイッチ回路20のスイッチ21との間に接続されており、第1バンド、第2バンドおよび第3バンドの平衡信号を増幅可能である。増幅器12は、第2増幅器の一例であり、トランス15とスイッチ回路20のスイッチ22との間に接続されており、第1バンド、第2バンドおよび第3バンドの平衡信号を増幅可能である。増幅器11および12は、差動増幅型の増幅回路を構成する。
 増幅器13は、信号入力端子110とトランス15との間に接続されており、第1バンド、第2バンドおよび第3バンドの非平衡信号を増幅可能である。
 増幅器11~13のそれぞれは、増幅トランジスタを有する。上記増幅トランジスタは、例えば、ヘテロ接合バイポーラトランジスタ(HBT:Heterojunction Bipolar Transistor)等のバイポーラトランジスタ、または、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)等の電界効果トランジスタである。上記増幅トランジスタの材料としては、例えば、Si、GaAs、SiGeおよびGaNが挙げられる。
 なお、電力増幅回路10は、増幅器13を備えなくてもよく、この場合には、例えばRFIC3から出力された非平衡信号がトランス15の一次側コイルの一端に入力される。また、電力増幅回路10は、トランス15および増幅器13を備えなくてもよく、この場合には、例えばRFIC3から出力された一対の平衡信号が増幅器11および12にそれぞれ入力される。
 スイッチ回路20は、スイッチ21および22を含む。スイッチ21は、第1スイッチの一例であり、共通端子21a(第1共通端子)、選択端子21b(第1選択端子)、選択端子21c(第2選択端子)、および選択端子21dを有する。スイッチ21は、共通端子21aと選択端子21bとの接続、共通端子21aと選択端子21cとの接続、および、共通端子21aと選択端子21dとの接続、を切り替える。スイッチ21は、SP3T(Single Pole 3 Throw)型のスイッチである。
 スイッチ22は、第2スイッチの一例であり、共通端子22a(第2共通端子)、選択端子22b(第3選択端子)、選択端子22c(第4選択端子)、および選択端子22dを有する。スイッチ22は、共通端子22aと選択端子22bとの接続、共通端子22aと選択端子22cとの接続、および、共通端子22aと選択端子22dとの接続、を切り替える。スイッチ22は、SP3T型のスイッチである。
 フィルタ31は、第1フィルタの一例であり、第1バンドを含む通過帯域を有する。フィルタ31は、平衡端子31a(第1平衡端子)および平衡端子31b(第2平衡端子)、ならびに非平衡端子31c(第1非平衡端子)を有する。
 フィルタ32は、第2フィルタの一例であり、第2バンドを含む通過帯域を有する。フィルタ32は、平衡端子32a(第3平衡端子)および平衡端子32b(第4平衡端子)、ならびに非平衡端子32c(第2非平衡端子)を有する。
 フィルタ33は、第3バンドを含む通過帯域を有する。フィルタ33は、平衡端子33aおよび平衡端子33b、ならびに非平衡端子33cを有する。
 フィルタ31~33は、例えば、弾性表面波(SAW:Surface Acoustic Wave)を用いた弾性波フィルタ、バルク弾性波(BAW:Bulk Acoustic Wave)を用いた弾性波フィルタ、LC共振フィルタ、および誘電体フィルタのいずれかであってもよく、さらには、これらには限定されない。なお、フィルタ31~33の詳細な構造例については、図3を用いて後述する。
 なお、第1バンド、第2バンドおよび第3バンドは、標準化団体など(例えば3GPP(登録商標)およびIEEE(Institute of Electrical and Electronics Engineers)等)によって予め定義された無線アクセス技術(RAT:Radio Access Technology)を用いて構築される通信システムのための周波数バンドである。通信システムとしては、例えば5G-NR(5th Generation New Radio)システム、LTE(Long Term Evolution)システムおよびWLAN(Wireless Local Area Network)システム等を用いることができるが、これに限定されない。
 整合回路51は、増幅器11の出力端と共通端子21aとの間に接続されている。整合回路52は、増幅器12の出力端と共通端子22aとの間に接続されている。電力増幅回路10は高電力の信号を出力可能とするために、出力インピーダンスは低く設定される。一方、後段に接続されるスイッチ回路20およびフィルタ31~33の入力インピーダンスは基準インピーダンス(50Ω)近辺に設定される。このため、整合回路51および52により、増幅器11および12と、スイッチ回路20およびフィルタ31~33とのインピーダンス整合がとられる。
 スイッチ40は、第3スイッチの一例であり、アンテナ接続端子100とフィルタ31~33との間に接続され、アンテナ接続端子100とフィルタ31との接続および非接続を切り替え、アンテナ接続端子100とフィルタ32との接続および非接続を切り替え、アンテナ接続端子100とフィルタ33との接続および非接続を切り替える。
 共通端子21aは整合回路51を介して増幅器11の出力端に接続され、共通端子22aは整合回路52を介して増幅器12の出力端に接続されている。また、選択端子21bは平衡端子31aに接続され、選択端子21cは平衡端子32aに接続され、選択端子21dは平衡端子33aに接続されている。また。選択端子22bは平衡端子31bに接続され、選択端子22cは平衡端子32bに接続され、選択端子22dは平衡端子33bに接続されている。
 高周波モジュール1の上記構成によれば、増幅器11および12からフィルタ31~33までの全ての信号経路には、平衡信号が伝送される。これにより、上記信号経路に非平衡信号が伝送される回路と比較して、各信号経路を伝送する信号電力を低減でき低消費電力化を図ることができる。また、信号電力を低減できるので、スイッチ回路20およびフィルタ31~33の耐電力性を低減できるので、スイッチ回路20およびフィルタ31~33を小型化できる。よって、低消費電力化および小型化が可能な高周波モジュール1を提供できる。
 なお、本実施の形態に係る高周波モジュール1において、増幅器11および12の出力端と、フィルタ31~33の入力端との間には、トランスフォーマが接続されていない。
 これによれば、増幅器11および12からフィルタ31~33までの信号経路に、平衡信号を非平衡信号に変換するトランスフォーマが配置されていないので、高周波モジュール1を、より小型化できる。
 なお、本実施の形態に係る高周波モジュール1は、整合回路51および52、ならびにスイッチ40を備えなくてもよい。また、フィルタは2個以上であればよく、フィルタがn個配置されているとすると、スイッチ21および22は、それぞれ、SPnT型のスイッチとなる。
 ここで、高周波モジュール1が、第1バンドの信号を増幅して伝送する場合には、共通端子21aと選択端子21bとが接続状態となり、かつ、共通端子22aと選択端子22bとが接続状態となる。また、高周波モジュール1が、第2バンドの信号を増幅して伝送する場合には、共通端子21aと選択端子21cとが接続状態となり、かつ、共通端子22aと選択端子22cとが接続状態となる。また、高周波モジュール1が、第3バンドの信号を増幅して伝送する場合には、共通端子21aと選択端子21dとが接続状態となり、かつ、共通端子22aと選択端子22dとが接続状態となる。
 これによれば、第1バンドの信号を伝送する場合には、スイッチ回路20の切り替えにより第1バンドの信号はフィルタ31を通過する。また、第2バンドの信号を伝送する場合には、スイッチ回路20の切り替えにより第2バンドの信号はフィルタ32を通過する。また、第3バンドの信号を伝送する場合には、スイッチ回路20の切り替えにより第3バンドの信号はフィルタ33を通過する。
 [1.3 スイッチ回路20の構成]
 スイッチ21において、共通端子21aと選択端子21bとの間、共通端子21aと選択端子21cとの間、および共通端子21aと選択端子21dとの間には、それぞれ、直列接続された1以上の半導体素子が接続されている。また、スイッチ22において、共通端子22aと選択端子22bとの間、共通端子22aと選択端子22cとの間、および共通端子22aと選択端子22dとの間には、それぞれ、直列接続された1以上の半導体素子が接続されている。上記1以上の半導体素子のそれぞれは、例えば、ソース電極、ドレイン電極、およびゲート電極で構成されるFET(Field Effect Transistor)である。なお、上記1以上の半導体素子のそれぞれは、バイポーラトランジスタ、または、ダイオードなどであってもよい。
 ここで、上記1以上の半導体素子の直列接続数をスタック数と定義する。このとき、共通端子21aと選択端子21bとの間に直列接続された1以上の半導体素子のスタック数と、共通端子22aと選択端子22bとの間に接続された1以上の半導体素子のスタック数とは、等しい。また、共通端子21aと選択端子21cとの間に直列接続された1以上の半導体素子のスタック数と、共通端子22aと選択端子22cとの間に接続された1以上の半導体素子のスタック数とは、等しい。また、共通端子21aと選択端子21dとの間に直列接続された1以上の半導体素子のスタック数と、共通端子22aと選択端子22dとの間に接続された1以上の半導体素子のスタック数とは、等しい。
 これによれば、共通端子21aと選択端子21bとを結ぶ経路のオン抵抗と、共通端子22aと選択端子22bとを結ぶ経路のオン抵抗とは等しくなる。また、共通端子21aと選択端子21bとを結ぶ経路に流れる平衡信号および共通端子22aと選択端子22bとを結ぶ経路に流れる平衡信号は、それぞれ同時にフィルタ31の平衡端子31aおよび31bに入力される。これにより、フィルタ31を通過する一対の平衡信号の平衡度を高めることが可能となる。
 また、共通端子21aと選択端子21cとを結ぶ経路のオン抵抗と、共通端子22aと選択端子22cとを結ぶ経路のオン抵抗とは等しくなる。また、共通端子21aと選択端子21cとを結ぶ経路に流れる平衡信号および共通端子22aと選択端子22cとを結ぶ経路に流れる平衡信号は、それぞれ同時にフィルタ32の平衡端子32aおよび32bに入力される。これにより、フィルタ32を通過する一対の平衡信号の平衡度を高めることが可能となる。
 また、共通端子21aと選択端子21dとを結ぶ経路のオン抵抗と、共通端子22aと選択端子22dとを結ぶ経路のオン抵抗とは等しくなる。また、共通端子21aと選択端子21dとを結ぶ経路に流れる平衡信号および共通端子22aと選択端子22dとを結ぶ経路に流れる平衡信号は、それぞれ同時にフィルタ33の平衡端子33aおよび33bに入力される。これにより、フィルタ33を通過する一対の平衡信号の平衡度を高めることが可能となる。
 なお、スイッチ回路20において、スイッチ21および22は、個別に配置されていなくてもよく、一体化されていてもよい。図2は、実施の形態に係るスイッチ回路20およびフィルタ31~33の接続構成例を示す図である。
 図2の(a)に示された構成例では、スイッチ21および22のそれぞれは、SP3T型のスイッチであり、スイッチ21および22は離間して(個別に)配置されている。このため、スイッチ21および22とフィルタ31~33とを接続する配線は、一部交叉することとなる。
 一方、図2の(b)に示された構成例では、スイッチ回路20は、DP6T(Double Pole 6 Throw)型のスイッチを1つ有する。つまり、スイッチ21および22は一体化されており、選択端子21b、21cおよび21dと選択端子22b、22cおよび22dとは交互に配置されている。このように選択端子の配置を最適化することにより、スイッチ21および22とフィルタ31~33とを接続する配線を交叉しなくできる。これにより、図2の(b)に示された構成例では、図2の(a)に示された構成例と比較して、フィルタ31~33に入力される一対の平衡信号の平衡度を、より高めることが可能となる。
 なお、図2の(b)において、スイッチ回路20のうち、共通端子21a、選択端子21b、21cおよび21dを含む部分がスイッチ21と定義され、共通端子22a、選択端子22b、22cおよび22dを含む部分がスイッチ22と定義される。
 [1.4 フィルタ31~33の構成]
 次に、フィルタ31~33の構造について説明する。フィルタ31~33のそれぞれは、2つの平衡端子および1つの非平衡端子を有する、バランス型フィルタである。
 図3は、実施の形態に係るフィルタ31の電極構成の一例を示す図である。同図に示すように、フィルタ31は、例えば、圧電性を有する基板(図示せず)と、当該基板上に形成されたIDT(InterDigital Transducer)電極310、320、330、340および350と、反射電極360および370と、を有する、縦結合型弾性表面波フィルタである。IDT電極310~350のそれぞれは、一対の櫛歯状電極で構成されている。上記櫛歯状電極は、互いに平行に配置された複数の電極指と、各電極指の一端同士を接続するバスバー電極とで構成され、2つの櫛歯状電極の電極指が間挿し合うことで一対の櫛歯状電極が形成されている。なお、IDT電極310は、一対の櫛歯状電極の一方が、2つのバスバー電極に分割接続されている。IDT電極310~350は、電極指の延伸方向と垂直な方向に、IDT電極340、320、310、330および350という順で、隣り合って配置されている。反射電極360および370は、IDT電極310~350を挟むように、IDT電極310~350の両端に配置されている。
 平衡端子31aは、IDT電極350を構成する一対の櫛歯状電極の一方およびIDT電極310を構成する一対の櫛歯状電極の一方の右側のバスバー電極に接続されている。平衡端子31bは、IDT電極340を構成する一対の櫛歯状電極の一方およびIDT電極310を構成する一対の櫛歯状電極の一方の左側電極に接続されている。非平衡端子31cは、IDT電極320を構成する一対の櫛歯状電極の一方およびIDT電極330を構成する一対の櫛歯状電極の一方に接続されている。なお、IDT電極310を構成する一対の櫛歯状電極の他方、IDT電極320を構成する一対の櫛歯状電極の他方、IDT電極330を構成する一対の櫛歯状電極の他方、IDT電極340を構成する一対の櫛歯状電極の他方、およびIDT電極350を構成する一対の櫛歯状電極の他方は、グランドに接続されている。
 上記電極構成によれば、フィルタ31は、平衡端子31aおよび31bから入力された一対の平衡信号を、5つのIDT電極により非平衡信号に変換して非平衡端子31cから出力することが可能である。また、フィルタ31は、非平衡端子31cから入力された非平衡信号を、5つのIDT電極により一対の平衡信号に変換して平衡端子31aおよび31bから出力することが可能である。なお、フィルタ31は、5つのIDT電極により、入力された高周波信号をフィルタリングする機能と平衡-非平衡変換機能とを兼用している。このため、高周波モジュール1にフィルタ31のようなバランス型フィルタが配置されることで、別途、トランスフォーマのような平衡-非平衡変換素子を配置する必要がなくなる。
 なお、縦結合型弾性波共振器を用いたバランス型フィルタは、図3に示された電極構成を有することに限定されない。縦結合型弾性波共振器を用いたバランス型フィルタは、弾性波伝搬方向に並ぶ少なくとも3つのIDT電極を有し、中央に配置されたIDT電極を非平衡端子に接続し、両端に配置されたIDT電極をそれぞれ平衡端子に接続すればよい。
 また、バランス型フィルタは、ラダー型弾性表面波共振器でも構成でき、また、バルク弾性波共振子を用いても構成できる。
 なお、フィルタ32および33も、図3で示されたフィルタ31の電極構成と同様の電極構成を有している。
 [1.5 高周波モジュールの各ノードにおける電力遷移]
 図4は、実施の形態および比較例に係る高周波モジュールの各ノードにおける必要電力値を比較した図である。図4の(a)には、本実施の形態に係る高周波モジュール1のノードa(電力増幅回路10の出力端)、ノードb(スイッチ回路20の入力端)、ノードc(スイッチ回路20の出力端)、およびノードd(フィルタ31~33の出力端)における必要電力値が示されている。また、図4の(b)には、比較例に係る高周波モジュール500のノードa(電力増幅回路10の出力端)、ノードa’(トランス540の出力端)、ノードb(スイッチ24の入力端)、ノードc(スイッチ24の出力端)、およびノードd(フィルタ531~533の出力端)における必要電力値が示されている。
 ここで、比較例に係る高周波モジュール500の構成を説明する。図4の(b)に示すように、比較例に係る高周波モジュール500は、電力増幅回路10と、トランス540と、スイッチ24と、フィルタ531、532および533と、整合回路56と、信号入力端子110と、を備える。なお、図示していないが、高周波モジュール500は、さらに、アンテナ接続端子100およびスイッチ40を備える。比較例に係る高周波モジュール500は、実施の形態に係る高周波モジュール1と比較して、電力増幅回路10の出力端に接続された回路構成が異なる。以下、高周波モジュール500について、電力増幅回路10の構成については説明を省略する。
 トランス540は、互いに電磁界結合する一次側コイルおよび二次側コイルを有している。一次側コイルの一端は、増幅器11の出力端に接続され、一次側コイルの他端は増幅器12の出力端に接続されている。また、二次側コイルの一端は整合回路56を介してスイッチ24に接続され、二次側コイルの他端はグランドに接続されている。トランス540は、一次側コイルの両端に入力された一対の平衡信号を非平衡信号に変換し、当該非平衡信号を二次側コイルの一端から出力する。
 スイッチ24は、共通端子24a、選択端子24b、24cおよび24dを有する。スイッチ24は、共通端子24aと選択端子24bとの接続、共通端子24aと選択端子24cとの接続、および、共通端子24aと選択端子24dとの接続、を切り替える。スイッチ24は、SP3T型のスイッチである。
 フィルタ531は、第1バンドを含む通過帯域を有し、2つの非平衡端子を有する。フィルタ532は、第2バンドを含む通過帯域を有し、2つの非平衡端子を有する。フィルタ533は、第3バンドを含む通過帯域を有し、2つの非平衡端子を有する。フィルタ531~533のそれぞれは、入力された非平衡信号を各バンドの周波数帯域でフィルタリングし、非平衡信号として出力する。
 整合回路56は、トランス540の出力端と共通端子24aとの間に接続されている。
 共通端子24aは整合回路56を介してトランス540の二次側コイルの一端に接続されている。また、選択端子24bはフィルタ531の非平衡端子に接続され、選択端子24cはフィルタ532の非平衡端子に接続され、選択端子24dはフィルタ533の非平衡端子に接続されている。
 上記構成により、比較例に係る高周波モジュール500では、整合回路56の入力端からフィルタ531~533の出力端までの経路において1つの非平衡信号が伝送する回路構成となっている。
 まず、図4の(a)に示された高周波モジュール1における電力遷移について説明する。フィルタ31~33の出力端(ノードd)では、28dBmの電力値が必要であると仮定する。フィルタ31~33のそれぞれは、一対の平衡信号を合成して1つの非平衡信号に変換するため、各平衡端子に対する非平衡端子の電力結合利得は3dBとなる。一方、フィルタ31~33のそれぞれの挿入損失を1.2dBとすると、フィルタ31~33における各平衡端子(ノードc)では、26.2dBm(28dBm-3dB+1.2dB)の電力値が必要となる。スイッチ21および22における共通端子-選択端子間の挿入損失を0.3dBとすると、共通端子21aおよび22aのそれぞれ(ノードb)では、26.5dBm(26.2dBm+0.3dB)の電力値が必要となる。整合回路51および52のそれぞれにおける整合損を0.3dBとすると、増幅器11の出力端および増幅器12の出力端のそれぞれ(ノードa)では、26.8dBm(26.5dBm+0.3dB)の電力値が必要となる。
 次に、図4の(b)に示された高周波モジュール500における電力遷移について説明する。フィルタ531~533の出力端(ノードd)では、28dBmの電力値が必要であると仮定する。フィルタ531~533のそれぞれは、1つの非平衡信号を1つの非平衡信号に変換するため、一方の非平衡端子に対する他方の非平衡端子の電力結合利得は0dBである。一方、フィルタ531~533のそれぞれの挿入損失を1.2dBとすると、フィルタ531~533における入力側の各非平衡端子(ノードc)では、29.2dBm(28dBm+1.2dB)の電力値が必要となる。スイッチ24における共通端子-選択端子間の挿入損失を0.5dBとすると、共通端子24a(ノードb)では、29.7dBm(29.2dBm+0.5dB)の電力値が必要となる。整合回路56における整合損を0.3dBとすると、トランス540の出力端(ノードa’)では、30.0dBm(29.7dBm+0.3dB)の電力値が必要となる。トランス540は、一対の平衡信号を合成して1つの非平衡信号に変換するため、一次側コイルの各端子に対する二次側コイルの一端の電力結合利得は3dBとなる。一方、トランス540の一次側コイルと二次側コイルとの結合損を1.0dBとすると、増幅器11の出力端および増幅器12の出力端のそれぞれ(ノードa)では、28.0dBm(30.0dBm-3dB+1.0dB)の電力値が必要となる。
 なお、実施の形態に係る高周波モジュール1におけるスイッチ21および22の挿入損失(0.3dB)が、比較例に係る高周波モジュール500におけるスイッチ24の挿入損失(0.5dB)よりも小さいのは、耐電力性低減により共通端子および選択端子の間に直列接続された1以上の半導体素子のスタック数が低減されているためである。
 実施の形態に係る高周波モジュール1および比較例に係る高周波モジュール500の各ノードにおける必要電力値を比較すると、高周波モジュール1の方が、ノードcにおける電力値が3.0dB低く、ノードbにおける電力値が3.2dB低く、ノードaにおける電力値が1.2dB低くなっていることが解る。つまり、実施の形態に係る高周波モジュール1では、比較例に係る高周波モジュール500と比較して、フィルタ31~33の入力電力が3.0dB低く、スイッチ21および22の入力電力が3.2dB低く、増幅器11および12の出力電力が1.2dB低くなる。
 実施の形態に係る高周波モジュール1によれば、フィルタ31~33およびスイッチ回路20にかかる電力をほぼ半減することができるので、伝送損失の低減およびフィルタ31~33の小型化が可能となる。
 また、電力増幅回路10の出力側に、トランスを設ける必要がないので、高周波モジュール1の伝送損失を低減できる。これにより、高周波モジュール1の電力効率が向上する。
 また、電力増幅回路10の出力電力を低減できるので、電力増幅回路10の出力端に必要なインピーダンスを増加させることができるため、さらに電力効率を改善できる。
 [1.6 変形例に係る高周波モジュール1Aの回路構成]
 図5は、変形例に係る高周波モジュール1Aおよび通信装置4Aの回路構成図である。本変形例に係る通信装置4Aは、高周波モジュール1Aと、アンテナ2と、RFIC3と、を備える。本変形例に係る通信装置4Aは、実施の形態に係る通信装置4と比較して、高周波モジュール1Aの回路構成が異なる。よって以下では、本変形例に係る高周波モジュール1Aの回路構成について説明する。
 図5に示すように、高周波モジュール1Aは、電力増幅回路10Aと、スイッチ回路20Aと、フィルタ回路31A、32Aおよび33Aと、スイッチ40と、整合回路511、512、51m、521、522および52mと、信号入力端子110と、アンテナ接続端子100と、を備える。本変形例に係る高周波モジュール1Aは、実施の形態に係る高周波モジュール1が一対の平衡信号を伝送する回路構成を有するのに対して、m対(mは2以上の整数)の平衡信号を伝送する回路構成を有する点が異なる。以下、本変形例に係る高周波モジュール1Aについて、実施の形態に係る高周波モジュール1と同じ構成については説明を省略し、異なる構成を中心に説明する。
 電力増幅回路10Aは、差動増幅型の増幅回路の一例であり、信号入力端子110から入力された非平衡信号をm対の平衡信号に変換し、当該m対の平衡信号を増幅する。電力増幅回路10Aは、増幅器111、112および11mと、増幅器121、122および12mと、増幅器13と、トランス15と、を備える。
 トランス15は、トランスフォーマの一例であり、互いに電磁界結合する一次側コイルおよび二次側コイルを有している。一次側コイルの一端は、増幅器13を介して信号入力端子110に接続され、一次側コイルの他端はグランドに接続されている。また、二次側コイルの一端は増幅器111、112および11mの入力端に接続され、二次側コイルの他端は増幅器121、122および12mの入力端に接続されている。トランス15は、一次側コイルの一端に入力された非平衡信号を、互いに逆相となる2つの平衡信号に変換し、当該2つの平衡信号を二次側コイルの両端から出力する。
 増幅器111、112および11mのそれぞれは、第1増幅器の一例であり、トランス15とスイッチ回路20Aとの間に接続されており、第1バンド、第2バンドおよび第3バンドの平衡信号を増幅可能である。なお、増幅器111、112および11m、と記す場合は、m個の第1増幅器を示す。
 増幅器121、122および12mのそれぞれは、第2増幅器の一例であり、トランス15とスイッチ回路20Aとの間に接続されており、第1バンド、第2バンドおよび第3バンドの平衡信号を増幅可能である。なお、増幅器121、122および12m、と記す場合は、m個の第2増幅器を示す。増幅器111、112および11mと増幅器121、122および12mとは、差動増幅型の増幅回路を構成する。
 スイッチ回路20Aは、m個の第1スイッチおよびm個の第2スイッチを含む。
 m個の第1スイッチの1つ目は、共通端子251(第1共通端子)、選択端子271p(第1選択端子)、選択端子281p(第2選択端子)、および選択端子291pを有する。m個の第1スイッチの2つ目は、共通端子252(第1共通端子)、選択端子272p(第1選択端子)、選択端子282p(第2選択端子)、および選択端子292pを有する。m個の第1スイッチのm個目は、共通端子25m(第1共通端子)、選択端子27mp(第1選択端子)、選択端子28mp(第2選択端子)、および選択端子29mpを有する。m個の第1スイッチのそれぞれは、第1共通端子と3つの選択端子のいずれかとの接続を切り替える。
 m個の第2スイッチの1つ目は、共通端子261(第2共通端子)、選択端子271n(第3選択端子)、選択端子281n(第4選択端子)、および選択端子291nを有する。m個の第2スイッチの2つ目は、共通端子262(第2共通端子)、選択端子272n(第3選択端子)、選択端子282n(第4選択端子)、および選択端子292nを有する。m個の第2スイッチのm個目は、共通端子26m(第2共通端子)、選択端子27mn(第3選択端子)、選択端子28mn(第4選択端子)、および選択端子29mnを有する。m個の第2スイッチのそれぞれは、第2共通端子と3つの選択端子のいずれかとの接続を切り替える。
 m個の第1スイッチおよびm個の第2スイッチのそれぞれは、SP3T型のスイッチである。
 フィルタ回路31Aは、フィルタ311、312、および31mを有し、m個の第1フィルタを有する。フィルタ311、312および31mのそれぞれは、第1フィルタの一例であり、第1バンドを含む通過帯域を有する。フィルタ311、312および31mのそれぞれは、2つの平衡端子(第1平衡端子および第2平衡端子)、ならびに非平衡端子(第1非平衡端子)を有する。なお、フィルタ311、312、および31m、と記す場合は、m個の第1フィルタを示す。
 フィルタ回路32Aは、フィルタ321、322、および32mを有し、m個の第2フィルタを有する。フィルタ321、322および32mのそれぞれは、第2フィルタの一例であり、第2バンドを含む通過帯域を有する。フィルタ321、322および32mのそれぞれは、2つの平衡端子(第3平衡端子および第4平衡端子)、ならびに非平衡端子(第2非平衡端子)を有する。なお、フィルタ321、322、および32m、と記す場合は、m個の第2フィルタを示す。
 フィルタ回路33Aは、フィルタ331、332、およびフィルタ33mを有する。フィルタ331、332および33mのそれぞれは、第3バンドを含む通過帯域を有する。フィルタ331、332および33mのそれぞれは、2つの平衡端子および非平衡端子を有する。
 整合回路511は、増幅器111の出力端と共通端子251との間に接続されている。整合回路512は、増幅器112の出力端と共通端子252との間に接続されている。整合回路51mは、増幅器11mの出力端と共通端子25mとの間に接続されている。整合回路521は、増幅器121の出力端と共通端子261との間に接続されている。整合回路522は、増幅器122の出力端と共通端子262との間に接続されている。整合回路52mは、増幅器12mの出力端と共通端子26mとの間に接続されている。
 共通端子251(第1共通端子)は整合回路511を介して増幅器111(第1増幅器)の出力端に接続され、共通端子252(第1共通端子)は整合回路512を介して増幅器112(第1増幅器)の出力端に接続され、共通端子25mは整合回路51mを介して増幅器11mの出力端に接続されている。また、共通端子261(第2共通端子)は整合回路521を介して増幅器121(第2増幅器)の出力端に接続され、共通端子262(第2共通端子)は整合回路522を介して増幅器122(第2増幅器)の出力端に接続され、共通端子26mは整合回路52mを介して増幅器12mの出力端に接続されている。
 選択端子271p(第1選択端子)はフィルタ311(第1フィルタ)の2つの平衡端子の一方(第1平衡端子)に接続され、選択端子281p(第2選択端子)はフィルタ321(第2フィルタ)の2つの平衡端子の一方(第3平衡端子)に接続され、選択端子291pはフィルタ331の2つの平衡端子の一方に接続されている。
 選択端子271n(第3選択端子)はフィルタ311(第1フィルタ)の2つの平衡端子の他方(第2平衡端子)に接続され、選択端子281n(第4選択端子)はフィルタ321(第2フィルタ)の2つの平衡端子の他方(第4平衡端子)に接続され、選択端子291nはフィルタ331の2つの平衡端子の他方に接続されている。
 選択端子272p(第1選択端子)はフィルタ312(第1フィルタ)の2つの平衡端子の一方(第1平衡端子)に接続され、選択端子282p(第2選択端子)はフィルタ322(第2フィルタ)の2つの平衡端子の一方(第3平衡端子)に接続され、選択端子292pはフィルタ332の2つの平衡端子の一方に接続されている。
 選択端子272n(第3選択端子)はフィルタ312(第1フィルタ)の2つの平衡端子の他方(第2平衡端子)に接続され、選択端子282n(第4選択端子)はフィルタ322(第2フィルタ)の2つの平衡端子の他方(第4平衡端子)に接続され、選択端子292nはフィルタ332の2つの平衡端子の他方に接続されている。
 選択端子27mp(第1選択端子)はフィルタ31m(第1フィルタ)の2つの平衡端子の一方(第1平衡端子)に接続され、選択端子28mp(第2選択端子)はフィルタ32m(第2フィルタ)の2つの平衡端子の一方(第3平衡端子)に接続され、選択端子29mpはフィルタ33mの2つの平衡端子の一方に接続されている。
 選択端子27mn(第3選択端子)はフィルタ31m(第1フィルタ)の2つの平衡端子の他方(第2平衡端子)に接続され、選択端子28mn(第4選択端子)はフィルタ32m(第2フィルタ)の2つの平衡端子の他方(第4平衡端子)に接続され、選択端子29mnはフィルタ33mの2つの平衡端子の他方に接続されている。
 フィルタ311、312および31mのそれぞれの非平衡端子(第1非平衡端子)は互いに接続されている。フィルタ321、322および32mのそれぞれの非平衡端子(第2非平衡端子)は互いに接続されている。フィルタ331、332および33mのそれぞれの非平衡端子は互いに接続されている。
 高周波モジュール1Aの上記構成によれば、電力増幅回路10Aの出力端からフィルタ回路31A~33Aまでの全ての信号経路には、平衡信号が伝送される。これにより、上記信号経路に非平衡信号が伝送される回路と比較して、各信号経路を伝送する信号電力を低減でき低消費電力化を図ることができる。また、信号電力を低減できるので、スイッチ回路20Aおよびフィルタ回路31A~33Aの耐電力性を低減できるので、スイッチ回路20Aおよびフィルタ回路31A~33Aを小型化できる。よって、低消費電力化および小型化が可能な高周波モジュール1Aを提供できる。
 上記構成において、フィルタ回路31A、32Aおよび33Aのそれぞれの出力電力をPFIL(dBm)とする。フィルタ回路31Aでは、フィルタ311、312および31mを含むm個のフィルタの電力が合成されるので、フィルタ回路31Aの電力結合利得はm×3(dB)となる。フィルタ回路32Aおよび33Aの電力結合利得も、同様に、それぞれm×3(dB)となる。また、各フィルタの挿入損失をILFIL(dB)とする。また、スイッチ回路20Aにおける1つの共通端子と1つの選択端子との間の挿入損失をILSWとする。また、各整合回路の整合損をILMNとする。この場合、フィルタ回路31A~33Aの入力端での電力値PFIL_I、スイッチ回路20Aの入力端での電力値PSW_I、および電力増幅回路10Aが有する各増幅器の出力端での電力値PPA_Oは、それぞれ以下の式1~式3で表される。
 PFIL_I=PFIL-(m×3)+ILFIL     (式1)
 PSW_I=PFIL-(m×3)+ILFIL+ILSW     (式2)
 PPA_O=PFIL-(m×3)+ILFIL+ILSW+ILMN   (式3)
 式1~式3において、実施の形態に係る高周波モジュール1は、m=1の場合に相当する。これより、本変形例に係る高周波モジュール1Aでは、差動増幅器の対数をm個としていることにより、実施の形態に係る高周波モジュール1と比較して、各ノードに必要な電力値を、3×(m-1)(dB)だけ低減できる。つまり、差動増幅器の対数を増やすことにより、フィルタ回路およびスイッチ回路にかかる電力を低減できるので、さらなるハイパワーが要求されるシステムにも対応することが可能となる。
 [1.7 高周波モジュール1の実装構成]
 図6は、実施の形態に係る高周波モジュール1の平面図である。同図には、モジュール基板90の主面をz軸正方向側から透視した場合の回路部品の配置が示されている。なお、図6において、モジュール基板90および各回路部品を接続する配線の図示が一部省略されている。高周波モジュール1は、図1に示された回路構成に加えて、さらに、モジュール基板90を有している。
 モジュール基板90は、互いに対向する第1主面および第2主面を有し、高周波モジュール1を構成する回路部品を実装する基板である。モジュール基板90としては、例えば、複数の誘電体層の積層構造を有する低温同時焼成セラミックス(Low Temperature Co-fired Ceramics:LTCC)基板、高温同時焼成セラミックス(High Temperature Co-fired Ceramics:HTCC)基板、部品内蔵基板、再配線層(Redistribution Layer:RDL)を有する基板、または、プリント基板等が用いられる。
 モジュール基板90の第1主面には、電力増幅回路10、スイッチ回路20、スイッチ40、整合回路51および52、フィルタ31、32および33、アンテナ接続端子100、ならびに信号入力端子110が配置されている。なお、上記の回路部品の少なくとも1つがモジュール基板90の第2主面、または、モジュール基板90の内部に配置されていてもよい。
 増幅器11および12は、第1半導体ICに含まれていてもよい。また、トランス15も第1半導体ICに形成されていてもよい。これによれば、高周波モジュール1を小型化できる。
 また、スイッチ回路20は、第2半導体ICに含まれていてもよい。
 第1半導体ICおよび第2半導体ICは、例えばCMOS(Complementary Metal Oxide Semiconductor)を用いて構成され、具体的にはSOI(Silicon on Insulator)プロセスにより製造されてもよい。また、第1半導体ICおよび第2半導体ICは、GaAs、SiGeおよびGaNのうちの少なくとも1つで構成されてもよい。なお、第1半導体ICおよび第2半導体ICの半導体材料は、上述した材料に限定されない。
 増幅器11の出力端と共通端子21aとは、配線101、配線151、整合回路51、配線153、および配線103を介して接続されている。配線101、配線151、配線153、および配線103を、併せて第1配線と定義する。
 また、増幅器12の出力端と共通端子22aとは、配線102、配線152、整合回路52、配線154および配線104を介して接続されている。配線102、配線152、配線154および配線104を、併せて第2配線と定義する。
 配線151、152、153および154は、モジュール基板90の第1主面または内部に形成されている。配線101および102は、電力増幅回路10を含む第1半導体ICに形成されている。配線103および104は、スイッチ回路20を含む第2半導体ICに形成されている。
 ここで、第1配線と第2配線とは、隣接配置されていることが望ましい。これによれば、第1配線および第2配線を伝送する一対の平衡信号のアンバランスに起因するパワーリークおよび不要波漏洩を抑制できる。
 さらに、第1配線は、第2配線と同じ配線長であることが望ましい。これによれば、第1配線および第2配線を伝送する一対の平衡信号のアンバランスに起因するパワーリークおよび不要波漏洩を、より一層抑制できる。
 なお、第1配線と第2配線とが厳密に同じ配線長を有さなくてもよく、第1配線のうちの配線151および153の合計配線長が、第2配線のうちの配線152および154の合計配線長と同じであってもよい。これによれば、モジュール基板90に形成された配線において、パワーリークおよび不要波漏洩を抑制できる。
 フィルタ31の平衡端子31aとスイッチ回路20の選択端子21bとは、配線134(第3配線)を介して接続され、平衡端子31bと選択端子22bとは、配線135(第4配線)を介して接続されている。フィルタ32の平衡端子32aと選択端子21cとは、配線136(第3配線)を介して接続され、平衡端子32bと選択端子22cとは、配線137(第4配線)を介して接続されている。フィルタ33の平衡端子33aと選択端子21dとは、配線138(第3配線)を介して接続され、平衡端子33bと選択端子22dとは、配線139(第4配線)を介して接続されている。
 スイッチ40とフィルタ31とは、配線131を介して接続され、スイッチ40とフィルタ32とは、配線132を介して接続され、スイッチ40とフィルタ33とは、配線133を介して接続されている。
 配線131、132、133、134、135、136、137、138および139は、モジュール基板90の第1主面または内部に形成されている。
 ここで、配線134と配線135とは、隣接配置され、配線136と配線137とは、隣接配置され、配線138と配線139とは、隣接配置されていることが望ましい。これによれば、第3配線および第4配線を伝送する一対の平衡信号のアンバランスに起因するパワーリークおよび不要波漏洩を抑制できる。
 さらに、配線134は配線135と同じ配線長を有し、配線136は配線137と同じ配線長を有し、配線138は配線139と同じ配線長を有することが望ましい。これによれば、第1配線および第2配線を伝送する一対の平衡信号のアンバランスに起因するパワーリークおよび不要波漏洩を、より一層抑制できる。
 [2.効果など]
 以上、本実施の形態に係る高周波モジュール1は、差動増幅型の増幅回路を構成する増幅器11および12と、共通端子21a、選択端子21bおよび21cを有するスイッチ21と、共通端子22a、選択端子22bおよび22cを有するスイッチ22と、平衡端子31a、31bおよび非平衡端子31cを有し、第1バンドを含む通過帯域を有するフィルタ31と、平衡端子32a、32bおよび非平衡端子32cを有し、第2バンドを含む通過帯域を有するフィルタ32と、を備え、共通端子21aは増幅器11の出力端に接続され、共通端子22aは増幅器12の出力端に接続され、選択端子21bは平衡端子31aに接続され、選択端子21cは平衡端子32aに接続され、選択端子22bは平衡端子31bに接続され、選択端子22cは平衡端子32bに接続されている。
 これによれば、増幅器11および12からフィルタ31~33までの全ての信号経路には、平衡信号が伝送される。これにより、上記信号経路に非平衡信号が伝送される回路と比較して、各信号経路を伝送する信号電力を低減でき低消費電力化を図ることができる。また、信号電力を低減できるので、スイッチ21、22およびフィルタ31~33の耐電力性を低減でき、スイッチ21、22およびフィルタ31~33を小型化できる。よって、低消費電力化および小型化が可能な高周波モジュール1を提供できる。
 また例えば、高周波モジュール1において、スイッチ21は、共通端子21aと選択端子21bとの接続および共通端子21aと選択端子21cとの接続を切り替え、スイッチ22は、共通端子22aと選択端子22bとの接続および共通端子22aと選択端子22cとの接続を切り替え、共通端子21aと選択端子21bとが接続されているときに、共通端子22aと選択端子22bとが接続されており、共通端子21aと選択端子21cとが接続されているときに、共通端子22aと選択端子22cとが接続されていてもよい。
 これによれば、第1バンドの信号を伝送する場合には、スイッチ21および22の切り替え動作により第1バンドの信号はフィルタ31を通過する。また、第2バンドの信号を伝送する場合には、スイッチ21および22の切り替え動作により第2バンドの信号はフィルタ32を通過する。
 また例えば、高周波モジュール1において、スイッチ21および22のそれぞれは、複数の半導体素子で構成され、共通端子21aと選択端子21bとの間に直列接続された1以上の半導体素子のスタック数と、共通端子22aと選択端子22bとの間に接続された1以上の半導体素子のスタック数とは、等しく、共通端子21aと選択端子21cとの間に接続された1以上の半導体素子のスタック数と、共通端子22aと選択端子22cとの間に接続された1以上の半導体素子のスタック数とは、等しくてもよい。
 これによれば、共通端子21aと選択端子21bとを結ぶ経路のオン抵抗と、共通端子22aと選択端子22bとを結ぶ経路のオン抵抗とは等しくなる。また、共通端子21aと選択端子21bとを結ぶ経路に流れる平衡信号および共通端子22aと選択端子22bとを結ぶ経路に流れる平衡信号は、それぞれ同時にフィルタ31の平衡端子31aおよび31bに入力される。これにより、フィルタ31を通過する一対の平衡信号の平衡度を高めることが可能となる。また、共通端子21aと選択端子21cとを結ぶ経路のオン抵抗と、共通端子22aと選択端子22cとを結ぶ経路のオン抵抗とは等しくなる。また、共通端子21aと選択端子21cとを結ぶ経路に流れる平衡信号および共通端子22aと選択端子22cとを結ぶ経路に流れる平衡信号は、それぞれ同時にフィルタ32の平衡端子32aおよび32bに入力される。これにより、フィルタ32を通過する一対の平衡信号の平衡度を高めることが可能となる。
 また例えば、高周波モジュール1は、さらに、信号入力端子110と、一次側コイルおよび二次側コイルを有するトランス15と、を備え、一次側コイルの一端は信号入力端子110に接続され、一次側コイルの他端はグランドに接続され、二次側コイルの一端は増幅器11の入力端に接続され、二次側コイルの他端は増幅器12の入力端に接続されていてもよい。
 また例えば、高周波モジュール1において、増幅器11および12は第1半導体ICで構成され、トランス15は第1半導体ICに含まれてもよい。
 これによれば、高周波モジュール1を小型化できる。
 また例えば、高周波モジュール1は、さらに、アンテナ接続端子100、ならびに、アンテナ接続端子100とフィルタ31および32との間に接続されたスイッチ40、を備えてもよい。
 また例えば、高周波モジュール1において、増幅器11の出力端および増幅器12の出力端と、フィルタ31の入力端およびフィルタ32の入力端との間に、トランスフォーマが接続されていなくてもよい。
 これによれば、増幅器11および12からフィルタ31および32までの信号経路に、平衡信号を非平衡信号に変換するトランスフォーマが配置されていないので、高周波モジュール1を、より小型化できる。
 また例えば、変形例に係る高周波モジュール1Aは、複数の第1増幅器(増幅器111、112、11m)と、複数の第2増幅器(増幅器121、122、12m)と、複数の第1スイッチと、複数の第2スイッチと、複数の第1フィルタ(フィルタ311、312、31m)と、複数の第2フィルタ(フィルタ321、322、32m)と、を備え、複数の第1増幅器のそれぞれの入力端は、互いに接続され、複数の第2増幅器のそれぞれの入力端は、互いに接続され、複数の第1スイッチの1つの第1共通端子は複数の第1増幅器の1つの出力端に接続され、複数の第1スイッチの他の1つの第1共通端子は複数の第1増幅器の他の1つの出力端に接続され、複数の第2スイッチの1つの第2共通端子は複数の第2増幅器の1つの出力端に接続され、複数の第2スイッチの他の1つの第2共通端子は複数の第2増幅器の他の1つの出力端に接続され、複数の第1スイッチの1つの第1選択端子は複数の第1フィルタの1つの第1平衡端子に接続され、複数の第1スイッチの1つの第2選択端子は複数の第2フィルタの1つの第3平衡端子に接続され、複数の第1スイッチの他の1つの第1選択端子は複数の第1フィルタの他の1つの第1平衡端子に接続され、複数の第1スイッチの他の1つの第2選択端子は複数の第2フィルタの他の1つの第3平衡端子に接続され、複数の第2スイッチの1つの第3選択端子は複数の第1フィルタの1つの第2平衡端子に接続され、複数の第2スイッチの1つの第4選択端子は複数の第2フィルタの1つの第4平衡端子に接続され、複数の第2スイッチの他の1つの第3選択端子は複数の第1フィルタの他の1つの第2平衡端子に接続され、複数の第2スイッチの他の1つの第4選択端子は複数の第2フィルタの他の1つの第4平衡端子に接続され、複数の第1フィルタのそれぞれの第1非平衡端子は互いに接続され、複数の第2フィルタのそれぞれの第2非平衡端子は互いに接続されていてもよい。
 これによれば、複数の第1増幅器および複数の第2増幅器の出力端から複数の第1フィルタおよび複数の第2フィルタまでの全ての信号経路には、平衡信号が伝送される。これにより、上記信号経路に非平衡信号が伝送される回路と比較して、各信号経路を伝送する信号電力を低減でき低消費電力化を図ることができる。また、信号電力を低減できるので、複数の第1スイッチ、複数の第2スイッチ、複数の第1フィルタおよび複数の第2フィルタの耐電力性を低減でき、これらを小型化できる。よって、低消費電力化および小型化が可能な高周波モジュール1Aを提供できる。
 また例えば、高周波モジュール1は、さらに、増幅器11および12、スイッチ21および22、フィルタ31および32が配置されたモジュール基板90を備え、増幅器11の出力端と共通端子21aとを接続する第1配線と、増幅器12の出力端と共通端子22aとを接続する第2配線とは隣接配置されていてもよい。
 これによれば、第1配線および第2配線を伝送する一対の平衡信号のアンバランスに起因するパワーリークおよび不要波漏洩を抑制できる。
 また例えば、高周波モジュール1において、第1配線は第2配線と同じ配線長を有してもよい。
 これによれば、第1配線および第2配線を伝送する一対の平衡信号のアンバランスに起因するパワーリークおよび不要波漏洩を、より一層抑制できる。
 また例えば、高周波モジュール1において、選択端子21bと平衡端子31aとを接続する第3配線と、選択端子22bと平衡端子31bとを接続する第4配線とは隣接配置されていてもよい。
 これによれば、第3配線および第4配線を伝送する一対の平衡信号のアンバランスに起因するパワーリークおよび不要波漏洩を抑制できる。
 また例えば、高周波モジュール1において、第3配線は第4配線と同じ配線長を有してもよい。
 これによれば、第3配線および第4配線を伝送する一対の平衡信号のアンバランスに起因するパワーリークおよび不要波漏洩を、より一層抑制できる。
 また例えば、高周波モジュール1において、増幅器11および12はモジュール基板90上に配置された第1半導体ICに含まれ、スイッチ21および22はモジュール基板90上に配置された第2半導体ICに含まれ、フィルタ31および32のそれぞれはモジュール基板90上に配置されていてもよい。
 これによれば、高周波モジュール1を小型化できる。
 また、本実施の形態に係る通信装置4は、高周波信号を処理するRFIC3と、RFIC3とアンテナ2との間で高周波信号を伝送する高周波モジュール1と、を備える。
 これによれば、高周波モジュール1の効果を通信装置4で実現することができる。
 (その他の実施の形態など)
 以上、実施の形態に係る高周波モジュールおよび通信装置について、実施の形態および変形例を挙げて説明したが、本発明に係る高周波モジュールおよび通信装置は、上記実施の形態および変形例に限定されるものではない。上記実施の形態および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態および変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波モジュールおよび通信装置を内蔵した各種機器も本発明に含まれる。
 例えば、上記実施の形態および変形例に係る高周波モジュールおよび通信装置において、図面に開示された各回路素子および信号経路を接続する経路の間に、別の回路素子および配線などが挿入されていてもよい。
 以下に、上記実施の形態および変形例に基づいて説明した高周波モジュールおよび通信装置の特徴を示す。
 <1>
 差動増幅型の増幅回路を構成する第1増幅器および第2増幅器と、
 第1共通端子、第1選択端子および第2選択端子を有する第1スイッチと、
 第2共通端子、第3選択端子および第4選択端子を有する第2スイッチと、
 第1平衡端子、第2平衡端子および第1非平衡端子を有し、第1バンドを含む通過帯域を有する第1フィルタと、
 第3平衡端子、第4平衡端子および第2非平衡端子を有し、第2バンドを含む通過帯域を有する第2フィルタと、を備え、
 前記第1共通端子は前記第1増幅器の出力端に接続され、
 前記第2共通端子は前記第2増幅器の出力端に接続され、
 前記第1選択端子は前記第1平衡端子に接続され、
 前記第2選択端子は前記第3平衡端子に接続され、
 前記第3選択端子は前記第2平衡端子に接続され、
 前記第4選択端子は前記第4平衡端子に接続されている、高周波モジュール。
 <2>
 前記第1スイッチは、前記第1共通端子と前記第1選択端子との接続および前記第1共通端子と前記第2選択端子との接続を切り替え、
 前記第2スイッチは、前記第2共通端子と前記第3選択端子との接続および前記第2共通端子と前記第4選択端子との接続を切り替え、
 前記第1共通端子と前記第1選択端子との接続、および、前記第2共通端子と前記第3選択端子との接続は同時に実行され、
 前記第1共通端子と前記第2選択端子との接続、および、前記第2共通端子と前記第4選択端子との接続は同時に実行される、<1>に記載の高周波モジュール。
 <3>
 前記第1スイッチおよび前記第2スイッチのそれぞれは、複数の半導体素子で構成され、
 前記第1共通端子と前記第1選択端子との間に直列接続された1以上の半導体素子のスタック数と、前記第2共通端子と前記第3選択端子との間に接続された1以上の半導体素子のスタック数とは、等しく、
 前記第1共通端子と前記第2選択端子との間に接続された1以上の半導体素子のスタック数と、前記第2共通端子と前記第4選択端子との間に接続された1以上の半導体素子のスタック数とは、等しい、<1>または<2>に記載の高周波モジュール。
 <4>
 さらに、
 信号入力端子と、
 一次側コイルおよび二次側コイルを有するトランスフォーマと、を備え、
 前記一次側コイルの一端は、前記信号入力端子に接続され、
 前記一次側コイルの他端は、グランドに接続され、
 前記二次側コイルの一端は、前記第1増幅器の入力端に接続され、
 前記二次側コイルの他端は、前記第2増幅器の入力端に接続されている、<1>~<3>のいずれかに記載の高周波モジュール。
 <5>
 前記第1増幅器および前記第2増幅器は、第1半導体ICで構成され、
 前記トランスフォーマは、前記第1半導体ICに含まれる、<4>に記載の高周波モジュール。
 <6>
 さらに、
 アンテナ接続端子と、
 前記アンテナ接続端子と前記第1フィルタおよび前記第2フィルタとの間に接続された第3スイッチと、を備える、<1>~<5>のいずれかに記載の高周波モジュール。
 <7>
 前記第1増幅器の出力端および前記第2増幅器の出力端と、前記第1フィルタの入力端および前記第2フィルタの入力端との間に、トランスフォーマが接続されていない、<1>~<6>のいずれかに記載の高周波モジュール。
 <8>
 複数の前記第1増幅器と、
 複数の前記第2増幅器と、
 複数の前記第1スイッチと、
 複数の前記第2スイッチと、
 複数の前記第1フィルタと、
 複数の前記第2フィルタと、を備え、
 前記複数の第1増幅器のそれぞれの入力端は、互いに接続され、
 前記複数の第2増幅器のそれぞれの入力端は、互いに接続され、
 前記複数の第1スイッチの1つの前記第1共通端子は、前記複数の第1増幅器の1つの出力端に接続され、
 前記複数の第1スイッチの他の1つの前記第1共通端子は、前記複数の第1増幅器の他の1つの出力端に接続され、
 前記複数の第2スイッチの1つの前記第2共通端子は、前記複数の第2増幅器の1つの出力端に接続され、
 前記複数の第2スイッチの他の1つの前記第2共通端子は、前記複数の第2増幅器の他の1つの出力端に接続され、
 前記複数の第1スイッチの1つの前記第1選択端子は、前記複数の第1フィルタの1つの前記第1平衡端子に接続され、
 前記複数の第1スイッチの1つの前記第2選択端子は、前記複数の第2フィルタの1つの前記第3平衡端子に接続され、
 前記複数の第1スイッチの他の1つの前記第1選択端子は、前記複数の第1フィルタの他の1つの前記第1平衡端子に接続され、
 前記複数の第1スイッチの他の1つの前記第2選択端子は、前記複数の第2フィルタの他の1つの前記第3平衡端子に接続され、
 前記複数の第2スイッチの1つの前記第3選択端子は、前記複数の第1フィルタの1つの前記第2平衡端子に接続され、
 前記複数の第2スイッチの1つの前記第4選択端子は、前記複数の第2フィルタの1つの前記第4平衡端子に接続され、
 前記複数の第2スイッチの他の1つの前記第3選択端子は、前記複数の第1フィルタの他の1つの前記第2平衡端子に接続され、
 前記複数の第2スイッチの他の1つの前記第4選択端子は、前記複数の第2フィルタの他の1つの前記第4平衡端子に接続され、
 前記複数の第1フィルタのそれぞれの前記第1非平衡端子は互いに接続され、
 前記複数の第2フィルタのそれぞれの前記第2非平衡端子は互いに接続されている、<1>~<7>のいずれかに記載の高周波モジュール。
 <9>
 さらに、
 前記第1増幅器、前記第2増幅器、前記第1スイッチ、前記第2スイッチ、前記第1フィルタおよび前記第2フィルタが配置されたモジュール基板を備え、
 前記第1増幅器の出力端と前記第1共通端子とを接続する第1配線と、前記第2増幅器の出力端と前記第2共通端子とを接続する第2配線とは隣接配置されている、<1>~<8>のいずれかに記載の高周波モジュール。
 <10>
 前記第1配線は前記第2配線と同じ配線長を有する、<9>に記載の高周波モジュール。
 <11>
 前記第1選択端子と前記第1平衡端子とを接続する第3配線と、前記第3選択端子と前記第2平衡端子とを接続する第4配線とは隣接配置されている、<9>または<10>に記載の高周波モジュール。
 <12>
 前記第3配線は前記第4配線と同じ配線長を有する、<11>に記載の高周波モジュール。
 <13>
 前記第1増幅器および前記第2増幅器は、前記モジュール基板上に配置された第1半導体ICに含まれ、
 前記第1スイッチおよび前記第2スイッチは、前記モジュール基板上に配置された第2半導体ICに含まれ、
 前記第1フィルタおよび前記第2フィルタのそれぞれは、前記モジュール基板上に配置されている、<9>~<12>のいずれかに記載の高周波モジュール。
 <14>
 高周波信号を処理する信号処理回路と、
 前記信号処理回路とアンテナとの間で前記高周波信号を伝送する、<1>~<13>のいずれかに記載の高周波モジュールと、を備える、通信装置。
 本発明は、マルチバンド対応のフロントエンド部に配置される高周波モジュールとして、携帯電話などの通信機器に広く利用できる。
 1、1A、500  高周波モジュール
 2  アンテナ
 3  RF信号処理回路(RFIC)
 4、4A  通信装置
 10、10A  電力増幅回路
 11、12、13、111、112、11m、121、122、12m  増幅器
 15、540  トランス
 20、20A  スイッチ回路
 21、22、24、40  スイッチ
 21a、22a、24a、251、252、25m、261、262、26m  共通端子
 21b、21c、21d、22b、22c、22d、24b、24c、24d、271n、271p、272n、272p、27mn、27mp、281n、281p、282n、282p、28mn、28mp、291n、291p、292n、292p、29mn、29mp  選択端子
 31、32、33、311、312、31m、321、322、32m、331、332、33m、531、532、533  フィルタ
 31A、32A、33A  フィルタ回路
 31a、31b、32a、32b、33a、33b  平衡端子
 31c、32c、33c  非平衡端子
 51、52、56、511、512、51m、521、522、52m  整合回路
 90  モジュール基板
 100  アンテナ接続端子
 101、102、103、104、131、132、133、134、135、136、137、138、139、151、152、153、154  配線
 110  信号入力端子
 310、320、330、340、350  IDT電極
 360、370  反射電極

Claims (14)

  1.  差動増幅型の増幅回路を構成する第1増幅器および第2増幅器と、
     第1共通端子、第1選択端子および第2選択端子を有する第1スイッチと、
     第2共通端子、第3選択端子および第4選択端子を有する第2スイッチと、
     第1平衡端子、第2平衡端子および第1非平衡端子を有し、第1バンドを含む通過帯域を有する第1フィルタと、
     第3平衡端子、第4平衡端子および第2非平衡端子を有し、第2バンドを含む通過帯域を有する第2フィルタと、を備え、
     前記第1共通端子は前記第1増幅器の出力端に接続され、
     前記第2共通端子は前記第2増幅器の出力端に接続され、
     前記第1選択端子は前記第1平衡端子に接続され、
     前記第2選択端子は前記第3平衡端子に接続され、
     前記第3選択端子は前記第2平衡端子に接続され、
     前記第4選択端子は前記第4平衡端子に接続されている、
     高周波モジュール。
  2.  前記第1スイッチは、前記第1共通端子と前記第1選択端子との接続および前記第1共通端子と前記第2選択端子との接続を切り替え、
     前記第2スイッチは、前記第2共通端子と前記第3選択端子との接続および前記第2共通端子と前記第4選択端子との接続を切り替え、
     前記第1共通端子と前記第1選択端子とが接続されているときに、前記第2共通端子と前記第3選択端子とが接続されており、
     前記第1共通端子と前記第2選択端子とが接続されているときに、前記第2共通端子と前記第4選択端子とが接続されている、
     請求項1に記載の高周波モジュール。
  3.  前記第1スイッチおよび前記第2スイッチのそれぞれは、複数の半導体素子で構成され、
     前記第1共通端子と前記第1選択端子との間に直列接続された1以上の半導体素子のスタック数と、前記第2共通端子と前記第3選択端子との間に接続された1以上の半導体素子のスタック数とは、等しく、
     前記第1共通端子と前記第2選択端子との間に接続された1以上の半導体素子のスタック数と、前記第2共通端子と前記第4選択端子との間に接続された1以上の半導体素子のスタック数とは、等しい、
     請求項1または2に記載の高周波モジュール。
  4.  さらに、
     信号入力端子と、
     一次側コイルおよび二次側コイルを有するトランスフォーマと、を備え、
     前記一次側コイルの一端は、前記信号入力端子に接続され、
     前記一次側コイルの他端は、グランドに接続され、
     前記二次側コイルの一端は、前記第1増幅器の入力端に接続され、
     前記二次側コイルの他端は、前記第2増幅器の入力端に接続されている、
     請求項1~3のいずれか1項に記載の高周波モジュール。
  5.  前記第1増幅器および前記第2増幅器は、第1半導体ICで構成され、
     前記トランスフォーマは、前記第1半導体ICに含まれる、
     請求項4に記載の高周波モジュール。
  6.  さらに、
     アンテナ接続端子と、
     前記アンテナ接続端子と前記第1フィルタおよび前記第2フィルタとの間に接続された第3スイッチと、を備える、
     請求項1~5のいずれか1項に記載の高周波モジュール。
  7.  前記第1増幅器の出力端および前記第2増幅器の出力端と、前記第1フィルタの入力端および前記第2フィルタの入力端との間に、トランスフォーマが接続されていない、
     請求項1~6のいずれか1項に記載の高周波モジュール。
  8.  複数の前記第1増幅器と、
     複数の前記第2増幅器と、
     複数の前記第1スイッチと、
     複数の前記第2スイッチと、
     複数の前記第1フィルタと、
     複数の前記第2フィルタと、を備え、
     前記複数の第1増幅器のそれぞれの入力端は、互いに接続され、
     前記複数の第2増幅器のそれぞれの入力端は、互いに接続され、
     前記複数の第1スイッチの1つの前記第1共通端子は、前記複数の第1増幅器の1つの出力端に接続され、
     前記複数の第1スイッチの他の1つの前記第1共通端子は、前記複数の第1増幅器の他の1つの出力端に接続され、
     前記複数の第2スイッチの1つの前記第2共通端子は、前記複数の第2増幅器の1つの出力端に接続され、
     前記複数の第2スイッチの他の1つの前記第2共通端子は、前記複数の第2増幅器の他の1つの出力端に接続され、
     前記複数の第1スイッチの1つの前記第1選択端子は、前記複数の第1フィルタの1つの前記第1平衡端子に接続され、
     前記複数の第1スイッチの1つの前記第2選択端子は、前記複数の第2フィルタの1つの前記第3平衡端子に接続され、
     前記複数の第1スイッチの他の1つの前記第1選択端子は、前記複数の第1フィルタの他の1つの前記第1平衡端子に接続され、
     前記複数の第1スイッチの他の1つの前記第2選択端子は、前記複数の第2フィルタの他の1つの前記第3平衡端子に接続され、
     前記複数の第2スイッチの1つの前記第3選択端子は、前記複数の第1フィルタの1つの前記第2平衡端子に接続され、
     前記複数の第2スイッチの1つの前記第4選択端子は、前記複数の第2フィルタの1つの前記第4平衡端子に接続され、
     前記複数の第2スイッチの他の1つの前記第3選択端子は、前記複数の第1フィルタの他の1つの前記第2平衡端子に接続され、
     前記複数の第2スイッチの他の1つの前記第4選択端子は、前記複数の第2フィルタの他の1つの前記第4平衡端子に接続され、
     前記複数の第1フィルタのそれぞれの前記第1非平衡端子は互いに接続され、
     前記複数の第2フィルタのそれぞれの前記第2非平衡端子は互いに接続されている、
     請求項1~7のいずれか1項に記載の高周波モジュール。
  9.  さらに、
     前記第1増幅器、前記第2増幅器、前記第1スイッチ、前記第2スイッチ、前記第1フィルタおよび前記第2フィルタが配置されたモジュール基板を備え、
     前記第1増幅器の出力端と前記第1共通端子とを接続する第1配線と、前記第2増幅器の出力端と前記第2共通端子とを接続する第2配線とは隣接配置されている、
     請求項1~8のいずれか1項に記載の高周波モジュール。
  10.  前記第1配線は前記第2配線と同じ配線長を有する、
     請求項9に記載の高周波モジュール。
  11.  前記第1選択端子と前記第1平衡端子とを接続する第3配線と、前記第3選択端子と前記第2平衡端子とを接続する第4配線とは隣接配置されている、
     請求項9または10に記載の高周波モジュール。
  12.  前記第3配線は前記第4配線と同じ配線長を有する、
     請求項11に記載の高周波モジュール。
  13.  前記第1増幅器および前記第2増幅器は、前記モジュール基板上に配置された第1半導体ICに含まれ、
     前記第1スイッチおよび前記第2スイッチは、前記モジュール基板上に配置された第2半導体ICに含まれ、
     前記第1フィルタおよび前記第2フィルタのそれぞれは、前記モジュール基板上に配置されている、
     請求項9~12のいずれか1項に記載の高周波モジュール。
  14.  高周波信号を処理する信号処理回路と、
     前記信号処理回路とアンテナとの間で前記高周波信号を伝送する、請求項1~13のいずれか1項に記載の高周波モジュールと、を備える、
     通信装置。
PCT/JP2023/026002 2022-08-25 2023-07-14 高周波モジュールおよび通信装置 WO2024042911A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-134479 2022-08-25
JP2022134479 2022-08-25

Publications (1)

Publication Number Publication Date
WO2024042911A1 true WO2024042911A1 (ja) 2024-02-29

Family

ID=90013076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026002 WO2024042911A1 (ja) 2022-08-25 2023-07-14 高周波モジュールおよび通信装置

Country Status (1)

Country Link
WO (1) WO2024042911A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021052377A (ja) * 2019-09-20 2021-04-01 株式会社村田製作所 高周波モジュールおよび通信装置
JP2021061577A (ja) * 2019-10-09 2021-04-15 株式会社村田製作所 高周波モジュールおよび通信装置
WO2022034821A1 (ja) * 2020-08-12 2022-02-17 株式会社村田製作所 高周波モジュール及び通信装置
WO2022102288A1 (ja) * 2020-11-16 2022-05-19 株式会社村田製作所 高周波モジュール及び通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021052377A (ja) * 2019-09-20 2021-04-01 株式会社村田製作所 高周波モジュールおよび通信装置
JP2021061577A (ja) * 2019-10-09 2021-04-15 株式会社村田製作所 高周波モジュールおよび通信装置
WO2022034821A1 (ja) * 2020-08-12 2022-02-17 株式会社村田製作所 高周波モジュール及び通信装置
WO2022102288A1 (ja) * 2020-11-16 2022-05-19 株式会社村田製作所 高周波モジュール及び通信装置

Similar Documents

Publication Publication Date Title
KR102584792B1 (ko) 고주파 모듈 및 통신 장치
US11496169B2 (en) Radio frequency module and communication device
US11381265B2 (en) Radio frequency module and communication device
US11394421B2 (en) Radio frequency module and communication device
KR20230070428A (ko) 고주파 모듈 및 통신 장치
KR20210120837A (ko) 고주파 모듈 및 통신 장치
KR102638896B1 (ko) 고주파 모듈 및 통신장치
KR102516508B1 (ko) 고주파 모듈 및 통신 장치
KR102476613B1 (ko) 고주파 모듈 및 통신 장치
JP2021158556A (ja) 高周波モジュールおよび通信装置
WO2024042911A1 (ja) 高周波モジュールおよび通信装置
WO2022091724A1 (ja) 高周波モジュール及び通信装置
US11729903B2 (en) Radio frequency module and communication device
WO2023017760A1 (ja) 高周波回路、通信装置および高周波回路の電力増幅方法
WO2023037978A1 (ja) 高周波回路および通信装置
WO2023017761A1 (ja) 電力増幅回路及び電力増幅方法
CN220858075U (zh) 多工器、高频模块以及通信装置
WO2022259892A1 (ja) 増幅回路及び高周波回路
WO2023120284A1 (ja) 高周波モジュールおよび通信装置
US20240097629A1 (en) Radio-frequency module and communication apparatus
WO2024042910A1 (ja) 高周波モジュールおよび通信装置
WO2023203859A1 (ja) 高周波回路および通信装置
CN118174663A (zh) 放大电路和高频电路
CN117882293A (zh) 高频模块和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857027

Country of ref document: EP

Kind code of ref document: A1