WO2024041565A1 - 空气净化与灭菌方法 - Google Patents

空气净化与灭菌方法 Download PDF

Info

Publication number
WO2024041565A1
WO2024041565A1 PCT/CN2023/114433 CN2023114433W WO2024041565A1 WO 2024041565 A1 WO2024041565 A1 WO 2024041565A1 CN 2023114433 W CN2023114433 W CN 2023114433W WO 2024041565 A1 WO2024041565 A1 WO 2024041565A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
air
bivo
vocs
tio
Prior art date
Application number
PCT/CN2023/114433
Other languages
English (en)
French (fr)
Inventor
张星
竹涛
刘锋
钱飞跃
Original Assignee
苏州科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科技大学 filed Critical 苏州科技大学
Publication of WO2024041565A1 publication Critical patent/WO2024041565A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/003Ventilation in combination with air cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • F24F8/167Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means using catalytic reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the disclosure content of this application relates to the technical field of air pollution control, and in particular, to an air purification and sterilization method.
  • Air quality is closely related to people's quality of life. Due to environmental influences, the air (especially indoor air) contains bacteria, such as Staphylococcus aureus and Escherichia coli. These bacteria can cause bacterial infections, and severe infections can lead to death. In addition, the air (especially indoor air) also contains volatile organic compounds (VOC, volatile organic compounds). Most VOCs have three effects (carcinogenic, teratogenic, and mutagenic), and their toxicity, persistence, and refractory nature seriously endanger human health and human living space.
  • bacteria such as Staphylococcus aureus and Escherichia coli. These bacteria can cause bacterial infections, and severe infections can lead to death.
  • the air (especially indoor air) also contains volatile organic compounds (VOC, volatile organic compounds). Most VOCs have three effects (carcinogenic, teratogenic, and mutagenic), and their toxicity, persistence, and refractory nature seriously endanger human health and human living space.
  • VOC volatile organic compounds
  • embodiments of the present invention propose an air purification and sterilization method, which is expected to be able to sterilize air (especially indoor air in homes, workshops, etc.) Bacteria treatment and removal of VOCs to improve the living environment.
  • an air purification and sterilization method including:
  • a counter-corona plasma unit is provided to form plasma.
  • the counter-corona plasma unit is sequentially provided with a corona electrode, an auxiliary electrode, an integral VOCs catalyst and a ground electrode in the direction of air flow.
  • the integral VOCs catalyst includes a honeycomb A VOCs catalyst coated on the inner and outer surfaces of a honeycomb matrix and a honeycomb matrix, the inner and outer surfaces of the honeycomb matrix include whiskers, and the active component of the monolithic VOCs catalyst includes Ce-BiVO 4 -TiO 2 /Ag;
  • the method for preparing the monolithic VOCs catalyst includes the following steps:
  • the steps of providing Ce-BiVO 4 -TiO 2 /Ag catalyst include:
  • cerium source, bismuth source, vanadium source and citric acid are formed into a sol according to a second mass ratio, and dried at 80-100°C to form a sol.
  • Glue roast at 300-500°C for 3-8 hours to obtain active powder Ce-BiVO 4 ;
  • Figure 1 shows an air purification device according to an embodiment of the present invention
  • FIG. 2 shows an air purification and sterilization method according to an embodiment of the present invention.
  • an air purification device is provided to sterilize bacteria in the air and simultaneously remove VOCs in the air.
  • the air purification device 100 includes an air inlet 10 , a counter-corona plasma unit 40 and an exhaust port 60 in sequence in the direction of air flow (in FIG. 1 , the air flow flows from left to right).
  • the air purification device 100 further includes a radiation unit 30 between the air inlet 10 and the counter-corona plasma unit 40 .
  • the air purification device 100 further includes a filter unit 20 between the air inlet 10 and the radiation unit 30 .
  • the air purification device 100 further includes a catalyst bed 50 between the counter-corona plasma unit 40 and the exhaust port 60 .
  • the air to be treated enters from the air inlet 10 and sequentially passes through the filter unit 20 (if any), the radiation unit 30 (if any), the counter-corona plasma unit 40 and the catalyst bed 50 (if any), the treated air is finally discharged from the exhaust port 60.
  • the air inlet 10 and the exhaust port 60 are provided at both ends of the air purification device 100 to allow air to be treated to enter and leave the air purification device 100 .
  • the air inlet 10 is located at the left end of the air purifying device 100
  • the exhaust port 60 is located at the right end of the air purifying device 100 .
  • the filter unit 20 is configured to adsorb dust in the air to prevent the dust from remaining in the air and causing adverse effects on humans (eg, residents or workers in factories).
  • the filtering unit 20 includes a main body frame (not shown), an electrostatic mesh 22 located on the main body frame, and a filter 24 located within the main body frame.
  • the filter 24 is arranged downstream of the electrostatic grid 22 in the direction of air flow.
  • the electrostatic grid 22 is located on the front side of the filter unit 20 and the filter 24 is located on the rear side of the filter unit 20 .
  • filter unit 20 also includes an interface to provide electrical power to electrostatic grid 22 .
  • the main frame is generally in the shape of a rectangular parallelepiped, and includes a hollow portion (for example, in the form of a rectangular parallelepiped) at its lower portion, and the filter 24 is located in the hollow portion.
  • the interface is located on the upper part of the main frame.
  • the body frame (particularly at its hollow portion) includes opposing first and second open sides.
  • the first open side is closed by an electrostatic mesh 22 .
  • At least one mounting rod (not shown in the figure) is provided on the second opening side for mounting the radiation unit 31 .
  • the mounting rod may be arranged perpendicular to the flow direction of the air flow to facilitate the flow of air flow along the flow direction (from left to right) and to help the radiation unit 30 form radiation rays parallel to the flow direction.
  • the mounting rod can also be arranged at an angle relative to the direction of air flow.
  • the electrostatic grid 22 is connected (for example via an interface) to a negative DC high voltage power source, so that dust in the air is charged by the electrostatic grid 22 to allow adsorption to the following filter 24 (the filter 24 is grounded).
  • the filter 24 is integrally molded by injection molding of ultra-fine glass fiber filter paper, nylon wire and a plastic frame.
  • the outer surface of the ultrafine glass fiber filter paper has a moisture-proof coating.
  • the filter 24 has a V-shaped pleated paper structure, and can be prepared by, for example, a hot rolling process.
  • the V-shaped pleated paper structure can ensure that the filter area is fully utilized and the dust is evenly distributed on the surface of the filter material. At the same time, it can play a diversion role to make the air flow evenly distributed, the pressure drop rises slowly, and is economical and safe to use. long life.
  • the radiation unit 30 includes at least one ultraviolet light source.
  • the ultraviolet light source emits first ultraviolet radiation.
  • the wavelength of the first ultraviolet radiation can be selected from 185nm, 222nm, 254nm, 308nm, etc., or a combination of several UV light sources with different wavelengths.
  • First UV radiation can be used to sterilize airborne bacteria. First UV radiation can also act on integral VOCs of active ingredients so that the active ingredients purify the air.
  • the radiation unit 30 further includes at least one visible light source.
  • the visible light source emits visible light of 400-700nm. Visible light can act on the active ingredients of monolithic VOCs so that the active ingredients purify the air.
  • Both UV and visible light sources are located on the mounting plate.
  • the embodiments of the present invention do not limit the number of ultraviolet light sources and visible light sources, and those skilled in the art can set them as needed.
  • the ultraviolet light source and the visible light source can be arranged one, two, three or more apart from each other, or the visible light source can be arranged in the middle of the mounting plate, and the ultraviolet light source is arranged at both ends of the mounting plate.
  • the embodiments of the present invention do not limit the arrangement of the ultraviolet light source and the visible light source.
  • the ultraviolet light source and the visible light source are arranged on the mounting plate toward the integral VOCs catalyst to facilitate the radiation emitted by the light source to more fully react with the integral VOCs catalyst.
  • the counter-corona plasma unit 40 sequentially includes: a corona electrode 42, an auxiliary electrode 44, an integrated VOCs catalyst 46 and a ground electrode 48 in the direction of gas flow.
  • the corona electrode 42 is powered by a negative high voltage DC power source. During the discharge process, the corona electrode 42 causes the gas near the corona electrode 42 to be ionized to generate a large amount of negative charges, which can interact with the integrated VOCs catalyst 46 to form counter-corona plasma.
  • the corona electrode 42 can be made of tungsten wire, and the diameter of the tungsten wire is between 2-6 mm.
  • the auxiliary electrode 44 suppresses the corona electrode 42 discharge from developing into a spark discharge.
  • the auxiliary electrode 44 can be made of tungsten wire, and the diameter of the tungsten wire is between 2-6 mm.
  • the integrated VOCs catalyst 46 includes a honeycomb base and a VOCs catalyst coated on the inner and outer surfaces of the honeycomb base.
  • the honeycomb matrix has a larger specific surface area and can provide larger attachment sites for VOCs catalyst coating.
  • the honeycomb matrix of the monolithic VOCs catalyst 46 is made of cordierite, metal foam (nickel), alumina or silicon carbide.
  • the inner and outer surfaces of the honeycomb base include whiskers.
  • the whiskers include mullite whiskers, aluminum borate whiskers, or silicon carbide whiskers.
  • the active ingredients of the monolithic VOCs catalyst 46 include Ce-BiVO 4 -TiO 2 /Ag catalyst.
  • the method for preparing the monolithic VOCs catalyst includes the following steps:
  • the first mass ratio for example, (20-30): (15-20): (10-15): (30-45)
  • Ce-BiVO 4 -TiO 2 /Ag catalyst and sodium carboxymethylcellulose , silica sol, and water are mixed to obtain the first reactant.
  • the first reactant is coated on the inner and outer surfaces of the honeycomb matrix on which the whiskers are grown, and is dried and then baked (baked at 300-600°C for 3-6 hours). To obtain a monolithic VOCs catalyst.
  • honeycomb substrates with whiskers grown on the surface including:
  • honeycomb matrix is embedded with whisker raw materials, anhydrous aluminum sulfate and anhydrous sodium sulfate to obtain a mixed material;
  • the mixed material is baked at 900-1200°C (eg 1000°C) for 2-12 hours (eg 8 hours) and then cooled, and whiskers grow on the inner and outer surfaces of the honeycomb matrix.
  • providing a Ce-BiVO 4 -TiO 2 /Ag catalyst includes:
  • the cerium source, bismuth source, vanadium source and citric acid are formed into a sol according to a second mass ratio, dried (for example in a constant temperature drying oven) at 80-100°C (for example 90°C) to form a gel, and dried at 300-500°C ( For example, calcining at 350-400°C) for 3-8 hours (for example, 4-6 hours) to obtain active powder Ce-BiVO 4 ;
  • Ce-BiVO 4 -TiO 2 Mix the active powder Ce-BiVO 4 solution and TiO 2 according to a third mass ratio, and react under ultrasonic conditions (for example, under ultrasonic oscillation conditions) for 0.5-2 hours (for example, 1-1.5 hours), after passing through 60-100°C (for example, 80-90°C) after drying (for example, spin drying) for 2-5 hours (for example, 3-4 hours) and then calcining at 300-500°C (for example, 400-450°C) for 3-8 hours (for example, 5-6 hours).
  • ultrasonic conditions for example, under ultrasonic oscillation conditions
  • 60-100°C for example, 80-90°C
  • drying for example, spin drying
  • 300-500°C for example, 400-450°C
  • the inventor of the present invention noticed that the TiO 2 catalyst has a wider (specifically, 3.2eV) band gap, its utilization rate of ultraviolet and visible light is very low, and the photoresponse range is low; BiVO 4 can also be used as Photocatalytic materials, but their utilization rate of visible light and ultraviolet light is also relatively low, thus limiting the application of TiO 2 and BiVO 4 in photocatalysis.
  • the present invention proposes to combine TiO 2 and BiVO 4 and perform ion doping (Ce and Ag) to expand the photoresponse range and thereby improve the catalytic efficiency of the catalyst.
  • cerium (Ce) ions are incorporated into the crystal structure of the BiVO 4 catalyst, changing the internal composition of the catalyst, thereby changing its electronic structure, achieving control of its energy band and bandgap width, thereby improving the optical properties of the catalyst.
  • Cerium (Ce) ions are considered to be relatively effective dopants due to their unique 4f electron orbital configuration. Research results show that in the BiVO 4 lattice, Ce replacing Bi can significantly inhibit the recombination of photogenerated charges and improve the photocatalytic activity.
  • Ce Bi 1+ and Ce V 1- are the main defects and can become p-type materials, where Ce Bi 1+ is degraded active in an unoccupied deep energy level, which is mainly composed of the 4f orbital of Ce , is a deep compounding center.
  • Ce V 1- defects no localized state was found in Ce-BiVO 4 , and its formation energy is sensitive to chemical potential and Fermi energy, indicating that poor Bi/V and rich O conditions are conducive to eliminating deep energy level states and improving Photocatalytic performance. Therefore, doping Ce into BiVO can enhance the photocatalytic activity as the Ce V 1- doping process is established.
  • the Ce-BiVO 4 -TiO 2 /Ag catalyst have excellent photocatalytic performance.
  • the photocatalyst absorbs light energy when exposed to radiation of a certain wavelength (such as ultraviolet radiation and visible light radiation). When excited by an energy greater than its forbidden bandwidth, electrons in the valence band position will be excited to transition to the conductor. band, forming photogenerated electrons (e - ), and at the same time holes (h + ) are generated in the valence band.
  • h + has strong oxidizing properties
  • e- has reducing properties, and can undergo redox reactions with water and oxygen respectively to produce hydroxyl radicals, superoxide anions, hydrogen peroxide and singlet oxygen.
  • AgNPs can act as electron traps, assisting electron-hole separation and capturing electrons by generating a local electric field, increasing the number of active species such as hydroxyl radicals, superoxide anions, hydrogen peroxide and singlet oxygen, thereby enabling photocatalysis Increased activity.
  • photogenerated electrons can collide with VOCs gas phase molecules, breaking their chemical bonds to generate molecular fragments and other small molecule substances, thereby realizing the use of photocatalytic activity to remove VOCs in the air.
  • AgNPs also contribute to air sterilization.
  • the silver ions precipitated from AgNPs can interact with the sulfhydryl groups (—SH) of enzymes and biological macromolecules in bacteria, causing their inactivation and thus limiting bacterial growth.
  • AgNPs have a nano-effect, that is, AgNPs adhere to the cell wall and penetrate into the bacterial cells, causing their structural changes, leading to cell death, allowing the hybrid membrane to function under dark conditions.
  • the cerium source includes at least one of cerium acetate and its hydrates, cerium oxalate and its hydrates, cerium nitrate and its hydrates;
  • the bismuth source includes bismuth citrate, bismuth trichloride, and bismuth nitrate.
  • the vanadium source includes at least one of vanadyl sulfate, vanadyl oxalate, vanadyl acetylacetonate, vanadium chloride, and vanadyl phosphate.
  • the second mass ratio is (10-15):(15-20):(5-10):(60-70), for example 12 :18:8:62.
  • the third mass ratio is (15-20):(80-85), such as 18:82.
  • the fourth mass ratio is (10-20):(80-90), such as 15:85.
  • the corona electrode 42 causes the gas near the corona electrode 42 to be ionized during the discharge process to generate a large amount of negative charges, which are accumulated on the inner and outer surfaces of the integrated VOCs catalyst 46; the accumulated charges are generated in the internal pores of the honeycomb matrix Superimposed electric field, when the field strength of the superimposed electric field reaches or exceeds the breakdown field strength of the whiskers on the surface of the pores inside the honeycomb matrix, reverse corona plasma is generated. Counter-corona plasma is generated in the internal pores of the honeycomb matrix, thereby forming a plasma reaction channel.
  • the free electrons, high-energy ions, and active particles generated in the plasma reaction channel interact with the VOCs catalyst on the internal and external surfaces of the monolithic VOCs catalyst 46.
  • the active components are closely combined to give full play to the advantages of high plasma reactivity and VOCs high reaction selectivity, activate the VOCs catalyst reaction activity, improve the anti-corona plasma reaction selectivity, and promote the VOCs reaction to occur at normal or low temperature, and finally in the air
  • the VOCs are oxidized to H 2 O and O 2 .
  • the dielectric constant of the integral VOCs catalyst active component Ce-BiVO 4 -TiO 2 /Ag can reach more than 10,000 at room temperature.
  • the monolithic VOCs catalyst can be polarized under a small electric field intensity, significantly enhancing the discharge intensity of the counter-corona plasma. As a result, a large number of free electrons, hydroxyl radicals, ozone and other active particles are obtained. In this way, on the one hand, it can promote the redox reaction of VOCs gas phase molecules to generate CO 2 and H 2 O.
  • the plasma also includes second ultraviolet radiation.
  • the wavelength of the second ultraviolet radiation may include 150 nm or 160 nm.
  • the wavelength of the second ultraviolet radiation is smaller than the wavelength of the first ultraviolet radiation.
  • the second UV radiation will work with the first UV radiation to treat VOCs and bacteria in the air. This will be described in detail below.
  • plasma can sterilize air.
  • Plasma contains a large number of high-energy ions, active groups and other components, which can easily react chemically with enzymes, proteins and nucleic acids in bacteria, molds, spores and viruses, which can destroy and disrupt the survival functions of microorganisms and cause the death of all types of microorganisms. .
  • the directional movement of high-energy particles in plasma can "break" the proteins of bacteria, cells and viruses and destroy the integrity of genes. Under the action of high-voltage electric fields, escaped electrons and free electrons are accelerated to obtain high-energy, high-kinetic-energy electrons. And breakdown etching effect, causing serious breakdown and damage to the cell membranes of bacteria and viruses.
  • Plasma targets various structures of microorganisms, etches cell walls, destroys biofilms and peroxidized lipids, and bacterial DNA and RNA may be damaged by oxidation.
  • Catalyst bed 50 is used to treat ozone in the air.
  • ozone is produced during the plasma formation process, and the catalyst bed 50 located behind the counter-corona plasma unit 40 can treat it.
  • the catalyst bed 50 includes a 3D foam ceramic carrier and bimetallic active components of manganese and cobalt supported on the surface of the 3D foam ceramic carrier.
  • providing a catalyst bed includes:
  • Mn(CH 3 COO) 2 ⁇ 4H 2 O, Co(CH 3 COO) 2 ⁇ 4H 2 O, and anhydrous citric acid are formed according to the mass ratio of (15-20): (25-30): (50-60) Precursor solution, wherein the ion concentration in the precursor solution is 0.5-2 mol/L (for example, 1 mol/L), dried at 60-100°C (for example, 80-90°C) for 2-5 hours (for example, 3 hours) and then dried at 300- Calcining at 500°C (eg 400°C) for 3-6 hours (eg 5 hours) yields Co a Mn 1-a O x catalyst, where a is in the range of 0.2-0.8 (eg 0.2, 0.33, 0.5, 0.67 and 0.8) Inside;
  • 3D foam ceramics such as cut 3D foam ceramics
  • Co a Mn 1-a O x catalyst solution for example, Co a Mn 1-a O x catalyst is dissolved in a solution of ethanol and water
  • 60-100°C for example, 80-90°C
  • 2-8 hours eg, 5 hours
  • the main active component of the 3D foam ceramic catalyst bed Co a Mn 1-a O x catalyst is MnO x .
  • the Co a Mn 1-a O x catalyst prepared by the sol-gel method presents a loose porous structure, which is conducive to the adsorption of gas phase molecules.
  • a catalytic reaction occurs on the surface of the Co a Mn 1-a O x catalyst.
  • the sol-gel method can make the metal salt precursor highly dispersed at the molecular level, so the doping element Co can enter the MnOx crystal phase, thereby destroying the MnOx crystal structure, which is conducive to the generation of a large number of oxygen vacancies on the MnOx surface.
  • oxygen molecules pass through the MnO O 2- is generated; the oxygen atom at the end of the other ozone is adsorbed and combined with O 2- to undergo electron transfer, causing the OO bond of ozone to break, releasing oxygen and generating O 2 2- ; finally O 2 2- decomposes to release oxygen and oxygen vacancies Recover and participate in the next ozonolysis cycle. Therefore, the catalyst bed of the present invention can remove ozone in the air.
  • an air purification and sterilization method is also provided. As shown in Figure 2, the air purification and sterilization method includes:
  • a counter-corona plasma unit is provided to form plasma.
  • the counter-corona plasma unit is sequentially provided with a corona electrode, an auxiliary electrode, an integral VOCs catalyst and a ground electrode in the direction of air flow.
  • the integral VOCs catalyst includes a honeycomb a VOCs catalyst coated on the inner and outer surfaces of the honeycomb matrix, the inner and outer surfaces of the honeycomb matrix include whiskers, and the active component of the monolithic VOCs catalyst includes Ce-BiVO 4 -TiO 2 /Ag,
  • Ce-BiVO 4 -TiO 2 /Ag in the monolithic VOCs catalyst and active components (for example, free electrons, high-energy ions, active particles) in the plasma are used to treat VOCs and bacteria in the air , achieving air purification and sterilization. That is, using two functions to process together to purify air and sterilize greatly improves processing efficiency compared to each technology alone.
  • the active components (specifically, Ce, Bi, V, Ag) in Ce-BiVO 4 -TiO 2 /Ag enable the method of the present invention to allow the catalyst to function under the action of visible light radiation. catalytic reaction. Compared with TiO 2 catalysts that can only absorb ultraviolet radiation, the method of the present invention is more efficient and lower in cost.
  • the air purification and sterilization method further includes: treating VOCs and bacteria in the air through a combination of first ultraviolet radiation and second ultraviolet radiation.
  • treatment of VOCs through a combination of ultraviolet radiation includes:
  • the combination of the ultraviolet radiation causes oxygen and water vapor molecules in the air to generate a first reaction species
  • the first reaction species Reactive species include reactive oxygen atoms and hydroxyl radicals
  • the active molecular fragments are oxidized by the first reaction species to generate small molecule compounds.
  • Embodiments of the present invention use a combination of ultraviolet radiation of different wavelengths, which can provide stronger radiation energy and help process VOCs into the smallest possible active molecular fragments. Small reactive molecular fragments can be more easily oxidized, i.e., generated into small molecule compounds. Thus, using a combination of UV radiation of different wavelengths can more efficiently treat VOCs in the air.
  • the air purification and sterilization method also includes: connecting the electrostatic grid to a negative DC high-voltage power supply so that dust in the air is charged when passing through the electrostatic grid; causing the charged dust to be adsorbed on the surface of the filter. Therefore, embodiments of the present invention can effectively remove dust in the air and improve air quality.
  • the air purification and sterilization method further includes: processing ozone in the air through a catalyst bed. Therefore, embodiments of the present invention can effectively remove ozone in the air and avoid harm caused by ozone emissions to humans.
  • Cerium acetate, bismuth citrate, vanadyl oxalate, and citric acid were formed into a sol according to a mass ratio of 12:18:8:62, dried at 90°C to form a gel, and roasted at 350°C for 5 hours to obtain active powder Ce-BiVO 4 .
  • active powder Ce-BiVO 4 After the active powder Ce-BiVO 4 is dissolved in water, mix it with TiO 2 powder in a mass ratio of 18:82, react under ultrasonic oscillation for 1 hour, spin dry at 80°C for 3 hours, and then roast at 400°C Ce-BiVO 4 -TiO 2 was obtained in 5 hours.
  • VOCs simulated gases are provided, including three gases: 100ppm formaldehyde, 100ppm toluene, and 100ppm styrene.
  • the above three gases are accurately controlled by mass flow meters to ensure the same flow rate of the three gases.
  • the VOCs concentration is 300ppm. They are fully mixed in the mixing tank and then passed into the reaction device. Air is selected as the carrier gas. Prepare a stable gas mixture and directly enter the reaction device.
  • the plasma generation intensity of the counter-corona plasma unit is regulated by controlling the negative high-voltage DC power supply connected to the corona electrode. Connect an online gas chromatograph to the gas outlet of the counter-corona plasma unit to detect VOCs concentration in real time.
  • the negative high-voltage DC voltage intensity of the counter-corona plasma connected to the corona electrode is set to 6kV, 8kV, 10kV, 12kV, 14kV, and 16kV in sequence.
  • the embodiment of the present invention uses the following formula to calculate the purification efficiency:
  • comparative examples are provided.
  • the catalyst slurry was not coated on the cordierite honeycomb substrate grown with whiskers, and the remaining conditions were the same as the embodiments of the present invention.
  • Table 1 shows the purification effects of the embodiments and comparative examples of the present invention. According to Table 1, it can be seen that the purification efficiency of VOCs in the embodiment of the present invention is as high as 96%, achieving a very high purification efficiency.

Abstract

本发明公开了一种空气净化与灭菌方法,属于大气污染控制技术领域。该空气净化与灭菌方法包括:提供反电晕等离子体单元以形成等离子体,该反电晕等离子体单元在气流流动方向依次设置有电晕电极、辅助电极、整体式VOCs催化剂和接地极,整体式VOCs催化剂包括蜂窝状基体和涂覆在蜂窝状基体内外表面上的VOCs催化剂,蜂窝状基体内外表面包括晶须,整体式VOCs催化剂的活性成分包括Ce-BiVO4-TiO2/Ag;在可见光和/或紫外光的照射下,通过Ce-BiVO4-TiO2/Ag处理空气中的VOCs和细菌;使用等离子体中的活性成分处理空气中的VOCs和细菌。

Description

空气净化与灭菌方法 技术领域
本申请公开内容涉及大气污染控制技术领域,尤其涉及一种空气净化与灭菌方法。
背景技术
空气质量与人的生活质量息息相关。由于受到环境影响,空气(尤其是室内空气)中含有细菌,例如金黄色葡萄球菌、大肠杆菌,这些细菌感会引起细菌感染,感染严重的情况可以导致死亡。此外,空气(尤其是室内空气)中还含有挥发性有机化合物(VOC,volatile organic compounds)。多数VOCs具有三致效应(致癌、致畸、致突变),其毒性、持久性和难降解性严重危害人体健康和人类生存空间。
发明内容
为了解决现有技术中存在的上述问题和缺陷的至少一个方面,本发明的实施例提出一种空气净化和灭菌方法,期望可以对空气(尤其是居家和车间厂房等的室内空气)进行灭菌处理,并去除其中的VOCs,以改善生存环境。
根据本发明的一个方面,提供了一种空气净化与灭菌方法,包括:
提供反电晕等离子体单元以形成等离子体,所述反电晕等离子体单元在气流流动方向依次设置有电晕电极、辅助电极、整体式VOCs催化剂和接地极,所述整体式VOCs催化剂包括蜂窝状基体和涂覆在蜂窝状基体内外表面上的VOCs催化剂,所述蜂窝状基体内外表面包括晶须,所述整体式VOCs催化剂的活性成分包括Ce-BiVO4-TiO2/Ag;
在可见光和/或紫外光的照射下,通过Ce-BiVO4-TiO2/Ag处理空气中的VOCs和细菌;
使用等离子体中的活性成分处理空气中的VOCs和细菌,
其中,制备所述整体式VOCs催化剂的方法包括以下步骤:
提供表面生长有晶须的蜂窝状基体;
提供Ce-BiVO4-TiO2/Ag催化剂;
按照第一质量比将Ce-BiVO4-TiO2/Ag催化剂与羧甲基纤维素钠、硅溶胶、水混合得到第一反应物,将第一反应物涂覆在生长晶须的蜂窝状基体内外表面上,并进行干燥处理后焙烧以获得整体式VOCs催化剂,
其中提供Ce-BiVO4-TiO2/Ag催化剂的步骤包括:
将铈源、铋源、钒源和柠檬酸按照第二质量比形成溶胶,经由80-100℃干燥后形成凝 胶,在300-500℃下焙烧3-8小时得到活性粉末Ce-BiVO4
将活性粉末Ce-BiVO4溶液与TiO2按照第三质量比混合,并在超声条件下反应0.5-2小时,经过60-100℃干燥2-5小时后在300-500℃下焙烧3-8小时得到Ce-BiVO4-TiO2
将银源与Ce-BiVO4-TiO2按照第四质量比混合,向混合溶液中加入还原剂,经过60-100℃干燥2-5小时后在300-500℃下焙烧3-8小时得到Ce-BiVO4-TiO2/Ag催化剂,在焙烧过程中Ag+被还原为纳米银颗粒。
通过下文中参照附图对本发明的实施例所作的描述,本发明的其它目的和优点将显而易见,并可帮助对本发明有全面的理解。
附图说明
本发明的这些和/或其他方面和优点从下面结合附图对优选实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本发明的一个实施例的空气净化装置;
图2示出了根据本发明的一个实施例的空气净化与灭菌方法。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。
在本发明的实施例中,提供了一种空气净化装置,以期望对空气中的细菌进行灭菌处理,同时能够去除空气中的VOCs。
如图1所示,空气净化装置100在气流流动的方向(在图1中,气流从左向右流动)上依次包括进气口10、反电晕等离子体单元40和排气口60。
在一示例中,空气净化装置100在进气口10和反电晕等离子体单元40之间还包括辐射单元30。
在一示例中,空气净化装置100在进气口10和辐射单元30之间还包括过滤单元20。
在一示例中,空气净化装置100在反电晕等离子体单元40和排气口60之间还包括催化剂床层50。
在使用中,待处理的空气从进气口10进入,依次穿过过滤单元20(如果有的话)、辐射单元30(如果有的话)、反电晕等离子体单元40和催化剂床层50(如果有的话),最终从排气口60排出处理后的空气。
进气口10和排气口60设置在空气净化装置100的两端,以允许待处理的空气进入和离开空气净化装置100。在图1的示例中,进气口10位于空气净化装置100的左端,排气口60位于空气净化装置100的右端。
过滤单元20配置成吸附空气中的灰尘,以避免灰尘留存在空气中,从而对人类(例如居住者或厂房中的工作人员)带来不良影响。
进一步地,如图1所示,过滤单元20包括主体框(未示出)、位于主体框上的静电网22和位于主体框内的过滤器24。过滤器24在气流流动方向设置在静电网22的下游。在图1的示例中,静电网22位于过滤单元20的前侧,过滤器24位于过滤单元20的后侧。在一示例中,过滤单元20还包括接口以为静电网22提供电能。
在一示例中,主体框大体呈长方体,在其下部包括中空部(例如,长方体的形式),过滤器24位于所述中空部。接口位于主体框的上部。本公开的实施例并不限制主体框的具体形状,也不限制中空部的位置和形状,只要能够支撑过滤器和静电网即可。
主体框(具体地,在其中空部处)包括相对的第一开口侧和第二开口侧。第一开口侧由静电网22封闭。第二开口侧上设置有至少一个安装杆(图中未示出)以用于安装辐射单元31。安装杆可以垂直于气流流动方向设置,以有利于气流沿流动方向(从左到右)流动,并且有助于辐射单元30形成平行于流动方向的辐射光线。当然,安装杆也可以相对于气流流动方向倾斜设置。
静电网22(例如经由接口)连接负直流高压电源,使得空气中的灰尘被静电网22荷电,以允许吸附在后面的过滤器24(过滤器24接地)上。
过滤器24采用超细玻璃纤维过滤纸、尼龙丝与塑料框注塑一体成型。在一示例中,超细玻璃纤维过滤纸外表面具有防潮涂层。过滤器24呈V型褶纸结构,例如可以采用热滚压工艺制备而成。V型褶纸结构能够保证过滤面积得以完全利用,并且使得灰尘在滤料表面均匀分布,与此同时,其可以起到导流的作用,使气流分布均匀,压降上升缓慢,经济安全,使用寿命长。
辐射单元30包括至少一个紫外光源。紫外光源发射第一紫外线辐射。第一紫外线辐射的波长可选择为185nm、222nm、254nm、308nm等,或者几种不同波长UV光源的组合。第一紫外线辐射可以用于对空气中的细菌进行灭菌。第一紫外线辐射还可以作用于整体式VOCs 的活性成分,以便于活性成分净化空气。
可选地,辐射单元30还包括至少一个可见光源。可见光源发射400-700nm的可见光。可见光可以作用于整体式VOCs的活性成分,以便于活性成分净化空气。
紫外光源和可见光源均位于安装板上。本发明的实施例并不限制紫外光源和可见光源的数目,本领域技术人员可以根据需要进行设置。紫外光源和可见光源可以彼此间隔一个、两个、三个或更多的设置,也可以将可见光源布置在安装板的中间,紫外光源布置在安装板的两端。本发明的实施例并不限制紫外光源和可见光源的布置方式。在一示例中,紫外光源和可见光源在安装板上朝向整体式VOCs催化剂布置,以有利于光源发射的辐射更加充分地与整体式VOCs催化剂反应。
反电晕等离子体单元40在气流流动方向上依次包括:电晕电极42、辅助电极44、整体式VOCs催化剂46和接地电极48。
电晕电极42由负高压直流电源供电。电晕电极42在放电过程中使得电晕电极42附近气体被电离产生大量负电荷,该负电荷可以和整体式VOCs催化剂46作用形成反电晕等离子体。电晕电极42可以由钨丝制成,钨丝的直径在2-6mm之间。
辅助电极44抑制电晕电极42放电向火花放电发展。辅助电极44可以由钨丝制成,钨丝的直径在2-6mm之间。
整体式VOCs催化剂46包括蜂窝状基体和涂覆在蜂窝状基体内外表面上的VOCs催化剂。
蜂窝状基体具有较大的比表面积,可以为VOCs催化剂涂覆提供更大的附着位点。在一示例中,所述整体式VOCs催化剂46的蜂窝状基体采用堇青石、泡沫金属(镍)、氧化铝或碳化硅。
所述蜂窝状基体内外表面包括晶须。在一示例中,所述晶须包括莫来石晶须、硼酸铝晶须或碳化硅晶须。
整体式VOCs催化剂46的活性成分包括Ce-BiVO4-TiO2/Ag催化剂。
在一示例中,制备所述整体式VOCs催化剂的方法包括以下步骤:
提供表面生长有晶须的蜂窝状基体;
提供Ce-BiVO4-TiO2/Ag催化剂;
按照第一质量比(例如,(20-30):(15-20):(10-15):(30-45))将Ce-BiVO4-TiO2/Ag催化剂与羧甲基纤维素钠、硅溶胶、水混合得到第一反应物,将第一反应物涂覆在生长晶须的蜂窝状基体内外表面上,并进行干燥处理后焙烧(在300-600℃下焙烧3-6小时)以获得整体式VOCs催化剂。
提供表面生长有晶须的蜂窝状基体包括:
使得蜂窝状基体被晶须原料、无水硫酸铝和无水硫酸钠包埋以获得混合物料;
将所述混合物料于900-1200℃(例如1000℃)下焙烧2-12小时(例如8小时)后冷却,在所述蜂窝状基体的内外表面上生长出晶须。
在一示例中,提供Ce-BiVO4-TiO2/Ag催化剂包括:
将铈源、铋源、钒源和柠檬酸按照第二质量比形成溶胶,经由80-100℃(例如90℃)干燥(例如在恒温干燥箱中)后形成凝胶,在300-500℃(例如350-400℃)下焙烧3-8小时(例如4-6小时)得到活性粉末Ce-BiVO4
将活性粉末Ce-BiVO4溶液与TiO2按照第三质量比混合,并在超声条件(例如在超声振荡条件)下反应0.5-2小时(例如1-1.5小时),经过60-100℃(例如80-90℃)干燥(例如,旋转干燥)2-5小时(例如3-4小时)后在300-500℃(例如400-450℃)下焙烧3-8小时(例如5-6小时)得到Ce-BiVO4-TiO2
将银源与Ce-BiVO4-TiO2按照第四质量比混合,向混合溶液中加入还原剂(例如甘油),经过60-100℃(例如80-90℃)干燥(例如,旋转干燥)2-5小时(例如3-4小时)后在300-500℃(例如400-450℃)下焙烧3-8小时(例如5-6小时)得到Ce-BiVO4-TiO2/Ag催化剂。
本发明的发明人注意到,TiO2催化剂具有较宽(具体的,3.2eV)的禁带宽度,其对紫外线和可见光的利用率都很低,并且光响应范围较低;BiVO4也可以作为光催化材料,但其对可见光和紫外线的利用率也相对较低,从而限制了TiO2和BiVO4在光催化中的应用。针对于此,本发明提出了将TiO2和BiVO4结合在一起并进行离子掺杂(Ce和Ag),扩大了光响应范围,进而提高了催化剂的催化效率。
具体来说,将铈(Ce)离子掺入到BiVO4催化剂的晶体结构内部,改变了催化剂的内部组成,由此改变其电子结构,实现对其能带和禁带宽度的调控,从而提高光催化活性。铈(Ce)离子因其独特的4f电子轨道构型被认为是比较有效的掺杂剂。研究结果表明,在BiVO4晶格中,Ce取代Bi能显著抑制光生成电荷的复合,提高光催化活性,其原因是由于在Ce掺杂的BiVO4中,在贫Bi/V和富O条件下,CeBi 1+和CeV 1-是主要的缺陷,并且可以成为p型材料,其中CeBi 1+以一个未占据的深能级降解活性,该深能级主要由Ce的4f轨道组成,是一个深层复合中心。对于CeV 1-缺陷,在Ce-BiVO4没有发现局域态,其形成能对化学势和费米能都很敏感,说明贫Bi/V和富O条件有利于消除深能级态,提高光催化性能。因此,随着CeV 1-掺杂过程的建立,向BiVO4中掺杂Ce可以增强光催化活性。
在TiO2和Ce-BiVO4复合时,会导致晶格间距调整,进而引起晶相变化,从而扩大了光 响应范围。
在上述制备过程中,在焙烧过程中Ag+被还原为纳米银颗粒(AgNPs),由此使得Ce-BiVO4-TiO2/Ag催化剂具有优异的光催化性能。具体来说,光催化剂在一定波长的辐射(例如紫外光辐射和可见光辐射)照射下吸收了光能,受到大于其禁带宽带的能量激发时,处于价带位置的电子会被激发跃迁至导带,形成光生电子(e-),与此同时在价带上产生空穴(h+)。h+具有强氧化性,e-具有还原性,可以分别与水和氧气发生氧化还原反应,产生羟基自由基、超氧阴离子、过氧化氢和单线态氧。AgNPs可以起到电子陷阱的作用,通过产生局部电场来辅助电子-空穴分离和俘获电子,使得羟基自由基、超氧阴离子、过氧化氢和单线态氧等活性物种数量增多,从而使得光催化活性增强。而且光生电子可以与VOCs气相分子发生相互碰撞,使其化学键发生断裂生成分子碎片以及其他小分子物质,从而实现了利用光催化活性去除空气中的VOCs。
而且,AgNPs还有助于空气灭菌。AgNPs析出的银离子可以与细菌体中酶和生物大分子的巯基(—SH)相互作用,导致其失活,从而限制细菌生长。另外,AgNPs具有纳米效应,即AgNPs附着在细胞壁上并渗透到细菌细胞内,会导致其结构改变,从而导致细胞死亡,使得杂化膜在黑暗条件下也能发挥作用。
进一步地,所述铈源包括乙酸铈及其水合物、草酸铈及其水合物、硝酸铈及其水合物中的至少一种;所述铋源包括柠檬酸铋、三氯化铋、硝酸铋及其水合物中的至少一种;所述钒源包括硫酸氧钒、草酸氧钒、乙酰丙酮氧钒、氯化氧钒、磷酸氧钒中的至少一种。
在使用乙酸铈、柠檬酸铋和草酸氧钒的实施例中,所述第二质量比为(10-15):(15-20):(5-10):(60-70),例如12:18:8:62。
进一步地,所述第三质量比为(15-20):(80-85),例如18:82。所述第四质量比为(10-20):(80-90),例如15:85。
在本发明的实施例中,电晕电极42在放电过程中使得电晕电极42附近气体被电离产生大量负电荷并在整体式VOCs催化剂46内外表面累积;累积的电荷在蜂窝状基体内部孔隙产生叠加电场,当叠加电场的场强达到或超过蜂窝状基体内部孔隙表面晶须的击穿场强时,产生反电晕等离子体。反电晕等离子体产生在蜂窝状基体内部孔隙,由此形成等离子体反应通道,在等离子体反应通道中产生的自由电子、高能离子、活性粒子与整体式VOCs催化剂46内外表面上的VOCs催化剂的活性组分紧密结合,充分发挥等离子体高反应活性和VOCs高反应选择性两者优势,激活VOCs催化剂反应活性,提高反电晕等离子体反应选择性,促进VOCs反应在常温或低温发生,最终空气中的VOCs被氧化为H2O和O2
在本发明的实施例中,在反电晕等离子体放电过程中,整体式VOCs催化剂活性组分Ce-BiVO4-TiO2/Ag介电常数在常温下就可以达到10000以上。在反电晕等离子体放电过程中,由于存在Ce-BiVO4-TiO2/Ag,在较小的电场强度下可以使得整体式VOCs催化剂发生极化,显著增强反电晕等离子体的放电强度,由此获得大量的自由电子、羟基自由基、臭氧等活性粒子。这样,一方面可以促使VOCs气相分子发生氧化还原反应生成CO2和H2O,另一方面大量的自由电子对细菌、病毒的细胞膜构成严重击穿和破坏,增强灭菌效果。如此,在反电晕等离子体中设置整体式VOCs催化剂可以提高反电晕等离子体的能量利用效率,并且降低反电晕等离子体的能耗。
在一示例中,等离子体中还包括第二紫外线辐射。第二紫外线辐射的波长可以包括150nm或160nm。第二紫外线辐射的波长小于第一紫外线辐射的波长。第二紫外线辐射将与第一紫外线辐射共同处理空气中的VOCs和细菌。下文将进行详细描述。
在一示例中,等离子体可以对空气进行灭菌。等离子体中含有的大量高能离子、活性基团等成分,极易与细菌、霉菌、芽孢、病毒中的酶、蛋白质和核酸发生化学反应,能够摧毁和扰乱微生物的生存功能,使各类微生物死亡。等离子体中的高能粒子定向运动可“击碎”细菌、细胞和病毒的蛋白质并且破坏基因的完整性,受到高压电场作用,逸出电子和自由电子被加速获得很高能量,具有高动能的电子和击穿蚀刻效应,对细菌、病毒的细胞膜构成严重击穿和破坏。等离子体靶向破坏微生物的各种结构,蚀刻细胞壁,破坏生物膜和过氧化脂质,并且细菌DNA和RNA可能会受到氧化而损伤。
催化剂床层50用于处理空气中的臭氧。例如在等离子体形成过程中会产生臭氧,位于反电晕等离子体单元40后面的催化剂床层50可以对其进行处理。催化剂床层50包括3D泡沫陶瓷载体和在3D泡沫陶瓷载体表面负载的锰、钴双金属活性组分。
在一示例中,提供催化剂床层包括:
将Mn(CH3COO)2·4H2O、Co(CH3COO)2·4H2O、无水柠檬酸按照(15-20):(25-30):(50-60)质量比形成前驱体溶液,其中前驱体溶液中离子浓度为0.5-2mol/L(例如1mol/L),经过60-100℃(例如80-90℃)干燥2-5小时(例如3小时)后在300-500℃(例如400℃)下焙烧3-6小时(例如5小时)得到CoaMn1-aOx催化剂,其中a在0.2-0.8的范围(例如,0.2、0.33、0.5、0.67和0.8)内;
将3D泡沫陶瓷(例如切割好的3D泡沫陶瓷)在CoaMn1-aOx催化剂溶液(例如,将CoaMn1-aOx催化剂溶解于乙醇和水的溶液中)中于超声条件下浸渍0.5-1小时,然后在60-100℃(例如80-90℃)下干燥2-8小时(例如5小时)。
3D泡沫陶瓷催化剂床层CoaMn1-aOx催化剂的主要活性组分为MnOx,采用溶胶凝胶法制备的CoaMn1-aOx催化剂呈现疏松多孔结构,有利于气相分子吸附于CoaMn1-aOx催化剂表面,进而发生催化反应。
溶胶-凝胶法可以使得金属盐前驱体在分子水平达到高度分散,因此掺杂元素Co可以进入MnOx晶相内部,进而破坏MnOx晶体结构,其有利于MnOx表面产生大量氧空位。当氧分子经过MnOx表面时,臭氧分子通过末端氧原子与氧空位结合,氧空位是2e-电子供体,将2e-电子转移到臭氧的O原子,导致臭氧的O-O键断裂,释放氧气并生成O2-;另一个臭氧末端的氧原子与O2-吸附结合发生电子传递,导致臭氧的O-O键断裂,释放氧气并生成O2 2-;最后O2 2-分解释放出氧气,氧空位恢复,并且参与到下一个臭氧分解循环。由此,本发明的催化剂床层能够去除空气中的臭氧。
在本发明的实施例中,还提供了一种空气净化与灭菌方法。如图2所示,所述空气净化与灭菌方法包括:
提供反电晕等离子体单元以形成等离子体,所述反电晕等离子体单元在气流流动方向依次设置有电晕电极、辅助电极、整体式VOCs催化剂和接地极,所述整体式VOCs催化剂包括蜂窝状基体和涂覆在蜂窝状基体内外表面上的VOCs催化剂,所述蜂窝状基体内外表面包括晶须,所述整体式VOCs催化剂的活性成分包括Ce-BiVO4-TiO2/Ag,
在可见光和/或紫外光的照射下,通过Ce-BiVO4-TiO2/Ag处理空气中的VOCs和细菌;
使用等离子体中的活性成分处理空气中的VOCs和细菌。
在本发明的实施例中,利用整体式VOCs催化剂中的Ce-BiVO4-TiO2/Ag和等离子体中的活性成分(例如,自由电子、高能离子、活性粒子)处理空气中的VOCs和细菌,实现了空气的净化和灭菌。也就是,利用两种作用协同处理,以净化空气和灭菌,相比于每种单独的技术,极大地提高了处理效率。
在本发明的实施例中,Ce-BiVO4-TiO2/Ag中的活性成分(具体地,Ce、Bi、V、Ag)使得本发明的方法允许催化剂能够在可见光的辐射的作用下发挥光催化反应作用。相比于仅能吸收紫外光辐射的TiO2催化剂来说,本发明的方法的效率更高,成本更低。
在一示例中,空气净化与灭菌方法还包括:通过第一紫外线辐射以及第二紫外线辐射的紫外线辐射的组合处理空气中的VOCs和细菌。
进一步地,通过紫外线辐射的组合处理VOCs包括:
通过所述紫外线辐射的组合使得VOCs的分子键发生断键生成活性分子碎片;
通过所述紫外线辐射的组合使得空气中的氧气和水汽分子生成第一反应物种,所述第一 反应物种包括活性氧原子和羟基自由基;
通过所述第一反应物种使得活性分子碎片氧化生成小分子化合物。
本发明的实施例使用不同波长的紫外线辐射的组合,可以提供更强的辐射能量,有助于将VOCs的处理成尽可能小的活性分子碎片。小的活性分子碎片可以更加容易地进行氧化处理,即,生成小分子化合物。由此,使用不同波长的紫外线辐射的组合可以更加高效地处理空气中的VOCs。
在一示例中,空气净化与灭菌方法还包括:将静电网连接负直流高压电源,使得空气中的灰尘经过静电网时荷电;使得被荷电的灰尘吸附在过滤器表面。由此,本发明的实施例可以有效去除空气中的灰尘,改善了空气质量。
在一示例中,空气净化与灭菌方法还包括:通过催化剂床层处理空气中的臭氧。由此,本发明的实施例可以有效去除空气中的臭氧,避免臭氧排放对人类带来的危害。
以下将以一具体示例说明本发明的方法对于空气中的VOCs的处理效率。
1、整体式VOCs催化剂的制备
将乙酸铈、柠檬酸铋、草酸氧钒、柠檬酸按照12:18:8:62质量比形成溶胶,经由90℃干燥后形成凝胶,在350℃下焙烧5小时得到活性粉末Ce-BiVO4。将活性粉末Ce-BiVO4溶于水后,将其与TiO2粉末按照18:82质量比例混合均匀,并在超声振荡条件下反应1小时,经过80℃旋转干燥3小时后在400℃下焙烧5小时得到Ce-BiVO4-TiO2。将硝酸银(AgNO3)与Ce-BiVO4-TiO2按照15:85质量比例进行混合,向混合溶液中加入甘油,经过80℃旋转干燥3小时后在400℃下焙烧5小时,得到Ce-BiVO4-TiO2/Ag催化剂。
向堇青石蜂窝状基体中加入三氧化二硼、硝酸铝、无水硫酸铝和无水硫酸钠,使堇青石硅蜂窝状基体:三氧化二硼:硝酸铝:无水硫酸铝:无水硫酸钠质量比为30:15:15:20:15,并使堇青石蜂窝状基体被三氧化二硼、硝酸铝、无水硫酸铝和无水硫酸钠至少部分包埋,优选地充分全部包埋。将混合物料置于马弗炉中在1000℃条件下焙烧6小时,自然冷却至室温,堇青石蜂窝状基体表面生长形成致密的硼酸铝晶须。
将Ce-BiVO4-TiO2/Ag催化剂粉体与羧甲基纤维素钠、硅溶胶、水按照25:28:12:35质量比混合均匀得到催化剂浆料,在真空涂覆机上将催化剂浆料涂覆在表面生长硼酸铝晶须的堇青石蜂窝状基体上,将涂覆后的材料置于干燥箱100℃干燥2小时,然后置于马弗炉450℃焙烧6小时,得到本发明的整体式VOCs催化剂。
2、处理VOCs
使用本发明的空气净化装置进行处理。
提供VOCs模拟气体,其包括100ppm甲醛、100ppm甲苯、100ppm苯乙烯三种气体。上述三种气体通过质量流量计精准控制保证三种气体流量相同,VOCs浓度为300ppm,在混合罐中充分混合后通入反应装置,选择空气作为载气。调配稳定的混合气体直接进入反应装置。反电晕等离子体单元的等离子体生成强度通过控制接入电晕电极的负高压直流电源进行调控。在反电晕等离子体单元出气口端连接在线气相色谱实时检测VOCs浓度。反电晕等离子体接入电晕电极的负高压直流电压强度依次设置为6kV、8kV、10kV、12kV、14kV、16kV。本发明的实施例利用如下公式计算净化效率:
另外,还提供了对比例。在对比例中,并未在生长有晶须的堇青石蜂窝状基体上涂覆催化剂浆料,其余条件均与本发明的实施例相同。
表1示出了本发明的实施例与对比例的净化效果。根据表1可知,本发明的实施例对于VOCs的净化效率高达96%,实现了非常高的净化效率。
表1
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种空气净化与灭菌方法,包括:
    提供反电晕等离子体单元以形成等离子体,所述反电晕等离子体单元在气流流动方向依次设置有电晕电极、辅助电极、整体式VOCs催化剂和接地极,所述整体式VOCs催化剂包括蜂窝状基体和涂覆在蜂窝状基体内外表面上的VOCs催化剂,所述蜂窝状基体内外表面包括晶须,所述整体式VOCs催化剂的活性成分包括Ce-BiVO4-TiO2/Ag;
    在可见光和/或紫外光的照射下,通过Ce-BiVO4-TiO2/Ag处理空气中的VOCs和细菌;
    使用等离子体中的活性成分处理空气中的VOCs和细菌,
    其中,制备所述整体式VOCs催化剂的方法包括以下步骤:
    提供表面生长有晶须的蜂窝状基体;
    提供Ce-BiVO4-TiO2/Ag催化剂;
    按照第一质量比将Ce-BiVO4-TiO2/Ag催化剂与羧甲基纤维素钠、硅溶胶、水混合得到第一反应物,将第一反应物涂覆在生长晶须的蜂窝状基体内外表面上,并进行干燥处理后焙烧以获得整体式VOCs催化剂,
    其中提供Ce-BiVO4-TiO2/Ag催化剂的步骤包括:
    将铈源、铋源、钒源和柠檬酸按照第二质量比形成溶胶,经由80-100℃干燥后形成凝胶,在300-500℃下焙烧3-8小时得到活性粉末Ce-BiVO4
    将活性粉末Ce-BiVO4溶液与TiO2按照第三质量比混合,并在超声条件下反应0.5-2小时,经过60-100℃干燥2-5小时后在300-500℃下焙烧3-8小时得到Ce-BiVO4-TiO2
    将银源与Ce-BiVO4-TiO2按照第四质量比混合,向混合溶液中加入还原剂,经过60-100℃干燥2-5小时后在300-500℃下焙烧3-8小时得到Ce-BiVO4-TiO2/Ag催化剂,在焙烧过程中Ag+被还原为纳米银颗粒。
  2. 根据权利要求1所述的空气净化与灭菌方法,其中,
    所述第一质量比为(20-30):(15-20):(10-15):(30-45);
    所述铈源包括乙酸铈;
    所述铋源包括柠檬酸铋;
    所述钒源包括草酸氧钒;
    所述第二质量比为(10-15):(15-20):(5-10):(60-70);
    所述第三质量比为(15-20):(80-85);
    所述第四质量比为(10-20):(80-90);
    所述还原剂为甘油。
  3. 根据权利要求1-2中任一项所述的空气净化与灭菌方法,还包括:
    在气流流动方向上的所述反电晕等离子体单元的上游处,提供辐射单元,所述辐射单元包括至少一个紫外光源以发射第一紫外线辐射,所述第一紫外线辐射的波长大于等离子体中的第二紫外线辐射的波长;
    通过第一紫外线辐射以及第二紫外线辐射的紫外线辐射的组合处理空气中的VOCs和细菌。
  4. 根据权利要求3所述的空气净化与灭菌方法,其中,
    通过所述紫外线辐射的组合使得VOCs的分子键发生断键生成活性分子碎片;
    通过所述紫外线辐射的组合使得空气中的氧气和水汽分子生成第一反应物种,所述第一反应物种包括活性氧原子和羟基自由基;
    通过所述第一反应物种使得活性分子碎片氧化生成小分子化合物。
  5. 根据权利要求4所述的空气净化与灭菌方法,其中,
    所述辐射单元还包括至少一个可见光光源以发射可见光,
    在所述可见光和/或第一紫外线辐射的照射下,通过Ce-BiVO4-TiO2/Ag处理空气中的VOCs和细菌。
  6. 根据权利要求5所述的空气净化与灭菌方法,还包括:
    在气流流动方向上的所述辐射单元的上游处,提供过滤单元,所述过滤单元在气流流动方向依次设置有静电网和过滤器;
    将静电网连接负直流高压电源,使得空气中的灰尘经过静电网时荷电;
    使得被荷电的灰尘吸附在过滤器表面,并将过滤器接地。
  7. 根据权利要求6所述的空气净化与灭菌方法,还包括:
    在气流流动方向上的所述反电晕等离子体单元的下游处,提供催化剂床层,所述催化剂 床层包括3D泡沫陶瓷载体和在3D泡沫陶瓷载体表面负载的锰、钴双金属活性组分;
    通过所述催化剂床层处理空气中的臭氧。
  8. 根据权利要求7所述的空气净化与灭菌方法,其中,
    提供催化剂床层包括:
    将Mn(CH3COO)2·4H2O、Co(CH3COO)2·4H2O、无水柠檬酸按照(15-20):(25-30):(50-60)质量比形成前驱体溶液,其中前驱体溶液中离子浓度为0.5-2mol/L,经过60-100℃干燥2-5小时后在300-500℃下焙烧3-6小时得到CoaMn1-aOx催化剂,其中a在0.2-0.8的范围内;
    将3D泡沫陶瓷在CoaMn1-aOx催化剂溶液中于超声条件下浸渍0.5-1小时,然后在60-100℃下干燥2-8小时。
PCT/CN2023/114433 2022-08-26 2023-08-23 空气净化与灭菌方法 WO2024041565A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211033269.0 2022-08-26
CN202211033269.0A CN115419974B (zh) 2022-08-26 2022-08-26 空气净化与灭菌方法

Publications (1)

Publication Number Publication Date
WO2024041565A1 true WO2024041565A1 (zh) 2024-02-29

Family

ID=84201221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114433 WO2024041565A1 (zh) 2022-08-26 2023-08-23 空气净化与灭菌方法

Country Status (2)

Country Link
CN (2) CN116972471A (zh)
WO (1) WO2024041565A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116972471A (zh) * 2022-08-26 2023-10-31 苏州科技大学 空气净化装置
CN116081687A (zh) * 2022-12-14 2023-05-09 成都先进金属材料产业技术研究院股份有限公司 一种基于超声和/或微波分散的钒酸铋粉体及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102284077A (zh) * 2010-06-18 2011-12-21 上海牛翼新能源科技有限公司 用于室(车)内环境的多功能高效空气净化器
CN102958264A (zh) * 2012-11-20 2013-03-06 浙江大学 一种基于催化剂反电晕沿面击穿的等离子体发生装置及方法和应用
CN104190433A (zh) * 2014-08-15 2014-12-10 浙江省环境保护科学设计研究院 一种用于挥发性有机废气处理的催化臭氧氧化催化剂及其制备方法和应用
CN109945341A (zh) * 2019-03-01 2019-06-28 深圳明阳电路科技股份有限公司 空气净化器
CN113877569A (zh) * 2020-07-03 2022-01-04 中国石油化工股份有限公司 一种生产均苯四甲酸二酐的催化剂及其制备方法
CN115419974A (zh) * 2022-08-26 2022-12-02 苏州科技大学 空气净化与灭菌方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221565A (ja) * 2000-02-07 2001-08-17 Fuji Electric Co Ltd 冷蔵ショーケース

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102284077A (zh) * 2010-06-18 2011-12-21 上海牛翼新能源科技有限公司 用于室(车)内环境的多功能高效空气净化器
CN102958264A (zh) * 2012-11-20 2013-03-06 浙江大学 一种基于催化剂反电晕沿面击穿的等离子体发生装置及方法和应用
CN104190433A (zh) * 2014-08-15 2014-12-10 浙江省环境保护科学设计研究院 一种用于挥发性有机废气处理的催化臭氧氧化催化剂及其制备方法和应用
CN109945341A (zh) * 2019-03-01 2019-06-28 深圳明阳电路科技股份有限公司 空气净化器
CN113877569A (zh) * 2020-07-03 2022-01-04 中国石油化工股份有限公司 一种生产均苯四甲酸二酐的催化剂及其制备方法
CN115419974A (zh) * 2022-08-26 2022-12-02 苏州科技大学 空气净化与灭菌方法

Also Published As

Publication number Publication date
CN115419974B (zh) 2023-09-19
CN116972471A (zh) 2023-10-31
CN115419974A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2024041565A1 (zh) 空气净化与灭菌方法
CN102198405B (zh) 一种净化室内甲醛用的复合催化剂及其制备方法
CN106642487A (zh) 一种新风和室内空气净化的一体化装置及净化方法
CN105289685B (zh) 一种用于空气净化的表面等离子共振增强光催化剂及其制备方法和应用
CN105648743B (zh) 一种纺织用电气石改性纳米二氧化钛高性能整理剂的制备方法
CN105289325B (zh) 一种用于空气净化的载银碳纳米管陶瓷复合膜的制备方法
JP2013078759A (ja) 燃焼排ガス処理ユニット及びco2供給装置
CN107376905B (zh) 一种可降解甲醛的Ag/ZnO复合材料的制备方法
CN110665531A (zh) 一种Pt/g-C3N4/CeO2复合光催化剂及其制备方法与应用
WO2021130388A1 (en) Method for manufacturing a photocatalytic device, photocatalytic device, photocatalytic composition and gas depolluting apparatus
CN111495352A (zh) 一种高效光催化氧化单质汞的金属掺杂改性钛酸锶的方法
CN105642333B (zh) 一种多功能环境净化复合材料及其制备方法和应用
KR100992115B1 (ko) 공기정화용 세라믹필터 제조방법 및 그 세라믹필터 모듈
JP2017170441A (ja) 混合ガスに対する除去性能に優れた光触媒フィルタおよびその製造方法
CN103877855A (zh) 一种光催化氧化结合吸附的废气零价汞脱除方法
CN106475112A (zh) 一种净化分解甲醛整体式催化剂的制备方法
CN105597517B (zh) 清除烟雾烟味的装置及其应用
JP6144311B2 (ja) 混合ガスに対する除去性能に優れた光触媒フィルタおよびその製造方法
CN101837300A (zh) 基于臭氧的光催化耦合催化剂及其制备方法
CN106237767B (zh) 一种旋转收尘清灰结构
CN218269493U (zh) 室内空气处理装置
CN114570348B (zh) 可见光照射进行光催化降解的二氧化钛基纳米复合光触媒及其应用
JP2005138050A (ja) 光触媒および触媒の製造方法
TWI609718B (zh) 用於降解混合氣體的光催化過濾器及其製造方法
KR102367092B1 (ko) VUV 자외선 포토플라즈마 TiO2 광촉매용 램프를 포함하는 공기 살균기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856653

Country of ref document: EP

Kind code of ref document: A1