WO2024041487A1 - 天线模组和电子设备 - Google Patents

天线模组和电子设备 Download PDF

Info

Publication number
WO2024041487A1
WO2024041487A1 PCT/CN2023/114054 CN2023114054W WO2024041487A1 WO 2024041487 A1 WO2024041487 A1 WO 2024041487A1 CN 2023114054 W CN2023114054 W CN 2023114054W WO 2024041487 A1 WO2024041487 A1 WO 2024041487A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna unit
main antenna
parasitic
main
slit
Prior art date
Application number
PCT/CN2023/114054
Other languages
English (en)
French (fr)
Inventor
冯群倚
秦源
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024041487A1 publication Critical patent/WO2024041487A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • This application belongs to the field of communication technology, and specifically relates to an antenna module and electronic equipment.
  • Flexible screens are widely used in electronic devices. For electronic devices with folding screens, they have multiple screens.
  • the multiple screens are connected through connecting components.
  • the multiple screens can be switched between the unfolded state and the folded state.
  • the main antenna is generally set In one of the multiple screens, the main antenna excites the current on the parasitic branches through the connecting component through the ground current to excite the parasitic antennas arranged in other screens to realize radiation of the antenna.
  • the applicant discovered that there are at least the following problems in the prior art: for folding screens, the radiation efficiency of the main antenna is low.
  • the purpose of the embodiments of the present application is to provide an antenna module and an electronic device to at least solve one of the problems of low antenna radiation efficiency.
  • an antenna module including:
  • a main antenna unit, the main antenna unit is provided on the first body of the electronic device;
  • Parasitic antenna unit, the parasitic antenna unit is disposed on the second body of the electronic device, and the parasitic antenna unit and the main antenna unit are disposed at the same end, the first body and the third The two bodies are connected through a connecting component, and the first body and the second body are switchable between an unfolded state and a folded state;
  • the shortest distance between the end of the main antenna unit close to the connecting component and the end of the parasitic antenna unit close to the connecting component is (n ⁇ )/2; where ⁇ is the target operating wavelength of the main antenna unit, n>0 and n is an odd or even number.
  • an electronic device including:
  • the antenna module according to the first aspect is provided on the first body and the second body.
  • the main antenna in the unfolded state is adjusted based on actual needs.
  • the direction of the current in the unit and the parasitic antenna unit thereby selectively improving the antenna radiation efficiency of the main antenna unit of the electronic device in the unfolded state or the antenna radiation efficiency of the main antenna unit in the folded state, with high flexibility and usability, and the hardware structure is simple, no additional components are needed, and the design cost is low.
  • FIG 1 is one of the structural schematic diagrams of the antenna module provided by the embodiment of the present application.
  • FIG. 2 is the second structural schematic diagram of the antenna module provided by the embodiment of the present application.
  • FIG. 3 is the third structural schematic diagram of the antenna module provided by the embodiment of the present application.
  • Figure 4 is the fourth structural schematic diagram of the antenna module provided by the embodiment of the present application.
  • Figure 5 is a fifth structural schematic diagram of an antenna module provided by an embodiment of the present application.
  • FIG. 6 is the sixth structural schematic diagram of the antenna module provided by the embodiment of the present application.
  • Figure 7 is the seventh structural schematic diagram of the antenna module provided by the embodiment of the present application.
  • Figure 8 is one of the circuit structure schematic diagrams of the antenna module provided by the embodiment of the present application.
  • FIG. 9 is the second schematic diagram of the circuit structure of the antenna module provided by the embodiment of the present application.
  • first and second features in the description and claims of this application may include one or more of these features, either explicitly or implicitly.
  • plural means two or more.
  • and/or in the description and claims indicates at least one of the connected objects, and the character “/” generally indicates that the related objects are in an “or” relationship.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • specific meanings of the above terms in this application can be understood on a case-by-case basis.
  • an antenna module includes: a main antenna unit and a parasitic antenna unit.
  • the main antenna unit is disposed on the first body 130 of the electronic device; the parasitic antenna unit is disposed on the second body 140 of the electronic device.
  • the first body 130 and the second body 140 are connected through the connecting assembly 150, and the first body 130 and the second body 140 are switchable between an unfolded state and a folded state.
  • the connecting component 150 may be a hinge structure or other structures that can achieve a folding function.
  • first body 130 and the second body 140 can be switched between the unfolded state and the folded state by folding, wherein the folding can be inward folding.
  • the parasitic antenna unit and the main antenna unit are arranged at the same end.
  • At least part of the main antenna unit and at least part of the parasitic antenna unit are made of metal conductive material.
  • the parasitic antenna unit in the second body 140 is mainly excited by the ground current, that is, the main antenna unit in the first body 130 passes through The ground current excites current on the parasitic antenna element via connection assembly 150 .
  • the parasitic antenna unit in the second body 140 is simultaneously excited by spatial coupling excitation and ground current.
  • the main antenna unit may be in the form of a common dual-band Inverted F Antenna (IFA).
  • IFA Inverted F Antenna
  • the main antenna unit may also be in the form of a monopole, a Planar Inverted F-shaped Antenna (PIFA), or a loop antenna (LOOP Antenna), which is not limited in this application.
  • PIFA Planar Inverted F-shaped Antenna
  • LOOP Antenna loop antenna
  • the form of the parasitic antenna unit is consistent with that of the main antenna unit.
  • the shortest distance between the end of the main antenna unit close to the connecting component 150 and the end of the parasitic antenna unit close to the connecting component 150 is (n ⁇ )/2; where, ⁇ is the target operating wavelength of the main antenna unit, n>0 and n can be an odd or even number.
  • n when n is an even number, n can take the value of 2, 4, 6 or any other positive even value; when n is an odd number, n can take the value of 1, 3 or any other positive and odd value, which is not limited in this application.
  • the operating frequency range or the number of operating frequency bands of the main antenna unit is not limited, and it can be applied to 4G, 5G or any other network.
  • Figure 1 illustrates an example when n is an even number, the current direction in the main antenna unit and the parasitic antenna unit in the unfolded state, as shown by the arrow direction, both are counterclockwise.
  • n is an odd number
  • the currents in the main antenna unit and the parasitic antenna unit are in opposite directions; in the folded state, the currents in the main antenna unit and the parasitic antenna unit are in the same direction.
  • Figure 4 illustrates the current direction in the main antenna unit and the parasitic antenna unit in the unfolded state when n is an odd number, as shown in the direction of the arrow.
  • the current direction in the main antenna unit is counterclockwise and the parasitic antenna unit
  • the direction of current in is clockwise.
  • Figure 5 illustrates the current direction in the main antenna unit and the parasitic antenna unit in the folded state when n is an odd number.
  • the dotted arrow represents the direction of spatial coupling excitation, and the solid arrow represents the excitation direction of the ground current.
  • the visible space The direction of the coupled excitation is opposite to that of the ground current.
  • the antenna radiation efficiency of the corresponding main antenna unit is higher than when the currents in the main antenna unit and the parasitic antenna unit are in opposite directions. Lower the antenna radiation efficiency of its corresponding main antenna unit.
  • the shortest distance between the first ground return end 112 and the second ground return end 122 in the deployed state can be set to an even multiple of ⁇ /2, so that in the deployed state, the main antenna unit It is in the same direction as the current in the parasitic antenna unit to improve the antenna radiation efficiency of the main antenna unit in the unfolded state.
  • the distance between the first ground end 112 and the second ground end 122 in the deployed state can be set to an odd multiple of ⁇ /2, so that in the deployed state, the main antenna The currents in the unit and the parasitic antenna unit are in opposite directions, while in the folded state, the currents in the main antenna unit and the parasitic antenna unit are in the same direction, so as to improve the antenna radiation efficiency of the main antenna unit in the folded state.
  • the antenna module in the expanded state can be adjusted based on actual needs.
  • the direction of the current in the main antenna unit and the parasitic antenna unit can selectively improve the antenna radiation efficiency of the main antenna unit in the unfolded state of the electronic device or the antenna radiation efficiency of the main antenna unit in the folded state, with higher Flexibility and availability, simple hardware structure, no need to add additional components, and low design cost.
  • the main antenna unit includes a feed end 114 and a main antenna arm 111.
  • the feed end 114 is connected between the main antenna arm 111 and the first body 130, and the feed end 114 is connected between the main antenna arm 111 and the first body 130.
  • One end of the end 114 is connected to the main antenna arm 111, and the other end is grounded through the first body 130.
  • the parasitic antenna unit includes a parasitic antenna arm 121, and the lengths of the main antenna arm 111 and the parasitic antenna arm 121 are equal.
  • the main antenna arm 111 and the first body 130 are on the same plane, and the main antenna arm 111 is perpendicular to the connecting component 150; the parasitic antenna arm 121 and the second body 140 are on the same plane. plane, and the parasitic antenna arm 121 is perpendicular to the connection component 150 .
  • the first clearance area 171 inside the main antenna unit and the second clearance area 172 inside the parasitic antenna unit are the same size and symmetrical.
  • the clear area is used to reduce the impact of the metal frame (equivalent to a metal ground) of the second body 140 on the antenna performance of the main antenna unit in the folded state.
  • the main antenna arm 111 is disposed on the first body 130, and a first clearance area 171 is formed between the main antenna arm 111 and the first body 130; the parasitic antenna arm 121 is disposed on the second body 140, and the parasitic antenna arm 121 and the second body A second clearance area 172 is formed between 140 .
  • the feed terminal 114 is used for power supply.
  • the feed end 114 is disposed in a clearance area inside the first body 130 and is electrically connected to the main antenna arm 111 and the first body 130 respectively.
  • the lengths of the main antenna arm 111 and the parasitic antenna arm 121 are both ⁇ /4; where ⁇ is the target operating wavelength of the main antenna unit, n>0 and n is an odd or even number.
  • the lengths of the main antenna arm 111 and the parasitic antenna arm 121 may be other values, which will be described below.
  • the main antenna unit and the parasitic antenna unit can be kept as symmetrical as possible in the folded state, thereby improving the performance of the electronic device.
  • the main antenna unit and the parasitic antenna unit can be kept as symmetrical as possible in the folded state, thereby improving the performance of the electronic device.
  • the main antenna unit and the parasitic antenna unit are arranged in the same direction or away from each other.
  • n is an even number, that is, in the unfolded state
  • the shortest distance between the end of the main antenna unit close to the connecting component 150 and the end of the parasitic antenna unit close to the connecting component 150 is an even multiple of ⁇ /2
  • the currents in the main antenna unit and the parasitic antenna unit are in the same direction.
  • the antenna radiation efficiency of the main antenna unit is higher in the unfolded state.
  • the main antenna unit and the parasitic antenna unit may be arranged axially symmetrically based on the connection assembly 150 between the first body 130 and the second body 140; or, the main antenna unit and the parasitic antenna unit may be arranged axially symmetrically.
  • Antenna units can be arranged in the same direction.
  • n is set to an even number to ensure that when the electronic device is in the unfolded state, the current directions inside the main antenna unit and the parasitic antenna unit are in the same direction, thereby improving the performance of the main antenna unit in the unfolded state. antenna radiation efficiency.
  • the main antenna unit is provided with a first slit 161, and the parasitic antenna unit is provided with a second slit 162;
  • the first slit 161 is provided at one end of the main antenna arm 111, and the distance from the first slit 161 of the main antenna unit to the first ground end 112 is ⁇ /4;
  • the second slit 162 is provided at one end of the parasitic antenna arm 121, and the distance from the second slit 162 of the parasitic antenna unit to the second ground end 122 is ⁇ /4;
  • the main antenna unit includes a first slit 161 and the parasitic antenna unit includes a second slit 162 .
  • One end of the main antenna arm 111 is connected to the first body 130, and a first slit 161 is formed between the other end and the first body 130; one end of the parasitic antenna arm 121 is connected to the second body 140, and the other end is connected to the second body 140.
  • a second slit 162 is formed therebetween.
  • the main antenna unit includes a first ground return terminal 112 and the parasitic antenna unit includes a second ground return terminal 122 .
  • the distance from the first slit 161 of the main antenna unit to the first ground return end 112 is ⁇ /4, that is, the length of the main antenna arm 111 is ⁇ /4; the second slit 162 of the parasitic antenna unit is The distance from the ground end 122 is ⁇ /4, that is, the length of the parasitic antenna arm 121 is ⁇ /4.
  • the first ground return end 112 and the second ground return end 122 are axially symmetrical along the connecting component 150
  • the first slit 161 and the second slit 162 are arranged axially symmetrically along the connecting component 150; the shortest distance between the first ground return end 112 of the main antenna unit and the second ground return end 122 of the parasitic antenna unit is an even multiple. ⁇ /2.
  • the first ground return end 112 and the second ground return end 122 are spaced apart from the connecting group.
  • the distance between the axes of the parts 150 is equal and is (n ⁇ )/4; the distance between the first slit 161 and the second slit 162 is ( ⁇ /4+(n ⁇ )/4+ ⁇ /4); where, n is an even number.
  • the main antenna arm 111 located on the first body 130 excites a quarter of the IFA mode from the first slit 161 to the first ground return end 112, and the ground current is transmitted to the parasitic antenna arm of the second body 140 through the connection component 150. 121. After a distance that is an even multiple of ⁇ /2, a current in the same direction is excited in the parasitic antenna arm 121, thereby improving the antenna efficiency.
  • the first ground return end 112 to the first slit 161 in the main antenna unit The direction is consistent with the direction from the second ground end 122 to the second slit 162 in the parasitic antenna unit;
  • the shortest distance between the first ground return end 112 of the main antenna unit and the second slit 162 of the parasitic antenna unit is an even multiple of ⁇ /2;
  • the distance between the axes of 150 is (n ⁇ )/4, and the lengths of the main antenna arm 111 and the parasitic antenna arm 121 are both ⁇ /4.
  • the slit is located in the middle
  • the main antenna unit is provided with a first slit 161
  • the parasitic antenna unit is provided with a second slit 162
  • the first slit 161 is provided in the middle of the main antenna arm 111
  • the second slit 162 is provided in the middle of the parasitic antenna arm 121 .
  • the main antenna unit and the parasitic antenna unit are arranged away from each other.
  • the first ground return end 112 and the second ground return end 122 are arranged axially symmetrically along the connecting component 150.
  • the first slit 161 and the second slit 162 are arranged axially symmetrically along the connecting component 150; the distance between the first ground return end 112 and the second ground return end 122 is (n ⁇ )/2, where n is an even number; and includes the first
  • the total length of the main antenna arm 111 of the slit 161 is ⁇ /2
  • the total length of the parasitic antenna arm 121 including the second slit 162 is ⁇ /2.
  • the antenna module according to the embodiment of the present application provides a variety of settings for the main antenna unit and the parasitic antenna unit, allowing users to flexibly choose the best design method based on actual needs, thereby improving the performance of the electronic device in the unfolded or folded state.
  • the antenna radiation efficiency of the main antenna unit At the same time, it also improves flexibility and usability.
  • the main antenna unit and the parasitic antenna unit are arranged away from each other.
  • n is an odd number, that is, in the unfolded state, the shortest distance between the end of the main antenna unit close to the connecting component 150 and the end of the parasitic antenna unit close to the connecting component 150 is an odd multiple of ⁇ /2 , at this time, the currents in the main antenna unit and the parasitic antenna unit are in opposite directions, while in the folded state, the currents in the antenna unit and the parasitic antenna unit are in the same direction. At this time, the antenna radiation efficiency of the main antenna unit in the folded state is higher.
  • the main antenna unit and the parasitic antenna unit may be arranged axially symmetrically based on the connection component 150 between the first body 130 and the second body 140, and the first ground end 112 of the main antenna unit
  • the shortest distance from the second ground end 122 of the parasitic antenna unit is an odd multiple of ⁇ /2.
  • the distance between the first ground return end 112 and the second ground return end 122 from the axis of the connecting component 150 is equal, which is (n ⁇ )/4; the distance between the first slit 161 and the second slit 162 is The distance between is ( ⁇ /4+(n ⁇ )/4+ ⁇ /4); where n is an odd number.
  • the distance from the first slit 161 of the main antenna unit to the first ground end 112 is ⁇ /4, that is, the length of the main antenna arm 111 is ⁇ /4; the second slit 162 of the parasitic antenna unit is The distance from the ground end 122 is ⁇ /4, that is, the length of the parasitic antenna arm 121 is ⁇ /4.
  • n is set to an odd number to ensure that when the electronic device is in the folded state, the current directions inside the main antenna unit and the parasitic antenna unit are in the same direction, thereby improving the performance of the main antenna unit in the folded state. antenna radiation efficiency.
  • the parasitic antenna unit may include: a first frequency adjustment component 123 and a third resistor R3.
  • the first frequency adjustment component 123 is used to achieve a multi-frequency effect.
  • Multi-frequency effects include: high frequency and low frequency.
  • the first frequency adjustment component 123 is provided on the parasitic antenna arm 121 and is electrically connected to the parasitic antenna arm 121 catch.
  • the first frequency adjustment component 123 may include: a first resistor R1, a second resistor R2, a first switch K1, and a first matching network module 129; wherein the first resistor R1 and the second resistor R2 are connected in parallel. One end is connected to ground, and the other end is connected in series with the first matching network module 129 through the first switch K1.
  • One end of the first matching network module 129 is grounded through the third resistor R3, and the other end is electrically connected to the parasitic antenna arm 121.
  • the resistance value of the third resistor R3 can be 50 ⁇ or other resistance values.
  • the components such as the first switch K1 and the resistor can be any model that meets the antenna function.
  • the topological structure of the first frequency adjustment component 123 can also be in a form that can be used by any other antenna, which is not limited in this application.
  • the antenna module by setting the first frequency adjustment component 123, there is no need to add a new radio frequency channel, and only need to add components (such as capacitors, inductors and switches) that are consistent with the matching network or tuning network topology of the main antenna unit. device) can achieve multi-frequency effects, which can effectively save costs while improving the performance of electronic equipment.
  • components such as capacitors, inductors and switches
  • the main antenna unit may include: a second frequency adjustment component 113 and a radio frequency circuit 118.
  • the second frequency adjustment component 113 is used to adjust the operating wavelength of the main antenna unit, and the second frequency adjustment component 113 is configured corresponding to the first frequency adjustment component 123 .
  • the second frequency adjustment component 113 is provided on the main antenna arm 111 and is electrically connected to the main antenna arm 111 .
  • the second frequency adjustment component 113 is similar in structure to the first frequency adjustment component 123 .
  • the second frequency adjustment component 113 may include: a fourth resistor R4 , a fifth resistor R5 , a second switch K2 and a second matching network module 119 .
  • the fourth resistor R4 and the fifth resistor R5 are connected in parallel and have one end connected to ground, and the other end is connected in series with the second matching network module 119 through the second switch K2.
  • One end of the second matching network module 119 is connected to the radio frequency circuit 118 , and the other end is electrically connected to the main antenna arm 111 .
  • the operating frequency of the main antenna unit can be changed, thereby changing the operating wavelength of the main antenna unit.
  • the working frequency of the main antenna unit includes high frequency and low frequency.
  • the antenna module by setting the second frequency adjustment component 113 to achieve a multi-frequency effect, the performance of the electronic device can be improved and the cost can be saved.
  • the target operating wavelength is the operating wavelength when the main antenna unit operates in the low-frequency state
  • the target operating wavelength is the operating wavelength when the main antenna unit operates in the low-frequency state.
  • the operating wavelength of the main antenna unit operating in the low-frequency state is ⁇ 1 ; and the operating wavelength of the main antenna unit operating in the high-frequency state is ⁇ 2 .
  • the electronic device has a multi-frequency effect, no matter whether the main antenna unit operates in a low-frequency state or a high-frequency state, in the unfolded state, the end of the main antenna unit close to the connecting component 150 is close to the parasitic antenna unit.
  • the distance between the feed end 114 of the main antenna unit and the first frequency adjustment component 123 of the parasitic antenna unit is (n ⁇ 2 )/2; where ⁇ 2 is the main antenna unit operating in a high-frequency state. operating wavelength.
  • n is an even number
  • the current directions of the main antenna unit and the parasitic antenna unit are consistent, and both are counterclockwise, so that the antenna of the main antenna unit in the unfolded state Radiation efficiency is improved.
  • the target operating wavelength is the actual operating wavelength of the main antenna unit.
  • the antenna module by taking different values for n in the multi-frequency mode, in addition to providing multi-frequency effects to broaden the application scenarios of electronic equipment and improve the performance of electronic equipment, it can also enable users to base their actual needs on Different n values need to be selected to correspondingly improve the antenna radiation efficiency in the unfolded or folded state, thereby further improving the performance of electronic devices.
  • the main antenna unit is provided with a first slit 161
  • the parasitic antenna unit is provided with a second slit 162
  • the first slit 161 is provided at one end of the main antenna unit.
  • the second slit 162 is provided at one end of the parasitic antenna unit, and in the unfolded state, the main antenna unit and the parasitic antenna unit are arranged away from each other.
  • the mode is a quarter IFA with a slit to the ground end.
  • mode that is, the length of the main antenna arm 111 and the length of the parasitic antenna arm 121 are both ⁇ 1 /4, and the distance between the first ground end 112 and the second ground end 122 is (n ⁇ 1 )/2, where ⁇ 1 It is the working wavelength of the main antenna unit working in low frequency state;
  • the distance between the first ground return end 112 and the second ground return end 122 is (n ⁇ 1 )/ 2, where ⁇ 1 is the operating wavelength of the main antenna unit operating at low frequency; the distance between the feed end 114 and the first frequency adjustment component 123 of the parasitic antenna unit is (n ⁇ 2 )/2; the mode is slit The quarter monopole mode to the feed end, that is, the distance between the first slit 161 and the feed end 114 is ⁇ 2 /4, and the distance between the second slit 162 and the first frequency adjustment component 123 is ⁇ 2 /4 ; Among them, ⁇ 2 is the working wavelength of the main antenna unit working in high frequency state.
  • n is an even number
  • the current directions of the main antenna unit and the parasitic antenna unit are consistent, as shown in Figure 7 , so that the antenna radiation efficiency of the main antenna unit is improved in the expanded state.
  • n is an odd number
  • in the unfolded state the current directions of the main antenna unit and the parasitic antenna unit are opposite, as shown in Figure 6; while in the folded state, the current directions of the main antenna unit and the parasitic antenna unit are opposite.
  • the current direction is the same, and the reverse current intensity caused by the spatial coupling excitation is weakened through ground current excitation to improve the antenna radiation efficiency of the main antenna unit in the folded state.
  • the distance between the feed end 114 and the first frequency adjustment component 123 of the parasitic antenna unit is set to (n ⁇ 2 )/2, and the first frequency adjustment component 123 is set to (n ⁇ 2 )/2.
  • the distance between the slit 161 and the feed end 114 is set to ⁇ 2 /4, and the distance between the second slit 162 and the first frequency adjustment component 123 is set to ⁇ 2 /4, so that when n is an even number, In the unfolded state, the currents in the main antenna unit and the parasitic antenna unit are in the same direction. When n is an odd number, the currents in the main antenna unit and the parasitic antenna unit are in the same direction in the folded state, thereby improving the unfolded state or Radiation efficiency of the antenna in the folded state.
  • the electronic device can be a mobile electronic device, such as a mobile phone, a tablet, a watch, a vehicle-mounted terminal, and a wearable smart terminal; or it can also be a non-mobile electronic device, such as a PC.
  • a mobile electronic device such as a mobile phone, a tablet, a watch, a vehicle-mounted terminal, and a wearable smart terminal
  • a non-mobile electronic device such as a PC.
  • An electronic device includes: a first body, a second body, and an antenna module as described in any of the above embodiments.
  • the first body and the second body are connected through a connecting component, and the first body and the second body are switchable between an unfolded state and a folded state.
  • the antenna module is arranged on the first body and the second body.
  • n is selected based on actual needs. Parity to adjust the direction of the current in the main antenna unit and the parasitic antenna unit in the deployed state based on actual needs, thereby selectively improving the performance of the electronic device in the deployed state.
  • the antenna radiation efficiency of the main antenna unit in the folded state or the antenna radiation efficiency of the main antenna unit in the folded state has high flexibility and usability, and the hardware structure is simple, without adding additional components, and has a lower design cost.
  • the electronic device may further include a decorative ring 190 , wherein the decorative ring 190 is disposed on one side of the first body 130 .

Landscapes

  • Support Of Aerials (AREA)

Abstract

本申请公开了一种天线模组和电子设备,所述天线模组包括:主天线单元,主天线单元设置于电子设备的第一主体;寄生天线单元,寄生天线单元设置于电子设备的第二主体,且寄生天线单元与主天线单元设置于同一端,第一主体与第二主体通过连接组件相连,第一主体与第二主体在展开状态和折叠状态之间可切换;在第一主体与第二主体在展开状态的情况下,主天线单元靠近连接组件的一端与寄生天线单元靠近连接组件的一端之间的距离为(nλ)/2。

Description

天线模组和电子设备
相关申请的交叉引用
本申请要求于2022年08月24日提交的申请号为202211024138.6,发明名称为“天线模组和电子设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种天线模组和电子设备。
背景技术
柔性屏被广泛应用于电子设备中,对于具有折叠屏的电子设备,其具有多个屏幕,多个屏幕通过连接组件连接,多个屏幕可以在展开状态和折叠状态之间切换,主天线一般设置于多个屏幕中的一个屏幕中,主天线通过地电流经由连接组件激励起寄生枝节上的电流,以激励设置于其他屏幕中的寄生天线,以实现天线的辐射。在实现本申请过程中,申请人发现现有技术中至少存在如下问题:对于折叠屏而言,其主天线的辐射效率较低。
发明内容
本申请实施例的目的是提供一种天线模组和电子设备,至少解决天线辐射效率较低的问题之一。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种天线模组,包括:
主天线单元,所述主天线单元设置于电子设备的第一主体;
寄生天线单元,所述寄生天线单元设置于所述电子设备的第二主体,且所述寄生天线单元与所述主天线单元设置于同一端,所述第一主体与所述第 二主体通过连接组件相连,所述第一主体与所述第二主体在展开状态和折叠状态之间可切换;
在所述第一主体与所述第二主体在展开状态的情况下,所述主天线单元靠近所述连接组件的一端与所述寄生天线单元靠近所述连接组件的一端之间的最短距离为(nλ)/2;其中,λ为所述主天线单元的目标工作波长,n>0且n为奇数或偶数。
第二方面,本申请实施例提供了一种电子设备,包括:
第一主体;
第二主体;
如第一方面所述的天线模组,所述天线模组设置于所述第一主体和所述第二主体。
在本申请的实施例中,通过将主天线单元与寄生天线单元之间的距离设置为(nλ)/2,并基于实际需求选择n的奇偶性,以基于实际需求调节展开状态下的主天线单元与寄生天线单元中的电流的方向,从而选择性地提升电子设备在展开状态下的主天线单元的天线辐射效率或者在折叠状态下的主天线单元的天线辐射效率,具有较高的灵活性和可用性,且硬件结构简单,无需增加额外的元器件,具有较低的设计成本。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是本申请实施例提供的天线模组的结构示意图之一;
图2是本申请实施例提供的天线模组的结构示意图之二;
图3是本申请实施例提供的天线模组的结构示意图之三;
图4是本申请实施例提供的天线模组的结构示意图之四;
图5是本申请实施例提供的天线模组的结构示意图之五;
图6是本申请实施例提供的天线模组的结构示意图之六;
图7是本申请实施例提供的天线模组的结构示意图之七;
图8是本申请实施例提供的天线模组的电路结构示意图之一;
图9是本申请实施例提供的天线模组的电路结构示意图之二。
附图标记:
111:主天线臂;114:馈电端;121:寄生天线臂;
161:第一开缝;112:第一回地端;162:第二开缝;122:第二回地
端;
123:第一频率调节组件;113:第二频率调节组件;
171:第一净空区;172:第二净空区;
R1:第一电阻;R2:第二电阻;R3:第三电阻;
K1:第一开关;129:第一匹配网络模块;
R4:第四电阻;R5:第五电阻;K2:第二开关;119:第二匹配网络
模块;
118:射频电路;190:装饰圈。
具体实施方式
下面将详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的描述中,需要理解的是,术语“长度”、“宽度”、“厚度”、“竖直”、“水平”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
下面结合图1-图9描述根据本申请实施例的天线模组。
如图1所示,根据本申请一些实施例的天线模组,包括:主天线单元和寄生天线单元。
在该实施例中,主天线单元设置于电子设备的第一主体130;寄生天线单元设置于电子设备的第二主体140。
第一主体130和第二主体140通过连接组件150连接,且第一主体130与第二主体140在展开状态和折叠状态之间可切换。
连接组件150可以为铰链结构或者其他可实现翻折功能的结构。
具体地,第一主体130与第二主体140可以通过折叠的方式在展开状态和折叠状态之间切换,其中,折叠可以为内翻折。
寄生天线单元与主天线单元设置于同一端。
其中,主天线单元的至少部分区域和寄生天线单元的至少部分区域均为金属导电材质。
在电子设备正常工作的情况下,在展开状态下,第二主体140中的寄生天线单元主要受到地电流的激励,即第一主体130中的主天线单元通过 地电流经由连接组件150激励起寄生天线单元上的电流。
在折叠状态下,第二主体140中的寄生天线单元则同时受到空间耦合激励和地电流的激励。
示例性地,主天线单元的形式可以表现为常见的双频倒F天线(Inverted F Antenna,IFA)。
当然,在其他实施例中,主天线单元的形式也可以为单极子、平面倒F天线(Planar Inverted F-shaped Antenna,PIFA)或环天线(LOOP Antenna)等形式,本申请不作限定。
寄生天线单元与主天线单元的形式保持一致。
在第一主体130与第二主体140为展开状态的情况下,主天线单元靠近连接组件150的一端与寄生天线单元靠近连接组件150的一端之间的最短距离为(nλ)/2;其中,λ为主天线单元的目标工作波长,n>0且n可以为奇数或偶数。
其中,在n为偶数时,n可以取值2、4、6或其他任意正偶数值;在n为奇数时,n可以取值1、3或其他任意正奇数值,本申请不作限定。
在本申请中,不对主天线单元的工作频率范围或工作频段数量进行限定,可以应用于4G、5G或其他任何网络。
需要说明的是,在主天线单元正常工作的情况下,当n为偶数时,在展开状态下,主天线单元与寄生天线单元中的电流同向;在折叠状态下,主天线单元与寄生天线单元中的电流反向。
图1示例了一种在n为偶数时,展开状态下主天线单元与寄生天线单元中的电流方向,如箭头方向所示,均为逆时针方向。
当n为奇数时,在展开状态下,主天线单元与寄生天线单元中的电流反向;在折叠状态下,主天线单元与寄生天线单元中的电流同向。
图4示例了一种在n为奇数时,展开状态下主天线单元与寄生天线单元中的电流方向,如箭头方向所示,其中,主天线单元中的电流方向为逆时针方向,寄生天线单元中的电流方向为顺时针方向。
图5示例了一种在n为奇数时,折叠状态下主天线单元与寄生天线单元中的电流方向,其中,虚线箭头表示空间耦合激励的方向,实线箭头表示地电流的激励方向,可见空间耦合激励的方向与地电流的激励方向相反。
需要说明的是,在主天线单元与寄生天线单元中的电流同向的情况下其对应的主天线单元的天线辐射效率,要高于在主天线单元与寄生天线单元中的电流反向的情况下其对应的主天线单元的天线辐射效率。
例如,在一些实施例中,可以将展开状态下的第一回地端112与第二回地端122之间的最短距离设置为偶数倍的λ/2,使得在展开状态下,主天线单元与寄生天线单元中的电流同向,以提高展开状态下主天线单元的天线辐射效率。
又如,在又一些实施例中,可以将展开状态下的第一回地端112与第二回地端122之间的距离设置为奇数倍的λ/2,使得在展开状态下,主天线单元与寄生天线单元中的电流反向,而在折叠状态下,主天线单元与寄生天线单元中的电流同向,以提高折叠状态下主天线单元的天线辐射效率。
根据本申请实施例的天线模组,通过将主天线单元与寄生天线单元之间的距离设置为(nλ)/2,并基于实际需求选择n的奇偶性,以基于实际需求调节展开状态下的主天线单元与寄生天线单元中的电流的方向,从而选择性地提升电子设备在展开状态下的主天线单元的天线辐射效率或者在折叠状态下的主天线单元的天线辐射效率,具有较高的灵活性和可用性,且硬件结构简单,无需增加额外的元器件,具有较低的设计成本。
继续参考图1,根据本申请的一些实施例,主天线单元包括馈电端114和主天线臂111,馈电端114连接于主天线臂111与第一主体130之间,且所述馈电端114的一端与主天线臂111连接,另一端通过第一主体130接地,寄生天线单元包括寄生天线臂121,且主天线臂111与寄生天线臂121的长度相等。
在该实施例中,主天线臂111与第一主体130处于同一平面,且主天线臂111垂直于连接组件150;寄生天线臂121与第二主体140处于同一 平面,且寄生天线臂121垂直于连接组件150。
主天线单元和寄生天线单元内部均设有净空区。
在一些实施例中,主天线单元内部的第一净空区171和寄生天线单元内部的第二净空区172大小相同且对称。
净空区用于降低在折叠状态下,第二主体140的金属边框(相当于金属地)对于主天线单元的天线性能的影响。
主天线臂111设置于第一主体130,且主天线臂111与第一主体130之间形成第一净空区171;寄生天线臂121设置于第二主体140,且寄生天线臂121与第二主体140之间形成第二净空区172。
馈电端114用于供电。
馈电端114设置于第一主体130内部的净空区且分别与主天线臂111与第一主体130电连接。
在一些实施例中,主天线臂111与寄生天线臂121的长度均为λ/4;其中,λ为主天线单元的目标工作波长,n>0且n为奇数或偶数。
在另一些实施例中,主天线臂111与寄生天线臂121的长度可以为其他值,将在下文中进行说明。
根据本申请实施例的天线模组,通过使主天线臂111与寄生天线臂121的长度保持一致,可以使得在折叠状态下,主天线单元与寄生天线单元能够尽量保持对称,从而提高电子设备的美观。
根据本申请的一些实施例,在n为偶数且第一主体130与第二主体140为展开状态的情况下,主天线单元和寄生天线单元同向或背离设置。
在该实施例中,当n为偶数时,即在展开状态下,主天线单元的靠近连接组件150的一端与寄生天线单元靠近连接组件150的一端之间的最短距离为偶数倍的λ/2,此时主天线单元与寄生天线单元内的电流同向,此时展开状态下主天线单元的天线辐射效率较高。
在该情况下,主天线单元和寄生天线单元可以基于第一主体130和第二主体140之间的连接组件150,轴对称设置;或者,主天线单元和寄生 天线单元可以同向设置。
根据本申请实施例的天线模组,通过将n设置为偶数,以保证电子设备在展开状态下,主天线单元与寄生天线单元内部的电流方向同向,从而能够提高展开状态下的主天线单元的天线辐射效率。
下面从两个实现角度,对设置方式进行具体说明。
其一、开缝设于两端
如图1和图3所示,根据本申请的一些实施例,主天线单元设有第一开缝161,寄生天线单元设有第二开缝162;
第一开缝161设于主天线臂111的一端,且主天线单元的第一开缝161至第一回地端112的距离为λ/4;
第二开缝162设于寄生天线臂121的一端,且寄生天线单元的第二开缝162至第二回地端122的距离为λ/4;
在该实施例中,主天线单元包括第一开缝161,寄生天线单元包括第二开缝162。
主天线臂111的一端与第一主体130连接,另一端与第一主体130之间形成第一开缝161;寄生天线臂121的一端与第二主体140连接,另一端与第二主体140之间形成第二开缝162。
主天线单元包括第一回地端112,寄生天线单元包括第二回地端122。
其中,主天线单元的第一开缝161至第一回地端112的距离为λ/4,也即主天线臂111的长度为λ/4;寄生天线单元的第二开缝162至第二回地端122的距离为λ/4,也即寄生天线臂121的长度为λ/4。
如图1所示,在一些实施例中,在主天线单元与寄生天线单元背离设置的情况下,在展开状态下,第一回地端112与第二回地端122沿连接组件150轴对称设置,第一开缝161与第二开缝162沿连接组件150轴对称设置;主天线单元的第一回地端112与寄生天线单元的第二回地端122之间的最短距离为偶数倍的λ/2。
具体地,在展开状态下,第一回地端112与第二回地端122距连接组 件150的轴线的距离相等,均为(nλ)/4;第一开缝161至第二开缝162之间的距离为(λ/4+(nλ)/4+λ/4);其中,n为偶数。
位于第一主体130的主天线臂111激励起从第一开缝161到第一回地端112的四分之一的IFA模,地电流通过连接组件150传输到第二主体140的寄生天线臂121,经过λ/2的偶数倍距离之后,在寄生天线臂121激励起同向电流,从而提升天线效率。
如图3所示,在另一些实施例中,在主天线单元与寄生天线单元同向设置的情况下,在展开状态下,主天线单元中的第一回地端112至第一开缝161的方向,与寄生天线单元中的第二回地端122至第二开缝162的方向保持一致;
具体地,在展开状态下,主天线单元的第一回地端112与寄生天线单元的第二开缝162之间的最短距离为偶数倍的λ/2;第一回地端112距连接组件150的轴线的距离为(nλ)/4,且主天线臂111和寄生天线臂121的长度均为λ/4。
其二、开缝设于中间
如图2所示,根据本申请的一些实施例,主天线单元设有第一开缝161,寄生天线单元设有第二开缝162;第一开缝161设于主天线臂111的中间;第二开缝162设于寄生天线臂121的中间。
在该实施例中,在展开状态下,主天线单元与寄生天线单元背离设置,展开状态下,第一回地端112与第二回地端122沿连接组件150轴对称设置,第一开缝161与第二开缝162沿连接组件150轴对称设置;第一回地端112与第二回地端122之间的距离为(nλ)/2,其中,n为偶数;且包含有第一开缝161的主天线臂111总长为λ/2,包含有第二开缝162的寄生天线臂121总长为λ/2。
根据本申请实施例的天线模组,通过提供多种主天线单元以及寄生天线单元的设置方式,使得用户能够基于实际需求灵活选择最佳的设计方式,在提高电子设备在展开状态或折叠状态下的主天线单元的天线辐射效率的 同时,还能提高灵活性以及可用性。
如图4所示,根据本申请的一些实施例,在n为奇数且第一主体130与第二主体140为展开状态的情况下,主天线单元和寄生天线单元背离设置。
在该实施例中,当n为奇数时,即在展开状态下,主天线单元的靠近连接组件150的一端与寄生天线单元靠近连接组件150的一端之间的最短距离为奇数倍的λ/2,此时主天线单元与寄生天线单元内的电流反向,而在折叠状态下天线单元与寄生天线单元内的电流同向,此时折叠状态下主天线单元的天线辐射效率较高。
在n为奇数时,在展开状态下,主天线单元和寄生天线单元可以基于第一主体130和第二主体140之间的连接组件150,轴对称设置,主天线单元的第一回地端112与寄生天线单元的第二回地端122之间的最短距离为奇数倍的λ/2。
例如,在展开状态下,第一回地端112与第二回地端122距连接组件150的轴线的距离相等,均为(nλ)/4;第一开缝161至第二开缝162之间的距离为(λ/4+(nλ)/4+λ/4);其中,n为奇数。
其中,主天线单元的第一开缝161至第一回地端112的距离为λ/4,也即主天线臂111的长度为λ/4;寄生天线单元的第二开缝162至第二回地端122的距离为λ/4,也即寄生天线臂121的长度为λ/4。
根据本申请实施例的天线模组,通过将n设置为奇数,以保证电子设备在折叠状态下,主天线单元与寄生天线单元内部的电流方向同向,从而能够提高折叠状态下的主天线单元的天线辐射效率。
如图6和图7所示,根据本申请的一些实施例,寄生天线单元可以包括:第一频率调节组件123和第三电阻R3。
在该实施例中,第一频率调节组件123用于实现多频效果。
多频效果包括:高频和低频。
第一频率调节组件123设于寄生天线臂121且与寄生天线臂121电连 接。
如图8所示,第一频率调节组件123可以包括:第一电阻R1、第二电阻R2、第一开关K1以及第一匹配网络模块129;其中,第一电阻R1与第二电阻R2并联后一端接地,另一端经过第一开关K1与第一匹配网络模块129串联。
第一匹配网络模块129一端经第三电阻R3接地,另一端与寄生天线臂121电连接。
其中,第三电阻R3的阻值可以为50Ω或其他阻值。
第一开关K1与电阻等元器件可以为任意满足天线功能的型号。
当然,在其他实施例中,第一频率调节组件123的拓扑结构还可以为其他任意天线可用的形式,本申请不作限定。
根据本申请实施例的天线模组,通过设置第一频率调节组件123,无需新增射频通路,只需新增与主天线单元的匹配网络或调谐网络拓扑一致的器件(如容、电感以及开关器件)即可实现多频效果,在提高电子设备的使用性能的同时,还能有效节约成本。
根据本申请的一些实施例,主天线单元可以包括:第二频率调节组件113和射频电路118。
在该实施例中,第二频率调节组件113用于调节主天线单元的工作波长,且第二频率调节组件113与第一频率调节组件123对应设置。
第二频率调节组件113设于主天线臂111且与主天线臂111电连接。
第二频率调节组件113与第一频率调节组件123结构类似。
如图9所示,第二频率调节组件113可以包括:第四电阻R4、第五电阻R5、第二开关K2以及第二匹配网络模块119。
第四电阻R4和第五电阻R5并联后一端接地,另一端经第二开关K2与第二匹配网络模块119串联。
第二匹配网络模块119一端与射频电路118连接,另一端与主天线臂111电连接。
通过调节第二频率调节组件113,可以改变主天线单元的工作频率,进而改变主天线单元的工作波长。
其中,主天线单元的工作频率包括高频和低频。
根据本申请实施例的天线模组,通过设置第二频率调节组件113以实现多频效果,既能提高电子设备的使用性能,也能节约成本。
根据本申请的一些实施例,
在主天线单元工作于低频状态,且第一主体130与第二主体140为展开状态的情况下,目标工作波长为主天线单元工作于低频状态下的工作波长;
在主天线单元工作于高频状态,且第一主体130与第二主体140为展开状态的情况下,目标工作波长为主天线单元工作于低频状态下的工作波长。
在该实施例中,主天线单元工作于低频状态下的工作波长为λ1;主天线单元工作于高频状态下的工作波长为λ2
需要说明的是,在电子设备具有多频效果的情况下,无论主天线单元工作于低频状态还是工作于高频状态,在展开状态下,主天线单元靠近连接组件150的一端与寄生天线单元靠近连接组件150的一端之间的距离均为(nλ)/2,其中,λ=λ1,λ为目标工作波长,且目标工作波长为主天线单元工作于低频状态下的工作波长λ1
在展开状态下,主天线单元的馈电端114与寄生天线单元的第一频率调节组件123之间的距离为(nλ2)/2;其中,λ2为主天线单元工作于高频状态下的工作波长。
如图7所示,在一些实施例中,当n取偶数时,在展开状态下,主天线单元与寄生天线单元的电流方向一致,均为逆时针方向,使得展开状态下主天线单元的天线辐射效率提升。
如图6所示,在另一些实施例中,当n取奇数时,在展开状态下,主天线单元与寄生天线单元的电流方向相反,其中主天线单元的电流方向为 逆时针方向,寄生天线单元的电流方向为顺时针方向;而在折叠状态下,主天线单元与寄生天线单元的电流方向相同,从而使得折叠状态下主天线单元的天线辐射效率提升。
在另一些实施例中,在电子设备仅具有单频效果的情况下,则目标工作波长即为主天线单元的实际工作波长。
根据本申请实施例的天线模组,通过在多频模式下对n取不同的数值,在提供多频效果以拓宽电子设备的应用场景,提高电子设备性能的基础上,还能使得用户基于实际需求选择不同的n值以对应提升展开状态或折叠状态下的天线辐射效率,从而进一步提高电子设备的性能。
继续参考图6和图7,根据本申请的一些实施例,主天线单元设有第一开缝161,寄生天线单元设有第二开缝162,第一开缝161设于主天线单元的一端,第二开缝162设于寄生天线单元的一端,且在展开状态下,主天线单元和寄生天线单元背离设置。
在该实施例中,在主天线单元工作于低频状态,对应的工作波长为λ1,且第一主体130与第二主体140为展开状态的情况下,模式为开缝到回地端的四分一IFA模,即主天线臂111长和寄生天线臂121长均为λ1/4,第一回地端112与第二回地端122之间的距离为(nλ1)/2,其中,λ1为主天线单元工作于低频状态下的工作波长;
在主天线单元工作于高频状态,且第一主体130与第二主体140为展开状态的情况下,第一回地端112与第二回地端122之间的距离为(nλ1)/2,其中,λ1为主天线单元工作于低频状态下的工作波长;馈电端114与寄生天线单元的第一频率调节组件123之间的距离为(nλ2)/2;模式为开缝到馈电端的四分一monopole模,即第一开缝161与馈电端114之间的距离为λ2/4,第二开缝162与第一频率调节组件123之间的距离为λ2/4;其中,λ2为主天线单元工作于高频状态下的工作波长。
当然,在其他实施例中,在主天线单元工作于高频状态,且第一主体130与第二主体140为展开状态的情况下,也可以激励起四分之一的IFA 模,本申请不作限定。
在一些实施例中,当n取偶数时,在展开状态下,主天线单元与寄生天线单元的电流方向一致,如图7所示,使得展开状态下主天线单元的天线辐射效率提升。
在另一些实施例中,当n取奇数时,在展开状态下,主天线单元与寄生天线单元的电流方向相反,如图6所示;而在折叠状态下,主天线单元与寄生天线单元的电流方向相同,通过地电流激励来减弱空间耦合激励带来的反向电流强度,以提升折叠状态下主天线单元的天线辐射效率。
根据本申请实施例的天线模组,在高频模式下,通过将馈电端114与寄生天线单元的第一频率调节组件123之间的距离设置为(nλ2)/2,且将第一开缝161与馈电端114之间的距离设置为λ2/4,将第二开缝162与第一频率调节组件123之间的距离设置为λ2/4,使得在n为偶数时,展开状态下主天线单元与寄生天线单元中的电流同向,而在n为奇数时,折叠状态下主天线单元与寄生天线单元中的电流同向,从而通过控制低电流激励以提高展开状态或折叠状态下的天线的辐射效率。
下面对本申请提供的电子设备进行说明。
该电子设备可以为移动电子设备,如手机、平板电脑、手表、车载终端、以及可穿戴智能终端;或者也可以为非移动电子设备,如PC端等。
根据本申请一些实施例的电子设备,包括:第一主体、第二主体和如上任意实施例所述的天线模组。
其中,第一主体和第二主体通过连接组件连接,且第一主体与第二主体在展开状态和折叠状态之间可切换。
天线模组设置于第一主体和第二主体。
根据本申请实施例的电子设备,通过在电子设备中集成天线模组,并将天线模组中主天线单元与寄生天线单元之间的距离设置为(nλ)/2,基于实际需求选择n的奇偶性,以基于实际需求调节展开状态下的主天线单元与寄生天线单元中的电流的方向,从而选择性地提升电子设备在展开状 态下的主天线单元的天线辐射效率或者在折叠状态下的主天线单元的天线辐射效率,具有较高的灵活性和可用性,且硬件结构简单,无需增加额外的元器件,具有较低的设计成本。
在一些实施例中,继续参考图5,该电子设备还可以包括装饰圈190,其中装饰圈190设置于第一主体130的一面。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种天线模组,包括:
    主天线单元,所述主天线单元设置于电子设备的第一主体(130);
    寄生天线单元,所述寄生天线单元设置于所述电子设备的第二主体(140),且所述寄生天线单元与所述主天线单元设置于同一端,所述第一主体(130)与所述第二主体(140)通过连接组件(150)相连,所述第一主体(130)与所述第二主体(140)在展开状态和折叠状态之间可切换;
    在所述第一主体(130)与所述第二主体(140)在展开状态的情况下,所述主天线单元靠近所述连接组件(150)的一端与所述寄生天线单元靠近所述连接组件(150)的一端之间的最短距离为(nλ)/2;其中,λ为所述主天线单元的目标工作波长,n>0且n为奇数或偶数。
  2. 根据权利要求1所述的天线模组,其中,所述主天线单元包括馈电端(114)和主天线臂(111),所述馈电端(114)的一端连接于所述主天线臂(111),所述馈电端(114)的另一端接地,所述寄生天线单元包括寄生天线臂(121),且所述主天线臂(111)与所述寄生天线臂(121)的长度相等。
  3. 根据权利要求2所述的天线模组,其中,在n为偶数且所述第一主体(130)与所述第二主体(140)为所述展开状态的情况下,所述主天线单元和所述寄生天线单元同向或背离设置。
  4. 根据权利要求3所述的天线模组,其中,所述主天线单元设有第一开缝(161),所述寄生天线单元设有第二开缝(162);
    所述第一开缝(161)设于所述主天线臂(111)的一端,且所述主天线单元的第一开缝(161)至所述主天线单元的第一回地端(112)的距离为λ/4;
    所述第二开缝(162)设于所述寄生天线臂(121)的一端,且所述寄生天线单元的第二开缝(162)至所述寄生天线单元的第二回地端(122)的距离为λ/4;
    或者,
    所述第一开缝(161)设于所述主天线臂(111)的中间;所述第二开缝(162)设 于所述寄生天线臂(121)的中间。
  5. 根据权利要求2所述的天线模组,其中,在n为奇数且所述第一主体(130)与所述第二主体(140)为所述展开状态的情况下,所述主天线单元和所述寄生天线单元背离设置。
  6. 根据权利要求2所述的天线模组,其中,所述寄生天线单元包括:第一频率调节组件(123),所述第一频率调节组件(123)设于所述寄生天线臂(121)。
  7. 根据权利要求6所述的天线模组,其中
    在所述主天线单元工作于低频状态,且所述第一主体(130)与所述第二主体(140)为所述展开状态的情况下,所述目标工作波长为所述主天线单元工作于所述低频状态下的工作波长;
    在所述主天线单元工作于高频状态,且所述第一主体(130)与所述第二主体(140)为所述展开状态的情况下,所述目标工作波长为所述主天线单元工作于低频状态下的工作波长,且所述馈电端(114)与所述第一频率调节组件(123)之间的距离为(nλ2)/2;其中,λ2为所述主天线单元工作于所述高频状态下的工作波长。
  8. 根据权利要求7所述的天线模组,其中,所述主天线单元设有第一开缝(161),所述寄生天线单元设有第二开缝(162),所述第一开缝(161)设于所述主天线单元的一端,所述第二开缝(162)设于所述寄生天线单元的一端,且所述主天线单元和所述寄生天线单元在所述展开状态下背离设置;
    在所述主天线单元工作于低频状态,且所述第一主体(130)与所述第二主体(140)为所述展开状态的情况下,所述主天线臂(111)长和所述寄生天线臂(121)长均为λ1/4;其中,λ1为所述主天线单元工作于所述低频状态下的工作波长;
    在所述主天线单元工作于高频状态,且所述第一主体(130)与所述第二主体(140)为所述展开状态的情况下,所述第一开缝(161)与所述馈电端(114)之间的距离为λ2/4,所述第二开缝(162)与所述第一频率调节组件(123)之间的距离为λ2/4。
  9. 根据权利要求6所述的天线模组,其中,所述主天线单元包括:
    第二频率调节组件(113),所述第二频率调节组件(113)设于所述主天线臂(111);
    射频电路(118),所述射频电路(118)通过所述第二频率调节组件(113)与所述主天线臂(111)电连接。
  10. 一种电子设备,包括:
    第一主体(130);
    第二主体(140);
    如权利要求1-9中任一项所述的天线模组,所述天线模组设置于所述第一主体(130)和所述第二主体(140)。
PCT/CN2023/114054 2022-08-24 2023-08-21 天线模组和电子设备 WO2024041487A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211024138.6A CN115441181A (zh) 2022-08-24 2022-08-24 天线模组和电子设备
CN202211024138.6 2022-08-24

Publications (1)

Publication Number Publication Date
WO2024041487A1 true WO2024041487A1 (zh) 2024-02-29

Family

ID=84244791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114054 WO2024041487A1 (zh) 2022-08-24 2023-08-21 天线模组和电子设备

Country Status (2)

Country Link
CN (1) CN115441181A (zh)
WO (1) WO2024041487A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115441181A (zh) * 2022-08-24 2022-12-06 维沃移动通信有限公司 天线模组和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084406A (ja) * 1996-09-09 1998-03-31 Mitsubishi Electric Corp 折畳式無線通信装置
CN114597630A (zh) * 2020-12-03 2022-06-07 华为技术有限公司 可折叠电子设备
CN114614237A (zh) * 2020-12-09 2022-06-10 华为技术有限公司 可折叠电子设备
WO2022143803A1 (zh) * 2020-12-30 2022-07-07 华为技术有限公司 天线装置及电子设备
CN115441181A (zh) * 2022-08-24 2022-12-06 维沃移动通信有限公司 天线模组和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084406A (ja) * 1996-09-09 1998-03-31 Mitsubishi Electric Corp 折畳式無線通信装置
CN114597630A (zh) * 2020-12-03 2022-06-07 华为技术有限公司 可折叠电子设备
CN114614237A (zh) * 2020-12-09 2022-06-10 华为技术有限公司 可折叠电子设备
WO2022143803A1 (zh) * 2020-12-30 2022-07-07 华为技术有限公司 天线装置及电子设备
CN115441181A (zh) * 2022-08-24 2022-12-06 维沃移动通信有限公司 天线模组和电子设备

Also Published As

Publication number Publication date
CN115441181A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
US7411554B2 (en) MIMO antenna operable in multiband
TWI354403B (en) Multimode antenna structure
JP3978136B2 (ja) アンテナ装置
US7777677B2 (en) Antenna device and communication apparatus
Wong et al. Small‐size coupled‐fed printed PIFA for internal eight‐band LTE/GSM/UMTS mobile phone antenna
JP5178970B2 (ja) アンテナ装置及び無線通信装置
US7268730B2 (en) Small broadband monopole antenna having perpendicular ground plane with electromagnetically coupled feed
KR20130122761A (ko) 평형 안테나 시스템
KR101217468B1 (ko) 기생 커플링 공진을 부가한 역f 안테나
WO2024041487A1 (zh) 天线模组和电子设备
JP4649486B2 (ja) 携帯端末用アンテナ
JP2010288175A (ja) マルチバンドアンテナ
WO2008000175A1 (en) Miniature balanced antenna with differential feed
JPWO2008107971A1 (ja) 半折り返しダイポールアンテナ
WO2013001327A1 (en) Multiple input multiple output (mimo) antennas having polarization and angle diversity and related wireless communications devices
WO2002013312A1 (fr) Antenne et dispositif de radiocommunication comprenant cette antenne
Niamien et al. A compact dual-band notch antenna for wireless multistandard terminals
JP4053418B2 (ja) アンテナ装置及び携帯電話
WO2022143320A1 (zh) 一种电子设备
JP2004274445A (ja) アンテナ装置及び無線装置
CN209896263U (zh) 一种基于复合左右手传输线的多频段天线
US20230291102A1 (en) Antenna and mobile terminal
KR101776263B1 (ko) 메타머티리얼 안테나
Rahul et al. Four element MIMO antenna system based on SRR loaded printed monopoles for 28/38 GHz 5G applications
JP2004194089A (ja) 複共振アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856577

Country of ref document: EP

Kind code of ref document: A1