WO2024041192A1 - 显示设备和音响设备 - Google Patents
显示设备和音响设备 Download PDFInfo
- Publication number
- WO2024041192A1 WO2024041192A1 PCT/CN2023/104230 CN2023104230W WO2024041192A1 WO 2024041192 A1 WO2024041192 A1 WO 2024041192A1 CN 2023104230 W CN2023104230 W CN 2023104230W WO 2024041192 A1 WO2024041192 A1 WO 2024041192A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- display area
- light
- polarization splitting
- splitting plate
- display
- Prior art date
Links
- 230000010287 polarization Effects 0.000 claims abstract description 351
- 230000003287 optical effect Effects 0.000 claims abstract description 82
- 239000011521 glass Substances 0.000 claims description 62
- 230000000295 complement effect Effects 0.000 claims description 3
- 239000005304 optical glass Substances 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 abstract description 29
- 230000000694 effects Effects 0.000 abstract description 14
- 238000003384 imaging method Methods 0.000 description 31
- 230000005540 biological transmission Effects 0.000 description 28
- 238000010586 diagram Methods 0.000 description 14
- 230000007246 mechanism Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000012943 hotmelt Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000002346 layers by function Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/40—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images giving the observer of a single two-dimensional [2D] image a perception of depth
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B35/00—Stereoscopic photography
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B35/00—Stereoscopic photography
- G03B35/18—Stereoscopic photography by simultaneous viewing
- G03B35/20—Stereoscopic photography by simultaneous viewing using two or more projectors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B35/00—Stereoscopic photography
- G03B35/18—Stereoscopic photography by simultaneous viewing
- G03B35/24—Stereoscopic photography by simultaneous viewing using apertured or refractive resolving means on screens or between screen and eye
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B35/00—Stereoscopic photography
- G03B35/18—Stereoscopic photography by simultaneous viewing
- G03B35/26—Stereoscopic photography by simultaneous viewing using polarised or coloured light separating different viewpoint images
Definitions
- the present application relates to the field of display technology, and in particular to a display device and an audio device.
- two projectors When using holographic projection technology to display images, two projectors need to be placed opposite each other. The two projectors emit light to the area between them. A specific medium is set at the imaging position. The light emitted by the two cameras corresponds to the same The light rays from the pixel point hit the medium at the same spatial point, forming an image of the pixel point. Based on this principle, multiple spatial pixels are displayed to present a three-dimensional image.
- the speaker will vibrate when it makes sound.
- the amplitude of the vibration will be larger. Due to the different positions of the two projectors, when the vibration amplitude is large, the two projectors may vibrate with different amplitudes, resulting in the corresponding light being unable to act on the same point in space, which in turn results in the holographic projection technology display
- the image is blurry.
- the embodiment of the present application provides a display device and an audio device, which can solve the problems in related technologies.
- the technical solution is as follows:
- a display device in a first aspect, includes a display screen, a first optical processing unit and a second optical processing unit.
- the display screen includes a first display area and a second display area. Different display areas of the display screen have uniform polarization directions.
- the first display area is used to display the background image
- the second display area is used to display the foreground image.
- the first optical processing unit is located in the light emitting direction of the first display area.
- the first display area emits background image light. After the background image light enters the first optical processing unit, the first optical processing unit can emit light into the first display area.
- the polarization direction of the background image light is adjusted to a specified angle, and the background image light after the polarization direction is adjusted is directed to the second optical processing unit.
- the second optical processing unit is located in the light emitting direction of the second display area.
- the second display area emits foreground image light.
- the second optical processing unit can based on the foreground light emitted from the second display area.
- the difference in polarization direction between the image light and the adjusted polarization direction of the background image light injected by the first optical processing unit reflects and transmits the foreground image light and the background image light respectively, so that the two sets of light extend at the same position. Shoot in the same direction.
- the background image light needs to be processed by the first optical processing unit and the second optical processing unit, while the foreground image light only passes through the second optical processing unit.
- the propagation distance of the light from the background image to the light emitting position is greater than the propagation distance of the light from the foreground image to the light emitting position
- the distance between the imaging position of the background image and the light emitting position is greater than the distance between the imaging position of the foreground image and the light emitting position.
- the display screen can be a liquid crystal display (Liquid Crystal Display, LCD) or a light emitting diode (Light Emitting Diode, LED) equipped with a polarizer. Both LCD displays or LED displays equipped with polarizers can display images with linearly polarized light.
- LCD Liquid Crystal Display
- LED Light Emitting Diode
- the total display range of the above-mentioned first display area and the second display area may be the entire display screen, or may be a part of the display screen.
- the display range of the first display area and the display range of the second display area may be the same or different in size.
- the shapes of the display range of the first display area and the display range of the second display area may be the same or different.
- the first display area may be a rectangular area and the second display area may be a circular area.
- the first display area and the second display area may be adjacent or there may be a certain distance between them.
- the first display area and the second display area can be fixed areas on the display screen, or areas whose positions can be dynamically changed, and the position changes can be dynamically controlled through software.
- the first optical processing unit may include a reflecting mirror and a component capable of changing the polarization direction of linearly polarized light, capable of changing the polarization of linearly polarized light.
- the direction components can be interferometers, ⁇ /4 glass slides, etc.
- the second optical processing unit may include a reflective polarization splitting plate or a beam splitter that can both transmit light and reflect light, so as to superimpose the background image light and the foreground image light together.
- the first optical processing unit includes a first reflective polarization splitting plate, a ⁇ /4 glass plate and a reflecting mirror, and the first reflective polarization splitting plate is located in the light emission direction of the first display area.
- the first display area emits the background image light
- the first reflective polarization splitting plate can completely reflect the first background image light toward the first direction.
- the ⁇ /4 glass plate is located in the first direction of the first reflective polarization splitting plate, and the ⁇ /4 glass plate adjusts the polarization direction of the transmitted background image light by 45° (increases 45°).
- the reflector is located on the side of the ⁇ /4 glass plate away from the first reflective polarization splitting plate, and the reflector reflects the background image light incident along the first direction to the second direction.
- the second optical processing unit is located in the second direction of the first reflective polarization splitting plate.
- the reflector can be a specular reflector or a retroreflective mirror.
- the first reflective polarization splitting plate has reflection polarization directions and transmission polarization directions that are orthogonal to each other.
- the first direction is the direction in which the first reflective polarization splitting plate faces the ⁇ /4 glass plate
- the second direction is the direction in which the reflector faces the first reflective polarization splitting plate.
- the first reflective polarization splitting plate may correspond to the entire first display area, or may only correspond to a part of the first display area.
- the two sides of the first reflective polarization splitting plate can be bonded or clipped with the display screen and the ⁇ /4 glass respectively.
- the first reflective polarization splitting plate may have a rectangular thin plate structure, and the thickness of the first reflective polarization splitting plate may be the same as the thickness of the ⁇ /4 glass plate.
- the reflecting mirror By disposing the reflecting mirror in the first direction of the first reflective polarization splitting plate and disposing the second optical processing unit in the second direction of the first reflective polarization splitting plate, the reflecting mirror can separate the first reflective polarization splitting plate.
- the background image light reflected by the image plate is reflected in the second direction. After the background image light is transmitted through the first reflective polarizing splitting plate, it can enter the second optical processing unit along the second direction.
- the second optical processing unit includes a second reflective polarization splitting plate, the second reflective polarization splitting plate is located in the light emission direction of the second display area, and the second reflective polarization splitting plate The foreground image light incident on the second display area is completely reflected in the second direction.
- the second reflective polarization splitting plate has reflection polarization directions and transmission polarization directions that are orthogonal to each other.
- the size of the first reflective polarization splitting plate and the second reflective polarization splitting plate may be the same or different, and the first reflective polarization splitting plate and the second reflective polarization splitting plate may have the same thickness.
- the first reflective polarization splitting plate and the second reflective polarization splitting plate can be bonded or snapped together to form a reflective polarization splitting plate group, and then the reflective polarization splitting plate set is fixedly connected to the display screen On the screen, the first reflective polarization splitting plate and the second reflective polarization splitting plate can also be respectively bonded or clipped to the display screen.
- the reflection polarization direction refers to a specific polarization direction.
- the reflective polarization splitting plate will completely reflect the linearly polarized light.
- the transmission polarization direction refers to a specific polarization direction.
- the reflective polarization splitting plate will completely reflect the linearly polarized light.
- the reflective polarization splitting plate will completely transmit the linearly polarized light.
- the first reflective polarization splitting plate completely transmits or completely reflects the background image light
- the second reflective polarization splitting plate completely reflects the background image light.
- the light intensity of the foreground image light and the background image light has not weakened when it reaches the light emitting position.
- the first side of the first reflective polarization splitting plate is located at the first edge of the first display area and is connected to the display screen
- the second side of the second reflective polarization splitting plate The side is located at the second edge of the second display area and is connected to the display screen.
- the first edge is an edge of the first display area close to the second display area
- the second edge is an edge of the second display area close to the first display area
- first edge and the second edge may be spaced or adjacent to each other.
- first edge and the second edge may be parallel or adjacent. A certain angle.
- the propagation distance of the background image light to the light emission position is relatively large, and the distance between the imaging position of the background image and the light emission position is also relatively large.
- the background image The distance between the imaging position of the image and the imaging position of the foreground image is relatively large.
- the first edge and the second edge may be abutting.
- the propagation distance of the light from the background image to the light emission position is relatively small, and the distance between the imaging position of the background image and the light emission position is also relatively small.
- the distance between the background image and the light emission position is relatively small.
- the distance between the imaging position and the imaging position of the foreground image is relatively small.
- the ⁇ /4 glass plate is attached to the reflector.
- the ⁇ /4 glass plate and the reflector can be bonded together through adhesive, or grooves and protrusions can be respectively provided on the ⁇ /4 glass plate and the reflector. Through the grooves and The cooperation between the protrusions makes the ⁇ /4 glass slide and the reflector snap into place.
- the areas of the ⁇ /4 glass plate and the reflecting mirror may be the same or different. For example, the area of the ⁇ /4 glass plate may be greater than or equal to the area of the reflecting mirror.
- the first reflective polarization splitting plate is at a first angle with the first display area
- the second reflective polarization splitting plate is at a second angle with the second display area
- the reflector is with the first display area.
- the reflective polarizing splitter plate is at a third angle.
- first angle and the third angle are equal, and the first angle and the second angle are complementary to each other.
- the propagation direction of the foreground image light and the background image light reaching the light exit position can be perpendicular to the reflector.
- the first angle may be equal to 45°.
- the overall structure of the display device can be made more square.
- the first optical processing unit includes a ⁇ /4 glass slide and a reflecting mirror.
- the ⁇ /4 glass plate and the reflector are located in the light emission direction of the first display area.
- the ⁇ /4 glass plate is in contact with the reflector.
- the ⁇ /4 glass plate is used to adjust the polarization direction of the transmitted light by 45°.
- the reflector is used to reflect the background image light emitted from the first display area and transmitted through the optical glass toward a third direction.
- the second optical processing unit includes a second reflective polarization splitter plate.
- the second reflective polarizing splitting plate is located in the third direction of the reflector and the light emitting direction of the second display area.
- the second reflective polarizing splitting plate is used to direct the foreground image light incident into the second display area toward the third direction. reflection.
- the third direction is the direction in which the reflector faces the second reflective polarization splitting plate.
- the reflecting mirror may be a specular reflecting mirror or a retroreflecting mirror.
- the second optical processing unit may include components such as reflective polarization splitting plates or beam splitters that can both transmit light and reflect light.
- the second reflective polarizing splitting plate and the reflecting mirror can be parallel, and there can also be a certain angle between them.
- the areas of the second reflective polarization splitting plate and the reflecting mirror may be the same or different.
- the area of the reflecting mirror may be slightly larger than the second reflective polarizing splitting plate.
- the second reflective polarizing splitting plate and the reflecting mirror can both be attached to the display screen. In this case, the second reflective polarizing splitting plate and the reflecting mirror can both be bonded to the display screen.
- the second reflective polarization splitting plate and the reflector may not be in contact with the display screen.
- the second reflective polarization splitter plate nor the reflector is in contact with the display screen, the second reflective polarization separation plate and the second reflection mirror are not in contact with the display screen.
- the distance between the display screens and the distance between the reflector and the display screen may be the same or different.
- the display device only needs one reflective polarization splitting plate to display the stereoscopic image, which can reduce the space occupied by the display device.
- the structure of the display device is simplified to facilitate assembly.
- the first display area and the reflecting mirror are at 45°.
- the overall structure of the display device can be made more square.
- the reflection polarization direction of the first reflective polarization splitting plate and the second reflective polarization splitting plate is the same as the polarization direction of the display screen.
- the first reflective polarization splitting plate completely transmits or completely reflects the background image light
- the second reflective polarization splitting plate completely reflects the background image light.
- the light intensity of the foreground image light and the background image light has not weakened when it reaches the light emitting position.
- the display screen is a flat display screen.
- the flat display screen may be a flat display panel.
- the display panel includes two display parts, and the two display parts respectively correspond to the first display area and the second display area.
- the flat display screen may also be a flat display screen composed of two independent display panels located in the same plane.
- a second aspect provides an audio device, which includes the display device described in the first aspect.
- the display device includes a display screen, a first optical processing unit and a second optical processing unit.
- the display screen includes a first display area and a second display area, the first display area is used to display background images, and the second display area is used to display foreground images.
- the background image displayed in the first display area is injected into the first optical processing unit in the form of light.
- the first optical processing unit performs corresponding processing on the background image light, and the processed background image light is emitted to the second optical processing unit.
- the foreground image displayed in the second display area is incident on the second optical position in the form of light. processing unit, and the processed background image light and foreground image light are emitted in the same direction at the same light emitting position of the second optical processing unit.
- the light of the background image needs to be processed by the first optical processing unit and the second optical processing unit, and the light of the foreground image is only processed by the second optical processing unit.
- the propagation distance of the light of the background image to the light emission position is greater than that of the foreground image.
- the propagation distance of light to the light emission position is greater than the distance between the imaging position of the foreground image and the light emission position. In this way, the visual effect of the background image will be remote, and the visual effect of the foreground image will be It will be closer.
- the relative positions of the background image and the foreground image are different, making the image displayed by the display device have a three-dimensional effect.
- the foreground image and the background image are separate images as the name implies, each is independent.
- the display of pixels does not require the superposition of two specific light rays. Therefore, the vibration of the display device will not affect the clarity of the pixel display. Therefore, the solutions of the embodiments of the present application can prevent image blur caused by vibration when displaying images with a three-dimensional effect.
- Figure 1 is a schematic structural diagram of a display device provided by an embodiment of the present application.
- Figure 2 is a schematic structural diagram of a display device provided by an embodiment of the present application.
- Figure 3 is a schematic structural diagram of a display device provided by an embodiment of the present application.
- Figure 4 is a schematic diagram of an image displayed by a display device provided by an embodiment of the present application.
- Figure 5 is a schematic diagram of an image displayed by a display device provided by an embodiment of the present application.
- Figure 6 is a schematic diagram of the imaging principle of a display device provided by an embodiment of the present application.
- Figure 7 is a schematic diagram of the imaging principle of a display device provided by an embodiment of the present application.
- Figure 8 is a schematic diagram of the imaging principle of a display device provided by an embodiment of the present application.
- Figure 9 is a schematic structural diagram of a display device provided by an embodiment of the present application.
- Figure 10 is a schematic diagram of the imaging principle of a display device provided by an embodiment of the present application.
- Figure 11 is a schematic diagram of the imaging principle of a display device provided by an embodiment of the present application.
- Figure 12 is a schematic structural diagram of a display device provided by an embodiment of the present application.
- FIG. 13 is a schematic diagram of the imaging principle of a display device provided by an embodiment of the present application.
- FIG. 1 Display screen; 2. First optical processing unit; 3. Second optical processing unit; 4. Viewable area; 11. First display area; 12. Second display area; 13. Light-absorbing film; 21. The first reflective polarization splitting plate; 22. ⁇ /4 glass slide; 23. Reflector; 31. The second reflective polarization splitting plate; 11a. The first edge of the first display area; 12a. The second edge of the second display area; 21a. The first side of the first reflective polarization splitting plate; 31a. The second side of the second reflective polarization splitting plate.
- Words such as “connected” or “connected” are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. "Up”, “Down”, “Left”, “Right”, etc. are only used to express relative positional relationships. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.
- Embodiments of the present application provide a display device that can display images with a three-dimensional effect.
- FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present application. As shown in FIG. 1 , the display device includes a display screen 1 , a first optical processing unit 2 and a second optical processing unit 3 .
- the display screen 1 includes a first display area 11 and a second display area 12 (the dotted line in the figure is the dividing line between the first display area 11 and the second display area 12). These two display areas respectively display background images and foreground images. image.
- the first optical processing unit 2 is located in the light emitting direction of the first display area 11, and its function is to adjust the polarization direction of the background image light incident into the first display area 11 to a specified angle, and to adjust the polarization direction of the background image.
- the light is directed towards the second optical processing unit 3 .
- the second optical processing unit 3 is located in the light emitting direction of the second display area 12 , and its function is based on the foreground image light incident from the second display area 12 and the background image after the polarization direction is adjusted and injected by the first optical processing unit 2
- the different polarization directions of the image light reflect and transmit the two sets of light respectively, so that the two sets of light emit at the same position and in the same direction.
- the display screen 1 may be an LCD display screen.
- the light emitted by the LCD display screen is linearly polarized light with a certain polarization direction.
- the display screen 1 may be a flat display screen.
- the display screen 1 may include a first display area 11 and a second display area 12, the two display areas having a unified polarization direction.
- the display screen 1 can be an OLED display with a polarizer or an LED display with a polarizer.
- the polarizer is located in the light emitting direction of the OLED display or the LED display.
- the function of the polarizer is to polarize the transmitted light.
- the circularly polarized light of the sheet is converted into linearly polarized light.
- the light emitted by the OLED display and the LED display is circularly polarized light.
- the display 1 uses an OLED display with a polarizer or an LED display with a polarizer, the light emitted by the OLED display or the LED display will After passing through the polarizer, the circularly polarized light can be converted into linearly polarized light with a certain polarization direction.
- a polarizing plate can be used to cover the entire display screen 1 so that all the light emitted from the display screen 1 is linearly polarized light with the same polarization direction.
- the embodiment of the present application does not limit the type of the display screen 1.
- an LCD display screen is used as an example.
- the display screen 1 may include a first display area 11 and a second display area 12, and the first display area 11 and the second display area 12 are located in the same plane.
- the first display area 11 and the second display area 12 are two display parts of the same display panel (that is, the display screen 1 includes one display panel), or they can be two independent display panels (that is, the display screen 1 includes two display panels). panel), the sizes of the first display area 11 and the second display area 12 may be the same or different.
- the first display area 11 and the second display area 12 may be adjacent to each other, or may be separated by a certain distance.
- the first optical processing unit 2 may include a first reflective polarization splitting plate 21 , a ⁇ /4 glass plate 22 and a reflecting mirror 23 .
- the background image light incident on the first display area 11 will pass through the first reflective polarization splitting plate 21 , the ⁇ /4 glass plate 22 and the reflecting mirror 23 in sequence.
- the background image light it is the first background image light before it is transmitted through the ⁇ /4 glass plate for the first time, and it is the first background image light after it is transmitted through the ⁇ /4 glass plate for the first time until it is transmitted through the ⁇ /4 glass plate for the second time.
- the 4 glass slide is the second background image light, and after its second transmission through the ⁇ /4 glass slide, it is the third background image light.
- the first reflective polarization splitting plate 21 is used to reflect the first background image light incident on the first display area 11 toward the first direction.
- the first direction may be a direction in which the first reflective polarization splitting plate faces the ⁇ /4 glass plate.
- the first reflective polarization splitting plate 21 has transmission polarization directions and reflection polarization directions that are orthogonal to each other.
- the transmission polarization direction refers to a specific polarization direction.
- the reflective polarization splitting plate will completely transmit the linearly polarized light.
- the reflection polarization direction refers to a specific polarization direction.
- the reflective polarization splitting plate will completely transmit the linearly polarized light.
- the reflective polarization splitting plate will completely reflect the linearly polarized light.
- the first reflective polarization splitting plate 21 may transmit, reflect, or reflect and transmit the light at the same time.
- the first reflective polarization splitting plate 21 can completely transmit the light; when the polarization direction of the light is the same as the first reflective polarization splitting plate 21
- the reflection polarization directions of the plates 21 are the same, the first reflective polarization splitting plate 21 can completely reflect the light; when the polarization direction of the light is between the above-mentioned transmission polarization direction and the reflection polarization direction, the light can be orthogonally decomposed, The light can be decomposed into a first component of light and a second component of light, where the polarization direction of the first component of light is the same as the above-mentioned transmission polarization direction, and the second component of light is the same as the above-mentioned retroref
- the first reflective polarization splitting plate 21 may be a rectangular sheet, and the first reflective polarization splitting plate 21 is located in the light emitting direction of the first display area 11 .
- the first side 21a of the first reflective polarization splitting plate 21 may be located at the first edge 11a of the first display area 11 and connected to the display screen 1 .
- the first side 21a is the side of the first reflective polarization splitting plate 21 close to the display screen 1.
- An edge 11 a is an edge of the first display area 11 close to the second display area 12 .
- the first reflective polarization splitting plate 21 may be at a specific angle, such as 45°, with the first display area 11 .
- the reflection polarization direction of the first reflective polarization splitting plate 21 can be set to the first polarization direction
- the transmission polarization direction of the first reflective polarization splitting plate 21 can be set to the third polarization direction.
- the first reflective polarization splitting plate 21 can be a reflective polarizing brightness enhancement film, such as a Dual Brightness Enhancement Film (DBEF) or an Advanced Polarization Conversion Film (APCF). Compared with polarizing films, DBEF and APCF have very high transmittance and reflectivity, which can effectively improve the brightness of the background image displayed by the display device.
- DBEF Dual Brightness Enhancement Film
- APCF Advanced Polarization Conversion Film
- the embodiment of the present application does not limit the type of reflective polarizing brightness enhancement film used in the first reflective polarization splitting plate 21 .
- the ⁇ /4 glass plate 22 is used to adjust the polarization direction of the transmitted light by 45°, that is, the angle of the polarization direction of the light passing through the ⁇ /4 glass plate will increase by 45°.
- the ⁇ /4 glass plate 22 can be located between the first reflective polarization splitting plate 21 and the reflecting mirror 23 , and is in contact with the reflecting mirror 23 . At the same time, the ⁇ /4 glass plate 22 can be close to the side of the reflecting mirror 23 close to the first reflective polarization splitting plate 21 .
- the reflecting mirror 23 is used to reflect the first background image light incident along the first direction to the second direction.
- the reflecting mirror 23 can reflect the second background image light, and the process of reflecting the second background image light by the reflecting mirror 23 will not change the polarization direction of the second background image light.
- the reflector 23 can be placed perpendicularly to the display screen 1 .
- the reflector 23 can be located at the edge of the first display area 11 away from the second display area 12 and is adjacent to the display screen 1 .
- the reflecting mirror 23 may be a specular reflecting mirror or a retroreflecting mirror.
- the second optical processing unit 3 may include a second reflective polarization splitting plate 31 .
- the second reflective polarization splitting plate 31 is used to reflect the foreground image light incident into the second display area 12 toward the second direction, and is used to transmit the third background image light along the second direction.
- the second direction may be a direction from the reflecting mirror 23 toward the first reflective polarization splitting plate 21 .
- the second reflective polarization splitting plate 31 has a transmission polarization direction and a reflection polarization direction that are orthogonal to each other, and the transmission polarization direction and the reflection polarization direction of the second reflective polarization splitting plate 31 can be separated from the first reflective polarization direction. Plate 21 is the same. Light with different polarization directions enters the second reflective polarization splitting plate 31, and the second reflective polarization splitting plate 31 may transmit, reflect, or reflect and transmit the light at the same time.
- the second reflective polarization splitting plate 31 can completely transmit the light; when the polarization direction of the light is the same as the transmission polarization direction of the second reflective polarization splitting plate 31
- the second reflective polarization splitting plate 31 can completely reflect the light; when the polarization direction of the light is between the above-mentioned transmission polarization direction and the reflection polarization direction, the light can be orthogonally decomposed, Decompose into a first component light and a second component light, where the polarization direction of the first component light is the same as the above-mentioned transmission polarization direction, and the second component light is the same as the above-mentioned retroreflection polarization direction, and then, the second reflective polarization splitting plate 31
- the first component of light can be transmitted and the second component of light can be reflected.
- the second reflective polarization splitting plate 31 can be a rectangular sheet.
- the second reflective polarization splitting plate 31 can be located in the light emitting direction of the second display area 12 and the first reflective polarization splitting plate. 21 in the second direction.
- the second reflective polarization splitting plate 31 can be placed vertically with the first reflective polarization splitting plate 21 , and the second side 31 a of the second reflective polarization splitting plate 31 is located at the second edge 12 a of the second display area 12 , and connected to display screen 1.
- the second side 31 a is the side of the second reflective polarization splitting plate 31 close to the display screen 1
- the second edge 12 a is the edge of the second display area 12 close to the first display area 11 .
- the second reflective polarization splitting plate 31 may be at a specific angle, such as 45°, with the second display area 12 .
- the reflection polarization direction of the second reflective polarization splitting plate 31 can be set to the first polarization direction, and the transmission polarization direction of the second reflective polarization splitting plate 31 can be set to the third polarization direction. Two polarization directions.
- the second reflective polarization splitting plate 31 may be a reflective polarizing brightness enhancement film, such as a Dual Brightness Enhancement Film (DBEF) or an Advanced Polarization Conversion Film (APCF). Compared with polarizing films, DBEF and APCF have very high transmittance and reflectivity, which can effectively improve the brightness of the background image displayed by the display device. right
- the type of reflective polarizing brightness enhancement film used in the second reflective polarizing splitting plate 31 is not limited in the embodiment of the present application.
- the first reflective polarization splitting plate 21 and the second reflective polarization splitting plate 31 can form a reflective polarization splitting plate group.
- the first reflective polarization splitting plate 21 and the second reflective polarization splitting plate 21 and 31 can form a reflective polarization splitting plate group.
- the two reflective polarization splitting plates 31 can be connected, or there can be a certain distance D.
- the first reflective polarization splitting plate 21 and the second reflective polarization splitting plate 31 can both be connected to the display screen 1 , and the first reflective polarization splitting plate 21 and the second reflective polarization splitting plate 31 are connected to the display screen 1
- the connection method can be bonding, or multiple fixing grooves can be provided inside the casing of the display device, and these fixing grooves can be used to connect the first reflective polarization splitting plate 21 and the second reflective polarization splitting plate. 31 is snapped into the preset position, so that both the first reflective polarization splitting plate 21 and the second reflective polarization splitting plate 31 are connected to the display screen 1 .
- Neither the first reflective polarization splitting plate 21 nor the second reflective polarization splitting plate 31 may be connected to the display screen 1 , that is, there is a distance H between the reflective polarization splitting plate group and the display screen 1 .
- the display device may further include a housing, which is used to attach the above-mentioned display screen 1 , the first reflective polarization splitting plate 21 , the ⁇ /4 glass plate 22 , the reflecting mirror 23 and the second reflective polarization splitting plate 31
- the housing can also be used to prevent external impurities (such as dust, etc.) from entering the interior of the display device.
- the shell may have a hexahedral structure with a hollow interior.
- the inner wall of the housing may also include a plurality of fixed grooves on the display screen 1, the first reflective polarization splitting plate 21, the ⁇ /4 glass plate 22, the reflector 23 and the second reflective polarization splitting plate 31.
- the positioning protrusions can be set separately, and when the display device is installed, the positioning protrusions can be snapped into the fixing groove to achieve alignment of the display screen 1, the first reflective polarization splitting plate 21, the ⁇ /4 glass plate 22, Fixing of the reflecting mirror 23 and the second reflective polarization splitting plate 31.
- the display screen 1, the first reflective polarization splitting plate 21, the ⁇ /4 glass plate 22, the reflector 23 and the second reflective polarization splitting plate 31 can also be directly fixed at corresponding positions on the inner wall of the casing through adhesive.
- the material of the shell can be hot-melt plastic.
- the hot-melt plastic raw material can be heated first to keep the hot-melt plastic raw material in a molten state, and then the molten hot-melt plastic raw material can be injected into the pre-processed mold. , complete the processing of the shell.
- the material of the housing can also be various metals with good ductility, such as aluminum.
- the processing method of the metal casing is the same as the processing method of the above-mentioned hot-melt plastic casing, and will not be described again here.
- the first reflective polarization splitting plate 21 is at a first angle with the first display area 11
- the second reflective polarization splitting plate 31 is at a second angle with the second display area 12
- the reflecting mirror 23 is with the second display area 12 .
- the first reflective polarization splitting plate 21 is at a third angle, where the first angle and the third angle are equal, and the first angle and the second angle are complementary to each other.
- the first angle, the second angle and the third angle are ⁇ 1 , ⁇ 2 and ⁇ 3 respectively.
- the foreground image light rays and the background image light rays reaching the visible area 4 are both perpendicular to the visible area 4.
- the foreground image and the background image are parallel to the visible area 4.
- the display device may also include other functional units, the display screen 1 and the reflector 23 may not be vertical. In this case, the angle between the display screen 1 and the reflector 23 can be flexibly set according to the placement position of the functional units inside the display device, thereby miniaturizing the display device.
- the polarization directions of the background image light and the foreground image light emitted by the first display area 11 and the second display area 12 are both the first polarization direction.
- the first display area 11 emits the first background image light.
- the first reflective polarization splitting plate 21 since the polarization direction of the first background image light is the same as the reflection polarization direction of the first reflective polarization splitting plate 21, the first reflective polarization splitter The image plate 21 completely reflects the first background image light along the first direction. Then, the first background image light rays are emitted toward the ⁇ /4 glass slide 22 along the first direction.
- the first background image light reaches the ⁇ /4 glass slide 22.
- the first background image light is transformed into the second background image light after being transmitted through the ⁇ /4 glass plate 22, where the difference in polarization direction between the second background image light and the first background image light is 45°. Then, the second background image light rays are emitted toward the reflector 23 along the first direction.
- the second background image light reaches the reflector 23, and the reflector 23 reflects the second background image light along the second direction.
- the reflector 23 reflects the second background image light
- the polarization direction of the second background image light remains unchanged. Then, the second background image light rays are emitted toward the ⁇ /4 glass slide 22 along the second direction.
- the second background image light is transformed into the third background image light after being transmitted through the ⁇ /4 glass plate, where the difference in polarization direction between the third background image light and the second background image light is 45° . Then, the third background image light rays are emitted toward the first reflective polarization splitting plate 21 along the second direction.
- the third background image light reaches the first reflective polarization splitting plate 21.
- the transmission polarization directions of the third background image light and the first reflective polarization splitting plate 21 are the same, and the third background image light is transmitted through the first reflective polarization splitting plate 21 .
- the third background image light rays are emitted toward the second reflective polarization splitting plate 31 along the second direction.
- the third background image light reaches the second reflective polarization splitting plate 31.
- the transmission polarization directions of the third background image light and the second reflective polarization splitting plate 31 are the same, and the third background image light is transmitted through the second reflective polarization splitting plate 31 and finally reaches the visible area 4 .
- the second display area 12 emits foreground image light to the second reflective polarization splitting plate 31 .
- the second reflective polarization splitting plate 31 affects the foreground image.
- the light is completely reflected along the second direction, and the foreground image light reaches the visible area 4.
- the images displayed by the display device can be viewed from different angles in the visual area 4.
- the propagation distance of the background image light to the visible area 4 is greater than the propagation distance of the foreground image light to the visible area 4, and the imaging position of the background image is different from the visible area.
- the distance between area 4 is greater than the distance between the imaging position of the foreground image and the visible area 4. In this way, the visual effect of the background image will be far away, and the visual effect of the foreground image will be closer.
- the background image will The relative positions of the image and the foreground image are different, so that the image displayed by the display device has a three-dimensional effect.
- the foreground image and the background image are images with completely different contents.
- the foreground image is an image of an astronaut
- the background image is an image of the moon.
- Figures 4 and 5 are respectively images of the visible area 4 viewed from the left and viewed from the right. According to Figures 4 and 5, it can be seen that when the user watches from different angles, the relative positions of the background image and the foreground image are different, and the image displayed by the display device has a three-dimensional effect.
- the visual distance of the foreground image and the background image will be introduced below respectively for the case where the reflector 23 is a specular reflector and a retroreflective mirror.
- the background image corresponds to a virtual image of the background image, which is located at the imaging position of the background image
- the foreground image corresponds to a virtual image of the foreground image, which is located at the imaging position of the foreground image.
- From a visual perspective when people look at the visible area 4, it is as if they see a background image displayed at the imaging position of the background image, and a foreground image displayed at the imaging position of the foreground image.
- the distance between the virtual image of the background image and the specular reflector is b, and the virtual image of the background image is located on the side of the specular reflector that is not attached with the ⁇ /4 glass plate 22 .
- b is the display width of the first display area.
- the distance between the virtual image of the foreground image and the specular reflector is D+b, and the virtual image of the foreground image is located on the side of the specular reflector where the ⁇ /4 glass slide 22 is attached.
- D is the distance between the first display area 11 and the second display area 12 .
- the distance between the virtual image of the background image and the virtual image of the foreground image is D+2b. This distance is relatively large and is suitable for scenarios where the foreground image and the background image require a large visual distance (such as the foreground image and the background image). It is people and distant mountains), which can show a greater sense of distance between the foreground image and the background image.
- the virtual background image and the foreground image are Between virtual images is equal to 2b.
- the distance between the foreground image and the background image is related to the distance D between the first edge 11a and the second edge 12a. Therefore, the distance between the first edge 11a and the second edge 12a can be adjusted according to actual needs. Different intervals D are set between them, so that the foreground image and the background image show different distances, thereby improving the three-dimensional effect of the image displayed by the display device.
- the foreground image displayed in the first display area 11 may be of tourists, and the background image displayed in the second display area 12 may be any scenery, such as mountains, waterfalls, etc., when the distance D between the first edge 11a and the second edge 12a At the same time, the foreground image displayed by the display device The sense of distance is different from the background image.
- the background image light will form a real background image.
- the distance between the real background image and the retroreflector is b, and the real background image is located on the retroreflector with a ⁇ /4 glass plate 22 side.
- b is the display width of the first display area.
- the distance between the virtual image of the foreground image and the retroreflector is D+b, and the virtual image of the foreground image is located on the side of the retroreflector where the ⁇ /4 glass slide 22 is attached.
- D is the distance between the first display area 11 and the second display area 12
- b is the display width of the first display area.
- the distance D is a smaller distance, which is suitable for the foreground image and the background image that do not need to be large.
- the visual distance is high (for example, the foreground image and the background image are two people standing in front of and behind each other), the foreground image and the background image are superimposed, and the user can view an image with an obvious three-dimensional effect through the visual area 4.
- the reflector is a retroreflective mirror
- the first edge 11a of the first display area 11 and the second edge 12a of the second display area 12 are in contact, there will be no distance between the first edge 11a and the second edge 12a.
- the first reflective polarization splitting plate 21 and the second reflective polarization splitting plate 31 have a certain thickness, there is still a slight distance between the virtual image of the foreground image and the real image of the background image, so that the user can A superimposed image with a three-dimensional effect is viewed through the viewing area 4.
- a further arrangement may be provided between the first display area 11 and the second display area 12
- the light-absorbing film 13 can be perpendicular to the display screen 1 .
- the light-absorbing film 13 may include a black light-absorbing layer and multiple functional layers whose refractive index decreases in sequence.
- the light-absorbing layer is located between the functional layers, and the closer the functional layer is to the light-absorbing layer, the lower its refractive index.
- the light passes through the functional layer layer by layer and gradually diverges as the refractive index decreases.
- the transmitted light decreases.
- the black light-absorbing layer the brightness is low and cannot pass through the black light-absorbing layer, thereby blocking the first display area 11 and the second display area 11 . Light propagation between display areas 12. In this way, different spacing H can be set.
- the spacing H is larger, the distance between the light emitted by the display screen 1 and the optical processing unit is longer. Furthermore, the background image and foreground image displayed in the visible area 4 are smaller. On the contrary, when H is small, the background image and foreground image displayed in the visual area 4 are larger.
- a first telescopic mechanism can be provided to adjust the distance between the first reflective polarization splitting plate 21 and the display screen 1 so as to This adjusts the positional relationship between the background image and the foreground image.
- the fixed end of the first telescopic mechanism can be fixedly connected with the display screen 1 or the casing.
- the telescopic end of the first telescopic mechanism can be fixedly connected with the first reflective polarization separation plate 21.
- the telescopic direction of the first telescopic mechanism can be fixedly connected with the display screen 1. 1 vertical.
- FIG. 10 takes a retroreflector as an example. The case of using a specular reflector is similar, and the first telescopic mechanism can also be used, which will not be described again here.
- a second telescopic mechanism may be provided to adjust the distance between the first reflective polarization splitting plate 21 and the second edge 12a of the second display area 12. to adjust the visual distance between the background image and the foreground image.
- the fixed end of the second telescopic mechanism can be fixedly connected with the display screen 1 or the casing.
- the telescopic end of the second telescopic mechanism can be fixedly connected with the first reflective polarization splitting plate 21.
- the telescopic direction of the second telescopic mechanism can be fixedly connected with the display screen 1. 1 parallel.
- FIG. 11 takes a retroreflector as an example. The case of using a specular reflector is similar, and the second telescopic mechanism can also be used, which will not be described again here.
- Structure 2 is the same as the display screen 1 in Structure 1. Please refer to the description of the display screen 1 in Structure 1, which will not be described again here.
- the first optical processing unit 2 includes a ⁇ /4 glass slide 22 and a reflecting mirror 23 .
- Structure 2 is the same as the ⁇ /4 glass slide 22 in Structure 1. Please refer to the description of the ⁇ /4 glass slide 22 in Structure 1, which will not be described again here.
- the reflector 23 is a specular reflector, used to reflect the background image light emitted from the first display area 11 and transmitted through the optical glass 22 in the third direction, and the process of reflecting the background image light by the reflector 23 does not change. Will change the polarization direction of the background image light.
- the third direction is the direction in which the first optical processing unit 2 faces the second optical processing unit 3 .
- the reflecting mirror 23 and the ⁇ /4 glass plate 22 are in contact with each other, and the connection method between the reflecting mirror 23 and the ⁇ /4 glass plate 22 can be bonding. No restrictions.
- the reflector 23 is located in the light emitting direction of the first display area 11 .
- One end of the reflector 23 is connected to the side of the first display area 11 away from the second display area 12 .
- the reflector 23 is connected to the first display area 12 . 11 is 45°.
- the second optical processing unit 3 may include a second reflective polarization splitting plate 31 .
- the second reflective polarization splitting plate 31 is used to reflect the foreground image light incident into the second display area 12 toward the third direction, and to transmit the background image light along the third direction.
- the second reflective polarization splitting plate 31 has transmission polarization directions and reflection polarization directions that are orthogonal to each other. Light with different polarization directions enters the first reflective polarization splitting plate 21, and the second reflective polarization splitting plate 31 may transmit, reflect, or simultaneously reflect and transmit the light.
- the second reflective polarization splitting plate 31 can completely transmit the light; when the polarization direction of the light is the same as the transmission polarization direction of the second reflective polarization splitting plate 31
- the second reflective polarization splitting plate 31 can completely reflect the light; when the polarization direction of the light is between the above-mentioned transmission polarization direction and the reflection polarization direction, the light can be orthogonally decomposed, Decompose into a first component light and a second component light, where the polarization direction of the first component light is the same as the above-mentioned transmission polarization direction, and the second component light is the same as the above-mentioned retroreflection polarization direction, and then, the second reflective polarization splitting plate 31
- the first component of light can be transmitted and the second component of light can be reflected.
- the second reflective polarization splitting plate 31 may be a rectangular sheet, and the second reflective polarization splitting plate 31 may be located in the light emitting direction of the second display area 12 and the third direction of the reflector 23 .
- the second reflective polarization splitting plate 31 can be placed parallel to the reflector 23, and the second side 31a of the second reflective polarization splitting plate 31 is located at the second edge 12a of the second display area 12 and is in contact with the display screen. 1 connected.
- the second side 31 a is the side of the second reflective polarization splitting plate 31 close to the display screen 1
- the second edge 12 a is the edge of the second display area 12 close to the first display area 11 .
- the reflection polarization direction of the second reflective polarization splitting plate 31 can be set to the first polarization direction, and the transmission polarization direction of the second reflective polarization splitting plate 31 can be set to the third polarization direction. Two polarization directions.
- the second reflective polarization splitting plate 31 can be a Dual Brightness Enhancement Film (DBEF) or an Advanced Polarization Conversion Film (APCF). Compared with ordinary polarizing films, DBEF and APCF have very special properties. High transmittance and reflectivity can effectively improve the brightness of the background image displayed by the display device.
- DBEF Dual Brightness Enhancement Film
- APCF Advanced Polarization Conversion Film
- the first display area 11 emits background image light.
- the specular reflector reflects the background image light incident from the first display area 11 along the third direction.
- the background image light reflected by the specular reflector is transmitted through ⁇ twice. /4 glass plate 22, therefore, the polarization direction of the background image light reflected by the specular reflector is exactly the same as the transmission polarization direction of the second reflective polarization splitting plate 31, and the background image light can be completely transmitted through the second reflection Type polarization splitting plate 31, the background image light reaches the visible area 4.
- the second display area 12 emits foreground image light. Since the second reflective polarization splitting plate 31 reflects the same polarization direction as the second display area 12 , the second reflective polarization splitting plate 31 emits light to the second display area 12 . The incoming foreground image light is completely reflected along the third direction, and the foreground image light reaches the visible area 4.
- the display device can be viewed from different angles in the visual area 4. displayed image.
- the propagation distance of the background image light to the visible area 4 is greater than the propagation distance of the foreground image light to the visible area 4, and the imaging position of the background image is different from the visible area.
- the distance between area 4 is greater than the distance between the imaging position of the foreground image and the visible area 4. In this way, the visual effect of the background image will be far away, and the visual effect of the foreground image will be closer.
- the background image will The relative positions of the image and the foreground image are different, so that the image displayed by the display device has a three-dimensional effect.
- the background image corresponds to a virtual image of the background image, which is located at the imaging position of the background image
- the foreground image corresponds to a virtual image of the foreground image, which is located at the imaging position of the foreground image. From a visual perspective, when people look at the visible area 4, it is as if they see a background image displayed at the imaging position of the background image, and a foreground image displayed at the imaging position of the foreground image.
- the distance between the virtual image of the background image and the plane where the first edge 11a of the first display area 11 is located is b, and the virtual image of the background image is located on the side of the specular reflector that is not attached with the ⁇ /4 glass plate 22 .
- the distance between the virtual image of the foreground image and the plane where the first edge 11a of the first display area 11 is located is D, and the virtual image of the foreground image is located on the side of the specular reflector where the ⁇ /4 glass plate 22 is attached.
- the distance between the virtual image of the background image and the virtual image of the foreground image is D+b. This distance is a moderate distance and is suitable for scenarios where a moderate visual distance between the foreground image and the background image is required.
- the entire display device only needs one reflective polarization splitting plate to display a three-dimensional image, which can reduce the required space of the display device.
- D the distance between the virtual image of the foreground image and the virtual image of the background image is related to the distance D between the first edge 11a and the second edge 12a. Therefore, the distance between the first edge 11a and the second edge 12a can be adjusted according to actual needs. Different intervals D are set between the edges 12a, so that the foreground image and the background image show different distances, thereby improving the three-dimensional effect of the image displayed by the display device.
- structure one and structure two can be used individually or in combination with multiple structural features.
- the display device includes a display screen 1 , a first optical processing unit 2 and a second optical processing unit 3 .
- the display screen 1 includes a first display area 11 and a second display area 12.
- the first display area 11 is used to display background images
- the second display area 12 is used to display foreground images.
- the background image displayed in the first display area 11 is injected into the first optical processing unit 2 in the form of light.
- the first optical processing unit 2 performs corresponding processing on the background image light, and the processed background image light is emitted to the second optical processing unit.
- Unit 3 Unit 3.
- the foreground image displayed in the second display area 12 enters the second optical processing unit 3 in the form of light, and the processed background image light and foreground image light are emitted from the same light exit position of the second optical processing unit 3 in the same direction.
- the background image light needs to be processed by the first optical processing unit 2 and the second optical processing unit 3.
- the foreground image light is only processed by the second optical processing unit 3.
- the propagation distance of the background image light propagates to the light emission position. is greater than the propagation distance of the light from the foreground image to the light emitting position, and the distance between the imaging position of the background image and the light emitting position is greater than the distance between the imaging position of the foreground image and the light emitting position.
- the visual effect of the background image will be remote, and the distance of the foreground image will be The visual effect will be closer.
- the relative positions of the background image and the foreground image are different, making the image displayed by the display device have a three-dimensional effect.
- the foreground image and the background image are separate images as the name implies, each is independent.
- the display of pixels does not require the superposition of two specific light rays. Therefore, the vibration of the display device will not affect the clarity of the pixel display. Therefore, the solutions of the embodiments of the present application can prevent image blur caused by vibration when displaying images with a three-dimensional effect.
- An embodiment of the present application provides an audio system that includes the above-mentioned display device.
- the audio system may further include a cavity, a power amplifier unit, and a speaker unit.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Transforming Electric Information Into Light Information (AREA)
Abstract
一种显示设备和音响设备,显示设备包括显示屏(1)、第一光学处理单元(2)和第二光学处理单元(3);显示屏(1)包括第一显示区域(11)和第二显示区域(12),显示屏(1)用于在第一显示区域(11)和第二显示区域(12)分别显示后景图像和前景图像;第一光学处理单元(2)用于将后景图像光线的偏振方向调整指定角度,并将调整偏振方向后的后景图像光线射向第二光学处理单元(3);第二光学处理单元(3)用于基于前景图像光线和调整偏振方向后的后景图像光线的偏振方向的不同,分别对两组光线进行反射和透射,使两组光线在相同位置沿相同的方向射出。这种显示设备可以调整前景图像和后景图像的视觉距离,以显示更好的立体效果,还可以提高显示设备所展示的立体图像的清晰度,降低显示设备的成本。
Description
本申请要求于2022年08月24日提交的申请号为202211021468.X、发明名称为“一种显示设备和音响设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及显示技术领域,特别涉及一种显示设备和音响设备。
近年来,随着技术发展,音响技术逐渐从传统音响(仅能播放声音)逐渐向可视听音响(图像与声音结合播放)发展,当前,为了实现较好的立体视觉效果,很多可视听音响是利用全息投影技术来展示图像。
使用全息投影技术来展示图像时,需要两台投影机对向放置,两台投影机分别向二者之间的区域射出光线,成像位置设置有特定的介质,两台摄影机射出的光线中对应同一像素点的光线射到同一空间点处的介质上,形成该像素点的图像。基于该原理实现多个空间像素点的显示,呈现出具有立体感的图像。
而音响在发声时会产生振动,当音响音量较大时,该振动的幅度较大。由于这两台投影机的位置不同,当振动幅度较大时,可能使这两台投影机发生幅度不同的振动,导致相对应的光线无法作用至同一空间点,进而导致全息投影技术所展示的图像较为模糊。
发明内容
本申请实施例提供了一种显示设备和音响设备,能够解决相关技术中的问题,技术方案如下:
第一方面,提供了一种显示设备,显示设备包括显示屏、第一光学处理单元和第二光学处理单元。显示屏包括第一显示区域和第二显示区域。显示屏的不同显示区域具有统一的偏振方向。第一显示区域用于显示后景图像,第二显示区域用于显示前景图像。第一光学处理单元位于第一显示区域的出光方向上,第一显示区域射出后景图像光线,后景图像光线进入第一光学处理单元后,第一光学处理单元可以将第一显示区域射入的后景图像光线的偏振方向调整指定角度,并将调整偏振方向后的后景图像光线射向第二光学处理单元。第二光学处理单元位于第二显示区域的出光方向上,第二显示区域射出前景图像光线,前景图像光线进入第二光学处理单元后,第二光学处理单元可以基于第二显示区域射入的前景图像光线和由第一光学处理单元射入的调整偏振方向后的后景图像光线的偏振方向的不同,分别对前景图像光线和后景图像光线进行反射和透射,使两组光线在相同位置延相同的方向射出。
可见,后景图像光线和前景图像光线在显示设备的传播过程中,后景图像光线需要经过第一光学处理单元和第二光学处理单元的处理,而前景图像光线只经过第二光学处理单元的处理,相应的,后景图像光线传播至出光位置的传播距离大于前景图像光线传播至出光位置的传播距离,后景图像的成像位置与出光位置的距离大于前景图像的成像位置与出光位置的距离,这样,后景图像的视觉效果就会偏远,前景图像的视觉效果就会偏近,用户在不同的角度观看时,后景图像和前景图像的相对位置是不同的,使得显示设备展示的图像具有立体效果。
本申请实施例所示的方案,显示屏可以是液晶显示屏(Liquid Crystal Display,LCD),也可以是装有偏振片的发光二极管(Light Emitting Diode,LED)。LCD显示屏或装有偏振片的LED显示屏均可以以线偏振光显示图像。
上述第一显示区域和第二显示区域的总显示范围可以是整个显示屏,也可以是部分显示屏。第一显示区域的显示范围和第二显示区域的显示范围的大小可以相同,也可以不相同。第一显示区域的显示范围和第二显示区域的显示范围的形状可以相同,也可以不相同,例如,第一显示区域为矩形区域,第二显示区域为圆形区域。第一显示区域和第二显示区域可以相邻也可以存在一定的间距。第一显示区域和第二显示区域可以是显示屏上的固定区域,也可以是位置可以动态变化的区域,位置变化可以通过软件动态控制。
第一光学处理单元可以包括反射镜和能够改变线偏振光的偏振方向的部件,能够改变线偏振光的偏振
方向的部件可以是干涉仪、λ/4玻片等。第二光学处理单元可以包括反射式偏振分像板或分光镜等既能够透射光线又能够反射光线的部件,以将后景图像光线和前景图像光线叠加在一起。
在一种可能的实现方式中,第一光学处理单元包括第一反射式偏振分像板、λ/4玻片和反射镜,第一反射式偏振分像板位于第一显示区域的出光方向上,第一显示区域射出后景图像光线,第一反射式偏振分像板可以将第一后景图像光线向第一方向完全反射。λ/4玻片位于第一反射式偏振分像板的第一方向上,λ/4玻片将透射的后景图像光线的偏振方向调整45°(增加45°)。反射镜位于λ/4玻片远离第一反射式偏振分像板的一侧,反射镜将沿第一方向入射的后景图像光线向第二方向反射。第二光学处理单元位于第一反射式偏振分像板的第二方向上。
其中,反射镜可以是镜面反射镜和逆反射镜。
本申请实施例所示的方案,第一反射式偏振分像板具有彼此正交的反射偏振方向和透射偏振方向。第一方向是第一反射式偏振分像板朝向λ/4玻片的方向,第二方向是反射镜朝向第一反射式偏振分像板的方向。第一反射式偏振分像板可以对应整个第一显示区域,也可以仅对应第一显示区域的一部分。第一反射式偏振分像板的两条侧边可以分别与显示屏和λ/4玻片粘接或卡接。第一反射式偏振分像板可以具有矩形薄板状结构,且第一反射式偏振分像板的厚度可以与λ/4玻片的厚度相同。
通过在第一反射式偏振分像板的第一方向上设置反射镜以及在第一反射式偏振分像板的第二方向上设置第二光学处理单元,反射镜可以将第一反射式偏振分像板反射的后景图像光线向第二方向进行反射,后景图像光线透射经过第一反射式偏振分像板后可以沿第二方向进入第二光学处理单元。
在一种可能的实现方式中,第二光学处理单元包括第二反射式偏振分像板,第二反射式偏振分像板位于第二显示区域的出光方向上,第二反射式偏振分像板将第二显示区域射入的前景图像光线向第二方向完全反射。
本申请实施例所示的方案,第二反射式偏振分像板具有彼此正交的反射偏振方向和透射偏振方向。第一反射式偏振分像板和第二反射式偏振分像板的大小可以相同,也可以不同,第一反射式偏振分像板和第二反射式偏振分像板可以具有相同的厚度。第一反射式偏振分像板和第二反射式偏振分像板可以先粘接或卡接在一起,构成反射式偏振分像板组,再将反射式偏振分像板组固定连接在显示屏上,第一反射式偏振分像板和第二反射式偏振分像板也可以分别粘接或卡接在显示屏上。
其中,反射偏振方向是指一个特定的偏振方向,当线偏振光具有该偏振方向时反射式偏振分像板则会对线偏振光进行完全反射,透射偏振方向是指一个特定的偏振方向,当线偏振光具有该偏振方向时反射式偏振分像板则会对线偏振光进行完全透射。
这样,在光线的传播过程中:对于后景图像光线,第一反射式偏振分像板对后景图像光线为完全透射或完全反射,第二反射式偏振分像板对后景图像光线为完全透射;对于前景图像光线,第二反射式偏振分像板对前景图像光线为完全反射。因此,前景图像光线和后景图像光线到达出光位置时的光强均没有发生减弱,用户在出光位置进行观测时,前景图像和后景图像的均具有较强的亮度,前景图像和后景图像的图像较为清晰。
在一种可能的实现方式中,第一反射式偏振分像板的第一侧边位于第一显示区域的第一边缘处,且与显示屏相连,第二反射式偏振分像板的第二侧边位于第二显示区域的第二边缘处,且与显示屏相连。
其中,第一边缘是第一显示区域靠近第二显示区域的边缘,第二边缘是第二显示区域靠近第一显示区域的边缘。
本申请实施例所示的方案,第一边缘和第二边缘可以存在间隔也可以相贴,当第一边缘和第二边缘存在间隔时,第一边缘和第二边缘可以相平行,也可以存在一定角度。
可选地,第一边缘和第二边缘可以存在间隔。当第一边缘和第二边缘之间存在间隔时,后景图像光线传播至出光位置的传播距离相对较大,后景图像的成像位置与出光位置的距离也相对较大,相应的,后景图像的成像位置与前景图像的成像位置之间的距离相对较大,用户从出光方向进行观察时,后景图像和前景图像之间呈现相对较大的视觉距离。
可选地,第一边缘和第二边缘可以相贴。当第一边缘和第二边缘相贴时,后景图像光线传播至出光位置的传播距离相对较小,后景图像的成像位置与出光位置的距离也相对较小,相应的,后景图像的成像位置与前景图像的成像位置之间的距离相对较小,用户从出光方向进行观察时,后景图像和前景图像之间呈现相对较小的视觉距离。
在一种可能的实现方式中,λ/4玻片与反射镜相贴。
本申请实施例所示的方案,λ/4玻片和反射镜可以通过粘胶贴合在一起,也可以在λ/4玻片和反射镜上分别设置凹槽和凸起,通过凹槽和凸起之间的配合使λ/4玻片和反射镜相卡接。λ/4玻片和反射镜的面积可以相同,也可以不相同,例如,λ/4玻片的面积可以大于或等于反射镜的面积。
这样,后景图像光线在λ/4玻片和反射镜之间传播时只存在一次介质转变,可以减少光线折射,以减少光线损失。
在一种可能的实现方式中,第一反射式偏振分像板与第一显示区域呈第一角度,第二反射式偏振分像板与第二显示区域呈第二角度,反射镜与第一反射式偏振分像板呈第三角度。
其中,第一角度与第三角度相等、第一角度与第二角度互余。
这样,可以使到达出光位置的前景图像光线和后景图像光线的传播方向均与反射镜垂直。
可选地,第一角度可以等于45°。
这样,可以使显示设备的整体结构更方正。
在一种可能的实现方式中,第一光学处理单元包括λ/4玻片和反射镜。λ/4玻片和反射镜位于第一显示区域的出光方向上,λ/4玻片与反射镜相贴,λ/4玻片用于对透射的光线的偏振方向调整45°。反射镜用于将第一显示区域发射并经过光学玻片透射的后景图像光线向第三方向反射。第二光学处理单元包括第二反射式偏振分像板。第二反射式偏振分像板位于反射镜的第三方向以及第二显示区域的出光方向上,第二反射式偏振分像板用于将第二显示区域射入的前景图像光线向第三方向反射。
其中,第三方向为反射镜朝向第二反射式偏振分像板的方向。
本申请实施例所示的方案,反射镜可以是镜面反射镜和逆反射镜。第二光学处理单元可以包括反射式偏振分像板或分光镜等既能够透射光线又能够反射光线的部件。第二反射式偏振分像板和反射镜可以相平行,二者之间也可以存在一定角度。第二反射式偏振分像板和反射镜的面积可以相同,也可以不相同,例如,可以使反射镜的面积略大于第二反射式偏振分像板。第二反射式偏振分像板和反射镜可以均与显示屏相贴,此时,第二反射式偏振分像板和反射镜可以均是粘接在显示屏上。第二反射式偏振分像板和反射镜可以均不与显示屏相贴,当第二反射式偏振分像板和反射镜均不与显示屏相贴时,第二反射式偏振分像板与显示屏之间的距离和反射镜与显示屏之间的距离可以相同也可以不相同。
这样,显示设备仅需要一块反射式偏振分像板就可以完成立体图像的显示,能够减小显示设备的空间占用。同时,简化显示设备的结构,便于组装。
可选地,第一显示区域和反射镜呈45°。
这样,可以使显示设备的整体结构更方正。
在一种可能的实现方式中,第一反射式偏振分像板和第二反射式偏振分像板的反射偏振方向与显示屏的偏振方向相同。
这样,在光线的传播过程中:对于后景图像光线,第一反射式偏振分像板对后景图像光线为完全透射或完全反射,第二反射式偏振分像板对后景图像光线为完全透射;对于前景图像光线,第二反射式偏振分像板对前景图像光线为完全反射。因此,前景图像光线和后景图像光线到达出光位置时的光强均没有发生减弱,用户在出光位置进行观测时,前景图像和后景图像的均具有较强的亮度,前景图像和后景图像的图像较为清晰。
在一种可能的实现方式中,显示屏为平面显示屏。
本申请实施例所示的方案,平面显示屏可以是一块平面显示面板,该显示面板包括两个显示部分,这两个显示部分分别对应第一显示区域和第二显示区域。该平面显示屏也可以是由两块独立且位于同一平面内的显示面板所组成的平面显示屏。
第二方面,提供了一种音响设备,该音响设备包括第一方面所述的显示设备。
本申请实施例提供的技术方案带来的有益效果是:
本申请实施例中,显示设备包括显示屏、第一光学处理单元和第二光学处理单元。显示屏包括第一显示区域和第二显示区域,第一显示区域用于显示后景图像,第二显示区域用于显示前景图像。第一显示区域显示的后景图像以光线形式射入第一光学处理单元,第一光学处理单元对后景图像光线进行相应处理,处理后的后景图像光线射向第二光学处理单元。第二显示区域显示的前景图像以光线形式射入第二光学处
理单元,处理后的后景图像光线和前景图像光线在第二光学处理单元的同一出光位置沿同一方向射出。后景图像光线需要经过第一光学处理单元和第二光学处理单元的处理,前景图像光线只经过第二光学处理单元的处理,相应的,后景图像光线传播至出光位置的传播距离大于前景图像光线传播至出光位置的传播距离,后景图像的成像位置与出光位置的距离大于前景图像的成像位置与出光位置的距离,这样,后景图像的视觉效果就会偏远,前景图像的视觉效果就会偏近,用户在不同的角度观看时,后景图像和前景图像的相对位置是不同的,使得显示设备展示的图像具有立体效果。同时,前景图像和后景图像顾名思义是分离开的图像,各自独立,像素点的显示不需要两条特定的光线叠加,所以,显示设备的振动是不会影响到像素点显示的清晰度。因此,通过本申请实施例的方案可以在显示具有立体效果的图像时,可以防止因振动而造成图像模糊。
图1是本申请实施例提供的一种显示设备的结构示意图;
图2是本申请实施例提供的一种显示设备的结构示意图;
图3是本申请实施例提供的一种显示设备的结构示意图;
图4是本申请实施例提供的一种显示设备所展示的图像的示意图;
图5是本申请实施例提供的一种显示设备所展示的图像的示意图;
图6是本申请实施例提供的一种显示设备成像的原理示意图;
图7是本申请实施例提供的一种显示设备成像的原理示意图;
图8是本申请实施例提供的一种显示设备成像的原理示意图;
图9是本申请实施例提供的一种显示设备的结构示意图;
图10是本申请实施例提供的一种显示设备成像的原理示意图;
图11是本申请实施例提供的一种显示设备成像的原理示意图;
图12是本申请实施例提供的一种显示设备的结构示意图;
图13是本申请实施例提供的一种显示设备成像的原理示意图。
图例说明
1、显示屏;2、第一光学处理单元;3、第二光学处理单元;4、可视区域;
11、第一显示区域;12、第二显示区域;13、吸光膜;
21、第一反射式偏振分像板;22、λ/4玻片;23、反射镜;
31、第二反射式偏振分像板;
11a、第一显示区域的第一边缘;12a、第二显示区域的第二边缘;
21a、第一反射式偏振分像板的第一侧边;31a、第二反射式偏振分像板的第二侧边。
1、显示屏;2、第一光学处理单元;3、第二光学处理单元;4、可视区域;
11、第一显示区域;12、第二显示区域;13、吸光膜;
21、第一反射式偏振分像板;22、λ/4玻片;23、反射镜;
31、第二反射式偏振分像板;
11a、第一显示区域的第一边缘;12a、第二显示区域的第二边缘;
21a、第一反射式偏振分像板的第一侧边;31a、第二反射式偏振分像板的第二侧边。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”、“第三”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则相对位置关系也可能相应地改变。
本申请实施例提供了一种显示设备,该显示设备可以展示具有立体效果的图像。
图1是本申请实施例示出的一种显示设备的结构示意图,如图1所示,显示设备包括显示屏1、第一光学处理单元2和第二光学处理单元3。
显示屏1包括第一显示区域11和第二显示区域12(图中点划线为第一显示区域11和第二显示区域12的分界线),这两个显示区域分别显示后景图像和前景图像。
第一光学处理单元2位于第一显示区域11的出光方向上,其作用为将第一显示区域11射入的后景图像光线的偏振方向调整指定角度,并将调整偏振方向后的后景图像光线射向第二光学处理单元3。
第二光学处理单元3位于第二显示区域12的出光方向上,其作用为基于第二显示区域12射入的前景图像光线和由第一光学处理单元2射入的调整偏振方向后的后景图像光线的偏振方向的不同,分别对两组光线进行反射和透射,使两组光线在相同位置延相同的方向射出。
下面结合结构一,对显示设备的各个部分分别进行介绍,可以参见图2。
一、显示屏1
显示屏1可以是LCD显示屏,LCD显示屏所射出的光线均是具有一定偏振方向的线偏振光,显示屏1可以是平面显示屏。显示屏1可以包括第一显示区域11和第二显示区域12,这两个显示区域具有统一的偏振方向。
可选地,显示屏1可以是贴有偏振片OLED显示屏或贴有偏振片的LED显示屏,偏振片位于OLED显示屏或LED显示屏的出光方向上,偏振片的功能为将透射经过偏振片的圆偏振光转变为线偏振光。OLED显示屏和LED显示屏所射出的光线均是圆偏振光,当显示屏1选用贴有偏振片的OLED显示屏或贴有偏振片的LED显示屏时,OLED显示屏或LED显示屏所射出的圆偏振光经过偏振片后,可以转化为具有一定偏振方向的线偏振光。在实施中,可以使用一块偏振片贴满整个显示屏1,使得显示屏1射出的全部光线均为具有相同偏振方向的线偏振光。
本申请实施例对于显示屏1的类型不做限定,在下文的内容中以LCD显示屏作为示例。
显示屏1可以包括第一显示区域11和第二显示区域12,第一显示区域11和第二显示区域12位于同一平面内。第一显示区域11和第二显示区域12是同一块显示面板的两个显示部分(即显示屏1包括一块显示面板),也可以是两块独立的显示面板(即显示屏1包括两块显示面板),第一显示区域11和第二显示区域12的大小可以相同也可以不同。第一显示区域11和第二显示区域12可以相贴,也可以存在一定间隔。
二、第一光学处理单元2
如图2所示,第一光学处理单元2可以包括第一反射式偏振分像板21、λ/4玻片22和反射镜23。第一显示区域11射入的后景图像光线会依次经过第一反射式偏振分像板21、λ/4玻片22和反射镜23。其中,对于后景图像光线,在其第一次透射经过λ/4玻片之前为第一后景图像光线,在其第一次透射经过λ/4玻片之后直至第二次透射经过λ/4玻片之前为第二后景图像光线,在其第二次透射经过λ/4玻片之后为第三后景图像光线。
第一反射式偏振分像板21
第一反射式偏振分像板21用于将第一显示区域11射入的第一后景图像光线向第一方向反射。其中,第一方向可以是第一方向是第一反射式偏振分像板朝向λ/4玻片的方向。
第一反射式偏振分像板21具有彼此正交的透射偏振方向和反射偏振方向。其中,透射偏振方向是指一个特定的偏振方向,当线偏振光具有该偏振方向时反射式偏振分像板则会对线偏振光进行完全透射,反射偏振方向是指一个特定的偏振方向,当线偏振光具有该偏振方向时反射式偏振分像板则会对线偏振光进行完全反射。不同偏振方向的光线射入第一反射式偏振分像板21,第一反射式偏振分像板21可能对该光线进行透射、反射、或同时进行反射和透射。当光线的偏振方向与第一反射式偏振分像板21的透射偏振方向相同时,第一反射式偏振分像板21可以将光线完全透射;当光线的偏振方向与第一反射式偏振分像板21的反射偏振方向相同时,第一反射式偏振分像板21可以将光线完全反射;当光线的偏振方向介于上述透射偏振方向和反射偏振方向之间时,可以对光线正交分解,光线可以分解成第一分量光线和第二分量光线,其中第一分量光线的偏振方向与上述透射偏振方向相同,第二分量光线与上述返射偏振方向相同,然后,第一反射式偏振分像板21可以将第一分量光线进行透射,对第二分量光线进行反射。
如图2所示,第一反射式偏振分像板21可以是一张矩形薄片,第一反射式偏振分像板21位于第一显示区域11的出光方向上。第一反射式偏振分像板21的第一侧边21a可以位于第一显示区域11的第一边缘11a处,且与显示屏1相连。其中,第一侧边21a是第一反射式偏振分像板21靠近显示屏1的侧边,第
一边缘11a是第一显示区域11靠近第二显示区域12的边缘。第一反射式偏振分像板21可以与第一显示区域11呈特定角度,例如45°。
对于第一反射式偏振分像板21,可以将第一反射式偏振分像板21的反射偏振方向设置为第一偏振方向,将第一反射式偏振分像板21的透射偏振方向设置为第二偏振方向,其中,第一偏振方向与第一显示区域11的偏振方向相同,第一偏振方向与第二偏振方向正交。
第一反射式偏振分像板21可以是反射型偏光增亮膜,例如,双增亮膜(Dual Brightness Enhancement Film,DBEF),或者高级偏振转换膜(Advanced Polarization Conversion Film,APCF),与一般的偏光膜相比,DBEF和APCF具有非常高的透射率和反射率,能够有效提升显示设备所展示的后景图像的亮度。对于第一反射式偏振分像板21所采用反射型偏光增亮膜的类型,本申请实施例不做限定。
λ/4玻片22
λ/4玻片22用于对透射的光线的偏振方向调整45°,即经过λ/4玻片的光线,其偏振方向的角度会增加45°。
如图2所示,λ/4玻片22可以位于第一反射式偏振分像板21和反射镜23之间,并与反射镜23相贴。同时,λ/4玻片22可以紧贴反射镜23靠近第一反射式偏振分像板21的一侧。
反射镜23
反射镜23用于将沿第一方向射入的第一后景图像光线向第二方向反射。反射镜23可以对第二后景图像光线进行反射,并且,反射镜23对第二后景图像光线进行反射的过程不会改变第二后景图像光线的偏振方向。
如图2所示,反射镜23可以与显示屏1垂直放置,反射镜23可以位于第一显示区域11远离第二显示区域12的边缘,且与显示屏1相贴。
反射镜23可以是镜面反射镜,可以是逆反射镜。
三、第二光学处理单元3
如图2所示,第二光学处理单元3可以包括第二反射式偏振分像板31。
第二反射式偏振分像板31
第二反射式偏振分像板31用于将第二显示区域12射入的前景图像光线向第二方向反射,并且用于沿第二方向对上述第三后景图像光线进行透射。其中,第二方向可以是从反射镜23朝向第一反射式偏振分像板21的方向。
第二反射式偏振分像板31具有彼此正交的透射偏振方向和反射偏振方向,并且,第二反射式偏振分像板31的透射偏振方向和反射偏振方向可以与第一反射式偏振分像板21相同。不同偏振方向的光线射入第二反射式偏振分像板31,第二反射式偏振分像板31可能对该光线进行透射、反射、或同时进行反射和透射。当光线的偏振方向与第二反射式偏振分像板31的透射偏振方向相同时,第二反射式偏振分像板31可以将光线完全透射;当光线的偏振方向与第二反射式偏振分像板31的反射偏振方向相同时,第二反射式偏振分像板31可以将光线完全反射;当光线的偏振方向介于上述透射偏振方向和反射偏振方向之间时,可以对光线正交分解,分解成第一分量光线和第二分量光线,其中第一分量光线的偏振方向与上述透射偏振方向相同,第二分量光线与上述返射偏振方向相同,然后,第二反射式偏振分像板31可以将第一分量光线进行透射,对第二分量光线进行反射。
如图2所示,第二反射式偏振分像板31可以是一张矩形薄片,第二反射式偏振分像板31可以位于第二显示区域12的出光方向以及第一反射式偏振分像板21的第二方向上。第二反射式偏振分像板31可以与第一反射式偏振分像板21垂直放置,且第二反射式偏振分像板31的第二侧边31a位于第二显示区域12的第二边缘12a处,且与显示屏1相连。其中,第二侧边31a是第二反射式偏振分像板31靠近显示屏1的侧边,第二边缘12a是第二显示区域12靠近第一显示区域11的边缘。第二反射式偏振分像板31可以与第二显示区域12呈特定角度,例如45°。
对于第二反射式偏振分像板31,可以将第二反射式偏振分像板31的反射偏振方向设置为第一偏振方向,将第二反射式偏振分像板31的透射偏振方向设置为第二偏振方向。
第二反射式偏振分像板31可以是反射型偏光增亮膜,例如,双增亮膜(Dual Brightness Enhancement Film,DBEF),或者高级偏振转换膜(Advanced Polarization Conversion Film,APCF),与一般的偏光膜相比,DBEF和APCF具有非常高的透射率和反射率,能够有效提升显示设备所展示的后景图像的亮度。对
于第二反射式偏振分像板31所采用反射型偏光增亮膜的类型,本申请实施例不做限定。
第一反射式偏振分像板21和第二反射式偏振分像板31可以组成反射式偏振分像板组,在反射式偏振分像板组中,第一反射式偏振分像板21和第二反射式偏振分像板31可以相连,也可以存在一定间距D。
第一反射式偏振分像板21和第二反射式偏振分像板31可以均与显示屏1相连,第一反射式偏振分像板21和第二反射式偏振分像板31与显示屏1之间的连接方式可以是粘接,也可以在显示设备的壳体内部设置多道固定凹槽,利用这些固定凹槽将第一反射式偏振分像板21和第二反射式偏振分像板31卡接在预设位置上,使得第一反射式偏振分像板21和第二反射式偏振分像板31均与显示屏1相连。第一反射式偏振分像板21和第二反射式偏振分像板31也可以均不与显示屏1相连,即反射式偏振分像板组与显示屏1之间存在间距H。
该显示设备还可以包括壳体,该壳体用于对上述显示屏1、第一反射式偏振分像板21、λ/4玻片22、反射镜23和第二反射式偏振分像板31进行固定,该壳体还可以用于防止外界杂质(例如灰尘等)进入显示设备内部。
壳体可以具有六面体结构,内部中空。壳体的内壁上还可以包括多个固定凹槽,在显示屏1、第一反射式偏振分像板21、λ/4玻片22、反射镜23和第二反射式偏振分像板31上可以分别设置定位凸起,在安装显示设备时,可以将定位凸起卡接至固定凹槽中,以实现对显示屏1、第一反射式偏振分像板21、λ/4玻片22、反射镜23和第二反射式偏振分像板31的固定。
显示屏1、第一反射式偏振分像板21、λ/4玻片22、反射镜23和第二反射式偏振分像板31也可以直接通过粘胶固定在壳体内壁的相应位置处。
壳体的材质可以是热熔塑料,在加工壳体时可以先对热熔塑料原料进行加热,使热熔塑料原料处于熔融状态,再将处于熔融状态的热熔塑料原料注入预先加工好的模具中,完成壳体的加工。
壳体的材质也可以是各种具有良好延展性的金属,例如铝等。金属材质的壳体的加工方式与上述热熔塑料材质的壳体的加工方式相同,这里不再赘述。
下面对上述结构一中显示屏1、第一反射式偏振分像板21、第二反射式偏振分像板31和反射镜23之间的角度关系进行说明。
如图3所示,第一反射式偏振分像板21与第一显示区域11呈第一角度,第二反射式偏振分像板31与第二显示区域12呈第二角度,反射镜23与第一反射式偏振分像板21呈第三角度,其中,第一角度与第三角度相等、第一角度与第二角度互余。
其中,第一角度、第二角度和第三角度分别为θ1、θ2和θ3。
由于第一显示区域11和第二显示区域12均是垂直将后景图像光线和前景图像光线射出,因此θ4+θ2=90°、θ5+θ1=90°。
根据入射角与出射角相同可以得到,θ4=θ6=θ8,θ5=θ7=θ9。因为θ1+θ2=90°,所以θ8+θ9=90°,即θ4+θ7=90°。又因为θ4+θ2=90°,所以θ2=θ7。又因为θ1=θ3,θ1+θ2=90°,所以θ7+θ3=90°。
这样,到达可视区域4的前景图像光线和后景图像光线均与可视区域4垂直,相应的,从可视区域4进行观测,前景图像和后景图像均与可视区域4平行。并且,由于显示设备还可能包括其他功能单元,因此显示屏1和反射镜23可能不是垂直的。在此情况下,可以根据显示设备内部的功能单元的摆放位置,灵活设置显示屏1和反射镜23之间的角度,从而使显示设备趋于小型化。
根据上文所述,第一显示区域11和第二显示区域12所发射的后景图像光线和前景图像光线的偏振方向均为第一偏振方向。下面,对这两种光线在显示设备中的传播过程进行详细介绍:
(1)关于后景图像光线:
1a,第一显示区域11发射第一后景图像光线。第一后景图像光线到达第一反射式偏振分像板21之后,由于第一后景图像光线的偏振方向与第一反射式偏振分像板21的反射偏振方向相同,第一反射式偏振分像板21对第一后景图像光线沿第一方向进行完全反射。然后,第一后景图像光线沿第一方向射向λ/4玻片22。
1b,第一后景图像光线到达λ/4玻片22。第一后景图像光线在透射经过λ/4玻片22之后转变为第二后景图像光线,其中,第二后景图像光线与第一后景图像光线间的偏振方向之差为45°。然后,第二后景图像光线沿第一方向射向反射镜23。
1c,第二后景图像光线到达反射镜23,反射镜23对第二后景图像光线沿第二方向进行反射。其中,反射镜23对第二后景图像光线进行反射的过程中第二后景图像光线的偏振方向保持不变。然后,第二后景图像光线沿第二方向射向λ/4玻片22。
1d,第二后景图像光线在透射经过λ/4玻片之后转变为第三后景图像光线,其中,第三后景图像光线与第二后景图像光线间的偏振方向之差为45°。然后,第三后景图像光线沿第二方向射向第一反射式偏振分像板21。
1e,第三后景图像光线到达第一反射式偏振分像板21。此时,第三后景图像光线与第一反射式偏振分像板21的透射偏振方向相同,第三后景图像光线透射经过第一反射式偏振分像板21。然后,第三后景图像光线沿第二方向射向第二反射式偏振分像板31。
1f,第三后景图像光线到达第二反射式偏振分像板31。此时,第三后景图像光线与第二反射式偏振分像板31的透射偏振方向相同,第三后景图像光线透射经过第二反射式偏振分像板31,最终到达可视区域4。
(2)对于前景图像光线:
第二显示区域12向第二反射式偏振分像板31发射前景图像光线。前景图像光线到达第二反射式偏振分像板31之后,由于前景图像光线的偏振方向与第二反射式偏振分像板31的反射偏振方向相同,第二反射式偏振分像板31对前景图像光线沿第二方向进行完全反射,前景图像光线到达可视区域4。
前景图像光线和后景图像光线均到达可视区域4后,即可从可视区域4的不同角度观看显示设备所展示的图像。在后景图像光线和前景图像光线的传播过程中,后景图像光线传播至可视区域4的传播距离大于前景图像光线传播至可视区域4的传播距离,后景图像的成像位置与可视区域4的距离大于前景图像的成像位置与可视区域4的距离,这样,后景图像的视觉效果就会偏远,前景图像的视觉效果就会偏近,用户在不同的角度观看时,后景图像和前景图像的相对位置是不同的,使得显示设备展示的图像具有立体效果。
如图4和图5所示,前景图像和后景图像是内容完全不同的图像,前景图像内容为宇航员的图像,后景图像是内容为月球的图像。图4和图5分别为从左侧观看可视区域4和从右侧观看可视区域4所看到的图像。根据图4和图5可以看出,用户在不同的角度观看时,后景图像和前景图像的相对位置是不同的,显示设备所展示的图像具有立体效果。
下面分别针对反射镜23是镜面反射镜和逆反射镜的情况对前景图像和后景图像的视觉距离进行介绍。
镜面反射镜
以图6作为参考,以第一显示区域11和第二显示区域12的大小相同,第一显示区域11和第二显示区域12之间的间距为D,反射式偏振分像板组与显示屏1相连,且第一反射式偏振分像板21和第二反射式偏振分像板31均与显示屏1呈45°为例,对显示设备呈现立体图像的原理进行介绍:
如图6所示,基于光学原理可知,后景图像对应有后景图像虚像,位于后景图像的成像位置,前景图像对应有前景图像虚像,位于前景图像的成像位置。从视觉的角度来讲,人在观看可视区域4,如同看到在后景图像的成像位置显示有后景图像,在前景图像的成像位置显示有前景图像。后景图像虚像距离镜面反射镜的距离为b,且后景图像虚像位于镜面反射镜未贴有λ/4玻片22的一侧。其中,b为第一显示区域的显示宽度。前景图像虚像距离镜面反射镜的距离为D+b,且前景图像虚像位于镜面反射镜贴有λ/4玻片22的一侧。其中,D为第一显示区域11和第二显示区域12之间的间距。此时,后景图像虚像与前景图像虚像之间的距离为D+2b,该距离较大,适用于前景图像和后景图像需要具有较大的视觉距离的情景(例如前景图像和后景图像是人和远山),能够在前景图像与后景图像之间展示出较大的距离感。
可选地,如图7所示,第一显示区域11的第一边缘11a和第二显示区域12的第二边缘12a可以相贴,即D=0,此时,后景图像虚像与前景图像虚像之间的等于2b。基于上述所述可知,前景图像和后景图像之间的距离与第一边缘11a和第二边缘12a之间的距离D有关,因此,可以根据实际需要,在第一边缘11a和第二边缘12a之间设置不同的间隔D,从而使前景图像与后景图像之间展示出不同的距离感,进而提高显示设备所展示图像的立体效果。
例如,第一显示区域11显示的前景图像可以是游客,第二显示区域12显示的后景图像可以是任意风景,如山、瀑布等,当第一边缘11a和第二边缘12a之间的间隔D不同时,显示设备所展示出的前景图像
和后景图像的距离感不同。
逆反射镜
下面以图8作为参考,以第一显示区域11和第二显示区域12的大小相同,第一显示区域11和第二显示区域12之间的间距为D,反射式偏振分像板与显示屏1相连,且第一反射式偏振分像板21和第二反射式偏振分像板31均与显示屏1呈45°为例,对显示设备呈现立体图像的原理进行介绍:
由于逆反射镜的特性,后景图像光线会形成一个后景图像实像,该后景图像实像距离逆反射镜的距离为b,且后景图像实像位于逆反射镜贴有λ/4玻片22的一侧。其中,b为第一显示区域的显示宽度。前景图像虚像距离逆反射镜的距离为D+b,且前景图像虚像位于逆反射镜贴有λ/4玻片22的一侧。其中,D为第一显示区域11和第二显示区域12之间的间距,b为第一显示区域的显示宽度。此时,后景图像虚像与前景图像虚像之间的距离为D,与上面的D+2b相比,该距离D为是一个较小的距离,适用于前景图像和后景图像不需要很大的视觉距离的情景(例如前景图像和后景图像是前后站立的两个人),此时前景图像和后景图像相叠加,用户可以通过可视区域4观看到具有明显立体效果的图像。
当反射镜为逆反射镜时,若第一显示区域11的第一边缘11a和第二显示区域12的第二边缘12a相贴,此时尽管第一边缘11a和第二边缘12a之间没有距离,但因为第一反射式偏振分像板21和第二反射式偏振分像板31存在一定的厚度,这使得前景图像虚像和后景图像实像之间仍存在一个细微的距离,从而使得用户可以通过可视区域4观看到具有立体效果的叠加图像。
本申请实施例中,对于反射式偏振分像板组与显示屏1之间存在间距H的情况(如图9所示),可以在第一显示区域11和第二显示区域12之间还设置有吸光膜13,该吸光膜13可以阻隔第一显示区域11和第二显示区域12之间的光线传播。
其中,吸光膜13可以垂直于显示屏1。吸光膜13可以包括黑色吸光层和多层折射率依次减小的功能层,吸光层位于功能层之间,且越靠近吸光层的功能层,其折射率越低。光线逐层经过功能层,随着折射率的减小而逐渐发散,透射的光线减少,光线到达黑色吸光层时亮度较低,无法穿过黑色吸光层,从而阻隔第一显示区域11和第二显示区域12之间的光线传播。这样,可以设置不同的间距H,当间距H较大时,显示屏1所射出的光线距离光学处理单元的距离较长,进而,在可视区域4显示的后景图像和前景图像较小,反之,H较小时,在可视区域4显示的后景图像和前景图像较大。
本申请实施例中,对于第一显示区域11和第二显示区域12大小不同的情况,可以设置第一伸缩机构来调节第一反射式偏振分像板21与显示屏1之间的距离,以此来调整后景图像和前景图像之间的位置关系。第一伸缩机构的固定端可以与显示屏1或壳体固定连接,第一伸缩机构的伸缩端可以与第一反射式偏振分像板21固定连接,第一伸缩机构的伸缩方向可以与显示屏1垂直。如图10所示,当第一反射式偏振分像板21位于第一位置时,相应的,后景图像实像位于第三位置,此时从可视区域4进行观察时,后景图像位于前景图像的上方。而当第一反射式偏振分像板21位于第二位置时,相应的,后景图像实像位于第四位置,此时从可视区域4进行观察时,后景图像位于前景图像的下方。图10是以逆反射镜为例进行说明的,采用镜面反射镜的情况与之类似,也可以使用该第一伸缩机构,此处不再赘述。
可选地,对于第一显示区域11和第二显示区域12大小不同的情况,可以设置第二伸缩机构来调节第一反射式偏振分像板21与第二显示区域12的第二边缘12a之间的距离,以此来调整后景图像和前景图像之间的视觉距离。第二伸缩机构的固定端可以与显示屏1或壳体固定连接,第二伸缩机构的伸缩端可以与第一反射式偏振分像板21固定连接,第二伸缩机构的伸缩方向可以与显示屏1平行。如图11所示,当第一反射式偏振分像板21位于第五位置时,第一显示区域11所显示的后景图像位于第六位置,相应的,后景图像实像位于第七位置,此时从可视区域4进行观察时,后景图像与前景图像的视觉距离较远。而当第一反射式偏振分像板21位于第八位置时,第一显示区域11所显示的后景图像位于第九位置,相应的,后景图像实像位于第十位置,此时从可视区域4进行观察时,后景图像与前景图像的视觉距离较近。图11是以逆反射镜为例进行说明的,采用镜面反射镜的情况与之类似,也可以使用该第二伸缩机构,此处不再赘述。
下面结合结构二,对显示设备的各个部分分别进行介绍,可以参见图12。
一、显示屏1
结构二与结构一中的显示屏1相同,可以参见结构一种对显示屏1的说明内容,此处不再赘述。
二、第一光学处理单元2
如图12所示,第一光学处理单元2包括λ/4玻片22和反射镜23。
λ/4玻片22
结构二与结构一中的λ/4玻片22相同,可以参见结构一种对λ/4玻片22的说明内容,此处不再赘述。
反射镜23
反射镜23为镜面反射镜,用于将第一显示区域11发射并经过光学玻片22透射的后景图像光线向第三方向反射,并且,反射镜23对后景图像光线进行反射的过程不会改变后景图像光线的偏振方向。其中,第三方向为第一光学处理单元2朝向第二光学处理单元3的方向。
反射镜23与λ/4玻片22相贴,反射镜23与λ/4玻片22的连接方式可以是粘接等,本申请实施例对λ/4玻片22与反射镜23的连接方式不做限定。
如图12所示,反射镜23位于第一显示区域11的出光方向上,反射镜23的一端与第一显示区域11远离第二显示区域12的一侧相连,反射镜23与第一显示区域11呈45°。
三、第二光学处理单元3
如图12所示,第二光学处理单元3可以包括第二反射式偏振分像板31。
第二反射式偏振分像板31
第二反射式偏振分像板31用于将第二显示区域12射入的前景图像光线向第三方向反射,并且用于沿第三方向对后景图像光线进行透射。
第二反射式偏振分像板31具有彼此正交的透射偏振方向和反射偏振方向。不同偏振方向的光线射入第一反射式偏振分像板21,第二反射式偏振分像板31可能对该光线进行透射、反射、同时进行反射和透射。当光线的偏振方向与第二反射式偏振分像板31的透射偏振方向相同时,第二反射式偏振分像板31可以将光线完全透射;当光线的偏振方向与第二反射式偏振分像板31的反射偏振方向相同时,第二反射式偏振分像板31可以将光线完全反射;当光线的偏振方向介于上述透射偏振方向和反射偏振方向之间时,可以对光线正交分解,分解成第一分量光线和第二分量光线,其中第一分量光线的偏振方向与上述透射偏振方向相同,第二分量光线与上述返射偏振方向相同,然后,第二反射式偏振分像板31可以将第一分量光线进行透射,对第二分量光线进行反射。
如图12所示,第二反射式偏振分像板31可以是一张矩形薄片,第二反射式偏振分像板31可以位于第二显示区域12的出光方向以及反射镜23的第三方向上。第二反射式偏振分像板31可以与反射镜23平行放置,且第二反射式偏振分像板31的第二侧边31a位于第二显示区域12的第二边缘12a处,且与显示屏1相连。其中,第二侧边31a是第二反射式偏振分像板31靠近显示屏1的侧边,第二边缘12a是第二显示区域12靠近第一显示区域11的边缘。
对于第二反射式偏振分像板31,可以将第二反射式偏振分像板31的反射偏振方向设置为第一偏振方向,将第二反射式偏振分像板31的透射偏振方向设置为第二偏振方向。
第二反射式偏振分像板31可以是双增亮膜(Dual Brightness Enhancement Film,DBEF)或高级偏振转换膜(Advanced Polarization Conversion Film,APCF),与一般的偏光膜相比,DBEF和APCF具有非常高的透射率和反射率,能够有效提升显示设备所展示的后景图像的亮度。
下面,对后景图像光线和前景图像光线在显示设备中的传播过程进行详细介绍:
第一显示区域11发射后景图像光线,镜面反射镜将第一显示区域11射入的后景图像光线沿第三方向进行反射,镜面反射镜所反射的后景图像光线先后两次透射经过λ/4玻片22,因此,镜面反射镜所反射的后景图像光线的偏振方向与恰好与第二反射式偏振分像板31的透射偏振方向相同,后景图像光线可完全透射经过第二反射式偏振分像板31,后景图像光线到达可视区域4。
第二显示区域12发射前景图像光线,由于第二反射式偏振分像板31反射偏振方向与第二显示区域12的偏振方向相同,第二反射式偏振分像板31将第二显示区域12射入的前景图像光线沿第三方向完全反射,前景图像光线到达可视区域4。
前景图像光线和后景图像光线均到达可视区域4后,即可从可视区域4的不同角度观看显示设备所展
示的图像。在后景图像光线和前景图像光线的传播过程中,后景图像光线传播至可视区域4的传播距离大于前景图像光线传播至可视区域4的传播距离,后景图像的成像位置与可视区域4的距离大于前景图像的成像位置与可视区域4的距离,这样,后景图像的视觉效果就会偏远,前景图像的视觉效果就会偏近,用户在不同的角度观看时,后景图像和前景图像的相对位置是不同的,使得显示设备展示的图像具有立体效果。
下面,以第一显示区域11和第二显示区域12具有一定间距D为例,对显示设备呈现立体图像的原理进行介绍:
如图13所示,基于光学原理可知,后景图像对应有后景图像虚像,位于后景图像的成像位置,前景图像对应有前景图像虚像,位于前景图像的成像位置。从视觉的角度来讲,人在观看可视区域4,如同看到在后景图像的成像位置显示有后景图像,在前景图像的成像位置显示有前景图像。后景图像虚像距离第一显示区域11的第一边缘11a所在平面的距离为b,且后景图像虚像位于镜面反射镜未贴有λ/4玻片22的一侧。前景图像虚像距离第一显示区域11的第一边缘11a所在平面的距离为D,且前景图像虚像位于镜面反射镜贴有λ/4玻片22的一侧。此时,后景图像虚像与前景图像虚像之间的距离为D+b,该距离是一个适中的距离,适用于前景图像和后景图像需要具有适中的视觉距离的情景。
同时,采用结构二,整个显示设备仅需要一块反射式偏振分像板就可以完成立体图像的显示,能够缩小显示设备的所需空间。
可选地,第一显示区域11的第一边缘11a和第二显示区域12的第二边缘12a可以相贴,即D=0。基于上述所述可知,前景图像虚像和后景图像虚像之间的距离与第一边缘11a和第二边缘12a之间的距离D有关,因此,可以根据实际需要,在第一边缘11a和第二边缘12a之间设置不同的间隔D,从而使前景图像与后景图像之间展示出不同的距离感,进而提高显示设备所展示图像的立体效果。
以上关于结构一和结构二的各种结构特点可以单独使用,也可以多个结构特点组合使用。
采用本申请的显示设备,显示设备包括显示屏1、第一光学处理单元2和第二光学处理单元3。显示屏1包括第一显示区域11和第二显示区域12,第一显示区域11用于显示后景图像,第二显示区域12用于显示前景图像。第一显示区域11显示的后景图像以光线形式射入第一光学处理单元2,第一光学处理单元2对后景图像光线进行相应处理,处理后的后景图像光线射向第二光学处理单元3。第二显示区域12显示的前景图像以光线形式射入第二光学处理单元3,处理后的后景图像光线和前景图像光线在第二光学处理单元3的同一出光位置沿同一方向射出。后景图像光线需要经过第一光学处理单元2和第二光学处理单元3的处理,前景图像光线只经过第二光学处理单元3的处理,相应的,后景图像光线传播至出光位置的传播距离大于前景图像光线传播至出光位置的传播距离,后景图像的成像位置与出光位置的距离大于前景图像的成像位置与出光位置的距离,这样,后景图像的视觉效果就会偏远,前景图像的视觉效果就会偏近,用户在不同的角度观看时,后景图像和前景图像的相对位置是不同的,使得显示设备展示的图像具有立体效果。同时,前景图像和后景图像顾名思义是分离开的图像,各自独立,像素点的显示不需要两条特定的光线叠加,所以,显示设备的振动是不会影响到像素点显示的清晰度。因此,通过本申请实施例的方案可以在显示具有立体效果的图像时,可以防止因振动而造成图像模糊。
本申请实施例提供了一种音响,该音响包括上述的显示设备,该音响包括还可以包括腔体、功放单元和扬声器单元。
以上所述仅为本申请一个实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (15)
- 一种显示设备,其特征在于,所述显示设备包括显示屏(1)、第一光学处理单元(2)和第二光学处理单元(3);所述显示屏(1)包括第一显示区域(11)和第二显示区域(12),所述显示屏(1)用于在所述第一显示区域(11)和第二显示区域(12)分别显示后景图像和前景图像,其中,所述显示屏(1)的不同显示区域具有统一的偏振方向;所述第一光学处理单元(2)位于所述第一显示区域(11)的出光方向上,所述第一光学处理单元(2)用于将所述第一显示区域(11)射入的后景图像光线的偏振方向调整指定角度,并将调整偏振方向后的后景图像光线射向所述第二光学处理单元(3);所述第二光学处理单元(3)位于所述第二显示区域(12)的出光方向上,所述第二光学处理单元(3)用于基于所述第二显示区域(12)射入的前景图像光线和由所述第一光学处理单元(2)射入的调整偏振方向后的后景图像光线的偏振方向的不同,分别对两组光线进行反射和透射,使两组光线在相同位置延相同的方向射出。
- 根据权利要求1所述的设备,其特征在于,所述第一光学处理单元(2)包括第一反射式偏振分像板(21)、λ/4玻片(22)和反射镜(23);所述第一反射式偏振分像板(21)位于所述第一显示区域(11)的出光方向上,所述第一反射式偏振分像板(21)用于将所述第一显示区域(11)射入的后景图像光线向第一方向反射;所述λ/4玻片(22)位于所述第一反射式偏振分像板(21)的所述第一方向上,所述λ/4玻片(22)用于对透射的光线的偏振方向调整45°;所述反射镜(23)位于所述λ/4玻片(22)远离所述第一反射式偏振分像板(21)的一侧,所述反射镜(23)用于将沿第一方向射入的光线向第二方向反射,所述第二方向是朝向所述第一反射式偏振分像板(21)的方向;所述第二光学处理单元(3)位于所述第一反射式偏振分像板(21)的第二方向上。
- 根据权利要求2所述的设备,其特征在于,所述第二光学处理单元(3)包括第二反射式偏振分像板(31),所述第二反射式偏振分像板(31)位于所述第二显示区域(12)的出光方向上,所述第二反射式偏振分像板(31)用于将所述第二显示区域(12)射入的前景图像光线向第二方向反射。
- 根据权利要求3所述的设备,其特征在于,所述第一反射式偏振分像板(21)的第一侧边(21a)位于所述第一显示区域(11)的第一边缘(11a)处,且与所述显示屏(1)相连,所述第一边缘(11a)是所述第一显示区域(11)靠近所述第二显示区域(12)的边缘;所述第二反射式偏振分像板(31)的第二侧边(31a)位于所述第二显示区域(12)的第二边缘(12a)处,且与所述显示屏(1)相连,所述第二边缘(12a)是所述第二显示区域(12)靠近所述第一显示区域(11)的边缘。
- 根据权利要求4所述的设备,其特征在于,所述第一边缘(11a)与所述第二边缘(12a)之间存在间隔。
- 根据权利要求4所述的设备,其特征在于,所述第一边缘(11a)与所述第二边缘(12a)相贴。
- 根据权利要求2~6任一项所述的设备,其特征在于,所述反射镜(23)为镜面反射镜或逆反射镜。
- 根据权利要求2~7任一项所述的设备,其特征在于,所述λ/4玻片(22)与所述反射镜(23)相贴。
- 根据权利要求2~8任一项所述的设备,其特征在于,所述第一反射式偏振分像板(21)与第一显示区域(11)呈第一角度,所述第二反射式偏振分像板(31)与第二显示区域(12)呈第二角度,所述反射镜(23)与所述第一反射式偏振分像板(21)呈第三角度,其中,第一角度与第三角度相等、第一角度与第二角度互余。
- 根据权利要求9所述的设备,其特征在于,所述第一角度等于45°。
- 根据权利要求1所述的设备,其特征在于,所述第一光学处理单元(2)包括λ/4玻片(22)和反射镜(23);所述λ/4玻片(22)和所述反射镜(23)位于所述第一显示区域(11)的出光方向上,所述λ/4玻片(22)与所述反射镜(23)相贴,所述λ/4玻片(22)用于对透射的光线的偏振方向调整45°,所述反射镜(23)用于将所述第一显示区域(11)发射并经过所述光学玻片(22)透射的后景图像光线向第三方向反射;所述第二光学处理单元(3)包括第二反射式偏振分像板(31);所述第二反射式偏振分像板(31)位于所述反射镜(23)的第三方向以及所述第二显示区域(12)的出光方向上,所述第二反射式偏振分像板(31)用于将所述第二显示区域(12)射入的前景图像光线向第三方向反射。
- 根据权利要求11所述的设备,其特征在于,所述第一显示区域(11)和所述反射镜(23)呈45°。
- 根据权利要求3~6、11或12任一项所述的设备,其特征在于,所述第一反射式偏振分像板(21)和所述第二反射式偏振分像板(31)的反射偏振方向与显示屏(1)的偏振方向相同。
- 根据权利要求1~13任一项所述的设备,其特征在于,所述显示屏(1)为平面显示屏。
- 一种音响设备,其特征在于,所述音响设备包括如权利要求1-14任一项所述的显示设备。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211021468.X | 2022-08-24 | ||
CN202211021468.XA CN117666163A (zh) | 2022-08-24 | 2022-08-24 | 一种显示设备和音响设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024041192A1 true WO2024041192A1 (zh) | 2024-02-29 |
Family
ID=90012374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/104230 WO2024041192A1 (zh) | 2022-08-24 | 2023-06-29 | 显示设备和音响设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117666163A (zh) |
WO (1) | WO2024041192A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110228178A1 (en) * | 2010-03-16 | 2011-09-22 | Himax Display, Inc. | Polarization beam splitter and optical system |
JP2012048002A (ja) * | 2010-08-27 | 2012-03-08 | Nippon Seiki Co Ltd | 結像装置 |
JP2012114701A (ja) * | 2010-11-25 | 2012-06-14 | Fujifilm Corp | 画像表示装置 |
WO2019156409A1 (ko) * | 2018-02-12 | 2019-08-15 | 유재희 | 다중 배열된 디스플레이 면을 이용한 플로팅 방식의 홀로그램 디스플레이 장치와 그를 위한 다중영상 생성방법 |
JP2019191254A (ja) * | 2018-04-19 | 2019-10-31 | 株式会社ジャパンディスプレイ | 表示装置 |
CN213601003U (zh) * | 2020-12-08 | 2021-07-02 | 广东景秀浮影科技有限公司 | 一种景深裸眼立体显示装置 |
-
2022
- 2022-08-24 CN CN202211021468.XA patent/CN117666163A/zh active Pending
-
2023
- 2023-06-29 WO PCT/CN2023/104230 patent/WO2024041192A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110228178A1 (en) * | 2010-03-16 | 2011-09-22 | Himax Display, Inc. | Polarization beam splitter and optical system |
JP2012048002A (ja) * | 2010-08-27 | 2012-03-08 | Nippon Seiki Co Ltd | 結像装置 |
JP2012114701A (ja) * | 2010-11-25 | 2012-06-14 | Fujifilm Corp | 画像表示装置 |
WO2019156409A1 (ko) * | 2018-02-12 | 2019-08-15 | 유재희 | 다중 배열된 디스플레이 면을 이용한 플로팅 방식의 홀로그램 디스플레이 장치와 그를 위한 다중영상 생성방법 |
JP2019191254A (ja) * | 2018-04-19 | 2019-10-31 | 株式会社ジャパンディスプレイ | 表示装置 |
CN213601003U (zh) * | 2020-12-08 | 2021-07-02 | 广东景秀浮影科技有限公司 | 一种景深裸眼立体显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN117666163A (zh) | 2024-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12066626B2 (en) | Near-to-eye display device and Augmented Reality apparatus | |
EP2788809B1 (en) | Compact illumination module for head mounted display | |
EP4318080A2 (en) | Optical system for head-mounted display | |
US6853491B1 (en) | Collimating optical member for real world simulation | |
EP3165961B1 (en) | Display apparatus providing borderless display effect | |
US20090059366A1 (en) | Image display device | |
CN111880311A (zh) | 一种近眼显示装置 | |
WO2017179110A1 (ja) | 投影装置、投影システム、及び、眼鏡型表示装置 | |
CN111999898A (zh) | 一种光学显示系统、显示装置 | |
WO2022033233A1 (zh) | 一种近眼显示装置 | |
WO2021197062A1 (zh) | 光学装置以及头戴式设备 | |
CN212460200U (zh) | 一种近眼显示装置 | |
WO2024041192A1 (zh) | 显示设备和音响设备 | |
US11662591B1 (en) | Display systems and imaging systems with dynamically controllable optical path lengths | |
US20240061240A1 (en) | Air floating video display apparatus and light source | |
US9134541B2 (en) | Stereoscopic display system with active switchable retarder | |
JP7444983B2 (ja) | 立体表示装置 | |
CN110275309B (zh) | 偏振微透镜结构、显示装置及其驱动方法 | |
JPH01209480A (ja) | 液晶パネル及び液晶パネルを用いた画像投影装置 | |
JP2022063542A5 (zh) | ||
TWI608255B (zh) | 立體浮空影像顯示裝置 | |
CN218181263U (zh) | 三维影像装置 | |
KR101741912B1 (ko) | 이미지 확대 장치 | |
CN210837087U (zh) | 成像装置和成像系统 | |
WO2023116163A1 (zh) | 一种光波导器件、显示装置和显示设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23856283 Country of ref document: EP Kind code of ref document: A1 |