WO2022033233A1 - 一种近眼显示装置 - Google Patents

一种近眼显示装置 Download PDF

Info

Publication number
WO2022033233A1
WO2022033233A1 PCT/CN2021/104508 CN2021104508W WO2022033233A1 WO 2022033233 A1 WO2022033233 A1 WO 2022033233A1 CN 2021104508 W CN2021104508 W CN 2021104508W WO 2022033233 A1 WO2022033233 A1 WO 2022033233A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarizer
polarized light
retardation layer
display screen
Prior art date
Application number
PCT/CN2021/104508
Other languages
English (en)
French (fr)
Inventor
武玉龙
栗可
王晨如
白家荣
韩娜
董瑞君
陈丽莉
张�浩
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/927,763 priority Critical patent/US20230236422A1/en
Publication of WO2022033233A1 publication Critical patent/WO2022033233A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/123Optical louvre elements, e.g. for directional light blocking
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a near-eye display device.
  • the near-eye display optical system has the characteristics of small size, light weight, and can realize stereoscopic display. Each time the light passes through the flat glass, at least half of the energy is lost, resulting in a low light efficiency of the system; in addition, the double reflection of the light on the upper and lower surfaces of the flat glass will also cause ghosting, which affects the visual effect.
  • the present disclosure provides a near-eye display device, including:
  • An imaging lens located on the light-emitting side of the display screen, is used for imaging the displayed image of the display screen
  • a polarizer located on the light-emitting side of the display screen, and used for converting the output light of the display screen into first linearly polarized light;
  • a first phase retardation layer located on the side of the polarizer away from the display screen, for converting the first linearly polarized light transmitted by the polarizer into circularly polarized light;
  • a polarizing beam splitter located on the side of the first phase retardation layer away from the polarizer, and placed obliquely with respect to the polarizer, the polarizing beam splitter can transmit the first linearly polarized light and can reflect the polarization direction a second linearly polarized light perpendicular to the first linearly polarized light;
  • the second phase retardation layer located on the side of the polarizing beam splitter facing the first phase retardation layer, is used for converting the circularly polarized light transmitted by the first phase retardation layer into the second linearly polarized light or including the Partially polarized light of the second linearly polarized light, the second linearly polarized light is reflected by the polarizing beam splitter and transmitted through the second phase retardation layer again and converted into circularly polarized light or elliptically polarized light; and
  • a curved mirror located on the reflected light path of the polarizing beam splitter and on the side of the second phase retardation layer away from the polarizing beam splitter, is used for re-transmitting the circularly polarized light or the second phase retardation layer.
  • Elliptically polarized light is partially reflected toward the location of the human eye and partially transmitted by ambient light.
  • both the first phase retardation layer and the second phase retardation layer are quarter wave plates
  • the optical axes of the two quarter-wave plates are parallel to each other, and the included angle between the polarization direction of the polarizer and the optical axis direction of the quarter-wave plate is 45°.
  • the polarizer and the first retardation layer are attached to each other.
  • the polarizing beam splitter includes:
  • the polarizing light splitting medium film is located on the surface of one side of the base material.
  • the substrate is a flat plate
  • the polarizing light splitting medium film is attached to a surface of one side of the flat plate
  • the second phase retardation layer and the polarizing light splitting medium film are adhered to each other.
  • an anti-reflection film is provided on the surface of the parallel flat plate on the side away from the polarizing light splitting medium film.
  • the base material includes: a first base material part and a second base material part, the first base material part is located on a side close to the polarizer, and the second base material part is located at a side close to the polarizer. a side of the first base material part away from the polarizer;
  • the opposite surface of the first base material part and the second base material part is a stepped surface, and the other side surface is a plane; the stepped surfaces of the first base material part and the second base material part fit each other , the plane surfaces of the first base material portion and the second base material portion are parallel to each other;
  • the second phase retardation layer is attached to the first base material part or the stepped surface of the second base material part; the polarizing light splitting medium film is attached to the plane surface of the second base material part.
  • an anti-reflection film is provided on the planar surface of the first base material portion and/or the planar surface of the second base material portion.
  • the imaging lens includes at least one lens
  • the lens adopts one of spherical lens, aspherical lens or free-form surface lens.
  • the light-emitting surface of the lens farthest from the display screen in the imaging lens is a flat surface, and the polarizer is attached to the light-emitting surface.
  • the material of the lens is one of glass or plastic.
  • the polarizer is located between the display screen and the imaging lens.
  • the display screen is a liquid crystal display
  • the polarizer is attached to the light-emitting surface of the liquid crystal display, and the polarizer is multiplexed into a linear polarizing layer on the light-emitting side of the liquid crystal display.
  • the display screen is an organic light emitting diode display or a miniature organic light emitting diode display
  • the polarizer is attached to the light-emitting surface of the display screen, and the polarizer is multiplexed into a linear polarizing layer in the circular polarizer of the display screen.
  • the display screen is a light-emitting diode display
  • the polarizer is attached to the light-emitting surface of the light-emitting diode display.
  • the curved mirror adopts one of a spherical mirror, an aspherical mirror or a free-form curved mirror.
  • the material of the curved mirror is one of glass or plastic.
  • a semi-transmissive and semi-reflective film is disposed on one surface of the curved mirror.
  • the near-eye display device is glasses or a helmet
  • the curved mirror is reused as the lens of the glasses or helmet.
  • FIG. 1 is a schematic structural diagram of a near-eye display device commonly used at present
  • FIG. 2 is one of the schematic structural diagrams of a near-eye display device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a light polarization state conversion of a near-eye display device according to an embodiment of the present disclosure
  • FIG. 4 is a second schematic structural diagram of a near-eye display device according to an embodiment of the present disclosure.
  • FIG. 5 is one of the schematic structural diagrams of the polarizing beam splitter provided by the embodiment of the present disclosure.
  • FIG. 6 is a second schematic structural diagram of a polarizing beam splitter provided by an embodiment of the present disclosure.
  • FIG. 7 is a third schematic structural diagram of a near-eye display device according to an embodiment of the present disclosure.
  • FIG. 8 is a fourth schematic structural diagram of a near-eye display device according to an embodiment of the present disclosure.
  • FIG. 9 is a fifth schematic structural diagram of a near-eye display device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of the appearance of a near-eye display device according to an embodiment of the present disclosure.
  • a near-eye display device refers to a display device worn on the user's eyes, for example, a near-eye display device is usually presented in the form of glasses or a helmet.
  • Near-eye display devices can provide users with AR and VR experiences.
  • the AR near-eye display technology superimposes and displays the virtual image generated by the near-eye display device and the real-world image, so that the user can see the final enhanced real-life image on the screen.
  • the VR near-eye display technology is to display the images of the left and right eyes on the near-eye displays corresponding to the left and right eyes respectively.
  • FIG. 1 is a schematic structural diagram of a near-eye display device commonly used at present.
  • the light from the image source 100 is refracted in the form of a flat glass 200 coated with a transflective film, and the light loses at least half of its energy each time it passes through the flat glass 200, resulting in system failure.
  • the light efficiency is low; in addition, the light will be reflected twice on the upper and lower surfaces of the flat glass, and after being reflected by the reflector 300, the two beams of light will also cause a ghosting problem, which affects the visual effect.
  • FIG. 2 is one of the schematic structural diagrams of a near-eye display device according to an embodiment of the present disclosure.
  • the near-eye display device provided by the embodiment of the present disclosure includes: a display screen 1 , an imaging lens 2 , a polarizer 3 , a first phase retardation layer 41 , a second phase retardation layer 42 , a polarizing beam splitter 5 , and a curved mirror 6 .
  • the display screen 1 is used as an image source for displaying images.
  • the near-eye display device may include a display screen 1 on which left and right eye images are superimposed, and the human eye produces a certain parallax when viewing the left and right eye images, resulting in a stereoscopic display effect.
  • the near-eye display device may also include two display screens 1, which are used to display images of the left and right eyes respectively, and then use independent imaging systems to image the displayed images of the two display screens 1 respectively. Parallax, resulting in a stereoscopic display effect.
  • the size of the display screen 1 in the near-eye display device is usually small, and in order to display more image details, a display screen with a higher resolution can be used to provide a more delicate display image.
  • the display screen 1 may be one of a liquid crystal display, a light emitting diode display or an organic light emitting diode display, which is not limited herein.
  • Liquid Crystal Display is mainly composed of a backlight module and a liquid crystal display panel.
  • the liquid crystal display panel itself does not emit light, and needs to rely on the light source provided by the backlight module to achieve brightness display.
  • the imaging principle of LCD is to place the liquid crystal between two pieces of conductive glass, driven by the electric field between the two electrodes, to cause the electric field effect of the liquid crystal molecules to twist, so as to control the transmission or shielding function of the backlight source, so as to display the image. If a color filter is added, color images can be displayed.
  • the liquid crystal display technology is mature, and the liquid crystal display has low cost and excellent performance.
  • LED Light Emitting Diode
  • display is a display screen composed of LED arrays, using LEDs as display sub-pixels, and image display can be achieved by controlling the display brightness of each LED.
  • LED displays have the characteristics of high brightness, low power consumption, low voltage requirements, and compact and convenient equipment. Using the LED display as the display screen 1 in the near-eye display device is beneficial to realize the miniaturization of the near-eye display device.
  • OLED display is also known as organic electric laser display, organic light-emitting semiconductor display.
  • the OLED display belongs to a current-type organic light-emitting device, which is a phenomenon of luminescence caused by the injection and recombination of carriers, and the luminous intensity is proportional to the injected current.
  • the holes generated by the anode and the electrons generated by the cathode will move, injected into the hole transport layer and the electron transport layer, respectively, and migrate to the light-emitting layer.
  • energy excitons are generated, thereby exciting the light-emitting molecules and finally producing visible light.
  • the OLED display is a self-luminous display, so it does not need to be equipped with a backlight module, and the overall thickness of the device is small, which is conducive to the miniaturization of the near-eye display device and is more conducive to the installation of the whole machine.
  • the miniature organic light emitting diode display is to miniaturize the light emitting unit of the organic light emitting diode, so that more pixels can be arranged in a limited size, and the resolution of the display screen can be improved.
  • the imaging lens 2 is located on the light-emitting side of the display screen 1 and is used for imaging the displayed image of the display screen 1 .
  • the size of the display screen 1 in the near-eye display device is relatively small, and the displayed image cannot be directly viewed by the human eye. Therefore, an imaging lens 2 needs to be arranged on the light-emitting side of the display screen 1, and the displayed image is enlarged and imaged, and then the image is observed by the human eye.
  • the imaging lens 2 includes at least one lens.
  • the imaging lens 2 in the disclosed embodiment includes a first lens 21 and a second lens 22 .
  • the first lens 21 is located on the light-emitting side of the display screen 1
  • the second lens 22 is located on the side of the first lens 21 away from the display screen 1.
  • the first lens 21 can be a positive lens
  • the second lens 22 can be a negative lens.
  • the imaging lens 2 can also use one lens to simplify the structure; or, the imaging lens 2 can also use more than three lenses to optimize the imaging quality.
  • only the imaging lens 2 includes two lenses.
  • the number of lenses in the imaging lens 2 is not specifically limited.
  • the type of the lens in the imaging lens 2 needs to be designed according to the actual situation, which is not limited here.
  • the lens in the imaging lens 2 can be a spherical lens, an aspherical lens or a free-form surface lens.
  • Spherical lenses have the advantages of simple design and low assembly precision requirements.
  • the thickness of the aspheric lens and the free-form lens is relatively small, which can optimize the image quality, and can be selected according to actual needs during optical design.
  • the material of the lens in the imaging lens 2 can be one of glass or plastic, which is not limited herein.
  • the near-eye display device further includes: a polarizer 3, which is located on the light-emitting side of the display screen; a first phase retardation layer 41, which is located on the side of the polarizer 3 away from the display screen 1; and a polarizing beam splitter 5, which is located on the first
  • the adjacent retardation layer 41 is away from the side of the polarizer 3;
  • the second phase retardation layer 42 is located on the side of the polarizing beam splitter 5 facing the first phase retardation layer 41, and rotates obliquely with respect to the polarizer 3;
  • the curved mirror 6 is located in the polarizer
  • the reflected light path of the beam splitter 5 is located on the side of the second phase retardation layer 42 away from the polarization beam splitter 5 .
  • the polarizer 3 is used to convert the light emitted from the display screen 1 into the first linearly polarized light;
  • the first phase retardation layer 41 is used to convert the first linearly polarized light transmitted by the polarizer 3 into circularly polarized light;
  • the retardation layer 42 is used to convert the circularly polarized light transmitted by the first phase retardation layer 41 into a second linearly polarized light whose polarization direction is perpendicular to the first linearly polarized light;
  • the polarizing beam splitter 5 is used to transmit the first linearly polarized light and reflect The second linearly polarized light; wherein, the second linearly polarized light is reflected by the polarizing beam splitter 5 and then passed through the second phase retardation layer 42 to be converted into circularly polarized light or elliptically polarized light;
  • the curved mirror 6 is used to pass through the second phase again.
  • the circularly polarized light or elliptically polarized light of the retardation layer 42 is
  • the near-eye display device is an optical system in which light can be refracted, so that the volume of the near-eye display device can be reduced as a whole.
  • the element that acts as an optical refracting element is the polarizing beam splitter 5, and the polarizing beam splitter 5 has the property of transmitting p-type polarized light and reflecting s-type polarized light.
  • the present disclosure utilizes the above-mentioned properties of the polarizing beam splitter 5 to completely reflect the light emitted by the display screen 1 when incident on the polarizing beam splitter 5, and completely lens the light reflected by the curved mirror 6. At this time, the light emitted by the display screen 1 The energy loss of light will be greatly reduced.
  • a polarizer 3 is arranged on the light-emitting side of the display screen 1 to convert the light emitted from the display screen 1 into first linearly polarized light with a specific polarization direction. 1
  • the outgoing light is converted into p-polarized light.
  • the first linearly polarized light is converted into circularly polarized light;
  • the circularly polarized light is converted into second linearly polarized light or partially polarized light including the second linearly polarized light Light, its polarization direction is rotated by 90°, that is, the p-polarized light is converted or partially converted into s-polarized light.
  • the second linearly polarized light or part of the linearly polarized light When the second linearly polarized light or part of the linearly polarized light is incident on the polarizing beam splitter 5, it can be completely reflected by the polarizing beam splitter 5 or the light parallel to the optical axis of the polarizing beam splitter 5 can be reflected, and the reflected light is s-polarized light .
  • the reflected light will be incident on the curved mirror 6 through the second phase retardation layer 42 again, and the second linearly polarized light will again convert the circularly polarized light or the elliptically polarized light.
  • the rotation direction of the circularly polarized light or the elliptically polarized light The change occurs, and it is incident on the polarization beam splitter 5 through the second phase retardation layer 42 again.
  • the polarization direction of the light after passing through the second phase retardation layer 42 twice is rotated by 90° again, and the circularly polarized light or the elliptically polarized light is converted into
  • the first linearly polarized light (s-type polarized light is converted into p-type polarized light) or partially polarized light
  • the first linearly polarized light (p-type polarized light) or partially polarized light can be polarized and split when incident on the polarizing beam splitter 5
  • the sheet 5 is completely transmitted, and the light emitted to the position of the human eye or parallel to the optical axis of the polarizing beam splitter 5 is transmitted.
  • the light emitted from the display screen 1 can be polarized and split when incident on the polarizing beam splitter 5 polarizing
  • the polarizing beam splitter 5 in the embodiment of the present disclosure will completely reflect the light emitted by the display screen 1, or transmit only a small part of the light. Therefore, when viewing under the near-eye display device, the display image of the display screen 1 can be weakened to achieve improved protection. The effect of privacy.
  • the polarizing beam splitter 5 is used to replace the flat glass commonly used in the current near-eye display device, so that the problem of reflection on the two surfaces of the flat glass to produce ghost images will not occur.
  • FIG. 3 is a schematic diagram of light polarization state conversion of a near-eye display device according to an embodiment of the present disclosure.
  • the polarizing beam splitter 5 is completely transmitted to the position where the human eye is located.
  • the ambient light is incident on the curved mirror 6 , transmitted by the curved mirror 6 , and then transmitted through the second phase retardation layer 42 and the polarizing beam splitter 5 to the position where the human eye is located.
  • the natural light is converted into the first linearly polarized light (p-type polarized light) after passing through the polarizer 3 , and after the first linearly polarized light is incident on the first phase retardation layer 41, the first phase retardation The layer 41 converts the first linearly polarized light transmitted by the polarizer 3 into circularly polarized light (for example, right-handed circularly polarized light); the circularly polarized light passes through the second phase retardation layer 42, which then converts the first The circularly polarized light transmitted by the phase retardation layer 41 is converted into the second linearly polarized light or the partially polarized light including the second linearly polarized light, and at this moment, the polarization direction of the converted second linearly polarized light is rotated 90° with respect to the first linearly polarized light ( s-type polarized light); when the second linearly polarized light is incident on the polarizing beam splitter 5, it can be completely reflected by the first linearly polarized light ( s-type polar
  • the second linearly polarized light reflected by the polarizing beam splitter 5 first passes through the second phase retardation layer 42, and the second phase retardation layer 42 converts the second linearly polarized light into circularly polarized light (for example, right-handed circularly polarized light).
  • the light transformed by the second phase retardation layer 42 may also be elliptically polarized light (for example, right-handed elliptically polarized light); circularly polarized light or elliptically polarized light direction
  • the circularly polarized light or elliptically polarized light rotates in the opposite direction (for example, left-handed circularly polarized light or left-handed elliptically polarized light), when the circularly polarized light or elliptically polarized light with the opposite rotation direction
  • the second phase retardation layer 42 converts the circularly polarized light reflected by the curved mirror 6 into linearly polarized light, and the polarization direction of the linearly polarized light at this time is rotated by 90° again, that is, converted into The first linearly polarized light (p-type polarized light),
  • the ambient light is natural light, and the natural light is still natural light after passing through the curved mirror 6, and is still natural light after passing through the second phase retardation layer 42. Finally, the ambient light is converted into linearly polarized light (p-type polarized light) after passing through the polarizing beam splitter 5. to the position of the human eye.
  • both the first phase retardation layer 41 and the second phase retardation layer 42 may adopt a quarter-wave plate; the optical axes of the two quarter-wave plates are parallel to each other, and the polarization of the polarizer 3 The angle between the direction and the optical axis of the quarter-wave plate is 45°.
  • first phase retardation layer 41 and the second phase retardation layer 42 may also be used to manufacture the first phase retardation layer 41 and the second phase retardation layer 42 , which are not limited herein.
  • FIG. 4 is a second schematic structural diagram of a near-eye display device provided by an embodiment of the present disclosure.
  • the first phase retardation layer 41 can use a quarter-wave plate, and the thickness of the quarter-wave plate and the polarizer 3 is relatively thin, which usually requires the support of the substrate. Therefore, in the embodiment of the present disclosure, The polarizer 3 and the first phase retardation layer 41 can be attached to each other to support each other. Combining the polarizer 3 with the first retardation layer 41 can omit at least one substrate.
  • FIG. 5 is one of the schematic structural diagrams of the polarizing beam splitter provided by the embodiment of the present disclosure
  • FIG. 6 is the second schematic structural diagram of the polarizing beam splitter provided by the embodiment of the present disclosure.
  • the polarizing beam splitter includes: a base material 51 and a polarizing beam splitting medium film 52 .
  • the polarizing light splitting medium film 52 is usually a flexible film material, and needs to be supported by a base material.
  • the substrate 51 has specific supporting and bearing functions.
  • the surface of the substrate 51 is flat, so that the polarizing light splitting medium film 52 can be attached to the surface of one side of the substrate 51 .
  • the substrate 51 is a flat plate, and the material of the flat plate can be a rigid transparent material such as glass or plastic.
  • the two surfaces of the flat plate are parallel to each other, the polarizing light-splitting medium film 52 is attached to the surface of one side of the flat plate, and then the second phase retardation layer 42 and the polarizing light-splitting medium film 52 are attached to each other, so that the flat plate can be used for the polarizing light-splitting medium film.
  • 52 and the second phase retardation layer 42 play a supporting role.
  • the second phase retardation layer 42 can be a quarter-wave plate. After the polarizing light splitting medium film 52 is attached to the flat plate, its surface is flat, which is beneficial to the attachment of the quarter-wave plate.
  • the flat plate as the substrate 51 is located close to the human eye, and the light emitted from the display screen 1 passes through the polarizer 3 , the first phase retardation layer 41 , the second phase retardation layer 42 , the polarizing light splitting medium film 52 and the curved mirror 6 . After that, it is reflected by the curved mirror 6 and finally passes through the polarizing beam splitter 5 to enter the position where the human eye is located. After the ambient light is incident on the curved mirror 6 , it will eventually also be incident on the position of the human eye through the polarizing beam splitter 5 .
  • an anti-reflection film is provided on the surface of the parallel flat plate on the side away from the polarizing light splitting medium film 52, which is beneficial to the transmission of imaging light and ambient light.
  • the base material includes: a first base material part 51 a and a second base material part 51 b, the first base material part 51 a is located on the side close to the polarizer 3 , the second base material The portion 51b is located on the side of the first base material portion 51a facing away from the polarizer 3 .
  • the surfaces of the first base material part 51 a and the second base material part 51 b facing each other are stepped surfaces, and the other side surfaces are both flat surfaces, and the first base material part 51 a and the second base material part 51 b are stepped
  • the surfaces can be fitted with each other, and the flat surfaces of the fitted first base material portion 51a and the second base material portion 51a are parallel to each other.
  • the base material is set as the structure shown in FIG. 6
  • the second phase retardation layer 42 can be attached to the stepped surface of the first base material part 51 a or the second base material part 51 b, and then the second phase retardation layer 42 can be attached After the second retardation layer 42, the first base material part 51a and the second base material part 51b are combined together, and then the polarizing light splitting medium film 52 can be attached on the plane surface of the second base material part 51b.
  • Both the first base material part 51a and the second base material part 51b are made of hard transparent material
  • the second phase retardation layer 42 can be a quarter wave plate, and the second phase retardation layer 42 is attached to the first base material part 51a
  • the stepped surface of the second base material portion 51b may play a supporting and protecting role for the second phase retardation layer 42 .
  • the second phase retardation layer 42 is arranged on the stepped surface of the base material, so that the light can basically keep the normal incidence state when incident on the second phase retardation layer 42, and the conversion of linearly polarized light into circularly polarized light can be improved. efficiency, improve the utilization efficiency of light.
  • the outer surfaces of the first base material portion 51a and the second base material portion 51b are mutually parallel planes.
  • the second phase retardation layer 42 needs to be disposed on the side close to the polarizer 3, so the polarizing light splitting medium
  • the film 52 is attached to the outer surface of the second base material part 51 b , and the second base material part 51 b plays a supporting role for the polarizing light splitting medium film 52 .
  • the first base material part 51a and the second base material part 51b can transmit incident light, and anti-reflection is provided on the outer plane surface of the first base material part 51a and/or the plane surface of the second base material part 51b
  • the film is conducive to the transmission of imaging light and ambient light.
  • FIG. 7 is a third schematic structural diagram of a near-eye display device according to an embodiment of the present disclosure.
  • the light emitting surface of the lens farthest from the display screen 1 in the imaging lens 2 can be flat, so that the polarizer 3 can be directly attached to the light emitting surface of the lens.
  • the polarizer 3 usually needs to be supported by a base material. If the surface of the lens on the light-emitting side of the imaging lens 2 is designed to be flat, the polarizer 3 can be directly attached to the plane light-emitting surface of the lens. Therefore, the setting of the base material is omitted, so that the structure of the near-eye display device is more compact.
  • the imaging lens 2 may include a first lens 21 and a second lens 22 , and the second lens 22 is the lens farthest from the display screen 1 in the imaging lens 2 .
  • the light-emitting surface of the second lens 22 can be designed to be flat, so that the polarizer 3 is directly attached to the light-emitting surface of the second lens 22 .
  • the polarizer 3 and the first phase retardation layer 41 can be attached to each other.
  • the composite structure of the polarizer 3 and the first phase retardation layer 41 can be attached to the light-emitting surface of the second lens 22 together.
  • FIG. 8 is a fourth schematic structural diagram of a near-eye display device according to an embodiment of the present disclosure.
  • the material of the lens in the imaging lens 2 may be an optical material such as glass or plastic.
  • the lens in the imaging lens 2 is made of glass material, the lens generally does not have the property of changing the phase of light such as birefringence.
  • the polarizer 3 can also be arranged between the display screen 1 and the imaging lens 2 .
  • the first lens 21 and the second lens 22 in the imaging lens 2 are both made of glass, and the polarizer 3 is arranged between the display screen 1 and the imaging lens 2 .
  • the polarizer 3 and the first phase retardation layer 41 may be disposed between the display screen 1 and the imaging lens 2 together.
  • the display screen 1 may adopt a liquid crystal display, a light emitting diode display, or an organic light emitting diode display.
  • the light-emitting surface of the display screen 1 is flat, so when the polarizer 3 is arranged between the display screen 1 and the imaging lens 2, the polarizer 3 can be attached to the light-emitting surface of the display screen 1.
  • the polarizer 3 and the first phase retardation layer 41 adopt a composite structure, the polarizer 3 and the first phase retardation layer 41 can be attached to the light-emitting surface of the display screen 1 together, so that the base material of the polarizer 3 can be omitted.
  • the structure of the near-eye display device is made more compact.
  • FIG. 9 is a fifth schematic structural diagram of a near-eye display device according to an embodiment of the present disclosure.
  • the display screen 1 can be a light-emitting diode display, and the outgoing light of the light-emitting diode display is natural light, and the polarizer 3 is attached to the light-emitting surface of the light-emitting diode display, and the polarizer 3 can convert the natural light emitted by the light-emitting diode display into Linearly polarized light, and then use the above principles to convert the polarization state of the light to realize virtual reality display.
  • the display screen 1 can also be a liquid crystal display.
  • the liquid crystal display uses liquid crystal to modulate linearly polarized light for image display. Therefore, polarizers need to be installed on the light incident surface and the light output surface of the liquid crystal display panel.
  • it can be
  • the polarizer 3 is attached to the light-emitting surface of the liquid crystal display, so that the polarizer 3 is multiplexed as a linear polarizing layer on the light-emitting side of the liquid crystal display.
  • the setting of the polarizer 3 can be omitted, but the polarization direction of the linear polarizing layer needs to be aligned with the optical axis of the quarter-wave plate as the first phase retardation layer 41 The included angle remains 45°.
  • the display screen 1 can also use an organic light emitting diode display or a miniature organic light emitting diode display.
  • a circular polarizer is arranged on the light emitting surface of the display screen.
  • the circular polarizer is composed of a linear polarizing layer and a phase retardation layer.
  • the phase retardation layer is located on the side close to the display screen, and the linear polarizer layer is located on the side away from the display screen.
  • the polarizer 3 can be attached to the light-emitting surface of the display screen, so that the polarizer 3 can be multiplexed as a linear polarizing layer in the circular polarizer of the display screen.
  • the setting of the polarizer 3 can be omitted, but the polarization direction of the linear polarizing layer in the circular polarizer needs to be the same as that of the first phase retardation layer 41 .
  • the included angle of the optical axis of the wave plate is kept at 45°.
  • the setting of the polarizer 3 and the first phase retardation layer 41 can be omitted, and the second phase retardation layer 42 and the polarization beam splitting can be directly arranged on the light-emitting side of the display screen.
  • Piece 5 and other components are arranged on the light-emitting side of the display screen.
  • the curved mirror 6 and the imaging lens 2 constitute an optical system for imaging the display screen 1 .
  • the curved mirror 6 can be one of a spherical mirror, an aspherical mirror or a free-form curved mirror.
  • the use of spherical lenses has the advantages of simple design and low assembly precision requirements.
  • the thickness of the aspherical lens and the free-form lens is relatively small, which can optimize the image quality, and can be selected according to the actual needs in the optical design.
  • the material of the curved mirror 6 can be either glass or plastic, which is not limited here.
  • the curved mirror 6 is not only used to reflect the imaging light passing through the imaging lens 2 and other components, but also to transmit ambient light, so the surface of the curved mirror 6 on the side facing the polarizing beam splitter 5 and the surface on the side facing away from the polarizing beam splitter 5 can be used.
  • a semi-permeable and semi-reflective film is provided on at least one surface.
  • the near-eye display device provided by the embodiment of the present disclosure may be glasses or a helmet, and in this case, the curved mirror 6 may be multiplexed as the lenses of the glasses or the helmet, thereby reducing the number of lenses used by the near-eye display device.
  • the near-eye display device is glasses, its appearance can be seen in FIG. 10 .
  • the near-eye display device includes: a display screen, used for image display; an imaging lens, located on the light-emitting side of the display screen, used for imaging the displayed image of the display screen; a polarizer, located on the light-emitting side of the display screen , used to convert the outgoing light of the display screen into the first linearly polarized light; the first phase retardation layer, located on the side of the polarizer away from the display screen, is used to convert the first linearly polarized light transmitted by the polarizer into circularly polarized light
  • Polarizing beam splitter located on the side of the first phase retardation layer away from the polarizer, placed obliquely with respect to the polarizer, the polarizing beam splitter can transmit the first linearly polarized light and can reflect the first linearly polarized light with a polarization direction perpendicular to the first linearly polarized light.
  • the second phase retardation layer located on the side of the polarizing beam splitter facing the first phase retardation layer, is used for converting the circularly polarized light transmitted by the first phase retardation layer into the second linearly polarized light or including the second linearly polarized light
  • the partially polarized light of the light, the second linearly polarized light is reflected by the polarizing beam splitter and then passes through the second phase retardation layer again and is converted into circularly polarized light or elliptically polarized light
  • a curved mirror located on the reflected light path of the polarizing beam splitter and located in The side of the second phase retardation layer away from the polarizing beam splitter is used to partially reflect the circularly polarized light or elliptically polarized light that passes through the second phase retardation layer to the position of the human eye, and partially transmit ambient light.
  • the polarization state of the light can be changed multiple times, so that the light emitted from the display screen can be used for image display and has high light efficiency.
  • the polarizing beam splitter completely reflects the light emitted by the display screen, or transmits only a small part of the light, so when viewing under the near-eye display device, the display image of the display screen can be weakened to achieve the effect of improving privacy protection.
  • the use of polarizing beam splitters will not cause the problem of ghosting caused by reflection on the two surfaces of the flat glass.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)

Abstract

一种近眼显示装置,包括:显示屏(1),用于图像显示;成像镜头(2),位于显示屏(1)的出光侧,用于对显示屏(1)的显示图像进行成像;偏光片(3),位于显示屏(1)的出光侧,用于将显示屏(1)的出射光转化为线偏振光;第一相位延迟层(41)、第二相位延迟层(42),位于偏光片(3)背离显示屏(1)的一侧,用于对入射光线的偏振态进行转换;偏振分光片(5),位于第二相位延迟层(42)背离偏光片(3)的一侧;曲面镜(6),位于偏振分光片(5)的反射光路上,用于将第二相位延迟层(42)透射的光部分地向人眼所在的位置反射,并部分地透射环境光。采用该近眼显示装置的结构,可以对光线进行多次偏振态的改变,使得显示屏(1)出射的光线可以被用于图像显示,具有较高光效。

Description

一种近眼显示装置
相关申请的交叉引用
本申请要求在2020年08月13日提交中国专利局、申请号为202010812083.X、申请名称为“一种近眼显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种近眼显示装置。
背景技术
近年来随着虚拟现实(Virtual Reality,简称VR)和增强现实(Augmented Reality,简称AR)技术的不断发展,近眼显示产品由最初应用于军事领域,逐渐地被广泛应用于影视、教育、医疗等民事领域。
近眼显示光学系统具有体积小,重量轻,可实现立体显示等特点,具有良好的发展前景,但是目前的近眼显示光学系统中会采用平板玻璃镀半透半反膜的形式对光线进行折反,光线每次经过平板玻璃时至少损失一半能量,导致系统的光效较低;此外,光线在平板玻璃上下表面的两次反射还会造成重影的问题,影响视觉效果。
发明内容
本公开提供一种近眼显示装置,包括:
显示屏,用于图像显示;
成像镜头,位于所述显示屏的出光侧,用于对所述显示屏的显示图像进行成像;
偏光片,位于所述显示屏的出光侧,用于将所述显示屏的出射光转化为第一线偏振光;
第一相位延迟层,位于所述偏光片背离所述显示屏的一侧,用于将所述偏光片透射的第一线偏振光转化为圆偏振光;
偏振分光片,位于所述第一相位延迟层背离所述偏光片的一侧,相对于所述偏光片倾斜放置,所述偏振分光片能够透过所述第一线偏振光并且能够反射偏振方向与所述第一线偏振光垂直的第二线偏振光;
第二相位延迟层,位于所述偏振分光片面向所述第一相位延迟层的一侧,用于将所述第一相位延迟层透射的圆偏振光转化为所述第二线偏振光或包括所述第二线偏振光的部分偏振光,所述第二线偏振光经偏振分光片反射后再次透过所述第二相位延迟层并被转化为圆偏振光或椭圆偏振光;和
曲面镜,位于所述偏振分光片的反射光路上并位于所述第二相位延迟层远离所述偏振分光片的一侧,用于将再次透过所述第二相位延迟层的圆偏振光或椭圆偏振光部分地向人眼所在的位置反射,并部分地透射环境光。
本公开一些实施例中,所述第一相位延迟层以及所述第二相位延迟层均为四分之一波片;
两个所述四分之一波片的光轴相互平行,所述偏光片的偏振化方向与所述四分之一波片的光轴方向的夹角为45°。
本公开一些实施例中,所述偏光片与所述第一相位延迟层相互贴合。
本公开一些实施例中,所述偏振分光片包括:
基材;
偏振分光介质膜,位于所述基材一侧的表面。
本公开一些实施例中,所述基材为平板,所述偏振分光介质膜贴附在所述平板一侧的表面,所述第二相位延迟层与所述偏振分光介质膜相互贴合。
本公开一些实施例中,所述平行平板背离所述偏振分光介质膜一侧的表面设置有增透膜。
本公开一些实施例中,所述基材包括:第一基材部和第二基材部,所述第一基材部位于靠近所述偏光片的一侧,所述第二基材部位于所述第一基材部背离所述偏光片的一侧;
所述第一基材部和所述第二基材部相对合的表面为阶梯面,另一侧表面为平面;所述第一基材部与所述第二基材部的阶梯面相互契合,所述第一基材部与所述第二基材部的平面表面相互平行;
第二相位延迟层贴附于所述第一基材部或所述第二基材部的阶梯面上;所述偏振分光介质膜贴附于所述第二基材部的平面表面上。
本公开一些实施例中,所述第一基材部的平面表面和/或所述第二基材部的平面表面设置有增透膜。
本公开一些实施例中,所述成像镜头包括至少一个透镜;
所述透镜采用球面透镜、非球面透镜或自由曲面透镜中的一种。
本公开一些实施例中,所述成像镜头中距离所述显示屏最远的透镜的出光表面为平面,所述偏光片贴附于所述出光表面上。
本公开一些实施例中,所述透镜的材料采用玻璃或塑料中的一种。
本公开一些实施例中,所述偏光片位于所述显示屏与所述成像镜头之间。
本公开一些实施例中,所述显示屏为液晶显示器;
所述偏光片贴附于所述液晶显示器的出光表面,所述偏光片复用为所述液晶显示器出光侧的线偏振层。
本公开一些实施例中,所述显示屏为有机发光二极管显示器或微型有机发光二极管显示器;
所述偏光片贴附于所述显示屏的出光表面,所述偏光片复用为所述显示屏的圆偏光片中的线偏振层。
本公开一些实施例中,所述显示屏为发光二极管显示器;
所述偏光片贴附于所述发光二极管显示器的出光表面上。
本公开一些实施例中,所述曲面镜采用球面镜、非球面镜或自由曲面镜中的一种。
本公开一些实施例中,所述曲面镜的材料采用玻璃或塑料中的一种。
本公开一些实施例中,所述曲面镜的一侧表面上设置有半透半反膜。
本公开一些实施例中,所述近眼显示装置为眼镜或头盔;
所述曲面镜复用为所述眼镜或头盔的镜片。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为目前常用的近眼显示装置的结构示意图;
图2为本公开实施例提供的近眼显示装置的结构示意图之一;
图3为本公开实施例提供的近眼显示装置的光线偏振态转化原理图;
图4为本公开实施例提供的近眼显示装置的结构示意图之二;
图5为本公开实施例提供的偏振分光片的结构示意图之一;
图6为本公开实施例提供的偏振分光片的结构示意图之二;
图7为本公开实施例提供的近眼显示装置的结构示意图之三;
图8为本公开实施例提供的近眼显示装置的结构示意图之四;
图9为本公开实施例提供的近眼显示装置的结构示意图之五;
图10为本公开实施例提供的近眼显示装置的外观示意图。
具体实施方式
为使本公开的上述目的、特征和优点能够更为明显易懂,下面将结合附图和实施例对本公开做进一步说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本公开中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本公开保护范围内。本公开的附图仅用于示意相对位置关系不代表真实比例。
近眼显示装置是指佩戴在用户的眼部的显示设备,例如近眼显示装置通常以眼镜或头盔的形式呈现。近眼显示装置可以为用户提供AR和VR体验。其中,AR近眼显示技术是将近眼显示装置产生的虚拟图像与真实世界的实景图像叠加显示,从而使用户能够从屏幕上看到最终的增强实景图像。VR近眼显示技术是在左右眼对应的近眼显示器上分别显示左右眼的图像,左右眼分别获取带有差异的图像信息后在大脑中可以合成立体视觉。
图1为目前常用的近眼显示装置的结构示意图。
参照图1,目前的近眼显示光学系统中会采用平板玻璃200镀半透半反膜的形式对图像源100的光线进行折反,光线每次经过平板玻璃200时至少损失一半能量,导致系统的光效较低;此外,光线在平板玻璃上下表面会发生两次反射,在经过反射镜300的反射后两束光线还会造成重影的问题,影响视觉效果。
图2为本公开实施例提供的近眼显示装置的结构示意图之一。
参照图2,本公开实施例提供的近眼显示装置包括:显示屏1、成像镜头2、偏光片3、第一相位延迟层41、第二相位延迟层42、偏振分光片5以及曲面镜6。
显示屏1,用于图像显示。
显示屏1作为图像源,用于显示图像。在近眼显示装置可以包括一个显示屏1,在显示屏1上叠加左右眼图像,人眼在观看到左右眼图像产生一定的视差,产生立体显示效果。近眼显示装置也可以包括两个显示屏1,分别用于显示左右眼图像,再采用相互独立的成像系统分别对两个显示屏1的显示图像进行成像,人眼观看到左右眼图像产生一定的视差,产生立体显示效果。
近眼显示装置中的显示屏1尺寸通常较小,为了显示更多的图像细节可以采用较高分辨率的显示屏,提供更加细腻的显示图像。
显示屏1可以为液晶显示器、发光二极管显示器或有机发光二极管显示器中的一种,在此不做限定。
液晶显示器(Liquid Crystal Display,简称LCD)主要由背光模组和液晶 显示面板构成。液晶显示面板本身不发光,需要依靠背光模组提供的光源实现亮度显示。LCD的显像原理,是将液晶置于两片导电玻璃之间,靠两个电极间电场的驱动,引起液晶分子扭曲的电场效应,以控制背光源透射或遮蔽功能,从而将影像显示出来。若加上彩色滤光片,则可显示彩色影像。液晶显示技术成熟,液晶显示屏具有较低的成本且性能优异。
发光二极管(Light Emitting Diode,简称LED)显示器是采用LED阵列构成的显示屏,采用LED作为显示子像素,通过控制各LED的显示亮度可以实现图像显示。LED显示器具有高亮度、耗功小、电压需求低、设备小巧便捷等特点。采用LED显示器作为近眼显示装置中的显示屏1,有利于实现近眼显示装置的小型化。
有机发光二极管(Organic Light-Emitting Diode,简称OLED)显示又称为有机电激光显示、有机发光半导体显示。OLED显示器属于一种电流型的有机发光器件,是通过载流子的注入和复合而致发光的现象,发光强度与注入的电流成正比。OLED在电场的作用下,阳极产生的空穴和阴极产生的电子就会发生移动,分别向空穴传输层和电子传输层注入,迁移到发光层。当二者在发光层相遇时,产生能量激子,从而激发发光分子最终产生可见光。OLED显示器为自发光型显示屏,因此不需要配备背光模组,器件整体厚度小,有利于将近眼显示装置小型化,更加利于整机安装。
微型有机发光二极管显示器是将有机发光二极管的发光单元微缩化,由此可以在有限尺寸内设置更多的像素,提高显示屏的分辨率。
成像镜头2,位于显示屏1的出光侧,用于对显示屏1的显示图像进行成像。
近眼显示装置中的显示屏1的尺寸比较小,显示图像无法直接被人眼观看,因此需要在显示屏1的出光侧设置成像镜头2,对显示图像进行放大成像之后,由人眼观察成像。
在公开实施例中,成像镜头2包括至少一个透镜,以图2所示的近眼显示装置为例,本公开实施例中的成像镜头2包括第一透镜21和第二透镜22。 第一透镜21位于显示屏1的出光侧,第二透镜22位于第一透镜21背离显示屏1的一侧,第一透镜21可以为正透镜,第二透镜22可以为负透镜。
在具体实施时,成像镜头2也可以采用一片透镜以简化结构;或者,成像镜头2也可以采用三片以上透镜,由此优化成像质量,本公开实施例仅以成像镜头2包括两片透镜进行举例说明,不对成像镜头2中的透镜的数量进行具体限定。成像镜头2中的透镜的类型需要根据实际情况进行设计,在此不做限定。
成像镜头2中的透镜可以采用球面透镜、非球面透镜或自由曲面透镜。球面透镜具有设计简单以及组装精度要求低等优势。而非球面透镜以及自由曲面透镜的厚度相对较小,可以优化像质,在进行光学设计时可以根据实际需要进行选择。
成像镜头2中的透镜的材料可以采用玻璃或塑料中的一种,在此不做限定。
本公开实施例提供的近眼显示装置还包括:偏光片3,位于显示屏的出光侧;第一相位延迟层41,位于偏光片3背离显示屏1的一侧;偏振分光片5,位于第一相邻延迟层41背离偏光片3的一侧;第二相位延迟层42,位于偏振分光片5面向第一相位延迟层41的一侧,相对于偏光片3倾斜旋转;曲面镜6,位于偏振分光片5的反射光路上并位于第二相位延迟层42远离偏振分光片5的一侧。
其中,偏光片3用于将显示屏1的出射光转化为第一线偏振光;第一相位延迟层41用于将偏光片3透射的第一线偏振光转化为圆偏振光;第二相位延迟层42用于将第一相位延迟层41透射的圆偏振光转化为偏振方向与第一线偏振光相垂直的第二线偏振光;偏振分光片5用于透过第一线偏振光,反射第二线偏振光;其中,第二线偏振光经偏振分光片5反射后再次透过第二相位延迟层42被转化为圆偏振光或椭圆偏振光;曲面镜6用于将再次透过第二相位延迟层42的圆偏振光或椭圆偏振光部分地向人眼所在的位置反射,并部分地透射环境光。
具体来说,本公开实施例提供的近眼显示装置为光线可以进行折反的光学系统,这样可以从整体上减小近眼显示装置的体积。而作为光学折反作用的元件为偏振分光片5,偏振分光片5具有透射p型偏振光,反射s型偏振光的属性。本公开利用偏振分光片5的上述性质,可以将显示屏1出射的光线在入射到偏振分光片5上时完全反射,而对曲面镜6反射的光线完全透镜,此时,显示屏1出射的光线的能量损失将大大降低。
为了达到上述目的,在本公开实施例在显示屏1的出光侧设置偏光片3,将显示屏1出射的光线转化为具有特定偏振方向的第一线偏振光,例如,偏光片3将显示屏1出射的光线转化为p型偏振光。当第一线偏振光在经过第一相位延迟层41之后,转化为圆偏振光;圆偏振光再经过第二相位延迟层42之后,转化为第二线偏振光或包括第二线偏振光的部分偏振光,其偏振方向旋转90°,即p型偏振光转化或部分转化为s型偏振光。第二线偏振光或部分线偏振光在入射到偏振分光片5时,可以被偏振分光片5完全反射或平行于偏振分光片5光轴方向的光被反射,反射后的光线为s型偏振光。反射光线会再次经过第二相位延迟层42向曲面镜6入射,第二线偏振光再次转化圆偏振光或椭圆偏振光,曲面镜6对光线进行反射之后,圆偏振光或椭圆偏振光的旋转方向发生改变,再次经过第二相位延迟层42向偏振分光片5入射,此时在经过两次第二相位延迟层42之后的光线的偏振方向再次旋转90°,圆偏振光或椭圆偏振光转化为第一线偏振光(s型偏振光转化为p型偏振光)或部分偏振光,第一线偏振光(p型偏振光)或部分偏振光在入射到偏振分光片5时,可以被偏振分光片5完全透射,向人眼所在的位置出射或者平行于偏振分光片5光轴方向的光被透射。由此经过多次偏振态的改变,使得显示屏1出射的光线可以被用于图像显示,具有较高光效。
本公开实施例采用偏振分光片5会将显示屏1出射的光线完全反射,或者只有少部分光线透射,因此当在近眼显示装置的下方观看时,可以减弱显示屏1的显示图像,达到改善保护隐私的效果。
与此同时,采用偏振分光片5替换了目前的近眼显示装置中常用的平板 玻璃,因此不会产生在平板玻璃的两个表面分别反射产生重影的问题。
图3为本公开实施例提供的近眼显示装置的光线偏振态转化原理图。
参照图3,显示屏1出射的光线在经过偏光片3之后,先入射到第一相位延迟层41,再入射到第二相位延迟层42,再入射到偏振分光片5;偏振分光片5的反射光线先入射到第二相位延迟层42,再入射到曲面镜6;曲面镜6对光线进行反射之后,反射光先入射到第二相位延迟层42,再入射到偏振分光片5,最终由偏振分光片5全部透射向人眼所在的位置。
环境光入射到曲面镜6,由曲面镜6透射,再经过第二相位延迟层42以及偏振分光片5之后透射到人眼所在的位置。
如果显示屏1出射的光线为自然光,自然光经过偏光片3之后转化为第一线偏振光(p型偏振光),第一线偏振光再入射到第一相位延迟层41之后,第一相位延迟层41将偏光片3透射的第一线偏振光转化为圆偏振光(例如,右旋圆偏振光);圆偏振光再经过第二相位延迟层42,第二相位延迟层42再将第一相位延迟层41透射的圆偏振光转化为第二线偏振光或包括第二线偏振光的部分偏振光,此时,转化后的第二线偏振光的偏振方向相对于第一线偏振光旋转90°(s型偏振光);第二线偏振光入射到偏振分光片5时,可以被偏振分光片5完全反射。偏振分光片5反射的第二线偏振光先经过第二相位延迟层42,第二相位延迟层42将第二线偏振光转化为圆偏振光(例如,右旋圆偏振光),当第二线偏振光入射到第二相位延迟层42时具有一定夹角时,经过第二相位延迟层42转化后的光线也可能为椭圆偏振光(例如,右旋椭圆偏振光);圆偏振光或椭圆偏振光向曲面镜6入射,经过曲面镜6的反射之后,圆偏振光或椭圆偏振光的旋转方向相反(例如,左旋圆偏振光或左旋椭圆偏振光),当旋转方向相反的圆偏振光或椭圆偏振光再次入射到第二相位延迟层42时,第二相位延迟层42将曲面镜6反射的圆偏振光转化为线偏振光,而此时的线偏振光的偏振方向再次旋转90°,即转化为第一线偏振光(p型偏振光),第一线偏振光再入射到偏振分光片5时,可以被偏振分光片5完全透射,透射光线向人眼所在的位置出射。
环境光为自然光,自然光经过曲面镜6之后仍为自然光,再经过第二相位延迟层42之后仍为自然光,最终环境光经过偏振分光片5之后,转化为线偏振光(p型偏振光)入射到人眼所在的位置。
在本公开实施例中,第一相位延迟层41以及第二相位延迟层42均可以采用四分之一波片;两个四分之一波片的光轴相互平行,偏光片3的偏振化方向与四分之一波片的光轴方向的夹角为45°。
在具体实施时,还可以采用液晶等具有双折射效应的其它材料来制作上述第一相位延迟层41和第二相位延迟层42,在此不做限定。
图4为本公开实施例提供的近眼显示装置的结构示意图之二。
参照图4,第一相位延迟层41可以采用四分之一波片,而四分之一波片与偏光片3的厚度较薄,通常需要基材的支撑,因此在本公开实施例中,可以将偏光片3与第一相位延迟层41相互贴合,起到相互支撑的作用。将偏光片3与第一相位延迟层41复合在一起可以省略至少一层基材。
图5为本公开实施例提供的偏振分光片的结构示意图之一,图6为本公开实施例提供的偏振分光片的结构示意图之二。
参照图5和图6,偏振分光片包括:基材51和偏振分光介质膜52。
偏振分光介质膜52通常为软性膜材,需要设置基材进行支撑。基材51,具体支撑和承载作用,基材51的表面为平面,这样可以将偏振分光介质膜52贴附在基材51一侧的表面。
在本公开一些实施例中,参照图5,基材51为平板,平板的材料可以采用玻璃或塑料等硬性透明材料。平板的两个表面相互平行,将偏振分光介质膜52贴附在平板一侧的表面,再将第二相位延迟层42与偏振分光介质膜52相互贴合,由此平板可以对偏振分光介质膜52以及第二相位延迟层42起到支撑的作用。第二相位延迟层42可以采用四分之一波片,偏振分光介质膜52贴附在平板之后,其表面平整,有利于四分之一波片的贴附。
作为基材51的平板位于靠近人眼的位置,显示屏1出射的光线在经过偏光片3、第一相位延迟层41、第二相位延迟层42、偏振分光介质膜52以及曲 面镜6的作用之后,由曲面镜6反射,最终透过偏振分光片5入射到人眼所在的位置。环境光在入射到曲面镜6之后,最终也会经过偏振分光片5入射到人眼所在的位置。本公开实施例在平行平板背离偏振分光介质膜52一侧的表面设置增透膜,有利于成像光线以及环境光的透射。
在本公开另一些实施例中,参照图6,基材包括:第一基材部51a和第二基材部51b,第一基材部51a位于靠近偏光片3的一侧,第二基材部51b位于第一基材部51a背离偏光片3的一侧。
参照图6,第一基材部51a和第二基材部51b相对合的表面均为阶梯面,另一侧表面均为平面,并且第一基材部51a与第二基材部51b的阶梯面之间可以相互契合,且契合后的第一基材部51a与第二基材部51a的平面表面相互平行。
本公开实施例将基材设置为如图6所示的结构,可以将第二相位延迟层42贴附于第一基材部51a或第二基材部51b的阶梯面上,再贴附了第二相位延迟层42之后,再将第一基材部51a和第二基材部51b合并在一起,之后可将偏振分光介质膜52贴附于第二基材部51b的平面表面上。
第一基材部51a和第二基材部51b均采用硬性透明材料,第二相位延迟层42可以采用四分之一波片,将第二相位延迟层42贴附在第一基材部51a或第二基材部51b阶梯表面上可以起到对第二相位延迟层42的支撑和保护作用。
参照图6,将第二相位延迟层42设置于基材的阶梯表面上,可以使光线在入射到第二相位延迟层42时基本保持正入射的状态,提高线偏振光线转化为圆偏振光的效率,提高光线的利用效率。
第一基材部51a第二基材部51b的外侧表面为相互平行的平面,在本公开实施例中,第二相位延迟层42需要设置在靠近偏光片3的一侧,因此将偏振分光介质膜52贴附在第二基材部51b的外侧表面上,第二基材部51b对偏振分光介质膜52起到支撑的作用。除此之外,第一基材部51a和第二基材部51b可以透射入射光线,在第一基材部51a的外侧平面表面和/或第二基材部 51b的平面表面上设置增透膜,有利于成像光线以及环境光的透射。
图7为本公开实施例提供的近眼显示装置的结构示意图之三。
参照图7,在本公开实施例中,可以将成像镜头2中距离显示屏1最远的透镜的出光表面为平面,由此可以直接将偏光片3贴附于该透镜的出光表面上。
偏光片3通常需要设置基材对其进行支撑,如果在对成像镜头2进行设计时,将其出光侧的透镜的表面设计成平面,则可以直接将偏光片3贴附在透镜的平面出光面上,从而省略基材的设置,使得近眼显示装置的结构更加紧凑。
以图7所示的近眼显示装置为例,成像镜头2可以包括第一透镜21和第二透镜22,第二透镜22为成像镜头2中距离显示屏1最远的透镜。可以将第二透镜22的出光表面设计成平面,从而将偏光片3直接贴附在第二透镜22的出光表面上。与此同时,偏光片3和第一相位延迟层41可以相互贴合,此时可以将偏光片3和第一相位延迟层41的复合结构一起贴附在第二透镜22出光表面上。
图8为本公开实施例提供的近眼显示装置的结构示意图之四。
参照图8,在本公开实施例中,成像镜头2中的透镜的材料可以采用玻璃或塑料等光学材料。当成像镜头2中的透镜采用玻璃材质时,透镜一般不会具有双折射等对光线的相位进行改变的性质,此时还可以将偏光片3设置在显示屏1与成像镜头2之间。
以图8所示的近眼显示装置结构为例,成像镜头2中的第一透镜21和第二透镜22均采用玻璃材质,偏光片3设置在显示屏1与成像镜头2之间。偏光片3与第一相位延迟层41采用复合结构时,可以将偏光片3和第一相位延迟层41一起设置在显示屏1和成像镜头2之间。
本公开实施例提供的近眼显示装置中,显示屏1可以采用液晶显示器、发光二极管显示器或有机发光二极管显示器。通常情况下显示屏1的出光面均为平面,因此当偏光片3设置于显示屏1和成像镜头2之间时,可以将偏 光片3贴附在显示屏1的出光面上。如果偏光片3和第一相位延迟层41采用复合结构,可以将偏光片3和第一相位延迟层41一起贴附在显示屏1的出光面上,由此可以省略偏光片3的基材,使近眼显示装置的结构更加紧凑。
图9为本公开实施例提供的近眼显示装置的结构示意图之五。
参照图9,显示屏1可以采用发光二极管显示器,发光二极管显示器的出射光为自然光,将偏光片3贴附于发光二极管显示器的出光表面上,偏光片3可以将发光二极管显示器出射的自然光转化为线偏振光,再利用上述的原理对光线的偏振态进行转化,从而实现虚拟现实显示。
显示屏1还可以采用液晶显示器,液晶显示器是利用液晶对线偏振光的调制进行图像显示,因此在液晶显示面板的入光面和出光面均需要设置偏光片,在本公开实施例中,可以将偏光片3贴附于液晶显示器的出光表面,以使偏光片3复用为液晶显示器出光侧的线偏振层。换言之,如果显示屏的出光表面设置有线偏振层,则可以省略偏光片3的设置,但是需要使线偏振层的偏振化方向与作为第一相位延迟层41的四分之一波片的光轴的夹角保持45°。
显示屏1还可以采用有机发光二极管显示器或微型有机发光二极管显示器,有机发光二极管显示器或微型有机发光二极管显示器为了抵抗环境光反射,通过会在显示屏的出光面上设置一层圆偏光片。圆偏光片由线偏振层和相位延迟层构成,由相位延迟层位于靠近显示屏的一侧,线偏振层位于远离显示屏的一侧。在本公开实施例中,可以将偏光片3贴附于显示屏的出光表面,以使偏光片3复用为显示屏的圆偏光片中的线偏振层。换言之,如果显示屏的出光表面设置圆偏光片,则可以省略偏光片3的设置,但是需要使圆偏光片中的线偏振层的偏振化方向与作为第一相位延迟层41的四分之一波片的光轴的夹角保持45°。
除此之外,如果显示屏出射的光线为圆偏振光,则可以省略偏光片3和第一相位延迟层41的设置,而直接在显示屏的出光侧设置第二相位延迟层42以及偏振分光片5等元件。
在本公开实施例中,曲面镜6与成像镜头2构成对显示屏1进行成像的光学系统。曲面镜6可以采用球面镜、非球面镜或自由曲面镜中的一种。采用球面透镜具有设计简单以及组装精度要求低等优势。而采用非球面透镜以及自由曲面透镜的厚度相对较小,可以优化像质,在进行光学设计时可以根据实际需要进行选择。曲面镜6的材料可以采用玻璃或塑料中的一种,在此不做限定。
曲面镜6不仅用于反射经过成像镜头2等元件的成像光线,还用于透射环境光,因此可以在曲面镜6面向偏振分光片5一侧的表面和背离偏振分光片5一侧的表面的至少一侧表面上设置半透半反膜。
本公开实施例提供的近眼显示装置可以为眼镜或头盔,此时可以将曲面镜6复用为眼镜或头盔的镜片,从而减少近眼显示装置所使用的镜片数量。当近眼显示装置为眼镜时,其外观图可以参见图10。
本公开实施例提供的近眼显示装置,包括:显示屏,用于图像显示;成像镜头,位于显示屏的出光侧,用于对显示屏的显示图像进行成像;偏光片,位于显示屏的出光侧,用于将显示屏的出射光转化为第一线偏振光;第一相位延迟层,位于偏光片背离显示屏的一侧,用于将偏光片透射的第一线偏振光转化为圆偏振光;偏振分光片,位于第一相位延迟层背离偏光片的一侧,相对于偏光片倾斜放置,偏振分光片能够透过第一线偏振光并且能够反射偏振方向与第一线偏振光垂直的第二线偏振光;第二相位延迟层,位于偏振分光片面向第一相位延迟层的一侧,用于将第一相位延迟层透射的圆偏振光转化为第二线偏振光或包括所述第二线偏振光的部分偏振光,第二线偏振光经偏振分光片反射后再次透过第二相位延迟层并被转化为圆偏振光或椭圆偏振光;和曲面镜,位于偏振分光片的反射光路上并位于第二相位延迟层远离偏振分光片的一侧,用于将再次透过第二相位延迟层的圆偏振光或椭圆偏振光部分地向人眼所在的位置反射,并部分地透射环境光。采用本公开实施例的近眼显示装置的结构,可以对光线进行多次偏振态的改变,使得显示屏出射的光线可以被用于图像显示,具有较高光效。偏振分光片将显示屏出射的光 线完全反射,或只有少部分透射光,因此当在近眼显示装置的下方观看时,可以减弱显示屏的显示图像,达到改善保护隐私的效果。与此同时,采用偏振分光片不会产生在平板玻璃的两个表面分别反射产生重影的问题。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (19)

  1. 一种近眼显示装置,其中,包括:
    显示屏,用于图像显示;
    成像镜头,位于所述显示屏的出光侧,用于对所述显示屏的显示图像进行成像;
    偏光片,位于所述显示屏的出光侧,用于将所述显示屏的出射光转化为第一线偏振光;
    第一相位延迟层,位于所述偏光片背离所述显示屏的一侧,用于将所述偏光片透射的第一线偏振光转化为圆偏振光;
    偏振分光片,位于所述第一相位延迟层背离所述偏光片的一侧,相对于所述偏光片倾斜放置,所述偏振分光片能够透过所述第一线偏振光并且能够反射偏振方向与所述第一线偏振光垂直的第二线偏振光;
    第二相位延迟层,位于所述偏振分光片面向所述第一相位延迟层的一侧,用于将所述第一相位延迟层透射的圆偏振光转化为所述第二线偏振光或包括所述第二线偏振光的部分偏振光,所述第二线偏振光经偏振分光片反射后再次透过所述第二相位延迟层并被转化为圆偏振光或椭圆偏振光;和
    曲面镜,位于所述偏振分光片的反射光路上并位于所述第二相位延迟层远离所述偏振分光片的一侧,用于将再次透过所述第二相位延迟层的圆偏振光或椭圆偏振光部分地向人眼所在的位置反射,并部分地透射环境光。
  2. 如权利要求1所述的近眼显示装置,其中,所述第一相位延迟层以及所述第二相位延迟层均为四分之一波片;
    两个所述四分之一波片的光轴相互平行,所述偏光片的偏振化方向与所述四分之一波片的光轴方向的夹角为45°。
  3. 如权利要求1所述的近眼显示装置,其中,所述偏光片与所述第一相位延迟层相互贴合。
  4. 如权利要求1所述的近眼显示装置,其中,所述偏振分光片包括:
    基材;
    偏振分光介质膜,位于所述基材一侧的表面。
  5. 如权利要求4所述的近眼显示装置,其中,所述基材为平板,所述偏振分光介质膜贴附在所述平板一侧的表面,所述第二相位延迟层与所述偏振分光介质膜相互贴合。
  6. 如权利要求5所述的近眼显示装置,其中,所述平板背离所述偏振分光介质膜一侧的表面设置有增透膜。
  7. 如权利要求4所述的近眼显示装置,其中,所述基材包括:第一基材部和第二基材部,所述第一基材部位于靠近所述偏光片的一侧,所述第二基材部位于所述第一基材部背离所述偏光片的一侧;
    所述第一基材部和所述第二基材部相对合的表面为阶梯面,另一侧表面为平面;所述第一基材部与所述第二基材部的阶梯面相互契合,所述第一基材部与所述第二基材部的平面表面相互平行;
    第二相位延迟层贴附于所述第一基材部或所述第二基材部的阶梯面上;所述偏振分光介质膜贴附于所述第二基材部的平面表面上。
  8. 如权利要求7所述的近眼显示装置,其中,所述第一基材部的平面表面和/或所述第二基材部的平面表面设置有增透膜。
  9. 如权利要求1-8任一项所述的近眼显示装置,其中,所述成像镜头包括至少一个透镜;
    所述透镜采用球面透镜、非球面透镜或自由曲面透镜中的一种。
  10. 如权利要求9所述的近眼显示装置,其中,所述成像镜头中距离所述显示屏最远的透镜的出光表面为平面,所述偏光片贴附于所述出光表面上。
  11. 如权利要求9所述的近眼显示装置,其中,所述透镜的材料采用玻璃或塑料中的一种。
  12. 如权利要求9所述的近眼显示装置,其中,所述偏光片位于所述显示屏与所述成像镜头之间。
  13. 如权利要求12所述的近眼显示装置,其中,所述显示屏为液晶显示 器;
    所述偏光片贴附于所述液晶显示器的出光表面,所述偏光片复用为所述液晶显示器出光侧的线偏振层。
  14. 如权利要求12所述的近眼显示装置,其中,所述显示屏为有机发光二极管显示器或微型有机发光二极管显示器;
    所述偏光片贴附于所述显示屏的出光表面,所述偏光片复用为所述显示屏的圆偏光片中的线偏振层。
  15. 如权利要求12所述的近眼显示装置,其中,所述显示屏为发光二极管显示器;
    所述偏光片贴附于所述发光二极管显示器的出光表面上。
  16. 如权利要求1-15任一项所述的近眼显示装置,其中,所述曲面镜采用球面镜、非球面镜或自由曲面镜中的一种。
  17. 如权利要求16所述的近眼显示装置,其中,所述曲面镜的材料采用玻璃或塑料中的一种。
  18. 如权利要求16所述的近眼显示装置,其中,所述曲面镜的一侧表面上设置有半透半反膜。
  19. 如权利要求1所述的近眼显示装置,其中,所述近眼显示装置为眼镜或头盔;
    所述曲面镜复用为所述眼镜或头盔的镜片。
PCT/CN2021/104508 2020-08-13 2021-07-05 一种近眼显示装置 WO2022033233A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/927,763 US20230236422A1 (en) 2020-08-13 2021-07-05 Near-eye display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010812083.X 2020-08-13
CN202010812083.XA CN114077051B (zh) 2020-08-13 2020-08-13 一种近眼显示装置

Publications (1)

Publication Number Publication Date
WO2022033233A1 true WO2022033233A1 (zh) 2022-02-17

Family

ID=80246840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104508 WO2022033233A1 (zh) 2020-08-13 2021-07-05 一种近眼显示装置

Country Status (3)

Country Link
US (1) US20230236422A1 (zh)
CN (1) CN114077051B (zh)
WO (1) WO2022033233A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047630A (zh) * 2022-06-30 2022-09-13 上海摩勤智能技术有限公司 一种ar光学系统及ar装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221917A (ja) * 1990-01-29 1991-09-30 Nippon Hoso Kyokai <Nhk> 画像表示装置
CN108333779A (zh) * 2018-04-20 2018-07-27 深圳创维新世界科技有限公司 近眼显示系统
KR101898056B1 (ko) * 2017-04-27 2018-09-12 (주)그린광학 시스루형 헤드 마운트 디스플레이 장치의 광학계
CN110161690A (zh) * 2018-02-13 2019-08-23 双莹科技股份有限公司 微型化头戴显示器的光学系统
CN110515208A (zh) * 2019-08-22 2019-11-29 双莹科技股份有限公司 短距离的光学系统
CN111175981A (zh) * 2020-02-18 2020-05-19 京东方科技集团股份有限公司 头戴式显示设备
CN210776039U (zh) * 2019-09-16 2020-06-16 双莹科技股份有限公司 微型化短距离光学系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB707060A (en) * 1951-02-26 1954-04-14 Walter Geffcken Apparatus for the production of polarized light, particularly for searchlights and like illuminants
US5903396A (en) * 1997-10-17 1999-05-11 I/O Display Systems, Llc Intensified visual display
JPH11237584A (ja) * 1997-12-19 1999-08-31 Sharp Corp 画像表示装置、該画像表示装置を用いた頭部装着型ディスプレイ及び映像通信装置
KR101872089B1 (ko) * 2016-02-12 2018-07-31 엘지전자 주식회사 차량용 헤드 업 디스플레이
JP6641021B2 (ja) * 2016-01-28 2020-02-05 深▲セン▼多▲デュオ▼新技▲術▼有限▲責▼任公司Shenzhen Dlodlo New Technology Co., Ltd. 短距離光拡大モジュール、拡大方法及び拡大システム
KR20180074940A (ko) * 2016-12-26 2018-07-04 엘지디스플레이 주식회사 헤드 장착형 디스플레이
JP7285579B2 (ja) * 2018-02-12 2023-06-02 マトリックスド、リアリティー、テクノロジー、カンパニー、リミテッド 拡張現実装置、およびそのための光学系
US10778963B2 (en) * 2018-08-10 2020-09-15 Valve Corporation Head-mounted display (HMD) with spatially-varying retarder optics
CN109613705B (zh) * 2019-01-18 2020-11-24 京东方科技集团股份有限公司 近眼显示装置以及近眼显示方法
CN110208948B (zh) * 2019-06-03 2020-11-24 歌尔光学科技有限公司 光学系统及具有其的虚拟现实设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221917A (ja) * 1990-01-29 1991-09-30 Nippon Hoso Kyokai <Nhk> 画像表示装置
KR101898056B1 (ko) * 2017-04-27 2018-09-12 (주)그린광학 시스루형 헤드 마운트 디스플레이 장치의 광학계
CN110161690A (zh) * 2018-02-13 2019-08-23 双莹科技股份有限公司 微型化头戴显示器的光学系统
CN108333779A (zh) * 2018-04-20 2018-07-27 深圳创维新世界科技有限公司 近眼显示系统
CN110515208A (zh) * 2019-08-22 2019-11-29 双莹科技股份有限公司 短距离的光学系统
CN210776039U (zh) * 2019-09-16 2020-06-16 双莹科技股份有限公司 微型化短距离光学系统
CN111175981A (zh) * 2020-02-18 2020-05-19 京东方科技集团股份有限公司 头戴式显示设备

Also Published As

Publication number Publication date
CN114077051A (zh) 2022-02-22
US20230236422A1 (en) 2023-07-27
CN114077051B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
WO2022048384A1 (zh) 一种近眼显示装置
US11500205B2 (en) Wearable AR system, AR display device and its projection source module
US20220308343A1 (en) Near-to-eye display device and augmented reality apparatus
WO2022237077A1 (zh) 近眼显示装置
CN1930511A (zh) 用于真实世界模拟的改进的准直光学元件
EP2788809A1 (en) Compact illumination module for head mounted display
US11385502B1 (en) Near-eye display apparatus
WO2018169018A1 (ja) 画像表示システム
WO2023098056A1 (zh) 一种光学模组以及头戴显示设备
CN111999898A (zh) 一种光学显示系统、显示装置
CN111399224A (zh) 显示光学系统及头戴显示设备
CN212460200U (zh) 一种近眼显示装置
WO2022033233A1 (zh) 一种近眼显示装置
WO2022199194A1 (zh) 光学系统和穿戴式增强现实显示设备
CN117215072B (zh) 光学系统及成像设备
US20230238367A1 (en) Led display pixel structure, led display module, and led display screen
US11619823B2 (en) Optical system for displaying magnified virtual image
WO2018212479A1 (ko) 이미지 장치
CN215116991U (zh) 一种增强现实显示系统及增强现实显示设备
CN218601591U (zh) 光学模块和头戴显示设备
CN218003853U (zh) 光学模组以及头戴显示设备
CN218938665U (zh) 一种光学模组和头戴显示设备
CN218675347U (zh) 光学模组以及头戴显示设备
CN212433514U (zh) 一种几何光波导光学显示系统及可穿戴设备
US20220367839A1 (en) Color conversion display with polarized emission enhancement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855286

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21855286

Country of ref document: EP

Kind code of ref document: A1