WO2024041149A1 - 血压测量设备的校准方法及设备、电子设备、存储介质 - Google Patents

血压测量设备的校准方法及设备、电子设备、存储介质 Download PDF

Info

Publication number
WO2024041149A1
WO2024041149A1 PCT/CN2023/101742 CN2023101742W WO2024041149A1 WO 2024041149 A1 WO2024041149 A1 WO 2024041149A1 CN 2023101742 W CN2023101742 W CN 2023101742W WO 2024041149 A1 WO2024041149 A1 WO 2024041149A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppg signal
blood pressure
value
calibration parameter
calibration
Prior art date
Application number
PCT/CN2023/101742
Other languages
English (en)
French (fr)
Inventor
钱晓仑
马传龙
裴振涛
郑利金
Original Assignee
北京超思电子技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京超思电子技术有限责任公司 filed Critical 北京超思电子技术有限责任公司
Publication of WO2024041149A1 publication Critical patent/WO2024041149A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02116Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/33Heart-related electrical modalities, e.g. electrocardiography [ECG] specially adapted for cooperation with other devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors

Definitions

  • the present disclosure relates to the field of measurement technology, and specifically to a calibration method and equipment, electronic equipment, and storage media for blood pressure measurement equipment.
  • sphygmomanometers used clinically include manual blood pressure cuff devices, automatic sphygmomanometer cuff devices, sphygmomanometer cuff devices, etc.
  • the manual blood pressure cuff device uses the Korotkoff sound method, which has the advantages of high accuracy and no need for calibration.
  • users need to be well trained to use this device.
  • Automatic sphygmomanometer cuff devices use the oscillometric method to estimate blood pressure. Although easy to operate, they require recalibration every six months. Sphygmomanometer cuff devices are a simple and low-cost way to monitor blood pressure. However, each measurement only provides one reading.
  • Finapres Another blood pressure measurement device on the market that uses the finger volume clamp method, called Finapres, which can provide continuous beat-to-beat blood pressure readings over a short period of time. But Finapres are very expensive and bulky. Therefore, it is desirable to develop a portable, low-cost continuous blood pressure monitor for home and clinic use.
  • the embodiments described herein provide a calibration method and device, electronic device, and storage medium for a blood pressure measurement device.
  • a calibration method of a blood pressure measurement device is provided.
  • the photoplethysmogram PPG signal, electrocardiogram ECG signal, height value and calibrated blood pressure value of the object to be measured are obtained; then, the distance between the peak value of the PPG signal and the second largest peak value of the first derivative of the PPG signal is calculated.
  • the first time difference, and the second time difference between the R wave peak value of the ECG signal and the characteristic value of the PPG signal determine the first calibration parameter according to the height value and the first time difference;
  • a second calibration parameter is determined based on the calibrated blood pressure value, the first calibration parameter and the second time difference; the blood pressure measurement device is calibrated using the first calibration parameter and the second calibration parameter.
  • the first coefficient is determined based on the height value and the first time difference
  • the first calibration parameter is determined based on the first coefficient
  • determining the first calibration parameter based on the first coefficient specifically includes: selecting a preset corresponding constant based on the first coefficient, and determining the first calibration parameter based on the first coefficient and the constant.
  • the constant may include one or more, specifically determined according to the calculation method of the first calibration parameter.
  • the constants include the first constant and the second constant.
  • the constants include the first constant, the second constant and the third constant.
  • the first calibration parameter is calculated as:
  • a SI represents the first calibration parameter
  • SI represents the first coefficient
  • k1 represents the first constant
  • k2 represents the second constant
  • the values of k1 and k2 are determined according to the first coefficient.
  • the second calibration parameter is calculated according to one of the following equations:
  • b SI represents the second calibration parameter
  • BP represents the calibrated blood pressure value
  • a SI represents the first calibration parameter
  • PAT represents the second time difference
  • the calibrated blood pressure values are a matrix including a plurality of calibrated blood pressure values acquired at different time points.
  • the second time difference is a matrix including a plurality of second time differences corresponding to time points.
  • the adjacent first peak value and the second adjacent peak value in the PPG signal are determined.
  • Peak value, wherein the second peak value is the peak value immediately after the first peak value; determine the second largest peak value of the first derivative of the PPG signal in the time period between the first peak value and the second peak value of the PPG signal; The time difference between the first peak value of the PPG signal and the second largest peak value of the first derivative of the PPG signal is determined as the first time difference.
  • a first time at which the R-wave peak value of the ECG signal is located is determined; from the first time Start to obtain the peak value of the PPG signal in the PPG signal; determine the characteristic value of the PPG signal in the time period between the first time and the second time when the peak value of the PPG signal is first obtained; combine the first time with the characteristic value of the PPG signal The time difference between the third time is determined as the second time difference.
  • the characteristic value of the PPG signal includes one of the following: a peak value of the PPG signal; a valley value of the PPG signal; a peak value of a first-order derivative of the PPG signal; a peak value of a second-order derivative of the PPG signal; and Cut-off point of PPG signal.
  • the calibration method further includes: preprocessing the PPG signal and the ECG signal to remove the DC components in the PPG signal and the ECG signal.
  • preprocessing the PPG signal includes: using a median filter to filter the PPG signal to smooth the PPG signal; using a band of the first preset frequency range Filter the PPG signal in the first stage through the filter; calculate the heart rate value of the subject to be measured based on the PPG signal or ECG signal filtered in the first stage; determine the second preset frequency range based on the heart rate value; and use the second preset frequency A range of band-pass filters performs the second stage of filtering on the PPG signal.
  • preprocessing the ECG signal includes: filtering the ECG signal using a band-pass filter in a third preset frequency range.
  • the calibration method further includes: in response to a result of calibrating the blood pressure measurement device using the first calibration parameter and the second calibration parameter not reaching a preset accuracy, or in response to a user's selection of the second calibration mode. , determine the third calibration parameter and the fourth calibration parameter according to one of the following formulas, and use the third calibration parameter and the fourth calibration parameter to calibrate the blood pressure measurement device:
  • a represents the third calibration parameter
  • b represents the fourth calibration parameter
  • BP represents the calibrated blood pressure value
  • PAT represents the second time difference.
  • a blood pressure measurement device includes: an acquisition module, a calculation module, a first calibration parameter determination module, a second calibration parameter determination module, and a calibration module, wherein the acquisition module is configured to: acquire the photoplethysmogram PPG signal of the object to be measured, Electrocardiogram ECG signal, height value and calibrated blood pressure value.
  • the calculation module is configured to: calculate a first time difference between the peak value of the PPG signal and the second largest peak value of the first derivative of the PPG signal, and a second time difference between the R wave peak value of the ECG signal and the characteristic value of the PPG signal.
  • the first calibration parameter determination module is configured to determine the first calibration parameter according to the height value and the first time difference.
  • the second calibration parameter determination module is configured to: based on the calibrated blood pressure value, the first calibration parameter and the The second time difference is used to determine the second calibration parameter.
  • the calibration module is configured to calibrate the blood pressure measurement device using the first calibration parameter and the second calibration parameter.
  • an electronic device includes at least one processor; and at least one memory storing a computer program.
  • the computer program is executed by at least one processor, the electronic device is caused to execute the calibration method of the blood pressure measurement device provided by the embodiment of the present disclosure.
  • a computer-readable storage medium storing a computer program, wherein the computer program, when executed by a processor, implements the steps of the calibration method according to the first aspect of the present disclosure.
  • FIG. 1 is an exemplary flow chart of a calibration method of a blood pressure measurement device according to an embodiment of the present disclosure
  • Figure 2 is an exemplary waveform diagram of a PPG signal and a first-order derivative of the PPG signal
  • Figure 3 is an exemplary waveform diagram of an ECG signal, a PPG signal, a first-order derivative of the PPG signal, and a second-order derivative of the PPG signal;
  • FIG. 4 is a schematic block diagram of an electronic device performing a calibration method of a blood pressure measurement device according to an embodiment of the present disclosure.
  • Figure 5 is a schematic block diagram of a blood pressure measurement device according to an embodiment of the present disclosure.
  • FIG. 1 shows an exemplary flowchart of a calibration method 100 of a blood pressure measurement device according to an embodiment of the present disclosure.
  • step S102 the photoplethysmography (PPG) signal, electrocardiogram (ECG) signal, height value and calibrated blood pressure value of the subject to be measured are obtained.
  • the subject to be tested needs to have a blood pressure measurement Quantitative object.
  • the subject can be a human being.
  • the PPG signal can be obtained by photoplethysmography.
  • Photoplethysmography is a simple, low-cost optical measurement technique that can be used to detect changes in blood volume in tissue vessels.
  • ECG signals are electrical signals caused by periodic heart movement. PPG signals and ECG signals can be obtained using equipment external to the blood pressure measurement device, or they can be obtained using the module that comes with the blood pressure measurement device.
  • the height value and the calibrated blood pressure value of the subject to be measured can be directly input by the operator of the blood pressure measurement device into the electronic device that performs the calibration method 100 of the blood pressure measurement device.
  • the electronic device may be part of a blood pressure measuring device.
  • the operator of the blood pressure measurement device can be the subject to be measured, a professional medical staff, or an ordinary user.
  • the acquired sampling data points of the PPG signal and the ECG signal need to satisfy a number of, for example, at least 10 cycles.
  • the acquired PPG signals and ECG signals need to be preprocessed. During the preprocessing process, the DC component in the PPG signal and ECG signal can be removed.
  • a band-pass filter in a third preset frequency range eg, 5 to 40 Hz
  • a peak detection algorithm is then used to find the R-wave peak in the ECG signal.
  • the PPG signal is filtered using a median filter to smooth the PPG signal. The window width of this median filter can be 3 samples of data.
  • a band-pass filter in a first preset frequency range (for example, 0.3 to 5 Hz) is used to perform a first stage of filtering on the PPG signal.
  • the heart rate value of the subject to be measured (such as the average of the heart rate) can be calculated based on the peak value of the filtered PPG signal in the first stage.
  • the heart rate value of the subject to be measured may be calculated as the number of peak occurrences of the above-mentioned first-stage filtered PPG signal within one minute.
  • the heart rate value of the subject to be measured (eg, the average of the heart rate) can be calculated based on the R-wave peak value of the ECG signal.
  • the heart rate value of the subject to be measured can be calculated as the number of occurrences of the R-wave peak of the ECG signal within one minute. Then a bandpass filter in the second preset frequency range is used to perform the second stage on the PPG signal. filtering.
  • the second preset frequency range may be determined based on the heart rate value to improve filtering accuracy.
  • the second preset frequency range may be 0.5 Hz to 5 ⁇ HR Hz, where HR represents an average value of the heart rate of the subject to be measured.
  • the obtained calibrated blood pressure value may be measured using other calibrated blood pressure meters.
  • the obtained calibrated blood pressure values may be a matrix including a plurality of calibrated blood pressure values obtained at different time points.
  • bp 1 represents the calibrated blood pressure value obtained at the first time point.
  • bp 2 represents the calibrated blood pressure value obtained at the second time point.
  • bp 3 represents the calibrated blood pressure value obtained at the third time point.
  • bp n represents the calibrated blood pressure value obtained at the nth time point.
  • the obtained calibrated blood pressure value may be diastolic blood pressure, and the corresponding BP represents a matrix of multiple diastolic blood pressures.
  • the obtained calibrated blood pressure value may be systolic blood pressure, and the corresponding BP represents a matrix of multiple systolic blood pressures.
  • the obtained calibrated blood pressure value may be a combination of both diastolic and systolic blood pressure. A matrix including a plurality of diastolic pressures is formed for the diastolic pressure, and a matrix including a plurality of systolic pressures is formed for the systolic pressure.
  • the characteristic value of the PPG signal may include one of the following: a peak value of the PPG signal; a valley value of the PPG signal; a peak value of the first-order derivative of the PPG signal; a peak value of the second-order derivative of the PPG signal; And the cut-off point of PPG signal.
  • the time corresponding to the tangent point is equal to the time corresponding to the intersection point of the tangent line of the valley value of the PPG signal and the tangent line of the peak point of the first derivative of the PPG signal.
  • first peaks in the PPG signal (the first peak is any peak in the PPG signal) and second peaks may be determined.
  • the second peak is the peak immediately following the first peak.
  • the time difference between the first peak value of the PPG signal and the second largest peak value of the first derivative of the PPG signal is determined as the first time difference.
  • FIG. 2 shows exemplary waveform diagrams of a PPG signal and a first derivative of the PPG signal.
  • the PPG signal and the first derivative of the PPG signal are shown on the same time axis. Circle the peak value of the PPG signal. The peak value of the first derivative of the PPG signal is also circled. It can be observed that at time T1, the peak value of the PPG signal appears (equivalent to the first peak value). At time T3, the peak value of the PPG signal appears again (equivalent to the second peak value). At time T2 between time T1 and time T3, the second largest peak value of the first derivative of the PPG signal appears (ie, the second largest value in the wave peak).
  • the first time difference (T2-T1) between the peak value of the PPG signal and the second largest peak value of the first derivative of the PPG signal is represented as the first time difference ⁇ t.
  • the first time difference ⁇ t may be the result of a single calculation or the average of the results of multiple calculations.
  • the R wave peak value of the ECG signal (any R wave peak value in the ECG signal ) at the first time.
  • the peak value of the PPG signal is obtained from the first time in the PPG signal.
  • the characteristic value of the PPG signal is determined in a time period between the first time and the second time when the peak value of the PPG signal is first acquired.
  • the time difference between the first time and the third time where the characteristic value of the PPG signal is located is determined as the second time difference.
  • FIG. 3 shows exemplary waveform diagrams of the ECG signal, the PPG signal, the first derivative of the PPG signal, and the second derivative of the PPG signal within one cycle of the ECG signal.
  • the ECG signal, the PPG signal, the first derivative of the PPG signal, and the second derivative of the PPG signal are shown on the same time axis. It can be observed that at time t1, the R wave peak of the ECG signal appears. Then, the peak value of the PPG signal is obtained from the PPG signal starting from time t1. At time t6, the peak value of the PPG signal appears. Then, the characteristic value of the PPG signal can be determined in the time period between time t1 and time t6.
  • One of the peak value of the PPG signal, the valley value of the PPG signal, the peak value of the first derivative of the PPG signal, the peak value of the second derivative of the PPG signal, and the tangent point of the PPG signal can be selected as the target feature value.
  • the target feature value is the peak value of the PPG signal
  • the time difference PAT Max between t1 and t6 can be used as the above-mentioned second time difference.
  • the target feature value is the valley value of the PPG signal
  • the time difference PAT ft between t1 and t2 can be used as the above-mentioned second time difference.
  • the time difference PAT D1 between t1 and t5 can be used as the above-mentioned second time difference.
  • the time difference PAT D2 between t1 and t3 can be used as the above-mentioned second time difference.
  • the time difference PAT Int.Tan between t1 and t4 can be used as the above-mentioned second time difference.
  • the second time difference (any one of PAT Max , PAT ft , PAT D1 , PAT D2 , and PAT Int.Tan ) may be the result of a single calculation or may be calculated multiple times. The average of the results.
  • the first calibration parameter is determined according to the height value and the first time difference.
  • a quotient of the height value divided by the first time difference may be determined as the first coefficient.
  • a first calibration parameter is determined based on the first coefficient.
  • the first coefficient can be determined by the following formula (1):
  • SI represents the first coefficient
  • H represents the height value
  • ⁇ t represents the first time difference
  • the first calibration parameter may be calculated as:
  • a SI represents the first calibration parameter
  • SI represents the first coefficient
  • k1 represents the first constant
  • k2 represents the second constant
  • the values of k1 and k2 can be determined according to the first coefficient SI.
  • SI is greater than 12 and less than or equal to 25cm/ms
  • k1 462870
  • k2 9201.
  • the values of k1 and k2 may be empirical values or values obtained by testing a large number of users.
  • the second calibration parameter is determined based on the calibrated blood pressure value, the first calibration parameter and the second time difference.
  • the second calibration parameter is calculated according to one of the following equations:
  • b SI represents the second calibration parameter
  • BP represents the calibrated blood pressure value
  • a SI represents the first calibration parameter
  • PAT represents the second time difference.
  • Which of the equations (3) to (5) according to which b SI is calculated is determined by the blood pressure measurement formula of the blood pressure measurement device.
  • BP test a SI /PAT+b SI
  • b SI is calculated according to equation (3).
  • BP test a SI /PAT 2 +b SI
  • b SI is calculated according to equation (4).
  • BP test a SI ⁇ ln(PAT)+b SI
  • b SI is calculated according to equation (5).
  • BP test means blood pressure measured using a calibrated blood pressure measuring device.
  • the calibrated blood pressure value BP may be a matrix including a plurality of calibrated blood pressure values acquired at different time points.
  • the second time difference PAT may be a matrix including a plurality of second time differences corresponding to time points.
  • bp 1 represents the calibrated blood pressure value obtained at the first time point.
  • bp 2 represents the calibrated blood pressure value obtained at the second time point.
  • bp 3 represents the calibrated blood pressure value obtained at the third time point.
  • bp n represents the calibrated blood pressure value obtained at the nth time point.
  • 1/x 1 represents the second time difference taken at the first time point.
  • 1/x 2 represents the second time difference obtained at the second time point.
  • 1/x 3 represents the second time difference obtained at the third time point.
  • 1/x n represents the second time difference obtained at the nth time point.
  • PAT 2 [1/x 1 ,1/x 2 ,1/x 3 ,...,1/x n ] T .
  • ln(PAT) [1/x 1 ,1/x 2 ,1/x 3 ,...,1/x n ] T .
  • the middle m values may be taken to avoid outliers (too high or too low value) interferes with the calibration process.
  • step S110 the blood pressure measurement device is calibrated using the first calibration parameter and the second calibration parameter.
  • the operation of calibrating the blood pressure measurement device can be completed by modifying the original first calibration parameter and the second calibration parameter in the blood pressure measurement device to the first calibration parameter determined in step S106 and the second calibration parameter determined in step S108 respectively.
  • a first calibration parameter and a second calibration parameter may be determined for diastolic blood pressure and systolic blood pressure, respectively, and the blood pressure measurement device may be calibrated using the respectively determined first calibration parameter and second calibration parameter when measuring diastolic blood pressure.
  • the formula used for blood pressure and systolic blood pressure may be determined for diastolic blood pressure and systolic blood pressure.
  • the determination of the first calibration parameter and the second calibration parameter takes into account the height of the subject to be measured, the first calibration parameter and the second calibration parameter establish a stronger correlation with the subject to be measured, thereby allowing the blood pressure measurement device to only One calibration is required to accurately measure blood pressure.
  • outliers in the matrix BP test can be removed, such as excessively high or low blood pressure values that exceed human body limits.
  • a moving average algorithm may be used to smooth the above measured blood pressure values.
  • the size of the mobile window is, for example, no larger than 10.
  • the second calibration mode is used to calibrate the blood pressure measurement device.
  • the third calibration parameter and the fourth calibration parameter may be determined according to one of the following formulas, and the blood pressure measurement device may be calibrated using the third calibration parameter and the fourth calibration parameter:
  • a represents the third calibration parameter
  • b represents the fourth calibration parameter
  • BP represents the calibrated blood pressure value
  • PAT represents the second time difference.
  • Which of the equations (6) to (8) is used to calculate a and b is determined by the blood pressure measurement formula of the blood pressure measurement device.
  • a and b are calculated according to equation (6).
  • a and b are calculated according to equation (7).
  • BP test means blood pressure measured using a calibrated blood pressure measuring device.
  • the blood pressure measurement device in the second calibration mode, is calibrated at least three times.
  • the electronic device 400 may include a processor 410 and a memory 420 storing a computer program.
  • the computer program When the computer program is executed by the processor 410, the electronic device 400 can perform the steps of the method 100 shown in Figure 1.
  • the electronic device 400 may be provided in a blood pressure measurement device.
  • the electronic device 400 can obtain the photoplethysmogram PPG signal, electrocardiogram ECG signal, height value and calibrated blood pressure value of the subject to be measured.
  • the electronic device 400 may calculate a first time difference between the peak value of the PPG signal and the second largest peak value of the first derivative of the PPG signal, and a second time difference between the R wave peak value of the ECG signal and the characteristic value of the PPG signal. difference.
  • the electronic device 400 may determine the first calibration parameter based on the height value and the first time difference.
  • the electronic device 400 may determine the second calibration parameter based on the acquired calibration blood pressure value, the first calibration parameter and the second time difference.
  • Electronic device 400 may calibrate the blood pressure measurement device using the first calibration parameter and the second calibration parameter.
  • the electronic device 400 may determine the quotient of the height value divided by the first time difference as the first coefficient.
  • the electronic device 400 may determine the first calibration parameter based on the first coefficient.
  • the processor 410 may be, for example, a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a processor based on a multi-core processor architecture, or the like.
  • Memory 420 may be any type of memory implemented using data storage technology, including but not limited to random access memory, read-only memory, semiconductor-based memory, flash memory, disk memory, and the like.
  • the electronic device 400 may also include an input device 430, such as a PPG signal acquisition device, an ECG signal acquisition device, a keyboard, a mouse, etc., for inputting the photoplethysmogram PPG signal of the object to be measured, Electrocardiogram ECG signal, height value and calibrated blood pressure value.
  • the electronic device 400 may also include an output device 440, such as a loudspeaker, a display, etc., for outputting calibration instructions and calibration results.
  • FIG. 5 is a schematic block diagram of a blood pressure measurement device 500 according to an embodiment of the present disclosure.
  • the blood pressure measurement device 500 includes: an acquisition module 510, a calculation module 520, a first calibration parameter determination module 530, a second calibration parameter determination module 540, and a calibration module 550.
  • the acquisition module 510 may be configured to: acquire the photoplethysmogram PPG signal, electrocardiogram ECG signal, height value and calibrated blood pressure value of the subject to be measured.
  • the calculation module 520 may be configured to: calculate a first time difference between the peak value of the PPG signal and the second largest peak value of the first derivative of the PPG signal, and a second time difference between the R wave peak value of the ECG signal and the characteristic value of the PPG signal. Time difference.
  • the first calibration parameter determination module 530 may be configured to determine the first calibration parameter according to the height value and the first time difference.
  • the second calibration parameter determination module 540 may be configured to: based on the obtained calibration blood pressure value, the first calibration parameter and the second time The difference between them is used to determine the second calibration parameter.
  • Calibration module 550 may be configured to calibrate the blood pressure measurement device using the first calibration parameter and the second calibration parameter.
  • a computer-readable storage medium storing a computer program
  • the computer program when executed by a processor, can implement the steps of the above-mentioned calibration method of a blood pressure measurement device.
  • the calibration method of the blood pressure measurement device, the blood pressure measurement device, and the electronic device can better fit the parameters and calibrate the blood pressure by strengthening the correlation between the parameters of the blood pressure measurement device and the object to be measured.
  • the relationship between the values makes the blood pressure measurement device only need one calibration to accurately measure blood pressure.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions that embody one or more elements for implementing the specified logical function(s).
  • Executable instructions may be included in the block.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two consecutive blocks may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.
  • each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration can be implemented by special purpose hardware-based systems that perform the specified functions or acts. , or can be implemented using a combination of specialized hardware and computer instructions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种血压测量设备的校准方法及设备、电子设备、存储介质,属于测量技术领域。血压测量设备的校准方法包括:获取待测对象的光电容积脉搏波PPG信号、心电图ECG信号、身高值和校准血压值,然后,计算PPG信号的峰值与PPG信号的一阶导数的第二大峰值之间的第一时间差,以及ECG信号的R波峰值与PPG信号的特征值之间的第二时间差,根据身高值和第一时间差来确定第一校准参数,再根据校准血压值、第一校准参数和第二时间差来确定第二校准参数,最后使用第一校准参数和第二校准参数来校准血压测量设备。

Description

血压测量设备的校准方法及设备、电子设备、存储介质 技术领域
本公开涉及测量技术领域,具体地,涉及一种血压测量设备的校准方法及设备、电子设备、存储介质。
背景技术
目前,临床使用的血压计包括手动血压袖带装置、自动血压计袖带装置、血压计袖带装置等。其中,手动血压袖带装置采用柯氏音法,具有精度高、无需校准等优点。但是,用户需要接受良好的培训才能使用此设备。自动血压计袖带装置是使用示波法来估计血压,虽操作方便,但每六个月需要重新校准。血压计袖带装置是一种简单且低成本的血压监测方式。但是,每次测量只提供一个读数。市场上还有另一种使用手指容积钳法的血压测量设备,被称为Finapres,它可以在短时间内提供连续的逐搏血压读数。但Finapres的价格非常昂贵且体积庞大。因此,期望开发一种用于家庭和诊所使用的便携式、低成本的连续血压监测仪。
发明内容
本文中描述的实施例提供了一种血压测量设备的校准方法及设备、电子设备、存储介质。
根据本公开的第一方面,提供了一种血压测量设备的校准方法。在该校准方法中,获取待测对象的光电容积脉搏波PPG信号、心电图ECG信号、身高值和校准血压值;然后,计算PPG信号的峰值与PPG信号的一阶导数的第二大峰值之间的第一时间差,以及ECG信号的R波峰值与PPG信号的特征值之间的第二时间差;根据身高值和第一时间差来确定第一校准参数; 根据所述校准血压值、第一校准参数和第二时间差来确定第二校准参数;使用第一校准参数和第二校准参数来校准血压测量设备。
在本公开的一些实施例中,在根据身高值和第一时间差来确定第一校准参数的步骤中,基于身高值和第一时间差确定第一系数,以及根据第一系数确定第一校准参数。
在本公开的一些实施例中,根据第一系数确定第一校准参数具体为:根据第一系数选择预设的与其对应的常数,根据第一系数和常数确定第一校准参数。
在本公开的一些实施例中,常数可以包括一个或多个,具体根据第一校准参数的计算方式确定。当计算方式需要两个常数时,常数包括第一常数和第二常数。当计算方式需要三个常数时,常数包括第一常数、第二常数和第三常数。
在本公开的一些实施例中,第一校准参数的计算方式为:
aSI=k1/SI+k2,
其中,aSI表示第一校准参数,SI表示第一系数,k1表示第一常数,k2表示第二常数,k1和k2的值根据所述第一系数来确定。
在本公开的一些实施例中,在第一系数的值SI小于或者等于12cm/ms的情况下,k1=606604,k2=28918。在第一系数的值SI大于12并且小于或者等于25cm/ms的情况下,k1=462870,k2=9201。在第一系数的值为其它范围的情况下,k1=0,k2=10000。
需要说明的是,第一校准参数计算方式的变形,拆分等手段造成的常数数量或数值的变化均应属于本专利的保护范围。
在本公开的一些实施例中,第二校准参数根据下式中的一个来计算:
bSI=BP-aSI/PAT;
bSI=BP-aSI/PAT2;以及
bSI=BP-aSI×ln(PAT);
其中,bSI表示第二校准参数,BP表示校准血压值,aSI表示第一校准参数,PAT表示第二时间差。
在本公开的一些实施例中,所述校准血压值是包括在不同时间点获取的多个校准血压值的矩阵。所述第二时间差是包括对应时间点的多个第二时间差的矩阵。
在本公开的一些实施例中,在计算PPG信号的峰值与PPG信号的一阶导数的第二大峰值之间的第一时间差的步骤中,确定PPG信号中相邻的第一峰值和第二峰值,其中,第二峰值是紧接在第一峰值之后的峰值;确定在PPG信号的第一峰值与第二峰值之间的时间段内的PPG信号的一阶导数的第二大峰值;将PPG信号的第一峰值与PPG信号的一阶导数的第二大峰值之间的时间差确定为第一时间差。
在本公开的一些实施例中,在计算ECG信号的R波峰值与PPG信号的特征值之间的第二时间差的步骤中,确定ECG信号的R波峰值所在的第一时间;从第一时间开始在PPG信号中获取PPG信号的峰值;在第一时间与首次获取PPG信号的峰值的第二时间之间的时间段内确定PPG信号的特征值;将第一时间与PPG信号的特征值所在的第三时间之间的时间差确定为第二时间差。
在本公开的一些实施例中,PPG信号的特征值包括以下中的一个:PPG信号的峰值;PPG信号的谷值;PPG信号的一阶导数的峰值;PPG信号的二阶导数的峰值;以及PPG信号的切点。
在本公开的一些实施例中,校准方法还包括:对PPG信号和ECG信号进行预处理以去除PPG信号和ECG信号中的直流分量。
在本公开的一些实施例中,对PPG信号进行预处理包括:采用中值滤波器对PPG信号进行滤波以平滑化PPG信号;采用第一预设频率范围的带 通滤波器对PPG信号进行第一阶段滤波;根据经过第一阶段滤波的PPG信号或者ECG信号计算待测对象的心率值;根据心率值确定第二预设频率范围;以及采用第二预设频率范围的带通滤波器对PPG信号进行第二阶段的滤波。
在本公开的一些实施例中,对ECG信号进行预处理包括:采用第三预设频率范围的带通滤波器对ECG信号进行滤波。
在本公开的一些实施例中,校准方法还包括:响应于使用第一校准参数和第二校准参数来校准血压测量设备的结果未达到预设精度,或者响应于用户对第二校准模式的选择,根据下式中的一个来确定第三校准参数和第四校准参数,并使用第三校准参数和第四校准参数来校准血压测量设备:
以及
其中,a表示第三校准参数,b表示第四校准参数,BP表示校准血压值,PAT表示第二时间差。
根据本公开的第二方面,提供了一种血压测量设备。该血压测量设备包括:获取模块、计算模块、第一校准参数确定模块、第二校准参数确定模块、以及校准模块,其中,获取模块被配置为:获取待测对象的光电容积脉搏波PPG信号、心电图ECG信号、身高值和校准血压值。计算模块被配置为:计算PPG信号的峰值与PPG信号的一阶导数的第二大峰值之间的第一时间差,以及ECG信号的R波峰值与PPG信号的特征值之间的第二时间差。第一校准参数确定模块被配置为:根据身高值和第一时间差来确定第一校准参数。第二校准参数确定模块被配置为:根据校准血压值、第一校准参数和第 二时间差来确定第二校准参数。校准模块被配置为:使用第一校准参数和第二校准参数来校准血压测量设备。
根据本公开的第三方面,提供了一种电子设备。该电子设备包括至少一个处理器;以及存储有计算机程序的至少一个存储器。当计算机程序由至少一个处理器执行时,使得电子设备执行本公开实施例提供的血压测量设备的校准方法。
根据本公开的第四方面,提供了一种存储有计算机程序的计算机可读存储介质,其中,计算机程序在由处理器执行时实现根据本公开的第一方面所述的校准方法的步骤。
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。
附图说明
为了更清楚地说明本公开的实施例的技术方案,下面将对实施例的附图进行简要说明,应当知道,以下描述的附图仅仅涉及本公开的一些实施例,而非对本公开的限制,其中:
图1是根据本公开的实施例的血压测量设备的校准方法的示例性流程图;
图2是PPG信号和PPG信号的一阶导数的示例性波形图;
图3是ECG信号、PPG信号、PPG信号的一阶导数、以及PPG信号的二阶导数的示例性波形图;
图4是根据本公开的实施例的执行血压测量设备的校准方法的电子设备的示意性框图;以及
图5是根据本公开的实施例的血压测量设备的示意性框图。
在附图中,最后两位数字相同的标记对应于相同的元素。需要注意的是,附图中的元素是示意性的,没有按比例绘制。
具体实施方式
为了使本公开的实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本公开的实施例的技术方案进行清楚、完整的描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域技术人员在无需创造性劳动的前提下所获得的所有其它实施例,也都属于本公开保护的范围。
除非另外定义,否则在此使用的所有术语(包括技术和科学术语)具有与本公开主题所属领域的技术人员所通常理解的相同含义。进一步将理解的是,诸如在通常使用的词典中定义的那些的术语应解释为具有与说明书上下文和相关技术中它们的含义一致的含义,并且将不以理想化或过于正式的形式来解释,除非在此另外明确定义。诸如“第一”和“第二”的术语仅用于将一个部件(或部件的一部分)与另一个部件(或部件的另一部分)区分开。
如上所述,目前市场上低成本且操作简单的连续血压测量设备需要多次校准,给使用带来不便。本公开的实施例提出了一种血压测量设备的校准方法,以使得使用该校准方法进行校准的血压测量设备只需一次校准即可准确测量血压。图1示出根据本公开的实施例的血压测量设备的校准方法100的示例性流程图。
在该方法100中,在步骤S102中,获取待测对象的光电容积脉搏波(Photoplethysmography,简称PPG)信号、心电图(Electrocardiogram,简称ECG)信号、身高值和校准血压值。待测对象是需要进行血压测 量的对象。该对象可以是人类。PPG信号可以通过光电容积脉搏波描记法来获得的。光电容积脉搏波描记法是一种简单的、低成本的、可以用来探测组织血管中血量变化的光学测量技术。ECG信号是因周期性的心脏的运动而引起的电信号。PPG信号和ECG信号可使用血压测量设备外部的设备来获取,也可以使用血压测量设备自带的模块来获取。待测对象的身高值和校准血压值可由血压测量设备的操作者直接输入执行血压测量设备的校准方法100的电子设备。该电子设备可以是血压测量设备的一部分。血压测量设备的操作者可以是待测对象,可以是专业医护人员,也可以是普通用户。
在本公开的一些实施例中,所获取的PPG信号和ECG信号的采样数据点需要满足例如至少10个周期的数量。所获取的PPG信号和ECG信号需要经过预处理。在预处理的过程中,可以去除PPG信号和ECG信号中的直流分量。一方面,采用第三预设频率范围(例如,5至40Hz)的带通滤波器对ECG信号进行滤波。接着使用峰值检测算法来找到ECG信号中的R波峰值。另一方面,采用中值滤波器对PPG信号进行滤波以平滑化PPG信号。该中值滤波器的窗口宽度可以为3个采样数据。然后采用第一预设频率范围(例如,0.3至5Hz)的带通滤波器对PPG信号进行第一阶段的滤波。在一个示例中,可根据经过第一阶段的滤波的PPG信号的峰值来计算待测对象的心率值(如心率的平均值)。例如,在单次测量中,待测对象的心率值可被计算为在一分钟的时间内上述经过第一阶段的滤波的PPG信号的峰值出现的次数。在另一个示例中,可根据ECG信号的R波峰值来计算待测对象的心率值(如心率的平均值)。例如,在单次测量中,待测对象的心率值可被计算为在一分钟的时间内ECG信号的R波峰值出现的次数。接着采用第二预设频率范围的带通滤波器对PPG信号进行第二阶段 的滤波。在本公开的一些实施例中,第二预设频率范围可根据心率值确定,以提高滤波的准确性。在一个示例中,第二预设频率范围可以是0.5Hz至5×HR Hz,其中,HR表示待测对象的心率的平均值。
在本公开的一些实施例中,所获取的校准血压值可以是采用其它经校准的血压计测量所得的。所获取的校准血压值可以是包括在不同时间点获取的多个校准血压值的矩阵。例如,可使用BP来表示校准血压值,其中,BP=[bp1,bp2,bp3,…,bpn]T。bp1表示在第一时间点获取的校准血压值。bp2表示在第二时间点获取的校准血压值。bp3表示在第三时间点获取的校准血压值。bpn表示在第n时间点获取的校准血压值。
在本公开的一些实施例中,所获取的校准血压值可以是舒张压,对应的BP表示多个舒张压的矩阵。在本公开的另一些实施例中,所获取的校准血压值可以是收缩压,对应的BP表示多个收缩压的矩阵。在本公开的又一些实施例中,所获取的校准血压值可以是舒张压和收缩压二者的结合。针对舒张压形成包括多个舒张压的矩阵,针对收缩压形成包括多个收缩压的矩阵。
在步骤S104中,计算PPG信号的峰值与PPG信号的一阶导数的第二大峰值之间的第一时间差,以及ECG信号的R波峰值与PPG信号的特征值之间的第二时间差。在本公开的一些实施例中,PPG信号的特征值可包括以下中的一个:PPG信号的峰值;PPG信号的谷值;PPG信号的一阶导数的峰值;PPG信号的二阶导数的峰值;以及PPG信号的切点。该切点所对应的时间等于PPG信号的谷值的切线与PPG信号的一阶导数的峰值点的切线的交点所对应的时间。
在本公开的一些实施例中,在计算第一时间差的过程中,可确定PPG信号中相邻的第一峰值(第一峰值是PPG信号中的任意一个峰值)和第二峰值。其中,第二峰值是紧接在第一峰值之后的峰值。然后,确定在PPG信号的第一峰值与第二峰值之间的时间段内的PPG信号的一阶导数的第二 大峰值。接着,将PPG信号的第一峰值与PPG信号的一阶导数的第二大峰值之间的时间差确定为第一时间差。图2示出了PPG信号和PPG信号的一阶导数的示例性波形图。在图2的示例中,PPG信号和PPG信号的一阶导数被示出在同一时间轴上。将PPG信号的峰值用圆圈圈出。将PPG信号的一阶导数的峰值也用圆圈圈出。可观察到,在T1时刻,出现PPG信号的峰值(相当于第一峰值)。在T3时刻,再次出现PPG信号的峰值(相当于第二峰值)。在T1时刻与T3时刻之间的T2时刻,出现PPG信号的一阶导数的第二大峰值(即,波峰中的第二大值)。PPG信号的峰值与PPG信号的一阶导数的第二大峰值之间的第一时间差(T2-T1)被表示为第一时间差Δt。在本公开的一些实施例中,第一时间差Δt可以是单次计算的结果,也可以是多次计算的结果的平均值。
在本公开的一些实施例中,在计算ECG信号的R波峰值与PPG信号的特征值之间的第二时间差的过程中,确定ECG信号的R波峰值(ECG信号中的任意一个R波峰值)所在的第一时间。然后,从第一时间开始在PPG信号中获取PPG信号的峰值。在第一时间与首次获取PPG信号的峰值的第二时间之间的时间段内确定PPG信号的特征值。接着,将第一时间与PPG信号的特征值所在的第三时间之间的时间差确定为第二时间差。图3示出了在ECG信号的一个周期内的ECG信号、PPG信号、PPG信号的一阶导数、以及PPG信号的二阶导数的示例性波形图。在图3的示例中,ECG信号、PPG信号、PPG信号的一阶导数、以及PPG信号的二阶导数被示出在同一时间轴上。可观察到,在t1时刻,出现ECG信号的R波峰值。然后,从t1时刻开始在PPG信号中获取PPG信号的峰值。在t6时刻,出现PPG信号的峰值。然后,可在t1时刻至t6时刻之间的时间段内确定PPG信号的特征值。如图3所示,在t2时刻,出现PPG信号的谷值。在t3时刻,出现PPG信号的二阶导数的峰值。在t4时刻,出现PPG信号的切点。在t5时刻,出 现PPG信号的一阶导数的峰值。
可选择PPG信号的峰值、PPG信号的谷值、PPG信号的一阶导数的峰值、PPG信号的二阶导数的峰值、以及PPG信号的切点中的一个作为目标特征值。在目标特征值是PPG信号的峰值的情况下,可将t1与t6之间的时间差PATMax作为上述第二时间差。在目标特征值是PPG信号的谷值的情况下,可将t1与t2之间的时间差PATft作为上述第二时间差。在目标特征值是PPG信号的一阶导数的峰值的情况下,可将t1与t5之间的时间差PATD1作为上述第二时间差。在目标特征值是PPG信号的二阶导数的峰值的情况下,可将t1与t3之间的时间差PATD2作为上述第二时间差。在目标特征值是PPG信号的切点的情况下,可将t1与t4之间的时间差PATInt.Tan作为上述第二时间差。在本公开的一些实施例中,第二时间差(PATMax、PATft、PATD1、PATD2、以及PATInt.Tan中的任一个)可以是单次计算的结果,也可以是多次计算的结果的平均值。
在步骤S106中,根据身高值和第一时间差来确定第一校准参数。在本公开的一些实施例中,可将身高值除以第一时间差的商确定为第一系数。然后,根据第一系数来确定第一校准参数。
第一系数可由下式(1)来确定:
SI=H/Δt   (1)
其中,SI表示第一系数,H表示身高值,Δt表示第一时间差。
在本公开的一些实施例中,第一校准参数可被计算为:
aSI=k1/SI+k2   (2),
其中,aSI表示第一校准参数,SI表示第一系数,k1表示第一常数,k2表示第二常数,k1和k2的值可根据第一系数SI来确定。
在本公开的一些实施例中,在SI小于或者等于12cm/ms的情况下,k1=606604,k2=28918。在SI大于12并且小于或者等于25cm/ms的情况下, k1=462870,k2=9201。在其它情况下,k1=0,k2=10000。在本公开的一些实施例中,k1和k2的取值可以是经验值,也可以是对大量用户进行测试所获取的值。
在步骤S108中,根据校准血压值、第一校准参数和第二时间差来确定第二校准参数。在本公开的一些实施例中,第二校准参数根据下式中的一个来计算:
bSI=BP-aSI/PAT   (3);
bSI=BP-aSI/PAT2   (4);以及
bSI=BP-aSI×ln(PAT)   (5)。
其中,bSI表示第二校准参数,BP表示校准血压值,aSI表示第一校准参数,PAT表示第二时间差。按照式(3)至(5)中的哪一个来计算bSI是由血压测量设备的血压测量公式来确定的。在血压测量公式为BPtest=aSI/PAT+bSI的情况下,在此按照式(3)来计算bSI。在血压测量公式为BPtest=aSI/PAT2+bSI的情况下,在此按照式(4)来计算bSI。在血压测量公式为BPtest=aSI×ln(PAT)+bSI的情况下,在此按照式(5)来计算bSI。BPtest表示使用经校准的血压测量设备所测量的血压。
在本公开的一些实施例中,校准血压值BP可以是包括在不同时间点获取的多个校准血压值的矩阵。第二时间差PAT可以是包括对应时间点的多个第二时间差的矩阵。如上所述,可使得BP=[bp1,bp2,bp3,…bpn]T。bp1表示在第一时间点获取的校准血压值。bp2表示在第二时间点获取的校准血压值。bp3表示在第三时间点获取的校准血压值。bpn表示在第n时间点获取的校准血压值。类似的,在一个示例中,PAT=[1/x1,1/x2,1/x3,…,1/xn]T。1/x1表示在第一时间点获取的第二时间差。1/x2表示在第二时间点获取的第二时间差。1/x3表示在第三时间点获取的第二时间差。1/xn表示在第n时间点获取的第二时间差。在另一个示例中,PAT2=[1/x1,1/x2,1/x3,…,1/xn]T。在又一 个示例中,ln(PAT)=[1/x1,1/x2,1/x3,…,1/xn]T。在本公开的一些实施例中,在获取多个第二时间差1/x1,1/x2,1/x3,…,1/xn之后,可取其中间的m个值,以免异常值(过高或过低值)干扰校准过程。
在步骤S110中,使用第一校准参数和第二校准参数来校准血压测量设备。将血压测量设备中原始的第一校准参数和第二校准参数分别修改成在步骤S106确定的第一校准参数和在步骤S108中确定的第二校准参数即可完成校准血压测量设备的操作。在本公开的一些实施例中,可分别针对舒张压和收缩压确定第一校准参数和第二校准参数,并使用分别确定的第一校准参数和第二校准参数来校准血压测量设备在测量舒张压和收缩压时所采用的公式。例如,可针对舒张压确定第一校准参数aSI1和第二校准参数bSI1,则可使用BP=aSI1/PAT+bSI1来计算舒张压。可针对收缩压确定第一校准参数aSI2和第二校准参数bSI2,则可使用BP=aSI2/PAT+bSI2来计算收缩压。
由于第一校准参数和第二校准参数的确定考虑了待测对象自身的身高,因此,第一校准参数和第二校准参数与待测对象建立了更强的相关性,从而使得血压测量设备只需要一次校准即可准确测量血压。
在实际测量过程中,在血压测量公式为BPtest=aSI/PAT+bSI的情况下,可将每次测量的第二时间差的值1/xi(i=1至n)作为矩阵PAT中的一个元素带入上式,从而计算对应的测量血压值bpi(i=1至n)作为矩阵BPtest中的一个元素。在一个示例中,可去除矩阵BPtest中的异常值,例如超过人体极限的过高或过低的血压值。在另一个示例中,可使用移动平均算法来平滑化上述测量血压值。移动窗口的大小例如不大于10。
在本公开的一些实施例中,如果使用第一校准参数和第二校准参数(第一校准模式)来校准血压测量设备的结果未达到预设精度(例如,校准后的血压测量设备所测量的血压值的误差范围超过预设范围),则使用第二校准模式来校准血压测量设备。或者,如果用户选择使用第二校准模式,则直接 使用第二校准模式来校准血压测量设备。在第二校准模式中,可根据下式中的一个来确定第三校准参数和第四校准参数,并使用第三校准参数和第四校准参数来校准血压测量设备:
以及
其中,a表示第三校准参数,b表示第四校准参数,BP表示校准血压值,PAT表示第二时间差。按照式(6)至(8)中的哪一个来计算a和b是由血压测量设备的血压测量公式来确定的。在血压测量公式为BPtest=a/PAT+b的情况下,在此按照式(6)来计算a和b。在血压测量公式为BPtest=a/PAT2+b的情况下,在此按照式(7)来计算a和b。在血压测量公式为BPtest=a×ln(PAT)+b的情况下,在此按照式(8)来计算a和b。BPtest表示使用经校准的血压测量设备所测量的血压。
在本公开的一些实施例中,在第二校准模式中,至少三次校准血压测量设备。
图4示出根据本公开的实施例的执行血压测量设备的校准方法的电子设备400的示意性框图。如图4所示,该电子设备400可包括处理器410和存储有计算机程序的存储器420。当计算机程序由处理器410执行时,使得电子设备400可执行如图1所示的方法100的步骤。在一个示例中,电子设备400可以是被设置在血压测量设备中。电子设备400可获取待测对象的光电容积脉搏波PPG信号、心电图ECG信号、身高值和校准血压值。电子设备400可计算PPG信号的峰值与PPG信号的一阶导数的第二大峰值之间的第一时间差,以及ECG信号的R波峰值与PPG信号的特征值之间的第二时 间差。电子设备400可根据身高值和第一时间差来确定第一校准参数。电子设备400可根据所获取的校准血压值、第一校准参数和第二时间差来确定第二校准参数。电子设备400可使用第一校准参数和第二校准参数来校准血压测量设备。
在本公开的一些实施例中,电子设备400可将身高值除以第一时间差的商确定为第一系数。电子设备400可根据第一系数来确定第一校准参数。
在本公开的实施例中,处理器410可以是例如中央处理单元(CPU)、微处理器、数字信号处理器(DSP)、基于多核的处理器架构的处理器等。存储器420可以是使用数据存储技术实现的任何类型的存储器,包括但不限于随机存取存储器、只读存储器、基于半导体的存储器、闪存、磁盘存储器等。
此外,在本公开的实施例中,电子设备400也可包括输入设备430,例如PPG信号采集装置、ECG信号采集装置、键盘、鼠标等,用于输入待测对象的光电容积脉搏波PPG信号、心电图ECG信号、身高值和校准血压值。另外,电子设备400还可包括输出设备440,例如扩音器、显示器等,用于输出校准指示和校准结果。
图5是根据本公开的实施例的血压测量设备500的示意性框图。该血压测量设备500包括:获取模块510、计算模块520、第一校准参数确定模块530、第二校准参数确定模块540、以及校准模块550。获取模块510可被配置为:获取待测对象的光电容积脉搏波PPG信号、心电图ECG信号、身高值和校准血压值。计算模块520可被配置为:计算PPG信号的峰值与PPG信号的一阶导数的第二大峰值之间的第一时间差,以及ECG信号的R波峰值与PPG信号的特征值之间的第二时间差。第一校准参数确定模块530可被配置为:根据身高值和第一时间差来确定第一校准参数。第二校准参数确定模块540可被配置为:根据所获取的校准血压值、第一校准参数和第二时 间差来确定第二校准参数。校准模块550可被配置为:使用第一校准参数和第二校准参数来校准血压测量设备。
在本公开的其它实施例中,还提供了一种存储有计算机程序的计算机可读存储介质,其中,计算机程序在由处理器执行时能够实现上述血压测量设备的校准方法的步骤。
综上所述,根据本公开的实施例的血压测量设备的校准方法、血压测量设备、以及电子设备通过加强血压测量设备的参数与待测对象的相关性来更好地拟合参数与校准血压值之间的关系式,从而使得血压测量设备只需要一次校准即可准确测量血压。
附图中的流程图和框图显示了根据本公开的多个实施例的装置和方法的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
除非上下文中另外明确地指出,否则在本文和所附权利要求中所使用的词语的单数形式包括复数,反之亦然。因而,当提及单数时,通常包括相应术语的复数。相似地,措辞“包含”和“包括”将解释为包含在内而不是独占性地。同样地,术语“包括”和“或”应当解释为包括在内的,除非本文中明确禁止这样的解释。在本文中使用术语“示例”之处,特别是当其位于一组术语之后时,所述“示例”仅仅是示例性的和阐述性的,且不应当被认 为是独占性的或广泛性的。
适应性的进一步的方面和范围从本文中提供的描述变得明显。应当理解,本申请的各个方面可以单独或者与一个或多个其它方面组合实施。还应当理解,本文中的描述和特定实施例旨在仅说明的目的并不旨在限制本申请的范围。
以上对本公开的若干实施例进行了详细描述,但显然,本领域技术人员可以在不脱离本公开的精神和范围的情况下对本公开的实施例进行各种修改和变型。本公开的保护范围由所附的权利要求限定。

Claims (14)

  1. 一种血压测量设备的校准方法,其特征在于,包括:
    获取待测对象的光电容积脉搏波PPG信号、心电图ECG信号、身高值和校准血压值;
    计算所述PPG信号的峰值与所述PPG信号的一阶导数的第二大峰值之间的第一时间差,以及所述ECG信号的R波峰值与所述PPG信号的特征值之间的第二时间差;
    根据所述身高值和所述第一时间差来确定第一校准参数;
    根据所述校准血压值、所述第一校准参数和所述第二时间差来确定第二校准参数;以及
    使用所述第一校准参数和所述第二校准参数来校准所述血压测量设备。
  2. 根据权利要求1所述的校准方法,其特征在于,根据所述身高值和所述第一时间差来确定第一校准参数包括:
    基于所述身高值和所述第一时间差确定第一系数;以及
    根据所述第一系数确定所述第一校准参数。
  3. 根据权利要求2所述的校准方法,其特征在于,所述根据所述第一系数确定所述第一校准参数具体为:根据所述第一系数选择预设的与其对应的常数,根据所述第一系数以及所述常数确定所述第一校准参数。
  4. 根据权利要求2所述的校准方法,其特征在于,所述第一校准参数的计算方式为:
    aSI=k1/SI+k2,
    其中,aSI表示所述第一校准参数,SI表示所述第一系数,k1表示第一常数,k2表示第二常数,k1和k2的值根据所述第一系数SI来确定。
  5. 根据权利要求1至4中任一项所述的校准方法,其特征在于,所述 第二校准参数根据下式中的任意一个计算:
    bSI=BP-aSI/PAT;
    bSI=BP-aSI/PAT2;以及
    bSI=BP-aSI×ln(PAT);
    其中,bSI表示所述第二校准参数,BP表示所述校准血压值,aSI表示所述第一校准参数,PAT表示所述第二时间差。
  6. 根据权利要求5所述的校准方法,其特征在于,所述校准血压值是包括在不同时间点获取的多个校准血压值的矩阵,所述第二时间差是包括对应所述时间点的多个第二时间差的矩阵。
  7. 根据权利要求1所述的校准方法,其特征在于,计算所述PPG信号的峰值与所述PPG信号的一阶导数的第二大峰值之间的第一时间差包括:
    确定所述PPG信号中相邻的第一峰值和第二峰值;
    确定在所述PPG信号的所述第一峰值与所述第二峰值之间的时间段内的所述PPG信号的一阶导数的第二大峰值;以及
    将所述PPG信号的所述第一峰值与所述PPG信号的所述一阶导数的所述第二大峰值之间的时间差确定为所述第一时间差。
  8. 根据权利要求1所述的校准方法,其特征在于,计算所述ECG信号的R波峰值与所述PPG信号的特征值之间的第二时间差包括:
    确定所述ECG信号的R波峰值所在的第一时间;
    从所述第一时间开始在所述PPG信号中获取所述PPG信号的峰值;
    在所述第一时间与首次获取所述PPG信号的峰值的第二时间之间的时间段内确定所述PPG信号的特征值;
    将所述第一时间与所述PPG信号的所述特征值所在的第三时间之间的时间差确定为所述第二时间差。
  9. 根据权利要求1至4和6至8中任一项所述的校准方法,其特征在于,所述PPG信号的特征值包括以下中的一个:
    所述PPG信号的峰值;
    所述PPG信号的谷值;
    所述PPG信号的一阶导数的峰值;
    所述PPG信号的二阶导数的峰值;以及
    所述PPG信号的切点。
  10. 根据权利要求1至4和6至8中任一项所述的校准方法,其特征在于,还包括:对所述PPG信号和所述ECG信号进行预处理以去除所述PPG信号和所述ECG信号中的直流分量;
    其中,对所述PPG信号进行预处理包括:
    采用中值滤波器对所述PPG信号进行滤波以平滑化所述PPG信号;
    采用第一预设频率范围的带通滤波器对所述PPG信号进行第一阶段滤波;
    根据经过所述第一阶段滤波的所述PPG信号或者所述ECG信号计算所述待测对象的心率值;
    根据所述心率值确定第二预设频率范围;以及
    采用所述第二预设频率范围的带通滤波器对所述PPG信号进行第二阶段滤波;
    其中,对所述ECG信号进行预处理包括:
    采用第三预设频率范围的带通滤波器对所述ECG信号进行滤波。
  11. 根据权利要求1至4和6至8中任一项所述的校准方法,其特征在于,还包括:
    响应于使用所述第一校准参数和所述第二校准参数来校准所述血压测量设备的结果未达到预设精度,或者响应于用户对第二校准模式的选择,根据下式中的一个来确定第三校准参数和第四校准参数,并使用所述第三校准参数和所述第四校准参数来校准所述血压测量设备:

    以及
    其中,a表示所述第三校准参数,b表示所述第四校准参数,BP表示所述校准血压值,PAT表示所述第二时间差。
  12. 一种血压测量设备,其特征在于,包括:
    获取模块,其被配置为:获取待测对象的光电容积脉搏波PPG信号、心电图ECG信号、身高值和校准血压值;
    计算模块,其被配置为:计算所述PPG信号的峰值与所述PPG信号的一阶导数的第二大峰值之间的第一时间差,以及所述ECG信号的R波峰值与所述PPG信号的特征值之间的第二时间差;
    第一校准参数确定模块,其被配置为:根据所述身高值和所述第一时间差来确定第一校准参数;
    第二校准参数确定模块,其被配置为:根据所述校准血压值、所述第一校准参数和所述第二时间差来确定第二校准参数;以及
    校准模块,其被配置为:使用所述第一校准参数和所述第二校准参数来校准所述血压测量设备。
  13. 一种电子设备,其特征在于,包括:
    至少一个处理器;以及
    存储有计算机程序的至少一个存储器;
    其中,当所述计算机程序由所述至少一个处理器执行时,使得所述电子设备执行根据权利要求1至11中任一项所述的校准方法的步骤。
  14. 一种存储有计算机程序的计算机可读存储介质,其特征在于,所述计算机程序在由处理器执行时实现根据权利要求1至11中任一项所述的校准方法的步骤。
PCT/CN2023/101742 2022-08-26 2023-06-21 血压测量设备的校准方法及设备、电子设备、存储介质 WO2024041149A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211034071.4A CN115399742A (zh) 2022-08-26 2022-08-26 血压测量设备的校准方法及血压测量设备
CN202211034071.4 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024041149A1 true WO2024041149A1 (zh) 2024-02-29

Family

ID=84162131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101742 WO2024041149A1 (zh) 2022-08-26 2023-06-21 血压测量设备的校准方法及设备、电子设备、存储介质

Country Status (2)

Country Link
CN (1) CN115399742A (zh)
WO (1) WO2024041149A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115399742A (zh) * 2022-08-26 2022-11-29 北京超思电子技术有限责任公司 血压测量设备的校准方法及血压测量设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155826A (ja) * 1997-12-02 1999-06-15 Matsushita Electric Ind Co Ltd 血圧測定装置
KR20070056925A (ko) * 2005-11-29 2007-06-04 엘지전자 주식회사 혈압측정 방법 및 장치
JP5549092B2 (ja) * 2009-03-19 2014-07-16 富士通株式会社 血圧値測定装置及び血圧値測定方法
CN105054918A (zh) * 2015-07-28 2015-11-18 杭州暖芯迦电子科技有限公司 一种基于脉搏反射波传输时间的血压计算方法及血压仪
CN108024740A (zh) * 2015-09-25 2018-05-11 华为技术有限公司 血压测量方法、血压测量装置以及终端
CN110251105A (zh) * 2019-06-12 2019-09-20 广州视源电子科技股份有限公司 一种无创血压测量方法、装置、设备及系统
US20190307337A1 (en) * 2014-03-06 2019-10-10 Scanadu Incorporated Methods and apparatus for self-calibrating non-invasive cuffless blood pressure measurements
CN115399742A (zh) * 2022-08-26 2022-11-29 北京超思电子技术有限责任公司 血压测量设备的校准方法及血压测量设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155826A (ja) * 1997-12-02 1999-06-15 Matsushita Electric Ind Co Ltd 血圧測定装置
KR20070056925A (ko) * 2005-11-29 2007-06-04 엘지전자 주식회사 혈압측정 방법 및 장치
JP5549092B2 (ja) * 2009-03-19 2014-07-16 富士通株式会社 血圧値測定装置及び血圧値測定方法
US20190307337A1 (en) * 2014-03-06 2019-10-10 Scanadu Incorporated Methods and apparatus for self-calibrating non-invasive cuffless blood pressure measurements
CN105054918A (zh) * 2015-07-28 2015-11-18 杭州暖芯迦电子科技有限公司 一种基于脉搏反射波传输时间的血压计算方法及血压仪
CN108024740A (zh) * 2015-09-25 2018-05-11 华为技术有限公司 血压测量方法、血压测量装置以及终端
CN110251105A (zh) * 2019-06-12 2019-09-20 广州视源电子科技股份有限公司 一种无创血压测量方法、装置、设备及系统
CN115399742A (zh) * 2022-08-26 2022-11-29 北京超思电子技术有限责任公司 血压测量设备的校准方法及血压测量设备

Also Published As

Publication number Publication date
CN115399742A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CN107530005B (zh) 用于导出对象的平均动脉压的方法和设备
US10835132B2 (en) Central aortic blood pressure and waveform calibration method
AU2005211992C1 (en) Apparatus and method for measuring hemodynamic parameters
US7785263B2 (en) Pressure-based system and method for determining cardiac stroke volume
US8771197B2 (en) Detection of parameters in cardiac output related waveforms
US5882311A (en) Calibration for blood pressure pulses
JP5689116B2 (ja) 分節プレチスモグラフィを用いて反応性充血を検出及び評価する方法及び機器
US4926873A (en) Method for measuring blood pressure and apparatus for automated blood pressure measuring
EP1689294A1 (en) Arterial pressure-based, automatic determination of a cardiovascular parameter
WO2024041149A1 (zh) 血压测量设备的校准方法及设备、电子设备、存储介质
WO2018072212A1 (zh) 血压测量设备的校准方法及血压测量设备
US11006842B2 (en) Non-invasive brachial blood pressure measurement
US6517495B1 (en) Automatic indirect non-invasive apparatus and method for determining diastolic blood pressure by calibrating an oscillation waveform
JP2012517291A (ja) 心臓血管パラメータの計算
Jilek et al. Oscillometric blood pressure measurement: the methodology, some observations, and suggestions
TW201402067A (zh) 中央動脈血壓估計方法及其裝置
US11452458B2 (en) Method of deriving systolic blood pressure and/or diastolic blood pressure of a subject
KR20080030189A (ko) 혈관의 건강 상태를 감시하는 방법 및 장치
JP6494669B2 (ja) 分節プレスチモグラフィを用いて反応性充血を検出および評価する方法および装置
Singha et al. An easy approach to develop a digital blood pressure meter
Vazquez et al. Sensor fused blood pressure measuring device capable of recording Korotkoff sounds in inflationary curves
JP2009273716A (ja) 電子血圧計
Kastinger From Model to Practice: Cuffless Blood Pressure Measurement on the Finger
WO2014147974A1 (ja) 循環器機能演算装置
JPH04174641A (ja) 電子血圧計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856241

Country of ref document: EP

Kind code of ref document: A1