WO2024041090A1 - 天线装置及电子设备 - Google Patents

天线装置及电子设备 Download PDF

Info

Publication number
WO2024041090A1
WO2024041090A1 PCT/CN2023/098630 CN2023098630W WO2024041090A1 WO 2024041090 A1 WO2024041090 A1 WO 2024041090A1 CN 2023098630 W CN2023098630 W CN 2023098630W WO 2024041090 A1 WO2024041090 A1 WO 2024041090A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
resonance
excitation current
antenna device
matching circuit
Prior art date
Application number
PCT/CN2023/098630
Other languages
English (en)
French (fr)
Inventor
赵嘉城
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024041090A1 publication Critical patent/WO2024041090A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • the present application relates to the field of communication technology, and in particular to an antenna device and electronic equipment.
  • the present application provides an antenna device and electronic equipment, and the antenna device can realize miniaturization design.
  • this application provides an antenna device, including:
  • a first radiator including a first end and a second end, and a first feed point disposed between the first end and the second end, the first end being grounded;
  • a first feed source electrically connected to the first feed point and used to provide a first excitation current
  • the second radiator includes a third end and a fourth end, and an electrical connection point disposed between the third end and the fourth end. There is an electrical connection point between the third end and the second end. a first coupling gap, the third end being between the second end and the fourth end, the fourth end being grounded; and
  • a first matching circuit is electrically connected to the electrical connection point, the first excitation current is coupled to the second radiator through the first coupling gap and is short-circuited to ground through the first matching circuit;
  • the first excitation current flows in the same direction on the first conductor section between the first feed point and the second end and on the second conductor section between the electrical connection point and the third end. and excite the first conductor segment and the second conductor segment to work together at the first resonance; and/or,
  • the first excitation current flows in opposite directions in the first conductor segment and the second conductor segment and excites the first conductor segment and the second conductor segment to work together at the second resonance.
  • this application also provides an electronic device, including an antenna device, where the antenna device includes:
  • a first radiator including a first end and a second end, and a first feed point disposed between the first end and the second end, the first end being grounded;
  • a first feed source electrically connected to the first feed point and used to provide a first excitation current
  • the second radiator includes a third end and a fourth end, and an electrical connection point disposed between the third end and the fourth end. There is an electrical connection point between the third end and the second end. a first coupling gap, the third end being between the second end and the fourth end, the fourth end being grounded; and
  • a first matching circuit is electrically connected to the electrical connection point, the first excitation current is coupled to the second radiator through the first coupling gap and is short-circuited to ground through the first matching circuit;
  • the first excitation current flows in the same direction on the first conductor section between the first feed point and the second end and on the second conductor section between the electrical connection point and the third end. and excite the first conductor segment and the second conductor segment to work together at the first resonance; and/or,
  • the first excitation current flows in opposite directions in the first conductor segment and the second conductor segment and excites the first conductor segment and the second conductor segment to work together at the second resonance.
  • this application also provides an electronic device, including an antenna device, where the antenna device includes:
  • a first radiator including a first end and a second end, and a first feed point disposed between the first end and the second end, the first end being grounded;
  • a first feed source electrically connected to the first feed point and used to provide a first excitation current
  • the second radiator includes a third end and a fourth end, and an electrical connection point disposed between the third end and the fourth end. There is an electrical connection point between the third end and the second end. a first coupling gap, the third end being between the second end and the fourth end, the fourth end being grounded; and
  • a first matching circuit is electrically connected to the electrical connection point, and the first excitation current is coupled to the second radiator through the first coupling gap and short-circuited back to ground through the first matching circuit;
  • the third radiator includes a fifth end and a sixth end, and a third feed point disposed between the fifth end and the sixth end.
  • the fifth end is located between the sixth end and the sixth end. Between the second radiators, the fifth end is grounded; and
  • a third feed source is electrically connected to the third feed point and used to provide a third excitation current
  • the first excitation current flows in the same direction on the first conductor section between the first feed point and the second end and on the second conductor section between the electrical connection point and the third end. and excite the first conductor segment and the second conductor segment to work together at the first resonance; and/or, the first excitation current flows in opposite directions in the first conductor segment and the second conductor segment and Exciting the first conductor segment and the second conductor segment to work together at the second resonance;
  • the third excitation current is used to excite the fourth conductor section between the fifth end and the third feed point to operate at the sixth resonance; and/or, the third excitation current is also used to excite the The fifth conductor section between the third feed point and the sixth end operates at seventh resonance;
  • the electronic device also includes a long frame and a short frame connected by bending; wherein, the first radiator and the second radiator are arranged relative to the long frame, and part of the third radiator is relative to the long frame. The other part of the third radiator is arranged relative to the short frame.
  • the present application also provides an electronic device, including an antenna device, where the antenna device includes:
  • a first radiator including a first end and a second end, and a first feed point disposed between the first end and the second end, the first end being grounded;
  • a first feed source electrically connected to the first feed point and used to provide a first excitation current
  • the second radiator includes a third end and a fourth end, and an electrical connection point disposed between the third end and the fourth end. There is an electrical connection point between the third end and the second end. a first coupling gap, the third end being between the second end and the fourth end, the fourth end being grounded; and
  • a first matching circuit is electrically connected to the electrical connection point, the first excitation current is coupled to the second radiator through the first coupling gap and is short-circuited to ground through the first matching circuit;
  • the third radiator includes a fifth end and a sixth end, and a third feed point disposed between the fifth end and the sixth end.
  • the fifth end is located between the sixth end and the sixth end. Between the second radiators, the fifth end is grounded;
  • a third feed source electrically connected to the third feed point and used to provide a third excitation current
  • a conductor connection section one end of the conductor connection section is connected to the fourth end, and the other end is connected to the fifth end;
  • a sixth matching circuit one end of the sixth matching circuit is electrically connected to the fourth end, and the other end is grounded;
  • a seventh matching circuit one end of the seventh matching circuit is electrically connected to the fifth terminal, and the other end is grounded; wherein,
  • the first excitation current flows in the same direction on the first conductor section between the first feed point and the second end and on the second conductor section between the electrical connection point and the third end. and excite the first conductor segment and the second conductor segment to work together at the first resonance; and/or, the first excitation current flows in opposite directions in the first conductor segment and the second conductor segment and Exciting the first conductor segment and the second conductor segment to work together at the second resonance;
  • the third excitation current is used to excite the fourth conductor section between the fifth end and the third feed point to operate at the sixth resonance; and/or, the third excitation current is also used to excite the The fifth conductor section between the third feed point and the sixth end operates at seventh resonance;
  • the second radiator, the conductor connection section, and the third radiator are jointly inductive branches and are used to electrically connect with the Sar sensor.
  • the Sar sensor is used to determine the electromagnetic wave absorption ratio of the antenna device through detection signals. size, the sixth matching circuit and the seventh matching circuit are equivalent to opening a circuit to the detection signal;
  • the electronic device also includes a long frame and a short frame connected by bending; wherein the first radiator, the second radiator and the conductor connecting section are arranged relative to the long frame, and part of the third radiation
  • the third radiator is arranged relative to the long frame, and the other third radiator is arranged relative to the short frame.
  • this application also provides an electronic device, including an antenna device; the antenna device includes:
  • a first radiator including a first end and a second end, and a first feed point disposed between the first end and the second end, the first end being grounded;
  • a first feed source electrically connected to the first feed point and used to provide a first excitation current
  • the second radiator includes a third end and a fourth end, and an electrical connection point disposed between the third end and the fourth end. There is an electrical connection point between the third end and the second end. a first coupling gap, the third end being between the second end and the fourth end, the fourth end being grounded; and
  • a first matching circuit is electrically connected to the electrical connection point, and the first excitation current is coupled to the second radiator through the first coupling gap and short-circuited back to ground through the first matching circuit;
  • the third radiator includes a fifth end and a sixth end, and a third feed point disposed between the fifth end and the sixth end.
  • the fifth end is located between the sixth end and the sixth end. Between the second radiators, the fifth end is grounded;
  • a third feed source electrically connected to the third feed point and used to provide a third excitation current
  • the fourth radiator includes a seventh end and an eighth end.
  • the seventh end is located between the eighth end and the sixth end.
  • the first excitation current flows in the same direction on the first conductor section between the first feed point and the second end and on the second conductor section between the electrical connection point and the third end. and excite the first conductor segment and the second conductor segment to work together at the first resonance; and/or, the first excitation current flows in opposite directions in the first conductor segment and the second conductor segment and Exciting the first conductor segment and the second conductor segment to work together at the second resonance;
  • the third excitation current is used to excite the fourth conductor section between the fifth end and the third feed point to operate at the sixth resonance; and/or, the third excitation current is also used to excite the The fifth conductor section between the third feed point and the sixth end operates at seventh resonance;
  • the third excitation current is also used to couple to the fourth radiator through the second coupling gap and excite the fourth radiator to work at the eighth resonance;
  • the electronic device further includes a long frame and a short frame connected by bending; wherein, the first radiator and the second radiator are arranged relative to the long frame, and the fourth radiator is arranged relative to the short frame. .
  • Figure 1 is a first structural schematic diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 2 is an equivalent circuit schematic diagram of the antenna device shown in FIG. 1 .
  • FIG. 3 is a first current schematic diagram of the antenna device shown in FIG. 1 .
  • FIG. 4 is a second current schematic diagram of the antenna device shown in FIG. 1 .
  • FIG. 5 is a schematic diagram of an S11 parameter curve of the antenna device shown in FIG. 1 .
  • FIG. 6 is a second structural schematic diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of the second matching circuit shown in FIG. 6 .
  • FIG. 8 is a third structural schematic diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 9 is an equivalent circuit schematic diagram of the antenna device shown in FIG. 8 .
  • FIG. 10 is a first current schematic diagram of the antenna device shown in FIG. 8 .
  • FIG. 11 is a second current schematic diagram of the antenna device shown in FIG. 8 .
  • FIG. 12 is a third current schematic diagram of the antenna device shown in FIG. 8 .
  • FIG. 13 is a schematic diagram of an S11 parameter curve of the antenna device shown in FIG. 8 .
  • Figure 14 is a fourth structural schematic diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of an S-parameter curve when the first feed source and the second feed source of the antenna device shown in FIG. 14 operate simultaneously.
  • FIG. 16 is a schematic structural diagram of the first matching circuit shown in FIG. 14 .
  • FIG. 17 is a schematic structural diagram of the third matching circuit shown in FIG. 14 .
  • Figure 18 is a fifth structural schematic diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 19 is a first current schematic diagram of the antenna device shown in FIG. 18 .
  • FIG. 20 is a second current schematic diagram of the antenna device shown in FIG. 18 .
  • Figure 21 is a sixth structural schematic diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 22 is a first current schematic diagram of the antenna device shown in FIG. 21 .
  • FIG. 23 is a schematic diagram of an S-parameter curve when the third feed source of the antenna device shown in FIG. 21 is working.
  • FIG. 24 is a second current schematic diagram of the antenna device shown in FIG. 21 .
  • FIG. 25 is a third current schematic diagram of the antenna device shown in FIG. 21 .
  • FIG. 26 is a fourth current schematic diagram of the antenna device shown in FIG. 21 .
  • FIG. 27 is a schematic diagram of an S-parameter curve when the fourth feed source of the antenna device shown in FIG. 21 is operating.
  • FIG. 28 is a schematic diagram of an S-parameter curve when the third feed source and the fourth feed source of the antenna device shown in FIG. 21 operate simultaneously.
  • FIG. 29 is a schematic structural diagram of the fourth matching circuit shown in FIG. 21 .
  • FIG. 30 is a schematic structural diagram of the fifth matching circuit shown in FIG. 21 .
  • Figure 31 is a seventh structural schematic diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 32 is a schematic diagram of an S-parameter curve of the antenna device shown in FIG. 29 .
  • Figure 33 is a schematic structural diagram of an eighth type of antenna device provided by an embodiment of the present application.
  • FIG. 34 is a schematic diagram of electrical connections of the antenna device shown in FIG. 31 .
  • Figure 35 is a ninth structural schematic diagram of an antenna device provided by an embodiment of the present application.
  • Figure 36 is a first structural schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 37 is a second structural schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 38 is an application scenario diagram of the electronic device shown in Figure 37.
  • Figure 39 is a schematic diagram of the system efficiency curve when the electronic device shown in Figure 38 supports wireless signals in the horizontal screen holding state and the non-hand holding state.
  • Figure 40 is a third structural schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 41 is a fourth structural schematic diagram of an electronic device provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • the embodiment of the present application provides an antenna device 100 and an electronic device.
  • the antenna device 100 can implement wireless communication functions.
  • the antenna device 100 can transmit wireless fidelity (Wireless Fidelity, Wi-Fi for short) signals, Global Positioning System (Global Positioning System, for short: GPS) signals, third-generation mobile communication technology (3rd-Generation, for short: 3G), fourth-generation Generation mobile communication technology (4th-Generation, referred to as 4G), fifth-generation mobile communication technology (5th-Generation, referred to as 5G), near field communication (Near field communication, referred to as NFC) signal, Bluetooth (Bluetooth, referred to as BT) signal , ultra-wideband communication (Ultra WideBand, UWB for short) signals, etc.
  • wireless fidelity Wireless Fidelity, Wi-Fi for short
  • GPS Global Positioning System
  • 3rd-Generation for short: 3G
  • 4G fourth-generation Generation mobile communication technology
  • 5G fifth-generation mobile communication technology
  • NFC Near
  • Figure 1 is a first structural schematic diagram of an antenna device 100 provided by an embodiment of the present application.
  • the antenna device 100 may include a first radiator 110, a second radiator 120, a first feed 171 and a first matching Circuit 181.
  • the first radiator 110 may include a first end 111 , a second end 112 and a first feed point 113 , and the first feed point 113 may be located between the first end 111 and the second end 112 .
  • the first end 111 may be directly or indirectly connected to the ground.
  • the first end 111 may be directly or indirectly electrically connected to a ground plane to achieve grounding.
  • the first feed source 171 may be directly or indirectly electrically connected to the first feed point 113 to realize the electrical connection between the first feed source 171 and the first radiator 110 .
  • the first feed source 171 may provide a first excitation current to excite the first radiator 110 and the second radiator 120 to jointly support the transmission of wireless signals.
  • the second radiator 120 may be spaced apart from the first radiator 110 .
  • the second radiator 120 may be spaced apart from the first radiator 110 on the side where the second end 112 of the first radiator 110 is located.
  • the second radiator 120 may include a third end 121 and a fourth end 122.
  • the third end 121 may be located between the fourth end 122 and the first radiator 110 (eg, the second end 112).
  • the third end 121 may be connected to the third end 122.
  • a first coupling gap 101 is provided between the two ends 112.
  • the first excitation current provided by the first feed source 171 can be coupled from the first radiator 110 to the second radiator 120 through the first coupling gap 101.
  • the fourth end 122 It may be directly or indirectly grounded.
  • the fourth end 122 may be directly or indirectly electrically connected to a ground plane to achieve grounding.
  • the second radiator 120 may further include an electrical connection point 124 , and the electrical connection point 124 may be disposed between the third end 121 and the fourth end 122 .
  • the first matching circuit 181 may be directly or indirectly electrically connected to the electrical connection point 124 of the second radiator 120 , and the second radiator 120 may be grounded through the first matching circuit 181 .
  • FIG. 2 is an equivalent circuit diagram of the antenna device 100 shown in FIG. 1 .
  • the first matching circuit 181 may effectively short-circuit the first excitation current provided by the first feed source 171 so that the first excitation current is directly connected to ground. That is to say, for the first excitation current, the resistance of the first matching circuit 181 is infinitesimal, and the first excitation current can be directly short-circuited back to ground.
  • the first excitation current may be distributed at least between the first feed point 113 and the second end 112 and between the third end 121 and the electrical connection point 124 , and the first excitation current is on the first radiator 110
  • the flow direction of may be the same as the flow direction of the first excitation current on the second radiator 120 .
  • FIG. 3 is a first current schematic diagram of the antenna device 100 shown in FIG. 1.
  • the first excitation current I1 can flow to the first radiation through the first feed source 171. body 110, and can be coupled (ie, electromagnetic coupling) to the second radiator 120 through the first coupling gap 101, the first excitation current I1 is between the first feed point 113 and the second end 112 of the first radiator 110
  • the flow direction on the first conductor segment Z1 may be the same as the flow direction on the second conductor segment Z2 between the third end 121 of the second radiator 120 and the electrical connection point 124.
  • the first excitation current I1 is in The first conductor segment Z1 can flow from the first feed point 113 to the second end 112, and the second conductor segment Z2 can flow from the third end 121 to the electrical connection point 124.
  • the first excitation current I1 can excite the first radiator.
  • the first conductor section Z1 between the first feed point 113 and the second end 112 of the second radiator 120 and the second conductor section Z2 between the third end 121 and the electrical connection point 124 of the second radiator 120 work together in the first Resonates and supports wireless signals in the first frequency band.
  • first conductor segment Z1 can work in the quarter-wavelength mode and the second conductor segment Z2 can also work in the quarter-wavelength mode together at the first resonance.
  • first conductor segment Z1 and the second conductor segment Z2 can also work in the first resonance in other modes, such as but not limited to one-half wavelength mode, three-quarter wavelength mode, one-eighth wavelength mode, etc. Modality, etc., are not limited in the embodiments of this application.
  • the first frequency band corresponding to the first resonance may be an ultra-high frequency band (Ultra High Band, UHB for short, including the 3000MHz-6000MHz frequency band range).
  • the first frequency band can be the N77 frequency band and N78 frequency band of 5G; of course, by adjusting the branch lengths of the first conductor section Z1 and the second conductor section Z2 and the impedance of the electrically connected matching circuit, the first frequency band can also be made
  • the embodiment of the present application does not specifically limit the first frequency band.
  • the first excitation current I1 can also be distributed at least between the first feed point 113 and the second end 112 , and between the third end 121 and the electrical connection point 124 , and the flow direction of the first excitation current I1 on the first radiator 110 may be different from the flow direction of the first excitation current I1 on the second radiator 120 .
  • FIG. 4 is a second current schematic diagram of the antenna device 100 shown in FIG. 1.
  • the first excitation current I1 can flow to the first radiation through the first feed source 171. body 110 and can be coupled (ie, electromagnetic coupled) to the second radiator 120 through the first coupling gap 101.
  • the flow direction of the first excitation current I1 on the first conductor section Z1 of the first radiator 110 can be the same as that on the second conductor section Z1.
  • the flow direction on the second conductor section Z2 of the radiator 120 is opposite.
  • the first excitation current I1 can flow from the first feed point 113 to the second end 112 on the first conductor section Z1.
  • can flow from the electrical connection point 124 to the third end 121, and the first excitation current I1 can excite the first conductor segment Z1 and the second conductor segment Z2 to work together at the second resonance and support the second frequency band.
  • the second resonance may be different from the first resonance, and the resonant point frequency of the second resonance may be different from the resonant point frequency of the first resonance.
  • the resonant point frequency of the first resonance may be 3600 MHz
  • the resonant point frequency of the second resonance may be 3600 MHz.
  • the resonance point frequency can be 3800MHz.
  • the second frequency band corresponding to the second resonance may not be completely the same as the first frequency band corresponding to the first resonance, and the two may have partially overlapping frequency bands.
  • the first frequency band corresponding to the first resonance may be the N78 frequency band (3300MHz-3800MHz)
  • the second frequency band corresponding to the second resonance may be the N77 frequency band (3300MHz-4200MHz).
  • the electrical lengths of the first conductor segment Z1 and the second conductor segment Z2 the second frequency band can also be completely different from the First frequency band.
  • the embodiments of this application do not limit the specific ranges of the first frequency band and the second frequency band.
  • the excitation current is an AC signal, its current direction changes periodically. Therefore, when the first conductor segment Z1 and the second conductor segment Z2 work together at the first resonance, the first excitation current I1 can be at the first resonance. On one branch Z1, it flows from the second end 112 to the first feed point 113, and on the second branch Z2, it flows from the electrical connection point 124 to the third end 121; when the first conductor segment Z1 and the second conductor segment Z2 work together, During the second resonance, the first excitation current I1 can flow from the second end 112 to the first feed point 113 on the first branch Z1, and can flow from the third end 121 to the electrical connection point 124 on the second branch Z2.
  • the description of the first excitation current I1 in the embodiment of the present application is a description of most (main) first excitation current I1, that is, the above-mentioned first excitation current I1 is in the first conductor segment Z1
  • the flow on the second conductor segment Z2 means that most (main) first excitation current I1 flows on the first conductor segment Z1 and the second conductor segment Z2.
  • the description of other excitation currents such as the second excitation current I2, the third excitation current I3, the fourth excitation current I4... in the following also refers to most of the excitation currents. This will not be explained further below.
  • first conductor segment Z1 can work in the quarter-wave mode and the second conductor segment Z2 can also work in the quarter-wave mode at the second resonance.
  • first conductor segment Z1 and the second conductor segment Z2 can also work in the second resonance in other modes, such as but not limited to one-half wavelength mode, three-quarter wavelength mode, one-eighth wavelength mode, etc. Modality, etc., are not limited in the embodiments of this application.
  • the second frequency band corresponding to the second resonance may be an ultra-high frequency band.
  • the second frequency band can be the N77 frequency band and N78 frequency band of 5G; of course, by adjusting the branch lengths of the first conductor section Z1 and the second conductor section Z2 and the impedance of the electrically connected matching circuit, the second frequency band can also be For other ultra-high frequency bands, the embodiment of the present application does not specifically limit the second frequency band.
  • the first feed source 171 can provide the first excitation current I1 to make the antenna device 100 work at the first resonance and support the transmission of signals in the first frequency band; the first feed source 171 can also provide the first excitation current I1 to The antenna device 100 is allowed to work at the second resonance and support the transmission of signals in the second frequency band; the first feed source 171 can also provide the first excitation current I1, so that the antenna device 100 can work at the first resonance and the second resonance at the same time. Supports first and second band signals.
  • FIG. 5 is a schematic diagram of an S11 parameter curve of the antenna device 100 shown in FIG. 1 .
  • the curve L1 in FIG. 5 is when the first feed source 171 provides the first excitation current I1 and the antenna device 100 simultaneously Working on the S11 curve of the first resonance and the second resonance, it can be seen from the curve L1 that the antenna device 100 can generate two resonances - the first resonance A1 and the second resonance A2, and the frequency bands corresponding to the two resonances can be the same.
  • the first frequency band and the second frequency band can jointly cover 3300MHz to 4100MHz.
  • the second frequency band corresponding to the second resonance A2 may be higher than the first frequency band corresponding to the first resonance A1.
  • the resonant frequency point of the first resonance A1 may be near 3600 MHz
  • the resonant frequency point of the second resonance A2 may be near 3800 HMz
  • the second frequency band may be higher than the first frequency band. It can be understood that since the second frequency band and the first frequency band are frequency bands with a certain bandwidth, the second frequency band and the first frequency band may partially overlap or not overlap at all.
  • the second frequency band may be higher than the first frequency band.
  • the center frequency of the second frequency band is higher than the center frequency of the first frequency band, and it is not limited to the entire second frequency band being higher than the first frequency band.
  • the falling edge of the second resonance may be at the low frequency of the second resonance. If the second frequency band of the second resonance is lower than the first frequency band of the first resonance, the second resonance will easily form an efficiency groove within the first frequency band, thereby seriously affecting the radiation performance of the antenna device 100 .
  • the second frequency band in the embodiment of the present application is higher than the first frequency band, which can not only broaden the bandwidth of the antenna device 100, but also improve the efficiency of the first frequency band, so that the antenna device 100 has better radiation performance.
  • the second frequency band can also be made lower than the first frequency band.
  • the antenna device 100 can take corresponding compensation measures to avoid the second frequency band from causing an efficiency pit in the first frequency band.
  • the embodiments of this application do not specifically limit the second frequency band and the first frequency band.
  • the first conductor section Z1 is between the first feed point 113 and the second end 112 of the first radiator 110, and the first end 111 of the first radiator 110 is grounded; the second radiator A first coupling gap 101 is provided between the body 120 and the first radiator 110.
  • the first matching circuit 181 is electrically connected to the electrical connection point 124 between the third end 121 and the fourth end 122 of the second radiator 120.
  • the first feed source 171 can provide the first excitation current I1 to the first radiator 110, and the first excitation current I1 can be electromagnetically coupled through the first coupling gap 101 to the second radiator 120 and is short-circuited to ground through the first matching circuit 181.
  • the first excitation current I1 flows in the same direction on the first conductor segment Z1 and the second conductor segment Z2, and the first excitation current I1 flows in the first conductor segment Z1 and the second conductor segment Z2.
  • the flow directions of the two conductor segments Z2 are opposite, so that the first conductor segment Z1 and the second conductor segment Z2 can operate at both the first resonance and the second resonance.
  • the antenna device 100 of the embodiment of the present application can work in two resonances without switching through a switch, which can not only expand the bandwidth of the antenna device 100, improve the transmission performance of the antenna device 100, but also reduce the cost caused by the switch; Moreover, the first conductor segment Z1 and the second conductor segment Z2 are reused, the antenna device 100 can be miniaturized in design, and the antenna device 100 can be more easily assembled into other devices such as the electronic device 10 .
  • the first matching circuit 181 short-circuits the first excitation current I1 provided by the first feed source 171.
  • the first excitation current I1 can be directly connected to the ground from the first matching circuit 181, and the first excitation current I1 cannot easily flow into the second radiator 120. In other parts, the first excitation current I1 cannot easily pass through the feed point of the second radiator 120 (for example, the second feed point 123 below) and flow into the feed source electrically connected to the second radiator 120 (for example, the third feed point below).
  • the second feed source 172) affects the performance of the second radiator 120, and the interference between the first radiator 110 and the second radiator 120 is small.
  • FIG. 6 is a second structural schematic diagram of the antenna device 100 provided by the embodiment of the present application.
  • the antenna device 100 may further include a second matching circuit 182 .
  • the second matching circuit 182 may be connected in series between the first feed source 171 and the first feed point 113 of the first radiator 110 , and the second matching circuit 182 may provide impedance to the first excitation current I1 provided by the first feed source 171 Matching, so that the first conductor segment Z1 of the first radiator 110 and the second conductor segment Z2 of the second radiator 120 can work together at at least one of the first resonance and the second resonance.
  • the second matching circuit 182 may include one or more electronic devices such as capacitors, inductors, switches, etc., formed in series or parallel.
  • FIG. 7 is a schematic structural diagram of the second matching circuit 182 shown in FIG. 6 .
  • the second matching circuit 182 may include a second capacitor C2, a second inductor L2, a third capacitor C3, and a third inductor L3.
  • One end of the second inductor L2 can be electrically connected to the first feed source 171, one end of the second capacitor C2 is electrically connected between the second inductor L2 and the first feed source 171, and the other end of the second capacitor C2 is grounded; the third capacitor One end of C3 and one end of the third inductor L3 are both electrically connected to the other end of the second inductor L2. The other end of the third capacitor C3 and the other end of the third inductor L3 are both connected to the first feed point of the first radiator 110 113 is electrically connected, the third inductor L3 and the third inductor L3 may be connected in parallel between the second inductor L2 and the first feed point 113 .
  • the above is only an exemplary description of the second matching circuit 182 in the embodiment of the present application, and the structure of the second matching circuit 182 is not limited to, for example For example, but not limited to, an inductor device and a capacitor device may be connected in series between the second inductor L2 and the first feed source 171 .
  • the embodiment of the present application does not limit the specific structure of the second matching circuit 182.
  • Other structures that can adjust the impedance matching of the excitation current provided by the first feed source 171 can be within the protection scope of the embodiment of the present application.
  • FIG. 8 is a third structural schematic diagram of the antenna device 100 provided by an embodiment of the present application.
  • the antenna device 100 may also include a second feed 172 .
  • the second feed source 172 may be electrically connected to the second radiator 120 directly or indirectly.
  • the second radiator 120 may also be provided with a second feed point 123 , and the second feed point 123 may be disposed between the electrical connection point 124 and the fourth end 122 of the second radiator 120 .
  • 172 may be directly or indirectly electrically connected to the second feed point 123 .
  • the second feed source 172 may provide an excitation current.
  • the second feed source 172 may provide a second excitation current.
  • Figure 9 is an equivalent circuit schematic diagram of the antenna device 100 shown in Figure 8.
  • the first matching circuit 181 can be open-circuited to the second excitation current I2 provided by the second feed source 172. This prevents the second excitation current I2 from returning to ground through the first matching circuit 181 . That is to say, for the second excitation current I2, the impedance of the first matching circuit 181 is infinite, the first matching circuit 181 can block the second excitation current I2 from returning to ground, and the second excitation current I2 can not pass through the second radiator 120 electrical connection point 124 to ground. At this time, the second excitation current I2 can either flow on the second radiator 120 or be coupled to the first radiator 110 through the first coupling gap 101 and flow on the first radiator 110 .
  • FIG. 10 is a first current schematic diagram of the antenna device 100 shown in FIG. 8 .
  • the second excitation current I2 can flow to the second radiator 120 through the second feed source 172, and can excite the entire second radiator 120 (the conductor section between the third end 121 and the fourth end 122) to work in the third resonance. And supports the transmission of wireless signals in the third frequency band.
  • the second excitation current I2 can excite the second radiator 120 to operate in the third resonance in the quarter-wavelength mode, and the flow direction of the second excitation current I2 on the second radiator 120 can be in the same direction, for example But it is not limited to flowing from the fourth end 122 to the third end 121 .
  • the second radiator 120 can also work in the third resonance in other modes, such as but not limited to one-half wavelength mode, three-quarter wavelength mode, one-eighth wavelength mode, etc., this application The examples do not limit this.
  • the third frequency band corresponding to the third resonance may be the middle high frequency band (Middle High Band, referred to as MHB, 1000MHz to 3000MHz).
  • MHB Middle High Band
  • the third frequency band can also be made into other frequency bands.
  • the embodiment of the present application does not specifically limit the third frequency band.
  • FIG. 11 is a second current schematic diagram of the antenna device 100 shown in FIG. 8.
  • the second excitation current I2 can also flow to the second radiator 120 through the second feed source 172, and can excite the third conductor section Z3 between the second feed point 123 and the third end 121 of the second radiator 120 to operate. Resonating in the fourth resonance and supporting the transmission of the fourth wireless signal. It can be understood that the fourth resonance may be different from the third resonance, and the resonance point frequency of the fourth resonance may be different from the resonance point frequency of the third resonance.
  • the third conductor section Z3 between the second feed point 123 and the third end 121 of the second radiator 120 can operate in the fourth resonance in the quarter-wavelength mode, and the second excitation current I2 is
  • the flow direction on the second radiator 120 may be in the same direction, for example but not limited to, it may flow from the second feed point 123 to the third end 121 .
  • the third conductor segment Z3 can also work in the fourth resonance in other modes, such as but not limited to one-half wavelength mode, three-quarter wavelength mode, one-eighth wavelength mode, etc., this application The examples do not limit this.
  • the fourth frequency band corresponding to the fourth resonance may be the MHB frequency band.
  • the fourth frequency band can also be made into other frequency bands.
  • the embodiment of the present application does not specifically limit the fourth frequency band.
  • FIG. 12 is a third current schematic diagram of the antenna device 100 shown in FIG. 8 .
  • the second excitation current I2 can also flow to the second radiator 120 through the second feed source 172, and can be (electromagnetically) coupled to the first radiator 110 through the first coupling gap 101.
  • the second excitation current I2 can excite the entire first radiator 120.
  • a radiator 110 works at the fifth resonance and supports the transmission of wireless signals in the fifth frequency band.
  • the first radiator 110 can operate in the fifth resonance in the quarter-wavelength mode, and the flow direction of the second excitation current I2 on the second radiator 120 can be the same. For example, but not limited to, it can flow from the second end 112 to the first end 111 .
  • the first radiator 110 can also work in the fifth resonance in other modes, such as but not limited to one-half wavelength mode, three-quarter wavelength mode, one-eighth wavelength mode, etc., this application The examples do not limit this.
  • the fifth frequency band corresponding to the fifth resonance may be the MHB frequency band.
  • the fifth frequency band can also be made into other frequency bands. This embodiment of the present application does not specifically limit the fifth frequency band.
  • the second excitation current I2 can excite the antenna device 100 to operate in one, two or three of the third resonance, the fourth resonance and the fifth resonance, so that the antenna device 100 can simultaneously operate in one, Two or three resonances.
  • the third frequency band corresponding to the third resonance, the fourth frequency band corresponding to the fourth resonance, and the fifth frequency band corresponding to the fifth resonance may be the MHB frequency band.
  • the second excitation current I2 simultaneously excites the antenna device 100 to operate in the third resonance, the fourth resonance and the fifth resonance, the third frequency band, the fourth frequency band and the fifth frequency band can jointly cover the MHB frequency band.
  • FIG. 13 is a schematic diagram of an S11 parameter curve of the antenna device 100 shown in FIG. 8 .
  • Curve L2 in Figure 13 is the curve of S11 formed by the antenna device 100 under the excitation of the second excitation current I2.
  • the antenna device 100 can generate three resonances - the third resonance A3, the fourth resonance A4 and The fifth resonance A5, and the frequency bands corresponding to the three resonances can jointly achieve the mid-to-high frequency wide band coverage requirements, and the third to fifth frequency bands can jointly cover 1000MHz to 3000MHz.
  • the second excitation current I2 provided by the second feed source 172 can make the second radiator 120 work at the third resonance, and can also make the third conductor segment Z3 on the second radiator 120 work.
  • the first radiator 110 can also be made to work in the fifth resonance.
  • the three resonances can expand the bandwidth of the antenna device 100 and improve the transmission performance of the antenna device 100; on the other hand, the first radiator 110 , the second radiator 120 can be multiplexed, and the antenna device 100 can be designed to be miniaturized.
  • the first feed 171 in the embodiment of the present application can work alone so that the antenna device 100 can work in one or both of the first resonance and the second resonance.
  • the second feed source 172 in the embodiment of the present application can also work alone so that the antenna device 100 can work in one, two or three of the third resonance, the fourth resonance and the fifth resonance.
  • Figure 14 is a fourth structural schematic diagram of the antenna device 100 provided by the embodiment of the present application.
  • the first feed source 171 and the second feed source 172 of the embodiment of the present application can also work at the same time, so that the antenna
  • the device 100 may operate at one or two of the first resonance, the second resonance and one, two or three of the third resonance, the fourth resonance and the fifth resonance.
  • FIG. 15 is a schematic diagram of the S-parameter curve when the first feed source 171 and the second feed source 172 of the antenna device 100 shown in FIG. 14 operate simultaneously.
  • Curve L3 in FIG. 15 is the S11 curve when the first feed source 171 provides the first excitation current I1 so that the antenna device 100 operates at the first resonance and the second resonance.
  • the L3 curve is the aforementioned L1 curve.
  • Curve L4 in FIG. 13 is the S11 curve when the second feed source 172 provides the second excitation current I2 so that the antenna device 100 operates at the third resonance, the fourth resonance and the fifth resonance.
  • L4 is the aforementioned L2 curve.
  • Curve L5 in Figure 15 is the isolation curve (S12 curve) when the first feed source 171 and the second feed source 172 work at the same time. It can be seen from the curve L5 that when the first feed source 171 and the second feed source 172 work at the same time, , the above-mentioned first to fifth resonances can effectively work independently, the isolation between each resonance meets the requirements, and the mutual interference between the first feed source 171 and the second feed source 172 is small.
  • the first matching circuit 181 can effectively short-circuit the first excitation current provided by the first feed source 171
  • Antenna device 100 may not include second feed 172 .
  • the first matching circuit 181 may be open-circuited to the second excitation current provided by the second feed source 172, or the antenna device 100 may not be provided with a third resonance.
  • the antenna device 100 may not include the first feed source 171.
  • the antenna device 100 When the antenna device 100 operates in the first resonance to the fifth resonance at the same time, at this time, the antenna device 100 may include the first feed source 171 and the second feed source 172 at the same time, and the first matching circuit 181 may match the first feed source 171 A short circuit of the first excitation current provided may also be an open circuit of the second excitation current provided by the second feed 172 .
  • FIG. 16 is a schematic structural diagram of the first matching circuit 181 shown in FIG. 14 .
  • the first matching circuit 181 may include a first inductor L1 and a first capacitor C1 , which may be connected in series between the electrical connection point 124 of the second radiator 120 and the ground plane.
  • the first matching circuit 181 can either short-circuit the excitation current provided by the first feed source 171 or open-circuit the excitation current provided by the second feed source 172 .
  • the second radiator 120, the first capacitor C1, the first inductor L1 and the ground plane can be connected in series in sequence.
  • one end of the first capacitor C1 may be directly or indirectly electrically connected to the electrical connection point 124 of the second radiator 120, and the other end of the first capacitor C1 may be directly or indirectly electrically connected to one end of the first inductor L1.
  • the first inductor The other end of L1 can be electrically connected to the ground plane to achieve grounding.
  • the electrical connection point 124, the first inductor L1, the first capacitor C1 and the ground plane can also be connected in series.
  • the embodiment of the present application does not limit the specific manner in which the first inductor L1 and the first capacitor C1 are connected in series to the electrical connection point 124 and the ground plane.
  • the structure of the first matching circuit 181 is not limited to the above description.
  • the first matching circuit 181 may also include an inductor device connected in parallel to both ends of the first capacitor C1, or the first matching circuit 181 may also It may include an integral inductor device and a capacitor device connected in series in parallel to both ends of the first capacitor C1.
  • the embodiment of the present application does not limit the specific structure of the first matching circuit 181.
  • the antenna device 100 of the embodiment of the present application may further include a third matching circuit 183.
  • the third matching circuit 183 may be connected in series between the second feed source 172 and the second feed point 123.
  • the matching circuit 183 can perform impedance matching on the second excitation current I2 provided by the second feed source 172, so that the antenna device 100 can operate in at least one of the third resonance, the fourth resonance, and the fifth resonance.
  • the third matching circuit 183 may include one or more electronic devices such as capacitors, inductors, switches, etc., formed in series or parallel.
  • FIG. 17 is a schematic structural diagram of the third matching circuit 183 shown in FIG. 14 .
  • the third matching circuit 183 may include a fourth inductor L4, a fourth capacitor C4, a fifth inductor L5, and a fifth capacitor C5.
  • One end of the fifth inductor L5 may be directly or indirectly electrically connected to the second feed source 172.
  • the other end of the fifth inductor L5 may be directly or indirectly electrically connected to one end of the fifth capacitor C5.
  • the other end of the fifth capacitor C5 may be directly or indirectly connected.
  • One end of the fourth inductor L4 and one end of the fourth capacitor C4 may be directly or indirectly electrically connected between the fifth inductor L5 and the second feed source 172 , and the other end of the fourth inductor L4 and the other end of the fourth capacitor C4 are both connected to
  • the ground plane is directly or indirectly electrically connected to achieve grounding, and the fourth inductor L4 and the fourth capacitor C4 can be connected in parallel with each other.
  • the above is only an exemplary description of the third matching circuit 183 in the embodiment of the present application.
  • the structure of the third matching circuit 183 is not limited. For example, but not limited to, it can also be between the second feed source 172 and the second radiation. Another inductor device and capacitor device are connected in series between the bodies 120 .
  • the embodiment of the present application does not limit the specific structure of the third matching circuit 183.
  • Other structures that can adjust the impedance matching of the excitation current provided by the first feed source 171 can be within the protection scope of the embodiment of the present application.
  • FIG. 18 is a fifth structural schematic diagram of the antenna device 100 provided by the embodiment of the present application.
  • the antenna device 100 of the embodiment of the present application may include a third radiator 130 and a third feed source 173 .
  • the third radiator 130 may include a fifth end 131 , a sixth end 132 and a third feed point 133 , and the third feed point 133 may be disposed between the fifth end 131 and the sixth end 132 . It can be understood that the third radiator 130 may be located on one side of the first radiator 110 and the second radiator 120 , so that the second radiator 120 may be located between the first radiator 110 and the third radiator 130 .
  • the fifth end 131 of the third radiator 130 can be directly or indirectly electrically connected to the ground plane to achieve grounding, and the sixth end 132 of the third radiator 130 can extend in a direction away from the first radiator 110 and the second radiator 120 , the fifth end 131 may be located between the sixth end 132 and the second radiator 120 .
  • the fourth conductor segment Z4 may be between the fifth end 131 and the third feed point 133 of the third radiator 130, and the fifth conductor may be between the third feed point 133 and the sixth end 132.
  • Segment Z5 the third radiator 130 may include a fourth conductor segment Z4 and a fifth conductor segment Z5.
  • the third feed source 173 may be directly or indirectly electrically connected to the third feed point 133 to realize the electrical connection between the third feed source 173 and the third radiator 130 .
  • the third feed source 173 may provide an excitation current such as, but not limited to, a third excitation current I3.
  • FIG. 19 is a first current schematic diagram of the antenna device 100 shown in FIG. 18 .
  • the third excitation current I3 may flow to the third radiator 130 through the third feed source 173 , and the third excitation current I3 may excite the fourth conductor between the fifth end 131 of the third radiator 130 and the third feed point 133 Section Z4 works at the sixth resonance of the sixth frequency band.
  • the third excitation current I3 can excite the fourth conductor segment Z4 to operate at the sixth resonance in the one-eighth wavelength mode, and the flow direction of the third excitation current I3 on the third radiator 130 can be in the same direction, for example But it is not limited to flowing from the third feed point 133 to the fifth end 131 .
  • the second radiator 120 can also work in the third resonance in other modes, such as but not limited to one-half wavelength mode, three-quarter wavelength mode, quarter-wavelength mode, etc., this application The examples do not limit this.
  • FIG. 20 is a second current schematic diagram of the antenna device 100 shown in FIG. 18 .
  • the third excitation current I3 can flow to the third radiator 130 through the third feed source 173, and can excite the fifth conductor section Z5 between the third feed point 133 and the sixth end 132 of the third radiator 130 to work.
  • the seventh resonance and supports the transmission of the seventh wireless signal.
  • the seventh resonance may be different from the sixth resonance, and the seventh frequency band corresponding to the seventh resonance may be different from the sixth frequency band corresponding to the sixth resonance.
  • the fifth conductor segment Z5 between the third feed point 133 and the sixth end 132 of the third radiator 130 can operate in the sixth resonance in the quarter-wavelength mode, and the third excitation current I3 is
  • the flow directions on the fifth conductor section Z5 may be the same, for example but not limited to, the third excitation current I3 may flow from the third feed point 133 to the sixth end 132 .
  • the fifth conductor segment Z5 can also work in the seventh resonance in other modes, such as but not limited to one-half wavelength mode, three-quarter wavelength mode, one-eighth wavelength mode, etc., this application The examples do not limit this.
  • the sixth frequency band corresponding to the sixth resonance may be the frequency band corresponding to the GPS signal or the frequency band corresponding to Wi-Fi 2.4G.
  • the seventh frequency band corresponding to the seventh resonance may be the frequency band corresponding to the GPS signal or the frequency band corresponding to Wi-Fi 2.4G.
  • the resonance point frequency of the sixth resonance can be near 1170MHz
  • the sixth frequency band corresponding to the sixth resonance can be the frequency band corresponding to the GPS signal
  • the resonance point frequency of the seventh resonance can be near 2400MHz
  • the seventh frequency band corresponding to the seventh resonance can be It is the frequency band corresponding to Wi-Fi2.4G.
  • the sixth frequency band can also be made into other frequency bands; by adjusting the branch length of the fifth conductor segment Z5, the fifth conductor segment The impedance of the matching circuit electrically connected to segment Z5 can also make the seventh frequency band be another frequency band.
  • the embodiment of the present application does not specifically limit the sixth frequency band.
  • the third radiator 130 can work at the sixth resonance and the seventh resonance under the action of the third excitation current I3 provided by the third feed source 173.
  • the antenna device 100 can be expanded. Bandwidth; on the other hand, the third radiator 130 realizes multiplexing, which can realize the miniaturization design of the antenna device 100.
  • FIG. 21 is a sixth structural schematic diagram of the antenna device 100 provided by an embodiment of the present application.
  • the antenna device 100 may include a fourth radiator 140 .
  • the fourth radiator 140 may include a seventh end 141 and an eighth end 142.
  • the seventh end 141 may be located on the side where the sixth end 132 of the third radiator 130 is located.
  • the eighth end 142 may be along a direction away from the third radiator 130 . extends in the direction of 130 and is grounded, the seventh end 141 may be located between the eighth end 142 and the third radiator 130, the third radiator 130 may be located between the second radiator 120 and the fourth radiator 140, the fourth radiator A second coupling gap 102 may be provided between the seventh end 141 and the sixth end 132 of the body 140 so that the fourth radiator 140 may be spaced apart from the third radiator 130 .
  • the third feed 173 may also provide a third excitation current. Please refer to FIG. 22 in combination with FIG. 21 .
  • FIG. 22 is a first current schematic diagram of the antenna device 100 shown in FIG. 21 .
  • the third excitation current I3 may flow to the third radiator 130 through the third feed source 173 and be (electromagnetically) coupled to the fourth radiator 140 through the second coupling gap 102.
  • the third excitation current I3 may excite the fourth radiator 140.
  • Working at the eighth resonance of the eighth frequency band. The eighth resonance may be different from the sixth resonance or the seventh resonance.
  • the third excitation current I3 can excite the fourth radiator 140 to operate at the eighth resonance in a quarter-wavelength mode, and the third excitation current I3 can flow in the same direction on the fourth radiator 140, for example But it is not limited to flowing from the seventh end 141 to the eighth end 142 .
  • the fourth radiator 140 can also work in the eighth resonance in other modes, such as but not limited to one-half wavelength mode, three-quarter wavelength mode, one-eighth wavelength mode, etc., this application The examples do not limit this.
  • the eighth frequency band corresponding to the eighth resonance may be, but is not limited to, the frequency band corresponding to the GPS signal or the frequency band corresponding to Wi-Fi 2.4G.
  • the eighth frequency band may be different from the sixth frequency band or the seventh frequency band.
  • the resonance point frequency of the sixth resonance may be around 1170 MHz
  • the resonance point frequency of the seventh resonance may be around 2400 MHz
  • the resonance point frequency of the eighth resonance may be around 2900 MHz.
  • Figure 23 is a schematic diagram of an S parameter curve when the third feed source 173 of the antenna device 100 shown in Figure 21 is working. Curve L6 in Figure 23 provides the third feed source 173 with a third The S11 curve of the antenna device 100 when the current I3 is excited and the antenna device 100 is simultaneously operated at the sixth resonance, the seventh resonance and the eighth resonance.
  • the antenna device 100 can generate three resonances - the sixth resonance A6, the sixth resonance A6 and the eighth resonance A6.
  • the seventh resonance A7 and the eighth resonance A8, and the frequency bands corresponding to these three resonances can jointly achieve the wide-band coverage requirements from the GPS frequency band to the Wi-Fi 2.4G frequency band.
  • the antenna device 100 in the embodiment of the present application may further include a fourth feed source 174.
  • the fourth feed source 174 may be electrically connected to the fourth radiator 140 directly or indirectly.
  • the fourth radiator 140 may further include a fourth feed point 143, which may be disposed between the seventh end 141 and the eighth end 142.
  • the fourth feed point 143 to the seventh end 141 There may be a sixth conductor segment Z6 in between.
  • the fourth feed source 174 may be electrically connected to the fourth feed point 143 directly or indirectly.
  • the fourth feed source 174 may provide an excitation current, such as but not limited to providing a fourth excitation current, to excite the antenna device 100 to operate at a corresponding resonance.
  • FIG. 24 is a second current schematic diagram of the antenna device 100 shown in FIG. 21 .
  • the fourth excitation current I4 may flow to the fourth radiator 140 through the fourth feed source 174 and may be coupled to the third radiator 130 through the second coupling gap 102.
  • the fourth excitation current I4 may excite the fourth radiator 140.
  • the sixth conductor segment Z6 between the fourth feed point 143 and the seventh end 141 and the fifth conductor segment Z5 between the third feed point 133 and the sixth end 132 of the third radiator 130 work together in the ninth The ninth resonance of the frequency band;
  • the sixth conductor segment Z6 and the fifth conductor segment Z5 can work together at the ninth resonance in a quarter-wavelength mode, and the fourth excitation current I4 flows on the sixth conductor segment Z6 and the fifth conductor segment Z5
  • the flow direction may be in the same direction, for example but not limited to, may flow from the fourth feed point 143 toward the third feed point 133 .
  • the sixth conductor segment Z6 and the fifth conductor segment Z5 can also work in the ninth resonance in other modes, such as but not limited to one-half wavelength mode, three-quarter wavelength mode, one-eighth wavelength mode, etc. Modality, etc., are not limited in the embodiments of this application.
  • Figure 25 is a third current schematic diagram of the antenna device 100 shown in Figure 21.
  • the fourth excitation current I4 can flow to the fourth radiator 140 through the fourth feed source 174, and can excite the sixth conductor section Z6 between the fourth feed point 143 and the seventh end 141 of the fourth radiator 140 to work.
  • the tenth resonance may be different from the ninth resonance.
  • the sixth conductor segment Z6 can work alone at the tenth resonance in a quarter-wavelength mode, and the fourth excitation current I4 can flow in the same direction on the sixth conductor segment Z6, for example but not limited to from the fourth The feed point 143 flows in the direction of the seventh end 141 .
  • the sixth conductor segment Z6 can also work in the tenth resonance in other modes, such as but not limited to one-half wavelength mode, three-quarter wavelength mode, one-eighth wavelength mode, etc., this application The examples do not limit this.
  • FIG. 26 is a fourth current schematic diagram of the antenna device 100 shown in FIG. 21 .
  • the fourth excitation current I4 can flow to the fourth radiator 140 through the fourth feed source 174 and can be coupled to the third radiator 130 through the second coupling gap 102.
  • the fourth excitation current I4 can excite the third radiator 130.
  • the eleventh resonance working in the eleventh frequency band, the eleventh resonance may be different from the ninth resonance, or may be different from the tenth resonance, for example, The center frequency of the ninth resonance, the center frequency of the tenth resonance, and the center frequency of the eleventh resonance are all different.
  • the third radiator 130 can work alone at the eleventh resonance in the three-quarter wavelength mode, and the fourth excitation current I4 can be between the sixth end 132 and the seventh end 141 of the third radiator 130 There is a current zero point on , and the flow direction of the fourth excitation current I4 on the branch from the sixth terminal 132 to the current zero point may be opposite to the flow direction on the branch from the seventh terminal 141 to the current zero point.
  • the third radiator 130 can also work in the eleventh resonance in other modes, such as but not limited to a half-wavelength mode, a quarter-wavelength mode, an eighth-wavelength mode, etc. This invention The application examples do not limit this.
  • the ninth frequency band corresponding to the ninth resonance, the tenth frequency band corresponding to the tenth resonance, and the eleventh frequency band corresponding to the eleventh resonance can all be ultra-high frequency bands, such as but not limited to the N78 frequency band, Wi -Fi’s 5G frequency band.
  • the ninth frequency band, the tenth frequency band, and the eleventh frequency band can also be made to Other ultra-high frequency bands are not specifically limited in the embodiments of this application.
  • the fourth excitation current I4 can excite the antenna device 100 to operate in one, two, or three of the ninth resonance, the tenth resonance, and the eleventh resonance.
  • One, two or three of the ninth frequency band corresponding to the ninth resonance, the tenth frequency band corresponding to the tenth resonance, and the eleventh frequency band corresponding to the eleventh resonance can support the 5G frequency band of UHB or Wi-Fi.
  • the antenna device 100 operates at the ninth resonance, the tenth resonance, and the eleventh resonance at the same time, the ninth frequency band, the tenth frequency band, and the eleventh frequency band can jointly cover the 5G frequency band of UHB and Wi-Fi.
  • Curve L7 in Figure 27 is the S11 parameter curve when the fourth excitation current I4 excites the antenna device 100 while working at the ninth resonance, the tenth resonance and the eleventh resonance. It can be seen from the curve L7 that the antenna device 100 can generate three Resonance - the ninth resonance A9, the tenth resonance A10 and the eleventh resonance A11. Among them, the frequency of the ninth resonance can be around 3.5GHz, the frequency of the tenth resonance can be around 5.2GHz, and the frequency of the eleventh resonance can be around 5.2GHz. The point can be around 6.0GHz. The ninth resonance, the tenth resonance, and the eleventh resonance can jointly achieve the wide-band coverage requirements of the 5G frequency band of UHB and Wi-Fi.
  • the antenna device 100 in the embodiment of the present application can work in three resonances under the action of the excitation current provided by the fourth feed source 174.
  • the bandwidth of the antenna device 100 can be expanded; on the other hand, the third resonance
  • the radiator 130 and the fourth radiator 140 are multiplexed, so that the antenna device 100 can be designed to be miniaturized.
  • the third feed source 173 in the embodiment of the present application can work alone so that the antenna device 100 can work in one or more of the sixth resonance, the seventh resonance, and the eighth resonance; the fourth feed source in the embodiment of the present application 174 can also work alone so that the antenna device 100 can work at one or more of the ninth resonance, the tenth resonance, and the eleventh resonance.
  • the third feed source 173 and the fourth feed source 174 in the embodiment of the present application can also work at the same time, so that the antenna device 100 can work in one or more of the sixth resonance, the seventh resonance, the eighth resonance and the third resonance.
  • FIG. 28 is a schematic diagram of an S-parameter curve when the third feed source 173 and the fourth feed source 174 of the antenna device 100 shown in FIG. 21 work simultaneously.
  • Curve L8 in Figure 28 is the S11 parameter curve when the third feed source 173 excites the antenna device 100 when operating at the sixth resonance, the seventh resonance, and the eighth resonance, and L8 is the aforementioned L6.
  • Curve L9 in Figure 28 is the S11 parameter curve when the fourth feed source 174 excites the antenna device 100 when it operates at the ninth resonance, the tenth resonance and the eleventh resonance, and L9 is the aforementioned L7.
  • Curve L10 in Figure 28 is the isolation curve when the third feed source 173 and the fourth feed source 174 work at the same time.
  • the antenna device 100 may further include a fourth matching circuit 184.
  • the fourth matching circuit 184 may be connected in series between the third feed source 173 and the third feed point 133 of the third radiator 130 .
  • the fourth matching circuit 184 can perform impedance matching on the third excitation current provided by the third feed source 173 so that the antenna device 100 can operate at the sixth resonance. At least one of the seventh resonance and the eighth resonance.
  • the fourth matching circuit 184 can also short-circuit the fourth excitation current I4.
  • the fourth excitation current I4 can be grounded through the fourth matching circuit 184 without flowing into the third feed source 173 .
  • the fourth matching circuit 184 may include one or more electronic devices such as capacitors, inductors, switches, etc. formed in series or parallel.
  • FIG. 29 is a schematic structural diagram of the fourth matching circuit 184 shown in FIG. 21 .
  • the fourth matching circuit 184 may include a sixth capacitor C6, a sixth inductor L6, a seventh capacitor C7, a seventh inductor L7, an eighth capacitor C8, an eighth inductor L8, a ninth capacitor C9 and a tenth capacitor C10.
  • the sixth capacitor C6, the eighth capacitor C8, and the tenth capacitor C10 may be connected in series between the third feed source 173 and the third feed point 133 of the third radiator 130.
  • one end of the sixth capacitor C6 may be directly connected to the third feed point 133 of the third radiator 130. or indirectly electrically connected to the third feed source 173.
  • the other end of the sixth capacitor C6 can be directly or indirectly electrically connected to one end of the eighth capacitor C8.
  • the other end of the eighth capacitor C8 can be directly or indirectly electrically connected to the tenth capacitor C10.
  • One end of the tenth capacitor C10 and the other end of the tenth capacitor C10 may be directly or indirectly electrically connected to the third feed point 133 of the third radiator 130 .
  • One end of the sixth inductor L6 may be electrically connected between the sixth capacitor C6 and the eighth capacitor C8, and the other end of the sixth inductor L6 may be grounded.
  • One end of the seventh capacitor C7 may also be electrically connected between the sixth capacitor C6 and the eighth capacitor C8, and the other end of the seventh capacitor C7 may be grounded.
  • One end of the seventh inductor L7 can be electrically connected between the eighth capacitor C8 and the sixth capacitor C6, and the other end of the seventh inductor L7 can be electrically connected between the eighth capacitor C8 and the tenth capacitor C10.
  • the seventh inductor L7 can Connected in parallel to both ends of the eighth capacitor C8.
  • One end of the eighth inductor L8 may be electrically connected between the eighth capacitor C8 and the tenth capacitor C10, and the other end of the eighth inductor L8 may be grounded.
  • One end of the ninth capacitor C9 may be electrically connected between the eighth capacitor C8 and the tenth capacitor C10, and the other end of the ninth capacitor C9 may be grounded.
  • the fourth matching circuit 184 in the embodiment of the present application can only perform impedance matching adjustment on the excitation current provided by the third feed source 173, or can only short-circuit the fourth excitation current I4 provided by the fourth feed source 174. It is also possible to perform impedance matching adjustment on the excitation current provided by the third feed source 173 and short-circuit the fourth excitation current I4 provided by the fourth feed source 174 at the same time.
  • the fourth matching circuit 184 in the embodiment of the present application.
  • the structure of the fourth matching circuit 184 is not limited. For example, but not limited to, it can also be provided between the third feed source 173 and the third radiation.
  • Another inductor device and capacitor device are connected in series between the bodies 130 .
  • the embodiment of the present application does not limit the specific structure of the fourth matching circuit 184.
  • the fourth matching circuit 184 in the embodiment of the present application can not only perform impedance matching on the excitation current provided by the third feed source 173, but also can short-circuit the fourth excitation current I4 provided by the fourth feed source 174.
  • the fourth matching circuit 184 can tune the sixth resonance, the seventh resonance, and the eighth resonance so that the antenna device 100 can support this frequency band; on the other hand, the fourth excitation current I4 will not flow into the third feed source 173 but will affect the third feed source 173 Interference occurs, and the mutual interference is smaller when the third feed source 173 and the fourth feed source 174 work simultaneously.
  • the antenna device 100 may further include a fifth matching circuit 185 .
  • the fifth matching circuit 185 may be connected in series between the fourth feed source 174 and the fourth feed point 143 of the fourth radiator 140 .
  • the fifth matching circuit 185 may perform impedance matching on the excitation current provided by the fourth feed source 174 .
  • the fifth matching circuit 185 can perform impedance matching on the fourth excitation current I4 provided by the fourth feed source 174 so that the antenna device 100 can operate in at least one of the ninth resonance, the tenth resonance, and the eleventh resonance.
  • the fourth matching circuit 184 may include one or more electronic devices such as capacitors, inductors, switches, etc. formed in series or parallel.
  • FIG. 30 is a schematic structural diagram of the fifth matching circuit 185 shown in FIG. 21 .
  • the fifth matching circuit 185 may include a ninth inductor L9, an eleventh capacitor C11, a tenth inductor L10, a twelfth capacitor C12, and an eleventh inductor L11.
  • the ninth inductor L9 and the twelfth capacitor C12 may be connected in series between the fourth feed source 174 and the fourth feed point 143 of the fourth radiator 140.
  • one end of the ninth inductor L9 may be directly or indirectly electrically connected to The fourth feed source 174 and the other end of the ninth inductor L9 can be directly or indirectly electrically connected to one end of the twelfth capacitor C12, and the other end of the twelfth capacitor C12 can be directly or indirectly electrically connected to the fourth radiator 140.
  • One end of the eleventh capacitor C11 may be directly or indirectly electrically connected between the ninth inductor L9 and the twelfth capacitor C12, and the other end of the eleventh capacitor C11 may be grounded.
  • the tenth inductor L10 can be connected in parallel to both ends of the twelfth capacitor C12.
  • one end of the tenth inductor L10 can be directly or indirectly electrically connected between the ninth inductor L9 and the twelfth capacitor C12, and the other end of the tenth inductor L10 It may be directly or indirectly electrically connected between the twelfth capacitor C12 and the fourth feed point 143 .
  • One end of the eleventh inductor L11 may be directly or indirectly electrically connected between the twelfth capacitor C12 and the fourth feed point 143, and the other end of the eleventh inductor L11 may be grounded.
  • the structure of the fourth matching circuit 184 is not limited to the above description.
  • the fourth matching circuit 184 may also include an inductor device and a capacitor connected in series between the ninth inductor L9 and the twelfth capacitor C12. element.
  • the embodiment of the present application does not limit the specific structure of the fourth matching circuit 184.
  • the antenna device 100 in the embodiment of the present application may include one, two, three or four of the first radiator 110, the second radiator 120, the third radiator 130 and the fourth radiator 140.
  • the antenna device 100 can operate at a resonance related to the radiator.
  • FIG. 31 is a seventh structural schematic diagram of the antenna device 100 provided by the embodiment of the present application
  • FIG. 32 is a schematic diagram of an S-parameter curve of the antenna device 100 shown in FIG. 31.
  • the antenna device 100 may simultaneously include a first radiator 110, a second radiator 120, a third radiator 130, a fourth radiator 140, a first feed source 171, a second feed source 172, a third feed source 173, and a fourth feed source 171. Feed174.
  • the curve L11 in Figure 32 is the S11 parameter when the first feed source 171 works alone.
  • curve L12 is the S11 parameter curve when the second feed source 172 works alone
  • curve L13 is the S11 parameter curve when the third feed source 173 works alone
  • curve L14 is the S11 parameter curve when the fourth feed source 174 works alone.
  • Curve L15 is the isolation curve between the first feed source 171 and the second feed source 172
  • curve L16 is the isolation curve between the first feed source 171 and the third feed source 173
  • curve L17 is the first feed source 171
  • the isolation curve between the second feed source 172 and the fourth feed source 174, the curve L18 is the isolation curve between the second feed source 172 and the third feed source 173
  • the curve L19 is the isolation curve between the second feed source 172 and the fourth feed source 174.
  • the isolation curve L20 is the isolation curve between the third feed source 173 and the fourth feed source 174 .
  • the first feed source 171 in the embodiment of the present application can enable the first radiator 110 and the second radiator 120 to achieve UHB frequency band coverage through the first matching circuit 181 and the second matching circuit 182;
  • the second feed 172 can enable the first radiator 110 and the second radiator 120 to achieve MHB frequency band coverage through the third matching circuit 183.
  • the first radiator 110 and the second radiator 120 can form a UHB+MHB antenna group, and Can be used as a gaming antenna.
  • the third feed source 173 can enable the third radiator 130 and the fourth radiator 140 to achieve GPS+Wi-Fi 2.4G frequency band coverage through the fourth matching; the fourth feed source 174 can enable the third radiator 130 through the fifth matching.
  • the fourth radiator 140 can achieve UHB+Wi-Fi 5G frequency band coverage.
  • the third radiator 130 and the fourth radiator 140 can form a GPS+Wi-Fi2.4G/Wi-Fi5G+UHB antenna group to achieve short-distance coverage. .
  • the antenna device 100 in the embodiment of the present application can work independently on one or more (two or more) of the first resonance to the eleventh resonance (or the first resonance to the twelfth resonance).
  • the antenna device 100 may include components required to operate the one or more resonances.
  • the antenna device 100 when the antenna device 100 operates at the eighth resonance, the antenna device 100 may include the third radiator 130, the third feed source 173, and the fourth radiator 140 (it may also include a matching circuit corresponding to the resonance and other required components, which will not be described in detail here, and subsequent descriptions may refer to this description); when the antenna device 100 operates at the tenth resonance, the antenna device 100 may include a fourth radiator 140 and a fourth feed source 174; when the antenna device 100 operates at the tenth resonance, When the antenna device 100 operates at the ninth resonance, the tenth resonance and the eleventh resonance, the antenna device 100 may include a fourth radiator 140, a fourth feed source 174 and a third radiator 130. As long as they do not conflict with each other, each embodiment of the present application can be implemented individually or in combination with each other, which is not limited by the embodiments of the present application.
  • FIG. 33 is a schematic structural diagram of an eighth type of antenna device 100 provided by an embodiment of the present application.
  • the antenna device 100 may also include a conductor connection section 150 .
  • One end of the conductor connection section 150 may be directly or indirectly connected to the fourth end 122 of the second radiator 120 , and the other end of the conductor connection section 150 may be directly or indirectly connected to the fifth end 131 of the third radiator 130 , so that the third The second radiator 120 , the conductor connection section 150 and the third radiator 130 can be connected in sequence to form a whole, and the conductor connection section 150 can increase the connection strength of the second radiator 120 and the third radiator 130 .
  • the conductor connection section 150 may not bear a main radiation role, and therefore the antenna device 100 may have lower requirements on the antenna environment of the conductor connection section 150 .
  • the conductor connection section 150 can be made of a narrower conductor, the height of the clearance area corresponding to the conductor connection section 150 can be lower, and the conductor connection section 150 can be made of a flexible circuit board material.
  • FIG. 34 is a schematic diagram of electrical connections of the antenna device 100 shown in FIG. 33 .
  • the second radiator 120 , the conductor connection section 150 and the third radiator 130 are connected as a whole, the second radiator 120 , the conductor connection section 150 and the third radiator 130 together form a sensing branch and are electrically connected to the Sar sensor 200 .
  • the Sar sensor 200 can determine the proximity and distance of the human head/hand through the sensing element to determine the size of the electromagnetic wave absorption rate (Specific absorption rate, referred to as "Sar").
  • the antenna device 100 may further include a sixth matching circuit 186 and a seventh matching circuit 187.
  • One end of the sixth matching circuit 186 may be directly or indirectly electrically connected to the fourth end 122 of the second radiator 120.
  • the other end of the circuit 186 can be grounded; one end of the seventh matching circuit 187 can be directly or indirectly electrically connected to the third end 121 of the third radiator 130, and the other end of the seventh matching circuit 187 can be grounded; the sixth matching circuit 186,
  • the seventh matching circuit 187 can open the detection signal provided by the Sar sensor 200 to prevent the detection signal from returning to ground.
  • the sixth matching circuit 186 and the seventh matching circuit 187 can be open-circuited to the DC signal and short-circuited to the AC signal, so that the signals provided by the first feed source 171 and the second feed source 172 can be on the second radiator 120
  • the flowing excitation current may be returned to ground from the sixth matching circuit 186
  • the excitation current provided by the third feed source 173 and the fourth feed source 174 and may flow on the third radiator 130 may be returned to ground from the seventh matching circuit 187 .
  • the sixth matching circuit 186 and the seventh matching circuit 187 can be large capacitance devices.
  • the capacitance value of the large capacitance device is between 22 pF (pico Farads) and 100 pF, so that the sensing branch can be in ""Suspended" state (a state in which DC current does not return to ground but AC current can return to ground).
  • the second radiator 120 and the third radiator 130 are connected as a whole through the conductor connection section 150.
  • the conductor connection section 150 On the one hand, there is no need to open a gap between the second radiator 120 and the third radiator 130. The gap will not affect the appearance of the antenna device 100; on the other hand, the second radiator 120, the third radiator 130 and the conductor connection section 150 are jointly multiplexed as the sensing branches of the Sar sensor 200, which can realize the miniaturization of the antenna device 100. design.
  • FIG. 35 is a ninth structural schematic diagram of the antenna device 100 provided by the embodiment of the present application.
  • the antenna device 100 may further include a fifth radiator 160 .
  • the fifth radiator 160 may be directly or indirectly electrically connected to the first feed source 171 .
  • the fifth radiator 160 may be directly or indirectly electrically connected to the second matching circuit 182 .
  • the first excitation current provided by the first feed source 171 can also excite the fifth radiator 160 to operate at the twelfth resonance of the twelfth frequency band.
  • the twelfth resonance may be different from the first resonance and the second resonance.
  • the twelfth frequency band corresponding to the twelfth resonance may be the UHB frequency band.
  • the twelfth frequency band may include the N79 frequency band.
  • the fifth radiator 160 can also operate on wireless signals in other frequency bands, which will not be described in detail here.
  • the fifth radiator 160 can be spaced apart from the first radiator 110 , and the fifth radiator 160 can also be directly or indirectly connected to the first radiator 110 as a whole.
  • the antenna forms of the fifth radiator 160 and the first radiator 110 may be the same or different; for example, but not limited to, the first radiator 110 is a frame 420 antenna, and the fifth radiator 160 is an FPC antenna or an LDS antenna. It should be noted that the embodiments of the present application do not specifically limit the specific placement positions, formation methods, and supported frequency bands of the first radiator 110 and the fifth radiator 160 .
  • the antenna device 100 may further include a matching circuit such as a tenth matching circuit 188 , and the tenth matching circuit 188 may be connected in series between the fifth radiator 160 and the first feed source 171 .
  • the excitation current fed into the fifth radiator 160 by the first feed source 171 is impedance matched.
  • the antenna device 100 when the first feed source 171 provides the first excitation current I1, the antenna device 100 can support the N78 and N79 frequency bands of UHB, and the first radiator 110 and the second radiator 120 adopt common aperture technology. , which can not only improve the spatial reuse rate of the antenna, but also ensure the radiation performance of the game antenna.
  • an embodiment of the present application also provides an electronic device 10.
  • the electronic device 10 may be a smartphone, a tablet computer, etc., or may also be a game device, an augmented reality (Augmented Reality, AR) device, Automotive devices, data storage devices, audio playback devices, video playback devices, laptop computers, desktop computing equipment, etc.
  • FIG. 36 is a first structural schematic diagram of an electronic device 10 provided by an embodiment of the present application.
  • the electronic device 10 may include the antenna device 100 in any of the above embodiments.
  • the electronic device 10 may also include a display screen 300, a middle frame 400, a circuit board 500, a battery 600 and a back case 700.
  • the display screen 300 is disposed on the middle frame 400 to form a display surface of the electronic device 10 for displaying information such as images, text, etc.
  • the display screen 300 may include a liquid crystal display (LCD) or an organic light-emitting diode (OLED) display.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the middle frame 400 may include a middle plate 410 and a frame 420.
  • the middle plate 410 may be a thin plate or sheet-like structure, and the frame 420 may be a hollow frame structure.
  • the middle frame 400 is used to provide support for electronic devices or functional components in the electronic device 10 so as to install the electronic devices and functional components of the electronic device 10 together.
  • structures such as grooves, protrusions, and through holes may be provided on the middle frame 400 to facilitate the installation of electronic devices or functional components of the electronic device 10 .
  • the material of the middle frame 400 may include metal or plastic.
  • the circuit board 500 is disposed on the middle frame 400 for fixation, and the circuit board 500 is sealed inside the electronic device 10 through the rear case 700 .
  • the circuit board 500 can be integrated with a processor, and can also be integrated with one or more functional components such as a headphone jack, an acceleration sensor, a gyroscope, and a motor.
  • the display screen 300 can be electrically connected to the circuit board 500 to control the display of the display screen 300 through the processor on the circuit board 500 .
  • one or more of the above-mentioned feed sources and adjustment circuits of the electronic device 10 may be disposed on the circuit board 500 .
  • the above components can also be provided on a small board of the electronic device 10, which is not limited here.
  • the battery 600 is disposed on the middle frame 400 and is sealed inside the electronic device 10 through the rear case 700 . At the same time, the battery 600 is electrically connected to the circuit board 500 so that the battery 600 can power the electronic device 10 .
  • the circuit board 500 may be provided with a power management circuit. The power management circuit is used to distribute the voltage provided by the battery 600 to various electronic devices in the electronic device 10 .
  • the rear case 700 is connected to the middle frame 400 .
  • the rear case 700 can be attached to the middle frame 400 through an adhesive such as double-sided tape to achieve connection with the middle frame 400 .
  • the back case 700 is used to seal the electronic devices and functional components of the electronic device 10 inside the electronic device 10 together with the middle frame 400 and the display screen 300 to protect the electronic devices and functional components of the electronic device 10 .
  • FIG. 37 is a second structural schematic diagram of the electronic device 10 provided by the embodiment of the present application.
  • Figure 36 is a front view of the electronic device
  • Figure 37 is a back view of the electronic device 10.
  • the front of the electronic device 10 is the display screen 300 and the back is the back shell 700.
  • the front of the electronic device 10 is There is a rear shell 700 and a display screen 300 on the back.
  • the electronic device 10 may include a bezel 420 such as a long bezel 421 .
  • the long frame 421 may be a frame 420 of the electronic device 10.
  • the electronic device 10 may also include a short frame 422 arranged opposite to the long frame 421.
  • the length of the short frame 422 may be less than the length of the long frame 421.
  • the short frame 422 may be But it is not limited to being directly or indirectly connected to the long frame 421 .
  • the antenna device 100 may be disposed relative to the frame 420 of the electronic device 10 .
  • the first radiator 110 and the second radiator 120 of the antenna device 100 may be disposed relative to the long frame 421 of the electronic device 10 .
  • the long frame 421 is a conductor structure
  • the first radiator 110 and the second radiator 120 can be formed on the long frame 421 by opening slits to form radiation branches (at this time, the first radiator 110,
  • the projection of the second radiator 120 is located on the long frame 421 ); for another example, the first radiator 110 and the second radiator 120 can also be directly or indirectly connected to the long frame 421 and the first radiator 110 and the second radiator
  • the projection of 120 may be located on the long border 421; for another example, the first radiator 110 and the second radiator 120 may be spaced apart from the long border 421 but the projections of the first radiator 110 and the second radiator 120 are located on the long border 421.
  • the embodiment of the present application does not limit the specific structures of the first radiator 110, the second radiator 120 and the long frame 4
  • the electronic device 10 may have a horizontal screen holding scene and a vertical screen holding scene.
  • the vertical screen holding scenario refers to the user placing the electronic device 10 vertically so that the short frame 422 of the electronic device 10 is at the top or bottom of the electronic device 10 (as shown in Figure 37 , which illustrates that the electronic device 10 is in a vertical screen. schematic diagram of the state), at this time, the short frame 422 at the bottom of the electronic device 10 is often covered when the user holds the electronic device 10 .
  • Fig. 37 and Fig. 38 is an application scenario diagram of the electronic device 10 shown in Fig. 37. In Figure 38, the electronic device 10 has a display screen on the front and a back shell 700 on the back.
  • the left part of 10 is the upper half of the display screen 300 in the portrait mode, and the left part of the electronic device 10 is the lower half of the display screen 300 in the portrait mode.
  • the horizontal screen holding scenario refers to the user placing the electronic device 10 horizontally so that the long frame 421 of the electronic device 10 is at the top or bottom of the electronic device 10. Since the length of the long frame 421 is long, the user often holds the electronic device 10 at this time. To cover part of the long border 421 at the bottom of the electronic device 10, the area of the long border 421 that is difficult to cover when the user holds the screen horizontally can be used as a preset area of the long border 421.
  • the electronic device 10 can have the first radiator 110 and the second radiator 120 arranged relative to the preset area, so that the electronic device 10 is in a horizontal screen hand holding scenario, and the user at least does not The first coupling gap 101 is covered, so that the user's hand holding behavior is not likely to affect the first excitation current I1.
  • the first excitation current I1 is electromagnetically coupled to the second radiator 120 through the first coupling gap 101 to work at the first resonance and the second resonance. Resonance is not easily affected by the coupling of the second excitation current I2 to the first radiator 110 through the first coupling gap 101 to work at the fifth resonance.
  • the antenna device 100 and the electronic device 10 can also have better antennas in the user's hand scenario. performance.
  • FIG. 39 is a schematic diagram of the system efficiency curve when the electronic device 10 shown in FIG. 38 supports wireless signals in the horizontal screen holding state and the non-hand holding state.
  • Curve L21 in Figure 39 is the system efficiency curve of the antenna device 100 when the first feed source 171 of the electronic device 10 is operated in the non-hand-held state;
  • curve L22 is the system efficiency curve of the electronic device 10 when the second feed source 172 is operated in the non-hand-held state.
  • the system efficiency curve of the antenna device 100 of The system efficiency curve of the antenna device 100 when the second feed source 172 is working is shown below.
  • the first radiator 110 and the second radiator 120 can be positioned relative to the top of the electronic device 10 in the horizontal screen holding state. Long border 421 settings.
  • the range of the preset area can be adjusted, so that in the horizontal screen holding scenario, the user does not need to hold the first radiator 110 and the second radiator 120. To further reduce the impact of hand holding on the performance of the antenna device 100.
  • the range of the preset area can also be adjusted so that the user can block part or all of the first radiator 110 and the second radiator 120 without blocking the first coupling gap 101 .
  • the embodiment of the present application does not limit the specific placement positions of the first radiator 110 and the second radiator 120 .
  • the first radiator 110 and the second radiator 120 are arranged relative to the long frame 421 of the electronic device 10. It is not easy for the user to cover the first coupling gap 101 in the horizontal screen holding scenario. The user holds the pair of electronic devices. Device 10 has less impact.
  • FIG. 40 is a third structural schematic diagram of the electronic device 10 provided by an embodiment of the present application
  • FIG. 41 is a fourth structural schematic diagram of the electronic device 10 provided by an embodiment of the present application.
  • the electronic device 10 has a rear case 700 on the front and a display screen 300 on the back.
  • the electronic device 10 may include a long frame 421 and a short frame 422 that are bent and connected to each other.
  • the first radiator 110 and the second radiator 120 may be disposed relative to the long frame 421; part of the third radiator 130 may be disposed relative to the long frame 421, and another part of the third radiator 130 may be disposed relative to the short frame 422.
  • the fourth radiator 140 It can be set relative to the short frame 422; thus, the MHB+UHB game antenna group composed of the first radiator 110 and the second radiator 120 can be set relative to the long frame 421; the GPS composed of the third radiator 130 and the fourth radiator 140
  • the +Wi-Fi2.4G/5G+UHB antenna group can be set relative to the corner of the electronic device 10; the conductor connection section 150 between the second radiator 120 and the third radiator 130 is set relative to the long frame 421 and can be reused as an electronic device. Key structure of device 10.
  • the electronic device 10 may include one or more (two or more) of the first radiator 110 , the second radiator 120 , the third radiator 130 , the fourth radiator 140 and the conductor connecting section 150 . ), the embodiments of this application will not describe this in detail.
  • the above-mentioned arrangement of the radiator relative to the long/short frame 422 may mean that the radiator is formed on the long/short frame 422 of the conductor structure, or it may mean that the radiator is directly or indirectly connected to the long/short frame 422 above and projected on the long/short frame 422, which may also refer to that the radiator is spaced apart from the long/short frame 422 but projected on the long/short frame 422.
  • the embodiment of the present application does not limit the specific location of the above-mentioned radiator.
  • the first radiator 110 and the second radiator 120 can form an aperture antenna and realize a switch-less broadband game antenna covering the MHB+UHB frequency band.
  • the first radiator 110 Using a common aperture mode with the second radiator 120 can meet domestic and foreign UHB-N77/N78 wide-band (3300MHz-4100MHz) coverage requirements; on the other hand, the common aperture mode space utilization rate is high, which is conducive to better overall machine performance.
  • the antenna device 100 can achieve wide-band coverage without switching, effectively saving the internal space of the electronic device 10 and reducing the overall cost; at the same time, the first radiator 110 and the second radiator 120 are arranged relative to the long frame 421 , the radiation performance of the antenna device 100 is still high in the scenario of playing games with both hands in a horizontal screen, and the game can be played without lag.
  • the conductor connection section 150 of the antenna device 100 can receive the user's pressing operation, and the conductor connection section 150 can be used as a button structure of the electronic device 10.
  • the conductor connection section 150 can As the device's volume button, power button, switch control button, etc.
  • the conductor connection section 150 can be exposed outside the antenna device 100 or the electronic device 10 to receive the user's pressing operation.
  • the length of the conductor connecting section 150 can be adjusted adaptively according to the size of the key structure.
  • the embodiments of the present application do not limit this.
  • the Sar sensor 200 may be a component of the antenna device 100 or the electronic device 10, or may be a component of other devices.
  • the Sar sensor 200 can provide a detection signal, and the detection signal can flow on the induction branch jointly formed by the second radiator 120, the conductor connection section 150 and the third radiator 130. When the human body approaches, the detection signal will produce certain changes.
  • the Sar sensor 200 can determine whether the head/hand is close or far away by detecting changes in the signal, so as to determine the Sar value of the electronic device 10 .
  • the Sar index is often used to evaluate the impact of electromagnetic radiation generated by the electronic device 10 on the human body.
  • the Sar sensor 200 uses sensing branches to determine the size of the Sar value.
  • the sensing branches and human body parts form an equivalent capacitor. There is an equivalent capacitance between the two. When the distance decreases, the capacitance increases, and vice versa.
  • the Sar sensor 200 can determine that the detection signal can be within the preset range; when the user is close to the sensing branch, the data of the detection signal detected by the Sar sensor 200 can change significantly; through this change, the Sar sensor 200 can determine whether the user is close or far away, and can also determine whether the Sar value of the antenna device 100 exceeds a prescribed Sar value threshold, so that the electronic device 10 can adjust the transmission power of multiple resonances or perform a power backoff event according to the Sar value. .
  • the second radiator 120 , the conductor connection section 150 and the third radiator 130 are not limited to being multiplexed as a button or a sensing branch of the Sar sensor 200 .
  • the three can be integrated into an integral body.
  • the structural strength of the antenna device 100 The embodiments of the present application do not limit this.
  • the sensing branch of the sensor 200 is, for example, but not limited to, an eighth matching circuit with DC resistance and AC resistance connected in series between the first end 111 of the first radiator 110 and the ground plane, or, the eighth end 142 of the fourth radiator 140
  • Another ninth matching circuit that passes DC and resists AC is connected in series with the ground plane.
  • the antenna device 100 may include at least one of the sixth matching circuit 186, the seventh matching circuit 187, the eighth matching circuit, and the ninth matching circuit, so that the first radiator 110, the second radiator 120, At least one of the third radiator 130 and the fourth radiator 140 is in a "suspended" state.
  • the sixth matching circuit 186 the seventh matching circuit 187, the eighth matching circuit, and the ninth matching circuit, so that the first radiator 110, the second radiator 120, At least one of the third radiator 130 and the fourth radiator 140 is in a "suspended" state.
  • multiple matching circuits need to be set up so that the entire branches are in a "suspended" state.
  • the embodiments of the present application do not specifically limit this.
  • the second radiator 120, the conductor connection section 150 and the third radiator 130 together form the sensing branch of the Sar sensor 200.
  • the entire sensing branch can be in a suspended state to detect people/hands. Different distances close to the antenna device 100 or the electronic device 10 can back off different power values to improve user experience; and, the sixth matching circuit 186 and the seventh matching circuit 187 use large capacitors to return to ground, so that the matching circuits have a negative impact on the third radiator 130 It has little influence on the frequency band of the wireless signal supported by the fourth radiator 140, so as to avoid increasing the difficulty of antenna debugging.
  • the conductor connection section 150 can be reused as the volume or switch button of the electronic device 10.
  • the same antenna solution design can take into account different ID appearance requirements and meet the compatibility requirements of different electronic devices 10.
  • the conductor connection section 150 can be multiplexed. Used as a button, it has little impact on the antenna device 100 .
  • the third radiator 130 and the fourth radiator 140 form an aperture antenna and can support GPS+Wi-Fi2.4G/5G+UHB, and can achieve short-distance coverage.
  • the entire antenna device 100 can achieve multi-band wide coverage performance of MHB+UHB+GPS+Wi-Fi2.4G+Wi-Fi5G, broadening the antenna bandwidth without increasing switching costs.
  • the antenna device 100 in the embodiment of the present application can achieve the high isolation requirements of each frequency band through different matching circuits, and further improve the radiation performance of each frequency band.
  • the electronic device 10 in the embodiment of the present application may also include components such as cameras, sensors, and acoustic-to-electrical conversion devices.
  • components such as cameras, sensors, and acoustic-to-electrical conversion devices.
  • these components please refer to the descriptions in the related art, here No longer.

Landscapes

  • Details Of Aerials (AREA)

Abstract

一种天线装置及电子设备,第一馈电点设置于第一端和第二端之间,电连接点设置于第三端和第四端之间,第二端和第三端间隔,第一端和第四端接地;第一激励电流在第一馈电点至第二端的第一导体段和电连接点至第三端的第二导体段上流向相同以产生第一谐振,并在第一导体段和第二导体段上流向相反以产生第二谐振。

Description

天线装置及电子设备
本申请要求于2022年08月22日提交中国专利局、申请号为202211007465.0、发明名称为“天线装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种天线装置及电子设备。
背景技术
随着通信技术的发展,诸如智能手机等电子设备能够实现的功能越来越多,电子设备的通信模式也更加多样化。可以理解的,电子设备的每一种通信模式都需要相应的天线来支持。
发明内容
本申请提供一种天线装置及电子设备,天线装置可以实现小型化设计。
第一方面,本申请提供一种天线装置,包括:
第一辐射体,包括第一端和第二端、以及设置于所述第一端和所述第二端之间的第一馈电点,所述第一端接地;
第一馈源,与所述第一馈电点电连接并用于提供第一激励电流;
第二辐射体,包括第三端和第四端、以及设置于所述第三端和所述第四端之间的电连接点,所述第三端与所述第二端之间设有第一耦合间隙,所述第三端位于所述第二端和所述第四端之间,所述第四端接地;及
第一匹配电路,与所述电连接点电连接,所述第一激励电流经所述第一耦合间隙耦合至所述第二辐射体并经所述第一匹配电路短路回地;其中,
所述第一激励电流在所述第一馈电点与所述第二端之间的第一导体段和所述电连接点与所述第三端之间的第二导体段上的流向相同并激励所述第一导体段和所述第二导体段共同工作于第一谐振;和/或,
所述第一激励电流在所述第一导体段和所述第二导体段的流向相反并激励所述第一导体段和所述第二导体段共同工作于第二谐振。
第二方面,本申请还提供一种电子设备,包括天线装置,所述天线装置包括:
第一辐射体,包括第一端和第二端、以及设置于所述第一端和所述第二端之间的第一馈电点,所述第一端接地;
第一馈源,与所述第一馈电点电连接并用于提供第一激励电流;
第二辐射体,包括第三端和第四端、以及设置于所述第三端和所述第四端之间的电连接点,所述第三端与所述第二端之间设有第一耦合间隙,所述第三端位于所述第二端和所述第四端之间,所述第四端接地;及
第一匹配电路,与所述电连接点电连接,所述第一激励电流经所述第一耦合间隙耦合至所述第二辐射体并经所述第一匹配电路短路回地;其中,
所述第一激励电流在所述第一馈电点与所述第二端之间的第一导体段和所述电连接点与所述第三端之间的第二导体段上的流向相同并激励所述第一导体段和所述第二导体段共同工作于第一谐振;和/或,
所述第一激励电流在所述第一导体段和所述第二导体段的流向相反并激励所述第一导体段和所述第二导体段共同工作于第二谐振。
第三方面,本申请还提供一种电子设备,包括天线装置,所述天线装置包括:
第一辐射体,包括第一端和第二端、以及设置于所述第一端和所述第二端之间的第一馈电点,所述第一端接地;
第一馈源,与所述第一馈电点电连接并用于提供第一激励电流;
第二辐射体,包括第三端和第四端、以及设置于所述第三端和所述第四端之间的电连接点,所述第三端与所述第二端之间设有第一耦合间隙,所述第三端位于所述第二端和所述第四端之间,所述第四端接地;及
第一匹配电路,与所述电连接点电连接,所述第一激励电流经所述第一耦合间隙耦合至所述第二辐射体并经所述第一匹配电路短路回地;
第三辐射体,包括第五端第六端、以及设置于所述第五端和所述第六端之间的第三馈电点,所述第五端位于所述第六端和所述第二辐射体之间,所述第五端接地;及
第三馈源,电连接于所述第三馈电点并用于提供第三激励电流;其中,
所述第一激励电流在所述第一馈电点与所述第二端之间的第一导体段和所述电连接点与所述第三端之间的第二导体段上的流向相同并激励所述第一导体段和所述第二导体段共同工作于第一谐振;和/或,所述第一激励电流在所述第一导体段和所述第二导体段的流向相反并激励所述第一导体段和所述第二导体段共同工作于第二谐振;
所述第三激励电流用于激励所述第五端至所述第三馈电点之间的第四导体段工作于第六谐振;和/或,所述第三激励电流还用于激励所述第三馈电点至所述第六端之间的第五导体段工作于第七谐振;
所述电子设备还包括弯折连接的长边框和短边框;其中,所述第一辐射体和所述第二辐射体相对所述长边框设置,部分所述第三辐射体相对所述长边框设置、另一部分所述第三辐射体相对所述短边框设置。
第四方面,本申请还提供一种电子设备,包括天线装置,所述天线装置包括:
第一辐射体,包括第一端和第二端、以及设置于所述第一端和所述第二端之间的第一馈电点,所述第一端接地;
第一馈源,与所述第一馈电点电连接并用于提供第一激励电流;
第二辐射体,包括第三端和第四端、以及设置于所述第三端和所述第四端之间的电连接点,所述第三端与所述第二端之间设有第一耦合间隙,所述第三端位于所述第二端和所述第四端之间,所述第四端接地;及
第一匹配电路,与所述电连接点电连接,所述第一激励电流经所述第一耦合间隙耦合至所述第二辐射体并经所述第一匹配电路短路回地;其中,
第三辐射体,包括第五端第六端、以及设置于所述第五端和所述第六端之间的第三馈电点,所述第五端位于所述第六端和所述第二辐射体之间,所述第五端接地;
第三馈源,电连接于所述第三馈电点并用于提供第三激励电流;
导体连接段,所述导体连接段的一端连接于所述第四端、另一端连接于所述第五端;
第六匹配电路,所述第六匹配电路的一端与所述第四端电连接、另一端接地;及
第七匹配电路,所述第七匹配电路的一端与所述第五端电连接、另一端接地;其中,
所述第一激励电流在所述第一馈电点与所述第二端之间的第一导体段和所述电连接点与所述第三端之间的第二导体段上的流向相同并激励所述第一导体段和所述第二导体段共同工作于第一谐振;和/或,所述第一激励电流在所述第一导体段和所述第二导体段的流向相反并激励所述第一导体段和所述第二导体段共同工作于第二谐振;
所述第三激励电流用于激励所述第五端至所述第三馈电点之间的第四导体段工作于第六谐振;和/或,所述第三激励电流还用于激励所述第三馈电点至所述第六端之间的第五导体段工作于第七谐振;
所述第二辐射体、所述导体连接段、所述第三辐射体共同为感应枝节并用于与Sar传感器电连接,所述Sar传感器用于通过检测信号判断所述天线装置的电磁波吸收比值的大小,所述第六匹配电路和所述第七匹配电路等效为对所述检测信号开路;
所述电子设备还包括弯折连接的长边框和短边框;其中,所述第一辐射体、所述第二辐射体和所述导体连接段相对所述长边框设置,部分所述第三辐射体相对所述长边框设置、另一部分所述第三辐射体相对所述短边框设置。
第五方面,本申请还提供一种电子设备,包括天线装置;,所述天线装置包括:
第一辐射体,包括第一端和第二端、以及设置于所述第一端和所述第二端之间的第一馈电点,所述第一端接地;
第一馈源,与所述第一馈电点电连接并用于提供第一激励电流;
第二辐射体,包括第三端和第四端、以及设置于所述第三端和所述第四端之间的电连接点,所述第三端与所述第二端之间设有第一耦合间隙,所述第三端位于所述第二端和所述第四端之间,所述第四端接地;及
第一匹配电路,与所述电连接点电连接,所述第一激励电流经所述第一耦合间隙耦合至所述第二辐射体并经所述第一匹配电路短路回地;
第三辐射体,包括第五端第六端、以及设置于所述第五端和所述第六端之间的第三馈电点,所述第五端位于所述第六端和所述第二辐射体之间,所述第五端接地;
第三馈源,电连接于所述第三馈电点并用于提供第三激励电流;及
第四辐射体,包括第七端和第八端,所述第七端位于所述第八端和所述第六端之间,所述第七端与所述第六端之间设有第二耦合间隙,所述第八端接地;其中,
所述第一激励电流在所述第一馈电点与所述第二端之间的第一导体段和所述电连接点与所述第三端之间的第二导体段上的流向相同并激励所述第一导体段和所述第二导体段共同工作于第一谐振;和/或,所述第一激励电流在所述第一导体段和所述第二导体段的流向相反并激励所述第一导体段和所述第二导体段共同工作于第二谐振;
所述第三激励电流用于激励所述第五端至所述第三馈电点之间的第四导体段工作于第六谐振;和/或,所述第三激励电流还用于激励所述第三馈电点至所述第六端之间的第五导体段工作于第七谐振;
所述第三激励电流还用于经所述第二耦合间隙耦合至所述第四辐射体并激励所述第四辐射体工作于第八谐振;
所述电子设备还包括弯折连接的长边框和短边框;其中,所述第一辐射体和所述第二辐射体相对所述长边框设置,所述第四辐射体相对所述短边框设置。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的天线装置的第一种结构示意图。
图2为图1所示的天线装置的一种等效电路示意图。
图3为图1所示的天线装置的第一种电流示意图。
图4为图1所示的天线装置的第二种电流示意图。
图5为图1所示的天线装置的一种S11参数曲线示意图。
图6为本申请实施例提供的天线装置的第二种结构示意图。
图7为图6所示的第二匹配电路的一种结构示意图。
图8为本申请实施例提供的天线装置的第三种结构示意图。
图9为图8所示的天线装置的一种等效电路示意图。
图10为图8所示的天线装置的第一种电流示意图。
图11为图8所示的天线装置的第二种电流示意图。
图12为图8所示的天线装置的第三种电流示意图。
图13为图8所示的天线装置的一种S11参数曲线示意图。
图14为本申请实施例提供的天线装置的第四种结构示意图。
图15为图14所示的天线装置的第一馈源和第二馈源同时工作时的S参数曲线示意图。
图16为图14所示的第一匹配电路的一种结构示意图。
图17为图14所示的第三匹配电路的一种结构示意图。
图18为本申请实施例提供的天线装置的第五结构示意图。
图19为图18所示的天线装置的第一种电流示意图。
图20为图18所示的天线装置的第二种电流示意图。
图21为本申请实施例提供的天线装置的第六结构示意图。
图22为图21所示的天线装置的第一种电流示意图。
图23为图21所示的天线装置的第三馈源工作时的一种S参数曲线示意图。
图24为图21所示的天线装置的第二种电流示意图。
图25为图21所示的天线装置的第三种电流示意图。
图26为图21所示的天线装置的第四种电流示意图。
图27为图21所示的天线装置的第四馈源工作时的一种S参数曲线示意图。
图28为图21所示的天线装置的第三馈源和第四馈源同时工作时的一种S参数曲线示意图。
图29为图21所示的第四匹配电路的一种结构示意图。
图30为图21所示的第五匹配电路的一种结构示意图。
图31为本申请实施例提供的天线装置的第七结构示意图。
图32为图29所示的天线装置的一种S参数曲线示意图。
图33为本申请实施例提供的天线装置的第八种结构示意图。
图34为图31所示的天线装置的一种电连接示意图。
图35为本申请实施例提供的天线装置的第九种结构示意图。
图36为本申请实施例提供的电子设备的第一种结构示意图。
图37为本申请实施例提供的电子设备的第二种结构示意图。
图38为图37所示的电子设备的一种应用场景图。
图39为图38所示的电子设备在横屏手握状态与非手握状态下支持无线信号时系统效率曲线示意图。
图40为本申请实施例提供的电子设备的第三种结构示意图。
图41为本申请实施例提供的电子设备的第四种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图1至附图41,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例提供一种天线装置100及电子设备,天线装置100可以实现无线通信功能。例如天线装置100可以传输无线保真(Wireless Fidelity,简称Wi-Fi)信号、全球定位系统(Global Positioning System,简称GPS)信号、第三代移动通信技术(3rd-Generation,简称3G)、第四代移动通信技术(4th-Generation,简称4G)、第五代移动通信技术(5th-Generation,简称5G)、近场通信(Near field communication,简称NFC)信号、蓝牙(Blue tooth,简称BT)信号、超宽带通信(Ultra WideBand,简称UWB)信号等。
请参考图1,图1为本申请实施例提供的天线装置100的第一种结构示意图,天线装置100可以包括第一辐射体110、第二辐射体120、第一馈源171和第一匹配电路181。
第一辐射体110可以包括第一端111、第二端112和第一馈电点113,第一馈电点113可以位于第一端111和第二端112之间。其中,第一端111可以直接或间接接地,例如,第一端111可以与接地平面直接或间接电连接而实现接地。
第一馈源171可以与第一馈电点113直接或间接电连接而实现第一馈源171与第一辐射体110的电连接。第一馈源171可以提供第一激励电流,以激励第一辐射体110和第二辐射体120可以共同支持无线信号的传输。
第二辐射体120可以与第一辐射体110间隔设置,例如第二辐射体120可以在第一辐射体110的第二端112所在的一侧与第一辐射体110间隔。第二辐射体120可以包括第三端121和第四端122,第三端121可以位于第四端122和第一辐射体110(例如第二端112)之间,第三端121可以与第二端112之间设置有第一耦合间隙101,第一馈源171提供的第一激励电流可以经该第一耦合间隙101从第一辐射体110耦合至第二辐射体120,第四端122可以直接或间接接地,例如,第四端122可以与接地平面直接或间接电连接而实现接地。其中,第二辐射体120还可以包括电连接点124,该电连接点124可以设置于第三端121第四端122之间。
第一匹配电路181可以直接或间接与第二辐射体120的电连接点124电连接,第二辐射体120可以通过该第一匹配电路181接地。请结合图1并请参考图2,图2为图1所示的天线装置100的一种等效电路示意图。第一匹配电路181可以对第一馈源171提供的第一激励电流等效短路使得第一激励电流直接接地。也就是说,对于第一激励电流而言,第一匹配电路181的电阻无穷小,第一激励电流可以直接短路回地。
其中,第一激励电流可以至少分布于第一馈电点113和第二端112之间、以及第三端121和电连接点124之间,并且,第一激励电流在第一辐射体110上的流向可以与第一激励电流在第二辐射体120上的流向相同。
例如,请结合图1和图2并请参考图3,图3为图1所示的天线装置100的第一种电流示意图,第一激励电流I1可以经第一馈源171流动至第一辐射体110,并可以经第一耦合间隙101耦合(即电磁耦合)至第二辐射体120上,第一激励电流I1在第一辐射体110的第一馈电点113至第二端112之间的第一导体段Z1上的流向可以与在第二辐射体120的第三端121至电连接点124之间的第二导体段Z2上的流向相同,例如但不限于第一激励电流I1在第一导体段Z1上可以从第一馈电点113流向第二端112、在第二导体段Z2上可以从第三端121流向电连接点124,第一激励电流I1可以激励第一辐射体110的第一馈电点113至第二端112之间的第一导体段Z1及第二辐射体120的第三端121至电连接点124之间的第二导体段Z2共同工作于第一谐振并支持第一频段的无线信号。
可以理解的是,第一导体段Z1可以四分之一波长模态、第二导体段Z2也可以四分之一波长模态共同工作于第一谐振。当然,第一导体段Z1、第二导体段Z2也可以其他模态工作于第一谐振,例如但不限于以二分之一波长模态、四分之三波长模态、八分之一波长模态等,本申请实施例对此不进行限定。
可以理解的是,第一谐振对应的第一频段可以是超高频频段(Ultra High Band,简称UHB,包括3000MHz-6000MHz频段范围)。例如但不限于第一频段可以是5G的N77频段、N78频段;当然,通过调节第一导体段Z1、第二导体段Z2的枝节长度、电连接的匹配电路的阻抗,也可以使得第一频段为其他的超高频频段,本申请实施例对第一频段不进行具体的限定。
其中,当第一匹配电路181对第一激励电流I1等效短路使得第一激励电流I1直接接地时,第一激励电流I1也可以至少分布于第一馈电点113和第二端112之间、以及第三端121和电连接点124之间,并且,第一激励电流I1在第一辐射体110上的流向可以与第一激励电流I1在第二辐射体120上的流向不同。
例如,请结合图1至图3并请参考图4,图4为图1所示的天线装置100的第二种电流示意图,第一激励电流I1可以经第一馈源171流动至第一辐射体110,并可以经第一耦合间隙101耦合(即电磁耦合)至第二辐射体120上,第一激励电流I1在第一辐射体110的第一导体段Z1上的流向可以与在第二辐射体120的第二导体段Z2上的流向相反,例如但不限于第一激励电流I1在第一导体段Z1上可以从第一馈电点113流向第二端112、在第二导体段Z2上可以从电连接点124流向第三端121,第一激励电流I1可以激励第一导体段Z1和第二导体段Z2共同工作于第二谐振并支持第二频段。
可以理解的是,第二谐振可以不同于第一谐振,第二谐振的谐振点频率可以不同于第一谐振的谐振点频率,例如,第一谐振的谐振点频率可以为3600MHz,第二谐振的谐振点频率可以为3800MHz。
可以理解的是,第二谐振对应的第二频段可以不完全与第一谐振对应的第一频段相同,二者可以存在部分重叠的频段。例如,第一谐振对应的第一频段可以是N78频段(3300MHz-3800MHz),第二谐振对应的第二频段可以是N77频段(3300MHz-4200MHz)。当然,通过对第一导体段Z1、第二导体段Z2电长度的调节,也可使得第二频段完全不同于 第一频段。本申请实施例对第一频段和第二频段的具体范围不进行限定。
可以理解的是,由于激励电流为交流信号,其电流方向会周期性变化,因此,当第一导体段Z1和第二导体段Z2共同工作于第一谐振时,第一激励电流I1可以在第一枝节Z1上从第二端112流向第一馈电点113、在第二枝节Z2上从电连接点124流向第三端121;当第一导体段Z1和第二导体段Z2共同工作于第二谐振时,第一激励电流I1可以在第一枝节Z1上从第二端112流向第一馈电点113、在第二枝节Z2上可以从第三端121流向电连接点124。需要说明的是,本申请后文中的其他激励电流例如第二激励电流I2、第三激励电流I3、第四激励电流I4……均具有该特性,也就是说,后文中激励电流的流向既可以如本申请实施例中的说明,也可以是该说明的反方向,后文中不再对激励电流的流向进行解释说明。
可以理解的是,本申请实施例对第一激励电流I1的说明,是对大部分(主要的)的第一激励电流I1的说明,也即,上述第一激励电流I1在第一导体段Z1、第二导体段Z2上的流动,是指大部分(主要的)的第一激励电流I1在第一导体段Z1、第二导体段Z2上流动。后文中对其他的激励电流例如第二激励电流I2、第三激励电流I3、第四激励电流I4……的说明,也是指大部分的激励电流。后文中不再对此进行解释说明。
可以理解的是,第一导体段Z1可以四分之一波长模态、第二导体段Z2也可以四分之一波长模态共同工作于第二谐振。当然,第一导体段Z1、第二导体段Z2也可以其他模态工作于第二谐振,例如但不限于以二分之一波长模态、四分之三波长模态、八分之一波长模态等,本申请实施例对此不进行限定。
可以理解的是,第二谐振对应的第二频段可以是超高频频段。例如但不限于第二频段可以是5G的N77频段、N78频段;当然,通过调节第一导体段Z1、第二导体段Z2的枝节长度、电连接的匹配电路的阻抗,也可以使得第二频段为其他的超高频频段,本申请实施例对第二频段不进行具体的限定。
可以理解的是,第一馈源171可以提供第一激励电流I1以使天线装置100工作于第一谐振并支持第一频段信号的传输;第一馈源171也可以提供第一激励电流I1以使天线装置100工作于第二谐振并支持第二频段信号的传输;第一馈源171还可以提供第一激励电流I1,以使得天线装置100可以同时工作于第一谐振和第二谐振并同时支持第一频段和第二频段的信号。
示例性的,请参考图5,图5为图1所示的天线装置100的一种S11参数曲线示意图,图5中曲线L1为第一馈源171提供第一激励电流I1时天线装置100同时工作于第一谐振和第二谐振的S11曲线,由曲线L1可以看出,天线装置100可以产生两个谐振-第一谐振A1和第二谐振A2,并且,该两个谐振对应的频段可以共同实现国内外UHB的N77/N78宽频段覆盖要求,第一频段和第二频段可以共同覆盖3300MHz至4100MHz。
其中,如图5所示,第二谐振A2对应的第二频段可以高于第一谐振A1对应的第一频段。例如,第一谐振A1的谐振频点可以3600MHz附近,第二谐振A2的谐振频点可以在3800HMz附近,第二频段可以高于第一频段。可以理解的是,由于第二频段和第一频段是具有一定带宽的频段,第二频段和第一频段可以部分频段重合,也可以完全不重合,此处第二频段高于第一频段可以是指第二频段的中心频率高于第一频段的中心频率,并不限于整个第二频段均高于第一频段。当第一激励电流I1在第一导体段Z1和第二导体段Z2的流向相反并使得天线装置100工作于第二谐振时,第二谐振的下降沿可在第二谐振的低频处,如果第二谐振的第二频段低于第一谐振的第一频段,那么第二谐振在第一频段范围内容易形成效率凹槽,从而严重影响天线装置100的辐射性能。本申请实施例的第二频段高于第一频段,既可以拓宽天线装置100的带宽,第二频段也可以提高第一频段的效率,使得天线装置100具有更优的辐射性能。
需要说明的是,实际调试中也可以使得第二频段低于第一频段,此时,天线装置100可以采取相应的补偿措施,以避免第二频段在第一频段内产生效率凹坑。本申请实施例对第二频段和第一频段不进行具体限定。
本申请实施例的天线装置100,第一辐射体110的第一馈电点113与第二端112之间为第一导体段Z1,第一辐射体110的第一端111下地;第二辐射体120和第一辐射体110之间设置有第一耦合间隙101,第一匹配电路181电连接于第二辐射体120的第三端121和第四端122之间的电连接点124,第三端121与电连接点124之间为第二导体段Z2;第一馈源171可向第一辐射体110提供第一激励电流I1,第一激励电流I1可经第一耦合间隙101电磁耦合至第二辐射体120并经第一匹配电路181短路下地,第一激励电流I1在第一导体段Z1和第二导体段Z2上流向相同而第一激励电流I1在第一导体段Z1和第二导体段Z2上流向相反,使得第一导体段Z1和第二导体段Z2既可以工作于第一谐振也可以工作于第二谐振。基于此,本申请实施例的天线装置100不需要通过开关切换就可以工作于两个谐振,既可以拓展天线装置100的带宽,提高天线装置100的传输性能,又可以减少开关带来的成本;并且,第一导体段Z1和第二导体段Z2实现复用,天线装置100可以实现小型化设计,天线装置100更容易组装至电子设备10等其他器件。
同时,第一匹配电路181对第一馈源171提供的第一激励电流I1短路,第一激励电流I1可直接从第一匹配电路181下地,第一激励电流I1不易流入第二辐射体120的其他部位,第一激励电流I1不易通过第二辐射体120的馈电点(例如后文中的第二馈电点123)而流入与第二辐射体120电连接的馈源(例如后文中的第二馈源172)中而影响第二辐射体120的性能,第一辐射体110和第二辐射体120之间的干扰较小。
其中,请结合图1并请参考图6,图6为本申请实施例提供的天线装置100的第二种结构示意图。天线装置100还可以包括第二匹配电路182。
第二匹配电路182可以串联于第一馈源171和第一辐射体110的第一馈电点113之间,第二匹配电路182可以对第一馈源171提供的第一激励电流I1进行阻抗匹配,以使得第一辐射体110的第一导体段Z1和第二辐射体120的第二导体段Z2可以共同工作于第一谐振、第二谐振中的至少一个。
可以理解的是,第二匹配电路182可以包括一个或多个电容、电感、开关等电子器件通过串联或并联的方式形成。示例性的,请参考图7,图7为图6所示的第二匹配电路182的一种结构示意图。第二匹配电路182可以包括第二电容C2、第二电感L2、第三电容C3和第三电感L3。第二电感L2的一端可与第一馈源171电连接,第二电容C2的一端电连接于第二电感L2和第一馈源171之间、第二电容C2的另一端接地;第三电容C3的一端、第三电感L3的一端均与第二电感L2的另一端电连接,第三电容C3的另一端、第三电感L3的另一端均与第一辐射体110的第一馈电点113电连接,第三电感L3和第三电感L3可以相互并联于第二电感L2与第一馈电点113之间。
需要说明的是,以上仅为本申请实施例的第二匹配电路182的示例性说明,第二匹配电路182的结构不局限于,例 如但不限于还可以在第二电感L2与第一馈源171之间串联电感器件、电容器件。本申请实施例对第二匹配电路182的具体结构不进行限定,其他可对第一馈源171提供的激励电流进行阻抗匹配调节的结构均可以在本申请实施例的保护范围内。
其中,请参考图8,图8为本申请实施例提供的天线装置100的第三种结构示意图。天线装置100还可以包括第二馈源172。
第二馈源172可以与第二辐射体120直接或间接电连接。例如第二辐射体120上还可以设置有第二馈电点123,该第二馈电点123可以设置于第二辐射体120的电连接点124和第四端122之间,第二馈源172可以与该第二馈电点123直接或间接电连接。第二馈源172可以提供激励电流,例如但不限于第二馈源172可以提供第二激励电流。
请结合图8并请参考图9,图9为图8所示的天线装置100的一种等效电路示意图,第一匹配电路181可以对第二馈源172提供的第二激励电流I2开路而使得第二激励电流I2不通过第一匹配电路181回地。也就是说,对于第二激励电流I2而言,第一匹配电路181的阻抗无穷大,第一匹配电路181可以阻挡第二激励电流I2回地,第二激励电流I2可以不经第二辐射体120的电连接点124下地。此时,第二激励电流I2既可以在第二辐射体120上流动,也可以经第一耦合间隙101耦合至第一辐射体110上并在第一辐射体110上流动。
例如,请结合图8、图9并请参考图10,图10为图8所示的天线装置100的第一种电流示意图。第二激励电流I2可以经第二馈源172流动至第二辐射体120,并可以激励整个第二辐射体120(第三端121至第四端122之间的导体段)工作于第三谐振并支持第三频段的无线信号的传输。
可以理解的是,第二激励电流I2可以激励第二辐射体120以四分之一波长模态工作于第三谐振,第二激励电流I2在第二辐射体120上的流向可以同向,例如但不限于可从第四端122流向第三端121。当然,第二辐射体120也可以其他模态工作于第三谐振,例如但不限于以二分之一波长模态、四分之三波长模态、八分之一波长模态等,本申请实施例对此不进行限定。
可以理解的是,第三谐振对应的第三频段可以是中高频频段(Middle High Band,简称MHB,1000MHz至3000MHz)。当然,通过调节第二辐射体120的枝节长度、第二辐射体120电连接的匹配电路的阻抗,也可以使得第三频段为其他频段,本申请实施例对第三频段不进行具体的限定。
其中,请结合图8、图9并请参考图11,图11为图8所示的天线装置100的第二种电流示意图。第二激励电流I2还可以经第二馈源172流动至第二辐射体120,并可以激励第二辐射体120的第二馈电点123至第三端121之间的第三导体段Z3工作于第四谐振并支持第四无线信号的传输。可以理解的是,第四谐振可以不同于第三谐振,第四谐振的谐振点频率可以不同于第三谐振的谐振点频率。
可以理解的是,第二辐射体120的第二馈电点123至第三端121之间的第三导体段Z3可以四分之一波长模态工作于第四谐振,第二激励电流I2在第二辐射体120上的流向可以同向,例如但不限于可从第二馈电点123流向第三端121。当然,第三导体段Z3也可以其他模态工作于第四谐振,例如但不限于以二分之一波长模态、四分之三波长模态、八分之一波长模态等,本申请实施例对此不进行限定。
可以理解的是,第四谐振对应的第四频段可以是MHB频段。当然,通过调节第三导体段Z3的枝节长度、第三导体段Z3电连接的匹配电路的阻抗,也可以使得第四频段为其他频段,本申请实施例对第四频段不进行具体的限定。
其中,请结合图8、图9并请参考图12,图12为图8所示的天线装置100的第三种电流示意图。第二激励电流I2还可以经第二馈源172流动至第二辐射体120,并可以经第一耦合间隙101(电磁)耦合至第一辐射体110上,第二激励电流I2可以激励整个第一辐射体110工作于第五谐振并支持第五频段的无线信号的传输。
可以理解的是,在第二激励电流I2的作用下,第一辐射体110可以四分之一波长模态工作于第五谐振,第二激励电流I2在第二辐射体120上的流向可以同向,例如但不限于可从第二端112流向第一端111。当然,第一辐射体110也可以其他模态工作于第五谐振,例如但不限于以二分之一波长模态、四分之三波长模态、八分之一波长模态等,本申请实施例对此不进行限定。
可以理解的是,第五谐振对应的第五频段可以是MHB频段。当然,通过调节第一辐射体110的枝节长度、第一辐射体110电连接的匹配电路的阻抗,也可以使得第五频段为其他频段,本申请实施例对第五频段不进行具体的限定。
可以理解的是,第二激励电流I2可以激励天线装置100工作于第三谐振、第四谐振、第五谐振中的一个、两个或三个,以使得天线装置100可以同时工作于一种、两种或三种谐振。
可以理解的是,第三谐振对应的第三频段、第四谐振对应的第四频段、第五谐振对应的第五频段中的至少一个可以是MHB频段。当第二激励电流I2同时激励天线装置100工作于第三谐振、第四谐振和第五谐振时,第三频段、第四频段和第五频段可以共同覆盖MHB频段。示例性的,请参考图13,图13为图8所示的天线装置100的一种S11参数曲线示意图。图13中曲线L2为天线装置100在第二激励电流I2的激励下形成的S11的曲线,由曲线L2可以看出,天线装置100可以产生三个谐振-第三谐振A3、第四谐振A4和第五谐振A5,并且,该三个谐振对应的频段可以共同实现中高频宽频段覆盖要求,第三频段至第五频段可以共同覆盖1000MHz至3000MHz。
本申请实施例的天线装置100,第二馈源172提供的第二激励电流I2可使第二辐射体120工作于第三谐振、也可使第二辐射体120上的第三导体段Z3工作于第四谐振、还可使第一辐射体110工作于第五谐振,一方面,三个谐振可以拓展天线装置100的带宽,提高天线装置100的传输性能;另一方面,第一辐射体110、第二辐射体120可以实现复用,天线装置100可以实现小型化设计。
其中,如图1至图7可知,本申请实施例的第一馈源171可以单独工作而使得天线装置100可以工作于第一谐振、第二谐振中的一个或两个。如图8至图13可知,本申请实施例的第二馈源172也可以单独工作而使得天线装置100可以工作于第三谐振、第四谐振、第五谐振中的一个、两个或三个。当然,请参考图14,图14为本申请实施例提供的天线装置100的第四种结构示意图,本申请实施例的第一馈源171和第二馈源172也可以同时工作,而使得天线装置100可以工作于第一谐振、第二谐振中的一个或两个以及第三谐振、第四谐振、第五谐振中的一个、两个或三个。
示例性的,请结合图14并参考图15,图15为图14所示的天线装置100的第一馈源171和第二馈源172同时工作时的S参数曲线示意图。图15中曲线L3为第一馈源171提供第一激励电流I1使得天线装置100工作于第一谐振、第二谐振时的S11曲线,L3曲线为前述的L1曲线。图13中曲线L4为第二馈源172提供第二激励电流I2、使得天线装置100工作于第三谐振、第四谐振和第五谐振时的S11曲线,L4为前述的L2曲线。图15中曲线L5为第一馈源171和第二馈源172同时工作时的隔离度曲线(S12曲线),由曲线L5可以看出,第一馈源171和第二馈源172同时工作时,上述第一谐振至第五谐振可以有效地独立工作,各个谐振之间的隔离度均符合要求,第一馈源171和第二馈源172之间的相互干扰较小。
需要说明的是,当本申请实施例的天线装置100工作于第一谐振、第二谐振时,此时,第一匹配电路181可以对第一馈源171提供的第一激励电流等效短路,天线装置100可以不包括第二馈源172。当天线装置100工作于第三谐振、第四谐振、第五谐振时,此时第一匹配电路181可以对第二馈源172提供的第二激励电流开路,或者说天线装置100可以不设置第一匹配电路181,此时,天线装置100也可以不包括第一馈源171。当天线装置100同时工作于第一谐振至第五谐振时,此时,天线装置100可以同时包括第一馈源171和第二馈源172,第一匹配电路181既可以对第一馈源171提供的第一激励电流短路也可以对第二馈源172提供的第二激励电流开路。
示例性的,请结合图14并请参考图16,图16为图14所示的第一匹配电路181的一种结构示意图。第一匹配电路181可以包括第一电感L1和第一电容C1,该第一电感L1和第一电容C1可以相互串联于第二辐射体120的电连接点124和接地平面之间。第一匹配电路181既可以对第一馈源171提供的激励电流短路也可以对第二馈源172提供的激励电流开路。
可以理解的是,第二辐射体120、第一电容C1、第一电感L1和接地平面可以顺次串联。例如,第一电容C1的一端可以与第二辐射体120的电连接点124直接或间接电连接、第一电容C1的另一端可以与第一电感L1的一端直接或间接电连接,第一电感L1的另一端可以与接地平面电连接而实现接地。当然,电连接点124、第一电感L1、第一电容C1和接地平面也可以顺次串联。本申请实施例对第一电感L1和第一电容C1串联于电连接点124和接地平面的具体方式不进行限定。
可以理解的是,第一匹配电路181的结构并不局限于上述说明,例如但不限于第一匹配电路181还可以包括并联于第一电容C1两端的电感器件,或者,第一匹配电路181还可以包括并联于第一电容C1两端的串联成整体的电感器件和电容器件。本申请实施例对第一匹配电路181的具体结构不进行限定。
其中,本申请实施例的天线装置100还可以包括第三匹配电路183,例如图14所示,第三匹配电路183可以串联于第二馈源172和第二馈电点123之间,第三匹配电路183可以对第二馈源172提供的第二激励电流I2进行阻抗匹配,以使得天线装置100可以工作于第三谐振、第四谐振、第五谐振中的至少一个。
可以理解的是,第三匹配电路183可以包括一个或多个电容、电感、开关等电子器件通过串联或并联的方式形成。示例性的,请参考图17,图17为图14所示的第三匹配电路183的一种结构示意图。第三匹配电路183可以包括第四电感L4、第四电容C4、第五电感L5和第五电容C5。第五电感L5的一端可以直接或间接电连接于第二馈源172、第五电感L5的另一端可以直接或间接电连接于第五电容C5的一端,第五电容C5的另一端可以直接或间接电连接于与第二辐射体120的第二馈电点123。第四电感L4的一端和第四电容C4的一端可以直接或间接电连接于第五电感L5和第二馈源172之间,第四电感L4的另一端和第四电容C4的另一端均与接地平面直接或间接电连接而实现接地,第四电感L4和第四电容C4可以相互并联。
需要说明的是,以上仅为本申请实施例的第三匹配电路183的示例性说明,第三匹配电路183的结构不局限于,例如但不限于还可以在第二馈源172与第二辐射体120之间再串联另外的电感器件、电容器件。本申请实施例对第三匹配电路183的具体结构不进行限定,其他可对第一馈源171提供的激励电流进行阻抗匹配调节的结构均可以在本申请实施例的保护范围内。
其中,请参考图18,图18为本申请实施例提供的天线装置100的第五结构示意图。本申请实施例的天线装置100可以包括第三辐射体130和第三馈源173。
第三辐射体130可以包括第五端131、第六端132和第三馈电点133,第三馈电点133可以设置于第五端131和第六端132之间。可以理解的是,第三辐射体130可以位于第一辐射体110、第二辐射体120的一侧,以使得第二辐射体120可以位于第一辐射体110和第三辐射体130之间。第三辐射体130的第五端131可以直接或间接与接地平面电连接而实现接地,第三辐射体130的第六端132可以朝向远离第一辐射体110、第二辐射体120的方向延伸,第五端131可以位于第六端132和第二辐射体120之间。
可以理解的是,第三辐射体130的第五端131至第三馈电点133之间可以为第四导体段Z4,第三馈电点133与第六端132之间可以为第五导体段Z5,第三辐射体130可以包括第四导体段Z4和第五导体段Z5。
第三馈源173可以与第三馈电点133直接或间接电连接而实现第三馈源173与第三辐射体130的电连接。第三馈源173可以提供激励电流例如但不限于提供第三激励电流I3。
其中,请结合图18并请参考图19,图19为图18所示的天线装置100的第一种电流示意图。第三激励电流I3可以经第三馈源173流动至第三辐射体130,第三激励电流I3可以激励第三辐射体130的第五端131至第三馈电点133之间的第四导体段Z4工作于第六频段的第六谐振。
可以理解的是,第三激励电流I3可以激励第四导体段Z4以八分之一波长模态工作于第六谐振,第三激励电流I3在第三辐射体130上的流向可以同向,例如但不限于从第三馈电点133流向第五端131。当然,第二辐射体120也可以其他模态工作于第三谐振,例如但不限于以二分之一波长模态、四分之三波长模态、四分之一波长模态等,本申请实施例对此不进行限定。
其中,请结合图18并请参考图20,图20为图18所示的天线装置100的第二种电流示意图。第三激励电流I3可以经第三馈源173流动至第三辐射体130,并可以激励第三辐射体130的第三馈电点133至第六端132之间的第五导体段Z5工作于第七谐振并支持第七无线信号的传输。第七谐振可以不同于第六谐振,第七谐振对应的第七频段可以不同于第六谐振对应的第六频段。
可以理解的是,第三辐射体130的第三馈电点133至第六端132之间的第五导体段Z5可以四分之一波长模态工作于第六谐振,第三激励电流I3在第五导体段Z5上的流向可以相同,例如但不限于第三激励电流I3可以从第三馈电点133流向第六端132。当然,第五导体段Z5也可以其他模态工作于第七谐振,例如但不限于以二分之一波长模态、四分之三波长模态、八分之一波长模态等,本申请实施例对此不进行限定。
可以理解的是,第六谐振对应的第六频段可以是GPS信号对应的频段,也可以是Wi-Fi2.4G对应的频段。第七谐振对应的第七频段可以是GPS信号对应的频段,也可以是Wi-Fi2.4G对应的频段。例如,第六谐振的谐振点频率可以1170MHz附近,第六谐振对应的第六频段可以是GPS信号对应的频段;第七谐振的谐振点频率可以在2400MHz附近,第七谐振对应的第七频段可以是Wi-Fi2.4G对应的频段。当然,通过调节第四导体段Z4的枝节长度、第四导体段Z4电连接的匹配电路的阻抗,也可以使得第六频段为其他频段;通过调节第五导体段Z5的枝节长度、第五导体段Z5电连接的匹配电路的阻抗,也可以使得第七频段为其他频段,本申请实施例对第六频段不进行具体的限定。
本申请实施例的天线装置100,第三辐射体130在第三馈源173提供的第三激励电流I3的作用下可以工作于第六谐振和第七谐振,一方面,可以拓展天线装置100的带宽;另一方面,第三辐射体130实现复用,可以实现天线装置100的小型化设计。
其中,请参考图21,图21为本申请实施例提供的天线装置100的第六结构示意图。天线装置100可以包括第四辐射体140。
第四辐射体140可以包括第七端141和第八端142,该第七端141可以位于第三辐射体130的第六端132所在的一侧,第八端142可以沿远离第三辐射体130的方向延伸并接地,第七端141可以位于第八端142和第三辐射体130之间,第三辐射体130可以位于第二辐射体120和第四辐射体140之间,第四辐射体140的第七端141可与第六端132之间设置有第二耦合间隙102以使得第四辐射体140可与第三辐射体130间隔设置。
第三馈源173还可以提供第三激励电流。请结合图21并请参考图22,图22为图21所示的天线装置100的第一种电流示意图。第三激励电流I3可以经第三馈源173流动至第三辐射体130,并经过第二耦合间隙102(电磁)耦合至第四辐射体140,第三激励电流I3可以激励第四辐射体140工作于第八频段的第八谐振。该第八谐振可以不同于第六谐振,也可以不同于第七谐振。
可以理解的是,第三激励电流I3可以激励第四辐射体140以四分之一波长模态工作于第八谐振,第三激励电流I3在第四辐射体140上的流向可以同向,例如但不限于从第七端141流向第八端142。当然,第四辐射体140也可以其他模态工作于第八谐振,例如但不限于以二分之一波长模态、四分之三波长模态、八分之一波长模态等,本申请实施例对此不进行限定。
可以理解的是,第八谐振对应的第八频段可以但不限于是GPS信号对应的频段、Wi-Fi2.4G对应的频段。第八频段可以不同于第六频段,也可以不同于第七频段。例如,第六谐振的谐振点频率可以1170MHz附近,第七谐振的谐振点频率可以在2400MHz附近,第八谐振的谐振点频率可以是2900MHz附近。
可以理解的是,当天线装置100同时工作于第六谐振、第七谐振和第八谐振时,第六谐振对应的第六频段、第七谐振对应的第七频段和第八谐振对应的第八频段可以共同覆盖GPS频段和Wi-Fi的2.4G频段。示例性的,请参考图23,图23为图21所示的天线装置100的第三馈源173工作时的一种S参数曲线示意图,图23中曲线L6为第三馈源173提供第三激励电流I3并激励天线装置100同时工作于第六谐振、第七谐振和第八谐振时天线装置100的S11曲线,由曲线L6可知,天线装置100可以产生三个谐振-第六谐振A6、第七谐振A7和第八谐振A8,并且,该三个谐振对应的频段可以共同实现GPS频段至Wi-Fi的2.4G频段的宽频段覆盖要求。
其中,请再次参考图21,本申请实施例的天线装置100还可以包括第四馈源174。
第四馈源174可以直接或间接与第四辐射体140电连接。例如,第四辐射体140还可以包括第四馈电点143,该第四馈电点143可以设置于第七端141和第八端142之间,第四馈电点143至第七端141之间可以为第六导体段Z6。第四馈源174可以直接或间接与第四馈电点143电连接。
可以理解的是,第四馈源174可以提供激励电流例如但不限于提供第四激励电流,以激励天线装置100工作于相应的谐振。
其中,请结合图21并请参考图24,图24为图21所示的天线装置100的第二种电流示意图。第四激励电流I4可以经第四馈源174流动至第四辐射体140上,并可以经第二耦合间隙102耦合至第三辐射体130,第四激励电流I4可以激励第四辐射体140的第四馈电点143至第七端141之间的第六导体段Z6和第三辐射体130的第三馈电点133至第六端132之间的第五导体段Z5共同工作于第九频段的第九谐振;
可以理解的是,第六导体段Z6和第五导体段Z5可以共同以四分之一波长模态工作于第九谐振,第四激励电流I4在第六导体段Z6和第五导体段Z5上的流向可以同向,例如但不限于可以从第四馈电点143朝向第三馈电点133流动。当然,第六导体段Z6、第五导体段Z5也可以其他模态工作于第九谐振,例如但不限于以二分之一波长模态、四分之三波长模态、八分之一波长模态等,本申请实施例对此不进行限定。
其中,请结合图21并请参考图25,图25为图21所示的天线装置100的第三种电流示意图。第四激励电流I4可以经第四馈源174流动至第四辐射体140上,并可以激励第四辐射体140的第四馈电点143至第七端141之间的第六导体段Z6工作于第十频段的第十谐振,第十谐振可以不同与第九谐振。
可以理解的是,第六导体段Z6可以四分之一波长模态单独工作于第十谐振,第四激励电流I4可以在第六导体段Z6上的流向同向,例如但不限于从第四馈电点143朝向第七端141的方向流动。当然,第六导体段Z6也可以其他模态工作于第十谐振,例如但不限于以二分之一波长模态、四分之三波长模态、八分之一波长模态等,本申请实施例对此不进行限定。
其中,请结合图21并请参考图26,图26为图21所示的天线装置100的第四种电流示意图。第四激励电流I4可以经第四馈源174流动至第四辐射体140上,并可以经第二耦合间隙102耦合至第三辐射体130上,第四激励电流I4可以激励第三辐射体130工作于第十一频段的第十一谐振,第十一谐振可以不同于第九谐振,也可以不同于第十谐振,例如, 第九谐振的中心频率、第十谐振的中心频率、第十一谐振的中心频率均不相同。
可以理解的是,第三辐射体130可以四分之三波长模态单独工作于第十一谐振,第四激励电流I4可以在第三辐射体130的第六端132和第七端141之间上存在一电流零点,第四激励电流I4在第六端132至电流零点的枝节上的流向可以与第七端141至电流零点的枝节上的流向相反。当然,第三辐射体130也可以其他模态工作于第十一谐振,例如但不限于以二分之一波长模态、四分之一波长模态、八分之一波长模态等,本申请实施例对此不进行限定。
可以理解的是,第九谐振对应的第九频段、第十谐振对应的第十频段、第十一谐振对应的第十一频段均可以是超高频频段,例如但不限于是N78频段、Wi-Fi的5G频段。当然,通过调节第五导体段Z5、第六导体段Z6、第三辐射体130的枝节长度、与其电连接的匹配电路的阻抗,也可以使得第九频段、第十频段、第十一频段为其他的超高频频段,本申请实施例对此不进行具体的限定。
可以理解的是,第四激励电流I4可以激励天线装置100工作于第九谐振、第十谐振、第十一谐振中的一个、两个或三个。第九谐振对应的第九频段、第十谐振对应的第十频段、第十一谐振对应的第十一频段中的一个、两个或三个可以支持UHB或Wi-Fi的5G频段。当天线装置100同时工作于第九谐振、第十谐振和第十一谐振时,第九频段、第十频段和第十一频段可以共同覆盖UHB和Wi-Fi的5G频段。示例性的,请参考图27,图27为图21所示的天线装置100的第四馈源174工作时的一种S参数曲线示意图。图27中曲线L7为第四激励电流I4激励天线装置100同时工作于第九谐振、第十谐振和第十一谐振时的S11参数曲线,由曲线L7可以看出,天线装置100可以产生三个谐振-第九谐振A9、第十谐振A10和第十一谐振A11,其中,第九谐振的频点可以在3.5GHz附近,第十谐振的频点可以在5.2GHz附近,第十一谐振的频点可以在6.0GHz附近。第九谐振、第十谐振和第十一谐振可以共同实现UHB和Wi-Fi的5G频段的宽频段覆盖要求。
本申请实施例的天线装置100,天线装置100在第四馈源174提供的激励电流的作用下,可以工作于三种谐振,一方面,可以拓展天线装置100的带宽,另一方面,第三辐射体130、第四辐射体140实现复用,可以实现天线装置100的小型化设计。
其中,本申请实施例的第三馈源173可以单独工作而使得天线装置100可以工作于第六谐振、第七谐振、第八谐振中的一个或几个;本申请实施例的第四馈源174也可以单独工作而使得天线装置100可以工作于第九谐振、第十谐振、第十一谐振中的一个或几个。当然,本申请实施例的第三馈源173和第四馈源174也可以同时工作,而使得天线装置100可以工作于第六谐振、第七谐振、第八谐振中的一个或几个以及第九谐振、第十谐振、第十一谐振中的一个或几个。
示例的,请参考图28,图28为图21所示的天线装置100的第三馈源173和第四馈源174同时工作时的一种S参数曲线示意图。图28中曲线L8为第三馈源173激励天线装置100工作于第六谐振、第七谐振、第八谐振的S11参数曲线,L8为前述的L6。图28中曲线L9为第四馈源174激励天线装置100工作于第九谐振、第十谐振和第十一谐振时的S11参数曲线,L9为前述的L7。图28中的曲线L10为第三馈源173和第四馈源174同时工作时的隔离度曲线,由曲线L10可以看出,第三馈源173和第四馈源174同时工作时,上述第六谐振至第十一谐振可以有效地独立工作,各个谐振之间的隔离度均符合要求,第三馈源173和第四馈源174之间的相互干扰较小。
其中,请再次参考图21,天线装置100还可以包括第四匹配电路184。
第四匹配电路184可以串联于第三馈源173和第三辐射体130的第三馈电点133之间。第四匹配电路184可以对第三馈源173提供的第三激励电流进行阻抗匹配,以使得天线装置100可以工作于第六谐振。第七谐振、第八谐振中的至少一个。
可以理解的是,当天线装置100包括第四辐射体140和第四馈源174且第四馈源174可以提供第四激励电流I4时,第四匹配电路184也可以对第四激励电流I4短路,第四激励电流I4可以通过第四匹配电路184下地而不流入第三馈源173。
可以理解的是,第四匹配电路184可以包括一个或多个电容、电感、开关等电子器件通过串联或并联的方式形成。示例性的,请参考图29,图29为图21所示的第四匹配电路184的一种结构示意图。第四匹配电路184可以包括第六电容C6、第六电感L6、第七电容C7、第七电感L7、第八电容C8、第八电感L8、第九电容C9和第十电容C10。第六电容C6、第八电容C8和第十电容C10可以顺次串联于第三馈源173和第三辐射体130的第三馈电点133之间,例如,第六电容C6的一端可以直接或间接电连接于第三馈源173、第六电容C6的另一端可以直接或间接电连接于第八电容C8的一端、第八电容C8的另一端可以直接或间接电连接于第十电容C10的一端,第十电容C10的另一端可以直接或间接电连接于第三辐射体130的第三馈电点133。第六电感L6的一端可电连接于第六电容C6和第八电容C8之间、第六电感L6的另一端可接地。第七电容C7的一端也可电连接于第六电容C6和第八电容C8之间、第七电容C7的另一端可接地。第七电感L7的一端可电连接于第八电容C8与第六电容C6之间、第七电感L7的另一端可电连接于第八电容C8与第十电容C10之间,第七电感L7可以并联于第八电容C8的两端。第八电感L8的一端可以电连接于第八电容C8和第十电容C10之间、第八电感L8的另一端可接地。第九电容C9的一端可以电连接于第八电容C8和所述第十电容C10之间、第九电容C9的另一端可接地。
可以理解的是,本申请实施例的第四匹配电路184可以仅对第三馈源173提供的激励电流进行阻抗匹配调节,也可以仅对第四馈源174提供的第四激励电流I4短路,还可以同时对第三馈源173提供的激励电流进行阻抗匹配调节以及对第四馈源174提供的第四激励电流I4短路。
需要说明的是,以上仅为本申请实施例的第四匹配电路184的示例性说明,第四匹配电路184的结构不局限于,例如但不限于还可以在第三馈源173与第三辐射体130之间再串联另外的电感器件、电容器件。本申请实施例对第四匹配电路184的具体结构不进行限定。
本申请实施例的第四匹配电路184既可以对第三馈源173提供的激励电流进行阻抗匹配,也可以对第四馈源174提供的第四激励电流I4短路,一方面,第四匹配电路184可以对第六谐振、第七谐振、第八谐振进行调谐而使得天线装置100能支持该频段;另一方面,第四激励电流I4不会流入第三馈源173而对第三馈源173产生干扰,第三馈源173和第四馈源174同时工作时的相互干扰更小。
其中,请再次参考图21,天线装置100还可以包括第五匹配电路185。
第五匹配电路185可以串联于第四馈源174和第四辐射体140的第四馈电点143之间。第五匹配电路185可以对第四馈源174提供的激励电流进行阻抗匹配。例如,第五匹配电路185可以对第四馈源174提供的第四激励电流I4进行阻抗匹配,以使得天线装置100可以工作于第九谐振、第十谐振、第十一谐振中的至少一个。
可以理解的是,第四匹配电路184可以包括一个或多个电容、电感、开关等电子器件通过串联或并联的方式形成。示例性的,请参考图30,图30为图21所示的第五匹配电路185的一种结构示意图。第五匹配电路185可以包括第九电感L9、第十一电容C11、第十电感L10、第十二电容C12和第十一电感L11。第九电感L9和第十二电容C12可以顺次串联于第四馈源174和第四辐射体140的第四馈电点143之间,例如第九电感L9的一端可以直接或间接电连接于第四馈源174,第九电感L9的另一端可以直接或间接电连接于第十二电容C12的一端,第十二电容C12的另一端可以直接或间接电连接于第四辐射体140的第四馈电点143。第十一电容C11的一端可以直接或间接电连接于第九电感L9和第十二电容C12之间、第十一电容C11的另一端可以接地。第十电感L10可以并联于第十二电容C12的两端,例如第十电感L10的一端可以直接或间接电连接于第九电感L9和第十二电容C12之间,第十电感L10的另一端可以直接或间接电连接于第十二电容C12和第四馈电点143之间。第十一电感L11的一端可以做直接或间接电连接于第十二电容C12和第四馈电点143之间、第十一电感L11的另一端可以接地。
可以理解的是,第四匹配电路184的结构并不局限于上述说明,例如但不限于第四匹配电路184还可以包括串联于第九电感L9、第十二电容C12之间的电感器件、电容元件。本申请实施例对第四匹配电路184的具体结构不进行限定。
需要说明的是,本申请实施例的天线装置100,可以包括第一辐射体110、第二辐射体120、第三辐射体130、第四辐射体140中的一个、两个、三个或四个,当天线装置100包括特定的辐射体及与该辐射体电连接的馈源时,天线装置100可以工作于与该辐射体相关的谐振。
其中,请参考图31和图32,图31为本申请实施例提供的天线装置100的第七结构示意图,图32为图31所示的天线装置100的一种S参数曲线示意图。天线装置100可以同时包括第一辐射体110、第二辐射体120、第三辐射体130、第四辐射体140、第一馈源171、第二馈源172、第三馈源173和第四馈源174。
当第一馈源171、第二馈源172、第三馈源173和第四馈源174同时工作,如图32所示,图32中曲线L11为第一馈源171单独工作时的S11参数曲线,曲线L12为第二馈源172单独工作时的S11参数曲线,曲线L13为第三馈源173单独工作时的S11参数曲线,曲线L14为第四馈源174单独工作时的S11参数曲线。曲线L15为第一馈源171与第二馈源172之间的隔离度曲线,曲线L16为第一馈源171与第三馈源173之间的隔离度曲线,曲线L17为第一馈源171与第四馈源174之间的隔离度曲线,曲线L18为第二馈源172与第三馈源173之间的隔离度曲线,曲线L19为第二馈源172与第四馈源174之间的隔离度曲线,曲线L20为第三馈源173与第四馈源174之间的隔离度曲线。由曲线L11至曲线L20可知,本申请实施例的第一馈源171通过第一匹配电路181和第二匹配电路182,可使得第一辐射体110和第二辐射体120实现UHB频段覆盖;第二馈源172通过第三匹配电路183可使得第一辐射体110和第二辐射体120可以实现MHB频段覆盖,第一辐射体110和第二辐射体120可以组成UHB+MHB的天线群,并可以作为游戏天线。第三馈源173通过第四匹配可使得第三辐射体130、第四辐射体140可以实现GPS+Wi-Fi2.4G频段覆盖;第四馈源174通过第五匹配可使得第三辐射体130、第四辐射体140可实现UHB+Wi-Fi5G频段覆盖,第三辐射体130和第四辐射体140可以组成GPS+Wi-Fi2.4G/Wi-Fi5G+UHB天线群,实现短距离的覆盖。并且,由曲线L11至曲线L20可知,上述各个天线群同时工作时,各个谐振之间的隔离度都比较好,各个谐振均能够有效地独立工作而不受其他同频段的天线影响,可以实现较好的天线性能。
需要说明的是,本申请实施例天线装置100可以单独工作于第一谐振至第十一谐振(或第一谐振至第十二谐振)中的一个或多个(两个及以上),天线装置100可以包括工作于该一个或多个谐振所需的部件。例如,当天线装置100工作于第八谐振时,天线装置100可以包括第三辐射体130、第三馈源173和第四辐射体140(也可以包括与该谐振对应的匹配电路及其他所需部件,在此不详述,后文中的说明均可以参考本说明);当天线装置100工作于第十谐振时,天线装置100可以包括第四辐射体140和第四馈源174;当天线装置100工作于第九谐振、第十谐振和第十一谐振时,天线装置100可以包括第四辐射体140、第四馈源174和第三辐射体130。在不相互冲突的前提下,本申请的各个实施例可以单独实施,也可以相互组合后实施,本申请实施例对此不进行限定。
其中,请参考图33,图33为本申请实施例提供的天线装置100的第八种结构示意图。天线装置100还可以包括导体连接段150。
导体连接段150的一端可以直接或间接连接于第二辐射体120的第四端122,导体连接段150的另一端可以直接或间接连接于第三辐射体130的第五端131,从而,第二辐射体120、导体连接段150和第三辐射体130可以顺次连接成整体,导体连接段150可以增加第二辐射体120和第三辐射体130的连接强度。
可以理解的是,导体连接段150可以不承担主要辐射作用,因此,天线装置100可以对导体连接段150的天线环境要求较低。例如但不限于,导体连接段150可以选用较窄的导体制备、导体连接段150对应的净空区域的高度可以较低、导体连接段150可以选择柔性电路板材料制备。
请结合图33并请参考图34,图34为图33所示的天线装置100的一种电连接示意图。当第二辐射体120、导体连接段150和第三辐射体130连接成整体时,第二辐射体120、导体连接段150和第三辐射体130共同形成感应枝节并与Sar传感器200电连接。Sar传感器200可以通过该感应枝节判断人头/手的接近与远离,以判断电磁波吸收比值(Specific absorption rate,简称“Sar”)的大小。此时,天线装置100还可以包括第六匹配电路186和第七匹配电路187,该第六匹配电路186的一端可以与第二辐射体120的第四端122直接或间接电连接,第六匹配电路186的另一端可以接地;第七匹配电路187的一端可以与第三辐射体130的第三端121直接或间接电连接,第七匹配电路187的另一端可以接地;第六匹配电路186、第七匹配电路187均可以对Sar传感器200提供的检测信号开路,以避免该检测信号回地。
可以理解的是,第六匹配电路186、第七匹配电路187可以对直流信号开路而对交流信号短路,以使得第一馈源171、第二馈源172提供的可在第二辐射体120上流动的激励电流可以从第六匹配电路186回地,第三馈源173、第四馈源174提供的可在第三辐射体130上流动的激励电流可以从第七匹配电路187回地。
可以理解的是,第六匹配电路186、第七匹配电路187可以是大电容器件,例如但不限于大电容器件的电容值为22pF(皮法)至100pF之间,以使得感应枝节可以处于“悬浮”状态(直流电流不回地、交流电流可回地的状态)。
本申请实施例的天线装置100,第二辐射体120和第三辐射体130之间通过导体连接段150连接成整体,一方面,第二辐射体120和第三辐射体130之间不需要开设缝隙,不会影响天线装置100的外观;另一方面,第二辐射体120、第三辐射体130和导体连接段150共同复用为Sar传感器200的感应枝节,可以实现天线装置100的小型化设计。
其中,请参考图35,图35为本申请实施例提供的天线装置100的第九种结构示意图。天线装置100还可以包括第五辐射体160。
第五辐射体160可以与第一馈源171直接或间接电连接,例如但不限于第五辐射体160可以直接或间接电连接于第二匹配电路182。第一馈源171提供的第一激励电流还可以激励第五辐射体160工作于第十二频段的第十二谐振。该第十二谐振可以不同于第一谐振、第二谐振。
可以理解的是,第十二谐振对应的第十二频段可以是UHB频段,例如但不限于第十二频段可以包括N79频段。当然,通过调节第五辐射体160的尺寸及电连接的匹配电路,也可以使得第五辐射体160可以工作于其他频段的无线信号,在此不进行详述。
可以理解的是,第五辐射体160可以与第一辐射体110间隔设置,第五辐射体160也可以与第一辐射体110直接或间接连接成整体。第五辐射体160与第一辐射体110的天线形式可以相同,也可以不同;例如但不限于第一辐射体110为边框420天线、第五辐射体160为FPC天线或者LDS天线。需要说明的是,本申请实施例对第一辐射体110、第五辐射体160的具体设置位置、形成方式、支持的频段均不进行具体限定。
可以理解的是,如图35所示,天线装置100还可以包括匹配电路例如第十匹配电路188,该第十匹配电路188可以串联于第五辐射体160和第一馈源171之间,以对第一馈源171馈入第五辐射体160中的激励电流进行阻抗匹配。
本申请实施例的天线装置100,当第一馈源171提供第一激励电流I1时,天线装置100可以支持UHB的N78和N79频段,第一辐射体110和第二辐射体120采用共口径技术,既可以提高天线空间复用率,又可以保证游戏天线的辐射性能。
基于上述天线装置100的结构,本申请实施例还提供一种电子设备10,电子设备10可以是智能手机、平板电脑等设备,还可以是游戏设备、增强现实(Augmented Reality,简称AR)设备、汽车装置、数据存储装置、音频播放装置、视频播放装置、笔记本电脑、桌面计算设备等。请参考图36,图36为本申请实施例提供的电子设备10的第一种结构示意图,电子设备10可以包括上述任一实施例中的天线装置100。
其中,电子设备10还可以包括显示屏300、中框400、电路板500、电池600和后壳700。
显示屏300设置在中框400上,以形成电子设备10的显示面,用于显示图像、文本等信息。其中,显示屏300可以包括液晶显示屏(Liquid Crystal Display,LCD)或有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏等类型的显示屏。
中框400可以包括中板410和边框420,中板410可为薄板状或薄片状的结构,边框420可以为中空的框体结构。中框400用于为电子设备10中的电子器件或功能组件提供支撑作用,以将电子设备10的电子器件、功能组件安装到一起。例如,中框400上可以设置凹槽、凸起、通孔等结构,以便于安装电子设备10的电子器件或功能组件。可以理解的,中框400的材质可以包括金属或塑胶等。
电路板500设置在中框400上以进行固定,并通过后壳700将电路板500密封在电子设备10的内部。电路板500上可以集成有处理器,此外还可以集成耳机接口、加速度传感器、陀螺仪、马达等功能组件中的一个或多个。同时,显示屏300可以电连接至电路板500,以通过电路板500上的处理器对显示屏300的显示进行控制。可以理解的是,电子设备10上述馈源、调节电路中的一个或多个可以设置于电路板500上。当然,上述部件也可以设置在电子设备10的小板上,在此不对其进行限定。
电池600设置在中框400上,并通过后壳700将电池600密封在电子设备10的内部。同时,电池600电连接至电路板500,以实现电池600为电子设备10供电。其中,电路板500上可以设置有电源管理电路。电源管理电路用于将电池600提供的电压分配到电子设备10中的各个电子器件。
后壳700与中框400连接。例如,后壳700可以通过诸如双面胶等粘接剂贴合到中框400上以实现与中框400的连接。其中,后壳700用于与中框400、显示屏300共同将电子设备10的电子器件和功能组件密封在电子设备10内部,以对电子设备10的电子器件和功能组件形成保护作用。
其中,请结合图36并请参考图37,图37为本申请实施例提供的电子设备10的第二种结构示意图。当图36为电子设备10的正视图时,图37为电子设备10的背视图,图36中电子设备10的正面为显示屏300、背面为后壳700,图37中电子设备10的正面为后壳700、背面为显示屏300。电子设备10可以包括边框420例如长边框421。
该长边框421可以是电子设备10的一条边框420,电子设备10还可以包括与该长边框421相对设置的短边框422,短边框422的长度可以小于长边框421的长度,该短边框422可以但不限于与长边框421直接或间接连接。
天线装置100可以相对电子设备10的边框420设置,例如天线装置100的第一辐射体110和第二辐射体120可以相对电子设备10的长边框421设置。示例性的,当该长边框421为导体结构时,第一辐射体110、第二辐射体120可以通过开缝隙形成辐射枝节的形式形成于长边框421上(此时,第一辐射体110、第二辐射体120的投影位于长边框421上);再例如,第一辐射体110、第二辐射体120还可以直接或间接连接于长边框421上且第一辐射体110和第二辐射体120的投影可位于长边框421上;又例如,第一辐射体110和第二辐射体120可以与长边框421间隔设置但第一辐射体110和第二辐射体120的投影位于长边框421上。本申请实施例对第一辐射体110、第二辐射体120与长边框421的具体结构不进行限定。
可以理解的是,电子设备10可以具有横屏手握场景和竖屏手握场景。竖屏手握场景是指用户将电子设备10竖向放置使得电子设备10的短边框422处于电子设备10的顶部或者底部(可如图37所示,图37中示意出电子设备10处于竖屏状态的示意图),此时用户握持电子设备10时往往覆盖电子设备10底部的短边框422。请结合图37并请参考图38,图38为图37所示的电子设备10的一种应用场景图。图38中电子设备10的正面为显示屏、背面为后壳700,电子设备 10的左部为竖屏状态时显示屏300的上半部分,电子设备10的左部为竖屏状态下显示屏300的下半部分。横屏手握场景是指用户将电子设备10横向放置使得电子设备10的长边框421处于电子设备10的顶部或底部,由于长边框421的长度较长,此时用户握持电子设备10时往往覆盖电子设备10底部的长边框421的部分区域,可以将用户横屏手握场景下不易覆盖的长边框421的区域作为长边框421的预设区域。
可以理解的是,电子设备10可以使得第一辐射体110和第二辐射体120相对该预设区域设置,以使得电子设备10处于横屏手握场景下,用户握持电子设备10时至少不覆盖第一耦合间隙101,从而,用户的手握行为不易影响第一激励电流I1、第一激励电流I1经第一耦合间隙101电磁耦合到第二辐射体120而工作于第一谐振、第二谐振,也不易影响第二激励电流I2经第一耦合间隙101耦合到第一辐射体110而工作于第五谐振,天线装置100及电子设备10在用户手握场景下也可以具有较优的天线性能。
示例性的,请结合图37和图38并请参考图39,图39为图38所示的电子设备10在横屏手握状态与非手握状态下支持无线信号时系统效率曲线示意图。图39中曲线L21为电子设备10在非手握状态下第一馈源171工作时的天线装置100的系统效率曲线;曲线L22为电子设备10在非手握状态下第二馈源172工作时的天线装置100的系统效率曲线;曲线L23为电子设备10在横屏手握状态下第一馈源171工作时的天线装置100的系统效率曲线;曲线L24为电子设备10在横屏手握状态下第二馈源172工作时的天线装置100的系统效率曲线。对比曲线L21和曲线L23、以及曲线L22和曲线L24可知,当电子设备10处于横屏手握场景时,天线装置100在UHB全频段以及MHB全频段降幅分别在0.9dB-2.9dB,天线装置100的性能依然可以维持在较高水平。将第一辐射体110和第二辐射体120相对长边框421设置,相比将第一辐射体110和第二辐射体120相对短边框422设置的方案而言,本申请实施例相对长边框421设置的第一辐射体110和第二辐射体120,在横屏手握场景下的天线效率降幅更小。
可以理解的是,为了进一步避免用户手握对天线装置100的影响,如图36所示,可以将第一辐射体110和第二辐射体120相对于横屏手握状态下电子设备10顶部的长边框421设置。
可以理解的是,为了进一步避免用户对天线装置100的影响,可以调整预设区域的范围,使得横屏手握场景下,用户也可以不握持第一辐射体110和第二辐射体120,以进一步降低手握对天线装置100性能的影响。当然,也可以调整预设区域的范围,使得用户可以遮挡部分或全部的第一辐射体110、第二辐射体120而不遮挡第一耦合间隙101。本申请实施例对第一辐射体110和第二辐射体120的具体设置位置不进行限定。
本申请实施例的天线装置100,第一辐射体110和第二辐射体120相对电子设备10的长边框421设置,横屏手握场景下用户不易覆盖第一耦合间隙101,用户手握对电子设备10的影响较小。
其中,请参考图40和图41,图40为本申请实施例提供的电子设备10的第三种结构示意图,图41为本申请实施例提供的电子设备10的第四种结构示意图。图40、图41中电子设备10的正面为后壳700、背面为显示屏300。电子设备10可以包括相互弯折连接的长边框421和短边框422。
第一辐射体110和第二辐射体120可以相对长边框421设置;部分第三辐射体130可以相对长边框421设置、另一部分第三辐射体130可以相对短边框422设置,第四辐射体140可以相对短边框422设置;从而,第一辐射体110和第二辐射体120组成的MHB+UHB的游戏天线群可以相对长边框421设置;第三辐射体130和第四辐射体140组成的GPS+Wi-Fi2.4G/5G+UHB天线群可以相对电子设备10的拐角设置;第二辐射体120和第三辐射体130之间的导体连接段150相对长边框421设置,可以复用为电子设备10的按键结构。
可以理解的是,电子设备10可以包括上述第一辐射体110、第二辐射体120、第三辐射体130、第四辐射体140和导体连接段150中的一个或多个(两个及以上)的上述设置方案,本申请实施例对此不进行详细说明。
可以理解的是,上述辐射体相对长/短边框422设置,既可以是指辐射体形成于导体结构的长/短边框422上,也可以是指辐射体直接或间接连接于长/短边框422上且投影于长/短边框422上,还可以是指辐射体与长/短边框422间隔设置但投影于长/短边框422上。本申请实施例对上述辐射体的具体设置位置不进行限定。
本申请实施例的天线装置100及电子设备10,第一辐射体110和第二辐射体120可以形成口径天线并实现无开关覆盖MHB+UHB频段的宽频游戏天线,一方面,第一辐射体110和第二辐射体120使用共口径模态可以满足国内外UHB-N77/N78宽频段(3300MHz-4100MHz)覆盖要求;另一方面,共口径模态空间利用率高,有利于整机更好地堆叠;又一方面,天线装置100不需要开关切换即可实现宽频段覆盖,有效节省电子设备10内部空间,减少整体成本;同时,第一辐射体110和第二辐射体120相对长边框421设置,横屏双手玩游戏场景下天线装置100的辐射性能依然较高,可以实现游戏不卡顿。
其中,请结合图33、图40和图41,天线装置100的导体连接段150可以接收用户的按压操作,导体连接段150可以作为电子设备10的按键结构,例如但不限于导体连接段150可以作为设备的音量按键、电源按键、开关控制按键等。当导体连接段150作为按键结构时,导体连接段150可以裸露在天线装置100或电子设备10的外部,以接收用户的按压操作。
可以理解的是,导体连接段150的长度可以根据按键结构的大小进行适应性调整。本申请实施例对此不进行限定。
其中,请结合图34、图40和图41,Sar传感器200可以是天线装置100或者电子设备10的一个部件,也可以是其他设备的部件。Sar传感器200可以提供检测信号,该检测信号可以在第二辐射体120、导体连接段150和第三辐射体130共同形成的感应枝节上流动,当人体靠近时,检测信号会产生一定的变化,Sar传感器200可以通过检测信号发生的变化判断人头/手是否靠近或远离,以判断电子设备10的Sar值的大小。
可以理解的是,天线设计中,往往通过Sar指标来评价电子设备10产生的电磁辐射对人体的影响。Sar值越大,表示对人体的影响越大。本申请实施例中,Sar传感器200利用感应枝节进行Sar值大小的判断,感应枝节和人体部分(如手)形成等效电容器,二者之间有等效电容,距离减少的话电容增加,反之降低:当用户未靠近感应枝节时,Sar传感器200可以判断检测信号可处于预设范围内;当用户靠近感应枝节时,Sar传感器200检测的检测信号的数据可以发生显著变化;通过该变化,Sar传感器200可以判断用户是否靠近或远离,也可以判断出天线装置100的Sar值是否超过规定的Sar值阈值,以便于电子设备10可以根据Sar值来调整多个谐振的发射功率或者执行功率回退事件。
需要说明的是,第二辐射体120、导体连接段150和第三辐射体130共同形成整体并不局限于复用为按键或Sar传感器200的感应枝节,例如但不限于三者形成整体可以增加天线装置100的结构强度。本申请实施例对此不进行限定。
需要说明的是,本申请实施例第一辐射体110、第二辐射体120、第三辐射体130、第四辐射体140中的一个、两个、三个或四个也可以复用为Sar传感器200的感应枝节,例如但不限于在第一辐射体110的第一端111和接地平面之间串联一通直流阻交流的第八匹配电路,或者,在第四辐射体140的第八端142和接地平面之间串联另一通直流阻交流的第九匹配电路。可以理解的是,天线装置100可以包括第六匹配电路186、第七匹配电路187、第八匹配电路、第九匹配电路中的至少一个,以使得第一辐射体110、第二辐射体120、第三辐射体130、第四辐射体140中至少一个处于“悬浮”状态。当然,如果相邻两个辐射体之间通过导体件连接为整体时,此时需要设置多个匹配电路以使得整个枝节均处于“悬浮”状态。本申请实施例对此不进行具体的限定。
本申请实施例的天线装置100及电子设备10,第二辐射体120、导体连接段150和第三辐射体130共同形成Sar传感器200的感应枝节,整个感应枝节可处于悬浮状态而检测人/手靠近天线装置100或电子设备10的不同距离来回退不同功率值,提升用户体验;并且,第六匹配电路186和第七匹配电路187采用大电容回地,使得该匹配电路对第三辐射体130和第四辐射体140支持的无线信号的频段影响不大,避免增加天线调试的难度。同时,导体连接段150可以复用为电子设备10的音量或开关按键,通过同一种天线方案设计,兼顾不同的ID外观需求,可以满足不同电子设备10的兼容性需求,将导体连接段150复用为按键,对天线装置100的影响不大。
本申请实施例的天线装置100及电子设备10,第三辐射体130和第四辐射体140形成口径天线并可以支持GPS+Wi-Fi2.4G/5G+UHB,可以实现短距离的覆盖。并且,整个天线装置100可以实现MHB+UHB+GPS+Wi-Fi2.4G+Wi-Fi5G的多频段广覆性能,在不增加开关成本的前提下展宽了天线带宽。并且,本申请实施例的天线装置100通过不同匹配电路,可以实现各频段的高隔离度需求,进一步提高个频段的辐射性能。
可以理解的是,以上仅为电子设备10的示例性举例,本申请实施例的电子设备10还可以包括摄像头、传感器、声电转换装置等部件,这些部件可以参见相关技术中的描述,在此不再赘述。
需要说明的是,以上实施例在不冲突的前提下可以任意进行组合,组合后的实施例方案依然在本申请实施例的保护范围内。需要理解的是,在本申请的描述中,诸如“第一”、“第二”等术语仅用于区分类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
以上对本申请实施例提供的天线装置及电子设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (35)

  1. 一种天线装置,包括:
    第一辐射体,包括第一端和第二端、以及设置于所述第一端和所述第二端之间的第一馈电点,所述第一端接地;
    第一馈源,与所述第一馈电点电连接并用于提供第一激励电流;
    第二辐射体,包括第三端和第四端、以及设置于所述第三端和所述第四端之间的电连接点,所述第三端与所述第二端之间设有第一耦合间隙,所述第三端位于所述第二端和所述第四端之间,所述第四端接地;及
    第一匹配电路,与所述电连接点电连接,所述第一激励电流经所述第一耦合间隙耦合至所述第二辐射体并经所述第一匹配电路短路回地;其中,
    所述第一激励电流在所述第一馈电点与所述第二端之间的第一导体段和所述电连接点与所述第三端之间的第二导体段上的流向相同并激励所述第一导体段和所述第二导体段共同工作于第一谐振;和/或,
    所述第一激励电流在所述第一导体段和所述第二导体段的流向相反并激励所述第一导体段和所述第二导体段共同工作于第二谐振。
  2. 根据权利要求1所述的天线装置,其中,所述第一导体段以四分之一波长模态、所述第二导体段以四分之一波长模态共同工作于所述第一谐振、或者、共同工作于所述第二谐振。
  3. 根据权利要求1所述的天线装置,其中,所述第一谐振支持的第一频段、所述第二谐振支持的第二频段中的至少一个为超高频频段,并且,所述第二频段的中心频率高于所述第一频段的中心频率。
  4. 根据权利要求1所述的天线装置,其中,所述第一匹配电路包括第一电感和第一电容,所述第一电感和所述第一电容相互串联于所述电连接点和接地平面之间。
  5. 根据权利要求1所述的天线装置,其中,还包括:
    第二匹配电路,串联于所述第一馈源和所述第一馈电点之间,所述第二匹配电路用于对所述第一激励电流进行阻抗匹配调节。
  6. 根据权利要求5所述的天线装置,其中,所述第二匹配电路包括第二电容、第二电感、第三电容和第三电感,所述第二电感的一端与所述第一馈源电连接,所述第二电容的一端电连接于所述第二电感和所述第一馈源之间、另一端接地;所述第三电容的一端和所述第三电感的一端与所述第二电感的另一端电连接、所述第三电容的另一端和所述第三电感的另一端与所述第一馈电点电连接。
  7. 根据权利要求1所述的天线装置,其中,所述第二辐射体还包括设置于所述电连接点和所述第四端之间的第二馈电点;所述天线装置还包括:
    第二馈源,与所述第二馈电点电连接并用于提供第二激励电流,所述第一匹配电路用于对所述第二激励电流开路;其中,
    所述第二激励电流用于激励所述第二辐射体工作于第三谐振;和/或,
    所述第二激励电流还用于激励所述第二馈电点至所述第三端之间的第三导体段工作于第四谐振;和/或,
    所述第二激励电流还用于经所述第一耦合间隙耦合至所述第一辐射体并激励所述第一辐射体工作于第五谐振。
  8. 根据权利要求7所述的天线装置,其中,所述第二辐射体以四分之一波长模态工作于所述第三谐振;或者,所述第三导体段以四分之一波长模态工作于所述第四谐振;或者,所述第一辐射体以四分之一波长模态工作于所述第五谐振。
  9. 根据权利要求7所述的天线装置,其中,所述第三谐振支持的第三频段、所述第四谐振支持的第四频段、所述第五谐振支持的第五频段中的至少一个为中高频频段。
  10. 根据权利要求7所述的天线装置,其中,还包括:
    第三匹配电路,串联于所述第二馈源和所述第二馈电点之间,所述第三匹配电路用于对所述第二激励电流进行阻抗匹配调节。
  11. 根据权利要求10所述的天线装置,其中,所述第三匹配电路包括第四电感、第四电容、第五电感和第五电容,所述第五电感的一端电连接于所述第二馈源、另一端电连接于所述第五电容的一端,所述第五电容的另一端电连接于与所述第二馈电点;所述第四电感的一端、所述第四电容的一端电连接于所述第五电感和所述第二馈源之间,所述第四电感的另一端、所述第四电容的另一端均接地。
  12. 根据权利要求1至11任一项所述的天线装置,其中,还包括:
    第三辐射体,包括第五端第六端、以及设置于所述第五端和所述第六端之间的第三馈电点,所述第五端位于所述第六端和所述第二辐射体之间,所述第五端接地;
    第三馈源,电连接于所述第三馈电点并用于提供第三激励电流;其中,
    所述第三激励电流用于激励所述第五端至所述第三馈电点之间的第四导体段工作于第六谐振;和/或,
    所述第三激励电流还用于激励所述第三馈电点至所述第六端之间的第五导体段工作于第七谐振。
  13. 根据权利要求12所述的天线装置,其中,所述第四导体段以八分之一波长模态工作于所述第六谐振;或者,所述第五导体段以四分之一波长模态工作于第七谐振。
  14. 根据权利要求12所述的天线装置,其中,还包括:
    第四辐射体,包括第七端和第八端,所述第七端位于所述第八端和所述第六端之间,所述第七端与所述第六端之间设有第二耦合间隙,所述第八端接地;
    其中,所述第三激励电流还用于经所述第二耦合间隙耦合至所述第四辐射体并激励所述第四辐射体工作于第八谐振。
  15. 根据权利要求14所述的天线装置,其中,所述第四辐射体以四分之一波长模态工作于所述第八谐振。
  16. 根据权利要求14所述的天线装置,其中,所述第六谐振支持的第六频段、所述第七谐振支持的第七频段和所述第八谐振支持的第八频段共同覆盖GPS频段和Wi-Fi的2.4G频段。
  17. 根据权利要求14所述的天线装置,其中,所述第四辐射体还包括设置于所述第七端和所述第八端之间的第四馈电点;所述天线装置还包括:
    第四馈源,电连接于所述第四馈电点,所述第四馈源用于提供第四激励电流;其中,
    所述第四激励电流用于经所述第二耦合间隙耦合至所述第三辐射体,并用于激励所述第四馈电点至所述第七端之间的第六导体段和所述第五导体段共同工作于第九谐振;
    所述第四激励电流还用于激励所述第六导体段工作于第十谐振;
    所述第四激励电流还用于经所述第二耦合间隙耦合至所述第三辐射体并激励所述第三辐射体工作于第十一谐振。
  18. 根据权利要求17所述的天线装置,其中,所述第六导体段和所述第五导体段共同以四分之一波长模态工作于所述第九谐振;或者,所述第六导体段以四分之一波长模态工作于所述第十谐振;或者,所述第三辐射体以四分之三波长模态工作于所述第十一谐振。
  19. 根据权利要求17所述的天线装置,其中,所述第九谐振支持的第九频段、所述第十谐振支持的第十频段和所述 第十一谐振支持的第十一频段共同覆盖超高频频段和Wi-Fi的5G频段。
  20. 根据权利要求17所述的天线装置,其中,还包括:
    第四匹配电路,串联于所述第三馈源和所述第三馈电点之间;其中,
    所述第四激励电流经所述第二耦合间隙耦合至所述第三辐射体并经所述第四匹配电路短路回地。
  21. 根据权利要求20所述的天线装置,其中,所述第四匹配电路包括第六电容、第六电感、第七电容、第七电感、第八电容、第八电感、第九电容和第十电容,所述第六电容、所述第八电容和所述第十电容顺次串联于所述第三馈源和所述第三馈电点之间;所述第六电感的一端、所述第七电容的一端电连接于所述第六电容和所述第八电容之间,所述第六电感的另一端、所述第七电容的另一端接地;所述第七电感并联于所述第八电容的两端;所述第八电感的一端、所述第九电容的一端电连接于所述第八电容和所述第十电容之间,所述第八电感的另一端、所述第九电容的另一端接地。
  22. 根据权利要求17所述的天线装置,其中,还包括:
    第五匹配电路,串联于所述第四馈源和所述第四馈电点之间,所述第五匹配电路用于对所述第四激励电流进行阻抗匹配调节。
  23. 根据权利要求22所述的天线装置,其中,所述第五匹配电路包括第九电感、第十一电容、第十电感、第十二电容和第十一电感,所述第九电感和所述第十二电容顺次串联于所述第四馈源和所述第四馈电点之间;所述第十一电容的一端电连接于所述第九电感和所述第十二电容之间、另一端接地;所述第十电感并联于所述第十二电容的两端;所述第十一电感的一端电连接于所述第十二电容和所述第四馈电点之间、另一端接地。
  24. 根据权利要求12所述的天线装置,其中,还包括:
    导体连接段,所述导体连接段的一端连接于所述第四端、另一端连接于所述第五端;
    第六匹配电路,所述第六匹配电路的一端与所述第四端电连接、另一端接地;及
    第七匹配电路,所述第七匹配电路的一端与所述第五端电连接、另一端接地;其中,
    所述第二辐射体、所述导体连接段、所述第三辐射体共同为感应枝节并用于与Sar传感器电连接,所述Sar传感器用于通过检测信号判断所述天线装置的电磁波吸收比值的大小,所述第六匹配电路和所述第七匹配电路等效为对所述检测信号开路。
  25. 根据权利要求12所述的天线装置,其中,还包括:
    导体连接段,所述导体连接段的一端连接于所述第四端、另一端连接于所述第五端,所述导体连接段用于接收用户的按压操作。
  26. 根据权利要求1所述的天线装置,其中,还包括:
    第三辐射体,包括第五端和第六端、以及设置于所述第五端和所述第六端之间的第三馈电点,所述第五端位于所述第六端和所述第二辐射体之间,所述第五端接地;
    第三馈源,电连接于所述第三馈电点并用于提供第三激励电流;
    第四辐射体,包括第七端和第八端,所述第七端位于所述第八端和所述第六端之间,所述第七端与所述第六端之间设有第二耦合间隙,所述第八端接地;其中,
    所述第三激励电流用于经所述第二耦合间隙耦合至所述第四辐射体并激励所述第四辐射体工作于第八频段的第八谐振。
  27. 根据权利要求1所述的天线装置,其中,还包括:
    第四辐射体,包括第七端和第八端、以及设置于所述第七端和所述第八端之间的第四馈电点,所述第七端位于所述第二辐射体和所述第八端之间,所述第八端接地;及
    第四馈源,电连接于所述第四馈电点并用于提供第四激励电流,所述第四激励电流用于激励所述第四馈电点至所述第七端之间的第六导体段工作于第十频段的第十谐振。
  28. 根据权利要求27所述的天线装置,其中,还包括:
    第三辐射体,包括第五端和第六端、以及设置于所述第五端和所述第六端之间的第三馈电点,所述第五端位于所述第六端和所述第二辐射体之间,所述第五端接地,所述第六端位于所述第五端和所述第七端之间,所述第六端与所述第七端之间设有第二耦合间隙;
    所述第四馈源还用于提供第四激励电流,所述第四激励电流用于经所述第二耦合间隙耦合至所述第三辐射体,并用于激励所述第六导体段和所述第六端至所述第三馈电点之间的第五导体段共同工作于第九频段的第九谐振;
    所述第四激励电流还用于经所述第二耦合间隙耦合至所述第三辐射体并激励所述第三辐射体工作于第十一频段的第十一谐振。
  29. 根据权利要求1所述的天线装置,其中,还包括:
    第五辐射体,与所述第一馈源电连接,所述第一激励电流还用于激励所述第五辐射体工作于第十二频段的第十二谐振。
  30. 根据权利要求29所述的天线装置,其中,所述第十二频段包括N79频段。
  31. 一种电子设备,包括天线装置,所述天线装置包括:
    第一辐射体,包括第一端和第二端、以及设置于所述第一端和所述第二端之间的第一馈电点,所述第一端接地;
    第一馈源,与所述第一馈电点电连接并用于提供第一激励电流;
    第二辐射体,包括第三端和第四端、以及设置于所述第三端和所述第四端之间的电连接点,所述第三端与所述第二端之间设有第一耦合间隙,所述第三端位于所述第二端和所述第四端之间,所述第四端接地;及
    第一匹配电路,与所述电连接点电连接,所述第一激励电流经所述第一耦合间隙耦合至所述第二辐射体并经所述第一匹配电路短路回地;其中,
    所述第一激励电流在所述第一馈电点与所述第二端之间的第一导体段和所述电连接点与所述第三端之间的第二导体段上的流向相同并激励所述第一导体段和所述第二导体段共同工作于第一谐振;和/或,
    所述第一激励电流在所述第一导体段和所述第二导体段的流向相反并激励所述第一导体段和所述第二导体段共同工作于第二谐振。
  32. 根据权利要求31所述的电子设备,其中,所述电子设备包括长边框,所述第一辐射体和所述第二辐射体相对所述长边框的预设区域设置,以使得横屏手握场景下,用户握持所述电子设备时至少不覆盖所述第一耦合间隙。
  33. 一种电子设备,包括天线装置,所述天线装置包括;
    第一辐射体,包括第一端和第二端、以及设置于所述第一端和所述第二端之间的第一馈电点,所述第一端接地;
    第一馈源,与所述第一馈电点电连接并用于提供第一激励电流;
    第二辐射体,包括第三端和第四端、以及设置于所述第三端和所述第四端之间的电连接点,所述第三端与所述第二端之间设有第一耦合间隙,所述第三端位于所述第二端和所述第四端之间,所述第四端接地;及
    第一匹配电路,与所述电连接点电连接,所述第一激励电流经所述第一耦合间隙耦合至所述第二辐射体并经所述第一匹配电路短路回地;
    第三辐射体,包括第五端第六端、以及设置于所述第五端和所述第六端之间的第三馈电点,所述第五端位于所述第六端和所述第二辐射体之间,所述第五端接地;及
    第三馈源,电连接于所述第三馈电点并用于提供第三激励电流;其中,
    所述第一激励电流在所述第一馈电点与所述第二端之间的第一导体段和所述电连接点与所述第三端之间的第二导体段上的流向相同并激励所述第一导体段和所述第二导体段共同工作于第一谐振;和/或,所述第一激励电流在所述第一导体段和所述第二导体段的流向相反并激励所述第一导体段和所述第二导体段共同工作于第二谐振;
    所述第三激励电流用于激励所述第五端至所述第三馈电点之间的第四导体段工作于第六谐振;和/或,所述第三激励电流还用于激励所述第三馈电点至所述第六端之间的第五导体段工作于第七谐振;
    所述电子设备还包括弯折连接的长边框和短边框;其中,所述第一辐射体和所述第二辐射体相对所述长边框设置,部分所述第三辐射体相对所述长边框设置、另一部分所述第三辐射体相对所述短边框设置。
  34. 一种电子设备,包括天线装置,所述天线装置包括;
    第一辐射体,包括第一端和第二端、以及设置于所述第一端和所述第二端之间的第一馈电点,所述第一端接地;
    第一馈源,与所述第一馈电点电连接并用于提供第一激励电流;
    第二辐射体,包括第三端和第四端、以及设置于所述第三端和所述第四端之间的电连接点,所述第三端与所述第二端之间设有第一耦合间隙,所述第三端位于所述第二端和所述第四端之间,所述第四端接地;及
    第一匹配电路,与所述电连接点电连接,所述第一激励电流经所述第一耦合间隙耦合至所述第二辐射体并经所述第一匹配电路短路回地;其中,
    第三辐射体,包括第五端第六端、以及设置于所述第五端和所述第六端之间的第三馈电点,所述第五端位于所述第六端和所述第二辐射体之间,所述第五端接地;
    第三馈源,电连接于所述第三馈电点并用于提供第三激励电流;
    导体连接段,所述导体连接段的一端连接于所述第四端、另一端连接于所述第五端;
    第六匹配电路,所述第六匹配电路的一端与所述第四端电连接、另一端接地;及
    第七匹配电路,所述第七匹配电路的一端与所述第五端电连接、另一端接地;其中,
    所述第一激励电流在所述第一馈电点与所述第二端之间的第一导体段和所述电连接点与所述第三端之间的第二导体段上的流向相同并激励所述第一导体段和所述第二导体段共同工作于第一谐振;和/或,所述第一激励电流在所述第一导体段和所述第二导体段的流向相反并激励所述第一导体段和所述第二导体段共同工作于第二谐振;
    所述第三激励电流用于激励所述第五端至所述第三馈电点之间的第四导体段工作于第六谐振;和/或,所述第三激励电流还用于激励所述第三馈电点至所述第六端之间的第五导体段工作于第七谐振;
    所述第二辐射体、所述导体连接段、所述第三辐射体共同为感应枝节并用于与Sar传感器电连接,所述Sar传感器用于通过检测信号判断所述天线装置的电磁波吸收比值的大小,所述第六匹配电路和所述第七匹配电路等效为对所述检测信号开路;
    所述电子设备还包括弯折连接的长边框和短边框;其中,所述第一辐射体、所述第二辐射体和所述导体连接段相对所述长边框设置,部分所述第三辐射体相对所述长边框设置、另一部分所述第三辐射体相对所述短边框设置。
  35. 一种电子设备,包括天线装置,所述天线装置包括:
    第一辐射体,包括第一端和第二端、以及设置于所述第一端和所述第二端之间的第一馈电点,所述第一端接地;
    第一馈源,与所述第一馈电点电连接并用于提供第一激励电流;
    第二辐射体,包括第三端和第四端、以及设置于所述第三端和所述第四端之间的电连接点,所述第三端与所述第二端之间设有第一耦合间隙,所述第三端位于所述第二端和所述第四端之间,所述第四端接地;及
    第一匹配电路,与所述电连接点电连接,所述第一激励电流经所述第一耦合间隙耦合至所述第二辐射体并经所述第一匹配电路短路回地;
    第三辐射体,包括第五端第六端、以及设置于所述第五端和所述第六端之间的第三馈电点,所述第五端位于所述第六端和所述第二辐射体之间,所述第五端接地;
    第三馈源,电连接于所述第三馈电点并用于提供第三激励电流;及
    第四辐射体,包括第七端和第八端,所述第七端位于所述第八端和所述第六端之间,所述第七端与所述第六端之间设有第二耦合间隙,所述第八端接地;其中,
    所述第一激励电流在所述第一馈电点与所述第二端之间的第一导体段和所述电连接点与所述第三端之间的第二导体段上的流向相同并激励所述第一导体段和所述第二导体段共同工作于第一谐振;和/或,所述第一激励电流在所述第一导体段和所述第二导体段的流向相反并激励所述第一导体段和所述第二导体段共同工作于第二谐振;
    所述第三激励电流用于激励所述第五端至所述第三馈电点之间的第四导体段工作于第六谐振;和/或,所述第三激励电流还用于激励所述第三馈电点至所述第六端之间的第五导体段工作于第七谐振;
    所述第三激励电流还用于经所述第二耦合间隙耦合至所述第四辐射体并激励所述第四辐射体工作于第八谐振;
    所述电子设备还包括弯折连接的长边框和短边框;其中,所述第一辐射体和所述第二辐射体相对所述长边框设置,所述第四辐射体相对所述短边框设置。
PCT/CN2023/098630 2022-08-22 2023-06-06 天线装置及电子设备 WO2024041090A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211007465.0 2022-08-22
CN202211007465.0A CN117673734A (zh) 2022-08-22 2022-08-22 天线装置及电子设备

Publications (1)

Publication Number Publication Date
WO2024041090A1 true WO2024041090A1 (zh) 2024-02-29

Family

ID=90012316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098630 WO2024041090A1 (zh) 2022-08-22 2023-06-06 天线装置及电子设备

Country Status (2)

Country Link
CN (1) CN117673734A (zh)
WO (1) WO2024041090A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209767598U (zh) * 2019-06-28 2019-12-10 Oppo广东移动通信有限公司 电子设备
CN112736432A (zh) * 2020-12-28 2021-04-30 Oppo广东移动通信有限公司 天线装置及电子设备
CN112838370A (zh) * 2020-09-30 2021-05-25 Oppo广东移动通信有限公司 天线组件和电子设备
CN113437520A (zh) * 2021-06-29 2021-09-24 RealMe重庆移动通信有限公司 天线装置及电子设备
CN113690570A (zh) * 2021-08-23 2021-11-23 Oppo广东移动通信有限公司 天线装置、电子设备及天线装置的设计方法
CN113690588A (zh) * 2021-08-23 2021-11-23 Oppo广东移动通信有限公司 天线装置、电子设备及天线装置的设计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209767598U (zh) * 2019-06-28 2019-12-10 Oppo广东移动通信有限公司 电子设备
CN112838370A (zh) * 2020-09-30 2021-05-25 Oppo广东移动通信有限公司 天线组件和电子设备
CN112736432A (zh) * 2020-12-28 2021-04-30 Oppo广东移动通信有限公司 天线装置及电子设备
CN113437520A (zh) * 2021-06-29 2021-09-24 RealMe重庆移动通信有限公司 天线装置及电子设备
CN113690570A (zh) * 2021-08-23 2021-11-23 Oppo广东移动通信有限公司 天线装置、电子设备及天线装置的设计方法
CN113690588A (zh) * 2021-08-23 2021-11-23 Oppo广东移动通信有限公司 天线装置、电子设备及天线装置的设计方法

Also Published As

Publication number Publication date
CN117673734A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US10446915B2 (en) Mobile device
WO2022142659A1 (zh) 天线装置及电子设备
WO2022142824A1 (zh) 天线系统及电子设备
JP5965550B2 (ja) アンテナ装置及びその製造方法
US9559425B2 (en) Electronic device with slot antenna and proximity sensor
US9917346B2 (en) Chassis-excited antenna apparatus and methods
WO2020228703A1 (zh) 电子设备
CN112467387B (zh) 天线装置及电子设备
CN113451741B (zh) 一种天线及终端设备
WO2023155559A1 (zh) 电子设备
US20130293425A1 (en) Antenna Structures Having Slot-Based Parasitic Elements
TW201140933A (en) Bezel gap antennas
KR102229382B1 (ko) 전자 장치 및 그를 동작하는 방법
WO2014106490A1 (zh) 一种环形天线及相关电子设备
EP4152516A1 (en) Antenna apparatus and electronic device
CN112736461B (zh) 天线装置及电子设备
WO2022142820A1 (zh) 天线组件及电子设备
US20150171504A1 (en) Electronic apparatus
WO2023273493A1 (zh) 天线装置及电子设备
CN112864583B (zh) 天线装置及电子设备
WO2023236494A1 (zh) 电子设备
WO2024041090A1 (zh) 天线装置及电子设备
CN106067599B (zh) 一种应用于平板电脑的lte全频段天线
WO2023103545A1 (zh) 电子设备
WO2019161673A1 (zh) 遥控器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856182

Country of ref document: EP

Kind code of ref document: A1