WO2024041085A1 - 一种通信方法及设备 - Google Patents

一种通信方法及设备 Download PDF

Info

Publication number
WO2024041085A1
WO2024041085A1 PCT/CN2023/098310 CN2023098310W WO2024041085A1 WO 2024041085 A1 WO2024041085 A1 WO 2024041085A1 CN 2023098310 W CN2023098310 W CN 2023098310W WO 2024041085 A1 WO2024041085 A1 WO 2024041085A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
time
information
frequency offset
terminal device
Prior art date
Application number
PCT/CN2023/098310
Other languages
English (en)
French (fr)
Inventor
张霄宇
张佳胤
廖树日
熊博
窦圣跃
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024041085A1 publication Critical patent/WO2024041085A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device.
  • Non-terrestrial network Compared with terrestrial communication networks (such as the 4th Generation (4G) mobile communication system and the 5th Generation (5G) mobile communication system), non-terrestrial communication networks (Non-terrestrial network, NTN) have It has the characteristics of wider coverage, faster speed and lower cost. It can be used as a supplement or extension of the terrestrial communication network. NTN can achieve the purpose of seamless wide-area coverage that cannot be achieved by wired telephone networks and terrestrial cellular networks, and effectively solve the Internet access problem in areas lacking communication infrastructure.
  • 4G 4th Generation
  • 5G 5th Generation
  • NTN can meet the needs of high information rate services.
  • NTN can also be used in emergency disaster relief (such as disaster monitoring, emergency communications), Internet of Everything, high-speed mobility (such as high-speed rail, aircraft) and other scenarios.
  • the time-frequency offset of signals will cause the signal sent by the transmitter and the signal received by the receiver to be misaligned in frequency and time, which will seriously affect communication performance.
  • OFDM orthogonal frequency division multiplexing
  • deviations in frequency and/or time will destroy the orthogonality between signal subcarriers, causing Interference between subcarriers and/or time symbols (such as OFDM symbols) significantly reduces the signal demodulation performance at the receiving end. Therefore, the communication system needs to estimate and compensate the time-frequency offset of the signal to minimize the difference in time-frequency of the signal transmitted between the transmitter and the receiver, thereby ensuring the communication performance of the system.
  • the traditional time-frequency offset estimation and compensation method based on the terrestrial communication network may have a series of problems when applied to NTN.
  • This application provides a communication method and device for realizing time-frequency position estimation of signals in NTN.
  • embodiments of the present application provide a communication method, which can be applied to a terminal device or a chip system in the terminal device.
  • the method includes the following steps:
  • the terminal device receives a synchronization signal block from a network device; and receives first information from the network device, The first information is used to indicate that there is a quasi-co-location relationship between the first channel state information reference signal CSI-RS and the synchronization signal block; the first CSI-RS is a reference signal used for channel measurement; the The terminal equipment estimates the time-frequency position of the first CSI-RS based on the synchronization signal block and the first information.
  • the QCL relationship between the first CSI-RS (i.e. CSI-RS for CM) and the synchronization signal block is added to the communication system, so that the network equipment in the communication system does not send TRS, and the terminal equipment
  • the time-frequency position of the first CSI-RS can be estimated through the synchronization signal block. Since the communication system does not need to send TRS, this solution can reduce a large amount of time-frequency resource overhead in the communication system.
  • the saved time-frequency resources can be used for data transmission or other purposes, improving resource utilization and data transmission efficiency.
  • the terminal device may estimate the time-frequency position of the first CSI-RS according to the synchronization signal block and the first information through the following steps:
  • the terminal equipment first estimates the time-frequency offset of the first CSI-RS based on the time-frequency offset of the synchronization signal block and the first information; then, based on the time-frequency offset of the first CSI-RS, Estimate the time-frequency position of the first CSI-RS.
  • the terminal device can estimate the time-frequency offset of the first CSI-RS based on the QCL relationship between the first CSI-RS and the synchronization signal block and the time-frequency offset of the synchronization signal block, and then estimate the first CSI -Time-frequency position of RS.
  • the terminal device may also perform the following steps: obtain the first location information of the terminal device at a first time, wherein the first time is when the terminal device receives the synchronization The time of the signal block; receiving a system information block, the system information block is used to determine the first location information of the network device at the first time; according to the first location information of the terminal device and the network device The first location information determines the first downlink Doppler frequency offset and the first signal transmission delay; wherein the first downlink Doppler frequency offset is the signal transmitted by the network device to the The Doppler frequency offset of the signal sent by the terminal device, and the first signal transmission delay is the delay of signal transmission between the network device and the terminal device at the first time; based on the above steps, the terminal The device may estimate the time-frequency offset of the first CSI-RS according to the time-frequency offset of the synchronization signal block and the first information through the following steps:
  • the second location information of the terminal device at the second time and obtain the second location information of the network device at the second time; wherein the second time is when the terminal device receives the first a CSI-RS time; determining the second downlink Doppler frequency offset and the second signal transmission delay according to the second location information of the terminal device and the second location information of the network device; wherein, the second downlink Doppler frequency offset and the second signal transmission delay are determined;
  • the second downlink Doppler frequency offset is the Doppler frequency offset of the signal sent by the network device to the terminal device at the second time
  • the second signal transmission delay is the Doppler frequency offset of the network device at the second time.
  • the delay of signal transmission between the device and the terminal device according to the first downlink Doppler frequency offset, the first signal transmission delay, the second downlink Doppler frequency offset, the third The second signal transmission delay, the time-frequency offset information of the synchronization signal block and the first information, estimate the time-frequency offset of the first CSI-RS.
  • the terminal equipment uses the time-frequency offset of the synchronization signal block as a reference, and corrects the Doppler frequency offset and signal transmission delay through the real-time positions of the terminal equipment and network equipment, so that the terminal equipment can estimate
  • the comprehensive impact of Doppler frequency offset/signal transmission delay and time-frequency offset caused by non-ideal factors such as crystal oscillator error on the signal can make the calculated time-frequency offset of the first CSI-RS more accurate.
  • the time-frequency compensation accuracy of the uplink and downlink signals is correspondingly improved, thereby reducing the interference of the time-frequency offset on signal demodulation, and ultimately ensuring improve the signal transmission efficiency of the communication system.
  • the frequency offset of the first CSI-RS conforms to the following formula:
  • ⁇ F 2 is the frequency offset of the first CSI-RS, is the second downlink Doppler frequency offset, for the sake of The first downlink Doppler frequency offset, ⁇ F 1 is the frequency offset of the synchronization signal block;
  • ⁇ T 2 is the time offset of the first CSI-RS
  • ⁇ 2 is the transmission delay of the second signal
  • ⁇ 1 is the transmission delay of the first signal
  • ⁇ T 1 is the time delay of the synchronization signal block. Partial.
  • the terminal device can estimate the time-frequency offset of the first CSI-RS.
  • the terminal equipment can also perform time-frequency compensation on the uplink signal according to the time-frequency offset of the first CSI-RS; in the time-frequency compensation, the center of the uplink signal after frequency compensation
  • the frequency follows the following formula:
  • t TX is the sending time of the uplink signal
  • t RX is the time when the terminal device receives the first CSI-RS.
  • the terminal equipment can also perform time-frequency compensation on the uplink signal according to the time-frequency offset of the first CSI-RS, thereby reducing the interference of the time-frequency offset on the demodulation of the uplink signal, and ultimately ensuring that the uplink signal transmission efficiency.
  • the terminal device may also receive a third signal from the network device.
  • a control instruction the first control instruction is used to activate the first information.
  • the network device can activate the first information through the first control indication.
  • the quasi-co-location relationship between the first CSI-RS and the synchronization signal block indicated by the first information includes: Doppler frequency offset of the first CSI-RS There is a quasi-co-location relationship with the Doppler frequency offset of the synchronization signal block; and there is a quasi-co-location relationship between the average delay of the first CSI-RS and the average delay of the synchronization signal block.
  • the terminal equipment can determine the time-frequency offset of the first CSI-RS based on the quasi-co-location relationship indicated by the first information and the time-frequency offset of the synchronization signal block.
  • the quasi-co-location relationship between the first CSI-RS and the synchronization signal block indicated by the first information further includes: a spatial reception parameter of the first CSI-RS and There is a quasi-co-location relationship between the spatial reception parameters of the synchronization signal blocks.
  • the terminal equipment can also determine the spatial reception parameters of the first CSI-RS through the spatial reception parameters of the synchronization signal block based on the quasi-co-location relationship indicated by the above-mentioned first information.
  • the terminal device may receive the first CSI-RS and the synchronization signal block using the same beam.
  • the terminal device may also receive second information from the network device, where the second information is used to indicate that there is an accuracy between the first CSI-RS and the second CSI-RS. co-location relationship; wherein the second CSI-RS is a reference signal used for beam management; the first CSI-RS indicated by the second information and the second
  • the quasi-co-location relationship between CSI-RSs includes: there is a quasi-co-location relationship between the spatial reception parameters of the first CSI-RS and the spatial reception parameters of the second CSI-RS.
  • the terminal device can also determine the spatial reception parameters of the first CSI-RS through the spatial reception parameters of the second CSI-RS based on the quasi-co-location relationship indicated by the above-mentioned second information. For example, the terminal device may receive the first CSI-RS and the second CSI-RS using the same beam.
  • the terminal device may also receive third information from the network device, where the third information is used to indicate that there is an accuracy between the demodulation reference signal DMRS and the first CSI-RS.
  • Co-location relationship estimate the time-frequency position of the DMRS according to the time-frequency position of the first CSI-RS and the third information.
  • the terminal equipment can determine the time-frequency position of the DMRS through the time-frequency position of the first CSI-RS according to the quasi-co-location relationship indicated by the above-mentioned third information. For example, the terminal equipment may estimate the time-frequency offset of the DMRS based on the time-frequency offset of the first CSI-RS, and then estimate the time-frequency position of the DMRS to achieve time-frequency compensation of downlink signals.
  • the time-frequency offset of the DMRS is the same as the time-frequency offset of the first CSI-RS.
  • the terminal device may also receive data from the network device. a second control instruction, the second control instruction being used to activate the third information.
  • the network device can activate the third information through the second control indication.
  • the quasi-co-location relationship between the DMRS and the first CSI-RS indicated by the third information includes: the Doppler frequency offset of the DMRS and the first CSI-RS.
  • the Doppler frequency offset of the DMRS there is a quasi-co-location relationship between the Doppler frequency offsets of the RS; there is a quasi-co-location relationship between the Doppler spread of the DMRS and the Doppler spread of the first CSI-RS; the average of the DMRS
  • the terminal equipment can determine the time-frequency offset of the DMRS through the time-frequency offset of the first CSI-RS based on the quasi-co-location relationship indicated by the above-mentioned third information.
  • the quasi-co-location relationship between the DMRS and the first CSI-RS indicated by the third information further includes: the spatial reception parameter of the DMRS and the first CSI-RS. There is a quasi-co-location relationship between the spatial receiving parameters of the RS.
  • the terminal device can determine the spatial reception parameters of the DMRS through the spatial reception parameters of the first CSI-RS according to the quasi-co-location relationship indicated by the above-mentioned third information.
  • embodiments of the present application provide a communication method, which can be applied to network equipment or chip systems in network equipment. Taking network equipment as an example, the method includes the following steps:
  • the network device sends the synchronization signal block; sends first information to the terminal device, the first information is used to indicate that there is a quasi-co-location relationship between the first channel state information reference signal CSI-RS and the synchronization signal block; the first information A CSI-RS is a reference signal used for channel measurement; and sending the first CSI-RS to the terminal device.
  • the QCL relationship between the first CSI-RS (i.e. CSI-RS for CM) and the synchronization signal block is added to the communication system, so that the network equipment in the communication system can The time-frequency position of the first CSI-RS is estimated through the synchronization signal block. Since the communication system does not need to send TRS, this solution can reduce a large amount of time-frequency resource overhead in the communication system.
  • the saved time-frequency resources can be used for data transmission or other purposes, improving resource utilization and data transmission efficiency.
  • a first control instruction may also be sent to the terminal device, where the first control instruction is used to activate the first information.
  • the network device can activate the first information through the first control indication.
  • the network device may send the first CSI-RS to the terminal device through the following steps:
  • the network device can pre-compensate the time-frequency offset of the signal when sending a signal. It should be noted that network equipment needs to perform the same time-frequency offset pre-compensation on all signals sent to the terminal equipment. For example, the network device can perform frequency pre-compensation on the synchronization signal block, the first CSI-RS, the second CSI-RS, the DMRS and the downlink signal according to the set frequency pre-compensation value; A certain time pre-compensation value is used to perform time pre-compensation on the synchronization signal block, the first CSI-RS, the second CSI-RS, the DMRS and the downlink signal.
  • the frequency pre-compensated and time pre-compensated signals are then sent to the terminal device.
  • the above frequency domain pre-compensation value may be a value greater than, less than or equal to 0, and the time pre-compensation value may be a value greater than or equal to 0.
  • the network device when the network device performs time pre-compensation on the sent signal, in order to ensure the transmission efficiency of the uplink signal, the network device can also move the uplink timing of the network device forward. Processing in order to receive the uplink signal sent by the terminal device, that is, the process of the network device receiving the uplink signal from the terminal device includes the following steps:
  • the uplink timing of the network device is moved forward, and the reception time of the uplink signal sent by the terminal device is determined according to the uplink timing after the forward processing; after the determined The uplink signal reception time is to receive the uplink signal.
  • the offset value for forwarding the uplink timing of the network device is equal to the time pre-compensation value; after the uplink timing of the network device is forwarded, the uplink The reception time of the signal is equal to the transmission time of the first CSI-RS.
  • the network device After the network device performs uplink timing forward processing, it can ensure that the uplink and downlink timing of the network device remains consistent, thereby improving the signal transmission efficiency of the network device.
  • the quasi-co-location relationship between the first CSI-RS and the synchronization signal block indicated by the first information includes: Doppler frequency offset of the first CSI-RS There is a quasi-co-location relationship with the Doppler frequency offset of the synchronization signal block; and there is a quasi-co-location relationship between the average delay of the first CSI-RS and the average delay of the synchronization signal block.
  • the terminal equipment can determine the time-frequency offset of the first CSI-RS based on the quasi-co-location relationship indicated by the first information and the time-frequency offset of the synchronization signal block.
  • the quasi-co-location relationship between the first CSI-RS and the synchronization signal block indicated by the first information further includes: a spatial reception parameter of the first CSI-RS and There is a quasi-co-location relationship between the spatial reception parameters of the synchronization signal blocks.
  • the terminal equipment can also determine the spatial reception parameters of the first CSI-RS through the spatial reception parameters of the synchronization signal block based on the quasi-co-location relationship indicated by the above-mentioned first information.
  • the terminal device may receive the first CSI-RS and the synchronization signal block using the same beam.
  • the network device may also send second information to the terminal device, where the second information is used to indicate that the The first CSI-RS and the second There is a quasi-co-location relationship between CSI-RSs; wherein the second CSI-RS is a reference signal used for beam management; the first CSI-RS and the second CSI-RS indicated by the second information
  • the quasi-co-location relationship between RSs includes: there is a quasi-co-location relationship between the spatial reception parameters of the first CSI-RS and the spatial reception parameters of the second CSI-RS.
  • the terminal device can also determine the spatial reception parameters of the first CSI-RS through the spatial reception parameters of the second CSI-RS based on the quasi-co-location relationship indicated by the above-mentioned second information. For example, the terminal device may receive the first CSI-RS and the second CSI-RS using the same beam.
  • the network device may also send third information to the terminal device, where the third information is used to indicate that there is a quasi-coherence between the demodulation reference signal DMRS and the first CSI-RS. address relationship; sending the DMRS and downlink signals to the terminal equipment.
  • the terminal equipment can determine the time-frequency position of the DMRS through the time-frequency position of the first CSI-RS according to the quasi-co-location relationship indicated by the above-mentioned third information. For example, the terminal equipment may estimate the time-frequency offset of the DMRS based on the time-frequency offset of the first CSI-RS, and then estimate the time-frequency position of the DMRS to achieve time-frequency compensation of downlink signals.
  • the network device may also send a second control instruction to the terminal device, where the second control instruction is used to activate the Describe the third information.
  • the network device can activate the third information through the second control indication.
  • the quasi-co-location relationship between the DMRS and the first CSI-RS indicated by the third information includes: the Doppler frequency offset of the DMRS and the first CSI-RS.
  • the Doppler frequency offset of the DMRS there is a quasi-co-location relationship between the Doppler frequency offsets of the RS; there is a quasi-co-location relationship between the Doppler spread of the DMRS and the Doppler spread of the first CSI-RS; the average of the DMRS
  • the terminal equipment can determine the time-frequency offset of the DMRS through the time-frequency offset of the first CSI-RS based on the quasi-co-location relationship indicated by the above-mentioned third information.
  • the quasi-co-location relationship between the DMRS and the first CSI-RS indicated by the third information further includes: the spatial reception parameter of the DMRS and the first CSI-RS. There is a quasi-co-location relationship between the spatial receiving parameters of the RS.
  • the terminal device can determine the spatial reception parameters of the DMRS through the spatial reception parameters of the first CSI-RS according to the quasi-co-location relationship indicated by the above-mentioned third information.
  • embodiments of the present application provide a communication method, which can be applied to a terminal device or a chip system in the terminal device.
  • the method includes the following steps:
  • the terminal device receives first information from the network device, the first information is used to indicate that there is a quasi-co-location relationship between the first channel state information CSI-RS and the second CSI-RS; the first CSI-RS is used For a reference signal for channel measurement, the second CSI-RS is a reference signal for beam management; receiving the second CSI-RS from the network device; and according to the second CSI-RS and the The first information is to estimate the time-frequency position of the first CSI-RS.
  • the QCL relationship between the first CSI-RS (CSI-RS for CM) and the second CSI-RS (CSI-RS for BM) is added to the communication system, so that the network equipment in the communication system Without sending TRS, the terminal device can estimate the time-frequency position of the first CSI-RS through the second CSI-RS. Since the communication system does not need to send TRS, this solution can reduce a large amount of time-frequency resource overhead in the communication system.
  • the saved time-frequency resources can be used for data transmission or other purposes, improving resource utilization and data transmission efficiency.
  • the terminal device may perform the following steps: according to the second CSI-RS and the According to the first information, estimate the time-frequency position of the first CSI-RS:
  • the terminal equipment estimates the time-frequency offset of the first CSI-RS based on the time-frequency offset of the second CSI-RS and the first information; and then, based on the time-frequency offset of the first CSI-RS , estimate the time-frequency position of the first CSI-RS.
  • the terminal device can estimate the time-frequency offset of the first CSI-RS based on the QCL relationship between the first CSI-RS and the second CSI-RS and the time-frequency offset of the second CSI-RS, and then Estimate the time-frequency position of the first CSI-RS.
  • the terminal device may also perform the following steps: obtain the first location information of the terminal device at the first time, and obtain the first location information of the network device at the first time. ; Wherein, the first time is the time when the terminal device receives the second CSI-RS; according to the first location information of the terminal device and the first location information of the network device, the first time is determined.
  • the first signal transmission delay is the delay of signal transmission between the network device and the terminal device at the first time; based on the above steps, the terminal device can pass the following steps, according to the The time-frequency offset of the second CSI-RS and the first information are used to estimate the time-frequency offset of the first CSI-RS:
  • the second location information of the terminal device at the second time and obtain the second location information of the network device at the second time; wherein the second time is when the terminal device receives the first a CSI-RS time; determining a second downlink Doppler frequency offset and a second signal transmission delay according to the second location information of the terminal device and the second location information of the network device; wherein, the second The downlink Doppler frequency offset is the Doppler frequency offset of the signal sent by the network device to the terminal device at the second time, and the second signal transmission delay is the Doppler frequency offset of the network device at the second time.
  • the time delay of transmitting signals with the terminal equipment according to the first downlink Doppler frequency offset, the first signal transmission delay, the second downlink Doppler frequency offset, the second The signal transmission delay, the time-frequency offset information of the second CSI-RS and the first information estimate the time-frequency offset of the first CSI-RS.
  • the terminal device uses the time-frequency offset of the second CSI-RS as a reference to correct the Doppler frequency offset and signal transmission delay through the real-time positions of the terminal device and the network device, so that the terminal device can estimate the Doppler frequency offset and the signal transmission delay.
  • the comprehensive impact of frequency offset/signal transmission delay and time-frequency offset caused by non-ideal factors such as crystal oscillator error on the signal can make the calculated time-frequency offset of the first CSI-RS more accurate.
  • the time-frequency compensation accuracy of the uplink and downlink signals is correspondingly improved, thereby reducing the interference of the time-frequency offset on signal demodulation, and ultimately ensuring improve the signal transmission efficiency of the communication system.
  • the frequency offset of the first CSI-RS conforms to the following formula:
  • ⁇ F 2 is the frequency offset of the first CSI-RS
  • ⁇ F 1 is the frequency offset of the second CSI-RS
  • ⁇ T 2 is the time offset of the first CSI-RS
  • ⁇ 2 is the transmission delay of the second signal
  • ⁇ 1 is the transmission delay of the first signal
  • ⁇ T 1 is the second CSI-RS The time deviation.
  • the terminal device can estimate the time-frequency offset of the first CSI-RS.
  • the terminal equipment can also perform time-frequency compensation on the uplink signal according to the time-frequency offset of the first CSI-RS; in the time-frequency compensation, the center of the uplink signal after frequency compensation
  • the frequency follows the following formula:
  • t TX is the sending time of the uplink signal
  • t RX is the time when the terminal device receives the first CSI-RS.
  • the terminal equipment can also perform time-frequency compensation on the uplink signal according to the time-frequency offset of the first CSI-RS, thereby reducing the interference of the time-frequency offset on the demodulation of the uplink signal, and ultimately ensuring that the uplink signal transmission efficiency.
  • the terminal device may also receive a signal from the network device.
  • the first control instruction is used to activate the first information.
  • the network device can activate the first information through the first control indication.
  • the quasi-co-location relationship between the first CSI-RS and the second CSI-RS indicated by the first information includes: Doppler of the first CSI-RS There is a quasi-co-location relationship between the frequency offset and the Doppler frequency offset of the second CSI-RS; the Doppler spread of the first CSI-RS and the Doppler spread of the second CSI-RS There is a quasi-co-location relationship between the average delay of the first CSI-RS and the average delay of the second CSI-RS; and the delay spread of the first CSI-RS There is a quasi-co-location relationship with the delay spread of the second CSI-RS.
  • the terminal device can determine the time-frequency offset of the first CSI-RS through the time-frequency offset of the second CSI-RS based on the quasi-co-location relationship indicated by the first information.
  • the quasi-co-location relationship between the first CSI-RS and the second CSI-RS indicated by the first information also includes: spatial reception of the first CSI-RS There is a quasi-co-location relationship between the parameter and the spatial reception parameter of the second CSI-RS.
  • the terminal device can also determine the spatial reception parameters of the first CSI-RS through the spatial reception parameters of the second CSI-RS based on the quasi-co-location relationship indicated by the above-mentioned first information. For example, the terminal device may receive the first CSI-RS and the second CSI-RS using the same beam.
  • the terminal device may also receive second information from the network device, where the second information is used to indicate that there is quasi-colocation between the first CSI-RS and the synchronization signal block. Relationship; the quasi-co-location relationship between the first CSI-RS and the synchronization signal block indicated by the second information includes: the spatial reception parameter of the first CSI-RS and the spatial reception parameter of the synchronization signal block. There is a quasi-co-location relationship between the receiving parameters.
  • the terminal device can determine the spatial reception parameters of the first CSI-RS through the spatial reception parameters of the synchronization signal block according to the quasi-co-location relationship indicated by the second information. For example, the terminal device may receive the first CSI-RS and the synchronization signal block using the same beam.
  • the terminal device may also receive third information from the network device, where the third information is used to indicate that there is an accuracy between the demodulation reference signal DMRS and the first CSI-RS. Co-location relationship; according to the The time-frequency position of the first CSI-RS and the third information are used to estimate the time-frequency position of the DMRS.
  • the terminal equipment can determine the time-frequency position of the DMRS through the time-frequency position of the first CSI-RS according to the quasi-co-location relationship indicated by the above-mentioned third information. For example, the terminal equipment may estimate the time-frequency offset of the DMRS based on the time-frequency offset of the first CSI-RS, and then estimate the time-frequency position of the DMRS to achieve time-frequency compensation of downlink signals.
  • the time-frequency offset of the DMRS is the same as the time-frequency offset of the first CSI-RS.
  • the terminal device may also receive data from the network device. a second control instruction, the second control instruction being used to activate the third information.
  • the network device can activate the third information through the second control indication.
  • the third information used to indicate the quasi-co-location relationship between the DMRS and the first CSI-RS includes: the Doppler frequency offset of the DMRS and the first CSI-RS. There is a quasi-co-location relationship between the Doppler frequency offsets of the CSI-RS; there is a quasi-co-location relationship between the Doppler spread of the DMRS and the Doppler spread of the first CSI-RS; There is a quasi-co-location relationship between the average delay and the average delay of the first CSI-RS; and there is a quasi-co-location relationship between the delay spread of the DMRS and the delay spread of the first CSI-RS .
  • the terminal equipment can determine the time-frequency offset of the DMRS through the time-frequency offset of the first CSI-RS based on the quasi-co-location relationship indicated by the above-mentioned third information.
  • the quasi-co-location relationship between the DMRS and the first CSI-RS indicated by the third information further includes: the spatial reception parameter of the DMRS and the first CSI-RS. There is a quasi-co-location relationship between the spatial receiving parameters of the RS.
  • the terminal device can determine the spatial reception parameters of the DMRS through the spatial reception parameters of the first CSI-RS according to the quasi-co-location relationship indicated by the above-mentioned third information.
  • the terminal device may also receive a synchronization signal block from the network device; and receive fourth information from the network device, the fourth information being used to indicate the second CSI - There is a quasi-co-location relationship between the RS and the synchronization signal block; according to the synchronization signal block and the fourth information, the time-frequency position of the second CSI-RS is estimated.
  • the terminal equipment can determine the time-frequency position of the second CSI-RS through the time-frequency position of the synchronization signal block according to the quasi-co-location relationship indicated by the fourth information.
  • the terminal device may estimate the time-frequency position of the second CSI-RS according to the synchronization signal block and the fourth information through the following steps:
  • the terminal equipment estimates the time-frequency offset of the second CSI-RS based on the time-frequency offset of the synchronization signal block and the fourth information; estimates the time-frequency offset of the second CSI-RS based on the time-frequency offset of the second CSI-RS.
  • the time-frequency position of the second CSI-RS is the time-frequency position of the second CSI-RS.
  • the terminal device can estimate the time-frequency offset of the second CSI-RS through the time-frequency offset of the synchronization signal block according to the quasi-co-location relationship indicated by the fourth information, and then can estimate The time-frequency position of the second CSI-RS.
  • the terminal device may also perform the following steps: obtain the third location information of the terminal device at a third time, where the third time is when the terminal device receives the synchronization The time of the signal block; receiving a system information block, the system information block is used to determine the third location information of the network device at the third time; according to the third location information of the terminal device and the network device The third location information determines the third downlink Doppler frequency offset and the third signal transmission delay; wherein the third downlink Doppler frequency offset is the network speed at the third time.
  • the Doppler frequency offset of the signal sent by the network device to the terminal device, and the third signal transmission delay is the delay of signal transmission between the network device and the terminal device at the third time; based on the above Step:
  • the terminal equipment may estimate the time-frequency offset of the second CSI-RS according to the time-frequency offset of the synchronization signal block and the fourth information through the following steps:
  • the first downlink Doppler frequency offset is the Doppler frequency offset of the signal sent by the network device to the terminal device at the first time
  • the first signal transmission delay is the Doppler frequency offset at the first time
  • the delay of signal transmission between the network device and the terminal device; according to the third downlink Doppler frequency offset, the third signal transmission delay, the first downlink Doppler frequency offset, the The first signal transmission delay, the time-frequency offset information of the synchronization signal block and the fourth information are used to estimate the time-frequency offset of the second CSI-RS.
  • the terminal equipment can use the time-frequency offset of the synchronization signal block as a reference, and correct the Doppler frequency offset and signal transmission delay through the real-time positions of the terminal equipment and network equipment, so that the terminal equipment can estimate the Doppler frequency offset.
  • the comprehensive impact of frequency offset/signal transmission delay and time-frequency offset caused by non-ideal factors such as crystal oscillator error on the signal can make the calculated time-frequency offset of the second CSI-RS more accurate.
  • the frequency offset of the second CSI-RS conforms to the following formula:
  • ⁇ F 1 is the frequency offset of the second CSI-RS, is the first downlink Doppler frequency offset, is the third downlink Doppler frequency offset, ⁇ F 0 is the frequency offset of the synchronization signal block;
  • ⁇ T 1 is the time offset of the second CSI-RS
  • ⁇ 1 is the transmission delay of the first signal
  • ⁇ 3 is the transmission delay of the third signal
  • ⁇ T 0 is the time delay of the synchronization signal block. Partial.
  • the terminal device can estimate the time-frequency offset of the second CSI-RS.
  • the terminal device may also receive a third signal from the network device. Three control instructions, the third control instruction is used to activate the fourth information.
  • the network device can activate the fourth information through the third control indication.
  • the quasi-co-location relationship between the second CSI-RS and the synchronization signal block indicated by the fourth information includes: Doppler frequency offset of the second CSI-RS There is a quasi-co-location relationship with the Doppler frequency offset of the synchronization signal block; and there is a quasi-co-location relationship between the average delay of the second CSI-RS and the average delay of the synchronization signal block.
  • the terminal equipment can determine the time-frequency offset of the second CSI-RS through the time-frequency offset of the synchronization signal block based on the quasi-co-location relationship indicated by the above-mentioned fourth information.
  • the quasi-co-location relationship between the second CSI-RS and the synchronization signal block indicated by the fourth information also includes: the spatial reception parameter of the second CSI-RS and There is a quasi-co-location relationship between the spatial reception parameters of the synchronization signal blocks.
  • the terminal device can also use the quasi-colocation relationship indicated by the fourth information to
  • the spatial reception parameters of the synchronization signal block are used to determine the spatial reception parameters of the second CSI-RS.
  • the terminal device may receive the synchronization signal block and the second CSI-RS using the same beam.
  • embodiments of the present application provide a communication method, which can be applied to network equipment or chip systems in network equipment.
  • the method includes the following steps:
  • the network device sends first information to the terminal device, the first information is used to indicate that there is a quasi-co-location relationship between the first channel state information reference signal CSI-RS and the second CSI-RS; the first CSI-RS is A reference signal used for channel measurement, the second CSI-RS is a reference signal used for beam management; sending the second CSI-RS to the terminal device; and sending the first CSI to the terminal device -RS.
  • the QCL relationship between the first CSI-RS (CSI-RS for CM) and the second CSI-RS (CSI-RS for BM) is added to the communication system, so that the network equipment in the communication system Without sending TRS, the terminal device can estimate the time-frequency position of the first CSI-RS through the second CSI-RS. Since the communication system does not need to send TRS, this solution can reduce a large amount of time-frequency resource overhead in the communication system.
  • the saved time-frequency resources can be used for data transmission or other purposes, improving resource utilization and data transmission efficiency.
  • the network device may also send a first control instruction to the terminal device, where the first control instruction is used to activate the first information.
  • the network device can activate the first information through the first control indication.
  • the network device may send the first CSI-RS to the terminal device through the following steps:
  • the network device can pre-compensate the time-frequency offset of the signal when sending a signal. It should be noted that network equipment needs to perform the same time-frequency offset pre-compensation on all signals sent to the terminal equipment. For example, the network device can perform frequency pre-compensation on the synchronization signal block, the first CSI-RS, the second CSI-RS, the DMRS and the downlink signal according to the set frequency pre-compensation value; A certain time pre-compensation value is used to perform time pre-compensation on the synchronization signal block, the first CSI-RS, the second CSI-RS, the DMRS and the downlink signal.
  • the frequency pre-compensated and time pre-compensated signals are then sent to the terminal device.
  • the above frequency domain pre-compensation value may be a value greater than, less than or equal to 0, and the time pre-compensation value may be a value greater than or equal to 0.
  • the network device when the network device performs time pre-compensation on the sent signal, in order to ensure the transmission efficiency of the uplink signal, the network device can also move the uplink timing of the network device forward. Processing in order to receive the uplink signal sent by the terminal device, that is, the process of the network device receiving the uplink signal from the terminal device includes the following steps:
  • the uplink timing of the network device is moved forward, and the reception time of the uplink signal sent by the terminal device is determined according to the uplink timing after the forward processing; after the determined The uplink signal reception time is to receive the uplink signal.
  • the offset value for forwarding the uplink timing of the network device is equal to the time pre-compensation value; after the uplink timing of the network device is forwarded, the uplink The reception time of the signal is equal to the transmission time of the first CSI-RS.
  • the network device After the network device performs uplink timing forward processing, it can ensure that the uplink and downlink timing of the network device remains consistent, thereby improving the signal transmission efficiency of the network device.
  • the quasi-co-location relationship between the first CSI-RS and the second CSI-RS indicated by the first information includes: Doppler of the first CSI-RS There is a quasi-co-location relationship between the frequency offset and the Doppler frequency offset of the second CSI-RS; the Doppler spread of the first CSI-RS and the Doppler spread of the second CSI-RS There is a quasi-co-location relationship between the average delay of the first CSI-RS and the average delay of the second CSI-RS; and the delay spread of the first CSI-RS There is a quasi-co-location relationship with the delay spread of the second CSI-RS.
  • the terminal equipment can determine the time-frequency offset of the first CSI-RS through the time-frequency offset of the second CSI-RS based on the quasi-co-location relationship indicated by the first information.
  • the quasi-co-location relationship between the first CSI-RS and the second CSI-RS indicated by the first information also includes: spatial reception of the first CSI-RS There is a quasi-co-location relationship between the parameter and the spatial reception parameter of the second CSI-RS.
  • the terminal device can also determine the spatial reception parameters of the first CSI-RS through the spatial reception parameters of the second CSI-RS based on the quasi-co-location relationship indicated by the above-mentioned first information. For example, the terminal device may receive the first CSI-RS and the second CSI-RS using the same beam.
  • the network device may also send second information to the terminal device, where the second information is used to indicate quasi-co-location between the first CSI-RS and the synchronization signal block. Relationship; the quasi-co-location relationship between the first CSI-RS and the synchronization signal block indicated by the second information includes: the spatial reception parameter of the first CSI-RS and the spatial reception parameter of the synchronization signal block. There is a quasi-co-location relationship between the receiving parameters.
  • the terminal device can determine the spatial reception parameters of the first CSI-RS through the spatial reception parameters of the synchronization signal block according to the quasi-co-location relationship indicated by the second information. For example, the terminal device may receive the first CSI-RS and the synchronization signal block using the same beam.
  • the network device may also send third information to the terminal device, where the third information is used to indicate that there is a quasi-coherence between the demodulation reference signal DMRS and the first CSI-RS. address relationship; sending the DMRS and downlink signals to the terminal equipment.
  • the terminal equipment can determine the time-frequency position of the DMRS through the time-frequency position of the first CSI-RS according to the quasi-co-location relationship indicated by the above-mentioned third information. For example, the terminal equipment may estimate the time-frequency offset of the DMRS based on the time-frequency offset of the first CSI-RS, and then estimate the time-frequency position of the DMRS to achieve time-frequency compensation of downlink signals.
  • the network device may also send a second control instruction to the terminal device, where the second control instruction is used to activate the Describe the third information.
  • the network device can activate the third information through the second control indication.
  • the quasi-co-location relationship between the DMRS and the first CSI-RS indicated by the third information includes: the Doppler frequency offset of the DMRS and the first CSI-RS.
  • the Doppler frequency offset of the DMRS there is a quasi-co-location relationship between the Doppler frequency offsets of the RS; there is a quasi-co-location relationship between the Doppler spread of the DMRS and the Doppler spread of the first CSI-RS; the average of the DMRS
  • the terminal equipment can determine the time-frequency offset of the DMRS through the time-frequency offset of the first CSI-RS based on the quasi-co-location relationship indicated by the above-mentioned third information.
  • the quasi-co-location relationship between the DMRS and the first CSI-RS indicated by the third information further includes: the spatial reception parameter of the DMRS and the first CSI-RS. There is a difference between the spatial receiving parameters of RS There is a quasi-co-location relationship.
  • the terminal device can determine the spatial reception parameters of the DMRS through the spatial reception parameters of the first CSI-RS according to the quasi-co-location relationship indicated by the above-mentioned third information.
  • the network device may also send a synchronization signal block; and send fourth information to the terminal device, where the fourth information is used to indicate the difference between the second CSI-RS and the synchronization signal block. There is a quasi-co-location relationship between them.
  • the terminal equipment can determine the time-frequency position of the second CSI-RS through the time-frequency position of the synchronization signal block according to the quasi-co-location relationship indicated by the fourth information.
  • the network device may also send a third control instruction to the terminal device, where the third control instruction is used to activate The fourth information.
  • the network device can activate the fourth information through the third control indication.
  • the quasi-co-location relationship between the second CSI-RS and the synchronization signal block indicated by the fourth information includes: Doppler frequency offset of the second CSI-RS There is a quasi-co-location relationship with the Doppler frequency offset of the synchronization signal block; and there is a quasi-co-location relationship between the average delay of the second CSI-RS and the average delay of the synchronization signal block.
  • the terminal equipment can determine the time-frequency offset of the second CSI-RS through the time-frequency offset of the synchronization signal block based on the quasi-co-location relationship indicated by the above-mentioned fourth information.
  • the quasi-co-location relationship between the second CSI-RS and the synchronization signal block indicated by the fourth information also includes: the spatial reception parameter of the second CSI-RS and There is a quasi-co-location relationship between the spatial reception parameters of the synchronization signal blocks.
  • the terminal equipment can also determine the spatial reception parameters of the second CSI-RS through the spatial reception parameters of the synchronization signal block based on the quasi-co-location relationship indicated by the fourth information. For example, the terminal device may receive the synchronization signal block and the second CSI-RS using the same beam.
  • embodiments of the present application provide a communication device, including a unit for performing each of the steps in the above first to fourth aspects.
  • the communication device includes a communication unit and a processing unit; wherein the communication unit is used to receive and send signals; and the processing unit is used to execute the method provided in any of the above aspects.
  • the communication device may be applied to terminal equipment or network equipment.
  • embodiments of the present application provide a communication device, including a processor, a memory, and a processor; wherein, the transceiver is used to receive and send signals; the memory is used to store program instructions and data; The processor is configured to read program instructions and data in the memory to implement the method provided in any one of the above first to fourth aspects.
  • the communication device may be a terminal device or a network device.
  • embodiments of the present application provide a communication device, including at least one processing element and at least one storage element, wherein the at least one storage element is used to store programs and data, and the at least one processing element is used to execute the above of the present application.
  • the communication device may be a terminal device or a network device.
  • the embodiment of the present application also adopts a communication system, the communication system includes a terminal device and a network device; wherein, the terminal device is used to implement the method provided in the first aspect above, and the network device uses To implement the method provided in the above second aspect; or the terminal device is used to implement the method provided in the above third aspect, and the network device is used to implement the method provided in the above fourth aspect.
  • embodiments of the present application further provide a computer program, which when the computer program is run on a computer, causes the computer to execute the method provided in any of the above aspects.
  • the computer can be a terminal device or network device equipment; or the above communication device or communication equipment.
  • embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program When the computer program is executed by a computer, it causes the computer to execute the method provided in any of the above aspects.
  • the computer may be a terminal device or a network device; or the above communication device or communication device.
  • embodiments of the present application also provide a chip, which is used to read the computer program stored in the memory and execute the method provided in any of the above aspects.
  • the chip may include a processor and a memory, and the processor is coupled to the memory and used to read the computer program stored in the memory to implement the method provided in any of the above aspects.
  • embodiments of the present application also provide a chip system.
  • the chip system includes a processor and is used to support a computer device to implement the method provided in any of the above aspects.
  • the chip system also includes a memory, and the memory is used to save necessary programs and data of the computer device.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • Figure 1 is a schematic diagram of the QCL relationship between reference signals specified in the protocol
  • Figure 2 is an architecture diagram of a satellite system in transparent transmission mode provided by an embodiment of the present application
  • Figure 3A is a schematic diagram of the protocol stack of the control plane in a satellite system in transparent transmission mode provided by an embodiment of the present application;
  • Figure 3B is a schematic diagram of the protocol stack of the user plane in a satellite system in transparent transmission mode provided by an embodiment of the present application;
  • Figure 4 is an architectural diagram of a satellite system in regeneration mode provided by an embodiment of the present application.
  • Figure 5A is a schematic diagram of the protocol stack of the control plane in a satellite system in regeneration mode provided by an embodiment of the present application;
  • Figure 5B is a schematic diagram of the protocol stack of the user plane in a satellite system in regeneration mode provided by an embodiment of the present application;
  • Figure 6 is a schematic diagram of TRS resource configuration
  • Figure 7 is a schematic diagram of the QCL relationship between reference signals when the communication system does not send TRS;
  • Figure 8A is a flow chart of a communication method provided by an embodiment of the present application.
  • Figure 8B is a schematic diagram of the QCL relationship between reference signals provided by an embodiment of the present application.
  • Figure 8C is a schematic diagram of a PDSCH MAC CE provided by the embodiment of the present application.
  • Figure 8D is a schematic diagram of a PDCCH MAC CE provided by an embodiment of the present application.
  • Figure 8E is an example diagram of a TCI state configuration and activation process provided by the embodiment of the present application.
  • Figure 9A is a flow chart of a communication method provided by an embodiment of the present application.
  • Figure 9B is a schematic diagram of the QCL relationship between reference signals provided by an embodiment of the present application.
  • Figure 10A is a schematic scene diagram of a satellite system provided by an embodiment of the present application.
  • Figure 10B is a schematic scene diagram of a satellite system provided by an embodiment of the present application.
  • Figure 11A is a schematic diagram of frequency offset of a satellite system provided by an embodiment of the present application.
  • Figure 11B is a schematic diagram of the time offset of a satellite system provided by an embodiment of the present application.
  • Figure 12 is a structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 13 is a structural diagram of a communication device provided by an embodiment of the present application.
  • This application provides a communication method and device for realizing time-frequency position estimation of signals in NTN.
  • the method and the equipment are conceived based on the same technology. Since the methods and equipment solve problems in similar principles, the implementation of the equipment and the method can be referred to each other, and the duplication will not be repeated.
  • NTN refers to a network established using non-terrestrial communication technologies, which can, but is not limited to, include satellite platforms, unmanned aerial vehicle (UAV) platforms, or high altitude communication platforms (high altitude platform station, HAPS) and other communications
  • UAV unmanned aerial vehicle
  • HAPS high altitude communication platforms
  • the spectrum resources on the platform carry out communication services on the network.
  • NTN may include, but is not limited to, satellite systems, UAV communication systems, and HAPS systems.
  • the satellite system can be divided into a geosynchronous orbit (geostationary orbit, GEO) satellite system, a medium earth orbit (meddle earth orbit, MEO) satellite system, and Low earth orbit (LEO) satellite system, etc.
  • GEO geosynchronous orbit
  • MEO medium earth orbit
  • LEO Low earth orbit
  • NTN Compared with terrestrial communication networks, NTN has the characteristics of wider coverage, higher path loss, greater delay, faster speed, and lower cost.
  • 3GPP 3rd generation partnership project
  • 3GPP slave version 14 release 14, R14
  • the time-frequency deviation of the signal includes two aspects: the time deviation of the signal and the frequency deviation of the signal.
  • the frequency deviation of the signal refers to the deviation in frequency of the same signal at the transmitting end and the receiving end, mainly including Doppler frequency offset (also known as Doppler shift).
  • Doppler frequency offset is caused by the change in phase and frequency of the signal due to the difference in propagation distance when the receiving end and/or transmitting end moves in a certain direction at a constant speed.
  • the time offset of a signal refers to the time deviation of the same signal at the sending end and the receiving end, which mainly includes the transmission delay of the signal.
  • the transmission delay of a signal is the time delay in the arrival of the signal due to the long transmission distance of the signal.
  • Terminal equipment is a device that provides voice and/or data connectivity to users and can access network equipment through a wireless interface.
  • Terminal equipment can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal device may be fixed or mobile, which is not limited in this application.
  • the terminal device can be a handheld device with wireless connection function, various vehicle-mounted devices, roadside units, Internet of Things terminals, access terminals, terminals in V2X communication, user units, user stations, mobile stations, mobile stations, Remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • terminal devices are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MID), smart point of sale terminals (POS), and wearable devices.
  • Virtual reality (VR) devices augmented reality (AR) devices, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations , personal digital assistant (PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G networks or future evolutions
  • Terminal equipment in public land mobile communication network (PLMN) wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self driving), remote medical surgery (remote medical surgery) Wireless terminals, wireless terminals in smart grid, wireless terminals in transportation safety, smart Wireless terminals in smart cities, wireless terminals in smart homes, various smart meters (smart water meters, smart electricity meters, smart gas meters), vehicle electronic control units (ECU), etc.
  • vehicle-mounted computer vehicle-mounted cruise system, telematics box (T-BOX), UE unit, UE station, mobile station, remote station, remote terminal equipment, mobile equipment, wireless communication equipment, UE agent, UE device,
  • the terminal device can communicate with the network device or communicate with the network device through the relay station.
  • the terminal device can communicate with multiple network devices equipped with different communication technologies.
  • the terminal device can communicate with the equipped base station that supports the LTE network, can also communicate with the equipped base station that supports the 5G network, and can also support the equipped with the LTE network. Dual connectivity of the base station and the base station of the 5G network.
  • Network equipment is an entity with wireless transceiver functions on the network side of the communication system.
  • network equipment may include, but is not limited to: a base station mounted on a satellite (referred to as a satellite base station for short), a transceiver point (transmission receiving point/transmission reception point, TRP,) mounted on a satellite, or a distributed unit ( Distributed Unit (DU), satellite ground stations in satellite systems (can be referred to as ground stations), balloon stations, UAV stations, etc.
  • a base station mounted on a satellite referred to as a satellite base station for short
  • TRP transmission receiving point/transmission reception point
  • DU Distributed Unit
  • satellite ground stations in satellite systems can be referred to as ground stations
  • balloon stations can be referred to as UAV stations, etc.
  • the network equipment may be a Node B (Node B), an evolved Node B (evolved Node B, eNB), a new generation Node B (generation Node B, gNB), or based on The above network equipment continues to evolve into other standards of network equipment.
  • Node B Node B
  • eNB evolved Node B
  • gNB new generation Node B
  • the network equipment can be an access point (access point, AP), a wireless-fidelity (wireless-fidelity, WiFi) AP, a home base station (for example, home evolved NodeB , or home Node B, HNB), wireless relay node, wireless backhaul node, macro base station, micro base station, pico base station, small station, or relay station, etc.
  • access point access point
  • wireless-fidelity wireless-fidelity
  • WiFi wireless-fidelity
  • home base station for example, home evolved NodeB , or home Node B, HNB
  • wireless relay node wireless backhaul node
  • macro base station for example, micro base station, pico base station, small station, or relay station, etc.
  • Network equipment can correspond to eNB in the 4G system and gNB in the 5G system.
  • the network device may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • This structure can separate the protocol layers of network equipment, with some protocol layer functions placed under centralized control on the CU, while the remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the functions of the PDCP layer and above protocol layers can be set in the CU, and the functions of the protocol layers below PDCP (such as the RLC layer and MAC layer, etc.) are set in the DU. It should be noted that this division of protocol layers is just an example, and division can also be performed on other protocol layers.
  • the radio frequency device can be remote and not placed in the DU, or it can be integrated in the DU, or partially remote and partially integrated in the DU. The embodiments of this application do not impose any restrictions.
  • the control plane (CP) and user plane (UP) of the CU can also be separated and implemented into different entities, respectively control plane CU entities (CU-CP entities). and user plane CU entities (CU-UP entities).
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the terminal device can be sent to the CU through the DU.
  • the DU may directly encapsulate the signaling through the protocol layer and transparently transmit it to the terminal device or CU without parsing the signaling.
  • the CU is divided into network equipment on the radio access network (radio access network, RAN) side.
  • the CU can also be divided into network equipment on the core network (core network, CN) side. This application describes There is no restriction on this.
  • CSI-RS Channel state information-reference signal
  • CSI-RS for channel measurement can be abbreviated as CSI-RS for CM.
  • CSI-RS for CM is specifically used for terminal equipment to communicate channel status. Measurement of channel state information (CSI).
  • CSI may include, but is not limited to, at least one of the following: signal to interference plus noise ratio (SINR), rank indication (RI), precoding matrix indicator (precoding matrix indicator, PMI), channel Quality indicator (channel quality indicator, CQI), CSI-RS resource indicator (CSI-RS resource indicator, CRI), synchronization signal block resource indicator (SS/PBCH block resource indicator, SSB RI), layer indicator (layer indicator, LI ), layer 1-reference signal received power (layer 1-reference signal received power, L1-RSRP), etc.
  • SINR signal to interference plus noise ratio
  • RI rank indication
  • precoding matrix indicator precoding matrix indicator
  • PMI channel Quality indicator
  • CQI channel Quality indicator
  • CQI channel Quality indicator
  • CSI-RS resource indicator CRI
  • SS/PBCH block resource indicator SS/PBCH block resource indicator
  • SSB RI synchronization signal block resource indicator
  • layer indicator layer indicator
  • layer 1-reference signal received power layer 1-reference signal received power
  • CSI-RS for beam management can be abbreviated as CSI-RS for BM.
  • CSI-RS for BM is specifically used for beam measurement of terminal equipment and/or network equipment during the beam management process, so that the terminal equipment and/or network equipment obtain beamforming weights.
  • CSI-RS for time-frequency tracking TRS
  • TRS is used to achieve accurate time-frequency synchronization tracking of terminal equipment and network equipment.
  • CSI-RS for mobility management (MM). Through CSI-RS tracking and measurement of the local area and neighboring cells.
  • Zero power CSI-RS (zero power CSI-RS, ZP CSI-RS) achieves resource element (RE) level rate matching of the physical downlink shared channel (PDSCH).
  • RE resource element
  • CSI-RS can also be divided into the following two types:
  • ZP CSI-RS does not need to be generated and mapped to RE, and does not send actual signals.
  • ZP CSI-RS is mainly used for rate matching of PDSCH, that is, the CSI-RS used for rate matching described in e above.
  • Non-zero power CSI-RS (non zero power CSI-RS, NZP CSI-RS): needs to be actually generated and mapped to RE.
  • NZP CSI-RS can be the CSI-RS described in a-d above.
  • Synchronization signal block which is sent periodically by the network equipment and is used to achieve time-frequency synchronization with the network equipment during the cell search process of the terminal equipment.
  • the synchronization signal block contains a primary synchronization signal (primary synchronization signal, PSS) and a secondary synchronization signal (secondary synchronization signal, SSS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the synchronization signal block can be recorded as synchronization signal block, or SSB for short.
  • the synchronization signal block not only contains PSS and SSS, but also contains the physical broadcast channel (PBCH), such as the synchronization defined in the 5G mobile communication system (i.e., the new radio (NR) system) signal block.
  • PBCH physical broadcast channel
  • the synchronization signal block can be recorded as a synchronization signal broadcast channel block (SS/PBCH block, or SS/PDCH block).
  • the synchronization signal block can be divided into two categories: by default, the synchronization signal block includes PSS, SSS and PBCH. . In special cases, the synchronization signal block includes PSS and SSS but does not include PBCH. At this time, the synchronization signal block can also be called a default synchronization signal block.
  • the embodiments of the present application do not limit the specific structure of the synchronization signal block, that is, in the description of the embodiments, the synchronization signal block, SSB, and SS/PBCH block represent the same concept, and the three can be replaced with each other.
  • DMRS Demodulation reference signal
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Quadrature co-located Two signals transmitted from the same antenna port should experience the same wireless channel, while signals transmitted from two different antenna ports should experience different wireless conditions. But in some cases, there are common characteristics between signals transmitted from two different antenna ports and traveling through the wireless channel. In this case, the two antenna ports are called quasi-co-located (QCL). For example, signal “A” and signal “B” come from antenna port 1 and antenna port 2 respectively. After processing by the receiver, it is found that both signals have experienced common wireless channel characteristics (Doppler frequency offset, Doppler spread, etc. ), then antenna port 1 and antenna port 2 can be called QCL antenna ports, and signal "A" and signal “B” can be called QCL signals.
  • 3GPP defines QCL as follows: If the characteristics of the channel experienced by a signal transmitted on one antenna port can be inferred from the channel experienced by a signal transmitted on another antenna port, then the two antenna ports can be said to be Quasi-co-located. 3GPP introduced the concept of QCL to help terminal equipment perform channel estimation, time-frequency offset estimation and synchronization processes.
  • QCL can be used to represent the relationship between the channel characteristics of two signals.
  • QCL relationship between two signals which means that the channel characteristics of one signal can be determined by the channel characteristics of the other signal. For example, if a certain channel characteristic of two signals is the same or similar, then the channel characteristic of one signal can be directly determined by the channel characteristic of the other signal, or the channel characteristic of one signal can be derived from the channel characteristic of the other signal. Calculated.
  • the channel characteristics of the signal include: Doppler shift, Doppler spread, average delay, delay spread, and spatial Receive parameters (Spatial Rx parameter).
  • Doppler frequency offset, Doppler spread, average delay and delay spread belong to the time-frequency characteristics of the channel
  • the spatial reception parameters belong to the spatial characteristics of the channel.
  • the spatial reception parameters are newly introduced for the spatial reception properties of the channel and can be used in communication systems in frequency bands above 6GHz. Because the communication system in the frequency band above 6GHz supports beam forming, the direction and width of the beam will affect the channel characteristics, so this parameter is introduced to characterize the impact of the beam on the channel characteristics. If there is a QCL relationship between the spatial reception parameters of two reference signals, it means that the transmitting end uses the same beam to send the two reference signals, which also means that the receiving end can use the same beam to receive the two reference signals.
  • the transmitting end sends signals through multiple antennas
  • the signals reach the receiving end after propagating through multiple paths.
  • the average time it takes for the receiver to receive all multipath signal components is called the average delay.
  • the average signal delay may be equivalent to the signal transmission delay.
  • TCI Transmission configuration indicator
  • a TCI state can indicate one or two QCL relationships, and the two QCL relationships can be represented by QCL type1 and QCL type2 respectively.
  • a TCI state can be configured with a reference signal that requires QCL, one or two referenced (or multiplexed) reference signals, and the QCL relationship between the reference signal that requires QCL and the referenced reference signal.
  • the network device can deliver a TCI state list to the terminal device through radio resource control (RRC) signaling.
  • RRC radio resource control
  • This list can contain multiple TCI states.
  • the network device can configure multiple TCI states to the terminal device.
  • Subsequent network devices can activate a certain TCI state in the TCI state list through the medium access control (MAC) control element (CE) or downlink control information (DCI).
  • MAC medium access control
  • CE control element
  • DCI downlink control information
  • the terminal device The channel characteristics of the reference signal requiring QCL can be determined based on the channel characteristics of the referenced reference signal according to the activated TCI state.
  • the communication standard protocol stipulates the pairwise combinations of QCL that can be configured between reference signals and the corresponding QCL types that can be configured.
  • a reference signal can be configured with up to two QCL relationships.
  • the QCL type used to configure the time-frequency characteristics of the channel is a required QCL relationship
  • the QCL type used to configure the spatial characteristics of the channel is an optional QCL relationship.
  • the QCL relationship between reference signals specified in the protocol can be shown in Table 2, where QCL type 2 in the table is optional.
  • an embodiment of the present application also provides a schematic diagram of the QCL relationship between reference signals, as shown in Figure 1 .
  • Figure 1 among the arrows used to represent the QCL relationship, the head end of the arrow indicates the reference signal that requires QCL, and the tail end of the arrow (the end without the arrow) indicates the multiplexed reference signal.
  • time involved in the embodiments of this application can be counted by traditional time units such as seconds, milliseconds, microseconds, etc., or can also be counted by time units defined for time domain resources in the communication field.
  • time units in the communication field may include, but are not limited to, subframes, slots, symbols, etc., which are not limited in this application.
  • RRC connection status there are three RRC connection states of terminal equipment: RRC connected state (RRC_connected, referred to as connected state), RRC idle state (RRC_idle, referred to as idle state), and RRC inactive state (RRC_inactive, referred to as inactive state).
  • RRC connected state RRC_connected
  • RRC idle state RRC_idle
  • RRC inactive state RRC_inactive, referred to as inactive state
  • the RRC idle state and the RRC inactive state can be collectively referred to as the RRC non-connected state.
  • the terminal device When the terminal device is in idle state, the RRC connection between the terminal device and the network device is released. The network device and the terminal device no longer save the terminal device context information.
  • the terminal device can receive the broadcast information (such as system information) and search messages sent by the network device. Call message.
  • the terminal device When the terminal device is in an inactive state, the RRC connection between the terminal device and the network device is suspended, but the terminal device and the terminal device will continue to save the context information of the terminal device.
  • the terminal device enters the connected state from the inactive state, the network device and the terminal device can quickly restore the RRC connection between the terminal device and the network device based on the saved context information of the terminal device, so that the terminal device can quickly return to the connected state.
  • the terminal device When the terminal device is in the connected state, there is an RRC connection between the terminal device and the network device, and the two can communicate based on the RRC connection.
  • the idle state and the inactive state can also be called the non-connected state.
  • the location information of the terminal device or network device is used to calculate the Doppler frequency offset and signal transmission delay. Therefore, the location information of any device includes at least one of physical location, speed, acceleration, movement angle and other information.
  • the location information of any device may include Earth-Centered (Earth-Fixed, ECEF) coordinates.
  • the plurality involved in this application refers to two or more. At least one means one or more than one.
  • the communication method provided by the embodiment of the present application can be applied to a communication system including terminal equipment and network equipment, such as NTN.
  • This application takes the satellite system in NTN as an example for explanation.
  • the satellite system can be divided into a transparent transmission (Bentpipe) mode and a regenerative (Regenerative) mode.
  • Figure 2 shows a satellite system in two transparent transmission modes.
  • the satellite only functions as frequency conversion and forwarding, and the signal is generated and sent by the satellite ground station.
  • satellites can use non-3GPP radio protocols to access the network.
  • communication connections are established between the terminal equipment and the satellite, and between the satellite and the satellite ground station through non-3GPP wireless protocol interfaces.
  • the satellite ground station can include an access point.
  • the satellite ground station and the core network can communicate with the core network (CN) through the Ng interface (such as N2 interface, N3 interface, etc.).
  • the core network and data network (data network, DN) communicate through the N6 interface.
  • the core network is responsible for terminal device registration, mobility management, session management and other functions.
  • satellites can access the network through the 3GPP wireless protocol.
  • the satellite ground station is the base station, and the satellite can be equivalent to a repeater. Satellite can be connected with satellite ground Communication connections are established between surface stations through the Uu interface, and communication connections between terminal equipment and satellites can be established through other communication interfaces.
  • the interfaces between the satellite ground station, the core network, and the DN are the same as a in Figure 2. The similarities can be referred to each other and will not be repeated here.
  • the protocol stack of the control plane in the satellite system is shown in Figure 3A
  • the protocol stack of the user plane is shown in Figure 3B.
  • Figure 4 shows a satellite system in two regeneration modes.
  • the satellite can be equipped with a base station or a DU in the base station. Satellites can understand and process signals received from the ground, and send the processed signals to terminal devices for signal regeneration.
  • the satellite is equipped with a base station, and the satellite ground station also contains the base station.
  • the communication connection between the terminal equipment and the satellite can be established through the Uu interface, and the communication connection between the satellite and the satellite ground station can be established through the Xn interface.
  • the interfaces between the satellite ground station, the core network, and the DN are the same as a in Figure 2. The similarities can be referred to each other and will not be repeated here.
  • the satellite ground station may also be a gateway of the satellite and does not include a base station.
  • the satellite is equipped with the DU in the base station, and the satellite ground station contains the CU in the base station.
  • the communication connection between the terminal equipment and the satellite can be established through the Uu interface, and the communication connection between the satellite and the satellite ground station can be established through the F1 interface.
  • the interfaces between the satellite ground station, the core network, and the DN are the same as a in Figure 2. The similarities can be referred to each other and will not be repeated here.
  • the protocol stack of the control plane in the satellite system is shown in Figure 5A
  • the protocol stack of the user plane is shown in Figure 5B.
  • satellite ground station in the satellite system shown in Figures 2 and 4 can also be called a gateway, ground station, or earth station, and is used to connect satellites to the network.
  • satellites and satellite ground stations in the above-mentioned satellite systems can be called network equipment.
  • Figures 2 and 4 only show one satellite and one satellite ground station. In actual scenarios, an architecture of multiple satellites and/or multiple satellite ground stations can be adopted as needed.
  • Each satellite can provide communication services to one or more terminal devices, each satellite ground station can correspond to one or more satellites, and each satellite can correspond to one or more satellite ground stations.
  • the embodiments of this application do not be specifically limited.
  • the satellites shown in Figure 2 or Figure 4 do not limit the communication systems to which the embodiments of the present application can be applied. Therefore, the communication method provided by the embodiment of the present application can also be applied to various communication systems, such as: various NTN systems, long term evolution (long term evolution, LTE) communication systems, fifth generation (The 5th Generation, 5G) communication systems ( Also known as 5G new radio (NR) system), sixth generation (The 6th Generation, 6G) communication system and future communication system.
  • various NTN systems long term evolution (long term evolution, LTE) communication systems
  • 5G fifth generation
  • 5G new radio (NR) system also known as 5G new radio (NR) system
  • 6th Generation, 6G sixth generation communication system and future communication system.
  • the embodiments of the present application do not limit the names of each equipment in the communication system.
  • the satellite ground station may have other names.
  • the time-frequency offset of signals will cause the signal sent by the transmitter and the signal received by the receiver to be misaligned in frequency and time, which will seriously affect communication performance. Therefore, the communication system needs to estimate and compensate the time-frequency offset of the signal to minimize the difference in time-frequency position of the signal transmitted between the transmitter and the receiver, thereby ensuring the communication performance of the system.
  • base stations In traditional terrestrial communication networks (such as 5G mobile communication systems), base stations mainly help terminal equipment estimate and compensate for time-frequency offsets through reference signals.
  • points 8) and 9 in the preface, the types and activations of QCL way, as well as the description of the QCL relationship between reference signals shown in Table 2 and Figure 1.
  • TRS is the center of the QCL relationship of reference signals in the communication system. Whether it is DRMS or various CSI-RS, many of them require and The TRS establishes a QCL relationship, whereby the time-frequency characteristics of the TRS are used as a reference for the time-frequency characteristics of these reference signals.
  • the terminal device receives the synchronization signal block broadcast by the network device through frequency scanning, thereby obtaining the time-frequency offset information of the synchronization signal block.
  • the network device can deliver a TCI state list containing multiple TCI states to the terminal device through RRC signaling.
  • the network device can subsequently activate the QCL relationship between the target reference signal and TRS through MAC CE or DCI.
  • the terminal device can receive the TRS sent by the network device, and estimate the time-frequency offset of the target reference signal based on the time-frequency offset characteristics of the TRS, and then can estimate the target reference signal. Perform time-frequency compensation to finally determine the time-frequency position of the target reference signal.
  • the network device can configure the QCL relationship between signals to the terminal device through RRC signaling.
  • RRC signaling This application does not limit the way in which the network device configures the QCL relationship between signals to the terminal device.
  • the network equipment helps the terminal equipment estimate and compensate the time-frequency offset by sending TRS, and configures the QCL relationship to enable other reference signals to obtain the time-frequency offset reference.
  • TRS can be sent periodically, and the value range of the TRS sending cycle is [10ms, 80ms].
  • a set of TRS resources needs to occupy two consecutive hours in the time domain. The 4 symbols in the slot occupy 3 subcarriers in the frequency domain (ie, 3 REs in the resource block (RB)). In other words, a set of TRS resources occupies 12 REs, such as the RE numbered "0" in Figure 6.
  • the network device can choose to transmit consecutive time slots 5 and 6, as well as symbols 4 and 8 on time slots 25 and 26.
  • TRS Because one set of TRS resources occupies 3 REs in each RB, 12 REs in one RB can support 4 different sets of TRS resource configurations. As shown in Figure 6, the network equipment can provide 8 different sets of TRS resources in the above 4 time slots.
  • network equipment can also use symbols 5 and 9, and symbols 6 and 10 to send TRS.
  • 4 time slots can be configured with up to 24 different sets of TRS resources.
  • Each set of TRS resources can be transmitted using different beam directions.
  • the reference signal should be in the form of a directional beam and should be as large as possible. Pointed at the terminal equipment that needs to measure the channel to provide sufficient beamforming gain. In addition, it is also necessary to consider that all terminal equipment within the satellite coverage can receive the reference signal.
  • TRS the communication system can consider two sending configurations:
  • One is cell-level beaming, which uses a large number of beams to seamlessly cover the entire cell.
  • the number of TRS resource sets required for this solution will be the same as the total number of beams covering the satellite cell.
  • the other is user-level beam, which uses a beam in one direction to point at a terminal device.
  • the number of TRS resource sets required by this solution will be the same as the total number of terminal equipment in the satellite cell.
  • the number of TRS resources required by the communication system will be hundreds or even thousands. It can be seen from the previous analysis that so many TRS resources will occupy a large amount of time-frequency resources used to transmit data, resulting in a significant decrease in system transmission performance and efficiency.
  • the change in time-frequency offset between two TRS transmission cycles will become more obvious as time increases.
  • a time interval of 80ms may cause the frequency offset of the signal to change by up to 100Hz and the time offset to change by up to 1.6us. If the time-frequency offset of the TRS update signal is not sent periodically, the demodulation performance and transmission rate of data in the communication system will be significantly reduced.
  • the communication system does not change the time-frequency offset of the TRS update signal by sending it, the QCL relationship between the reference signals specified by the protocol will change from Figure 1 to Figure 7.
  • PDSCH/PDCCH DMRS can only use SSB as the time-frequency offset reference, but the time-frequency offset accuracy of SSB estimated by the terminal equipment is limited and is not as high as the time-frequency offset accuracy of TRS; on the other hand, it is used for There is no available time-frequency offset reference for CM's CSI-RS, which will greatly affect the performance of channel estimation for satellite systems with large time-frequency offset.
  • the terminal equipment can also determine the Doppler frequency offset and signal transmission delay of the signal through the real-time location information of the network equipment and the real-time location information of the terminal equipment.
  • the terminal equipment calculates the Doppler frequency offset and signal transmission delay as follows:
  • the terminal device determines the relative distance ⁇ d between the terminal device and the network device based on the real-time location information of the network device and the real-time location information of the terminal device, and then determines the signal transmission delay ⁇ between the terminal device and the network device according to the following formula:
  • the terminal device determines the relative speed ⁇ V between the terminal device and the network device based on the real-time position information of the network device and the real-time position information of the terminal device, as well as the relationship between the relative speed ⁇ V and the set direction (the connection between the network device and the terminal device). direction); then determine the Doppler frequency deviation F d of the signal between the terminal device and the network device according to the following formula:
  • c in the above formula is the speed of light, and f 0 is the carrier frequency used to transmit the signal.
  • the time-frequency deviation of the signal can also include the time-frequency deviation caused by crystal oscillator errors, as well as non-ideal factors such as indirect line of sight and the influence of atmospheric ionization. Time and frequency deviation.
  • These offsets cannot be obtained by calculating the real-time location information of network equipment and terminal equipment. Therefore, the time-frequency offset of the signal calculated by the terminal equipment based on the real-time location information of the network equipment and terminal equipment has a large error with the actual time-frequency offset of the signal, which is not accurate. degree is lower.
  • the embodiment of this application provides a communication method. This method can be applied to NTN, such as the satellite system shown in Figure 2 or Figure 4 system. Referring to the flow chart shown in FIG. 8A , the solution provided by the embodiment of the present application will be described in detail below.
  • the network device sends a synchronization signal block.
  • a terminal device located within the coverage area of the network device receives the synchronization signal block from the network device.
  • the synchronization signal block is broadcast and sent by the network device.
  • the terminal device is in the initial access stage, and the RRC connection state of the terminal device is the RRC non-connected state (RRC idle state or RRC inactive state).
  • the terminal device may receive the synchronization signal block by frequency scanning, thereby obtaining the time-frequency offset of the synchronization signal block.
  • the network device sends the first information to the terminal device.
  • the terminal device receives the first information from the network device.
  • the first information is used to indicate that there is a QCL relationship between the first CSI-RS and the synchronization signal block.
  • the first CSI-RS is a reference signal used for channel measurement (CM), and can also be recorded as CSI-RS for CM.
  • the network device may send the first information to the terminal device.
  • the QCL relationship between the first CSI-RS and the synchronization signal block indicated by the first information includes: QCL type C.
  • the QCL relationship of QCL type C between the first CSI-RS and the synchronization signal block includes: the Doppler frequency offset of the first CSI-RS and the Doppler frequency of the synchronization signal block.
  • the terminal device may determine the timing of the first CSI-RS according to the time-frequency offset of the synchronization signal block. frequency deviation.
  • the QCL relationship between the first CSI-RS and the synchronization signal block indicated by the first information includes: QCL type A.
  • the QCL relationship of QCL type C between the first CSI-RS and the synchronization signal block It also includes: a QCL relationship between the Doppler spread of the first CSI-RS and the Doppler spread of the synchronization signal block; and the delay spread of the first CSI-RS and the synchronization signal block. There is a QCL relationship between the delay extensions.
  • the QCL relationship between the first CSI-RS and the synchronization signal block indicated by the first information may also include: QCL type D.
  • the QCL relationship of QCL type D between the first CSI-RS and the synchronization signal block includes: a spatial reception parameter of the first CSI-RS and a spatial reception parameter of the synchronization signal block. QCL relationship.
  • the terminal device can determine the spatial reception parameter of the first CSI-RS according to the spatial reception parameter of the synchronization signal block. For example, the terminal device may receive the first CSI-RS and the synchronization signal block using the same beam.
  • the QCL relationship between the first CSI-RS and the synchronization signal block indicated by the first information may include: the time domain position of the first CSI-RS and the The synchronization signal block is related, or the synchronization signal block contains indication information of the time domain position of the first CSI-RS, etc.
  • the embodiments of the present application do not place any limitation on the QCL relationship between the first CSI-RS and the synchronization signal block.
  • the network device may also report to the The terminal device sends the second information.
  • the terminal device receives the second information from the network device.
  • the second information is used to indicate that there is a QCL relationship between the first CSI-RS and the second CSI-RS.
  • the second CSI-RS is a reference signal used for beam management (ie, BM), and can also be recorded as CSI-RS for BM.
  • the QCL relationship between the first CSI-RS and the second CSI-RS indicated by the second information includes: QCL type D.
  • the QCL relationship of QCL type D between the first CSI-RS and the second CSI-RS includes: a spatial reception parameter of the first CSI-RS and a spatial reception parameter of the second CSI-RS.
  • the terminal device can determine the spatial reception parameter of the first CSI-RS according to the spatial reception parameter of the second CSI-RS.
  • the terminal device may receive the first CSI-RS and the second CSI-RS using the same beam.
  • the first information may be carried in RRC signaling.
  • the network device may send a TCI state list to the terminal device through RRC signaling, and the TCI state list includes the first TCI state.
  • the first TCI state is used to indicate that there is a QCL relationship between the first CSI-RS and the synchronization signal block, that is, the first TCI state contains the first information (and second information).
  • the NZP-CSI-RS resource set (NZP-CSI-RS-ResourceSet) in the RRC signaling sent by the network device has neither high-level parameters (TRS-Info) nor high-level parameters configured.
  • Parameter - Repetition at this time the NZP-CSI-RS resource set represents the first CSI-RS (i.e. CSI-RS for CM);
  • the first TCI state in the TCI state list included in the RRC signaling sent by the network device can indicate It has a Type A or Type C relationship with the synchronization signal block (such as SS/PBCH block, hereinafter referred to as SSB).
  • SSB synchronization signal block
  • the first TCI state may also indicate a Type D relationship with the synchronization signal block; or a Type D relationship with the second CSI-RS (ie, CSI-RS for BM).
  • the QCL relationship indicated by the first TCI state may be as shown in Table 3.
  • the communication system can obtain the CSI-RS for CM through the QCL relationship in Table 3. Time-frequency deviation reference.
  • the QCL relationship of the reference signal in the communication system is as shown in Figure 8B, that is, the QCL relationship in Table 3 is added based on the QCL relationship shown in Figure 7.
  • the network device may also send a first control instruction to the terminal device.
  • the terminal device receives the first control indication from the network device.
  • the first control indication is used to activate the first information, that is, the first control indication can activate the QCL relationship between the first CSI-RS and the synchronization signal block.
  • the terminal device performs S803 according to the QCL relationship between the activated first CSI-RS and the synchronization signal block.
  • the network device may directly configure the first information through RRC signaling.
  • the network device may no longer need to activate the first information through the first control indication.
  • the first information may be included in the field qcl-info of CSI-AssociatedReportConfigInfo in the RRC signaling parameter CSI-AperiodicTriggerStateList; or the first information may be included in the RRC signaling parameter NZP-CSI-RS- In the field qcl-InfoPeriodicCSI-RS in Resource.
  • the network device may also send the first control indication through MAC CE or DCI.
  • the network device may carry the identification/index of the first TCI state in the MAC CE or DCI.
  • the identification/index of the first TCI state is the first control indication.
  • the MAC CE carrying the identifier/index of the first TCI state may be a PDSCH MAC CE or a PDCCH MAC CE.
  • the Ti corresponding to the first TCI state identifier/index in the PDSCH MAC CE is set to 1, and the remaining Ti is 0 (where, The maximum number of network devices configured with TCI state 1 at the same time is 8), as shown in Figure 8C.
  • the PDCCH MAC CE directly carries the identifier/index of the first TCI state, as shown in Figure 8D.
  • the "TCI state ID" field in Figure 8D contains the identification/index of the first TCI state.
  • the DCI carrying the identifier/index of the first TCI state may be format 1_1 (format 1_1) or format 1_2 (format1_2).
  • format 1_1 format 1_1
  • format 1_2 format1_2
  • 3 bits in DCI format 1_1 are used to indicate which one of the 8 is used; and 1 or 2 or 3 bits in DCI format 1_2 are used to indicate the first 2 or 4 or 8 Which one to use specifically.
  • the terminal device estimates the time-frequency position of the first CSI-RS according to the synchronization signal block and the first information.
  • the terminal device may estimate the time-frequency position of the first CSI-RS through the following steps:
  • A1 The terminal equipment estimates the time-frequency offset of the first CSI-RS based on the time-frequency offset of the synchronization signal block and the first information.
  • A2 The terminal device estimates the time-frequency position of the first CSI-RS based on the time-frequency offset of the first CSI-RS. After the terminal device estimates the time-frequency offset of the first CSI-RS, the terminal device may perform time-frequency compensation on the first CSI-RS according to the time-frequency offset of the first CSI-RS. , thereby the time-frequency position of the first CSI-RS can be estimated.
  • the terminal equipment may use an existing time-frequency compensation method to perform time-frequency compensation on the first CSI-RS, which will not be described in the embodiments of this application.
  • the terminal device may determine the signal between the network device and the terminal device at the first time through the following steps B1-B2. Doppler frequency offset and signal transmission delay.
  • the first time is the time when the terminal device receives the synchronization signal block in S801.
  • the first time may be a time unit (such as a subframe, time slot or symbol, etc.) for receiving the synchronization signal block, which is not limited in this application. .
  • the terminal device obtains the first location information of the terminal device at the first time; the terminal device receives a system information block (SIB), and the system information block is used to determine the location of the terminal device at the first time.
  • SIB system information block
  • the terminal device since the terminal device has the ability to support Global Navigation Satellite System (GNSS), the terminal device can obtain the real-time location information of the terminal device through GNSS. Based on this, the terminal device may obtain the first location information of the terminal device through the GNSS at the first time.
  • GNSS Global Navigation Satellite System
  • the network device may broadcast the location information of the network device or other information used to determine the location information of the network device through a system information block.
  • a system information block The following is an example:
  • Example 1 In satellite systems, the SIB broadcast by network equipment (satellites or satellite ground stations) contains the ephemeris used to calculate and predict satellite positions. After obtaining the SIB broadcast by the network device, the terminal device can calculate the first position information of the satellite at the first time based on the ephemeris in the SIB.
  • Example 2 The SIB broadcast by a network device can contain the real-time location information of the network device.
  • the terminal device can determine the SIB received within the first time, and then obtain the location information of the network device included in the SIB. Since the SIB is received within the first time, the location information contained in the SIB is the first location information of the network device at the first time.
  • the SIB broadcast by the network device may include the real-time location information of the network device and the time corresponding to the real-time location information.
  • the terminal device can select the SIB containing the first time, and then determine that the real-time location information contained in the SIB is the first location information of the network device at the first time.
  • the terminal device determines the first downlink Doppler frequency offset and the first signal transmission delay based on the first location information of the terminal device and the first location information of the network device.
  • the first downlink Doppler frequency offset is the Doppler frequency offset of the signal sent by the network device to the terminal device at the first time
  • the first signal transmission delay is at the first time. The delay of signal transmission between the network device and the terminal device at the first time.
  • the terminal device may use a traditional algorithm (such as the above-mentioned formula 1 and formula 2) to determine the first downlink Doppler frequency offset and the first signal transmission delay, which will not be described again here.
  • a traditional algorithm such as the above-mentioned formula 1 and formula 2
  • the terminal device may perform step A1 through the following steps:
  • the terminal device obtains the second location information of the terminal device at the second time, and obtains the second location information of the network device at the second time.
  • the second time is the time when the terminal device receives the first CSI-RS.
  • the terminal device may obtain the second location information of the terminal device through GNSS at the second time.
  • the terminal device may obtain the second location information of the network device at the second time in various ways. For example, in a satellite system, the terminal device may calculate the second position information of the satellite at the second time based on the acquired ephemeris of the satellite. For another example, the terminal device may obtain the movement information (moving speed, movement acceleration, movement path, etc.) of the network device, and then predict the second location information of the network device at the second time based on the movement information.
  • the movement information moving speed, movement acceleration, movement path, etc.
  • the terminal device determines the second downlink Doppler frequency offset and the second signal transmission delay based on the second location information of the terminal device and the second location information of the network device.
  • the second downlink Doppler frequency offset is the Doppler frequency offset of the signal sent by the network device to the terminal device at the second time
  • the second signal transmission delay is at the second time. 2. The delay of signal transmission between the network device and the terminal device.
  • the terminal equipment may use traditional algorithms (such as the above-mentioned formula 1 and formula 2) to determine the second downlink Doppler frequency offset and the second signal transmission delay, which will not be described again here.
  • the terminal equipment determines according to the first downlink Doppler frequency offset, the first signal transmission delay, the second downlink Doppler frequency offset, and the second signal transmission delay.
  • the time-frequency offset information of the synchronization signal block and the first information are used to estimate the time-frequency offset of the first CSI-RS.
  • the frequency offset of the first CSI-RS estimated by the terminal device through step C3 conforms to the following formula:
  • ⁇ F 2 is the frequency offset of the first CSI-RS
  • ⁇ F 1 is the frequency offset of the synchronization signal block.
  • ⁇ T 2 is the time offset of the first CSI-RS
  • ⁇ 2 is the transmission delay of the second signal
  • ⁇ 1 is the transmission delay of the first signal
  • ⁇ T 1 is the time delay of the synchronization signal block. Partial.
  • the terminal equipment uses the time-frequency offset of the synchronization signal block as a reference and corrects the Doppler frequency offset and signal transmission delay through the real-time positions of the terminal equipment and network equipment, so that the terminal equipment can estimate the Doppler
  • the comprehensive impact of frequency offset/signal transmission delay and time-frequency offset caused by non-ideal factors such as crystal oscillator error on the signal can make the calculated time-frequency offset of the first CSI-RS more accurate.
  • the time-frequency compensation accuracy of the uplink and downlink signals is correspondingly improved, thereby reducing the interference of the time-frequency offset on signal demodulation, and ultimately ensuring improve the signal transmission efficiency of the communication system.
  • the network device sends the first CSI-RS to the terminal device.
  • the terminal device receives the first CSI-RS from the network device at the estimated time-frequency position of the first CSI-RS.
  • steps S801-S804 in the embodiment of this application provide a communication method.
  • the QCL relationship between CSI-RS for CM and the synchronization signal block is added to the communication system, so that the network in NTN
  • the terminal device can estimate the time-frequency position of CSI-RS for CM through the synchronization signal block. Since the communication system does not need to send TRS, this solution can reduce a large amount of time-frequency resource overhead in NTN.
  • the saved time-frequency resources can be used for data transmission or other purposes, improving resource utilization and data transmission efficiency.
  • the terminal equipment can also perform the time-frequency analysis of the downlink signal through the following steps S805-S807. frequency compensation.
  • the network device sends third information to the terminal device.
  • the third information is used to indicate that there is a QCL relationship between the DMRS and the first CSI-RS.
  • the QCL relationship between the DMRS and the first CSI-RS indicated by the third information includes: QCL type A.
  • the QCL relationship of QCL type A between the DMRS and the first CSI-RS includes:
  • the terminal device may estimate the time-frequency of the DMRS according to the time-frequency position/time-frequency offset of the first CSI-RS. Position/time-frequency offset.
  • the QCL relationship between the DMRS and the first CSI-RS indicated by the third information may also include: QCL type D.
  • the QCL relationship of QCL type D between the DMRS and the first CSI-RS includes: there is a QCL relationship between the spatial reception parameters of the DMRS and the spatial reception parameters of the first CSI-RS.
  • the terminal device can determine the spatial reception parameter of the DMRS according to the spatial reception parameter of the first CSI-RS. For example, the terminal device may receive the first CSI-RS and the DMRS using the same beam.
  • the third information can also be carried in RRC signaling.
  • the RRC signaling sent by the network device to the terminal device includes a TCI state list.
  • the TCI state list may include a second TCI state.
  • the second TCI state is used to indicate that there is a QCL relationship between the DMRS and the first CSI-RS, that is, the second TCI state contains the third information.
  • the first information, the second information and the third information may be carried and sent in the same message (for example, RRC signaling); or the above information may be included in different messages respectively. Transmitted in a message; or part of the information is included in the same message and sent, and another part of the information is included in another message. This is not limited in the embodiments of the present application.
  • the network device may also send a second control instruction to the terminal device.
  • the terminal device receives the second control indication from the network device.
  • the second control indication is used to activate the third information, that is, the second control indication can activate the QCL relationship between the DMRS and the first CSI-RS.
  • the network device may send the second control indication through MAC CE or DCI.
  • the network device may send the second control indication through MAC CE or DCI.
  • the terminal device estimates the time-frequency position of the DMRS based on the estimated time-frequency position or time-frequency offset of the first CSI-RS and the third information.
  • the terminal equipment can directly determine the time-frequency position or time-frequency offset of the DMRS based on the time-frequency position or time-frequency offset of the first CSI-RS.
  • the terminal device may determine the time-frequency position of the first CSI-RS according to the estimated time-frequency position of the first CSI-RS and the set time-frequency position of the first CSI-RS and the set time-frequency position of the DMRS.
  • the relative relationship between positions is used to estimate the time-frequency position of the DMRS.
  • the terminal device may determine the time-frequency offset of the DMRS based on the estimated time-frequency offset of the first CSI-RS, and then, based on the time-frequency offset of the DMRS, calculate the time-frequency offset of the DMRS.
  • the DMRS performs time-frequency compensation to estimate the time-frequency position of the DMRS.
  • the network device sends the DMRS and downlink signal to the terminal device.
  • the terminal device receives the DMRS and the downlink signal from the network device at the estimated time-frequency position of the DMRS.
  • the terminal equipment may also pre-compensate the time-frequency offset of the uplink signal through the following steps S808-S809.
  • the terminal device performs time-frequency compensation on the uplink signal according to the time-frequency offset of the first CSI-RS.
  • the terminal equipment can use existing methods to perform time-frequency pre-compensation on the uplink signal, which is not limited in this application.
  • performing time-frequency compensation on the uplink signal includes: compensating the frequency of the uplink signal according to the frequency offset of the first CSI-RS; and performing the terminal compensation according to the time offset of the first CSI-RS.
  • the device's uplink timing is synchronized.
  • the center frequency of the uplink signal after frequency compensation in the time-frequency compensation complies with the following formula 5:
  • the time when the uplink signal is sent (current time) is close to (can be equal to) the time when the terminal device receives the The time of the first CSI-RS (ie, the second time). Based on this, the uplink Doppler frequency offset Can be based on the second downlink Doppler frequency offset at the second time to calculate.
  • the terminal equipment can be based on The set uplink center frequency of the first CSI-RS and the set center frequency of the uplink signal are used to calculate the In addition, the uplink Doppler frequency offset It can also be determined based on the location information of the network device and the location information of the terminal device at the time when the uplink signal is sent, which will not be described again here.
  • the center frequency of the uplink signal after frequency compensation in the time-frequency compensation complies with the formula: Among them, f UL is the set uplink center frequency; is the Doppler frequency offset of the signal sent by the terminal device to the network device at the current time.
  • t TX is the sending time of the uplink signal
  • t RX is the time when the terminal device receives the first CSI-RS.
  • the terminal device sends the uplink signal.
  • the network device receives the uplink signal.
  • the time-frequency offset of the signal may take a large value. Therefore, in order to reduce the complexity of estimating a large time-frequency offset on the terminal equipment side, the network device can pre-compensate the time-frequency offset of the signal when sending a signal. It should be noted that network equipment needs to perform the same time-frequency offset pre-compensation on all signals sent to the terminal equipment.
  • the network device can perform frequency pre-compensation on the synchronization signal block, the first CSI-RS, the second CSI-RS, the DMRS and the downlink signal according to the set frequency pre-compensation value;
  • a certain time pre-compensation value is used to perform time pre-compensation on the synchronization signal block, the first CSI-RS, the second CSI-RS, the DMRS and the downlink signal.
  • the frequency pre-compensated and time pre-compensated signals are then sent to the terminal device.
  • the above frequency domain pre-compensation value may be a value greater than, less than or equal to 0, and the time pre-compensation value may be a value greater than or equal to 0.
  • the network device may also forward the uplink timing of the network device before receiving the uplink signal. , in order to receive the uplink signal. Based on this, the process of the network device receiving uplink signals includes the following steps:
  • the network device moves forward the uplink timing of the network device according to the time pre-compensation value, and determines the reception time of the uplink signal sent by the terminal device based on the uplink timing after the forward processing. .
  • the network device receives the uplink signal at the determined reception time of the uplink signal.
  • step D1 the offset value for forward processing of the uplink timing of the network device is equal to the time pre-compensation value; after the forward processing of the uplink timing of the network device, the uplink signal The reception time of is equal to the transmission time of the first CSI-RS.
  • the network equipment carries out the uplink timing forward processing through the above steps, which can ensure that the uplink and downlink timing of the network equipment are consistent, thereby improving the signal transmission efficiency of the network equipment.
  • the embodiment of the present application provides another communication method. This method can be applied in NTN, such as the satellite system shown in Figure 2 or Figure 4. Referring to the flow chart shown in FIG. 8A , the solution provided by the embodiment of the present application will be described in detail below.
  • the network device sends the first information to the terminal device.
  • the terminal device receives the first information from the network device.
  • the first information is used to indicate that there is a QCL relationship between the first CSI-RS and the second CSI-RS;
  • the first CSI-RS is a reference signal used for channel measurement (ie, CM), that is, CSI-RS.
  • the second CSI-RS is a reference signal used for beam management (ie, BM), that is, CSI-RS for BM.
  • the terminal device Before executing S901, the terminal device has accessed the network device and entered the RRC connection state.
  • the QCL relationship between the first CSI-RS and the second CSI-RS indicated by the first information includes: QCL type A.
  • the QCL relationship of QCL type A between the first CSI-RS and the second CSI-RS includes:
  • the terminal device may determine the first CSI according to the time-frequency offset of the second CSI-RS. -The time-frequency offset of the RS, thereby determining the time-frequency position of the first CSI-RS.
  • the QCL relationship between the first CSI-RS and the second CSI-RS indicated by the first information may also include: QCL type D.
  • the QCL relationship of QCL type D between the first CSI-RS and the second CSI-RS includes: a spatial reception parameter of the first CSI-RS and a spatial reception parameter of the second CSI-RS.
  • the terminal device can determine the spatial reception parameter of the first CSI-RS according to the spatial reception parameter of the second CSI-RS. For example, the terminal device may receive the first CSI-RS and the second CSI-RS using the same beam.
  • the QCL relationship between the first CSI-RS and the second CSI-RS indicated by the first information may include: a time domain position of the first CSI-RS and The second CSI-RS is related, or the second CSI-RS contains indication information of the time domain position of the first CSI-RS, etc.
  • the embodiments of the present application do not impose any limitation on the QCL relationship between the first CSI-RS and the second CSI-RS.
  • the network device may also send second information to the terminal device.
  • the terminal device receives the second information from the network device.
  • the second information is used to indicate that there is a QCL relationship between the first CSI-RS and the synchronization signal block.
  • the QCL relationship between the first CSI-RS and the synchronization signal block indicated by the second information includes: QCL type D.
  • the QCL relationship of QCL type D between the first CSI-RS and the synchronization signal block includes: a spatial reception parameter of the first CSI-RS and a spatial reception parameter of the synchronization signal block. QCL relationship.
  • the terminal device can determine the spatial reception parameter of the first CSI-RS according to the spatial reception parameter of the synchronization signal block. For example, the terminal device may receive the first CSI-RS and the synchronization signal block using the same beam.
  • the first information may be carried in RRC signaling.
  • the network device may send a TCI state list to the terminal device through RRC signaling, and the TCI state list includes the first TCI state.
  • the first TCI state is used to indicate that there is a QCL relationship between the first CSI-RS and the second CSI-RS, that is, the first TCI state contains the first information (and second information) .
  • the high-level parameter - TRS information (TRS-Info)) is not configured in the NZP-CSI-RS resource set (NZP-CSI-RS-ResourceSet) in the RRC signaling sent by the network device, and the high-level parameter - —Repetition, at this time the NZP-CSI-RS resource set represents the first CSI-RS (i.e. CSI-RS for CM) and the second CSI-RS (i.e. CSI-RS for BM); the RRC signaling sent by the network device includes
  • the first TCI state in the TCI state list may indicate a Type A relationship with the second CSI-RS.
  • the first TCI state may also indicate a Type D relationship with the second CSI-RS; or a Type D relationship with a synchronization signal block (such as an SS/PBCH block, hereinafter referred to as SSB).
  • a synchronization signal block such as an SS/PBCH block, hereinafter referred to as SSB.
  • the QCL relationship indicated by the first TCI state may be as shown in Table 4.
  • the communication system can obtain the CSI-RS for CM through the QCL relationship in Table 4.
  • Time-frequency deviation reference when the communication system does not send TRS, the QCL relationship of the reference signal in the communication system is as shown in Figure 9B, that is, the QCL relationship in Table 4 is added based on the QCL relationship shown in Figure 7.
  • the network device may also send a first control instruction to the terminal device.
  • the terminal device receives the first control indication from the network device.
  • the first control indication is used to activate the first information, that is, the first control indication can activate the QCL relationship between the first CSI-RS and the second CSI-RS.
  • the terminal device performs S903 according to the activated QCL relationship between the first CSI-RS and the second CSI-RS.
  • the network device may directly configure the first information through RRC signaling.
  • the network device may no longer need to activate the first information through the first control indication.
  • the network device may send the first control indication through MAC CE or DCI.
  • the network device may carry the identification/index of the first TCI state in the MAC CE or DCI.
  • the identification/index of the first TCI state is the first control indication.
  • the network device sends the second CSI-RS to the terminal device.
  • the terminal device receives the second CSI-RS from the network device.
  • the terminal device may estimate the time-frequency offset of the second CSI-RS before receiving the second CSI-RS, or determine the second CSI-RS after receiving the second CSI-RS.
  • the time-frequency offset of RS is not limited in this application.
  • the terminal device estimates the time-frequency position of the first CSI-RS based on the second CSI-RS and the first information.
  • the terminal device may estimate the time-frequency position of the first CSI-RS through the following steps:
  • the terminal device estimates the time-frequency offset of the first CSI-RS based on the time-frequency offset of the second CSI-RS and the first information.
  • the terminal device estimates the time-frequency position of the first CSI-RS according to the time-frequency offset of the first CSI-RS. After the terminal device estimates the time-frequency offset of the first CSI-RS, the terminal device may perform time-frequency compensation on the first CSI-RS according to the time-frequency offset of the first CSI-RS. , thereby the time-frequency position of the first CSI-RS can be estimated.
  • the terminal equipment may use an existing time-frequency compensation method to perform time-frequency compensation on the first CSI-RS, which will not be described in the embodiments of this application.
  • the terminal device before the terminal device executes step E1, the terminal device can determine the location of the first step through the following steps F1-F2.
  • the first time is the time when the terminal device receives the second CSI-RS in S801.
  • the terminal device obtains the first location information of the terminal device at the first time, and obtains the first location information of the network device at the first time.
  • the terminal device may obtain the first location information of the terminal device through GNSS at the first time.
  • the terminal device may obtain the first location information of the network device at the first time in various ways. For example, in a satellite system, the terminal device may calculate the first position information of the satellite at the first time based on the acquired ephemeris of the satellite. For another example, the terminal device may obtain the movement information (moving speed, movement acceleration, movement path, etc.) of the network device, and then predict the first location information of the network device at the first time based on the movement information.
  • the movement information moving speed, movement acceleration, movement path, etc.
  • the terminal device determines the first downlink Doppler frequency offset and the first signal transmission delay based on the first location information of the terminal device and the first location information of the network device; wherein, the first The downlink Doppler frequency offset is the Doppler frequency offset of the signal sent by the network device to the terminal device at the first time, and the first signal transmission delay is the Doppler frequency offset at the first time. The delay in transmitting signals between the network device and the terminal device.
  • the terminal device may use a traditional algorithm (such as the above formula 1 and formula 2) to determine the first downlink Doppler frequency offset and the first signal transmission delay, which will not be described again here.
  • a traditional algorithm such as the above formula 1 and formula 2
  • the terminal can perform the above step F1 by following these steps:
  • the terminal device obtains the second location information of the terminal device at the second time, and obtains the second location information of the network device at the second time; wherein the second time is the terminal The time when the device receives the first CSI-RS.
  • this step can refer to the description in F1 above and will not be repeated here.
  • the terminal device determines the second downlink Doppler frequency offset and the second signal transmission delay according to the second location information of the terminal device and the second location information of the network device; wherein, the second downlink The Doppler frequency offset is the Doppler frequency offset of the signal sent by the network device to the terminal device at the second time, and the second signal transmission delay is the Doppler frequency offset between the network device and the terminal device at the second time. The delay in transmitting signals between the terminal devices.
  • the terminal device can use traditional algorithms (such as the above formula 1 and formula 2) to determine the first downlink Doppler frequency offset and the first signal transmission delay, which will not be described again here.
  • the terminal equipment determines according to the first downlink Doppler frequency offset, the first signal transmission delay, the second downlink Doppler frequency offset, and the second signal transmission delay.
  • the time-frequency offset information of the second CSI-RS and the first information are used to estimate the time-frequency offset of the first CSI-RS.
  • the frequency offset of the first CSI-RS estimated by the terminal device through step G3 conforms to the following formula:
  • ⁇ F 2 is the frequency offset of the first CSI-RS
  • ⁇ F 1 is the frequency offset of the second CSI-RS.
  • ⁇ T 2 is the time offset of the first CSI-RS
  • ⁇ 2 is the transmission delay of the second signal
  • ⁇ 1 is the transmission delay of the first signal
  • ⁇ T 1 is the second CSI-RS The time deviation.
  • the implementation principle of the terminal device estimating the time-frequency offset of the first CSI-RS in G3 may refer to the description in Embodiment 1 below, which will not be elaborated here.
  • the terminal device uses the time-frequency offset of the second CSI-RS as a reference to correct the Doppler frequency offset and signal transmission delay through the real-time positions of the terminal device and the network device, so that the terminal device can estimate multiple
  • the combined impact of Puller frequency offset/signal transmission delay and time-frequency offset caused by non-ideal factors such as crystal oscillator error on the signal can make the calculated time-frequency offset of the first CSI-RS more accurate.
  • the time-frequency compensation accuracy of the uplink and downlink signals is correspondingly improved, thereby reducing the interference of the time-frequency offset on signal demodulation, and ultimately ensuring improve the signal transmission efficiency of the communication system.
  • the network device sends the first CSI-RS to the terminal device.
  • the terminal device receives the first CSI-RS from the network device at the estimated time-frequency position of the first CSI-RS.
  • steps S901-S904 in the embodiment of the present application provide a communication method.
  • the QCL relationship between CSI-RS for CM and CSI-RS for BM is added to the communication system, so that in NTN
  • the terminal device can estimate the time-frequency position of CSI-RS for CM through CSI-RS for BM. Since the communication system does not need to send TRS, this solution can reduce a large amount of time-frequency resource overhead in NTN.
  • the saved time-frequency resources can be used for data transmission or other purposes, improving resource utilization and data transmission efficiency.
  • the terminal device Based on the estimated time-frequency position or time-frequency offset of the first CSI-RS, the terminal device may also perform time-frequency compensation of the downlink signal through the following steps S905-S907.
  • the network device sends third information to the terminal device.
  • the third information is used to indicate that there is a QCL relationship between the DMRS and the first CSI-RS.
  • the network device may also send a second control instruction to the terminal device.
  • the terminal device receives the second control indication from the network device.
  • the second control indication is used to activate the third information, that is, the second control indication can activate the QCL relationship between the DMRS and the first CSI-RS.
  • the terminal device estimates the time-frequency position of the DMRS based on the estimated time-frequency position or time-frequency offset of the first CSI-RS and the third information.
  • the network device sends the DMRS and downlink signal to the terminal device.
  • the terminal device receives the DMRS and the downlink signal from the network device at the estimated time-frequency position of the DMRS.
  • the terminal equipment may also pre-compensate the time-frequency offset of the uplink signal through the following steps S908-S909.
  • the terminal device performs time-frequency compensation on the uplink signal according to the time-frequency offset of the first CSI-RS.
  • S909 The terminal device sends the uplink signal.
  • the network device receives the uplink signal.
  • the network equipment carries out the uplink timing forward processing through the above steps, which can ensure that the uplink and downlink timing of the network equipment are consistent, thereby improving the signal transmission efficiency of the network equipment.
  • the terminal device may also estimate the timing of the second CSI-RS through the following steps S910-S912. frequency location. In this way, when performing S902, the terminal device can receive the second CSI-RS at the estimated time-frequency position of the second CSI-RS.
  • the network device sends a synchronization signal block.
  • the terminal device located within the coverage area of the network device receives the synchronization signal block from the network device.
  • This step is the same as S801 in the embodiment shown in FIG. 8A and will not be described again here.
  • the network device sends fourth information to the terminal device.
  • the terminal device receives the fourth information from the network device.
  • the fourth information is used to indicate that there is a QCL relationship between the second CSI-RS and the synchronization signal block.
  • the terminal device Before executing S911, the terminal device accesses the network device and enters the RRC connection state.
  • the QCL relationship between the second CSI-RS and the synchronization signal block indicated by the fourth information includes: QCL type C.
  • the QCL relationship of QCL type C between the second CSI-RS and the synchronization signal block includes: the Doppler frequency offset of the second CSI-RS and the Doppler frequency offset of the synchronization signal block.
  • the terminal device may determine the timing of the second CSI-RS according to the time-frequency offset of the synchronization signal block. Frequency deviation.
  • the QCL relationship between the second CSI-RS and the synchronization signal block indicated by the fourth information is also Includes: QCL type D.
  • the QCL relationship of QCL type D between the second CSI-RS and the synchronization signal block includes: there is a QCL relationship between the spatial reception parameters of the second CSI-RS and the spatial reception parameters of the synchronization signal. .
  • the terminal device can determine the spatial reception parameter of the second CSI-RS according to the spatial reception parameter of the synchronization signal block. For example, the terminal device may receive the second CSI-RS and the synchronization signal block using the same beam.
  • the QCL relationship between the second CSI-RS and the synchronization signal block indicated by the fourth information may include: the time domain position of the second CSI-RS and the The synchronization signal block is related to the synchronization signal block, or the synchronization signal block contains indication information of the time domain position of the second CSI-RS.
  • the embodiments of the present application do not place any limitation on the QCL relationship between the second CSI-RS and the synchronization signal block.
  • the fourth information may also be carried in RRC signaling.
  • RRC signaling For details, reference may be made to the description of the first information in this embodiment, which will not be described again here.
  • the first information, the second information, the third information, and the fourth information may be carried in the same message (such as RRC signaling ); or the above information may be included in different messages for transmission; or part of the information may be included in the same message and sent, and the other part of the information may be sent in another message. This is not limited in the embodiments of the present application.
  • the network device may also send a third control instruction to the terminal device.
  • the terminal device receives the third control indication from the network device.
  • the third control indication is used to activate the fourth information, that is, the fourth control indication can activate the QCL relationship between the second CSI-RS and the synchronization signal block.
  • the terminal device estimates the time-frequency position of the second CSI-RS based on the synchronization signal block and the fourth information.
  • the principle of estimating the time-frequency position of the first CSI-RS is the same as in Figure 8A or the embodiment of the present application.
  • the terminal device can estimate the time-frequency position of the second CSI-RS through the following steps: Frequency location:
  • the terminal equipment estimates the time-frequency offset of the second CSI-RS based on the time-frequency offset of the synchronization signal block and the fourth information;
  • the terminal device estimates the time-frequency position of the second CSI-RS based on the time-frequency offset of the second CSI-RS.
  • the terminal device may determine the Doppler frequency offset and signal transmission delay of the signal between the network device and the terminal device at the third time through steps I1-I2.
  • the third time is the time when the terminal device receives the synchronization signal block.
  • the terminal device obtains the third location information of the terminal device at the third time and receives a system information block.
  • the system information block is used to determine the third location information of the network device at the third time.
  • step B1 is the same as step B1 in the embodiment shown in FIG. 8A , and the similarities will not be described again here.
  • the terminal device determines the third downlink Doppler frequency offset and the third signal transmission delay according to the third location information of the terminal device and the third location information of the network device; wherein, the The third downlink Doppler frequency offset is the Doppler frequency offset of the signal sent by the network device to the terminal device at the third time, and the third signal transmission delay is the Doppler frequency offset at the third time.
  • the terminal device may specifically perform the following steps:
  • the terminal device obtains the first location information of the terminal device at the first time, and obtains the first location information of the network device at the first time; wherein the first time is the terminal The time when the device receives the second CSI-RS.
  • the terminal device determines the first downlink Doppler frequency offset and the first signal transmission delay according to the first location information of the terminal device and the first location information of the network device; wherein, the first The downlink Doppler frequency offset is the Doppler frequency offset of the signal sent by the network device to the terminal device at the first time, and the first signal transmission delay is the Doppler frequency offset at the first time. The delay in transmitting signals between the network device and the terminal device.
  • Steps J1-J2 are the same as steps F1-F2 mentioned above and will not be described again here.
  • the terminal equipment determines according to the third downlink Doppler frequency offset, the third signal transmission delay, the first downlink Doppler frequency offset, and the first signal transmission delay.
  • the time-frequency offset information of the synchronization signal block and the fourth information are used to estimate the time-frequency offset of the second CSI-RS.
  • the frequency offset of the second CSI-RS estimated by the terminal device through step J3 conforms to the following formula:
  • ⁇ F 1 is the frequency offset of the second CSI-RS
  • ⁇ F 0 is the frequency offset of the synchronization signal block.
  • ⁇ T 1 is the time offset of the second CSI-RS
  • ⁇ 1 is the transmission delay of the first signal
  • ⁇ 3 is the transmission delay of the third signal
  • ⁇ T 0 is the time delay of the synchronization signal block. Partial.
  • the network device in the embodiment provided in Figure 8A or Figure 9A is a satellite.
  • the network equipment in the embodiment provided in Figure 8A or Figure 9A includes a satellite ground station and a satellite; among them, the network is responsible for performing data or signal processing, sending and receiving functions.
  • the device is a satellite ground station, but the location information of the network device obtained by the terminal device should be the location information of the satellite.
  • Embodiment 1 In order to solve the problem that in the traditional time-frequency offset scheme of estimating signals through TRS, the excessive number of TRS resources required by NTN leads to excessive resource overhead and affects the data transmission efficiency, in this embodiment 1, the satellite does not send TRS .
  • the protocol can add a new QCL relationship as shown in Table 3. In this way, the QCL relationship of the reference signal in the communication system can be shown in Figure 8B.
  • Embodiment 1 the process by which the UE performs downlink frequency offset estimation and compensation is as follows:
  • 1-1-1 In the initial access phase of the UE, the satellite sends SSB, and the UE performs frequency offset synchronization based on the received SSB and obtains cell system information.
  • the satellite can compensate the frequency offset in advance for each SSB beam (that is, perform frequency offset pre-compensation).
  • the set downlink center frequency is f DL
  • the UE can perform downlink synchronization based on SSB#0.
  • the satellite pre-compensates frequency offset f 1 for SSB#0 in the direction of the beam center, that is The actual transmission frequency of SSB#0 is f DL -f 1 .
  • the downlink Doppler frequency offset at t1 can be calculated based on the satellite position information and the UE position information at t1, as shown in Formula 2; df is the frequency offset caused by non-ideal factors such as crystal oscillator error.
  • the actual frequency of SSB#0 received by the UE is
  • the UE Since the UE uses the frequency sweep method to receive SSB#0, the UE can estimate the remaining frequency offset value of SSB#0 Among them, the residual frequency offset value ⁇ F of SSB#0 is: compared with the set downlink center frequency f DL , the frequency offset value that SSB#0 needs to compensate.
  • TCI states include instructions for the QCL Type C relationship between CSI-RS for CM and SSB, and the QCL Type A relationship between DMRS and CSI-RS.
  • the plurality of TCI states include a first TCI state, which indicates that the CSI-RS for CM and SSB#0 have a QCL Type C relationship.
  • the satellite sends CSI-RS for CM and activates the QCL Type C relationship between CSI-RS for CM and SSB through MAC CE or DCI.
  • the CSI-RS for CM beam uses the same frequency offset pre-compensation as the SSB beam with QCL relationship.
  • the UE calculates the actual downlink frequency offset of the UE at this time based on the frequency offset result of the SSB, as well as the position information of the satellite and the position information of the UE when receiving CSI-RS for CM. This frequency offset can be used for reference signal reception and downlink data reception.
  • the satellite sends CSI-RS for CM at time t2.
  • CSI-RS for CM
  • SSB#0 There is a QCL Type C relationship between the CSI-RS for CM and SSB#0, and the satellite continues to use f 1 for this CSI-RS.
  • CM performs frequency offset pre-compensation.
  • the downlink Doppler frequency offset at time t2 can be calculated based on the position information of the satellite and the position information of the UE at time t2, as shown in Formula 2.
  • the UE can estimate the residual frequency offset value of the CSI-RS for CM based on the residual frequency offset value of SSB#0.
  • the satellite uses directional beams to provide data transmission services for UEs.
  • This beam uses the same frequency offset pre-compensation value as the CSI-RS for CM beam, and activates PDCCH/through MAC CE or downlink DCI.
  • the UE estimates the frequency offset of DMRS, it can use the frequency offset result of CSI-RS for CM as a reference. For example, the UE may determine that the residual frequency offset value of the DMRS is the same as the residual frequency offset value of the CSI-RS for CM.
  • Embodiment 1 the process of UE performing downlink offset estimation and compensation is as follows:
  • the satellite In the initial access phase of the UE, the satellite sends SSB beams, and the UE performs time offset synchronization based on the received SSB.
  • the satellite can compensate for the time offset in advance for each SSB beam (ie, perform time offset pre-compensation).
  • the UE can perform downlink synchronization based on SSB#0.
  • the satellite pre-compensates the time offset T 1 for SSB#0 according to the transmission distance in the direction of the beam center, that is, pre-adds a phase to the actual transmitted SSB#0 signal.
  • k is the subcarrier index of the OFDM symbol
  • N is the total number of subcarriers
  • T s is the sampling time.
  • the actual downlink bias of SSB#0 is ⁇ 1 +dT.
  • ⁇ 1 is the signal transmission delay between the UE and the satellite at time t1, which can be calculated based on the position information of the satellite and the position information of the UE at time t1, as shown in Formula 1.
  • dT is the time offset caused by non-ideal factors such as crystal oscillator error.
  • the actual time of SSB#0 received by the UE is t1+ ⁇ 1 +dT.
  • TCI states include instructions for the QCL Type C relationship between CSI-RS for CM and SSB, and the QCL Type A relationship between DMRS and CSI-RS.
  • the satellite sends CSI-RS for CM and activates the QCL Type C relationship between CSI-RS for CM and SSB through MAC CE or downlink DCI.
  • the CSI-RS for CM beam uses the same time offset pre-compensation as the SSB beam with QCL relationship.
  • the UE calculates the actual downlink time offset of the UE at this time based on the time offset result of the SSB, as well as the position information of the satellite and the position information of the UE when receiving CSI-RS for CM. This time offset can be used for the reception of reference signals and the reception of downlink data.
  • the satellite BS sends CSI-RS for CM at time t2.
  • the satellite continues to use T 1 to perform CSI-RS for CM. Partial pre-compensation.
  • the actual downlink bias of the signal sent by the satellite to the UE at this time is ⁇ 2 +dT, that is, the CSI-RS for CM received by the UE
  • the actual time is t2+ ⁇ 2 +dT.
  • ⁇ 2 is the signal transmission delay between the UE and the satellite at t2, which can be calculated by the position information of the satellite and the position information of the UE at t2, as shown in Formula 1.
  • the UE can estimate the residual time offset value of the CSI-RS for CM based on the residual time offset value of SSB#0.
  • the satellite uses directional beams to provide data services to the UE.
  • This beam adopts the same CSI-RS The same time offset pre-compensation value for CM, and activate the QCL Type A relationship between PDCCH/PDSCH DMRS and CSI-RS for CM through MAC CE or downlink DCI.
  • the UE estimates the time offset of DMRS, it can use the time offset result of CSI-RS for CM as a reference. For example, the UE may determine that the residual timing offset value of the DMRS is the same as the residual timing offset value of the CSI-RS for CM.
  • the UE can pre-compensate the uplink frequency offset based on this.
  • the process of UE pre-compensating the uplink frequency offset is as follows:
  • satellites When sending downlink data beams, satellites can use the same frequency offset pre-compensation as CSI-RS for CM.
  • the UE can compensate for the frequency offset of downlink data based on the estimated residual frequency offset value of CSI-RS for CM.
  • f DL is the set downlink center frequency
  • f UL is the set uplink center frequency
  • ⁇ f is the difference between uplink and downlink center frequencies
  • ⁇ f f UL -f DL .
  • the BS uses f 1 to perform frequency offset pre-compensation on the transmitted downlink signal. Therefore, the actual transmission frequency of the downlink signal transmitted by the satellite is f DL -f 1 .
  • the UE uses the estimated residual frequency offset value of CSI-RS for CM
  • the frequency of the received downlink signal is compensated as That is, the UE can estimate It is the actual center frequency of the downlink signal sent by the satellite.
  • UE based on the actual center frequency of the downlink signal and the uplink and downlink center frequency difference ⁇ f, pre-compensate the frequency offset of the uplink signal, and send uplink data.
  • the UE knows the uplink and downlink center frequency difference ⁇ f, and can calculate the uplink Doppler frequency offset based on the current satellite position information and the UE position information. Then when the UE's uplink signal is sent to the satellite, after air interface transmission, the actual center frequency at which the satellite receives the uplink signal should be
  • the uplink Doppler frequency offset It can also be derived based on the downlink Doppler frequency offset when the UE receives the CSI-RS for CM. The specific process will not be described again here.
  • the UE can adjust the frequency offset at the actual center frequency of the downlink signal.
  • the residual frequency offset value of CSI-RS for CM Pre-compensate the center frequency of the uplink signal, the formula is as follows:
  • the uplink signal will experience another Doppler frequency offset before the satellite receives the uplink signal. Therefore, when the UE uses When used as the center frequency of the uplink signal, the actual center frequency of the uplink signal received by the satellite is f UL , which is the same as the preset uplink center frequency offset. therefore, After the frequency offset pre-compensation of the uplink signal is carried out through the above solution, the satellite does not need to perform the frequency offset estimation and compensation process of the uplink signal when receiving the uplink signal, saving the power consumption of the satellite.
  • Embodiment 1 after the UE obtains the downlink time offset estimate, it can pre-compensate the uplink time offset based on this.
  • the process for the UE to compensate for the uplink timing offset is as follows:
  • the satellite When the satellite transmits data beams in the downlink, it can use the same time offset pre-compensation as CSI-RS for CM.
  • the UE can compensate for the time offset of downlink data based on the estimated residual time offset value of CSI-RS for CM.
  • the BS sends a downlink signal at time t2, and uses T 1 to perform time offset pre-compensation on the downlink signal.
  • the signal transmission delay of this signal in the air interface is ⁇ 2 .
  • the actual reception time when the UE receives the downlink signal is t2+ ⁇ 2 +dT, and the downlink time bias of the CSI-RS for CM estimated by the UE is ⁇ T 2 .
  • ⁇ T 2 ⁇ 2 +dT-T 1 .
  • the UE can use this to perform time offset compensation on downlink signals.
  • the UE can pre-compensate the uplink time offset based on the actual reception time t RX of the downlink signal, that is, advance the uplink timing and send the uplink signal.
  • the satellite Since the satellite knows the time offset pre-compensation value T 1 , the satellite can directly adjust its own uplink timing and adjust the reception time of the uplink signal to t2.
  • the uplink signal and downlink signal of the satellite can maintain the same starting time.
  • this embodiment 1 increases the QCL Type C relationship between CSI-RS for CM and SSB, so that when the satellite does not send TRS, the UE can still refer to the time-frequency offset estimation result of SSB and use the satellite and ground positions. information to accurately estimate the time-frequency offset of the downlink signal.
  • this solution can save a lot of time-frequency resources for sending downlink data; on the other hand, the UE can compensate for non-idealities such as Doppler frequency offset/transmission delay and crystal oscillator error during uplink and downlink data transmission. factors causing time-frequency offset. Together, these two aspects can significantly increase the rate of data transmission.
  • Embodiment 2 In order to solve the problem that in the traditional time-frequency offset scheme of estimating signals through TRS, the excessive number of TRS resources required by NTN leads to excessive resource overhead and affects the data transmission efficiency, in this embodiment 2, the satellite does not send TRS .
  • the protocol can add a QCL relationship as shown in Table 4. so, The QCL relationship of the reference signal in the communication system can be shown in Figure 9B.
  • the method for the UE to estimate and compensate for the uplink and downlink frequency offset can be the same as the first embodiment.
  • the difference is:
  • these TCI states include the QCL Type C relationship indicating the QCL Type C relationship between CSI-RS for BM and SSB, the QCL Type A relationship between CSI-RS for CM and CSI-RS for BM, and QCL Type A relationship between DMRS and CSI-RS for CM.
  • the satellite sends both CSI-RS for CM and CSI-RS for BM.
  • the time-frequency offset of CSI-RS for BM is based on the time-frequency offset of SSB, and a more accurate time-frequency offset is estimated and compensated according to the calculation method in Embodiment 1.
  • the time-frequency offset of CSI-RS for CM is based on the time-frequency offset of CSI-RS for BM, and the time-frequency offset of DMRS used for signaling and data demodulation is based on CSI-RS for CM.
  • the second embodiment adds the QCL Type A relationship between CSI-RS for CM and CSI-RS for BM, so that when the satellite does not send TRS, the UE can still refer to the time-frequency offset result of SSB, CSI-RS for
  • the time-frequency offset results of BM and the time-frequency offset results of CSI-RS for CM are used to accurately estimate the time-frequency offset of the downlink signal using satellite and ground position information, thereby significantly increasing the data transmission rate.
  • each step involved in the above embodiments can be executed by the corresponding device, or by components such as chips, processors or chip systems in the device.
  • the embodiments of this application do not apply to it. constitute a limitation.
  • Each of the above embodiments is only explained by taking execution by the corresponding device as an example.
  • each device involved in the above embodiments includes a corresponding hardware structure and/or software module to perform each function.
  • Those skilled in the art should easily realize that the units and method steps of each example described in conjunction with the embodiments disclosed in this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software driving the hardware depends on the specific application scenarios and design constraints of the technical solution.
  • step S802 and step S805 are only illustrative, and are used to better understand the embodiments. They do not constitute a substantial limitation on the implementation of the solution of the present application.
  • the “steps” It can also be understood as “features”.
  • this step does not constitute any restriction on the execution order of the solution of the present application. Any changes in the sequence of steps, merging of steps, or splitting of steps made on this basis that do not affect the implementation of the overall solution will also result in a new technical solution.
  • the execution order between step S802 and step S805 is not limited.
  • this application also provides a communication device, which can be applied to NTN and other communication systems, such as the satellite system shown in Figure 2 or Figure 4.
  • the communication device is used to implement the methods provided in the above embodiments.
  • the communication device 1200 includes a communication unit 1201 and a processing unit 1202 .
  • the communication unit 1201 is used to receive and send signals.
  • the communication unit 1201 may include a transceiver.
  • the processing unit 1202 is configured to perform the steps performed by the terminal device or the network device in the communication method provided by the above embodiments. For the specific functions of the processing unit 1202, reference can be made to the relevant descriptions in the above embodiments and will not be described again here.
  • each functional unit in each embodiment of the present application It can be integrated in a processing unit, or it can exist physically alone, or two or more units can be integrated in one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .
  • the communication device 1300 includes: a transceiver 1301 , at least one processor 1302 , and a memory 1303 .
  • the transceiver 1301, the at least one processor 1302 and the memory 1303 are connected to each other.
  • the transceiver 1301, the at least one processor 1302 and the memory 1303 are connected to each other through a bus 1304.
  • the bus 1304 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 13, but it does not mean that there is only one bus or one type of bus.
  • the transceiver 1301 is used to receive and send signals to implement communication with other devices.
  • the transceiver 1301 can be implemented by a radio frequency device and an antenna.
  • the function of the processor 1302 can refer to the description of the terminal device in the above embodiment; when the communication device 1300 is a network device in the communication system, the function of the processor 1302 can be as follows: For the functions of the processor 1302, reference may be made to the description of the network device in the above embodiments, and will not be described again here.
  • the processor 1302 may be a central processing unit (CPU), a network processor (NP) or a combination of CPU and NP, etc.
  • the processor 1302 may further include hardware chips.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field programmable logic gate array (field-programmable gate array, FPGA), general array logic (generic array logic, GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field programmable logic gate array
  • GAL general array logic
  • the memory 1303 is used to store program instructions, etc.
  • program instructions may include program code including computer operating instructions.
  • the memory 1303 may include random access memory (RAM), and may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the processor 1302 executes the program instructions stored in the memory 1303 to implement the above functions, thereby implementing the method provided by the above embodiments.
  • embodiments of the present application also provide a computer program, which when the computer program is run on a computer, causes the computer to execute the method provided in the above embodiments.
  • embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program When the computer program is executed by a computer, it causes the computer to execute the method provided in the above embodiments.
  • the above computer may include, but is not limited to, a terminal device or a network device.
  • the storage medium may be any available medium that can be accessed by the computer. Taking this as an example but not limited to: computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data structures. Any other medium that contains the desired program code and is capable of being accessed by a computer.
  • embodiments of the present application also provide a chip, which is used to read the computer program stored in the memory and implement the method provided in the above embodiments.
  • the chip may include a processor and a memory, and the processor is coupled to the memory and used to read the computer program stored in the memory to implement the method provided in the above embodiments.
  • the chip system includes a processor and is used to support the computer device to implement the functions involved in the terminal device in the above embodiments.
  • the chip system further includes a memory, and the memory is used to store necessary programs and data of the computer device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements one process or multiple processes in the flow chart and/or one or more blocks in the block diagram Functions specified in the box.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法及设备。在该方案中,通信系统中增加用于信道测量的CSI-RS(即CSI-RS for CM)与同步信号块或用于波束管理的CSI-RS(即CSI-RS for BM)之间的准共址关系,使得通信系统中的网络设备在不发送TRS的情况下,终端设备可以通过同步信号块或CSI-RS for BM,来估计CSI-RS for CM的时频位置,进而可以接收下行信号以及发送上行信号。由于通信系统可以不发送TRS,因此,该方案可以降低由传输TRS导致的大量的时频资源开销,节省的时频资源可以用于数据传输或者其他用途,提高了资源利用率和数据传输效率。

Description

一种通信方法及设备
相关申请的交叉引用
本申请要求在2022年08月22日提交中国专利局、申请号为202211023716.4、申请名称为“一种通信方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及设备。
背景技术
与地面通信网络(例如第4代(The 4th Generation,4G)移动通信系统、第五代(The 5th Generation,5G)移动通信系统)相比,非地面通信网络(Non-terrestrial network,NTN)具有覆盖面更广、速度更快、成本较低等特点。其能够作为地面通信网络的一种补充或延伸,NTN可以实现有线电话网络和地面蜂窝网络无法实现的广域无缝覆盖的目的,有效地解决通信基础设施匮乏地区的互联网接入问题。
随着高频段、多点波束和频率复用等技术的使用,NTN中网络设备的通信能力得到显著提升,同时降低了单位宽带成本,因此NTN可以满足高信息速率业务的需求。除了能够实现全球(如偏远地区、远洋船舶等)覆盖,NTN还可以用于应急救灾(例如灾害监测、应急通信)、万物互联、高速移动(例如高铁、飞机)等场景。
在通信系统中,信号的时频偏会造成发送端发送的信号与接收端接收的信号在频率和时间上不对齐,会严重影响通信性能。例如,在当通信系统采用正交频分复用(orthogonal frequency division multiplexing,OFDM)技术对信号进行调制的场景下,频率和/或时间上的偏差会破坏信号子载波间的正交性,引起子载波间和/或时间符号(例如OFDM符号)之间的干扰,从而使接收端的信号解调性能大幅下降。因此,通信系统需要对信号的时频偏进行估计和补偿,以尽量地减小在发送端和接收端之间传输的信号在时频上的差异,从而保证系统的通信性能。
然而,相对于地面通信网络,NTN中网络设备的移动速度更高、信号的传输距离更远,因此,相比于地面通信网络,NTN中传输的信号具有更大的频偏和时偏。因此,NTN的信号时频偏是地面通信网络的信号时频偏的百倍甚至千倍,因此传统的基于地面通信网络的时频偏估计和补偿方法应用于NTN时可能会存在一系列问题。
因此,本领域亟待一种应用于NTN中的信号时频位置估计方法。
发明内容
本申请提供一种通信方法及设备,用于在NTN中实现信号的时频位置估计。
第一方面,本申请实施例提供了一种通信方法,该方法可以应用于终端设备或终端设备中的芯片系统。这里以终端设备为例,所述方法包括以下步骤:
终端设备接收来自网络设备的同步信号块;以及接收来自所述网络设备的第一信息, 所述第一信息用于指示第一信道状态信息参考信号CSI-RS与所述同步信号块之间具有准共址关系;所述第一CSI-RS为用于信道测量的参考信号;所述终端设备根据所述同步信号块和所述第一信息,估计所述第一CSI-RS的时频位置。
在该方法中,通信系统中增加了第一CSI-RS(即CSI-RS for CM)与同步信号块之间的QCL关系,使得通信系统中的网络设备在不发送TRS的情况下,终端设备可以通过同步信号块,来估计第一CSI-RS的时频位置。由于通信系统可以不发送TRS,因此,该方案可以降低通信系统中大量的时频资源开销,节省的时频资源可以用于数据传输或者其他用途,提高了资源利用率和数据传输效率。
在一种可能的设计中,所述终端设备可以通过以下步骤,根据所述同步信号块和所述第一信息,估计所述第一CSI-RS的时频位置:
所述终端设备先根据所述同步信号块的时频偏和所述第一信息,估计所述第一CSI-RS的时频偏;然后,根据所述第一CSI-RS的时频偏,估计所述第一CSI-RS的时频位置。
通过该设计,所述终端设备可以根据第一CSI-RS与同步信号块之间的QCL关系,以及同步信号块的时频偏,估计第一CSI-RS的时频偏,进而估计第一CSI-RS的时频位置。
在一种可能的设计中,所述终端设备还可以执行以下步骤:在第一时间获取所述终端设备的第一位置信息,其中,所述第一时间为所述终端设备接收到所述同步信号块的时间;接收系统信息块,所述系统信息块用于确定在所述第一时间所述网络设备的第一位置信息;根据所述终端设备的第一位置信息和所述网络设备的第一位置信息,确定第一下行多普勒频偏和第一信号传输时延;其中,所述第一下行多普勒频偏为在所述第一时间所述网络设备向所述终端设备发送信号的多普勒频偏,所述第一信号传输时延为在所述第一时间所述网络设备与所述终端设备之间传输信号的时延;基于以上步骤,所述终端设备可以通过以下步骤,根据所述同步信号块的时频偏和所述第一信息,估计所述第一CSI-RS的时频偏:
在第二时间获取所述终端设备的第二位置信息,以及获取在所述第二时间所述网络设备的第二位置信息;其中,所述第二时间为所述终端设备接收到所述第一CSI-RS的时间;根据所述终端设备的第二位置信息和所述网络设备的第二位置信息,确定第二下行多普勒频偏和第二信号传输时延;其中,所述第二下行多普勒频偏为在所述第二时间所述网络设备向所述终端设备发送信号的多普勒频偏,所述第二信号传输时延为在所述第二时间所述网络设备与所述终端设备之间传输信号的时延;根据所述第一下行多普勒频偏、所述第一信号传输时延、所述第二下行多普勒频偏、所述第二信号传输时延,所述同步信号块的时频偏信息和所述第一信息,估计所述第一CSI-RS的时频偏。
通过该设计,所述终端设备以同步信号块的时频偏为参考,通过所述终端设备和网络设备的实时位置修正多普勒频偏和信号传输时延,使得所述终端设备可以估计出多普勒频偏/信号传输时延以及由晶振误差等非理想因素导致的时频偏对信号的综合影响,进而可以使计算的第一CSI-RS的时频偏精确度更高。进一步的基于第一CSI-RS的时频偏对上下行信号进行时频补偿时,也相应提高了上下行信号的时频补偿精度,进而减少了时频偏对信号解调的干扰,最终保证了通信系统的信号传输效率。
在一种可能的设计中,所述第一CSI-RS的频偏符合以下公式:
其中,ΔF2为所述第一CSI-RS的频偏,为所述第二下行多普勒频偏,为所 述第一下行多普勒频偏,ΔF1为所述同步信号块的频偏;
所述第一CSI-RS的时偏符合以下公式:
ΔT2=τ21+ΔT1
其中,ΔT2为所述第一CSI-RS的时偏,τ2为所述第二信号传输时延,τ1为所述第一信号传输时延,ΔT1为所述同步信号块的时偏。
通过该设计,所述终端设备可以估计出所述第一CSI-RS的时频偏。
在一种可能的设计中,所述终端设备还可以根据所述第一CSI-RS的时频偏,对上行信号进行时频补偿;所述时频补偿中频率补偿后所述上行信号的中心频率符合以下公式:
其中,f′UL为频率补偿后所述上行信号的中心频率;为根据所述第一CSI-RS的频偏对所述第一CSI-RS进行频率补偿后所述第一CSI-RS的中心频率,fDL为设定的下行中心频率;δf=fUL-fDL,fUL为设定的上行中心频率;为在当前时间所述终端设备向所述网络设备发送信号的多普勒频偏;
所述时频补偿中对所述终端设备的上行时序进行定时提前的偏移值等于ΔT22;对所述终端设备的上行时序进行定时提前后,所述上行信号的发送时间符合以下公式:
tTX=tRX-(ΔT22)
其中,tTX为所述上行信号的发送时间,tRX为所述终端设备接收所述第一CSI-RS的时间。
通过该设计,所述终端设备还可以根据所述第一CSI-RS的时频偏,对上行信号进行时频补偿,从而可以减少时频偏对上行信号解调的干扰,最终保证了上行信号传输效率。
在一种可能的设计中,所述终端设备在根据所述同步信号块和所述第一信息,估计所述第一CSI-RS的时频位置之前,还可以接收来自所述网络设备的第一控制指示,所述第一控制指示用于激活所述第一信息。
通过该设计,所述网络设备可以通过第一控制指示来激活所述第一信息。
在一种可能的设计中,所述第一信息指示的所述第一CSI-RS与所述同步信号块之间的准共址关系包括:所述第一CSI-RS的多普勒频偏与所述同步信号块的多普勒频偏之间具有准共址关系;以及所述第一CSI-RS的平均时延与所述同步信号块的平均时延之间具有准共址关系。
通过该设计,所述终端设备可以依据上述第一信息所指示的准共址关系,通过所述同步信号块的时频偏,来确定所述第一CSI-RS的时频偏。
在一种可能的设计中,所述第一信息指示的所述第一CSI-RS与所述同步信号块之间的准共址关系还包括:所述第一CSI-RS的空间接收参数与所述同步信号块的空间接收参数之间具有准共址关系。
通过该设计,所述终端设备还可以依据上述第一信息所指示的准共址关系,通过所述同步信号块的空间接收参数,确定所述第一CSI-RS的空间接收参数。例如,所述终端设备可以使用相同的波束接收所述第一CSI-RS和所述同步信号块。
在一种可能的设计中,所述终端设备还可以接收来自所述网络设备的第二信息,所述第二信息用于指示所述第一CSI-RS与第二CSI-RS之间具有准共址关系;其中,所述第二CSI-RS为用于波束管理的参考信号;所述第二信息指示的所述第一CSI-RS与所述第二 CSI-RS之间的准共址关系包括:所述第一CSI-RS的空间接收参数与所述第二CSI-RS的空间接收参数之间具有准共址关系。
通过该设计,所述终端设备还可以依据上述第二信息所指示的准共址关系,通过所述第二CSI-RS的空间接收参数,确定所述第一CSI-RS的空间接收参数。例如,所述终端设备可以使用相同的波束接收所述第一CSI-RS和所述第二CSI-RS。
在一种可能的设计中,所述终端设备还可以接收来自所述网络设备的第三信息,所述第三信息用于指示解调参考信号DMRS与所述第一CSI-RS之间具有准共址关系;根据所述第一CSI-RS的时频位置和所述第三信息,估计所述DMRS的时频位置。
通过该设计,所述终端设备可以依据上述第三信息所指示的准共址关系,通过所述第一CSI-RS的时频位置确定所述DMRS的时频位置。例如,所述终端设备可以根据所述第一CSI–RS的时频偏估计所述DMRS的时频偏,进而估计所述DMRS的时频位置,实现下行信号的时频补偿。
在一种可能的设计中,所述DMRS的时频偏与所述第一CSI-RS的时频偏相同。
在一种可能的设计中,所述终端设备在根据所述第一CSI-RS的时频位置和所述第三信息,估计所述DMRS的时频位置之前,还可以接收来自所述网络设备的第二控制指示,所述第二控制指示用于激活所述第三信息。
通过该设计,所述网络设备可以通过所述第二控制指示来激活所述第三信息。
在一种可能的设计中,所述第三信息指示的所述DMRS与所述第一CSI-RS之间的准共址关系包括:所述DMRS的多普勒频偏与所述第一CSI-RS的多普勒频偏之间具有准共址关系;所述DMRS的多普勒扩展与所述第一CSI-RS的多普勒扩展之间具有准共址关系;所述DMRS的平均时延与所述第一CSI-RS的平均时延之间具有准共址关系;以及所述DMRS的时延扩展与所述第一CSI-RS的时延扩展之间具有准共址关系。
通过该设计,所述终端设备可以依据上述第三信息所指示的准共址关系,通过所述第一CSI-RS的时频偏,来确定所述DMRS的时频偏。
在一种可能的设计中,所述第三信息指示的所述DMRS与所述第一CSI-RS之间的准共址关系还包括:所述DMRS的空间接收参数与所述第一CSI-RS的空间接收参数之间具有准共址关系。
通过该设计,所述终端设备可以依据上述第三信息所指示的准共址关系,通过所述第一CSI-RS的空间接收参数,来确定所述DMRS的空间接收参数。
第二方面,本申请实施例提供了一种通信方法,该方法可以应用于网络设备或网络设备中的芯片系统。这里以网络设备为例,所述方法包括以下步骤:
网络设备发送同步信号块;向终端设备发送第一信息,所述第一信息用于指示第一信道状态信息参考信号CSI-RS与所述同步信号块之间具有准共址关系;所述第一CSI-RS为用于信道测量的参考信号;以及向所述终端设备发送所述第一CSI-RS。
通过以上方法,通信系统中增加了第一CSI-RS(即CSI-RS for CM)与同步信号块之间的QCL关系,使得通信系统中的网络设备在不发送TRS的情况下,终端设备可以通过同步信号块,来估计第一CSI-RS的时频位置。由于通信系统可以不发送TRS,因此,该方案可以降低通信系统中大量的时频资源开销,节省的时频资源可以用于数据传输或者其他用途,提高了资源利用率和数据传输效率。
在一种可能的设计中,所述网络设备在向所述终端设备发送所述第一CSI-RS之前, 还可以向所述终端设备发送第一控制指示,所述第一控制指示用于激活所述第一信息。
通过该设计,所述网络设备可以通过第一控制指示来激活所述第一信息。
在一种可能的设计中,所述网络设备可以通过以下步骤,向所述终端设备发送所述第一CSI-RS:
根据设定的频率预补偿值,对所述第一CSI-RS进行频率预补偿;根据设定的时间预补偿值,对所述第一CSI-RS进行时间预补偿;向所述终端设备发送频率预补偿和时间预补偿后的所述第一CSI-RS。
为了减少终端设备侧估计取值较大的时频偏的复杂度,网络设备在发送信号时,可以对信号的时频偏进行预补偿。应注意的是,网络设备需要对向终端设备发送的所有信号进行相同的时频偏预补偿。例如,所述网络设备可以根据设定的频率预补偿值,对同步信号块、第一CSI-RS、第二CSI-RS、DMRS以及下行信号进行频率预补偿;所述网络设备还可以根据设定的时间预补偿值,对同步信号块、第一CSI-RS、第二CSI-RS、DMRS以及下行信号进行时间预补偿。然后向所述终端设备发送频率预补偿和时间预补偿后的信号。上述频域预补偿值可以为大于、小于或等于0的值,时间预补偿值为大于或等于0的值。
在一种可能的设计中,在所述网络设备对发送的信号进行时间预补偿的情况下,为了保证上行信号的传输效率,所述网络设备还可以对所述网络设备的上行时序进行前移处理,以便接收终端设备发送的上行信号,即所述网络设备接收所述终端设备的上行信号的过程包括以下步骤:
根据所述时间预补偿值,对所述网络设备的上行时序进行前移处理,并根据前移处理后的所述上行时序确定所述终端设备发送的上行信号的接收时间;在确定的所述上行信号的接收时间,接收所述上行信号。
在一种可能的设计中,对所述网络设备的上行时序进行前移处理的偏移值等于所述时间预补偿值;在对所述网络设备的上行时序进行前移处理后,所述上行信号的接收时间等于所述第一CSI-RS的发送时间。
通过该设计,所述网络设备进行上行时序前移处理后,可以保证所述网络设备上下行的时序保持一致,从而可以提高网络设备的信号传输效率。
在一种可能的设计中,所述第一信息指示的所述第一CSI-RS与所述同步信号块之间的准共址关系包括:所述第一CSI-RS的多普勒频偏与所述同步信号块的多普勒频偏之间具有准共址关系;以及所述第一CSI-RS的平均时延与所述同步信号块的平均时延之间具有准共址关系。
通过该设计,所述终端设备可以依据上述第一信息所指示的准共址关系,通过所述同步信号块的时频偏,来确定所述第一CSI-RS的时频偏。
在一种可能的设计中,所述第一信息指示的所述第一CSI-RS与所述同步信号块之间的准共址关系还包括:所述第一CSI-RS的空间接收参数与所述同步信号块的空间接收参数之间具有准共址关系。
通过该设计,所述终端设备还可以依据上述第一信息所指示的准共址关系,通过所述同步信号块的空间接收参数,确定所述第一CSI-RS的空间接收参数。例如,所述终端设备可以使用相同的波束接收所述第一CSI-RS和所述同步信号块。
在一种可能的设计中,所述网络设备在向所述终端设备发送所述第一CSI-RS之前,还可以向所述终端设备发送第二信息,所述第二信息用于指示所述第一CSI-RS与第二 CSI-RS之间具有准共址关系;其中,所述第二CSI-RS为用于波束管理的参考信号;所述第二信息指示的所述第一CSI-RS与所述第二CSI-RS之间的准共址关系包括:所述第一CSI-RS的空间接收参数与所述第二CSI-RS的空间接收参数之间具有准共址关系。
通过该设计,所述终端设备还可以依据上述第二信息所指示的准共址关系,通过所述第二CSI-RS的空间接收参数,确定所述第一CSI-RS的空间接收参数。例如,所述终端设备可以使用相同的波束接收所述第一CSI-RS和所述第二CSI-RS。
在一种可能的设计中,所述网络设备还可以向所述终端设备发送第三信息,所述第三信息用于指示解调参考信号DMRS与所述第一CSI-RS之间具有准共址关系;向所述终端设备发送所述DMRS及下行信号。
通过该设计,所述终端设备可以依据上述第三信息所指示的准共址关系,通过所述第一CSI-RS的时频位置确定所述DMRS的时频位置。例如,所述终端设备可以根据所述第一CSI–RS的时频偏估计所述DMRS的时频偏,进而估计所述DMRS的时频位置,实现下行信号的时频补偿。
在一种可能的设计中,所述网络设备在向所述终端设备发送所述DMRS及下行信号之前,还可以向所述终端设备发送第二控制指示,所述第二控制指示用于激活所述第三信息。
通过该设计,所述网络设备可以通过所述第二控制指示来激活所述第三信息。
在一种可能的设计中,所述第三信息指示的所述DMRS与所述第一CSI-RS之间的准共址关系包括:所述DMRS的多普勒频偏与所述第一CSI-RS的多普勒频偏之间具有准共址关系;所述DMRS的多普勒扩展与所述第一CSI-RS的多普勒扩展之间具有准共址关系;所述DMRS的平均时延与所述第一CSI-RS的平均时延之间具有准共址关系;以及所述DMRS的时延扩展与所述第一CSI-RS的时延扩展之间具有准共址关系。
通过该设计,所述终端设备可以依据上述第三信息所指示的准共址关系,通过所述第一CSI-RS的时频偏,来确定所述DMRS的时频偏。
在一种可能的设计中,所述第三信息指示的所述DMRS与所述第一CSI-RS之间的准共址关系还包括:所述DMRS的空间接收参数与所述第一CSI-RS的空间接收参数之间具有准共址关系。
通过该设计,所述终端设备可以依据上述第三信息所指示的准共址关系,通过所述第一CSI-RS的空间接收参数,来确定所述DMRS的空间接收参数。
第三方面,本申请实施例提供了一种通信方法,该方法可以应用于终端设备或终端设备中的芯片系统,所述方法包括以下步骤:
终端设备接收来自网络设备的第一信息,所述第一信息用于指示第一信道状态信息CSI-RS与第二CSI-RS之间具有准共址关系;所述第一CSI-RS为用于信道测量的参考信号,所述第二CSI-RS为用于波束管理的参考信号;接收来自所述网络设备的所述第二CSI-RS;以及根据所述第二CSI-RS和所述第一信息,估计所述第一CSI-RS的时频位置。
在该方法中,通信系统中增加了第一CSI-RS(即CSI-RS for CM)与第二CSI-RS(CSI-RS for BM)之间的QCL关系,使得通信系统中的网络设备在不发送TRS的情况下,终端设备可以通过第二CSI-RS,来估计第一CSI-RS的时频位置。由于通信系统可以不发送TRS,因此,该方案可以降低通信系统中大量的时频资源开销,节省的时频资源可以用于数据传输或者其他用途,提高了资源利用率和数据传输效率。
在一种可能的设计中,所述终端设备可以通过以下步骤,根据所述第二CSI-RS和所 述第一信息,估计所述第一CSI-RS的时频位置:
所述终端设备根据所述第二CSI-RS的时频偏和所述第一信息,估计所述第一CSI-RS的时频偏;然后,根据所述第一CSI-RS的时频偏,估计所述第一CSI-RS的时频位置。
通过该设计,所述终端设备可以根据第一CSI-RS与第二CSI-RS之间的QCL关系,以及第二CSI-RS的时频偏,估计第一CSI-RS的时频偏,进而估计第一CSI-RS的时频位置。
在一种可能的设计中,所述终端设备还可以执行以下步骤:在第一时间获取所述终端设备的第一位置信息,以及获取在所述第一时间所述网络设备的第一位置信息;其中,所述第一时间为所述终端设备接收到所述第二CSI-RS的时间;根据所述终端设备的第一位置信息和所述网络设备的第一位置信息,确定第一下行多普勒频偏和第一信号传输时延;其中,所述第一下行多普勒频偏为在所述第一时间所述网络设备向所述终端设备发送信号的多普勒频偏,所述第一信号传输时延为在所述第一时间所述网络设备与所述终端设备之间传输信号的时延;基于以上步骤,所述终端设备可以通过以下步骤,根据所述第二CSI-RS的时频偏和所述第一信息,估计所述第一CSI-RS的时频偏:
在第二时间获取所述终端设备的第二位置信息,以及获取在所述第二时间所述网络设备的第二位置信息;其中,所述第二时间为所述终端设备接收到所述第一CSI-RS的时间;根据所述终端设备第二位置信息和所述网络设备的第二位置信息,确定第二下行多普勒频偏和第二信号传输时延;其中,所述第二下行多普勒频偏为在所述第二时间所述网络设备向所述终端设备发送信号的多普勒频偏,所述第二信号传输时延为在所述第二时间所述网络设备与所述终端设备之间传输信号的时延;根据所述第一下行多普勒频偏、所述第一信号传输时延、所述第二下行多普勒频偏、所述第二信号传输时延,所述第二CSI-RS的时频偏信息和所述第一信息,估计所述第一CSI-RS的时频偏。
通过该设计,所述终端设备以第二CSI-RS的时频偏为参考,通过终端设备和网络设备的实时位置修正多普勒频偏和信号传输时延,使得终端设备可以估计出多普勒频偏/信号传输时延以及由晶振误差等非理想因素导致的时频偏对信号的综合影响,进而可以使计算的第一CSI-RS的时频偏精确度更高。进一步的基于第一CSI-RS的时频偏对上下行信号进行时频补偿时,也相应提高了上下行信号的时频补偿精度,进而减少了时频偏对信号解调的干扰,最终保证了通信系统的信号传输效率。
在一种可能的设计中,所述第一CSI-RS的频偏符合以下公式:
其中,ΔF2为所述第一CSI-RS的频偏,为所述第二下行多普勒频偏,为所述第一下行多普勒频偏,ΔF1为所述第二CSI-RS的频偏;
所述第一CSI-RS的时偏符合以下公式:
ΔT2=τ21+ΔT1
其中,ΔT2为所述第一CSI-RS的时偏,τ2为所述第二信号传输时延,τ1为所述第一信号传输时延,ΔT1为所述第二CSI-RS的时偏。
通过该设计,所述终端设备可以估计出所述第一CSI-RS的时频偏。
在一种可能的设计中,所述终端设备还可以根据所述第一CSI-RS的时频偏,对上行信号进行时频补偿;所述时频补偿中频率补偿后所述上行信号的中心频率符合以下公式:
其中,f′UL为频率补偿后所述上行信号的中心频率;为根据所述第一CSI-RS的频偏对所述第一CSI-RS进行频率补偿后所述第一CSI-RS的中心频率,fDL为设定的下行中心频率;δf=fUL-fDL,fUL为设定的上行中心频率;为在当前时间所述终端设备向所述网络设备发送信号的多普勒频偏;
所述时频补偿中对所述终端设备的上行时序进行定时提前的偏移值等于ΔT22;对所述终端设备的上行时序进行定时提前后,所述上行信号的发送时间符合以下公式:
tTX=tRX-(ΔT22)
其中,tTX为所述上行信号的发送时间,tRX为所述终端设备接收所述第一CSI-RS的时间。
通过该设计,所述终端设备还可以根据所述第一CSI-RS的时频偏,对上行信号进行时频补偿,从而可以减少时频偏对上行信号解调的干扰,最终保证了上行信号传输效率。
在一种可能的设计中,所述终端设备在根据所述第二CSI-RS和所述第一信息,估计所述第一CSI-RS的时频位置之前,还可以接收来自所述网络设备的第一控制指示,所述第一控制指示用于激活所述第一信息。
通过该设计,所述网络设备可以通过第一控制指示来激活所述第一信息。
在一种可能的设计中,所述第一信息指示的所述第一CSI-RS与所述第二CSI-RS之间的准共址关系包括:所述第一CSI-RS的多普勒频偏与所述第二CSI-RS的多普勒频偏之间具有准共址关系;所述第一CSI-RS的多普勒扩展与所述第二CSI-RS的多普勒扩展之间具有准共址关系;所述第一CSI-RS的平均时延与所述第二CSI-RS的平均时延之间具有准共址关系;以及所述第一CSI-RS的时延扩展与所述第二CSI-RS的时延扩展之间具有准共址关系。
通过该设计,所述终端设备可以依据上述第一信息所指示的准共址关系,通过所述第二CSI-RS的时频偏,来确定所述第一CSI-RS的时频偏。
在一种可能的设计中,所述第一信息指示的所述第一CSI-RS与所述第二CSI-RS之间的准共址关系还包括:所述第一CSI-RS的空间接收参数与所述第二CSI-RS的空间接收参数之间具有准共址关系。
通过该设计,所述终端设备还可以依据上述第一信息所指示的准共址关系,通过所述第二CSI-RS的空间接收参数,确定所述第一CSI-RS的空间接收参数。例如,所述终端设备可以使用相同的波束接收所述第一CSI-RS和所述第二CSI-RS。
在一种可能的设计中,所述终端设备还可以接收来自所述网络设备的第二信息,所述第二信息用于指示所述第一CSI-RS与同步信号块之间具有准共址关系;所述第二信息指示的所述第一CSI-RS与所述同步信号块之间的准共址关系包括:所述第一CSI-RS的空间接收参数与所述同步信号块的空间接收参数之间具有准共址关系。
通过该设计,所述终端设备可以依据所述第二信息所指示的准共址关系,通过所述同步信号块的空间接收参数,确定所述第一CSI-RS的空间接收参数。例如,所述终端设备可以使用相同的波束接收所述第一CSI-RS和所述同步信号块。
在一种可能的设计中,所述终端设备还可以接收来自所述网络设备的第三信息,所述第三信息用于指示解调参考信号DMRS与所述第一CSI-RS之间具有准共址关系;根据所 述第一CSI-RS的时频位置和所述第三信息,估计所述DMRS的时频位置。
通过该设计,所述终端设备可以依据上述第三信息所指示的准共址关系,通过所述第一CSI-RS的时频位置确定所述DMRS的时频位置。例如,所述终端设备可以根据所述第一CSI–RS的时频偏估计所述DMRS的时频偏,进而估计所述DMRS的时频位置,实现下行信号的时频补偿。
在一种可能的设计中,所述DMRS的时频偏与所述第一CSI-RS的时频偏相同。
在一种可能的设计中,所述终端设备在根据所述第一CSI-RS的时频位置和所述第三信息,估计所述DMRS的时频位置之前,还可以接收来自所述网络设备的第二控制指示,所述第二控制指示用于激活所述第三信息。
通过该设计,所述网络设备可以通过所述第二控制指示来激活所述第三信息。
在一种可能的设计中,所述第三信息用于指示所述DMRS与所述第一CSI-RS之间的准共址关系包括:所述DMRS的多普勒频偏与所述第一CSI-RS的多普勒频偏之间具有准共址关系;所述DMRS的多普勒扩展与所述第一CSI-RS的多普勒扩展之间具有准共址关系;所述DMRS的平均时延与所述第一CSI-RS的平均时延之间具有准共址关系;以及所述DMRS的时延扩展与所述第一CSI-RS的时延扩展之间具有准共址关系。
通过该设计,所述终端设备可以依据上述第三信息所指示的准共址关系,通过所述第一CSI-RS的时频偏,来确定所述DMRS的时频偏。
在一种可能的设计中,所述第三信息指示的所述DMRS与所述第一CSI-RS之间的准共址关系还包括:所述DMRS的空间接收参数与所述第一CSI-RS的空间接收参数之间具有准共址关系。
通过该设计,所述终端设备可以依据上述第三信息所指示的准共址关系,通过所述第一CSI-RS的空间接收参数,来确定所述DMRS的空间接收参数。
在一种可能的设计中,所述终端设备还可以接收来自所述网络设备的同步信号块;以及接收来自所述网络设备的第四信息,所述第四信息用于指示所述第二CSI-RS与同步信号块之间具有准共址关系;根据所述同步信号块和所述第四信息,估计所述第二CSI-RS的时频位置。
通过该设计,所述终端设备可以依据所述第四信息所指示的准共址关系,通过所述同步信号块的时频位置确定所述第二CSI-RS的时频位置。
在一种可能的设计中,所述终端设备可以通过以下步骤,根据所述同步信号块和所述第四信息,估计所述第二CSI-RS的时频位置:
所述终端设备根据所述同步信号块的时频偏和所述第四信息,估计所述第二CSI-RS的时频偏;根据所述第二CSI-RS的时频偏,估计所述第二CSI-RS的时频位置。
通过该设计,所述终端设备可以根据所述第四信息所指示的准共址关系,通过所述同步信号块的时频偏,估计所述第二CSI-RS的时频偏,进而可以估计所述第二CSI-RS的时频位置。
在一种可能的设计中,所述终端设备还可以执行以下步骤:在第三时间获取所述终端设备的第三位置信息,其中,所述第三时间为所述终端设备接收到所述同步信号块的时间;接收系统信息块,所述系统信息块用于确定在所述第三时间所述网络设备的第三位置信息;根据所述终端设备的第三位置信息和所述网络设备的第三位置信息,确定所述第三下行多普勒频偏和第三信号传输时延;其中,所述第三下行多普勒频偏为在所述第三时间所述网 络设备向所述终端设备发送信号的多普勒频偏,所述第三信号传输时延为在所述第三时间所述网络设备与所述终端设备之间传输信号的时延;基于以上步骤,所述终端设备可以通过以下步骤,根据所述同步信号块的时频偏和所述第四信息,估计所述第二CSI-RS的时频偏:
在第一时间获取所述终端设备的第一位置信息,以及获取在所述第一时间所述网络设备的第一位置信息;其中,所述第一时间为所述终端设备接收到所述第二CSI-RS的时间;根据所述终端设备的第一位置信息和所述网络设备的第一位置信息,确定第一下行多普勒频偏和第一信号传输时延;其中,所述第一下行多普勒频偏为在所述第一时间所述网络设备向所述终端设备发送信号的多普勒频偏,所述第一信号传输时延为在所述第一时间所述网络设备与所述终端设备之间传输信号的时延;根据所述第三下行多普勒频偏、所述第三信号传输时延、所述第一下行多普勒频偏、所述第一信号传输时延,所述同步信号块的时频偏信息和所述第四信息,估计所述第二CSI-RS的时频偏。
通过该设计,所述终端设备可以同步信号块的时频偏为参考,通过所述终端设备和网络设备的实时位置修正多普勒频偏和信号传输时延,使得终端设备可以估计出多普勒频偏/信号传输时延以及由晶振误差等非理想因素导致的时频偏对信号的综合影响,进而可以使计算的第二CSI-RS的时频偏精确度更高。
在一种可能的设计中,所述第二CSI-RS的频偏符合以下公式:
其中,ΔF1为所述第二CSI-RS的频偏,为所述第一下行多普勒频偏,为所述第三下行多普勒频偏,ΔF0为所述同步信号块的频偏;
所述第二CSI-RS的时偏符合以下公式:
ΔT1=τ13+ΔT0
其中,ΔT1为所述第二CSI-RS的时偏,τ1为所述第一信号传输时延,τ3为所述第三信号传输时延,ΔT0为所述同步信号块的时偏。
通过该设计,所述终端设备可以估计出所述第二CSI-RS的时频偏。
在一种可能的设计中,所述终端设备在根据所述同步信号块和所述第四信息,估计所述第二CSI-RS的时频位置之前,还可以接收来自所述网络设备的第三控制指示,所述第三控制指示用于激活所述第四信息。
通过该设计,所述网络设备可以通过所述第三控制指示来激活所述第四信息。
在一种可能的设计中,所述第四信息指示的所述第二CSI-RS与所述同步信号块之间的准共址关系包括:所述第二CSI-RS的多普勒频偏与所述同步信号块的多普勒频偏之间具有准共址关系;以及所述第二CSI-RS的平均时延与所述同步信号块的平均时延之间具有准共址关系。
通过该设计,所述终端设备可以依据上述第四信息所指示的准共址关系,通过所述同步信号块的时频偏,来确定所述第二CSI-RS的时频偏。
在一种可能的设计中,所述第四信息指示的所述第二CSI-RS与所述同步信号块之间的准共址关系还包括:所述第二CSI-RS的空间接收参数与所述同步信号块的空间接收参数之间具有准共址关系。
通过该设计,所述终端设备还可以依据上述第四信息所指示的准共址关系,通过所述 同步信号块的空间接收参数,来确定所述第二CSI-RS的空间接收参数。例如,所述终端设备可以使用相同的波束接收所述同步信号块和所述第二CSI-RS。
第四方面,本申请实施例提供了一种通信方法,该方法可以应用于网络设备或网络设备中的芯片系统,所述方法包括以下步骤:
网络设备向终端设备发送第一信息,所述第一信息用于指示第一信道状态信息参考信号CSI-RS与第二CSI-RS之间具有准共址关系;所述第一CSI-RS为用于信道测量的参考信号,所述第二CSI-RS为用于波束管理的参考信号;向所述终端设备发送所述第二CSI-RS;以及向所述终端设备发送所述第一CSI-RS。
在该方法中,通信系统中增加了第一CSI-RS(即CSI-RS for CM)与第二CSI-RS(CSI-RS for BM)之间的QCL关系,使得通信系统中的网络设备在不发送TRS的情况下,终端设备可以通过第二CSI-RS,来估计第一CSI-RS的时频位置。由于通信系统可以不发送TRS,因此,该方案可以降低通信系统中大量的时频资源开销,节省的时频资源可以用于数据传输或者其他用途,提高了资源利用率和数据传输效率。
在一种可能的设计中,所述网络设备在向所述终端设备发送所述第一CSI-RS之前,还可以向所述终端设备发送第一控制指示,所述第一控制指示用于激活所述第一信息。
通过该设计,所述网络设备可以通过第一控制指示来激活所述第一信息。
在一种可能的设计中,所述网络设备可以通过以下步骤,向所述终端设备发送所述第一CSI-RS:
根据设定的频率预补偿值,对所述第一CSI-RS进行频率预补偿;根据设定的时间预补偿值,对所述第一CSI-RS进行时间预补偿;向所述终端设备发送频率预补偿和时间预补偿后的所述第一CSI-RS。
为了减少终端设备侧估计取值较大的时频偏的复杂度,网络设备在发送信号时,可以对信号的时频偏进行预补偿。应注意的是,网络设备需要对向终端设备发送的所有信号进行相同的时频偏预补偿。例如,所述网络设备可以根据设定的频率预补偿值,对同步信号块、第一CSI-RS、第二CSI-RS、DMRS以及下行信号进行频率预补偿;所述网络设备还可以根据设定的时间预补偿值,对同步信号块、第一CSI-RS、第二CSI-RS、DMRS以及下行信号进行时间预补偿。然后向所述终端设备发送频率预补偿和时间预补偿后的信号。上述频域预补偿值可以为大于、小于或等于0的值,时间预补偿值为大于或等于0的值。
在一种可能的设计中,在所述网络设备对发送的信号进行时间预补偿的情况下,为了保证上行信号的传输效率,所述网络设备还可以对所述网络设备的上行时序进行前移处理,以便接收终端设备发送的上行信号,即所述网络设备接收所述终端设备的上行信号的过程包括以下步骤:
根据所述时间预补偿值,对所述网络设备的上行时序进行前移处理,并根据前移处理后的所述上行时序确定所述终端设备发送的上行信号的接收时间;在确定的所述上行信号的接收时间,接收所述上行信号。
在一种可能的设计中,对所述网络设备的上行时序进行前移处理的偏移值等于所述时间预补偿值;在对所述网络设备的上行时序进行前移处理后,所述上行信号的接收时间等于所述第一CSI-RS的发送时间。
通过该设计,所述网络设备进行上行时序前移处理后,可以保证所述网络设备上下行的时序保持一致,从而可以提高网络设备的信号传输效率。
在一种可能的设计中,所述第一信息指示的所述第一CSI-RS与所述第二CSI-RS之间的准共址关系包括:所述第一CSI-RS的多普勒频偏与所述第二CSI-RS的多普勒频偏之间具有准共址关系;所述第一CSI-RS的多普勒扩展与所述第二CSI-RS的多普勒扩展之间具有准共址关系;所述第一CSI-RS的平均时延与所述第二CSI-RS的平均时延之间具有准共址关系;以及所述第一CSI-RS的时延扩展与所述第二CSI-RS的时延扩展之间具有准共址关系。
通过该设计,所述终端设备可以依据上述第一信息所指示的准共址关系,通过所述第二CSI-RS的时频偏,来确定所述第一CSI-RS的时频偏。
在一种可能的设计中,所述第一信息指示的所述第一CSI-RS与所述第二CSI-RS之间的准共址关系还包括:所述第一CSI-RS的空间接收参数与所述第二CSI-RS的空间接收参数之间具有准共址关系。
通过该设计,所述终端设备还可以依据上述第一信息所指示的准共址关系,通过所述第二CSI-RS的空间接收参数,确定所述第一CSI-RS的空间接收参数。例如,所述终端设备可以使用相同的波束接收所述第一CSI-RS和所述第二CSI-RS。
在一种可能的设计中,所述网络设备还可以向所述终端设备发送第二信息,所述第二信息用于指示所述第一CSI-RS与同步信号块之间的具有准共址关系;所述第二信息指示的所述第一CSI-RS与所述同步信号块之间的准共址关系包括:所述第一CSI-RS的空间接收参数与所述同步信号块的空间接收参数之间具有准共址关系。
通过该设计,所述终端设备可以依据所述第二信息所指示的准共址关系,通过所述同步信号块的空间接收参数,确定所述第一CSI-RS的空间接收参数。例如,所述终端设备可以使用相同的波束接收所述第一CSI-RS和所述同步信号块。
在一种可能的设计中,所述网络设备还可以向所述终端设备发送第三信息,所述第三信息用于指示解调参考信号DMRS与所述第一CSI-RS之间具有准共址关系;向所述终端设备发送所述DMRS及下行信号。
通过该设计,所述终端设备可以依据上述第三信息所指示的准共址关系,通过所述第一CSI-RS的时频位置确定所述DMRS的时频位置。例如,所述终端设备可以根据所述第一CSI–RS的时频偏估计所述DMRS的时频偏,进而估计所述DMRS的时频位置,实现下行信号的时频补偿。
在一种可能的设计中,所述网络设备在向所述终端设备发送所述DMRS及下行信号之前,还可以向所述终端设备发送第二控制指示,所述第二控制指示用于激活所述第三信息。
通过该设计,所述网络设备可以通过所述第二控制指示来激活所述第三信息。
在一种可能的设计中,所述第三信息指示的所述DMRS与所述第一CSI-RS之间的准共址关系包括:所述DMRS的多普勒频偏与所述第一CSI-RS的多普勒频偏之间具有准共址关系;所述DMRS的多普勒扩展与所述第一CSI-RS的多普勒扩展之间具有准共址关系;所述DMRS的平均时延与所述第一CSI-RS的平均时延之间具有准共址关系;以及所述DMRS的时延扩展与所述第一CSI-RS的时延扩展之间具有准共址关系。
通过该设计,所述终端设备可以依据上述第三信息所指示的准共址关系,通过所述第一CSI-RS的时频偏,来确定所述DMRS的时频偏。
在一种可能的设计中,所述第三信息指示的所述DMRS与所述第一CSI-RS之间的准共址关系还包括:所述DMRS的空间接收参数与所述第一CSI-RS的空间接收参数之间具 有准共址关系。
通过该设计,所述终端设备可以依据上述第三信息所指示的准共址关系,通过所述第一CSI-RS的空间接收参数,来确定所述DMRS的空间接收参数。
在一种可能的设计中,所述网络设备还可以发送同步信号块;以及向所述终端设备发送第四信息,所述第四信息用于指示所述第二CSI-RS与同步信号块之间具有准共址关系。
通过该设计,所述终端设备可以依据所述第四信息所指示的准共址关系,通过所述同步信号块的时频位置确定所述第二CSI-RS的时频位置。
在一种可能的设计中,所述网络设备在向所述终端设备发送所述第二CSI-RS之前,还可以向所述终端设备发送第三控制指示,所述第三控制指示用于激活所述第四信息。
通过该设计,所述网络设备可以通过所述第三控制指示来激活所述第四信息。
在一种可能的设计中,所述第四信息指示的所述第二CSI-RS与所述同步信号块之间的准共址关系包括:所述第二CSI-RS的多普勒频偏与所述同步信号块的多普勒频偏之间具有准共址关系;以及所述第二CSI-RS的平均时延与所述同步信号块的平均时延之间具有准共址关系。
通过该设计,所述终端设备可以依据上述第四信息所指示的准共址关系,通过所述同步信号块的时频偏,来确定所述第二CSI-RS的时频偏。
在一种可能的设计中,所述第四信息指示的所述第二CSI-RS与所述同步信号块之间的准共址关系还包括:所述第二CSI-RS的空间接收参数与所述同步信号块的空间接收参数之间具有准共址关系。
通过该设计,所述终端设备还可以依据上述第四信息所指示的准共址关系,通过所述同步信号块的空间接收参数,来确定所述第二CSI-RS的空间接收参数。例如,所述终端设备可以使用相同的波束接收所述同步信号块和所述第二CSI-RS。
第五方面,本申请实施例提供了一种通信装置,包括用于执行以上第一方面至第四方面中各个步骤的单元。可选的,所述通信装置包括通信单元和处理单元;其中,所述通信单元,用于接收和发送信号;所述处理单元,用于执行以上任一方面提供的方法。示例性的,所述通信装置可以应用于终端设备或网络设备。
第六方面,本申请实施例提供了一种通信设备,包括处理器,存储器和处理器;其中,所述收发器,用于接收和发送信号;所述存储器,用于存储程序指令和数据;所述处理器,用于读取所述存储器中的程序指令和数据,实现以上第一方面至第四方面中任一方面提供的方法。示例性的,所述通信设备可以为终端设备或网络设备。
第七方面,本申请实施例提供了一种通信设备,包括至少一个处理元件和至少一个存储元件,其中该至少一个存储元件用于存储程序和数据,该至少一个处理元件用于执行本申请以上第一方面至第四方面中任一方面提供的方法。示例性的,所述通信设备可以为终端设备或网络设备。
第八方面,本申请实施例还通过了一种通信系统,所述通信系统中包含终端设备和网络设备;其中,所述终端设备用于实现以上第一方面提供的方法,所述网络设备用于实现以上第二方面提供的方法;或者所述终端设备用于实现以上第三方面提供的方法,所述网络设备用于实现以上第四方面提供的方法。
第九方面,本申请实施例还提供了一种计算机程序,当计算机程序在计算机上运行时,使得计算机执行上述任一方面提供的方法。可选的,所述计算机可以为终端设备或网络设 备;或者为以上通信装置或通信设备。
第十方面,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当计算机程序被计算机执行时,使得计算机执行上述任一方面提供的方法。可选的,所述计算机可以为终端设备或网络设备;或者为以上通信装置或通信设备。
第十一方面,本申请实施例还提供了一种芯片,芯片用于读取存储器中存储的计算机程序,执行上述任一方面提供的方法。可选的,所述芯片中可以包括处理器和存储器,所述处理器与所述存储器耦合,用于读取所述存储器中存储的计算机程序,实现以上任一方面提供的方法。
第十二方面,本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持计算机装置实现上述任一方面提供的方法。在一种可能的设计中,芯片系统还包括存储器,存储器用于保存该计算机装置必要的程序和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1为协议规定的参考信号之间的QCL关系示意图;
图2为本申请实施例提供的透传模式的卫星系统的架构图;
图3A为本申请实施例提供的一种透传模式的卫星系统中控制面的协议栈示意图;
图3B为本申请实施例提供的一种透传模式的卫星系统中用户面的协议栈示意图;
图4为本申请实施例提供的再生模式的卫星系统的架构图;
图5A为本申请实施例提供的一种再生模式的卫星系统中控制面的协议栈示意图;
图5B为本申请实施例提供的一种再生模式的卫星系统中用户面的协议栈示意图;
图6为TRS资源配置示意图;
图7为在通信系统不发送TRS的情况下参考信号之间的QCL关系示意图;
图8A为本申请实施例提供的一种通信方法的流程图;
图8B为本申请实施例提供的一种参考信号之间的QCL关系示意图;
图8C为本申请实施例提供的一种PDSCH MAC CE的示意图;
图8D为本申请实施例提供的一种PDCCH MAC CE的示意图;
图8E为本申请实施例提供的一种TCI state配置与激活流程示例图;
图9A为本申请实施例提供的一种通信方法的流程图;
图9B为本申请实施例提供的一种参考信号之间的QCL关系示意图;
图10A为本申请实施例提供的一种卫星系统的场景示意图;
图10B为本申请实施例提供的一种卫星系统的场景示意图;
图11A为本申请实施例提供的一种卫星系统的频偏示意图;
图11B为本申请实施例提供的一种卫星系统的时偏示意图;
图12为本申请实施例提供的一种通信装置的结构图;
图13为本申请实施例提供的一种通信设备的结构图。
具体实施方式
本申请提供一种通信方法及设备,用于在NTN中实现信号的时频位置估计。其中,方法和设备是基于同一技术构思的,由于方法及设备解决问题的原理相似,因此设备与方法的实施可以相互参见,重复之处不再赘述。
以下对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)NTN,是指使用非地面通信技术建立的网络,可以但不限于包括使用卫星平台、无人机(unmanned aerial vehicle,UAV)平台,或者高空通信平台(high altitude platform station,HAPS)等通信平台上的频谱资源进行通信服务的网络。
示例地,NTN可以但不限于包括卫星系统、UAV通信系统,以及HAPS系统。其中,按照卫星距离地球表面的高度(即卫星轨道高度)的不同,卫星系统可以分为与地球同步轨道(geostationary orbit,GEO)卫星系统、中地球轨道(meddle earth orbit,MEO)卫星系统,以及低地球轨道(low earth orbit,LEO)卫星系统等。
与地面通信网络相比,NTN具有覆盖面更广、路损更高、时延更大、速度更快、成本较低等特点。随着NTN的研究热度的提升,第三代合作伙伴计划(3rd generation partnership project,3GPP)也针对NTN进行了标准化研究,致力于通过NTN的建设补充或增强移动通信系统通信性能,例如3GPP从版本14(release 14,R14)开始开展星地融合研究和相关解决方案。
2)信号的时频偏,包括信号的时偏和信号的频偏两个方面。
其中,信号的频偏指在发送端和接收端同一信号在频率上的偏差,主要包括多普勒频偏(又称为多普勒频移,Doppler shift)。多普勒频偏是由于接收端和/或发送端以某一恒定速度沿某一方向移动时,由于传播路程差的原因,信号的相位和频率发生变化。
信号的时偏是指在发送端和接收端同一信号在时间上的偏差,主要包括信号的传输时延。信号的传输时延,即因信号的传输距离较远造成信号到达的时间延迟。
3)终端设备,是一种向用户提供语音和/或数据连通性,能够通过无线接口接入网络设备的设备。终端设备又可以称为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。在本申请中,终端设备可以是位置固定的,也可以是移动的,本申请对此不作限定。
例如,终端设备可以为具有无线连接功能的手持式设备、各种车载设备、路侧单元、物联网终端、接入终端、V2X通信中的终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、智能销售终端(point of sale,POS)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智 慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、各类智能仪表(智能水表、智能电表、智能燃气表)、车载电子控制单元(electronic control unit,ECU)等、车载电脑、车载巡航系统、远程信息处理器(telematics box,T-BOX)、UE单元、UE站、移动站、远方站、远程终端设备、移动设备、无线通信设备、UE代理、UE装置等。
终端设备可以与网络设备通信,也可以通过中继站与网络设备进行通信。终端设备可以与搭载不同通信技术的多个网络设备进行通信,例如,终端设备可以与搭载的支持LTE网络的基站通信,也可以与搭载的支持5G网络的基站通信,还可以支持与搭载LTE网络的基站以及5G网络的基站的双连接。
4)网络设备,是通信系统网络侧一种具有无线收发功能的实体。在本申请实施例中,网络设备可以但不限于包括:卫星上搭载的基站(简称为卫星基站)、卫星上搭载的收发点(transmission receiving point/transmission reception point,TRP,)或分布式单元(Distributed Unit,DU)、卫星系统中的卫星地面站(可以简称为地面站)、气球站、无人机站等等。
本申请实施例不限定网络设备的制式,例如,网络设备可以为节点B(Node B)、演进型节点B(evolved Node B,eNB)、新一代节点B(generation Node B,gNB),或者基于上述网络设备继续演进的其他制式的网络设备。
本申请实施例也不限定网络设备的类型,示例性的,网络设备可以为接入点(access point,AP)、无线保真(wireless-fidelity,WiFi)AP、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、无线中继节点、无线回传节点、宏基站,微基站,微微基站,小站,或中继站等。
本申请的实施例对网络设备所使用的具体技术和具体设备形态不做限定。网络设备在4G系统中可以对应eNB,在5G系统中对应gNB。
另外,在一种网络结构中,该网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构可以将网络设备的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
例如,PDCP层及以上协议层功能可以设置在CU,PDCP以下的协议层(例如RLC层和MAC层等)的功能设置在DU。需要说明的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分。射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,本申请实施例不作任何限制。另外,在一些实施例中,还可以将CU的控制面(control plan,CP)和用户面(user plan,UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。
在该网络架构中,CU产生的信令可以通过DU发送给终端设备,或者终端设备产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端设备或CU。在该网络架构中,将CU划分为无线接入网(radio access network,RAN)侧的网络设备,此外,也可以将CU划分作为核心网(core network,CN)侧的网络设备,本申请对此不做限制。
5)信道状态信息参考信号(channel state information-reference signal,CSI-RS),按照具体的功能划分,CSI-RS可以划分以下几种类型:
a、用于信道测量(channel measurement,CM)的CSI-RS。在本申请中,用于CM的CSI-RS又可以简写为CSI-RS for CM。CSI-RS for CM具体用于终端设备进行信道状态信 息(channel state information,CSI)的测量。
其中,CSI可以但不限于包括以下至少一项:信干噪比(signal to interference plus noise ratio,SINR)、秩指示(rank indication,RI)、预编码矩阵指示(precoding matrix indicator,PMI)、信道质量指示(channel quality indicator,CQI)、CSI-RS资源指示(CSI-RS resource indicator,CRI)、同步信号块资源指示符(SS/PBCH block resource indicator,SSB RI)、层指示(layer indicator,LI)、层1参考信号接收功率(layer 1-reference signal received power,L1-RSRP)等。
b、用于波束管理(beam management,BM)的CSI-RS。在本申请中,用于BM的CSI-RS又可以简写为CSI-RS for BM。CSI-RS for BM具体用于在波束管理过程中终端设备和/或网络设备的波束测量,以使终端设备和/或网络设备获取波束赋形权值。
c、用于时频跟踪的CSI-RS(CSI-RS for tracking,TRS)。TRS用于终端设备与网络设备实现精确地时频同步跟踪。
d、用于移动性管理(mobility management,MM)的CSI-RS。通过对本区以及邻区的CSI-RS跟踪测量。
e、用于速率匹配的CSI-RS。零功率的CSI-RS(zero power CSI-RS,ZP CSI-RS)实现对物理下行共享信道(physical downlink shared channel,PDSCH)的资源元素(resource element,RE)级速率匹配。
按照CSI-RS的功率,CSI-RS还可以分为以下两种:
ZP CSI-RS:不需要产生并映射到RE上,不发送实际信号。ZP CSI-RS主要用于PDSCH的速率匹配,即上述e中描述的用于速率匹配的CSI-RS。
非零功率CSI-RS(non zero power CSI-RS,NZP CSI-RS):需要实际产生并映射到RE上。NZP CSI-RS,可以为上述a-d中描述的CSI-RS。
6)同步信号块,为网络设备周期性发送、用于终端设备小区搜索过程中实现与网络设备的时频同步。
第一种实施方式:同步信号块中包含主同步信号(primary synchronization signal,PSS)和辅同步信号(secondary synchronization signals,SSS)。此时,同步信号块可以记为synchronization signal block,简称为SSB。
第二种实施方式:同步信号块中不仅包含PSS和SSS,还包含物理广播信道(physical broadcast channel,PBCH),例如5G移动通信系统(即新空口(new radio,NR)系统)中定义的同步信号块。在这种情况下,同步信号块可以记为同步信号广播信道块(SS/PBCH block,或SS/PDCH块)。
第三种实施方式:基于前述两种实施例提供的同步信号块的结构,在本实施方式中,可以将同步信号块分为两类:在默认情况下同步信号块中包含PSS、SSS和PBCH。在特殊情况下,同步信号块中包含PSS和SSS,不包含PBCH,此时,同步信号块还可以称为缺省的同步信号块。
本申请实施例不对同步信号块的具体结构进行限定,即在实施例中的描述中,同步信号块、SSB、SS/PBCH块表示同一概念,三者之间可以相互替换。
7)解调参考信号(demodulation reference signal,DMRS),用于上下行数据解调的参考信号。例如,用于解调物理下行控制信道(physical downlink control channel,PDCCH)/物理下行共享信道(physical downlink shared channel,PDSCH)中承载的下行信号的DMRS, 可以记为PDCCH/PDSCH DMRS。
8)准共址(quasi co-located,QCL)。从同一天线端口发射的两个信号应经历相同的无线信道,而从两个不同天线端口发射的信号应经历不同的无线条件。但是在某些情况下,从两个不同的天线端口传输且经历无线信道的信号之间具有共同的特性。在这种情况下,这两个天线端口被称为准共址(QCL)。例如,信号“A”和信号“B”分别来自天线端口1和天线端口2,接收机处理后发现这两个信号都经历了常见的无线信道特性(多普勒频偏、多普勒扩展等),那么天线端口1和天线端口2就可以称为QCL天线端口,信号“A”和信号“B”就可以称为QCL信号。
3GPP对QCL的定义如下:如果在一个天线端口上传输的信号所经历的信道的特性可以从在另一个天线端口上传输的信号所经历的信道推断出,那么可以称为这两个天线端口是准共址的。3GPP引入QCL的概念,帮助终端设备进行信道估计、时频偏估计和同步过程。
基于以上定义,QCL可以用于表示两种信号的信道特性之间的关系。两种信号之间具有QCL关系,表示一种信号的信道特性可以由另一种信号的信道特性确定。例如,两种信号的某个信道特性相同或相似,那么一个信号的该信道特性可以通过另一个信号的该信道特性直接确定,或者一个信号的该信道特性可以由另一个信号的该信道特性推导计算出来。
在本申请实施例中,信号的信道特性包括:多普勒频偏(Doppler shift)、多普勒扩展(Doppler spread)、平均时延(average delay)、时延扩展(delay spread),以及空间接收参数(Spatial Rx parameter)。其中,多普勒频偏、多普勒扩展、平均时延和时延扩展属于信道的时频特征,空间接收参数属于信道的空间特征。
其中,空间接收参数是针对信道的空间接收属性新引入的,可以用于6GHz以上频段的通信系统。因为6GHz以上频段的通信系统支持波束赋形,波束的指向以及宽窄都会影响信道特性,因此引入该参数用于表征波束对信道特性的影响。如果两个参考信号的空间接收参数之间具有QCL关系,表示发送端采用同一波束发送该两个参考信号,同样意味接收端可以采用同一波束接收该两个参考信号。
根据具有准共址关系的信道特性的不同组合,目前的通信标准中定义了4种QCL类型,分别如表1所示。
表1
应注意,由于发送端通过多天线发送信号时,信号经过多路径传播后到达接收端。在多路径传播的情况下,接收短接收所有多路径信号分量所花费的平均时间称为平均时延。在本申请实施例中,信号的平均时延可以相当于信号传输时延。
9)传输配置指示(transmission configuration indicator,TCI)状态(state),用于配置参考信号之间的QCL关系。一个TCI state可以指示一种或两种QCL关系,两种QCL关系可以分别用QCL type1和QCL type2表示。
可选的,一个TCI state中可以配置需要QCL的参考信号,以及一个或两个被引用(或复用)的参考信号,以及需要QCL的参考信号与被引用的参考信号之间的QCL关系。
示例性的,在通信系统中,网络设备可以通过无线资源控制(radio resource control,RRC)信令向终端设备下发一个TCI state列表。该列表中可以包含多个TCI state。这样,网络设备可以向终端设备配置多种TCI state。后续网络设备可以通过介质访问控制(medium access control,MAC)控制单元(control element,CE)或下行控制信息(download control information,DCI)激活该TCI state列表中的某个TCI state,这样,终端设备可以根据激活的TCI state,基于被引用的参考信号的信道特性,确定需要QCL的参考信号的信道特性。
除了表1所示QCL类型以及QCL类型的激活方式外,通信标准协议中还规定了参考信号间可以配置QCL的两两组合以及对应可以配置的QCL类型。其中,一个参考信号可以最多配置两种QCL关系。其中,用于配置信道的时频特征的QCL类型是必选的QCL关系,而用于配置信道的空间特征的QCL类型是可选的QCL关系。按照协议规定的参考信号之间的QCL关系可以如表2所示,其中,表中的QCL type2为可选的。
表2
应注意,根据协议要求,只有协议规定的QCL关系才可以被网络设备配置并激活,否则终端设备不会假设任意某两种参考信号之间存在QCL关系。
基于表2中的参考信号之间的QCL关系,本申请实施例还提供了一种参考信号之间的QCL关系示意图,参阅图1所示。在图1中,用于表示QCL关系的箭头中,箭头的头端指示需要QCL的参考信号,箭头的尾端(不带箭头的一端)指示复用的参考信号。
10)本申请实施例中涉及的时间,可以通过秒、毫秒、微秒等传统意义上的时间单位计数,还可以通过通信领域中针对时域资源定义的时间单元来计数。示例性的,通信领域中的时间单元可以但不限于包括:子帧(subframe)、时隙(slot)、符号(symbol)等,本申请对此不作限定。
11)RRC连接状态。在通信系统中,终端设备的RRC连接状态包括三种:RRC连接态(RRC_connected,简称连接态)、RRC空闲态(RRC_idle,简称空闲态)、RRC非激活态(RRC_inactive,简称非激活态)。其中,RRC空闲态和RRC非激活态可以统称为RRC非连接态。
终端设备处于空闲态时,终端设备与网络设备的RRC连接释放(release),网络设备与终端设备不再保存终端设备上下文信息,终端设备可以接收网络设备发送的广播信息(例如系统信息)和寻呼消息。
终端设备处于非激活态时,终端设备与网络设备的RRC连接挂起(suspend),但是终端设备与终端设备会继续保存终端设备的上下文信息。当终端设备从非激活态进入连接态时,网络设备与终端设备可以基于保存的终端设备的上下文信息快速地恢复终端设备与网络设备的RRC连接,使终端设备能够快速地恢复到连接态。
终端设备处于连接态时,终端设备与网络设备之间存在RRC连接,并且二者能够基于所述RRC连接进行通信。
在本申请实施例中,空闲态和非激活态又可以称为非连接态。
12)终端设备或网络设备的位置信息。在本申请实施例中,终端设备或网络设备的位置信息是用于计算多普勒频偏和信号传输时延。因此,任一设备的位置信息包括物理位置、速度、加速度、移动角度等信息中的至少一项。示例性的,任一设备的位置信息可以包括地心地固(Earth-Centered,Earth-Fixed,ECEF)坐标。
13)“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
需要说明的是,本申请中所涉及的多个,是指两个或两个以上。至少一个,是指一个或一个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面结合附图,对本申请进行详细描述。
本申请实施例提供的通信方法可以适用于包含终端设备和网络设备的通信系统中,例如NTN中。本申请以NTN中的卫星系统为例进行说明。按照卫星的通信模式,卫星系统可以分为透传(Bentpipe)模式和再生(Regenerative)模式。
作为一种示例,图2示出了两种透传模式的卫星系统。在图2所示的卫星系统中,卫星仅作为变频、转发作用,信号是由卫星地面站生成并发送的。
如图2中a所示,卫星可以采用非3GPP无线协议(non-3GPP radio protocol)接入网络。其中,终端设备与卫星之间、卫星与卫星地面站之间通过非3GPP无线协议接口建立通信连接。其中,卫星地面站可以包含接入点,卫星地面站与核心网之间可以通过Ng接口(例如N2接口、N3接口等)与核心网(core network,CN)之间通信,核心网与数据网络(data network,DN)之间通过N6接口通信。核心网负责终端设备的注册、移动性管理、会话管理等功能。
图2中b与图2中的a不同的是,卫星可以通过3GPP无线协议接入网络。如图2中的b所示,卫星地面站即基站,而卫星可以相当于中继器(repeater)。卫星可以与卫星地 面站之间通过Uu接口建立通信连接,而终端设备与卫星之间可以通过其他通信接口建立通信连接。卫星地面站、核心网、DN之间的接口与图2中的a相同,相同之处可以相互参考,此处不再赘述。
在图2所示的透传模式下,卫星系统中控制面的协议栈如图3A所示,用户面的协议栈如图3B所示。
作为另一种示例,图4示出了两种再生模式的卫星系统。在图4所示的卫星系统中,卫星上可以搭载基站或基站中的DU。卫星能够理解并处理从地面接收的信号,并将处理后的信号发送至终端设备,实现信号的再生。
如图4中的a所示,卫星中搭载了基站,卫星地面站中也包含基站。终端设备与卫星之间可以通过Uu接口建立通信连接,而卫星与卫星地面站之间可以通过Xn接口建立通信连接。卫星地面站、核心网、DN之间的接口与图2中的a相同,相同之处可以相互参考,此处不再赘述。可选的,在图4中的a所示的卫星系统中,所述卫星地面站还可以是卫星的网关,不包含基站。
如图4中的b所示,卫星中搭载了基站中的DU,而卫星地面站中包含基站中的CU。终端设备与卫星之间可以通过Uu接口建立通信连接,而卫星与卫星地面站之间可以通过F1接口建立通信连接。卫星地面站、核心网、DN之间的接口与图2中的a相同,相同之处可以相互参考,此处不再赘述。
在图4所示的再生模式下,卫星系统中控制面的协议栈如图5A所示,用户面的协议栈如图5B所示。
还需要说明的是,在图2、图4所示的卫星系统中的卫星地面站,还可以称为网关(gateway)、地面站、地球站,用于将卫星接入网络。另外,上述卫星系统中卫星和卫星地面站均可以称为网络设备。
应注意,图2、图4仅示出了一个卫星以及一个卫星地面站,在实际场景中,可根据需要采取多个卫星和/或多个卫星地面站的架构。其中,每个卫星可向一个或多个终端设备提供通信服务,每个卫星地面站可对应于一个或多个卫星,每个卫星可对应于一个或多个卫星地面站,本申请实施例不予具体限定。
需要说明的是,图2或图4所示的卫星并不构成本申请实施例能够适用的通信系统的限定。因此本申请实施例提供的通信方法还可以适用于各种通信系统,例如:各种NTN系统、长期演进(long term evolution,LTE)通信系统、第五代(The 5th Generation,5G)通信系统(又称为5G新空口(new radio,NR)系统)、第六代(The 6th Generation,6G)通信系统以及未来通信系统。
此外,本申请实施例也不对通信系统中各设备的名称进行限定,例如,在不同通信系统或通信场景中,卫星地面站可以有其他名称。
在通信系统中,信号的时频偏会造成发送端发送的信号与接收端接收的信号在频率和时间上不对齐,会严重影响通信性能。因此,通信系统需要对信号的时频偏进行估计和补偿,以尽量地减小在发送端和接收端之间传输的信号在时频位置上的差异,从而保证系统的通信性能。
在传统的地面通信网络(例如5G移动通信系统)中,基站主要通过参考信号帮助终端设备进行时频偏的估计和补偿。通过前序中第8)、9)点用语解释中对QCL的类型、激 活方式,以及表2和图1所示的参考信号之间的QCL关系的描述可知,TRS作为通信系统中参考信号的QCL关系的中心,无论是DRMS还是各种CSI-RS,很多都需要和TRS建立QCL关系,据此将TRS的时频特征作为这些参考信号的时频特征的参考。
例如,在终端设备的初始接入阶段(此时终端设备处于RRC非连接态),终端设备通过扫频的方式接收网络设备广播的同步信号块,从而获取同步信号块的时频偏信息。在终端设备接入网络设备后,网络设备可以通过RRC信令向终端设备下发包含多个TCI state的TCI state列表。网络设备后续可以通过MAC CE或DCI激活目标参考信号与TRS的QCL关系。在数据传输阶段(此时终端设备处于RRC连接态),终端设备可以接收网络设备发送的TRS,并根据TRS的时频偏特征,估计目标参考信号的时频偏,进而可以对该目标参考信号的进行时频补偿,最终确定该目标参考信号的时频位置。
可选的,在终端设备接入网络设备后,网络设备可以通过RRC信令向终端设备配置信号之间的QCL关系。本申请对网络设备向终端设备配置信号之间QCL关系的方式不作限定。
总之,目前通信系统中,网络设备通过发送TRS帮助终端设备进行时频偏估计与补偿,并通过配置QCL关系使其他参考信号获得时频偏参考。然而,在当前的标准协议中,TRS可以周期性发送,TRS发送周期的取值范围为[10ms,80ms],在一个TRS发送周期内,一套TRS资源需要在时域上占用连续两个时隙内的4个符号,在频域上占用3个子载波(即在资源块(resource block,RB)内的3个RE)。换句话说,一套TRS资源占用12个RE,例如图6中编号为“0”的RE所示。
以Sub-6GHz频段,30kHz子载波间隔为例说明。假设TRS发送周期为20ms,在每个TRS发送周期包含的40个时隙中,网络设备可以选择连续的时隙5和时隙6,以及时隙25和时隙26上的符号4和8发送TRS。因一套TRS资源占据每个RB中的3个RE,因此一个RB中的12个RE可以支持4套不同的TRS资源配置。参阅图6所示,网络设备可以在上述4个时隙中提供8套不同的TRS资源。
当然,除了符号4和8以外,网络设备还可以使用符号5和9,以及符号6和10用于发送TRS,那么,4个时隙最多可配置24套不同的TRS资源。每一套TRS资源可以使用不同的波束方向进行发送。
基于此,如果TRS发送周期为80ms,每个TRS发送周期中共包含160个时隙。若网络设备使用前80个时隙中的符号4、8,符号5、9,和符号6、10的所有RE资源发送TRS,则在该80个时隙中共可以配置480套不同的TRS资源。此时,网络设备需要向480个不同的方向发送TRS波束。另外由于每个时隙前2个符号由PDCCH占用,因此,基于上述TRS资源占用方案,TRS资源将消耗掉160个时隙中25%用于传输数据的时频资源,计算方式如下:(6*80)/(12*160)=25%。
在NTN中,因卫星传输距离远、路径损耗大,且覆盖范围大,为保证参考信号到达终端设备时有足够的信噪比用于信道参数估计,参考信号应以定向波束的形式并尽量地指向需测量信道的终端设备,以提供足够的波束赋形增益。另外,还要兼顾卫星覆盖范围内的所有终端设备都能接收到参考信号。综上,对于TRS而言,通信系统可以考虑两种发送配置:
一种是小区级波束,即使用大量波束无缝覆盖整个小区。该方案所需的TRS资源套数将与覆盖卫星小区的总波束数相同。
另一种是用户级波束,即使用一个方向的波束指向一个终端设备。该方案所需的TRS资源套数将与卫星小区内的终端设备总数相同。
因卫星小区范围较大,小区覆盖范围内的终端设备数量较多,所以通信系统需要的TRS资源数将多达几百甚至上千套。从之前的分析可知,如此多的TRS资源将占据大量的用于传输数据的时频资源,导致系统传输性能和效率的大幅下降。
另一方面,尽管拉长TRS发送周期可以在一定程度上降低资源开销,但两个TRS发送周期之间的时频偏变化会随着时间的增加而愈发明显。例如,对于轨高600km的LEO来说,80ms的时间间隔可能导致信号的频偏最多可变化100Hz,时偏最多可变化1.6us。而如果不周期性发送TRS更新信号的时频偏变化的话,会使通信系统中的数据的解调性能和传输速率产生明显的下降。
另外,若通信系统不通过发送TRS更新信号的时频偏变化,那么协议规定的参考信号之间的QCL关系将从图1变为图7。如图7所示,一方面PDSCH/PDCCH DMRS只能以SSB为时频偏参考,但终端设备估计的SSB的时频偏精度有限,不如TRS的时频偏精度高;另一方面,用于CM的CSI-RS没有可用的时频偏参考,这对于时频偏较大的卫星系统来说,将会极大地影响信道估计的性能。
除了上述通过发送TRS更新信号的时频偏变化的方案,目前终端设备还可以通过网络设备的实时位置信息和终端设备的实时位置信息,来确定信号的多普勒频偏和信号传输时延。终端设备计算多普勒频偏和信号传输时延如下:
终端设备根据网络设备的实时位置信息与终端设备的实时位置信息,确定终端设备与网络设备之间的相对距离Δd,然后根据以下公式,确定终端设备与网络设备之间的信号传输时延τ:
终端设备根据网络设备的实时位置信息与终端设备的实时位置信息,确定终端设备与网络设备之间的相对速度ΔV,以及该相对速度ΔV与设定方向(网络设备与终端设备之间的连线的方向)之间的夹角α;然后根据以下公式,确定终端设备和网络设备之间信号的多普勒频偏Fd
上式中的c为光的速度,f0为传输信号所使用的载波频率。
然而,信号的时频偏除了多普勒频偏和信号传输时延这些主要因素外,还可以包含由晶振误差引起的时频偏,以及非直视经、大气电离影响等非理想因素导致的时频偏。这些偏移无法通过网络设备和终端设备的实时位置信息计算获取,因此,终端设备基于网络设备和终端设备的实时位置信息计算的信号的时频偏与信号的实际时频偏误差较大,精确度较低。
为了解决传统的通过TRS估计信号的时频偏方案中NTN所需的TRS资源数量过多导致资源开销过大,影响数据传输效率的问题,以及解决根据网络设备和终端设备的实施位置信息计算的信号的时频偏误差较大的问题,在NTN中实现信号的时频偏估计。本申请实施例提供了一种通信方法。该方法可以应用于NTN中,例如图2或图4所示的卫星系 统。下面参阅图8A所示的流程图,对本申请实施例提供的方案进行详细说明。
S801:网络设备发送同步信号块。位于所述网络设备的覆盖范围内的终端设备接收来自所述网络设备的所述同步信号块。
其中,所述同步信号块为所述网络设备广播发送的。此时,所述终端设备处于初始接入阶段,所述终端设备的RRC连接状态为RRC非连接态(RRC空闲态或RRC非激活态)。所述终端设备可以通过扫频的方式接收所述同步信号块,从而可以获取所述同步信号块的时频偏。
S802:所述网络设备向所述终端设备发送第一信息。所述终端设备接收来自所述网络设备的所述第一信息。其中,所述第一信息用于指示第一CSI-RS与所述同步信号块之间具有QCL关系。所述第一CSI-RS为用于信道测量(CM)的参考信号,还可以记为CSI-RS for CM。
可选的,当所述终端设备接入所述网络设备,进入RRC连接态后,所述网络设备可以向所述终端设备发送所述第一信息。
在一种设计中,可选的,所述第一信息指示的所述第一CSI-RS与所述同步信号块之间的QCL关系包括:QCL类型C。其中,所述第一CSI-RS与所述同步信号块之间的QCL类型C的QCL关系包括:所述第一CSI-RS的多普勒频偏与所述同步信号块的多普勒频偏之间具有QCL关系;以及所述第一CSI-RS的平均时延与所述同步信号块的平均时延之间具有QCL关系。基于所述第一CSI-RS与所述同步信号块之间的QCL类型C的QCL关系,所述终端设备可以根据所述同步信号块的时频偏,确定所述第一CSI-RS的时频偏。
在另一种设计中,所述第一信息指示的所述第一CSI-RS与所述同步信号块之间的QCL关系包括:QCL类型A。除了上述所述第一CSI-RS与所述同步信号块之间的QCL类型C的QCL关系中的内容,所述第一CSI-RS与所述同步信号块之间的QCL类型C的QCL关系还包括:所述第一CSI-RS的多普勒扩展与所述同步信号块的多普勒扩展之间具有QCL关系;以及所述第一CSI-RS的时延扩展与所述同步信号块的时延扩展之间具有QCL关系。
可选的,所述第一信息指示的所述第一CSI-RS与所述同步信号块之间的QCL关系还可以包括:QCL类型D。其中,所述第一CSI-RS与所述同步信号块之间的QCL类型D的QCL关系包括:所述第一CSI-RS的空间接收参数与所述同步信号块的空间接收参数之间具有QCL关系。这样,所述终端设备可以根据所述同步信号块的空间接收参数,确定所述第一CSI-RS的空间接收参数。例如,所述终端设备可以使用相同的波束接收所述第一CSI-RS和所述同步信号块。
在一种实施方式中,所述第一信息所指示的所述第一CSI-RS与所述同步信号块之间的QCL关系可以包括:所述第一CSI-RS的时域位置与所述同步信号块相关,或者所述同步信号块中包含所述第一CSI-RS的时域位置的指示信息等。总之,本申请实施例不对所述第一CSI-RS与所述同步信号块之间的QCL关系构成任何限定。
S802a:可选的,在所述第一信息未指示所述第一CSI-RS与所述同步信号块之间还具有QCL类型D的QCL关系的情况下,所述网络设备还可以向所述终端设备发送第二信息。所述终端设备接收来自所述网络设备的所述第二信息。其中,所述第二信息用于指示所述第一CSI-RS与第二CSI-RS之间具有QCL关系。所述第二CSI-RS为用于波束管理(即BM)的参考信号,还可以记为CSI-RS for BM。
可选的,所述第二信息指示的所述第一CSI-RS与所述第二CSI-RS之间的QCL关系包括:QCL类型D。其中,所述第一CSI-RS与所述第二CSI-RS之间的QCL类型D的QCL关系包括:所述第一CSI-RS的空间接收参数与所述第二CSI-RS的空间接收参数之间具有QCL关系。这样,所述终端设备可以根据所述第二CSI-RS的空间接收参数,确定所述第一CSI-RS的空间接收参数。例如,所述终端设备可以使用相同的波束接收所述第一CSI-RS和所述第二CSI-RS。
在一种实施方式中,所述第一信息(可选的,和第二信息)可以携带在RRC信令中。例如,所述网络设备可以通过RRC信令向所述终端设备发送TCI state列表,所述TCI state列表中包含第一TCI state。所述第一TCI state用于指示所述第一CSI-RS与所述同步信号块之间具有QCL关系,即所述第一TCI state中包含所述第一信息(和第二信息)。
示例性的,网络设备发送的RRC信令中的NZP-CSI-RS资源集(NZP-CSI-RS-ResourceSet)中既没有配置高层参数——TRS信息(TRS-Info)),也没有配置高层参数——Repetition,此时NZP-CSI-RS资源集表示第一CSI-RS(即CSI-RS for CM);在网络设备发送的RRC信令包含的TCI state列表中的第一TCI state可以指示与同步信号块(例如SS/PBCH块,以下记为SSB)具有Type A或者Type C关系。可选的,所述第一TCI state还可以指示与同步信号块具有TypeD关系;或与第二CSI-RS(即CSI-RS for BM)具有Type D关系。示例性的,所述第一TCI state所指示的QCL关系可以如表3所示。
表3
通过表3中的CSI-RS for CM与SSB或CSI-RS for BM之间的QCL关系可知,即使通信系统不发送TRS,通信系统也可以通过表3中的QCL关系获得CSI-RS for CM的时频偏参考。可选的,在通信系统不发送TRS的情况下,该通信系统中参考信号的QCL关系如图8B所示,即在图7所示QCL关系的基础上增加表3中的QCL关系。
S802b:可选的,在S803之前,所述网络设备还可以向所述终端设备发送第一控制指示。所述终端设备接收来自所述网络设备的所述第一控制指示。其中,所述第一控制指示用于激活所述第一信息,即所述第一控制指示可以激活所述第一CSI-RS与所述同步信号块之间的QCL关系。
通过该步骤,所述终端设备根据激活的所述第一CSI-RS与所述同步信号块之间的QCL关系,执行S803。
可选的,所述网络设备可以通过RRC信令直接配置所述第一信息。可选的,所述网络设备可以无需再通过所述第一控制指示激活该第一信息。示例性的,所述第一信息可以包含在RRC信令参数CSI-AperiodicTriggerStateList中的CSI-AssociatedReportConfigInfo的字段qcl-info里;或者所述第一信息可以包含在RRC信令参数NZP-CSI-RS-Resource中的字段qcl-InfoPeriodicCSI-RS里。
可选的,所述网络设备也可以通过MAC CE或DCI发送所述第一控制指示。示例性 的,当所述第一信息包含在RRC信令中的TCI state列表中的第一TCI state内时,所述网络设备可以在MAC CE或DCI中携带所述第一TCI state的标识/索引。该所述第一TCI state的标识/索引即第一控制指示。
可选的,携带所述第一TCI state的标识/索引的MAC CE可以是PDSCH MAC CE,也可以是PDCCH MAC CE。例如:当所述网络设备使用PDSCH MAC CE激活所述第一TCI state时,PDSCH MAC CE中对应第一TCI state标识/索引的Ti被置为1,其余的Ti则为0(其中,网络设备同时配置为1的TCI state最多为8个),如图8C所示。又例如:当所述网络设备使用PDCCH MAC CE激活所述第一TCI state时,PDCCH MAC CE中直接携带所述第一TCI state的标识/索引,如图8D所示。图8D中的“TCI state ID”字段中包含所述第一TCI state的标识/索引。
可选的,携带所述第一TCI state的标识/索引的DCI可以是格式1_1(format 1_1),也可以是格式1_2(format1_2)。针对PDSCH MAC CE激活的8个TCI state,DCI format 1_1中的3bit用于指示8个中具体使用哪1个;而DCI format 1_2中的1或2或3bit用于指示前2或4或8个中具体使用哪1个。
示例性的,一个典型的通信系统TCI state配置与激活流程可如图8E所示。
S803:所述终端设备根据所述同步信号块和所述第一信息,估计所述第一CSI-RS的时频位置。
在一种实施方式中,所述终端设备可以通过以下步骤,估计所述第一CSI-RS的时频位置:
A1:所述终端设备根据所述同步信号块的时频偏和所述第一信息,估计所述第一CSI-RS的时频偏。
A2:所述终端设备根据所述第一CSI-RS的时频偏,估计所述第一CSI-RS的时频位置。当所述终端设备估计出所述第一CSI-RS的时频偏后,所述终端设备可以根据所述第一CSI-RS的时频偏,对所述第一CSI-RS进行时频补偿,从而可以估计出所述第一CSI-RS的时频位置。其中,所述终端设备可以采用现有的时频补偿方法,对所述第一CSI-RS进行时频补偿,本申请实施例对此不再展开描述。
可选的,在本实施方式中,所述终端设备在执行步骤A1之前,所述终端设备可以通过以下步骤B1-B2,确定在第一时间所述网络设备与所述终端设备之间的信号的多普勒频偏和信号传输时延。其中,所述第一时间为所述终端设备在S801中接收到所述同步信号块的时间。可选的,通过前述第10)点中对时间的解释,所述第一时间可以为接收所述同步信号块的时间单元(例如子帧、时隙或符号等),本申请对此不作限定。
B1:所述终端设备在第一时间获取所述终端设备的第一位置信息;所述终端设备接收系统信息块(system information block,SIB),所述系统信息块用于确定在所述第一时间所述网络设备的第一位置信息。
可选的,在B1中,由于终端设备具有支持全球卫星导航系统(Global Navigation Satellite System,GNSS)能力,因此,所述终端设备能够通过GNSS获取所述终端设备的实时位置信息。基于此,所述终端设备可以在所述第一时间通过所述GNSS获取所述终端设备的第一位置信息。
可选的,所述网络设备可以通过系统信息块广播网络设备的位置信息或用于确定网络设备的位置信息的其他信息。下面示例性地说明:
例1:在卫星系统中,网络设备(卫星或卫星地面站)广播的SIB中包含用于计算和预测卫星位置的星历。终端设备在获取该网络设备广播的SIB后,可以基于SIB中的星历计算在第一时间卫星的第一位置信息。
例2:网络设备广播的SIB中可以包含网络设备的实时位置信息。这样,终端设备可以确定在所述第一时间内接收的SIB,然后获取包含在该SIB中的网络设备的位置信息。由于该SIB是在第一时间内接收的,因此该SIB中包含的位置信息即在第一时间网络设备的第一位置信息。
例3:网络设备广播的SIB中可以包含网络设备的实时位置信息以及该实时位置信息对应的时间。这样,终端设备在接收到网络设备发送的SIB后,可以选择出包含第一时间的SIB,然后确定该SIB中包含的实时位置信息即在第一时间网络设备的第一位置信息。
B2:所述终端设备根据所述终端设备的第一位置信息和所述网络设备的第一位置信息,确定第一下行多普勒频偏和第一信号传输时延。其中,所述第一下行多普勒频偏为在所述第一时间所述网络设备向所述终端设备发送信号的多普勒频偏,所述第一信号传输时延为在所述第一时间所述网络设备与所述终端设备之间传输信号的时延。
在步骤B2中,所述终端设备可以采用传统的算法(例如上述公式一和公式二),确定第一下行多普勒频偏和第一信号传输时延,此处不再赘述。
可选的,基于步骤B1-B2得到的第一下行多普勒频偏和第一信号传输时延,所述终端设备可以通过以下步骤执行步骤A1:
C1:所述终端设备在第二时间获取所述终端设备的第二位置信息,以及获取在所述第二时间所述网络设备的第二位置信息。其中,所述第二时间为所述终端设备接收到所述第一CSI-RS的时间。
可选的,与步骤B1中类似的,所述终端设备可以在所述第二时间通过GNSS获取所述终端设备的第二位置信息。
另外,所述终端设备可以多种方式获取在所述第二时间所述网络设备的第二位置信息。例如,在卫星系统中,所述终端设备可以根据获取的卫星的星历,计算在第二时间卫星的第二位置信息。又例如,所述终端设备可以获取所述网络设备的移动信息(移动速度、移动加速度、移动路径等),然后基于该移动信息预测在第二时间所述网络设备的第二位置信息。
C2:所述终端设备根据所述终端设备的第二位置信息和所述网络设备的第二位置信息,确定第二下行多普勒频偏和第二信号传输时延。其中,所述第二下行多普勒频偏为在所述第二时间所述网络设备向所述终端设备发送信号的多普勒频偏,所述第二信号传输时延为在所述第二时间所述网络设备与所述终端设备之间传输信号的时延。
在本步骤中,所述终端设备可以采用传统的算法(例如上述公式一和公式二),确定第二下行多普勒频偏和第二信号传输时延,此处不再赘述。
C3:所述终端设备根据所述第一下行多普勒频偏、所述第一信号传输时延、所述第二下行多普勒频偏、所述第二信号传输时延,所述同步信号块的时频偏信息和所述第一信息,估计所述第一CSI-RS的时频偏。
可选的,所述终端设备通过步骤C3估计的所述第一CSI-RS的频偏符合以下公式:
其中,ΔF2为所述第一CSI-RS的频偏,为所述第二下行多普勒频偏,为所述第一下行多普勒频偏,ΔF1为所述同步信号块的频偏。
所述终端设备通过步骤C3估计的所述第一CSI-RS的时偏符合以下公式:
ΔT2=τ21+ΔT1        公式四
其中,ΔT2为所述第一CSI-RS的时偏,τ2为所述第二信号传输时延,τ1为所述第一信号传输时延,ΔT1为所述同步信号块的时偏。
所述终端设备在C3中估计第一CSI-RS的时频偏的实现原理可以参考以下实施例一的描述,此处不再展开。根据该实现原理描述可知,终端设备以同步信号块的时频偏为参考,通过终端设备和网络设备的实时位置修正多普勒频偏和信号传输时延,使得终端设备可以估计出多普勒频偏/信号传输时延以及由晶振误差等非理想因素导致的时频偏对信号的综合影响,进而可以使计算的第一CSI-RS的时频偏精确度更高。进一步的基于第一CSI-RS的时频偏对上下行信号进行时频补偿时,也相应提高了上下行信号的时频补偿精度,进而减少了时频偏对信号解调的干扰,最终保证了通信系统的信号传输效率。
S804:所述网络设备向所述终端设备发送所述第一CSI-RS。所述终端设备在估计的所述第一CSI-RS的时频位置,接收来自所述网络设备的所述第一CSI-RS。
综上,本申请实施例中的步骤S801-S804提供了一种通信方法,在该方案中,通信系统中增加了CSI-RS for CM与同步信号块之间的QCL关系,使得NTN中的网络设备在不发送TRS的情况下,终端设备可以通过同步信号块,来估计CSI-RS for CM的时频位置。由于通信系统可以不发送TRS,因此,该方案可以降低NTN中大量的时频资源开销,节省的时频资源可以用于数据传输或者其他用途,提高了资源利用率和数据传输效率。
另外,在本申请实施例中,基于以上S801-804终端设备估计的第一CSI-RS的时频位置或时频偏,所述终端设备还可以通过以下步骤S805-S807,进行下行信号的时频补偿。
S805:所述网络设备向所述终端设备发送第三信息。所述第三信息用于指示DMRS与所述第一CSI-RS之间具有QCL关系。
可选的,所述第三信息指示的所述DMRS与所述第一CSI-RS之间的QCL关系包括:QCL类型A。其中,所述DMRS与所述第一CSI-RS之间QCL类型A的QCL关系包括:
所述DMRS的多普勒频偏与所述第一CSI-RS的多普勒频偏之间具有QCL关系;
所述DMRS的多普勒扩展与所述第一CSI-RS的多普勒扩展之间具有QCL关系;
所述DMRS的平均时延与所述第一CSI-RS的平均时延之间具有QCL关系;以及
所述DMRS的时延扩展与所述第一CSI-RS的时延扩展之间具有QCL关系。
基于所述DMRS与所述第一CSI-RS之间QCL类型A的QCL关系,所述终端设备可以根据所述第一CSI-RS的时频位置/时频偏,估计所述DMRS的时频位置/时频偏。
可选的,所述第三信息指示的所述DMRS与所述第一CSI-RS之间的QCL关系还可以包括:QCL类型D。其中,所述DMRS与所述第一CSI-RS之间QCL类型D的QCL关系包括:所述DMRS的空间接收参数与所述第一CSI-RS的空间接收参数之间具有QCL关系。这样,所述终端设备可以根据所述第一CSI-RS的空间接收参数,确定所述DMRS的空间接收参数。例如,所述终端设备可以使用相同的波束接收所述第一CSI-RS和所述DMRS。
在一种实施方式中,与S802中的第一信息、S802a中的第二信息类似的,所述第三信 息也可以携带在RRC信令中。示例性的,所述网络设备向所述终端设备发送的RRC信令中包含TCI state列表。所述TCI state列表中可以包含第二TCI state。所述第二TCI state用于指示所述DMRS与所述第一CSI-RS之间具有QCL关系,即所述第二TCI state中包含所述第三信息。
如表2或图1所示,由于协议中已规定了DMRS与CSI-RS for CM之间的QCL关系(包括Type A和Type D),此处不再详细赘述。
应注意,在本申请实施例中,所述第一信息、所述第二信息和所述第三信息可以携带在同一消息(例如RRC信令)中发送;或者上述信息可以分别包含在不同的消息中传输;又或者部分信息包含在同一消息发送,另一部分信息包含在另一个消息中发送,本申请实施例对此不作限定。
S805a:可选的,在S806之前,所述网络设备还可以向所述终端设备发送第二控制指示。所述终端设备接收来自所述网络设备的所述第二控制指示。其中,所述第二控制指示用于激活所述第三信息,即所述第二控制指示可以激活所述DMRS与所述第一CSI-RS之间的QCL关系。
与S802b类似的,所述网络设备可以通过MAC CE或DCI发送所述第二控制指示,具体描述可以参考以上对S802b的描述,此处不再赘述。
S806:所述终端设备根据估计的所述第一CSI-RS的时频位置或时频偏,以及所述第三信息,估计所述DMRS的时频位置。
由于第一CSI-RS与DMRS位于相同的时隙内,因此,二者的时频偏相同。因此,所述终端设备可以直接根据所述第一CSI-RS的时频位置或时频偏,确定所述DMRS的时频位置或时频偏。
在一种实施方式中,所述终端设备可以根据估计的所述第一CSI-RS的时频位置,以及所述第一CSI-RS的设定时频位置与所述DMRS的设定时频位置之间的相对关系(偏移值、差值等),估计所述DMRS的时频位置。
在另一种实施方式中,所述终端设备可以根据估计的所述第一CSI-RS的时频偏,确定所述DMRS的时频偏,然后基于所述DMRS的时频偏,对所述DMRS进行时频补偿,从而估计所述DMRS的时频位置。
S807:所述网络设备向所述终端设备发送所述DMRS及下行信号。所述终端设备在估计的所述DMRS的时频位置,接收来自所述网络设备的所述DMRS及下行信号。
在本申请实施例中,基于以上S801-S804终端设备估计的第一CSI的时频偏,所述终端设备还可以通过以下步骤S808-S809,预补偿上行信号的时频偏。
S808:所述终端设备根据所述第一CSI-RS的时频偏,对上行信号进行时频补偿。
可选的,所述终端设备可以采用现有的方法,对上行信号进行时频预补偿,本申请对此不作限定。其中,对上行信号进行时频补偿包括:根据所述第一CSI-RS的频偏,对所述上行信号的频率进行补偿;以及根据所述第一CSI-RS的时偏,进行所述终端设备的上行定时同步。
在一种实施方式中,所述时频补偿中频率补偿后所述上行信号的中心频率符合以下公式五:
其中,f′UL为频率补偿后所述上行信号的中心频率;为根据所述第一CSI-RS的频偏对所述第一CSI-RS进行频率补偿后所述第一CSI-RS的中心频率,fDL为设定的下行中心频率;δf=fUL-fDL,fUL为设定的上行中心频率;为在当前时间所述终端设备向所述网络设备发送信号的多普勒频偏。
需要说明的是,在所述上行信号与所述第一CSI-RS位于同一时隙中的情况下,发送所述上行信号的时间(当前时间)接近(可以等同于)所述终端设备接收到所述第一CSI-RS的时间(即第二时间)。基于此,上行多普勒频偏可以基于第二时间的第二下行多普勒频偏来计算。由于多普勒频偏与信号的载波频率呈线性关系(例如公式二所示),因此,所述终端设备可以基于所述第一CSI-RS的设定的上行中心频率,所述上行信号的设定的中心频率,来计算所述此外,上行多普勒频偏还可以根据在发送所述上行信号的时间所述网络设备的位置信息和所述终端设备的位置信息确定,此处不再赘述。
在另一种实施方式中,所述时频补偿中频率补偿后所述上行信号的中心频率符合公式:其中,fUL为设定的上行中心频率;为在当前时间所述终端设备向所述网络设备发送信号的多普勒频偏。
所述终端设备在根据所述第一CSI-RS的时偏,进行所述终端设备的上行定时同步过程中,所述时频补偿中对所述终端设备的上行时序进行定时提前的偏移值等于ΔT22;对所述终端设备的上行时序进行定时提前后,所述上行信号的发送时间符合以下公式:
tTX=tRX-(ΔT22)     公式六
其中,tTX为所述上行信号的发送时间,tRX为所述终端设备接收所述第一CSI-RS的时间。
S809:所述终端设备发送所述上行信号。所述网络设备接收所述上行信号。
还需要说明的是,由于NTN的特性,信号的时频偏可能取值较大。因此,为了减少终端设备侧估计取值较大的时频偏的复杂度,网络设备在发送信号时,可以对信号的时频偏进行预补偿。应注意的是,网络设备需要对向终端设备发送的所有信号进行相同的时频偏预补偿。
例如,所述网络设备可以根据设定的频率预补偿值,对同步信号块、第一CSI-RS、第二CSI-RS、DMRS以及下行信号进行频率预补偿;所述网络设备还可以根据设定的时间预补偿值,对同步信号块、第一CSI-RS、第二CSI-RS、DMRS以及下行信号进行时间预补偿。然后向所述终端设备发送频率预补偿和时间预补偿后的信号。上述频域预补偿值可以为大于、小于或等于0的值,时间预补偿值为大于或等于0的值。
需要说明的是,在网络设备对信号进行时间预补偿的情况下,为了保证上行信号的传输效率,所述网络设备在接收上行信号前,还可以对所述网络设备的上行时序进行前移处理,以便接收该上行信号。基于此,所述网络设备接收上行信号的过程包括以下步骤:
D1:所述网络设备根据所述时间预补偿值,对所述网络设备的上行时序进行前移处理,并根据前移处理后的所述上行时序确定所述终端设备发送的上行信号的接收时间。
D2:所述网络设备在确定的所述上行信号的接收时间,接收所述上行信号。
其中,在步骤D1中,对所述网络设备的上行时序进行前移处理的偏移值等于所述时间预补偿值;在对所述网络设备的上行时序进行前移处理后,所述上行信号的接收时间等于所述第一CSI-RS的发送时间。
综上,网络设备通过上述步骤进行上行时序前移处理,可以保证网络设备上下行的时序保持一致,从而可以提高网络设备的信号传输效率。
为了解决传统的通过TRS估计信号的时频偏方案中NTN所需的TRS资源数量过多导致资源开销过大,影响数据传输效率的问题,以及解决根据网络设备和终端设备的实施位置信息计算的信号的时频偏误差较大的问题,在NTN中实现信号的时频偏估计。本申请实施例提供了另一种通信方法。该方法可以应用于NTN中,例如图2或图4所示的卫星系统。下面参阅图8A所示的流程图,对本申请实施例提供的方案进行详细说明。
S901:网络设备向终端设备发送第一信息。所述终端设备接收来自所述网络设备的所述第一信息。其中,所述第一信息用于指示第一CSI-RS与第二CSI-RS之间具有QCL关系;所述第一CSI-RS为用于信道测量(即CM)的参考信号,即CSI-RS for CM;所述第二CSI-RS为用于波束管理(即BM)的参考信号,即CSI-RS for BM。
在执行S901之前,所述终端设备已接入所述网络设备,进入RRC连接态。
可选的,所述第一信息所指示的第一CSI-RS与第二CSI-RS之间的QCL关系包括:QCL类型A。其中,第一CSI-RS与第二CSI-RS之间QCL类型A的QCL关系包括:
所述第一CSI-RS的多普勒频偏与所述第二CSI-RS的多普勒频偏之间具有QCL关系;
所述第一CSI-RS的多普勒扩展与所述第二CSI-RS的多普勒扩展之间具有QCL关系;
所述第一CSI-RS的平均时延与所述第二CSI-RS的平均时延之间具有QCL关系;以及
所述第一CSI-RS的时延扩展与所述第二CSI-RS的时延扩展之间具有QCL关系。
基于所述第一CSI-RS与所述第二CSI-RS之间的QCL类型A的QCL关系,所述终端设备可以根据所述第二CSI-RS的时频偏,确定所述第一CSI-RS的时频偏,从而确定所述第一CSI-RS的时频位置。
可选的,所述第一信息指示的所述第一CSI-RS与所述第二CSI-RS之间的QCL关系还可以包括:QCL类型D。其中,所述第一CSI-RS与所述第二CSI-RS之间的QCL类型D的QCL关系包括:所述第一CSI-RS的空间接收参数与所述第二CSI-RS的空间接收参数之间具有QCL关系。这样,所述终端设备可以根据所述第二CSI-RS的空间接收参数,确定所述第一CSI-RS的空间接收参数。例如,所述终端设备可以使用相同的波束接收所述第一CSI-RS和所述第二CSI-RS。
在一种实施方式中,所述第一信息所指示的所述第一CSI-RS与所述第二CSI-RS之间的QCL关系可以包括:所述第一CSI-RS的时域位置与所述第二CSI-RS相关,或者所述第二CSI-RS中包含所述第一CSI-RS的时域位置的指示信息等。总之,本申请实施例不对所述第一CSI-RS与所述第二CSI-RS之间的QCL关系构成任何限定。
S901a:可选的,在所述第一信息未指示所述第一CSI-RS与所述第二CSI-RS之间还 具有QCL类型D的QCL关系的情况下,所述网络设备还可以向所述终端设备发送第二信息。所述终端设备接收来自所述网络设备的所述第二信息。其中,所述第二信息用于指示所述第一CSI-RS与同步信号块之间具有QCL关系。
可选的,所述第二信息指示的所述第一CSI-RS与所述同步信号块之间的QCL关系包括:QCL类型D。其中,所述第一CSI-RS与所述同步信号块之间的QCL类型D的QCL关系包括:所述第一CSI-RS的空间接收参数与所述同步信号块的空间接收参数之间具有QCL关系。这样,所述终端设备可以根据所述同步信号块的空间接收参数,确定所述第一CSI-RS的空间接收参数。例如,所述终端设备可以使用相同的波束接收所述第一CSI-RS和所述同步信号块。
在一种实施方式中,所述第一信息(可选的,和第二信息)可以携带在RRC信令中。例如,所述网络设备可以通过RRC信令向所述终端设备发送TCI state列表,所述TCI state列表中包含第一TCI state。所述第一TCI state用于指示所述第一CSI-RS与所述第二CSI-RS之间具有QCL关系,即所述第一TCI state中包含所述第一信息(和第二信息)。
示例性的,网络设备发送的RRC信令中的NZP-CSI-RS资源集(NZP-CSI-RS-ResourceSet)中没有配置高层参数——TRS信息(TRS-Info)),且配置高层参数——Repetition,此时NZP-CSI-RS资源集表示第一CSI-RS(即CSI-RS for CM)和第二CSI-RS(即CSI-RS for BM);在网络设备发送的RRC信令包含的TCI state列表中的第一TCI state可以指示与第二CSI-RS具有Type A关系。可选的,所述第一TCI state还可以指示与第二CSI-RS具有TypeD关系;或与同步信号块(例如SS/PBCH块,以下记为SSB)具有Type D关系。示例性的,所述第一TCI state所指示的QCL关系可以如表4所示。
表4
通过表4中的CSI-RS for CM与CSI-RS for BM或SSB之间的QCL关系可知,即使通信系统不发送TRS,通信系统也可以通过表4中的QCL关系获得CSI-RS for CM的时频偏参考。可选的,在通信系统不发送TRS的情况下,该通信系统中参考信号的QCL关系如图9B所示,即在图7所示QCL关系的基础上增加表4中的QCL关系。
S901b:可选的,在S903之前,所述网络设备还可以向所述终端设备发送第一控制指示。所述终端设备接收来自所述网络设备的所述第一控制指示。其中,所述第一控制指示用于激活所述第一信息,即所述第一控制指示可以激活所述第一CSI-RS与所述第二CSI-RS之间的QCL关系。
通过该步骤,所述终端设备根据激活的所述第一CSI-RS与所述第二CSI-RS之间的QCL关系,执行S903。
可选的,所述网络设备可以通过RRC信令直接配置所述第一信息。可选的,在该情况下,所述网络设备可以无需再通过所述第一控制指示激活该第一信息。
可选的,所述网络设备可以通过MAC CE或DCI发送所述第一控制指示。示例性的,当所述第一信息包含在RRC信令中的TCI state列表中的第一TCI state内时,所述网络设 备可以在MAC CE或DCI中携带所述第一TCI state的标识/索引。该所述第一TCI state的标识/索引即第一控制指示。
在本申请实施例中,关于所述第一信息和所述第一控制指示的描述可以参考图8A所示的实施例中S802b中的描述,此处不再赘述。
S902:所述网络设备向所述终端设备发送所述第二CSI-RS。所述终端设备接收来自所述网络设备的所述第二CSI-RS。
可选的,所述终端设备可以在接收所述第二CSI-RS之前估计所述第二CSI-RS的时频偏,或者在接收所述第二CSI-RS之后确定所述第二CSI-RS的时频偏,本申请对此不做限定。
S903:所述终端设备根据所述第二CSI-RS和所述第一信息,估计所述第一CSI-RS的时频位置。
在一种实施方式中,所述终端设备可以通过以下步骤,估计所述第一CSI-RS的时频位置:
E1:所述终端设备根据所述第二CSI-RS的时频偏和所述第一信息,估计所述第一CSI-RS的时频偏。
E2:所述终端设备根据所述第一CSI-RS的时频偏,估计所述第一CSI-RS的时频位置。当所述终端设备估计出所述第一CSI-RS的时频偏后,所述终端设备可以根据所述第一CSI-RS的时频偏,对所述第一CSI-RS进行时频补偿,从而可以估计出所述第一CSI-RS的时频位置。其中,所述终端设备可以采用现有的时频补偿方法,对所述第一CSI-RS进行时频补偿,本申请实施例对此不再展开描述。
与图8A所示的实施例中S803中步骤A1类似的,在本实施例方式,所述终端设备在执行步骤E1之前,所述终端设备可以通过以下步骤F1-F2,确定在第一时间所述网络设备与所述终端设备之间的信号的多普勒频偏和信号传输时延。其中,所述第一时间为所述终端设备在S801中接收到所述第二CSI-RS的时间。
F1:所述终端设备在所述第一时间获取所述终端设备的第一位置信息,以及获取在所述第一时间所述网络设备的第一位置信息。
可选的,所述终端设备可以在所述第一时间通过GNSS获取所述终端设备的第一位置信息。
另外,所述终端设备可以多种方式获取在所述第一时间所述网络设备的第一位置信息。例如,在卫星系统中,所述终端设备可以根据获取的卫星的星历,计算在第一时间卫星的第一位置信息。又例如,所述终端设备可以获取所述网络设备的移动信息(移动速度、移动加速度、移动路径等),然后基于该移动信息预测在第一时间所述网络设备的第一位置信息。
F2:所述终端设备根据所述终端设备的第一位置信息和所述网络设备的第一位置信息,确定第一下行多普勒频偏和第一信号传输时延;其中,所述第一下行多普勒频偏为在所述第一时间所述网络设备向所述终端设备发送信号的多普勒频偏,所述第一信号传输时延为在所述第一时间所述网络设备与所述终端设备之间传输信号的时延。
在步骤F2中,所述终端设备可以采用传统的算法(例如上述公式一和公式二),确定第一下行多普勒频偏和第一信号传输时延,此处不再赘述。
可选的,基于步骤F1-F2得到的第一下行多普勒频偏和第一信号传输时延,所述终端 设备可以通过以下步骤执行上述步骤F1:
G1:所述终端设备在第二时间获取所述终端设备的第二位置信息,以及获取在所述第二时间所述网络设备的第二位置信息;其中,所述第二时间为所述终端设备接收到所述第一CSI-RS的时间。
可选的,本步骤可以参考以上F1中的描述,此处不再赘述。
G2:所述终端设备根据所述终端设备第二位置信息和所述网络设备的第二位置信息,确定第二下行多普勒频偏和第二信号传输时延;其中,所述第二下行多普勒频偏为在所述第二时间所述网络设备向所述终端设备发送信号的多普勒频偏,所述第二信号传输时延为在所述第二时间所述网络设备与所述终端设备之间传输信号的时延。
同以上步骤F2,所述终端设备可以采用传统的算法(例如上述公式一和公式二),确定第一下行多普勒频偏和第一信号传输时延,此处不再赘述。
G3:所述终端设备根据所述第一下行多普勒频偏、所述第一信号传输时延、所述第二下行多普勒频偏、所述第二信号传输时延,所述第二CSI-RS的时频偏信息和所述第一信息,估计所述第一CSI-RS的时频偏。
可选的,所述终端设备通过步骤G3估计的所述第一CSI-RS的频偏符合以下公式:
其中,ΔF2为所述第一CSI-RS的频偏,为所述第二下行多普勒频偏,为所述第一下行多普勒频偏,ΔF1为所述第二CSI-RS的频偏。
所述终端设备通过步骤G3估计的所述第一CSI-RS的时偏符合以下公式:
ΔT2=τ21+ΔT1       公式八
其中,ΔT2为所述第一CSI-RS的时偏,τ2为所述第二信号传输时延,τ1为所述第一信号传输时延,ΔT1为所述第二CSI-RS的时偏。
所述终端设备在G3中估计第一CSI-RS的时频偏的实现原理可以参考以下实施例一中的描述,此处不再展开。根据该实现原理描述可知,终端设备以第二CSI-RS的时频偏为参考,通过终端设备和网络设备的实时位置修正多普勒频偏和信号传输时延,使得终端设备可以估计出多普勒频偏/信号传输时延以及由晶振误差等非理想因素导致的时频偏对信号的综合影响,进而可以使计算的第一CSI-RS的时频偏精确度更高。进一步的基于第一CSI-RS的时频偏对上下行信号进行时频补偿时,也相应提高了上下行信号的时频补偿精度,进而减少了时频偏对信号解调的干扰,最终保证了通信系统的信号传输效率。
S904:所述网络设备向所述终端设备发送所述第一CSI-RS。所述终端设备在估计的所述第一CSI-RS的时频位置,接收来自所述网络设备的所述第一CSI-RS。
综上,本申请实施例中的步骤S901-S904提供了一种通信方法,在该方案中,通信系统中增加了CSI-RS for CM与CSI-RS for BM之间的QCL关系,使得NTN中的网络设备在不发送TRS的情况下,终端设备可以通过CSI-RS for BM,来估计CSI-RS for CM的时频位置。由于通信系统可以不发送TRS,因此,该方案可以降低NTN中大量的时频资源开销,节省的时频资源可以用于数据传输或者其他用途,提高了资源利用率和数据传输效率。
与图8A所示的实施例类似的,在本申请实施例中,基于以上S901-S904中终端设备 估计的第一CSI-RS的时频位置或时频偏,所述终端设备还可以通过以下步骤S905-S907,进行下行信号的时频补偿。
S905:所述网络设备向所述终端设备发送第三信息。所述第三信息用于指示DMRS与所述第一CSI-RS之间具有QCL关系。
S905a:可选的,在S906之前,所述网络设备还可以向所述终端设备发送第二控制指示。所述终端设备接收来自所述网络设备的所述第二控制指示。其中,所述第二控制指示用于激活所述第三信息,即所述第二控制指示可以激活所述DMRS与所述第一CSI-RS之间的QCL关系。
S906:所述终端设备根据估计的所述第一CSI-RS的时频位置或时频偏,以及所述第三信息,估计所述DMRS的时频位置。
S907:所述网络设备向所述终端设备发送所述DMRS及下行信号。所述终端设备在估计的所述DMRS的时频位置,接收来自所述网络设备的所述DMRS及下行信号。
在本申请实施例中,基于以上S901-S904终端设备估计的第一CSI-RS的时频偏,所述终端设备还可以通过以下步骤S908-S909,预补偿上行信号的时频偏。
S908:所述终端设备根据所述第一CSI-RS的时频偏,对上行信号进行时频补偿。
S909:所述终端设备发送所述上行信号。所述网络设备接收所述上行信号。
综上,网络设备通过上述步骤进行上行时序前移处理,可以保证网络设备上下行的时序保持一致,从而可以提高网络设备的信号传输效率。
需要说明的,所述终端设备对下行信号进行时频补偿的过程(S905-S907),以及对上行信号进行时频偏预补偿的过程,与图8A所示的实施例中的相应过程相同,因此,相同过程和相同步骤之间可以相互参考,此处不再赘述。
可选的,在本申请实施例中,所述终端设备在执行S902接收所述第二CSI-RS之前,所述终端设备还可以通过以下步骤S910-S912估计所述第二CSI-RS的时频位置。这样,所述终端设备在执行S902时,可以在估计的所述第二CSI-RS的时频位置上接收所述第二CSI-RS。
S910:所述网络设备发送同步信号块。位于所述网络设备的覆盖范围内的所述终端设备接收来自所述网络设备的所述同步信号块。
本步骤与图8A所示的实施例中的S801相同,此处不再赘述。
S911:所述网络设备向所述终端设备发送第四信息。所述终端设备接收来自所述网络设备的所述第四信息。所述第四信息用于指示所述第二CSI-RS与同步信号块之间具有QCL关系。
在执行S911之前,所述终端设备接入所述网络设备,进入RRC连接态。
在一种实施方式中,所述第四信息指示的所述第二CSI-RS与所述同步信号块之间的QCL关系包括:QCL类型C。其中,所述第二CSI-RS与所述同步信号块之间QCL类型C的QCL关系包括:所述第二CSI-RS的多普勒频偏与所述同步信号块的多普勒频偏之间具有QCL关系以及所述第二CSI-RS的平均时延与所述同步信号块的平均时延之间具有QCL关系。基于上述所述第二CSI-RS与所述同步信号块之间QCL类型C的QCL关系,所述终端设备可以根据所述同步信号块的时频偏,确定所述第二CSI-RS的时频偏。
可选的,所述第四信息指示的所述第二CSI-RS与所述同步信号块之间的QCL关系还 包括:QCL类型D。其中,所述第二CSI-RS与所述同步信号块之间QCL类型D的QCL关系包括:所述第二CSI-RS的空间接收参数与所述同步信号的空间接收参数之间具有QCL关系。这样,所述终端设备可以根据所述同步信号块的空间接收参数,确定所述第二CSI-RS的空间接收参数。例如,所述终端设备可以使用相同的波束接收所述第二CSI-RS和所述同步信号块。
在另一种实施方式中,所述第四信息所指示的所述第二CSI-RS与所述同步信号块之间的QCL关系可以包括:所述第二CSI-RS的时域位置与所述同步信号块相关,或者所述同步信号块中包含所述第二CSI-RS的时域位置的指示信息等。总之,本申请实施例不对所述第二CSI-RS与所述同步信号块之间的QCL关系构成任何限定。
可选的,所述第四信息也可以携带在RRC信令中,具体可以参考本实施例中对第一信息的描述,此处不再赘述。
还需要说明的是,应注意,在本申请实施例中,所述第一信息、所述第二信息和所述第三信息,以及所述第四信息可以携带在同一消息(例如RRC信令)中发送;或者上述信息可以分别包含在不同的消息中传输;又或者部分信息包含在同一消息发送,另一部分信息包含在另一个消息中发送,本申请实施例对此不作限定。
S911a:可选的,在S912之前,所述网络设备还可以向所述终端设备发送第三控制指示。所述终端设备接收来自所述网络设备的所述第三控制指示。其中,所述第三控制指示用于激活所述第四信息,即所述第四控制指示可以激活所述第二CSI-RS与所述同步信号块之间的QCL关系。
关于所述第三控制指示的描述可以参考S901b中对第一控制指示的描述,此处不再赘述。
S912:所述终端设备根据所述同步信号块和所述第四信息,估计所述第二CSI-RS的时频位置。
在一种实施方式中,与图8A或本申请实施例中估计所述第一CSI-RS的时频位置的原理相同,所述终端设备可以通过如下步骤估计所述第二CSI-RS的时频位置:
H1:所述终端设备根据所述同步信号块的时频偏和所述第四信息,估计所述第二CSI-RS的时频偏;
H2:所述终端设备根据所述第二CSI-RS的时频偏,估计所述第二CSI-RS的时频位置。
可选的,所述终端设备在执行H1之前,可以通过步骤I1-I2,确定在第三时间所述网络设备与所述终端设备之间的信号的多普勒频偏和信号传输时延。其中,所述第三时间为所述终端设备接收到所述同步信号块的时间。
I1:所述终端设备在第三时间获取所述终端设备的第三位置信息,接收系统信息块,所述系统信息块用于确定在所述第三时间所述网络设备的第三位置信息。
本步骤与图8A所示的实施例中的步骤B1相同,相同之处此处不再赘述。
I2:所述终端设备根据所述终端设备的第三位置信息和所述网络设备的第三位置信息,确定所述第三下行多普勒频偏和第三信号传输时延;其中,所述第三下行多普勒频偏为在所述第三时间所述网络设备向所述终端设备发送信号的多普勒频偏,所述第三信号传输时延为在所述第三时间所述网络设备与所述终端设备之间传输信号的时延;
可选的,在执行步骤H1时,所述终端设备可以具体执行以下步骤:
J1:所述终端设备在第一时间获取所述终端设备的第一位置信息,以及获取在所述第一时间所述网络设备的第一位置信息;其中,所述第一时间为所述终端设备接收到所述第二CSI-RS的时间。
J2:所述终端设备根据所述终端设备的第一位置信息和所述网络设备的第一位置信息,确定第一下行多普勒频偏和第一信号传输时延;其中,所述第一下行多普勒频偏为在所述第一时间所述网络设备向所述终端设备发送信号的多普勒频偏,所述第一信号传输时延为在所述第一时间所述网络设备与所述终端设备之间传输信号的时延。
其中步骤J1-J2与上述步骤F1-F2相同,此处不再赘述。
J3:所述终端设备根据所述第三下行多普勒频偏、所述第三信号传输时延、所述第一下行多普勒频偏、所述第一信号传输时延,所述同步信号块的时频偏信息和所述第四信息,估计所述第二CSI-RS的时频偏。
可选的,所述终端设备通过步骤J3估计的所述第二CSI-RS的频偏符合以下公式:
其中,ΔF1为所述第二CSI-RS的频偏,为所述第一下行多普勒频偏,为所述第三下行多普勒频偏,ΔF0为所述同步信号块的频偏。
所述终端设备通过步骤J3估计的所述第二CSI-RS的时偏符合以下公式:
ΔT1=τ13+ΔT0         公式十
其中,ΔT1为所述第二CSI-RS的时偏,τ1为所述第一信号传输时延,τ3为所述第三信号传输时延,ΔT0为所述同步信号块的时偏。
还需要说明的是,针对具体应用场景,网络设备的部署方式可能存在差异,因此,图8A或图9A中涉及网络设备的相关步骤的实现过程可以也相应的存在差异。例如,对于图4所示的再生模式的卫星系统来说,图8A或图9A提供的实施例中的网络设备为卫星。而对于图2所示的透传模式的卫星系统来说,图8A或图9A提供的实施例中的网络设备包括卫星地面站和卫星;其中,负责执行数据或信号的处理、收发功能的网络设备为卫星地面站,但是终端设备获取的网络设备的位置信息应该为卫星的位置信息。
下面以再生模式下的卫星系统为例,结合附图对本申请图8A和图8B所示的实施例提供的通信方法进行说明。
实施例一:为了解决传统的通过TRS估计信号的时频偏方案中NTN所需的TRS资源数量过多导致资源开销过大,影响数据传输效率的问题,本实施例一中,卫星不发送TRS。为了能够获得CSI-RS for CM的时频偏参考,协议可以新增如表3所示的QCL关系。这样,通信系统中的参考信号的QCL关系可以如图8B所示。
在实施例一中,UE进行下行频偏估计和补偿的过程如下:
1-1-1:在UE的初始接入阶段,卫星发送SSB,UE根据接收到的SSB进行频偏同步,并获取小区系统信息。
为了减少UE估计较大频偏的复杂度,卫星可以针对每一个SSB波束提前补偿频偏(即进行频偏预补偿)。以图10A所示的场景为例,不妨假设设定的下行中心频率为fDL,在t1时,UE可以根据SSB#0进行下行同步。卫星按照波束中心的方向对SSB#0预补偿频偏f1,即 SSB#0的实际发送频率为fDL-f1
在UE处于SSB#0波束的覆盖范围内的某一位置的情况下,UE在t1时接收到SSB#0,此时,卫星向UE发送信号的实际下行频偏为其中为在t1时下行多普勒频偏,可以通过t1时卫星的位置信息和UE的位置信息计算出来,如公式二所示;df是由晶振误差等非理想因素引起的频率偏移。
在t1时,UE接收到的SSB#0的实际频率为
由于UE使用扫频方法接收SSB#0,因此,UE可以估计出SSB#0的剩余频偏值其中,SSB#0的剩余频偏值ΔF为:相比设定的下行中心频率fDL,SSB#0需补偿的频偏值。
1-1-2:UE获取小区系统信息后,接入卫星管理的小区进入RRC连接态。卫星使用RRC信令为UE配置多个TCI state。这些TCI state中,含有指示CSI-RS for CM与SSB间的QCL Type C关系,以及DMRS与CSI-RS间的QCL Type A关系。例如,所述多个TCI state中包含第一TCI state,该第一TCI state指示CSI-RS for CM与SSB#0间具有QCL Type C关系。
1-1-3:在数据传输阶段,卫星发送CSI-RS for CM,并通过MAC CE或DCI激活CSI-RS for CM与SSB间的QCL Type C关系。其中,该CSI-RS for CM波束采用与有QCL关系的SSB波束相同的频偏预补偿。UE根据SSB的频偏结果,以及在接收CSI-RS for CM时卫星的位置信息与UE的位置信息,计算此时UE实际的下行频偏。该频偏可用于参考信号的接收和下行数据的接收。
仍以图10A所示的场景为例,卫星在t2时发送CSI-RS for CM,该CSI-RS for CM与SSB#0间有QCL Type C关系,且卫星继续使用f1对该CSI-RS for CM进行频偏预补偿。此时,由于卫星从t1时的位置1移动到t2时的位置2,因此,此时卫星向UE发送信号的实际下行频偏为即此时UE接收到的CSI-RS for CM的实际频率为 其中,为在t2时下行多普勒频偏,可以通过t2时卫星的位置信息和UE的位置信息计算出来,如公式二所示。
由此可知,针对该CSI-RS for CM,UE需要估计并补偿的剩余频偏值为
通过该公式,UE可以根据SSB#0的剩余频偏值,估计出该CSI-RS for CM的剩余频偏值。
1-1-4:在数据传输阶段,卫星使用定向波束为UE提供数据传输服务,该波束采用与CSI-RS for CM波束相同的频偏预补偿值,并通过MAC CE或下行DCI激活PDCCH/PDSCH  DMRS与CSI-RS for CM间的QCL Type A关系。UE估计DMRS的频偏时,可以用CSI-RS for CM的频偏结果作为参考。例如,UE可以确定DMRS的剩余频偏值与CSI-RS for CM的剩余频偏值相同。
在实施例一,UE进行下行时偏估计和补偿的过程如下:
1-2-1:在UE的初始接入阶段,卫星发送SSB波束,UE根据接收到的SSB进行时偏同步。
为了减少UE估计较大时偏的复杂度,卫星可以针对每一个SSB波束提前补偿时偏(即进行时偏预补偿)。以图10B所示的场景为例,在t1时,UE可以根据SSB#0进行下行同步。卫星按照波束中心方向的传输距离对SSB#0预补偿时偏T1,即对实际发送SSB#0信号预先添加一个相位其中k为OFDM符号的子载波索引,N为子载波总数,Ts为采样时间。
在UE处于SSB#0波束的覆盖范围内的某一位置的情况下,SSB#0的实际下行时偏为τ1+dT。其中τ1为在t1时UE与卫星之间的信号传输时延,可以通过t1时卫星的位置信息和UE的位置信息计算出来,如公式一所示。dT是由晶振误差等非理想因素引起的时间偏移。
在t1时,UE接收到的SSB#0实际时间为t1+τ1+dT。UE根据SSB#0的设定时域位置,可以估计出SSB#0的剩余时偏值为ΔT1=τ1+dT-T1
1-2-2:同1-1-2,卫星为UE配置多个TCI state。这些TCI state中,含有指示CSI-RS for CM与SSB间的QCL Type C关系,以及DMRS与CSI-RS间的QCL Type A关系。
1-2-3:在数据传输阶段,卫星发送CSI-RS for CM,并通过MAC CE或下行DCI激活CSI-RS for CM与SSB间的QCL Type C关系。其中,该CSI-RS for CM波束采用与有QCL关系的SSB波束相同的时偏预补偿。UE根据SSB的时偏结果,以及在接收CSI-RS for CM时卫星的位置信息与UE的位置信息,计算此时UE实际的下行时偏。该时偏可用于参考信号的接收和下行数据的接收。
仍如图10B所示,卫星BS在t2时发送CSI-RS for CM,该CSI-RS for CM与SSB#0间有QCL Type C关系,且卫星继续使用T1对CSI-RS for CM进行时偏预补偿。此时,由于卫星从t1时的位置1移动到t2时的位置2,因此,此时卫星向UE发送信号的实际下行时偏为τ2+dT,即UE接收到的CSI-RS for CM的实际时间为t2+τ2+dT。其中τ2为在t2时UE与卫星之间的信号传输时延,可以通过在t2时卫星的位置信息和UE的位置信息计算,如公式一所示。
由此可知,针对该CSI-RS for CM,UE需要估计并补偿的剩余时偏值为
ΔT2=τ2+df-T1=τ21+ΔT1
通过该公式,UE可以根据SSB#0的剩余时偏值,估计出该CSI-RS for CM的剩余时偏值。
1-2-4:在数据传输阶段,卫星使用定向波束为UE提供数据服务,该波束采用与CSI-RS  for CM相同的时偏预补偿值,并通过MAC CE或下行DCI激活PDCCH/PDSCH DMRS与CSI-RS for CM间的QCL Type A关系。UE估计DMRS的时偏时,可以用CSI-RS for CM的时偏结果作为参考。例如,UE可以确定DMRS的剩余时偏值与CSI-RS for CM的剩余时偏值相同。
在实施例一中,UE在完成下行频偏估计后,可以此为基础,预先补偿上行频偏。UE对上行频偏进行预补偿的过程如下:
1-3-1:卫星在发送下行数据波束时,可以采用与CSI-RS for CM相同的频偏预补偿。UE可以根据估计的CSI-RS for CM的剩余频偏值,补偿下行数据的频偏。
假设在该卫星系统中,fDL为设定的下行中心频率,fUL为设定的上行中心频率,δf为上下行中心频率差,δf=fUL-fDL。在fDL、fUL均为已知的情况下,δf也是已知的。
继续基于上述步骤1-1-1至1-1-4中提供的下行频偏估计和补偿方案说明。参阅图11A所示,BS使用f1对发送的下行信号进行频偏预补偿,因此,卫星发送的下行信号的实际发送频率为fDL-f1
经过空口传输后,UE使用估计的CSI-RS for CM的剩余频偏值将接收的下行信号的频率补偿为即UE能够估计出为卫星发送的下行信号的实际中心频率。
1-3-2:UE根据下行信号的实际中心频率和上下行中心频率差δf,对上行信号的频偏进行预补偿,并发送上行数据。
仍以图11A为例,UE已知上下行中心频率差δf,且可以根据当前卫星的位置信息和UE的位置信息计算上行多普勒频偏那么UE的上行信号发送到卫星时,经过空口传输后,卫星接收该上行信号的实际中心频率应该为
可选的,该上行多普勒频偏还可以根据UE接收到CSI-RS for CM时的下行多普勒频偏推导,具体过程此处不再赘述。
为了保证卫星接收到的上行信号的实际中心频率为(即卫星在接收上行信号时可以不对上行信号进行频偏补偿),UE可以在下行信号的实际中心频率 上,通过已知的δf=fUL-fDL和CSI-RS for CM的剩余频偏值对上行信号的中心频率进行预补偿,公式如下:
将公式中的已知数据带入,可得:
1-3-3由于上行信号经过上行信道传输时,卫星在接收该上行信号之前,该上行信号还会再经历一次多普勒频偏因此,当UE使用作为上行信号的中心频率时,卫星接收到的该上行信号的实际中心频率为fUL,与预设的上行中心频偏相同。因此, 通过上述方案对上行信号进行频偏预补偿后,卫星可以无需在接收上行信号时,无需执行上行信号的频偏估计和补偿过程,节省了卫星的功耗。
同样的,在实施例一中,UE获取完成下行时偏估计后,可以此为基础,预先补偿上行时偏。UE对上行时偏进行补偿的过程如下:
1-4-1:卫星在下行发送数据波束时,可以采用与CSI-RS for CM相同的时偏预补偿。UE可以根据估计的CSI-RS for CM的剩余时偏值,补偿下行数据的时偏。
继续基于上述步骤1-2-1至1-2-4中提供的下行时偏估计和补偿方案说明。参阅图11B所示,BS在t2时发送下行信号,并使用T1对该下行信号进行时偏预补偿,该信号的在空口中的信号传输时延为τ2
UE接收到该下行信号的实际接收时间为t2+τ2+dT,而UE估计到的CSI-RS for CM的下行时偏为ΔT2,通过1-2-4中可知,ΔT2=τ2+dT-T1。UE可以以此对下行信号进行时偏补偿。
1-4-2:UE可以根据下行信号的实际接收时间tRX,预补偿上行时偏,即对上行时序进行定时提前,并发送上行信号。
仍以图11B为例,UE根据下行信号的剩余时偏值ΔT2=τ2+dT-T1,在下行接收时间的基础上,将上行时序提前2τ2+dT-T1=ΔT22
因下行信号的实际接收时间tRX=t2+τ2+dT,则补偿后的上行信号发送起始时刻为
tTX=tRX-(ΔT22)
将已知数据带入上述公式,可得:
tTX=(t2+τ2+dT)-(τ2+dT-T12)=t2-τ2+T1
1-4-3:由于上行信号经过上行信道传输后,卫星在接收到该上行信号之前,该上行信号还会再经历一次信号传输时延。因此,UE使用tTX=t2-τ2+T1作为上行信号的发送起始时间时,卫星接收到的上行信号的起始时刻为t2+T1
因卫星已知时偏预补偿值T1,所以卫星可以直接调整自身的上行时序,将上行信号的接收时间调整t2。
通过上述方案,UE根据下行时偏对上行信号进行时偏预补偿时,卫星的上行信号和下行信号可以保持相同的起始时刻。
综上,本实施例一通过增加CSI-RS for CM与SSB间的QCL Type C关系,使得在卫星不发送TRS的情况下,UE仍可以参考SSB的时频偏估计结果,并利用星地位置信息,准确地估计出下行信号的时频偏。一方面,由于不用发送TRS,该方案可以节省大量时频资源用于发送下行数据;另一方面,UE可以补偿上下行数据传输时由多普勒频偏/传输时延和晶振误差等非理想因素引起时频偏移的联合影响。这两方面可以共同显著提高数据传输的速率。
实施例二:为了解决传统的通过TRS估计信号的时频偏方案中NTN所需的TRS资源数量过多导致资源开销过大,影响数据传输效率的问题,本实施例二中,卫星不发送TRS。为了能够获得CSI-RS for CM的时频偏参考,协议可以新增如表4所示的QCL关系。这样, 通信系统中的参考信号的QCL关系可以如图9B所示。
其中,在本实施例二中,UE估计和补偿上下行时频偏的方法可以实施例一相同。在卫星BS不发送TRS的情况下,差异在于:
卫星使用RRC信令配置TCI state列表时,这些TCI state中包含指示CSI-RS for BM与SSB间的QCL Type C关系,CSI-RS for CM与CSI-RS for BM间的QCL Type A关系,以及DMRS与CSI-RS for CM间的QCL Type A关系。
在数据传输阶段,卫星既发送CSI-RS for CM,也发送CSI-RS for BM。其中,CSI-RS for BM的时频偏以SSB的时频偏为参考,按照实施例一中的计算方法估计更精确的时频偏并补偿。CSI-RS for CM的时频偏以CSI-RS for BM的时频偏为参考,用于信令和数据解调的DMRS的时频偏以CSI-RS for CM为参考。
本实施例二通过增加CSI-RS for CM与CSI-RS for BM间的QCL Type A关系,使得在卫星不发送TRS的情况下,UE仍可以依次参考SSB的时频偏结果、CSI-RS for BM的时频偏结果,以及CSI-RS for CM的时频偏结果,并利用星地位置信息,准确地估计出下行信号时频偏,从而显著提高数据传输的速率。
另外,还需要说明的是,以上各个实施例中涉及的每个步骤可以为相应的设备执行,也可以是该设备内的芯片、处理器或芯片系统等部件执行,本申请实施例并不对其构成限定。以上各实施例仅以由相应设备执行为例进行说明。
需要说明的是,在以上各个实施例中,可以选择部分步骤进行实施,还可以调整图示中步骤的顺序进行实施,本申请对此不做限定。应理解,执行图示中的部分步骤、调整步骤的顺序或相互结合进行具体实施,均落在本申请的保护范围内。
可以理解的是,为了实现上述实施例中功能,上述实施例中涉及的各个设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
可以理解的是,本申请实施例描述的上述网络架构以及应用场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
应注意:本申请实施例中的“步骤”仅是个示意,是为了更好的理解实施例所采用的一种表现方法,不对本申请的方案的执行构成实质性限定,例如:该“步骤”还可以理解成“特征”。此外,该步骤不对本申请方案的执行顺序构成任何限定,任何在此基础上做出的不影响整体方案实现的步骤顺序改变或步骤合并或步骤拆分等操作,所形成的新的技术方案也在本申请公开的范围之内。例如:在图8A所示的实施例中,步骤S802和步骤S805之间的执行顺序不限定,当两者交换顺序或者同时执行时,都不影响方案的具体实现。并且,本申请中出现的所有“步骤”都适用于该约定,在此做统一说明,当再次出现时,不再对其进行赘述。
基于相同的技术构思,本申请还提供了一种通信装置,所述通信装置可以应用于NTN 等通信系统中,例如图2或图4所示的卫星系统中。所述通信装置用于实现以上各个实施例提供的方法。参阅图12所示,通信装置1200中包含通信单元1201和处理单元1202。
所述通信单元1201,用于接收和发送信号。可选的,所述通信单元1201中可以包含收发器。
所述处理单元1202,用于执行以上各个实施例提供的通信方法中终端设备或网络设备执行的步骤。所述处理单元1202的具体功能可以参考以上实施例中的相关描述,此处不再赘述。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种通信设备,所述通信设备可以应用于NTN等通信系统中,例如图2或图4所示的卫星系统中,并可以实现以上各个实施例中的方法,具有通信装置1200的功能。参阅图13所示,所述通信设备1300包括:收发器1301、至少一个处理器1302,以及存储器1303。其中,所述收发器1301、所述至少一个处理器1302以及所述存储器1303之间相互连接。
可选的,所述收发器1301、所述至少一个处理器1302以及所述存储器1303之间通过总线1304相互连接。所述总线1304可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
所述收发器1301,用于接收和发送信号,实现与其他设备之间的通信。可选的,所述收发器1301可以通过射频装置和天线实现。
当所述通信设备1300为通信系统中的终端设备时,所述处理器1302的功能可以参照以上实施例中关于终端设备的描述;当所述通信设备1300为通信系统中的网络设备时,所述处理器1302的功能可以参照以上实施例中关于网络设备的描述,此处不再赘述。
其中,处理器1302可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合等等。处理器1302还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列 (field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。处理器1302在实现上述功能时,可以通过硬件实现,当然也可以通过硬件执行相应的软件实现。
所述存储器1303,用于存放程序指令等。具体地,程序指令可以包括程序代码,该程序代码包括计算机操作指令。存储器1303可能包含随机存取存储器(random access memory,RAM),也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。处理器1302执行存储器1303所存放的程序指令,实现上述功能,从而实现上述实施例提供的方法。
基于以上实施例,本申请实施例还提供了一种计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行以上实施例提供的方法。
基于以上实施例,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,所述计算机程序被计算机执行时,使得计算机执行以上实施例提供的方法。可选的,上述计算机可以但不限于包括终端设备或网络设备。
其中,存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
基于以上实施例,本申请实施例还提供了一种芯片,所述芯片用于读取存储器中存储的计算机程序,实现以上实施例提供的方法。可选的,所述芯片中可以包括处理器和存储器,所述处理器与所述存储器耦合,用于读取所述存储器中存储的计算机程序,实现以上实施例提供的方法。
基于以上实施例,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持计算机装置实现以上实施例中终端设备所涉及的功能。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存该计算机装置必要的程序和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种通信方法,应用于终端设备或终端设备中的芯片系统,其特征在于,所述方法包括:
    接收来自网络设备的同步信号块;
    接收来自所述网络设备的第一信息,所述第一信息用于指示第一信道状态信息参考信号CSI-RS与所述同步信号块之间具有准共址关系;所述第一CSI-RS为用于信道测量的参考信号;
    根据所述同步信号块和所述第一信息,估计所述第一CSI-RS的时频位置。
  2. 如权利要求1所述的方法,其特征在于,根据所述同步信号块和所述第一信息,估计所述第一CSI-RS的时频位置,包括:
    根据所述同步信号块的时频偏和所述第一信息,估计所述第一CSI-RS的时频偏;
    根据所述第一CSI-RS的时频偏,估计所述第一CSI-RS的时频位置。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    在第一时间获取所述终端设备的第一位置信息,其中,所述第一时间为所述终端设备接收到所述同步信号块的时间;接收系统信息块,所述系统信息块用于确定在所述第一时间所述网络设备的第一位置信息;
    根据所述终端设备的第一位置信息和所述网络设备的第一位置信息,确定第一下行多普勒频偏和第一信号传输时延;其中,所述第一下行多普勒频偏为在所述第一时间所述网络设备向所述终端设备发送信号的多普勒频偏,所述第一信号传输时延为在所述第一时间所述网络设备与所述终端设备之间传输信号的时延;
    根据所述同步信号块的时频偏和所述第一信息,估计所述第一CSI-RS的时频偏,包括:
    在第二时间获取所述终端设备的第二位置信息,以及获取在所述第二时间所述网络设备的第二位置信息;其中,所述第二时间为所述终端设备接收到所述第一CSI-RS的时间;
    根据所述终端设备的第二位置信息和所述网络设备的第二位置信息,确定第二下行多普勒频偏和第二信号传输时延;其中,所述第二下行多普勒频偏为在所述第二时间所述网络设备向所述终端设备发送信号的多普勒频偏,所述第二信号传输时延为在所述第二时间所述网络设备与所述终端设备之间传输信号的时延;
    根据所述第一下行多普勒频偏、所述第一信号传输时延、所述第二下行多普勒频偏、所述第二信号传输时延,所述同步信号块的时频偏信息和所述第一信息,估计所述第一CSI-RS的时频偏。
  4. 如权利要求1-3任一项所述的方法,其特征在于,在根据所述同步信号块和所述第一信息,估计所述第一CSI-RS的时频位置之前,所述方法还包括:
    接收来自所述网络设备的第一控制指示,所述第一控制指示用于激活所述第一信息。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述第一信息指示的所述第一CSI-RS与所述同步信号块之间的准共址关系包括:
    所述第一CSI-RS的多普勒频偏与所述同步信号块的多普勒频偏之间具有准共址关系;以及
    所述第一CSI-RS的平均时延与所述同步信号块的平均时延之间具有准共址关系。
  6. 如权利要求5所述的方法,其特征在于,所述第一信息指示的所述第一CSI-RS与所述同步信号块之间的准共址关系还包括:
    所述第一CSI-RS的空间接收参数与所述同步信号块的空间接收参数之间具有准共址关系。
  7. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第二信息,所述第二信息用于指示所述第一CSI-RS与第二CSI-RS之间具有准共址关系;其中,所述第二CSI-RS为用于波束管理的参考信号;
    所述第二信息指示的所述第一CSI-RS与所述第二CSI-RS之间的准共址关系包括:
    所述第一CSI-RS的空间接收参数与所述第二CSI-RS的空间接收参数之间具有准共址关系。
  8. 一种通信方法,其特征在于,应用于网络设备,其特征在于,所述方法包括:
    发送同步信号块;
    向终端设备发送第一信息,所述第一信息用于指示第一信道状态信息参考信号CSI-RS与所述同步信号块之间具有准共址关系;所述第一CSI-RS为用于信道测量的参考信号;
    向所述终端设备发送所述第一CSI-RS。
  9. 如权利要求8所述的方法,其特征在于,在向所述终端设备发送所述第一CSI-RS之前,所述方法还包括:
    向所述终端设备发送第一控制指示,所述第一控制指示用于激活所述第一信息。
  10. 如权利要求8或9所述的方法,其特征在于,所述第一信息指示的所述第一CSI-RS与所述同步信号块之间的准共址关系包括:
    所述第一CSI-RS的多普勒频偏与所述同步信号块的多普勒频偏之间具有准共址关系;以及
    所述第一CSI-RS的平均时延与所述同步信号块的平均时延之间具有准共址关系。
  11. 如权利要求10所述的方法,其特征在于,所述第一信息指示的所述第一CSI-RS与所述同步信号块之间的准共址关系还包括:
    所述第一CSI-RS的空间接收参数与所述同步信号块的空间接收参数之间具有准共址关系。
  12. 如权利要求10所述的方法,其特征在于,在向所述终端设备发送所述第一CSI-RS之前,所述方法还包括:
    向所述终端设备发送第二信息,所述第二信息用于指示所述第一CSI-RS与第二CSI-RS之间具有准共址关系;其中,所述第二CSI-RS为用于波束管理的参考信号;
    所述第二信息指示的所述第一CSI-RS与所述第二CSI-RS之间的准共址关系包括:
    所述第一CSI-RS的空间接收参数与所述第二CSI-RS的空间接收参数之间具有准共址关系。
  13. 一种通信方法,应用于终端设备或终端设备中的芯片系统,其特征在于,所述方法包括:
    接收来自网络设备的第一信息,所述第一信息用于指示第一信道状态信息CSI-RS与第二CSI-RS之间具有准共址关系;所述第一CSI-RS为用于信道测量的参考信号,所述第二CSI-RS为用于波束管理的参考信号;
    接收来自所述网络设备的所述第二CSI-RS;
    根据所述第二CSI-RS和所述第一信息,估计所述第一CSI-RS的时频位置。
  14. 如权利要求13所述的方法,其特征在于,根据所述第二CSI-RS和所述第一信息,估计所述第一CSI-RS的时频位置,包括:
    根据所述第二CSI-RS的时频偏和所述第一信息,估计所述第一CSI-RS的时频偏;
    根据所述第一CSI-RS的时频偏,估计所述第一CSI-RS的时频位置。
  15. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    在第一时间获取所述终端设备的第一位置信息,以及获取在所述第一时间所述网络设备的第一位置信息;其中,所述第一时间为所述终端设备接收到所述第二CSI-RS的时间;
    根据所述终端设备的第一位置信息和所述网络设备的第一位置信息,确定第一下行多普勒频偏和第一信号传输时延;其中,所述第一下行多普勒频偏为在所述第一时间所述网络设备向所述终端设备发送信号的多普勒频偏,所述第一信号传输时延为在所述第一时间所述网络设备与所述终端设备之间传输信号的时延;
    根据所述第二CSI-RS的时频偏和所述第一信息,估计所述第一CSI-RS的时频偏,包括:
    在第二时间获取所述终端设备的第二位置信息,以及获取在所述第二时间所述网络设备的第二位置信息;其中,所述第二时间为所述终端设备接收到所述第一CSI-RS的时间;
    根据所述终端设备第二位置信息和所述网络设备的第二位置信息,确定第二下行多普勒频偏和第二信号传输时延;其中,所述第二下行多普勒频偏为在所述第二时间所述网络设备向所述终端设备发送信号的多普勒频偏,所述第二信号传输时延为在所述第二时间所述网络设备与所述终端设备之间传输信号的时延;
    根据所述第一下行多普勒频偏、所述第一信号传输时延、所述第二下行多普勒频偏、所述第二信号传输时延,所述第二CSI-RS的时频偏信息和所述第一信息,估计所述第一CSI-RS的时频偏。
  16. 如权利要求13-15任一项所述的方法,其特征在于,根据所述第二CSI-RS和所述第一信息,估计所述第一CSI-RS的时频位置之前,所述方法还包括:
    接收来自所述网络设备的第一控制指示,所述第一控制指示用于激活所述第一信息。
  17. 如权利要求13-16任一项所述的方法,其特征在于,所述第一信息指示的所述第一CSI-RS与所述第二CSI-RS之间的准共址关系包括:
    所述第一CSI-RS的多普勒频偏与所述第二CSI-RS的多普勒频偏之间具有准共址关系;
    所述第一CSI-RS的多普勒扩展与所述第二CSI-RS的多普勒扩展之间具有准共址关系;
    所述第一CSI-RS的平均时延与所述第二CSI-RS的平均时延之间具有准共址关系;以及
    所述第一CSI-RS的时延扩展与所述第二CSI-RS的时延扩展之间具有准共址关系。
  18. 如权利要求17所述的方法,其特征在于,所述第一信息指示的所述第一CSI-RS与所述第二CSI-RS之间的准共址关系还包括:
    所述第一CSI-RS的空间接收参数与所述第二CSI-RS的空间接收参数之间具有准共址关系。
  19. 如权利要求17所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第二信息,所述第二信息用于指示所述第一CSI-RS与同步信号块之间具有准共址关系;
    所述第二信息指示的所述第一CSI-RS与所述同步信号块之间的准共址关系包括:
    所述第一CSI-RS的空间接收参数与所述同步信号块的空间接收参数之间具有准共址关系。
  20. 一种通信方法,其特征在于,应用于网络设备或网络设备中的芯片系统,其特征在于,所述方法包括:
    向终端设备发送第一信息,所述第一信息用于指示第一信道状态信息参考信号CSI-RS与第二CSI-RS之间具有准共址关系;所述第一CSI-RS为用于信道测量的参考信号,所述第二CSI-RS为用于波束管理的参考信号;
    向所述终端设备发送所述第二CSI-RS;
    向所述终端设备发送所述第一CSI-RS。
  21. 如权利要求20所述的方法,其特征在于,在向所述终端设备发送所述第一CSI-RS之前,所述方法还包括:
    向所述终端设备发送第一控制指示,所述第一控制指示用于激活所述第一信息。
  22. 如权利要求20或21所述的方法,其特征在于,所述第一信息指示的所述第一CSI-RS与所述第二CSI-RS之间的准共址关系包括:
    所述第一CSI-RS的多普勒频偏与所述第二CSI-RS的多普勒频偏之间具有准共址关系;
    所述第一CSI-RS的多普勒扩展与所述第二CSI-RS的多普勒扩展之间具有准共址关系;
    所述第一CSI-RS的平均时延与所述第二CSI-RS的平均时延之间具有准共址关系;以及
    所述第一CSI-RS的时延扩展与所述第二CSI-RS的时延扩展之间具有准共址关系。
  23. 如权利要求22所述的方法,其特征在于,所述第一信息指示的所述第一CSI-RS与所述第二CSI-RS之间的准共址关系还包括:
    所述第一CSI-RS的空间接收参数与所述第二CSI-RS的空间接收参数之间具有准共址关系。
  24. 如权利要求22所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二信息,所述第二信息用于指示所述第一CSI-RS与同步信号块之间的具有准共址关系;
    所述第二信息指示的所述第一CSI-RS与所述同步信号块之间的准共址关系包括:
    所述第一CSI-RS的空间接收参数与所述同步信号块的空间接收参数之间具有准共址关系。
  25. 一种通信装置,其特征在于,包括通信单元和处理单元,其中,
    所述通信单元,用于接收和发送信号;
    所述处理单元,用于执行如权利要求1-24任一项所述的方法。
  26. 一种终端设备,其特征在于,包括:收发器、存储器和处理器;其中,
    所述收发器,用于接收和发送信号;
    所述存储器,用于存储程序指令和数据;
    所述处理器,用于读取所述存储器中的程序指令和数据,实现权利要求1-7任一项所述的方法,或者实现权利要求13-19任一项所述的方法。
  27. 一种网络设备,其特征在于,包括:收发器、存储器和处理器;其中,
    所述收发器,用于接收和发送信号;
    所述存储器,用于存储程序指令和数据;
    所述处理器,用于读取所述存储器中的程序指令和数据,实现权利要求8-12任一项所述的方法,或者实现权利要求20-24任一项所述的方法。
  28. 一种通信系统,其特征在于,包括如权利要求26所述的终端设备,以及如权利要求27所述的网络设备。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行权利要求1-24任一项所述的方法。
  30. 一种芯片,其特征在于,所述芯片包括处理器和存储器;所述处理器与所述存储器耦合,用于读取所述存储器中存储的计算机程序,执行权利要求1-24任一项所述的方法。
PCT/CN2023/098310 2022-08-22 2023-06-05 一种通信方法及设备 WO2024041085A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211023716.4 2022-08-22
CN202211023716.4A CN117676793A (zh) 2022-08-22 2022-08-22 一种通信方法及设备

Publications (1)

Publication Number Publication Date
WO2024041085A1 true WO2024041085A1 (zh) 2024-02-29

Family

ID=90012322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098310 WO2024041085A1 (zh) 2022-08-22 2023-06-05 一种通信方法及设备

Country Status (2)

Country Link
CN (1) CN117676793A (zh)
WO (1) WO2024041085A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299978A (zh) * 2018-03-23 2019-10-01 维沃移动通信有限公司 信息传输方法、终端及网络设备
WO2021159258A1 (zh) * 2020-02-10 2021-08-19 华为技术有限公司 一种数据传输方法及装置
CN114070503A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种qcl指示方法及相关设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299978A (zh) * 2018-03-23 2019-10-01 维沃移动通信有限公司 信息传输方法、终端及网络设备
WO2021159258A1 (zh) * 2020-02-10 2021-08-19 华为技术有限公司 一种数据传输方法及装置
CN114070503A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种qcl指示方法及相关设备

Also Published As

Publication number Publication date
CN117676793A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN112788519B (zh) 一种进行定位的方法、终端及网络侧设备
CN112399546B (zh) 公共定时提前的指示方法、装置、设备及存储介质
WO2020220851A1 (zh) 一种通信方法、终端设备以及网络设备
US11513182B2 (en) User equipment in wireless communication system, electronic device, method and storage medium
US20240031965A1 (en) Information transmission method, terminal device, and network device
WO2022067847A1 (en) Multiple-input, multiple-output (mimo) enhancements for high speed travel
TW202201934A (zh) 探測參考信號傳輸延遲移位報告
WO2022078376A1 (zh) 一种更新参数的方法以及相关装置
WO2024012404A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2024041085A1 (zh) 一种通信方法及设备
CN115104346B (zh) 将终端设备与网络时钟同步
CN111033295A (zh) 协作到达时间(CToA)测量的装置、系统和方法
WO2024031590A1 (zh) 用于定位的无线通信方法、装置、设备、系统及存储介质
US11973705B2 (en) Improving network multiple-input, multiple-output (MIMO) performance with high doppler shift
WO2024031589A1 (zh) 用于定位的无线通信方法、装置、设备及存储介质
US20240187282A1 (en) Electronic device for wireless communication, wireless communication method, and storage medium
WO2023051326A1 (zh) 时频同步方法、装置以及存储介质
WO2024125613A1 (zh) 一种定位方法及装置
WO2023143114A1 (zh) 通信方法和通信装置
EP4228345A1 (en) Method of transmitting and receiving information for measurement of prs in wireless communication system and apparatus therefor
CN118283674A (zh) 通信方法和通信装置
KR20240018486A (ko) 전력 효율적 사이드링크 지원 포지셔닝
CN116868643A (zh) 用于定位的方法、终端设备及网络设备
CN118202727A (zh) 非陆地网络的公共定时提前量确定
CN117730547A (zh) 无线通信方法和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856177

Country of ref document: EP

Kind code of ref document: A1