WO2024040980A1 - 一种慢病毒转染助转剂及转染方法 - Google Patents

一种慢病毒转染助转剂及转染方法 Download PDF

Info

Publication number
WO2024040980A1
WO2024040980A1 PCT/CN2023/087444 CN2023087444W WO2024040980A1 WO 2024040980 A1 WO2024040980 A1 WO 2024040980A1 CN 2023087444 W CN2023087444 W CN 2023087444W WO 2024040980 A1 WO2024040980 A1 WO 2024040980A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
final concentration
transfection
lentivirus
lentiviral
Prior art date
Application number
PCT/CN2023/087444
Other languages
English (en)
French (fr)
Inventor
谢海涛
方晓
马丽雅
Original Assignee
深圳市先康达生命科学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市先康达生命科学有限公司 filed Critical 深圳市先康达生命科学有限公司
Publication of WO2024040980A1 publication Critical patent/WO2024040980A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the invention relates to the technical field of lentiviral transfection, and in particular to a lentiviral transfection aid and a transfection method.
  • CAR-T cancer antigen Receptor T-Cell Immunotherapy
  • ACT adoptive cellular immunotherapy
  • TIL tumor infiltrating lymphocyte therapy
  • TCR-T engineered T cell receptor therapy
  • Chimeric antigen receptor T cells refer to the antigen-binding part of an antibody that can recognize a certain tumor antigen and the intracellular part of the CD3- ⁇ chain or Fc ⁇ RI ⁇ coupled into a chimeric protein in vitro. Gene transduction is used to transfect the patient's T cells to express chimeric antigen receptors (CAR).
  • Lentivirus is the best method for gene transduction. It has the advantages of high transduction efficiency, the ability to integrate T cell genomes and the continuous expression of target proteins. It is an advantage that cannot be matched by transfection, electroporation, retrovirus, adenovirus, etc. However, due to the characteristics of the lentivirus itself and the T cells themselves, the lentivirus carrying the target gene is blocked from entering T cells, and the positive rate of CAR-T cells cannot be guaranteed.
  • polybrene is a polycationic polymer that is commonly used in DNA transfection experiments on mammalian cells to enhance the transfection efficiency of liposomes; Polybrene is currently widely used in retrovirus-mediated gene transfection, lentivirus-mediated The mechanism of gene transfection may be to promote adsorption by neutralizing the electrostatic repulsion between sialic acid on the cell surface and virus particles. This makes it easier for the virus to bring the target gene it carries into the transfected cells, improving the transfection effect.
  • the existing lentiviral transfection aid, Polybrene is expensive and highly toxic to certain cells (such as terminally differentiated neurons, DC cells, T cells, etc.), affecting the expansion and differentiation of cells; because polybene It is a polymer additive and its residue needs to be strictly controlled, which not only increases the preparation cost but also increases the difficulty of research and development.
  • the lentivirus transfection aid of the present invention can effectively neutralize the electrostatic repulsion between sialic acid on the cell surface and virus particles, promote adsorption, and make it easy for lentivirus to enter cells, thereby effectively increasing the positive rate of CAR-T cells.
  • the lentiviral transfection promoter is non-cytotoxic.
  • the present invention provides a low-cost, low-toxicity lentiviral transfection aid and a lentiviral transfection aid-transfection method that does not require residual control.
  • a lentivirus transfection aid including a serum-free culture medium containing basic amino acids at a final concentration of 1 mg/ml to 50 mg/ml.
  • the basic amino acid includes histidine at a final concentration of 1 mg/ml to 50 mg/ml, lysine at a final concentration of 1 mg/ml to 50 mg/ml, and lysine at a final concentration of 1 mg/ml. ⁇ 50mg/ml arginine.
  • the serum-free medium is any one of DMEM, IMEM, RPMI-1640, KPM-581 and OPTMIZER TCELL EXPANSFMCTS.
  • a lentiviral transfection method including the following steps:
  • Immune cells are sorted from peripheral blood
  • the lentiviral transfection aid includes serum-free medium and a medium containing a final concentration of 1 mg/ml to 50 mg/ml. basic amino acids;
  • the serum-free medium is added in an amount of 350 ⁇ l per 1.0 ⁇ 10 6 cells, and the immune cell activation time does not exceed 24 hours.
  • the amount of the assisting transfection agent added is 5 ⁇ l to 30 ⁇ l per 1 ml of cell suspension.
  • the amount of complete medium added should maintain the cell concentration at 1.0 ⁇ 10 6 cells/ml.
  • the immune cells are T cells, and may also be NK, CIK, NKT and other cells.
  • the immune cells are preferably T cells. If T cell sorting is positive selection, CD3/CD28beads sorting activation magnetic beads are used to sort T cells; if T cell sorting is negative selection, the obtained T cells also need to be activated with CD3/CD28beads magnetic beads.
  • the transfer agent is mainly based on basic amino acids.
  • the added amino acids do not bring in other residual components and have no toxic effects on cells. They can also increase the vitality of cells and reduce the toxic side effects of lentivirus on cells, making lentivirus transduction more effective.
  • the infected immune cells have higher clinical safety;
  • Histidine, lysine and arginine in basic amino acids can neutralize the charges on immune cells and have a repulsive effect on static electricity; at the same time, they can also provide essential amino acids for cell growth;
  • Figure 1 is a flow chart of the process for transfecting immune cells with lentivirus provided by the present invention
  • Figure 2 is a graph showing the positive rate detection of CAR-T after lentivirus transfected T cells in Example 6;
  • Figure 3 is a graph showing the positive rate detection of CAR-T after lentivirus transfected T cells in Example 7;
  • Figure 4 is a graph showing the positive rate detection of CAR-T after lentivirus transfected T cells in Example 8;
  • Figure 5 is a graph showing the positive rate detection of CAR-T after lentivirus transfected T cells in Example 9;
  • Figure 6 is a graph showing the positive rate detection of CAR-T after lentivirus transfected T cells in Example 10;
  • Figure 7 is a graph showing the positive rate detection of CAR-T after lentivirus transfected T cells in Example 11;
  • Figure 8 is a graph showing the positive rate detection of CAR-T after lentivirus transfected T cells in Example 12;
  • Figure 9 is a graph showing the positive rate detection of CAR-T after lentivirus transfected T cells in Example 13;
  • Figure 10 is a graph showing the positive rate detection of CAR-T after lentivirus transfected T cells in Example 14;
  • Figure 11 is a graph showing the positive rate detection of CAR-T after lentivirus transfected T cells in Example 15;
  • Figure 12 is a graph showing the positive rate detection of NK cell negative control in Example 15;
  • Figure 13 is a growth amplification curve of lentivirus-transfected T cells in Examples 11 to 14.
  • the components of the lentivirus transfection aid provided by the invention include a serum-free culture medium containing basic amino acids at a final concentration of 1 mg/ml to 50 mg/ml.
  • This transfection aid can effectively neutralize the electrostatic repulsion between sialic acid on the cell surface and virus particles, promote adsorption, and make it easy for lentivirus to enter immune cells, thereby effectively increasing the expression of chimeric antigen receptors, such as The positive rate of CAR-T cells, and this transfer agent has no cytotoxicity.
  • the serum-free medium is any one of the serum-free medium such as DMEM, IMEM, RPMI-1640, KPM-581, OPTMIZER TCELL EXPANSFMCTS.
  • serum-free culture media scientific research-grade culture media can be used in the research and development stage, and clinical-grade culture media can be used in the clinical stage.
  • the basic amino acids include histidine, lysine and arginine; preferably, the basic amino acids include histidine at a final concentration of 1 mg/ml ⁇ 50 mg/ml and histidine at a final concentration of 1 mg/ml ⁇ 50mg/ml lysine and a final concentration of 1mg/ml ⁇ 50mg/ml arginine, or basic amino acids including a final concentration of 2mg/ml ⁇ 40mg/ml histidine and a final concentration of 2mg/ml ⁇ 40mg/ml lysine and a final concentration of 2 mg/ml ⁇ 40 mg/ml arginine, or basic amino acids including a final concentration of 5 mg/ml ⁇ 35 mg/ml histidine, a final concentration of 5 mg/ml ⁇ 35 mg/ml lysine and a final concentration of 5 mg/ml ⁇ 35mg/ml arginine, or basic amino acids including final concentration 10mg/
  • the present invention also provides a lentiviral transfection treatment process using the above-mentioned lentiviral transfection aid, which includes the following steps;
  • PBMC peripheral blood
  • the above-mentioned immune cell culture can be a culture bottle, a culture bag, or a culture dish, etc.
  • step S1 when sorting immune cells from PBMC, positive selection or negative selection can be selected, and the selected immune cells can be T cells, CIK cells, NK cells, NKT cells, DC cells, etc. If the immune cells are T cells and positive selection is used, CD3/CD28beads sorting activated magnetic beads are used to sort out T cells from PBMC; T cells are selected using a negative selection kit, and the resulting T cells need to be added with CD3/ CD28beads magnetic beads activate T cells.
  • step S2 the amount of serum-free medium added is 350 ⁇ l per 1.0 ⁇ 10 6 cells, and the activation time of immune cells does not exceed 24 hours.
  • the amount of transfection aid added is 5 ⁇ l to 30 ⁇ l per 1 ml of cell suspension; preferably Add 10 ⁇ l of transfer agent to every 1 ml of cell suspension.
  • step S5 after lentivirus transfection and culture, the amount of complete medium added is 1.0 ⁇ 10 6 cells/ml; the complete medium contains 1 to 20 v/v% FBS; preferably, the complete medium Contains 10v/v% FBS.
  • the ingredients are provided: histidine with a final concentration of 50 mg/ml, lysine with a final concentration of 10 mg/ml, arginine with a final concentration of 10 mg/ml, and the balance is OPTMIZER TCELL EXPANSFMCTS Serum-free culture base, mixed to prepare lentiviral transfection promoter B.
  • the ingredients are provided: histidine with a final concentration of 25 mg/ml, arginine with a final concentration of 1 mg/ml, arginine with a final concentration of 10 mg/ml, and the balance for RPMI-1640 serum-free culture. base, mixed to prepare lentiviral transfection promoter C.
  • the ingredients are provided: histidine with a final concentration of 1 mg/ml, lysine with a final concentration of 1 mg/ml, arginine with a final concentration of 1 mg/ml, and the balance is KPM-581 serum-free culture. base to prepare lentiviral transfection promoter E.
  • CD3/CD28beads sorting and activation magnetic beads to sort T cells from PBMC, and take 1.0 ⁇ 10 6 T cells;
  • CD3/CD28beads sorting and activation magnetic beads to sort and activate T cells from PBMC, and take 1.0 ⁇ 10 6 T cells;
  • Example 2 To the T cell suspension, add 3.5ul of Example 2 to prepare the transfer agent B;
  • CD3/CD28beads sorting and activation magnetic beads to sort T cells from PBMC, and take 1.0 ⁇ 10 6 T cells;
  • CD3/CD28beads sorting and activation magnetic beads to sort T cells from PBMC, and take 1.0 ⁇ 10 6 T cells;
  • CD3/CD28beads sorting and activation magnetic beads to sort T cells from PBMC, and take 1.0 ⁇ 10 6 T cells;
  • CD3/CD28beads sorting and activation magnetic beads to sort T cells from PBMC, and take 1.0 ⁇ 10 6 T cells;
  • CD3/CD28beads sorting and activation magnetic beads to sort T cells from PBMC, and take 1.0 ⁇ 10 6 T cells;
  • CD3/CD28beads sorting and activation magnetic beads to sort T cells from PBMC, and take 1.0 ⁇ 10 6 T cells;
  • CD3/CD28beads sorting and activation magnetic beads to sort T cells from PBMC, and take 1.0 ⁇ 10 6 T cells;
  • NK cells Resuspend 1.0 ⁇ 10 6 NK cells in 350 ⁇ l DMEM serum-free medium and activate NK cells at the same time;
  • Example 8 when the lentivirus is cultured using physiological saline alone, the transduction efficiency of the lentivirus (ie, the CAR positive rate) is 14.97%; in Example 7, physiological saline is used to culture lentivirus, and after adding transfer agent B, the CAR positive rate is 47.40%;
  • Example 8 is the existing lentivirus transfection process, which uses physiological saline to culture lentivirus. , while adding the transfer agent polybrene, the CAR positive rate was 50.03%. Therefore, it can be seen from Examples 6, 7 and 8 that the basic amino acids in the auxiliary transduction agent can promote the transduction of lentivirus, and the transduction efficiency is close to the transduction rate of the auxiliary transduction agent polybrene.
  • the co-transfer agent polybrene is commonly used for lentiviral transfection. This is because during the process of lentiviral transfection of T cells, the cationic polymer carried by polybrene can neutralize the electrons in the T cells, thus improving the lentiviral efficiency of polybrene. Transduction rate.
  • Table 1 shows the lentiviral transfection parameters and CAR positive rate of each embodiment in Examples 6 to 15.
  • the transfer aids A to E in Table 1 are the corresponding transfer aids prepared in Examples 1 to 5 respectively.
  • the transduction rate of the transfer assisting agent provided by the present invention can reach the transduction rate of the existing transfer assisting agent polybrene.
  • Example 15 uses lentivirus transfection of NT cells. Compared with Examples 6 to 14, which uses lentivirus transfection of T cells, it can be seen from Figures 11 and 12 and Table 1 that NK cells use the helper transfection agent provided by the present invention. It also has lentiviral transfection effect, but its transduction rate is relatively low, that is, the CAR positive rate is 30.81%.
  • Figure 13 is an amplification curve diagram of the CAR-T cell culture process after lentiviral transfection in Examples 11 to 14; Table 2 shows the number of corresponding cell growth in Figure 13.
  • the transfer agent of the present invention is mainly based on basic amino acids, and the added amino acids do not bring in other residual components and are non-toxic to cells.
  • the transfer agent polybrene has a certain toxicity to cells; therefore, the transfer agent provided by the present invention
  • the amplification factor of cells cultured by the auxiliary transfer agent is higher than that of adding the auxiliary transfer agent polybrene.
  • the lentivirus transfection aid of the present invention can effectively neutralize the electrostatic repulsion between sialic acid on the cell surface and virus particles, promote adsorption, and make it easy for lentivirus to enter cells, thereby effectively increasing the positive rate of CAR-T cells.
  • the lentiviral transfection aid of the present invention has no cytotoxicity and is conducive to industrial production.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

提供一种慢病毒转染助转剂及转染方法;该助转剂包括含终浓度为1mg/ml~50mg/ml碱性氨基酸的无血清培养基。这种转染助转剂,可有效中和细胞表面唾液酸与病毒颗粒之间的静电排斥,促进吸附作用,使慢病毒容易进入免疫细胞中,从而有效提高嵌合抗原受体的表达,如CAR-T细胞的阳性率,且这种助转剂没有细胞毒性,且采用该助转剂的慢病毒转染工艺,操作简单,转染完成后,无需进行去除残留操作,使得转染工艺操作更简单、方便。

Description

一种慢病毒转染助转剂及转染方法 技术领域
本发明涉及慢病毒转染技术领域,尤其涉及一种慢病毒转染助转剂及转方法。
背景技术
随着免疫治疗产业的发展,CAR-T细胞产品上市,越来越多的研究机构、医药公司投身于CAR-T的研发、临床试验和产业化制备。CAR-T细胞俨然成了最热门的研究对象之一。CAR-T疗法即嵌合抗原受体T细胞免疫疗法(Chimeric Antigen Receptor T-Cell Immunotherapy),属于过继性细胞免疫疗法(ACT)的一种,其家族还包括TIL(肿瘤浸润淋巴细胞疗法),TCR-T(工程化T细胞受体疗法),CAR-NK等方法。嵌合抗原受体T细胞(CAR-T细胞)是指将能识别某种肿瘤抗原的抗体的抗原结合部与CD3-ζ链或FcεRIγ的胞内部分在体外偶联为一个嵌合蛋白,通过基因转导的方法转染患者的T细胞,使其表达嵌合抗原受体(CAR)。
慢病毒是基因转导最好的方法,其具有转导效率高、可整合T细胞基因组并持续表达目标蛋白等优势,是转染、电转、逆转录病毒、腺病毒等无法比拟的优势。但是,由于慢病毒本身和T细胞本身的特性,使携带目的基因的慢病毒进入T细胞时受阻,无法保证CAR-T细胞的阳性率。
现如今,市售的慢病毒转染助转剂多以聚凝胺(Polybrene)为主要成分,其可提高慢病毒转染效率,有较提高CAR-T细胞的阳性率。Polybrene是一种多聚阳离子聚合物,常用于哺乳动物细胞的DNA转染实验以增强脂质体的转染效率;Polybrene目前广泛用于逆转录病毒介导的基因转染,慢病毒介导的基因转染,作用机理可能是通过中和细胞表面唾液酸与病毒颗粒之间的静电排斥从而促进吸附作用。从而使病毒更容易将携带的目的基因带来转染细胞中,提高了转染效果。
技术问题
现有慢病毒转染助转剂Polybrene的市价昂贵,且对某些细胞(如末端分化的神经元、DC细胞、T细胞等)毒性较大,对细胞的扩增、分化产生影响;由于polybene是聚合物添加剂,需严格控制其残留,增加了制备成本的同时加大了研发难度。
技术解决方案
本发明的慢病毒转染助转剂,可有效中和细胞表面唾液酸与病毒颗粒之间的静电排斥,促进吸附作用,使慢病毒容易进入细胞中,从而有效提高CAR-T细胞的阳性率,并且本发明 的慢病毒转染助转剂没有细胞毒性。
基于上述问题,本发明的提供一种成本低、毒性小且无需控制残留的慢病毒转染助转剂及慢病毒转染助转染方法。
本发明的技术方案一如下:
一种慢病毒转染助转剂,包括含终浓度为1mg/ml~50mg/ml碱性氨基酸的无血清培养基。
一实施例,慢病毒转染助转剂中,所述碱性氨基酸包括终浓度1mg/ml~50mg/ml组氨酸、终浓度1mg/ml~50mg/ml赖氨酸及终浓度1mg/ml~50mg/ml精氨酸。
一实施例,慢病毒转染助转剂中,所述无血清培养基为DMEM、IMEM、RPMI-1640、KPM-581及OPTMIZER TCELL EXPANSFMCTS中的任一种无血清培养基。
本发明的技术方案二如下:
一种慢病毒转染方法,包括如下步骤:
从外周血中分选出免疫细胞;
采用无血清培养基重悬后进行培养,并同时激活免疫细胞,得到免疫细胞悬液;
往免疫细胞悬液中加入慢病毒转染助转剂,获得免疫细胞转染悬液;其中,慢病毒转染助转剂中包括无血清培养基以及含终浓度为1mg/ml~50mg/ml碱性氨基酸;
根据MOI量,往所述免疫细胞转染悬液中加入慢病毒,进行慢病毒转染;
慢病毒转染完成后,加入完全培养基,对转染的免疫细胞进行培养。
一实施例,所述免疫细胞重悬、激活步骤中,所述无血清培养基的加入量按照每1.0×106个细胞加入350μl,且所述免疫细激活时间不超过24小时。
一实施例,所述免疫细胞转染悬液配制步骤中,助转剂的加入量为每1ml细胞悬液添加5μl~30μl。
一实施例,上述慢病毒转染步骤中,所述慢病毒的加入量为MOI=1~10,且转染时间为6~24小时。
一实施例,上述转染后的免疫细胞培养步骤中,完全培养基的加入量应保持细胞浓度为1.0×106个细胞/ml。
一实施例,上述免疫细胞为T细胞,也可以是NK、CIK、NKT等细胞。在所述免疫细胞分选步骤中,免疫细胞优选为T细胞。如果T细胞分选为阳选,则采用CD3/CD28beads分选激活磁珠分选T细胞;如果T细胞分选采用阴选,得到的T细胞还需采用CD3/CD28beads磁珠激活。
有益效果
本发明提供的慢病毒转染助转剂及使用该助转剂的转染方法,具有以下优点:
1)、助转剂以碱性氨基酸为主,添加的氨基酸未带入其它残留成分,对细胞没有毒性作用,还能提升细胞的活力,减少了慢病毒对细胞的毒副作用,使得慢病毒转染后的免疫细胞具有更高的临床安全性;
2)、碱性氨基酸以组氨酸、赖氨酸和精氨酸为主要成分,市场来源广,价格便宜,使得慢病毒转染工艺制作成本低;
3)、碱性氨基酸中的组氨酸、赖氨酸和精氨酸,可以中和免疫细胞上所带电荷,具有排斥静电作用;同时,还可以为细胞生长提供必需的氨基酸;
4)、以碱性氨基酸为助转剂的慢病毒转染工艺,操作简单,转染完成后,无需进行去除残留操作,使得转染工艺操作更简单、方便。
附图说明
图1为本发明提供的慢病毒转染免疫细胞工艺流程图;
图2为实施例6中慢病毒转染T细胞后CAR-T的阳性率检测图;
图3为实施例7中慢病毒转染T细胞后CAR-T的阳性率检测图;
图4为实施例8中慢病毒转染T细胞后CAR-T的阳性率检测图;
图5为实施例9中慢病毒转染T细胞后CAR-T的阳性率检测图;
图6为实施例10中慢病毒转染T细胞后CAR-T的阳性率检测图;
图7为实施例11中慢病毒转染T细胞后CAR-T的阳性率检测图;
图8为实施例12中慢病毒转染T细胞后CAR-T的阳性率检测图;
图9为实施例13中慢病毒转染T细胞后CAR-T的阳性率检测图;
图10为实施例14中慢病毒转染T细胞后CAR-T的阳性率检测图;
图11为实施例15中慢病毒转染T细胞后CAR-T的阳性率检测图;
图12为实施例15中NK细胞阴性对照的阳性率检测图;
图13为实施例11至14中慢病毒转染T细胞的生长扩增曲线图。
本发明的最佳实施方式
本发明提供的慢病毒转染助转剂,其组分包括以含终浓度为1mg/ml~50mg/ml碱性氨基酸的无血清培养基。这种转染助转剂,可有效中和细胞表面唾液酸与病毒颗粒之间的静电排斥,促进吸附作用,使慢病毒容易进入免疫细胞中,从而有效提高嵌合抗原受体的表达,如 CAR-T细胞的阳性率,且这种助转剂没有细胞毒性。
进一步地,无血清培养基为DMEM、IMEM、RPMI-1640、KPM-581、OPTMIZER TCELL EXPANSFMCTS等无血清培养基中的任一种。对于无血清培养基的选择,研发阶段可选用科研级培养基,临床阶段可选用临床级培养基。
进一步地,所述碱性氨基酸,其包括组氨酸、赖氨酸和精氨酸;较好地,碱性氨基酸包括终浓度1mg/ml~50mg/ml组氨酸、终浓度1mg/ml~50mg/ml赖氨酸及终浓度1mg/ml~50mg/ml精氨酸,或者碱性氨基酸包括终浓度2mg/ml~40mg/ml组氨酸、终浓度2mg/ml~40mg/ml赖氨酸及终浓度2mg/ml~40mg/ml精氨酸,或者碱性氨基酸包括终浓度5mg/ml~35mg/ml组氨酸、终浓度5mg/ml~35mg/ml赖氨酸及终浓度5mg/ml~35mg/ml精氨酸,或者碱性氨基酸包括终浓度10mg/ml~25mg/ml组氨酸、终浓度10mg/ml~25mg/ml赖氨酸及终浓度10mg/ml~25mg/ml精氨酸,或者碱性氨基酸包括终浓度12mg/ml~20mg/ml组氨酸、终浓度12mg/ml~20mg/ml赖氨酸及终浓度12mg/ml~20mg/ml精氨酸。
如图1所示,本发明还提供一种使用上述慢病毒转染助转剂进行慢病毒转染处理工艺,包括步骤如下;
S1、采集人外周血(PBMC),分选出免疫细胞;
S2、将分选出的免疫细胞用无血清培养基重悬,随后转移至培养瓶中培养并同时激活免疫细胞,得到激活后的免疫细胞悬液;
S3、往激活后的免疫细胞悬液中加入上述转染助转剂,获得免疫细胞转染悬液;
S4、根据MOI的量,往免疫细胞转染悬液中加入慢病毒,进行慢病毒转染;
S5、慢病毒转染完成后,移至培养瓶中,加入完全培养基,对慢病毒转染后的免疫细胞进行培养。
上述免疫细胞培养,可以是培养瓶、或培养袋,或培养皿等。
进一步的,步骤S1中,从PBMC中分选出免疫细胞时,可选择阳选或阴选,选出的免疫细胞可以为T细胞、CIK细胞、NK细胞、NKT细胞、DC细胞等。如果免疫细胞为T细胞且采用阳选,则从PBMC中选用CD3/CD28beads分选激活磁珠分选出T细胞;T细胞采用阴选试剂盒进行阴选,得到的T细还需加入CD3/CD28beads磁珠激活T细胞。
进一步地,步骤S2中,无血清培养基的加入量按照每1.0×106个细胞加入350μl,免疫细胞激活的时间不超过24小时。
进一步地,步骤S3中,转染助转剂的添加量为每1ml细胞悬液中加5μl~30μl;优选为 每1ml细胞悬液中加10μl助转剂。
进一步地,步骤S4中,慢病毒的加入量为MOI=1 10,且转染时间为6~24小时;最优转染时间为6小时;如果免疫细胞为CIK、NK、NKT、DC等细胞时,慢病毒的加入量可以为小于等于MOI=100。
进一步地,步骤S5中,慢病毒转染后培养,所完全培养基的加入量按照1.0×106个细胞/ml操作;完全培养基中含1~20v/v%FBS;优选完全培养基中含10v/v%FBS。
本发明的实施方式
一、慢病毒转染助转剂配制
实施例1
按照溶液中氨基酸的浓度计算,提供成分:终浓度10mg/ml的组氨酸、终浓度10mg/ml的赖氨酸、终浓度10mg/ml的精氨酸及余量为DMEM无血清培养基,混合制得慢病毒转染助转剂A。
实施例2
按照溶液中氨基酸的浓度计算,提供成分:终浓度50mg/ml的组氨酸、终浓度10mg/ml的赖氨酸、终浓度10mg/ml的精氨酸及余量为OPTMIZER TCELL EXPANSFMCTS无血清培养基,混合制得慢病毒转染助转剂B。
实施例3
按照溶液中氨基酸的浓度计算,提供成分:终浓度25mg/ml的组氨酸、终浓度1mg/ml的精氨酸、终浓度10mg/ml的精氨酸及余量为RPMI-1640无血清培养基,混合制得慢病毒转染助转剂C。
实施例4
按照溶液中氨基酸的浓度计算,提供成分:终浓度1mg/ml的组氨酸、终浓度10mg/ml的赖氨酸、终浓度50mg/ml的精氨酸及余量为IMEM无血清培养基,混合制得慢病毒转染助转剂D。
实施例5
按照溶液中氨基酸的浓度计算,提供成分:终浓度1mg/ml的组氨酸、终浓度1mg/ml的赖氨酸、终浓度1mg/ml的精氨酸及余量为KPM-581无血清培养基,制得慢病毒转染助转剂E。
二、慢病毒转染免疫细胞
实施例6
用CD3/CD28beads分选激活磁珠从PBMC中分选出T细胞,取1.0×106的T细胞;
用350μl生理盐水重悬1.0×106个T细胞,同时激活T细胞;
按MOI=3加入慢病毒,进行转染处理;
转染6小时后,按1.0×106细胞/ml加入1ml含10v/v%FBS的完全培养基,对转染后的T细胞进行培养;
培养第3天计数T细胞,按0.5×106细胞/ml补液,第5天进行流式检测CAR的阳性率为14.97%,如图2所示。
实施例7
用CD3/CD28beads分选激活磁珠分选激活磁珠从PBMC中分选出T细胞,取1.0×106的T细胞;
用350μl生理盐水重悬1.0×106个T细胞,同时激活T细胞;
往T细胞悬液中,加入3.5ul的实施例2制得助转剂B;
按MOI=5加入慢病毒,进行转染处理;
转染20小时后,按1.0×106细胞/ml加入1ml含8v/v%FBS的完全培养基,对转染后的T细胞进行培养;
培养第3天计数,按0.5×106细胞/ml补液,第5天进行流式检测CAR的阳性率47.40%,如图3所示。
实施例8
用CD3/CD28beads分选激活磁珠从PBMC中分选出T细胞,取1.0×106的T细胞;
用350μl生理盐水重悬1.0×106个T细胞,同时激活T细胞;
往T细胞悬液中,加入3.5ul的Polybrene;
按MOI=8加入慢病毒,进行转染处理;
转染6小时后,按1.0×106细胞/ml加入1ml含15v/v%FBS的完全培养基,对转染后的T细胞进行培养;
培养第3天计数,按0.5×106细胞/ml补液,第5天进行流式检测CAR的阳性率50.03%,如图4所示。
实施例9
用CD3/CD28beads分选激活磁珠从PBMC中分选出T细胞,取1.0×106的T细胞;
用350μl KPM-581无血清培养基重悬1.0×106个T细胞,同时激活T细胞;
往T细胞悬液中,加入1.75ul的实施例5制得的助转剂E;
按MOI=10加入慢病毒,进行慢病毒转染处理;
转染24小时后,按1.0×106细胞/ml加入1ml含1v/v%FBS的完全培养基,对转染后的T细胞进行培养;
培养第3天计数,按0.5×106细胞/ml补液,第5天进行流式检测CAR的阳性率28.23%,如图5所示。
实施例10
用CD3/CD28beads分选激活磁珠从PBMC中分选出T细胞,取1.0×106的T细胞;
用350μl IMEM无血清培养基重悬1.0×106个T细胞,同时激活T细胞;
往T细胞悬液中,加入6.5ul的实施例4制得的助转剂D;
按MOI=1加入慢病毒,进行慢病毒转染处理;
转染15小时后,按1.0×106细胞/ml加入1ml含20v/v%FBS的完全培养基,对转染后的T细胞进行培养;
培养第3天计数,按0.5×106细胞/ml补液,第5天进行流式检测CAR的阳性率58.67%,如图6所示。
实施例11
用CD3/CD28beads分选激活磁珠从PBMC中分选出T细胞,取1.0×106的T细胞;
用350μl RPMI-1640无血清培养基重悬1.0×106个T细胞,同时激活T细胞;
T细胞悬液中,加入4.5ul的实施例3制得的助转剂C;
按MOI=7加入慢病毒,对慢病毒进行转染处理;
转染12小时后,按1.0×106细胞/ml加入1ml含12v/v%FBS的完全培养基,对转染后的T细胞进行培养;
培养第3天计数,按0.5×106细胞/ml补液,第5天进行流式检测CAR的阳性率48.23%,如图7所示;
然后每2天进行计数补液,培养至第13天,细胞由1.0×106细胞/ml扩增到6.7×108细胞/ml,扩增倍数达到670倍,如表2和图13所示。
实施例12
用CD3/CD28beads分选激活磁珠从PBMC中分选出T细胞,取1.0×106的T细胞;
用350μl OPTMIZER TCELL EXPANSFMCTS无血清培养基重悬1.0×106个T细胞,同时激活T细胞;
T细胞悬液中,加入10.5ul的实施例2制得的助转剂B;
按MOI=6加入慢病毒,对慢病毒进行转染处;
转染8小时后,按1.0×106细胞/ml加入含5v/v%FBS的完全培养基,对转染后的T细胞进行培养;
培养第3天计数,按0.5×106细胞/ml补液,第5天进行流式检测CAR的阳性率67.27%,如图8所示;
然后每2天进行计数补液,培养至第13天,细胞由1.0×106细胞/ml扩增到7.08×108细胞/ml,扩增倍数达到708倍,如表2和图13所示。
实施例13
用CD3/CD28beads分选激活磁珠从PBMC中分选出T细胞,取1.0×106的T细胞;
用350μl DMEM无血清培养基重悬1.0×106个T细胞,同时激活T细胞;
T细胞悬液中,加入3.0ul的实施例1制得的助转剂A;
按MOI=3加入慢病毒,对慢病毒进行转染处;
转染6小时后,按1.0×106细胞/ml加入1ml含6v/v%FBS的完全培养基,对转染后的T细胞进行培养;
培养第3天计数,按0.5×106细胞/ml补液,第5天进行流式检测CAR的阳性率54.11%,如图9所示;
然后每2天进行计数补液,培养至第13天,细胞由1.0×106细胞/ml扩增到6.32×108细胞/ml,扩增倍数达到632倍,如表2和图13所示。
实施例14
用CD3/CD28beads分选激活磁珠从PBMC中分选出T细胞,取1.0×106的T细胞;
用350μl DMEM无血清培养基重悬1.0×106个T细胞,同时激活T细胞;
T细胞悬液中,加入3.5ul的助转剂Polybrene;
按MOI=6加入慢病毒,对慢病毒进行转染处;
转染8小时后,按1.0×106细胞/ml含18v/v%FBS的加入完全培养基,对转染后的T细胞进行培养;
培养第3天计数,按0.5×106细胞/ml补液,第5天进行流式检测CAR的阳性率69.20%,如图10所示;
然后每2天进行计数补液,培养至第13天,细胞由1.0×106细胞/ml扩增到5.1×108 细胞/ml,扩增倍数达到510倍,如表2和图13所示
实施例15
用分选磁珠从PBMC中分选出NK细胞,取1.0×106的NK细胞;
用350μl DMEM无血清培养基重悬1.0×106个NK细胞,同时激活NK细胞;
往NK细胞悬液中,加入3.5ul的实施例1制得的助转剂A;
按MOI=10加入慢病毒,进行慢病毒转染处理;
转染24小时后,按1.0×106细胞/ml加入1ml含15v/v%FBS的完全培养基,对转染后的NK细胞进行培养;
培养第3天计数,按0.5×106细胞/ml补液,第5天进行流式检测CAR的阳性率30.81%,如图11所示。
三、慢病毒转染试验检测
1、CAR-T和CAR-NK的阳性率检测
1.1、上述实施例6、7和8,如图2、3、4及表1所示,实施例8中,单独使用生理盐水培养慢病毒时,慢病毒的转导效率(即CAR阳性率)为14.97%;实施例7中,采用生理盐水培养慢病毒,同时加入助转剂B后,CAR阳性率为47.40%;实施例8为现有慢病毒转染流程,其采用生理盐水培养慢病毒,同时加入助转剂polybrene,CAR阳性率为50.03%。因此,由实施例6、7和8可知,助转剂中的碱性氨基酸可以促进慢病毒的转导,且转导效率与助转剂polybrene的转导率相接近。
现阶段普遍使用助转剂polybrene进行慢病毒转染,这是因为:慢病毒转染T细胞的过程中,polybrene所带阳离子聚合物可以中和T细胞中的电子,从而提升了polybrene的慢病毒转导率。
表1为实施例6至15中各实施例慢病毒转染的参数及CAR阳性率
注:表1中的助转剂A至E,分别为实施例1至5中各自对应配制的助转剂。
1.2、上述实施例9至14中,在慢病毒培养中,分别使用DMEM、IMEM、RPMI-1640、KPM-581、OPTMIZER TCELL EXPANSFMCTS等无血清培养基中的一种,而慢病毒转染助转剂则分别使用本发明实施例1至5配制的助转剂1至E及现有助转剂polybrene;由图2至10及表1可知:
1)、无血清培养基相对于生理盐水而言,有利于慢病毒转导,即CAR阳性率普遍较高;
2)、助转剂A至E在慢病毒转导中,随助转剂加入量增加,CAR阳性率也增加,也就是慢病毒转导率也在提升;
3)、本发明提供的助转剂的转导率可以达到现有助转剂polybrene的转导率。
1.3、实施例15采用NT细胞慢病毒转染,相对于实施例6至14采用T细胞慢病毒转染而言,由图11和12及表1可知,NK细胞在本发明提供的助转剂作用下,也具有慢病毒转染效果,只是其转导率相对要低一些,即CAR的阳性率30.81%。
2、转染后的CAR-T细胞扩增培养
图13为实施例11至14中慢病毒转染后,CAR-T细胞培养过程的扩增曲线图;表2为图13对应细胞生长数量。
表2转染后的CAR-T细胞生长数量统计表,(×106细胞/mL)
从表2和图13中可以看出,转染后的CAR-T细胞经过静置培养,并在培养时间的对应日进行细胞计数,在培养到第13日,通过CAR-T细胞的扩增倍数可以看出,本发明的助转剂以碱性氨基酸为主,添加的氨基酸未带入其它残留成分,对细胞无毒性,助转剂polybrene对细胞具有一定的毒性;因此,本发明提供的助转剂对细胞的培养扩增倍数比加入助转剂polybrene的扩增倍数高。
工业实用性
本发明的慢病毒转染助转剂,可有效中和细胞表面唾液酸与病毒颗粒之间的静电排斥,促进吸附作用,使慢病毒容易进入细胞中,从而有效提高CAR-T细胞的阳性率,并且本发明的慢病毒转染助转剂没有细胞毒性,有利于实行工业化生产。

Claims (13)

  1. 一种慢病毒转染助转剂,其特征在于,包括无血清培养基以及含终浓度为1mg/ml~50mg/ml碱性氨基酸。
  2. 根据权利要求1所述的慢病毒转染助转剂,其特征在于,所述碱性氨基酸包括终浓度1mg/ml~50mg/ml组氨酸、终浓度1mg/ml~50mg/ml赖氨酸及终浓度1mg/ml~50mg/ml精氨酸,或者所述碱性氨基酸包括终浓度2mg/ml~40mg/ml组氨酸、终浓度2mg/ml~40mg/ml赖氨酸及终浓度2mg/ml~40mg/ml精氨酸,或者所述碱性氨基酸包括终浓度5mg/ml~35mg/ml组氨酸、终浓度5mg/ml~35mg/ml赖氨酸及终浓度5mg/ml~35mg/ml精氨酸,或者所述碱性氨基酸包括终浓度10mg/ml~25mg/ml组氨酸、终浓度10mg/ml~25mg/ml赖氨酸及终浓度10mg/ml~25mg/ml精氨酸。
  3. 根据权利要求1所述的慢病毒转染助转剂,其特征在于,所述碱性氨基酸包括终浓度10mg/ml组氨酸、终浓度10mg/ml赖氨酸及终浓度10mg/ml精氨酸;所述无血清培养基为DMEM,或者所述碱性氨基酸包括终浓度50mg/ml组氨酸、终浓度10mg/ml赖氨酸及终浓度10mg/ml精氨酸;所述无血清培养基为OPTMIZER TCELL EXPANSFMCTS,或者所述碱性氨基酸包括终浓度25mg/ml组氨酸、终浓度1mg/ml赖氨酸及终浓度10mg/ml精氨酸;所述无血清培养基为RPMI-1640,或者所述碱性氨基酸包括终浓度1mg/ml组氨酸、终浓度10mg/ml赖氨酸及终浓度50mg/ml精氨酸;所述无血清培养基为IMEM,或者所述碱性氨基酸包括终浓度1mg/ml组氨酸、终浓度1mg/ml赖氨酸及终浓度1mg/ml精氨酸;所述无血清培养基为KPM-581。
  4. 根据权利要求1至3任一所述的慢病毒转染助转剂,其特征在于,所述无血清培养基为DMEM、IMEM、RPMI-1640、KPM-581及OPTMIZER TCELL EXPANSFMCTS中的任一种。
  5. 一种慢病毒转染方法,其特征在于,包括如下步骤:
    从外周血中分选出免疫细胞;
    采用无血清培养基重悬后进行培养,并同时激活免疫细胞,得到免疫细胞悬液;
    往免疫细胞悬液中加入慢病毒转染助转剂,获得免疫细胞转染悬液;其中,所述慢病毒转染助转剂中包括无血清培养基以及含终浓度为1mg/ml~50mg/ml碱性氨基酸;
    根据MOI量,往所述免疫细胞转染悬液中加入慢病毒,进行慢病毒转染;
    慢病毒转染完成后,加入完全培养基,对慢病毒转染的免疫细胞进行培养。
  6. 根据权利要求5所述的慢病毒转染方法,其特征在于,所述免疫细胞重悬、激活步骤中,所述无血清培养基的加入量按照每1.0×106个细胞加入350μl。
  7. 根据权利要求5所述的慢病毒转染方法,其特征在于,所述免疫细胞重悬、激活步骤中,且所述免疫细胞激活时间不超过24小时。
  8. 根据权利要求5所述的慢病毒转染方法,其特征在于,所述免疫细胞转染悬液配制步骤中,所述转染助转剂的加入量为每1ml免疫细胞悬液添加5μl~30μl。
  9. 根据权利要求5所述的慢病毒转染方法,其特征在于,所述慢病毒转染步骤中,所述慢病毒的加入量为MOI=1~10,且慢病毒转染时间为6~24小时。
  10. 根据权利要求5所述的慢病毒转染方法,其特征在于,所述慢病毒转染后的免疫细胞培养步骤中,完全培养基的加入量应保持细胞浓度为1.0×106个细胞/ml。
  11. 根据权利要求5至10任一所述的慢病毒转染方法,其特征在于,所述免疫细胞为T细胞、CIK细胞、NK细胞、NKT细胞、DC细胞。
  12. 根据权利要求11所述的慢病毒转染方法,其特征在于,所述免疫细胞分选步骤中,如果T细胞分选为阳选,则采用CD3/CD28beads分选激活磁珠分选T细胞;如果T细胞分选采用阴选,得到的T细胞还需采用CD3/CD28beads磁珠激活。
  13. 根据权利要求5所述的慢病毒转染方法,其特征在于,所述完全培养基中含1~20v/v%FBS。
PCT/CN2023/087444 2022-08-25 2023-04-11 一种慢病毒转染助转剂及转染方法 WO2024040980A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211023688.6 2022-08-25
CN202211023688.6A CN115109801B (zh) 2022-08-25 2022-08-25 一种慢病毒转染助转剂及其应用

Publications (1)

Publication Number Publication Date
WO2024040980A1 true WO2024040980A1 (zh) 2024-02-29

Family

ID=83336080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087444 WO2024040980A1 (zh) 2022-08-25 2023-04-11 一种慢病毒转染助转剂及转染方法

Country Status (2)

Country Link
CN (1) CN115109801B (zh)
WO (1) WO2024040980A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109801B (zh) * 2022-08-25 2022-11-22 深圳市先康达生命科学有限公司 一种慢病毒转染助转剂及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143548A (ja) * 1998-11-16 2000-05-23 Univ Of Iowa Research Foundation レトロウイルスの感染性を増大させるための方法および組成物
US20160168590A1 (en) * 2013-07-18 2016-06-16 Children's Hospital Medical Center Methods of improving titer in transfection-based production systems using eukaryotic cells
CN106190971A (zh) * 2015-04-29 2016-12-07 李昂 用于过继性免疫细胞的无血清培养基
CN108103105A (zh) * 2017-12-29 2018-06-01 深圳市茵冠生物科技有限公司 一种car-t细胞的制备方法、制得的car-t细胞及其应用
CN109593724A (zh) * 2018-12-24 2019-04-09 徐州医科大学 一种增强携带car基因慢病毒感染人t细胞效率的新方法
CN109868260A (zh) * 2019-04-16 2019-06-11 上海汉尼生物细胞技术有限公司 一种car-t细胞的制备方法
CN109890959A (zh) * 2016-09-30 2019-06-14 生命技术公司 慢病毒生产用的无血清悬浮液系统
WO2022159662A1 (en) * 2021-01-21 2022-07-28 Regenxbio Inc. Improved production of recombinant polypeptides and viruses
CN115109801A (zh) * 2022-08-25 2022-09-27 深圳市先康达生命科学有限公司 一种慢病毒转染助转剂及其应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670347A (en) * 1994-05-11 1997-09-23 Amba Biosciences Llc Peptide-mediated gene transfer
JPH08308574A (ja) * 1995-05-19 1996-11-26 Ube Ind Ltd 細胞への遺伝子導入方法
EP0953041A4 (en) * 1996-08-30 2003-01-29 Life Technologies Inc SERUM-FREE CULTURAL MEDIUM FOR MAMMAL CELLS AND THEIR USE
US20030096414A1 (en) * 2001-03-27 2003-05-22 Invitrogen Corporation Culture medium for cell growth and transfection
JP2005287309A (ja) * 2004-03-31 2005-10-20 Dnavec Research Inc 遺伝子導入を増強するための薬剤および方法
DE102005030986B4 (de) * 2005-07-02 2011-06-22 Ernst 64342 Stetter Verwendung rotierender magnetische Nanopartikel
CN101575412B (zh) * 2009-06-12 2011-05-11 武汉大学 超支化聚氨基酸及其制备方法和应用
WO2013166339A1 (en) * 2012-05-02 2013-11-07 Life Technologies Corporation High yield transient expression in mammalian cells using unique pairing of high density growth and transfection medium and expression enhancers
JP7305115B2 (ja) * 2019-02-11 2023-07-10 エクセルジェネ エス.ア. 新規な真核細胞形質転換システムシステム及び関連する方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143548A (ja) * 1998-11-16 2000-05-23 Univ Of Iowa Research Foundation レトロウイルスの感染性を増大させるための方法および組成物
US20160168590A1 (en) * 2013-07-18 2016-06-16 Children's Hospital Medical Center Methods of improving titer in transfection-based production systems using eukaryotic cells
CN106190971A (zh) * 2015-04-29 2016-12-07 李昂 用于过继性免疫细胞的无血清培养基
CN109890959A (zh) * 2016-09-30 2019-06-14 生命技术公司 慢病毒生产用的无血清悬浮液系统
CN108103105A (zh) * 2017-12-29 2018-06-01 深圳市茵冠生物科技有限公司 一种car-t细胞的制备方法、制得的car-t细胞及其应用
CN109593724A (zh) * 2018-12-24 2019-04-09 徐州医科大学 一种增强携带car基因慢病毒感染人t细胞效率的新方法
CN109868260A (zh) * 2019-04-16 2019-06-11 上海汉尼生物细胞技术有限公司 一种car-t细胞的制备方法
WO2022159662A1 (en) * 2021-01-21 2022-07-28 Regenxbio Inc. Improved production of recombinant polypeptides and viruses
CN115109801A (zh) * 2022-08-25 2022-09-27 深圳市先康达生命科学有限公司 一种慢病毒转染助转剂及其应用

Also Published As

Publication number Publication date
CN115109801A (zh) 2022-09-27
CN115109801B (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN105602992B (zh) 一种基于复制缺陷性重组慢病毒的car-t转基因载体及其构建方法和应用
KR20170092567A (ko) 형질도입 및 세포 프로세싱을 위한 방법
US9670459B2 (en) Production method for cell populations
CA3108657A1 (en) Processes for generating engineered cells and compositions thereof
WO2024040980A1 (zh) 一种慢病毒转染助转剂及转染方法
WO2018223601A1 (zh) 基于octs-car的抗psca及pdl1双靶向嵌合抗原受体、编码基因及表达载体
CN105949316B (zh) 抗EGFRvIII嵌合抗原受体、编码基因、重组表达载体及其构建方法和应用
CA3117568A1 (en) Methods for selection and stimulation of cells and apparatus for same
CN111566221B (zh) 用于nk细胞转导的方法
US11524988B2 (en) Artificial antigen presenting cells for genetic engineering of immune cells
CN105820254B (zh) 抗cd138嵌合抗原受体、编码基因、重组表达载体及其构建方法和应用
WO2021155670A1 (zh) 治疗血液肿瘤合并hiv感染的双特异性嵌合抗原受体
WO2009139413A1 (ja) サイトカイン誘導キラー細胞含有細胞集団の製造方法
CN105950663B (zh) 一种靶向cd30的复制缺陷性重组慢病毒car-t转基因载体及其构建方法和应用
CN112626027A (zh) 一种Treg细胞培养方法
CN111954684A (zh) Car-t细胞与自身免疫性疾病
CN107987173B (zh) 双靶点嵌合抗原受体、其编码基因、具有该基因质粒、免疫t效应细胞及hiv-1应用
CN105950662B (zh) 一种靶向cd22的复制缺陷性重组慢病毒car-t转基因载体及其构建方法和应用
WO2023217145A1 (zh) 抗原短肽用于筛选治疗与hpv相关的疾病的药物中的用途及其筛选的tcr
WO2023010961A1 (zh) 一种封闭抗体及其在制备靶向t细胞表达抗原的car-t细胞中的应用
CN105969805B (zh) 一种靶向Mesothelin的复制缺陷性重组慢病毒CAR-T转基因载体及其构建方法和应用
CN115595310A (zh) Nk细胞的滋养细胞、其制备方法和应用
CN109535241B (zh) Dc-cik共培养细胞及其制备方法、致敏抗原和应用
WO2018032619A1 (zh) 可溶性蛋白baff在b细胞体外培养及扩增的应用
CN112430575A (zh) 通用型car-t细胞及其制备方法、应用以及抗肿瘤药物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856075

Country of ref document: EP

Kind code of ref document: A1