WO2024040905A1 - 水热制备磷酸锰铁的方法及其应用 - Google Patents
水热制备磷酸锰铁的方法及其应用 Download PDFInfo
- Publication number
- WO2024040905A1 WO2024040905A1 PCT/CN2023/079083 CN2023079083W WO2024040905A1 WO 2024040905 A1 WO2024040905 A1 WO 2024040905A1 CN 2023079083 W CN2023079083 W CN 2023079083W WO 2024040905 A1 WO2024040905 A1 WO 2024040905A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- manganese
- iron
- solution
- ferricyanide
- phosphate
- Prior art date
Links
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 229910000616 Ferromanganese Inorganic materials 0.000 title claims abstract description 34
- 229910019142 PO4 Inorganic materials 0.000 title claims abstract description 33
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 title claims abstract description 32
- 239000010452 phosphate Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title abstract description 4
- 239000000243 solution Substances 0.000 claims abstract description 60
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 48
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 44
- 238000006243 chemical reaction Methods 0.000 claims abstract description 42
- 239000002244 precipitate Substances 0.000 claims abstract description 30
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 25
- 239000011572 manganese Substances 0.000 claims abstract description 24
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 22
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 19
- 239000012266 salt solution Substances 0.000 claims abstract description 18
- YAGKRVSRTSUGEY-UHFFFAOYSA-N ferricyanide Chemical compound [Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] YAGKRVSRTSUGEY-UHFFFAOYSA-N 0.000 claims abstract description 17
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 16
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 16
- 150000002505 iron Chemical class 0.000 claims abstract description 16
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 16
- 229910052742 iron Inorganic materials 0.000 claims abstract description 12
- 150000002696 manganese Chemical class 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910001868 water Inorganic materials 0.000 claims abstract description 7
- 239000000047 product Substances 0.000 claims description 15
- DVATZODUVBMYHN-UHFFFAOYSA-K lithium;iron(2+);manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[Fe+2].[O-]P([O-])([O-])=O DVATZODUVBMYHN-UHFFFAOYSA-K 0.000 claims description 14
- 238000001556 precipitation Methods 0.000 claims description 13
- -1 manganese ferricyanide Chemical compound 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 10
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 8
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 7
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 6
- 239000011790 ferrous sulphate Substances 0.000 claims description 6
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 6
- 229940099596 manganese sulfate Drugs 0.000 claims description 6
- 235000007079 manganese sulphate Nutrition 0.000 claims description 6
- 239000011702 manganese sulphate Substances 0.000 claims description 6
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims description 6
- GTSHREYGKSITGK-UHFFFAOYSA-N sodium ferrocyanide Chemical compound [Na+].[Na+].[Na+].[Na+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] GTSHREYGKSITGK-UHFFFAOYSA-N 0.000 claims description 6
- 239000000264 sodium ferrocyanide Substances 0.000 claims description 6
- 235000012247 sodium ferrocyanide Nutrition 0.000 claims description 6
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 5
- DCXPBOFGQPCWJY-UHFFFAOYSA-N trisodium;iron(3+);hexacyanide Chemical compound [Na+].[Na+].[Na+].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCXPBOFGQPCWJY-UHFFFAOYSA-N 0.000 claims description 5
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 4
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 4
- 229960002089 ferrous chloride Drugs 0.000 claims description 4
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims description 4
- 235000002867 manganese chloride Nutrition 0.000 claims description 4
- 239000011565 manganese chloride Substances 0.000 claims description 4
- 229940099607 manganese chloride Drugs 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 3
- 229910001416 lithium ion Inorganic materials 0.000 claims description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 2
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 claims description 2
- 239000000276 potassium ferrocyanide Substances 0.000 claims description 2
- XOGGUFAVLNCTRS-UHFFFAOYSA-N tetrapotassium;iron(2+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] XOGGUFAVLNCTRS-UHFFFAOYSA-N 0.000 claims description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims 2
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 claims 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 claims 1
- 238000002156 mixing Methods 0.000 abstract description 4
- 235000021317 phosphate Nutrition 0.000 description 28
- 238000003756 stirring Methods 0.000 description 13
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 8
- 230000035484 reaction time Effects 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 239000012265 solid product Substances 0.000 description 6
- 238000005245 sintering Methods 0.000 description 5
- 239000010406 cathode material Substances 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 229910000398 iron phosphate Inorganic materials 0.000 description 4
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- ILXAVRFGLBYNEJ-UHFFFAOYSA-K lithium;manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[O-]P([O-])([O-])=O ILXAVRFGLBYNEJ-UHFFFAOYSA-K 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002697 manganese compounds Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- ZWXLZABZHZXDGX-UHFFFAOYSA-N P(O)(O)(O)=O.[Mn].[Fe].[Li] Chemical compound P(O)(O)(O)=O.[Mn].[Fe].[Li] ZWXLZABZHZXDGX-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ZSYNKHJUSDFTCQ-UHFFFAOYSA-N [Li].[Fe].P(O)(O)(O)=O Chemical compound [Li].[Fe].P(O)(O)(O)=O ZSYNKHJUSDFTCQ-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007323 disproportionation reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 229910001447 ferric ion Inorganic materials 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention belongs to the technical field of lithium battery cathode material precursors, and specifically relates to a method for hydrothermally preparing ferromanganese phosphate and its application.
- Lithium iron phosphate has a relatively regular olivine structure, which allows it to have the advantages of large discharge capacity, low price, non-toxicity and less environmental pollution.
- phosphoric acid Lithium iron has the disadvantages of low electronic conductivity, small lithium ion diffusion coefficient, and low material tap density, which greatly limits the application of lithium iron phosphate.
- manganese compounds are currently introduced into lithium iron phosphate to form a solid solution of lithium iron manganese phosphate. Since manganese compounds have higher electrochemical reaction voltage and better electrolyte compatibility, phosphoric acid Lithium iron manganese solid solution achieves better capacitance and cycle effects.
- lithium iron manganese phosphate There are currently many synthesis methods for lithium iron manganese phosphate, which are basically similar to the synthesis of lithium iron phosphate.
- There is a pure solid-phase method which involves directly sintering phosphorus source, iron source, manganese source, lithium source and other raw materials to obtain lithium manganese iron phosphate.
- Its disadvantage is that it cannot achieve uniform mixing of manganese and iron at the atomic level, and the prepared lithium manganese iron phosphate has poor charging constant voltage section and rate discharge performance.
- Chinese patent application CN105226273A discloses a lithium iron manganese phosphate and a preparation method thereof.
- the lithium iron phosphate sol and the lithium manganese phosphate sol are respectively prepared by the sol-gel method; and then the lithium iron phosphate sol and the lithium manganese phosphate sol are prepared in an inert atmosphere. Calcined to obtain lithium iron manganese phosphate.
- This method can easily prepare lithium iron manganese phosphate with any ratio of manganese to iron. Production convenience. However, this process is obtained by co-sintering lithium iron phosphate and lithium manganese phosphate. It is difficult to distribute the two substances evenly. It is easy for ferromanganese to be enriched alone, resulting in phase separation, which affects the performance of electrical properties.
- the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art.
- the present invention proposes a method for hydrothermally preparing ferromanganese phosphate and its application. This method can prepare a ferromanganese phosphate precursor with a relatively uniform distribution of ferromanganese, so that the lithium ferromanganese phosphate obtained by subsequent sintering has a higher Specific capacity and cycle performance.
- a method for hydrothermally preparing ferromanganese phosphate which includes the following steps:
- the iron salt in the iron salt solution is selected from ferrous iron At least one of salt or ferric salt;
- step S3 After the hydrothermal reaction in step S2 is completed, the solid and liquid are separated, and the obtained solid is dried to obtain the ferric manganese phosphate.
- the ferricyanide solution is a solution containing at least one of sodium ferrocyanide, potassium ferrocyanide, sodium ferricyanide or potassium ferricyanide.
- the iron salt in the iron salt solution is selected from at least one of iron sulfate, ferrous sulfate, iron nitrate, ferrous nitrate, ferric chloride or ferrous chloride. kind.
- the iron salt solution is a divalent iron salt solution.
- the manganese salt in the manganese salt solution is selected from at least one of manganese sulfate, manganese nitrate or manganese chloride.
- the concentration of the ferricyanide solution is 0.01-1 mol/L; the concentration of the iron salt solution is 0.01-1 mol/L; the concentration of the manganese salt solution is 0.01-1mol/L.
- step S1 the ferricyanide solution is added at a flow rate of 25-50 mL/h.
- the iron-to-manganese ratio of the target product is ⁇ 0.5.
- the iron-manganese ratio of the target product is (0.5-4):1.
- step S2 the stirring speed is 50-150 r/min.
- step S2 the temperature of the hydrothermal reaction is 140-150°C. Further, the hydrothermal reaction time is 12-18 hours.
- the concentration of the phosphoric acid solution is 0.5-1.0 mol/L
- the concentration of the nitric acid solution is 0.5-1.0 mol/L
- the molar amount of phosphoric acid and nitric acid added is controlled.
- the ratio is 1: (2.2-3.0)
- the pH of the hydrothermal reaction is controlled to be 1.8-2.0.
- step S3 the drying is vacuum drying, the drying temperature is 120-150°C, and the drying time is 2-4 hours.
- the invention also provides the application of the method in preparing lithium iron manganese phosphate or lithium ion battery.
- the present invention first utilizes ferricyanide to react with ferrous salts/iron salts and manganese salts respectively to generate corresponding ferrous/ferricyanide salt precipitates (Mn 2 [Fe(CN) 6 ], Fe 2 [Fe(CN) ) 6 ], Mn 3 [Fe(CN) 6 ] 2 , Fe 3 [Fe(CN) 6 ] 2, etc.), relatively pure precipitated compounds can be obtained after simple washing; by mixing the corresponding precipitated compounds, iron After manganese is proportioned, it undergoes a hydrothermal reaction with nitric acid and phosphoric acid to generate corresponding ferromanganese phosphate, carbon dioxide, nitrogen and water. The entire hydrothermal reaction does not produce other impurity ions, and the obtained ferromanganese phosphate has high purity.
- the reaction principle is as follows:
- reaction equation for precipitation preparation is as follows: [Fe(CN) 6 ] 4- +2Mn 2+ ⁇ Mn 2 [Fe(CN) 6 ] ⁇ ; [Fe(CN) 6 ] 4- +2Fe 2+ ⁇ Fe 2 [Fe(CN) 6 ] ⁇ ; 2[Fe(CN) 6 ] 3- +3Mn 2+ ⁇ Mn 3 [Fe(CN) 6 ] 2 ⁇ ; 2[Fe(CN) 6 ] 3- +3Fe 2+ ⁇ Fe 3 [Fe(CN) 6 ] 2 ⁇ ;
- the hydrothermal reaction equation is as follows: 5Mn 2 [Fe(CN) 6 ]+33NO 3 - +15PO 4 3- +78H + ⁇ 10MnPO 4 ⁇ +5FePO 4 ⁇ +30CO 2 ⁇ +31.5N 2 ⁇ +39H 2 O; 5Fe 2 [Fe(CN) 6 ]+33NO 3 - +15PO 4 3- +78H + ⁇ 15FePO 4 ⁇ +30CO 2 ⁇ +31.5N 2 ⁇ +39H 2 O; 5Mn 3 [Fe(CN) 6 ] 2 +63NO 3 - +25PO 4 3- +138H + ⁇ 15MnPO 4 ⁇ +10FePO 4 ⁇ +60CO 2 ⁇ +61.5N 2 ⁇ +69H 2 O; 5Fe 3 [Fe(CN) 6 ] 2 +63NO 3 - +25PO 4 3- +138H + ⁇ 25FePO 4 ⁇ +60CO 2 ⁇ +61.5N 2 ⁇ +69H 2 O; 5F
- iron and manganese co-precipitate with phosphate in a positive trivalent state to form ferromanganese phosphate, which avoids the subsequent shortage of phosphorus sources due to the precipitation of divalent cations and the need for additional supplementation.
- ferricyanide salts inhibits the direct precipitation of ferric ions and phosphates, and uses nitric acid and phosphoric acid to mix cyanide-breaking reactions to slow down the It increases the precipitation rate of iron phosphate, enables iron and manganese to co-precipitate, improves the uniformity of iron and manganese mixing, and lays the foundation for improving the specific capacity and cycle performance of lithium manganese iron phosphate cathode materials.
- Figure 1 is a SEM image of ferric manganese phosphate prepared in Example 1 of the present invention.
- a ferromanganese phosphate is prepared.
- the specific process is:
- Step 1 prepare a sodium ferrocyanide solution with a concentration of 0.5mol/L;
- Step 2 prepare a ferrous sulfate solution with a concentration of 0.5mol/L
- Step 3 Prepare a manganese sulfate solution with a concentration of 0.5mol/L
- Step 4 Add the solution prepared in step 1 to the solutions prepared in step 2 and step 3 respectively at a flow rate of 35 mL/h until no precipitation occurs, and the two corresponding precipitates are obtained;
- Step 5 Collect the precipitates by centrifugation, and wash the precipitates with deionized water
- Step 6 Mix the two precipitates according to the iron-manganese ratio of 1:1, and then add them to the closed reaction kettle;
- Step 7 Add pure water to the reaction kettle until it covers the sediment, start stirring the reaction kettle, and control the stirring speed to 100r/min;
- Step 8 Seal the reaction kettle for hydrothermal reaction, control the reaction temperature to 145°C, and continuously add a phosphoric acid solution with a concentration of 1.0mol/L and a nitric acid solution with a concentration of 1.0mol/L into the reaction kettle to control the phosphoric acid and nitric acid.
- the ratio of the addition amount is 1:2.2, the pH in the control kettle is 1.8-2.0, and the reaction time is 15h;
- Step 9 After the reaction is completed, the solid and liquid are separated, and the solid product is vacuum dried at 135°C for 3 hours to obtain the ferromanganese phosphate product.
- a ferromanganese phosphate is prepared.
- the specific process is:
- Step 1 Prepare a potassium ferricyanide solution with a concentration of 1 mol/L
- Step 2 prepare a ferrous chloride solution with a concentration of 1 mol/L
- Step 3 Prepare a manganese chloride solution with a concentration of 1 mol/L
- Step 4 Add the solution prepared in step 1 to the solutions prepared in step 2 and step 3 respectively at a flow rate of 25 mL/h until no precipitation occurs, and the two corresponding precipitates are obtained;
- Step 5 Collect the precipitates by centrifugation, and wash the precipitates with deionized water
- Step 6 Mix the two precipitates according to the iron-manganese ratio of 1:1, and then add them to the closed reaction kettle;
- Step 7 Add pure water to the reaction kettle until it covers the sediment, start stirring the reaction kettle, and control the stirring speed to 50 r/min;
- Step 8 Seal the reaction kettle for hydrothermal reaction, control the reaction temperature to 140°C, and continuously add a phosphoric acid solution with a concentration of 0.5mol/L and a nitric acid solution with a concentration of 0.5mol/L into the reaction kettle to control the phosphoric acid and nitric acid.
- the ratio of the addition amount is 1:2.52, the pH in the control kettle is 1.8-2.0, and the reaction time is 18h;
- Step 9 After the reaction is completed, the solid and liquid are separated, and the solid product is vacuum dried at 150°C for 2 hours to obtain the ferromanganese phosphate product.
- a ferromanganese phosphate is prepared.
- the specific process is:
- Step 1 Prepare sodium ferrocyanide solution and sodium ferricyanide solution with a concentration of 0.01 mol/L;
- Step 2 prepare a ferrous sulfate solution with a concentration of 0.01mol/L;
- Step 3 Prepare a manganese sulfate solution with a concentration of 0.01 mol/L.
- Step 4 Add the sodium ferricyanide solution prepared in step 1 to the solution prepared in step 2 at a flow rate of 50 mL/h. Add the sodium ferricyanide solution prepared in step 1 to the solution prepared in step 3 at a flow rate of 50 mL/h. , until no precipitation occurs, and the corresponding two precipitates are obtained;
- Step 5 Collect the precipitates by centrifugation, and wash the precipitates with deionized water
- Step 6 Mix the two precipitates according to the iron-manganese ratio of 1:1, and then add them to the closed reaction kettle;
- Step 7 Add pure water to the reaction kettle until it covers the sediment, start stirring the reaction kettle, and control the stirring speed to 150r/min;
- Step 8 Seal the reaction kettle for hydrothermal reaction, control the reaction temperature to 150°C, and continuously add a phosphoric acid solution with a concentration of 1.0mol/L and a nitric acid solution with a concentration of 1.0mol/L into the reaction kettle to control the phosphoric acid and nitric acid.
- the ratio of the addition amount is 1:2.44, the pH in the control kettle is 1.8-2.0, and the reaction time is 12h;
- Step 9 After the reaction is completed, the solid and liquid are separated, and the solid product is vacuum dried at 120°C for 4 hours to obtain the ferromanganese phosphate product.
- Example 2 a ferromanganese phosphate was prepared.
- the difference from Example 1 is that sodium ferrocyanide was not added to prepare the precipitate, and the hydrothermal reaction was directly carried out.
- the specific process is:
- Step 1 prepare a ferrous sulfate solution with a concentration of 0.5mol/L;
- Step 2 prepare a manganese sulfate solution with a concentration of 0.5mol/L;
- Step 3 Mix the two solutions according to the iron-manganese ratio of 1:1 and add them to the closed reaction kettle;
- Step 4 Start stirring the reactor and control the stirring speed to 100r/min;
- Step 5 Seal the reaction kettle for hydrothermal reaction, control the reaction temperature to 145°C, and continue to add a phosphoric acid solution with a concentration of 1.0 mol/L and a hydrogen peroxide solution with a concentration of 1.0 mol/L into the reaction kettle to control the phosphoric acid
- the ratio to the amount of hydrogen peroxide added is 1:2.2, the pH in the kettle is controlled to 1.8-2.0, and the reaction time is 15h;
- Step 6 After the reaction is completed, the solid and liquid are separated, and the solid product is vacuum dried at 135°C for 3 hours to obtain the ferromanganese phosphate product.
- This embodiment prepares a ferromanganese phosphate.
- the difference from Example 2 is that potassium ferricyanide is not added to prepare the precipitate, and the hydrothermal reaction is directly performed.
- the specific process is:
- a method for preparing ferromanganese phosphate hydrothermally including the following steps:
- Step 1 Prepare a ferrous chloride solution with a concentration of 1 mol/L
- Step 2 prepare a manganese chloride solution with a concentration of 1 mol/L;
- Step 3 Mix the two solutions according to the iron-manganese ratio of 1:1 and add them to the closed reaction kettle;
- Step 4 Start stirring the reactor and control the stirring speed to 50r/min;
- Step 5 Seal the reaction kettle for hydrothermal reaction, control the reaction temperature to 140°C, and continuously add a phosphoric acid solution with a concentration of 0.5mol/L and a hydrogen peroxide solution with a concentration of 0.5mol/L into the reaction kettle to control the phosphoric acid
- the ratio to the amount of hydrogen peroxide added is 1:2.52, the pH in the kettle is controlled to be 1.8-2.0, and the reaction time is 18h;
- Step 6 After the reaction is completed, the solid and liquid are separated, and the solid product is vacuum dried at 150°C for 2 hours to obtain the ferromanganese phosphate product.
- This embodiment prepares a ferromanganese phosphate.
- the difference from Example 3 is that sodium ferrocyanide is not added to prepare the precipitate, and the hydrothermal reaction is directly performed.
- the specific process is:
- Step 1 prepare a ferrous sulfate solution with a concentration of 0.01mol/L;
- Step 2 Prepare a manganese sulfate solution with a concentration of 0.01 mol/L.
- Step 3 Mix the two solutions according to the iron-manganese ratio of 1:1 and add them to the closed reaction kettle;
- Step 4 Start stirring the reactor and control the stirring speed to 150r/min;
- Step 5 Seal the reaction kettle for hydrothermal reaction, control the reaction temperature to 150°C, and continue to add a phosphoric acid solution with a concentration of 1.0 mol/L and a hydrogen peroxide solution with a concentration of 1.0 mol/L into the reaction kettle to control the phosphoric acid
- the ratio to the amount of hydrogen peroxide added is 1:2.44, the pH in the kettle is controlled to be 1.8-2.0, and the reaction time is 12 hours;
- Step 6 After the reaction is completed, the solid and liquid are separated, and the solid product is vacuum dried at 120°C for 4 hours to obtain the ferromanganese phosphate product.
- acetylene black is used as the conductive agent and PVDF is used as the binder.
- the materials are mixed according to the mass ratio of 8:1:1, and a certain amount of organic solvent NMP is added, stirred and then coated. Covered on aluminum foil to make a positive
- the pole piece and the negative electrode are made of metallic lithium sheets;
- the separator is Celgard2400 polypropylene porous membrane;
- the solvent in the electrolyte is a solution composed of EC, DMC and EMC in a mass ratio of 1:1:1, the solute is LiPF 6 , and the concentration of LiPF 6 is 1.0 mol/L; Assemble the 2023 button cell in the glove box.
- the charge and discharge cycle performance of the battery was tested, and the discharge specific capacity of 0.2C and 1C was tested in the cut-off voltage range of 2.2-4.3V.
- the electrochemical performance test results are shown in Table 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开一种水热制备磷酸锰铁的方法及其应用,将铁氰化物溶液分别加入到铁盐溶液和锰盐溶液中进行反应,得到两种沉淀物,将两种沉淀物混合并分散于水中,持续加入磷酸溶液和硝酸溶液进行水热反应,即得所述磷酸锰铁。本发明利用铁氰化物分别与铁盐和锰盐反应,生成对应的铁氰化物盐沉淀,沉淀混合进行铁锰配比,与硝酸、磷酸进行水热反应生成磷酸锰铁,使铁锰达到共沉淀,提高了铁锰混合的均匀性。
Description
本发明属于锂电池正极材料前驱体技术领域,具体涉及一种水热制备磷酸锰铁的方法及其应用。
磷酸铁锂具有较为规则的橄榄石型结构,使得磷酸铁锂获得放电容量大、价格低廉、无毒性且不易对环境造成污染的优点,但由于其结构的限制,在应用于电池中时,磷酸铁锂存在电子导电率较低,锂离子扩散系数较小,材料振实密度较低的缺点,极大地限制了磷酸铁锂的应用。为了拓宽磷酸铁锂的应用,目前采用在磷酸铁锂中引入锰系化合物,形成磷酸锰铁锂固溶体,由于锰系化合物具有较高的电化学反应电压和较佳的电解质相容性,使得磷酸锰铁锂固溶体获得较佳的电容量以及循环效果。
目前磷酸锰铁锂的合成方法有很多,基本类似磷酸铁锂的合成。有纯固相法,包括直接使用磷源、铁源、锰源、锂源等原料烧结得到磷酸锰铁锂,也有先合成磷酸锰作为锰源和部分磷源,再将磷酸锰、铁源、锂源混合,烧结得到磷酸亚锰铁锂。其缺点在于不能实现锰、铁在原子层面的均匀混合,制备出来的磷酸锰铁锂的充电恒压段和倍率放电性能较差。由于磷酸锰与磷酸铁的Ksp不同,沉淀速率与pH不同,直接采用共沉淀法制取磷酸锰铁还存在锰铁难以形成共沉淀物的问题。
目前,有人采用有机相来沉淀制备磷酸锰铁,但该法产量低,易产生爆炸风险,危险性较高。且合成的磷酸锰铁中的锰多以二价锰存在,在后续与锂源烧结时,还需要另外补加磷源。而直接制备的三价锰在溶液中易发生歧化反应,生成二价锰和四价锰,产品的纯度不高。
中国专利申请CN105226273A公开了一种磷酸锰铁锂及其制备方法,其分别用溶胶凝胶法制备磷酸铁锂溶胶和磷酸锰锂溶胶;然后将磷酸铁锂溶胶和磷酸锰锂溶胶在惰性气氛中煅烧得到磷酸锰铁锂。该方法能够很方便的制备得到任意锰铁比例的磷酸锰铁锂,
生产便利。但是,这种工艺由磷酸铁锂和磷酸锰锂共同烧结获得,难以使两种物质均匀分布,容易发生锰铁独自富集,产生分相,影响电性能的发挥。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种水热制备磷酸锰铁的方法及其应用,该方法可制备得到锰铁分布较为均匀的磷酸锰铁前驱体,使后续烧结得到的磷酸锰铁锂具有较高的比容量和循环性能。
根据本发明的一个方面,提出了一种水热制备磷酸锰铁的方法,包括以下步骤:
S1:将铁氰化物溶液分别加入到铁盐溶液和锰盐溶液中进行反应,得到锰的铁氰化物沉淀和铁的铁氰化物沉淀;所述铁盐溶液中的铁盐选自二价铁盐或三价铁盐中的至少一种;
S2:按照目标产物的铁锰比,将所述锰的铁氰化物沉淀和铁的铁氰化物沉淀混合并分散于水中,持续加入磷酸溶液和硝酸溶液,在密封环境下进行水热反应;
S3:步骤S2所述水热反应结束后,固液分离,所得固体进行干燥,即得所述磷酸锰铁。
在本发明的一些实施方式中,步骤S1中,所述铁氰化物溶液为包含亚铁氰化钠、亚铁氰化钾、铁氰化钠或铁氰化钾中的至少一种的溶液。
在本发明的一些实施方式中,步骤S1中,所述铁盐溶液中的铁盐选自硫酸铁、硫酸亚铁、硝酸铁、硝酸亚铁、氯化铁或氯化亚铁中的至少一种。优选的,所述铁盐溶液为二价铁盐溶液。
在本发明的一些实施方式中,步骤S1中,所述锰盐溶液中的锰盐选自硫酸锰、硝酸锰或氯化锰中的至少一种。
在本发明的一些实施方式中,步骤S1中,所述铁氰化物溶液的浓度为0.01-1mol/L;所述铁盐溶液的浓度为0.01-1mol/L;所述锰盐溶液的浓度为0.01-1mol/L。
在本发明的一些实施方式中,步骤S1中,所述铁氰化物溶液加入的流速为25-50mL/h。
在本发明的一些实施方式中,步骤S2中,所述目标产物的铁锰比≥0.5。优选的,所述目标产物的铁锰比为(0.5-4):1。
在本发明的一些实施方式中,步骤S2中,所述搅拌的转速为50-150r/min。
在本发明的一些实施方式中,步骤S2中,所述水热反应的温度为140-150℃。进一步地,所述水热反应的时间为12-18h。
在本发明的一些实施方式中,步骤S2中,所述磷酸溶液的浓度为0.5-1.0mol/L,所述硝酸溶液的浓度为0.5-1.0mol/L,控制磷酸与硝酸加入的摩尔量之比为1:(2.2-3.0),控制水热反应的pH为1.8-2.0。
在本发明的一些实施方式中,步骤S3中,所述干燥为真空干燥,所述干燥的温度为120-150℃下,干燥的时间为2-4h。
本发明还提供所述的方法在制备磷酸锰铁锂或锂离子电池中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明首先利用铁氰化物分别与亚铁盐/铁盐和锰盐反应,生成对应的亚铁/铁氰化物盐沉淀(Mn2[Fe(CN)6]、Fe2[Fe(CN)6]、Mn3[Fe(CN)6]2、Fe3[Fe(CN)6]2等),经简单洗涤后即可得到较为纯净的沉淀化合物;通过将对应的沉淀化合物混合进行铁锰配比后,与硝酸、磷酸进行水热反应,生成对应的磷酸锰铁、二氧化碳、氮气和水,整个水热反应无其它杂质离子的产生,得到磷酸锰铁具有较高的纯度。反应原理如下:
沉淀制备反应方程式如下:
[Fe(CN)6]4-+2Mn2+→Mn2[Fe(CN)6]↓;
[Fe(CN)6]4-+2Fe2+→Fe2[Fe(CN)6]↓;
2[Fe(CN)6]3-+3Mn2+→Mn3[Fe(CN)6]2↓;
2[Fe(CN)6]3-+3Fe2+→Fe3[Fe(CN)6]2↓;
[Fe(CN)6]4-+2Mn2+→Mn2[Fe(CN)6]↓;
[Fe(CN)6]4-+2Fe2+→Fe2[Fe(CN)6]↓;
2[Fe(CN)6]3-+3Mn2+→Mn3[Fe(CN)6]2↓;
2[Fe(CN)6]3-+3Fe2+→Fe3[Fe(CN)6]2↓;
水热反应方程式如下:
5Mn2[Fe(CN)6]+33NO3 -+15PO4 3-+78H+→10MnPO4↓+5FePO4↓+30CO2↑+31.5N2↑+39H2O;
5Fe2[Fe(CN)6]+33NO3 -+15PO4 3-+78H+→15FePO4↓+30CO2↑+31.5N2↑+39H2O;
5Mn3[Fe(CN)6]2+63NO3 -+25PO4 3-+138H+→15MnPO4↓+10FePO4↓+60CO2↑+61.5N2↑+69H2O;
5Fe3[Fe(CN)6]2+63NO3 -+25PO4 3-+138H+→25FePO4↓+60CO2↑+61.5N2↑+69H2O;
5Fe4[Fe(CN)6]3+93NO3 -+35PO4 3-+198H+→35FePO4↓+90CO2↑+91.5N2↑+99H2O;
Fe[Fe(CN)6]+6NO3 -+2PO4 3-+12H+→2FePO4↓+6CO2↑+6N2↑+6H2O。
5Mn2[Fe(CN)6]+33NO3 -+15PO4 3-+78H+→10MnPO4↓+5FePO4↓+30CO2↑+31.5N2↑+39H2O;
5Fe2[Fe(CN)6]+33NO3 -+15PO4 3-+78H+→15FePO4↓+30CO2↑+31.5N2↑+39H2O;
5Mn3[Fe(CN)6]2+63NO3 -+25PO4 3-+138H+→15MnPO4↓+10FePO4↓+60CO2↑+61.5N2↑+69H2O;
5Fe3[Fe(CN)6]2+63NO3 -+25PO4 3-+138H+→25FePO4↓+60CO2↑+61.5N2↑+69H2O;
5Fe4[Fe(CN)6]3+93NO3 -+35PO4 3-+198H+→35FePO4↓+90CO2↑+91.5N2↑+99H2O;
Fe[Fe(CN)6]+6NO3 -+2PO4 3-+12H+→2FePO4↓+6CO2↑+6N2↑+6H2O。
2、本发明在制备磷酸锰铁时,一方面,铁与锰均以正三价态与磷酸根共沉淀,形成磷酸锰铁,避免了后续因二价阳离子沉淀导致磷源不足,而需另外补加磷源的问题,提高了磷锰铁的分布均匀性;另一方面,通过利用铁氰化盐抑制了三价铁离子、磷酸根的直接沉淀,采用硝酸与磷酸混合进行破氰反应,减缓了磷酸铁的沉淀速率,使铁锰达到共沉淀,提高了铁锰混合的均匀性,为提高磷酸锰铁锂正极材料的比容量及循环性能奠定了基础。
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1制备的磷酸锰铁SEM图。
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种磷酸锰铁,具体过程为:
步骤1,配制浓度为0.5mol/L的亚铁氰化钠溶液;
步骤2,配制浓度为0.5mol/L的硫酸亚铁溶液;
步骤3,配制浓度为0.5mol/L的硫酸锰溶液;
步骤4,将步骤1配制的溶液按照35mL/h的流速分别加入到步骤2和步骤3配制的溶液中,至没有沉淀产生,得到对应的两种沉淀物;
步骤5,分别离心收集沉淀物,并采用去离子水分别对沉淀物进行洗涤;
步骤6,按照铁锰比为1:1将两种沉淀物混合后,加入到密闭反应釜中;
步骤7,向反应釜中加入纯水至漫过沉淀物,启动反应釜搅拌,控制搅拌转速为100r/min;
步骤8,将反应釜密封进行水热反应,控制反应温度为145℃,并持续向反应釜中加入浓度为1.0mol/L的磷酸溶液和浓度为1.0mol/L的硝酸溶液,控制磷酸与硝酸的加入量之比为1:2.2,控制釜内pH为1.8-2.0,反应时间15h;
步骤9,反应结束后,固液分离,将固体产物置于135℃下真空干燥3h,即得磷酸锰铁产品。
实施例2
本实施例制备了一种磷酸锰铁,具体过程为:
步骤1,配制浓度为1mol/L的铁氰化钾溶液;
步骤2,配制浓度为1mol/L的氯化亚铁溶液;
步骤3,配制浓度为1mol/L的氯化锰溶液;
步骤4,将步骤1配制的溶液按照25mL/h的流速分别加入到步骤2和步骤3配制的溶液中,至没有沉淀产生,得到对应的两种沉淀物;
步骤5,分别离心收集沉淀物,并采用去离子水分别对沉淀物进行洗涤;
步骤6,按照铁锰比为1:1将两种沉淀物混合后,加入到密闭反应釜中;
步骤7,向反应釜中加入纯水至漫过沉淀物,启动反应釜搅拌,控制搅拌转速为50r/min;
步骤8,将反应釜密封进行水热反应,控制反应温度为140℃,并持续向反应釜中加入浓度为0.5mol/L的磷酸溶液和浓度为0.5mol/L的硝酸溶液,控制磷酸与硝酸的加入量之比为1:2.52,控制釜内pH为1.8-2.0,反应时间18h;
步骤9,反应结束后,固液分离,将固体产物置于150℃下真空干燥2h,即得磷酸锰铁产品。
实施例3
本实施例制备了一种磷酸锰铁,具体过程为:
步骤1,配制浓度均为0.01mol/L的亚铁氰化钠溶液和铁氰化钠溶液;
步骤2,配制浓度为0.01mol/L的硫酸亚铁溶液;
步骤3,配制浓度为0.01mol/L的硫酸锰溶液。
步骤4,将步骤1配制亚铁氰化钠溶液按照50mL/h的流速加入到步骤2配制的溶液中,将步骤1配制铁氰化钠溶液按照50mL/h的流速加入到步骤3配制的溶液中,至没有沉淀产生,得到对应的两种沉淀物;
步骤5,分别离心收集沉淀物,并采用去离子水分别对沉淀物进行洗涤;
步骤6,按照铁锰比为1:1将两种沉淀物混合后,加入到密闭反应釜中;
步骤7,向反应釜中加入纯水至漫过沉淀物,启动反应釜搅拌,控制搅拌转速为150r/min;
步骤8,将反应釜密封进行水热反应,控制反应温度为150℃,并持续向反应釜中加入浓度为1.0mol/L的磷酸溶液和浓度为1.0mol/L的硝酸溶液,控制磷酸与硝酸的加入量之比为1:2.44,控制釜内pH为1.8-2.0,反应时间12h;
步骤9,反应结束后,固液分离,将固体产物置于120℃下真空干燥4h,即得磷酸锰铁产品。
对比例1
本对比例制备了一种磷酸锰铁,与实施例1的区别在于,不加入亚铁氰化钠制备沉淀物,直接进行水热反应,具体过程为:
步骤1,配制浓度为0.5mol/L的硫酸亚铁溶液;
步骤2,配制浓度为0.5mol/L的硫酸锰溶液;
步骤3,按照铁锰比为1:1将两种溶液混合后,加入到密闭反应釜中;
步骤4,启动反应釜搅拌,控制搅拌转速为100r/min;
步骤5,将反应釜密封进行水热反应,控制反应温度为145℃,并持续向反应釜中加入浓度为1.0mol/L的磷酸溶液和浓度为1.0mol/L的过氧化氢溶液,控制磷酸与过氧化氢的加入量之比为1:2.2,控制釜内pH为1.8-2.0,反应时间15h;
步骤6,反应结束后,固液分离,将固体产物置于135℃下真空干燥3h,即得磷酸锰铁产品。
对比例2
本实施例制备了一种磷酸锰铁,与实施例2的区别在于,不加入铁氰化钾制备沉淀物,直接进行水热反应,具体过程为:
一种水热制备磷酸锰铁的方法,包括如下步骤:
步骤1,配制浓度为1mol/L的氯化亚铁溶液;
步骤2,配制浓度为1mol/L的氯化锰溶液;
步骤3,按照铁锰比为1:1将两种溶液混合后,加入到密闭反应釜中;
步骤4,启动反应釜搅拌,控制搅拌转速为50r/min;
步骤5,将反应釜密封进行水热反应,控制反应温度为140℃,并持续向反应釜中加入浓度为0.5mol/L的磷酸溶液和浓度为0.5mol/L的过氧化氢溶液,控制磷酸与过氧化氢的加入量之比为1:2.52,控制釜内pH为1.8-2.0,反应时间18h;
步骤6,反应结束后,固液分离,将固体产物置于150℃下真空干燥2h,即得磷酸锰铁产品。
对比例3
本实施例制备了一种磷酸锰铁,与实施例3的区别在于,不加入亚铁氰化钠制备沉淀物,直接进行水热反应,具体过程为:
步骤1,配制浓度为0.01mol/L的硫酸亚铁溶液;
步骤2,配制浓度为0.01mol/L的硫酸锰溶液。
步骤3,按照铁锰比为1:1将两种溶液混合后,加入到密闭反应釜中;
步骤4,启动反应釜搅拌,控制搅拌转速为150r/min;
步骤5,将反应釜密封进行水热反应,控制反应温度为150℃,并持续向反应釜中加入浓度为1.0mol/L的磷酸溶液和浓度为1.0mol/L的过氧化氢溶液,控制磷酸与过氧化氢的加入量之比为1:2.44,控制釜内pH为1.8-2.0,反应时间12h;
步骤6,反应结束后,固液分离,将固体产物置于120℃下真空干燥4h,即得磷酸锰铁产品。
对实施例1-3和对比例1-3所得磷酸锰铁产品的主元素含量进行ICP检测,结果如表1所示。
表1
由表1的检测结果可知,对比例1-3几乎不会生成磷酸锰沉淀,且得到的产物中具有较高的杂质S/Cl含量。这是由于磷酸锰与磷酸铁的Ksp不同,沉淀速率不同,普通的水热反应难以形成锰铁共沉淀物,且水热反应的介质为硫酸盐或氯化盐溶液,使沉淀物易掺杂S或Cl。
试验例
按照摩尔比(Fe+Mn):Li:碳源=1:1.1:0.4,将实施例1-3和对比例1-3所得产品分别与氢氧化锂、葡萄糖混合后,并加入总质量25%的去离子水,混合均匀后进行喷雾干燥;在惰性气体的保护下、750℃煅烧16h,自然冷却至室温,得到磷酸锰铁锂正极材料成品。
以实施例和对比例得到的磷酸锰铁锂正极材料,乙炔黑为导电剂,PVDF为粘结剂,按质量比8:1:1进行混合,并加入一定量的有机溶剂NMP,搅拌后涂覆于铝箔上制成正
极片,负极采用金属锂片;隔膜为Celgard2400聚丙烯多孔膜;电解液中溶剂为EC、DMC和EMC按质量比1:1:1组成的溶液,溶质为LiPF6,LiPF6的浓度为1.0mol/L;在手套箱内组装2023型扣式电池。对电池进行充放电循环性能测试,在截止电压2.2-4.3V范围内,测试0.2C、1C放电比容量,测试电化学性能结果表2所示。
表2
由表2可见实施例的电化学性能明显优于对比例,表明与磷酸铁相比,本发明制备的磷酸锰铁烧结得到的磷酸锰铁锂具有更高的比容量和循环性能。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。
Claims (10)
- 一种水热制备磷酸锰铁的方法,其特征在于,包括以下步骤:S1:将铁氰化物溶液分别加入到铁盐溶液和锰盐溶液中进行反应,得到锰的铁氰化物沉淀和铁的铁氰化物沉淀;所述铁盐溶液中的铁盐选自二价铁盐或三价铁盐中的至少一种;S2:按照目标产物的铁锰比,将所述锰的铁氰化物沉淀和铁的铁氰化物沉淀混合并分散于水中,持续加入磷酸溶液和硝酸溶液,在密封环境下进行水热反应;S3:步骤S2所述水热反应结束后,固液分离,所得固体进行干燥,得到所述磷酸锰铁。
- 根据权利要求1所述的方法,其特征在于,步骤S1中,所述铁氰化物溶液为包含亚铁氰化钠、亚铁氰化钾、铁氰化钠或铁氰化钾中的至少一种的溶液。
- 根据权利要求1所述的方法,其特征在于,步骤S1中,所述铁盐溶液中的铁盐选自硫酸铁、硫酸亚铁、硝酸铁、硝酸亚铁、氯化铁或氯化亚铁中的至少一种。
- 根据权利要求1所述的方法,其特征在于,步骤S1中,所述锰盐溶液中的锰盐选自硫酸锰、硝酸锰或氯化锰中的至少一种。
- 根据权利要求1所述的方法,其特征在于,步骤S1中,所述铁氰化物溶液的浓度为0.01-1mol/L;所述铁盐溶液的浓度为0.01-1mol/L;所述锰盐溶液的浓度为0.01-1mol/L。
- 根据权利要求1所述的方法,其特征在于,步骤S1中,所述铁氰化物溶液加入的流速为25-50mL/h。
- 根据权利要求1所述的方法,其特征在于,步骤S2中,所述目标产物的铁锰比≥0.5。
- 根据权利要求1所述的方法,其特征在于,步骤S2中,所述水热反应的温度为140-150℃。
- 根据权利要求1所述的方法,其特征在于,步骤S2中,所述磷酸溶液的浓度为 0.5-1.0mol/L,所述硝酸溶液的浓度为0.5-1.0mol/L,控制磷酸与硝酸加入的摩尔量之比为1:(2.2-3.0),控制水热反应的pH为1.8-2.0。
- 如权利要求1-9任一项所述的方法在制备磷酸锰铁锂或锂离子电池中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB2309616.7A GB2627024A (en) | 2022-08-24 | 2023-03-01 | Method for hydrothermal preparation of ferromanganese phosphate and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211018204.9A CN115385320B (zh) | 2022-08-24 | 2022-08-24 | 水热制备磷酸锰铁的方法及其应用 |
CN202211018204.9 | 2022-08-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024040905A1 true WO2024040905A1 (zh) | 2024-02-29 |
Family
ID=84120830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/079083 WO2024040905A1 (zh) | 2022-08-24 | 2023-03-01 | 水热制备磷酸锰铁的方法及其应用 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN115385320B (zh) |
FR (1) | FR3139130A1 (zh) |
WO (1) | WO2024040905A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2627024A (en) * | 2022-08-24 | 2024-08-14 | Guangdong Brunp Recycling Technology Co Ltd | Method for hydrothermal preparation of ferromanganese phosphate and use thereof |
CN115385320B (zh) * | 2022-08-24 | 2023-07-07 | 广东邦普循环科技有限公司 | 水热制备磷酸锰铁的方法及其应用 |
CN115832256A (zh) * | 2022-12-15 | 2023-03-21 | 广东邦普循环科技有限公司 | 一种复合正极材料及其制备方法和应用 |
CN116062724A (zh) * | 2023-03-21 | 2023-05-05 | 万向一二三股份公司 | 一种磷酸亚锰材料的制备方法 |
CN117440928A (zh) * | 2023-09-13 | 2024-01-23 | 广东邦普循环科技有限公司 | 磷酸锰铁前驱体、磷酸锰铁锂正极材料及制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140199595A1 (en) * | 2013-01-17 | 2014-07-17 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method of Synthesis of a Compound LiM1-x-y-zNyQzFexPO4 and Use Thereof as Electrode Material for a Lithium Battery |
CN105555712A (zh) * | 2013-10-30 | 2016-05-04 | 夏普株式会社 | 六氰基铁(ii)酸钠铁(ii)电池电极和合成方法 |
CN113772644A (zh) * | 2020-06-09 | 2021-12-10 | 东莞理工学院 | 双金属磷化物及其制备方法和应用 |
CN114057177A (zh) * | 2021-11-23 | 2022-02-18 | 湖北融通高科先进材料有限公司 | 磷酸亚铁锰及其制备方法和应用 |
CN115385320A (zh) * | 2022-08-24 | 2022-11-25 | 广东邦普循环科技有限公司 | 水热制备磷酸锰铁的方法及其应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9450224B2 (en) * | 2012-03-28 | 2016-09-20 | Sharp Laboratories Of America, Inc. | Sodium iron(II)-hexacyanoferrate(II) battery electrode and synthesis method |
CN111056543A (zh) * | 2019-12-26 | 2020-04-24 | 湖南雅城新材料有限公司 | 一种低比表高压实磷酸铁的制备方法 |
-
2022
- 2022-08-24 CN CN202211018204.9A patent/CN115385320B/zh active Active
-
2023
- 2023-03-01 WO PCT/CN2023/079083 patent/WO2024040905A1/zh unknown
- 2023-06-29 FR FR2306850A patent/FR3139130A1/fr active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140199595A1 (en) * | 2013-01-17 | 2014-07-17 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method of Synthesis of a Compound LiM1-x-y-zNyQzFexPO4 and Use Thereof as Electrode Material for a Lithium Battery |
CN105555712A (zh) * | 2013-10-30 | 2016-05-04 | 夏普株式会社 | 六氰基铁(ii)酸钠铁(ii)电池电极和合成方法 |
CN113772644A (zh) * | 2020-06-09 | 2021-12-10 | 东莞理工学院 | 双金属磷化物及其制备方法和应用 |
CN114057177A (zh) * | 2021-11-23 | 2022-02-18 | 湖北融通高科先进材料有限公司 | 磷酸亚铁锰及其制备方法和应用 |
CN115385320A (zh) * | 2022-08-24 | 2022-11-25 | 广东邦普循环科技有限公司 | 水热制备磷酸锰铁的方法及其应用 |
Also Published As
Publication number | Publication date |
---|---|
CN115385320B (zh) | 2023-07-07 |
FR3139130A1 (fr) | 2024-03-01 |
CN115385320A (zh) | 2022-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024040905A1 (zh) | 水热制备磷酸锰铁的方法及其应用 | |
Ding et al. | Improving the electrochemical performance of Li-rich Li1. 2Ni0. 2Mn0. 6O2 by using Ni-Mn oxide surface modification | |
CN103715424B (zh) | 一种核壳结构正极材料及其制备方法 | |
CN112151790B (zh) | 高镍三元正极材料前驱体及其晶面可控生长的方法、三元正极材料及锂离子电池 | |
WO2024040903A1 (zh) | 共沉淀制备磷酸锰铁的方法及其应用 | |
CN109301207B (zh) | 一种表层掺杂Ce3+且表层包覆CeO2的NCM三元正极材料及其制备方法 | |
CN105161679A (zh) | 富锂正极材料及其制备方法和应用 | |
WO2015039490A1 (zh) | 富锂正极材料及其制备方法 | |
TWI482740B (zh) | 鋰鎳錳氧化物複合材料及其製備方法以及鋰離子電池 | |
CN103066275A (zh) | 一种球形高电压镍锰酸锂正极材料的制备方法 | |
CN108134064B (zh) | 一种正极材料前驱体及其制备方法和正极材料 | |
CN104241626A (zh) | 锂离子电池钒酸锂负极材料的溶胶-凝胶制备方法 | |
CN103606675B (zh) | 一种金属离子掺杂的锂镍钴氧正极材料的制备方法 | |
WO2007000075A1 (fr) | Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium | |
CN105036103A (zh) | 一种长方体型锂电池正极材料磷酸铁锰锂的制备方法 | |
Zhao et al. | Porous LiNi1/3Co1/3Mn1/3O2 microsheets assembled with single crystal nanoparticles as cathode materials for lithium ion batteries | |
Zhong et al. | Mitigating evolution of lattice oxygen and stabilizing structure of lithium-rich oxides by fabricating surface oxygen defects | |
CN107978752A (zh) | 一种高安全性锂离子电池用正极材料及其制备方法 | |
WO2024055519A1 (zh) | 一种磷酸锰铁锂的制备方法及其应用 | |
JP2024507080A (ja) | ナトリウムイオン電池正極活物質及びその製造方法と使用 | |
Jayachitra et al. | High electrode performance of hydrothermally developed activated C coated O3–NaFeO2 electrode for Na-ion batteries applications | |
CN106848277A (zh) | 一种镁铁氧/碳复合材料及其制备方法 | |
Zhang et al. | The effect of drying methods on the structure and performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode material for lithium-ion batteries | |
CN115650318A (zh) | 一种掺杂的p2型层状镍锰酸钠正极材料及其制备方法 | |
Li et al. | Role of Hydrothermal parameters on phase purity of orthorhombic LiMnO2 for use as cathode in Li ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 202309616 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20230301 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23856002 Country of ref document: EP Kind code of ref document: A1 |