WO2024040887A1 - 一种电源电压控制方法、装置、区块链服务器和存储介质 - Google Patents

一种电源电压控制方法、装置、区块链服务器和存储介质 Download PDF

Info

Publication number
WO2024040887A1
WO2024040887A1 PCT/CN2023/077091 CN2023077091W WO2024040887A1 WO 2024040887 A1 WO2024040887 A1 WO 2024040887A1 CN 2023077091 W CN2023077091 W CN 2023077091W WO 2024040887 A1 WO2024040887 A1 WO 2024040887A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
value
power supply
voltage value
blockchain server
Prior art date
Application number
PCT/CN2023/077091
Other languages
English (en)
French (fr)
Inventor
马伟彬
郭海丰
巫跃凤
黄理洪
杨作兴
Original Assignee
深圳比特微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳比特微电子科技有限公司 filed Critical 深圳比特微电子科技有限公司
Priority to CA3202924A priority Critical patent/CA3202924A1/en
Publication of WO2024040887A1 publication Critical patent/WO2024040887A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • This application belongs to the field of blockchain technology, and in particular relates to a power supply voltage control method, device, blockchain server and storage medium.
  • blockchain technology is a new distributed infrastructure and computing method. It uses block chain data structures to verify and store data, uses distributed node consensus algorithms to generate and update data, and uses cryptography methods. Securing data transmission and access, as well as utilizing smart contracts composed of automated script code to program and manipulate data.
  • the blockchain network is a decentralized network and a P2P (Peer-to-Peer) network. There are no centralized services and hierarchical structures in the blockchain network. Each node is a peer node, and each node jointly provides network services. Nodes in the blockchain network are both clients and servers.
  • the power output voltage of the blockchain server is usually maintained at a preset fixed voltage value, and there is no optimization mechanism for the power output voltage.
  • the power supply output voltage is too high, it will waste power consumption, while if it is too low, the computing power and stability of the blockchain server may be affected.
  • the embodiment of this application proposes a power supply voltage control method, device, blockchain server and storage medium.
  • an embodiment of the present application provides a power supply voltage control method, including:
  • the voltage determination parameter is determined based on the ratio of the first value to the second value, where the first value is the number of cores in the working state in the blockchain server, and the second value is the number of cores in the blockchain server.
  • the value of the output voltage of the power supply is controlled to be the target voltage value.
  • the embodiment of the present application provides a power supply voltage control device, including:
  • the parameter determination module is configured to determine the voltage determination parameter based on the ratio of a first value to a second value, where the first value is the number of cores in a working state in the blockchain server, and the second value is The total number of cores in the blockchain server;
  • a voltage determination module configured to determine a target voltage value of the power supply of the blockchain server based on the voltage determination parameter
  • a control module configured to control the value of the power supply output voltage to be the target voltage value.
  • the implementation mode of this application provides a blockchain server, including:
  • a chip board contains multiple chips, where each chip contains at least one core;
  • a control board including a memory and a processor; wherein an application program is stored in the memory, and when the application program is executed by the processor, the power supply voltage control method as described above is implemented;
  • the chip board forms a signal connection with the control board through a signal connection interface
  • the chip board forms an electrical connection with the power supply through a power connection interface
  • embodiments of the present application provide a computer-readable storage medium that stores computer-readable instructions, and the computer-readable instructions are used to execute the power supply voltage control method as described above.
  • FIG. 1 is an exemplary flow chart of a power supply voltage control method according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the mapping relationship between voltage determination parameters and power supply voltage of a blockchain server including a non-latch chip according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of the mapping relationship between voltage determination parameters and power supply voltage of a blockchain server including a latch chip according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of the mapping relationship between voltage determination parameters and chip frequency of a blockchain server including a non-latch chip according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of the mapping relationship between voltage determination parameters and chip frequency of a blockchain server including a latch chip according to an embodiment of the present application.
  • FIG. 6 is an exemplary structural diagram of a power supply voltage control device according to an embodiment of the present application.
  • FIG. 7 is an exemplary structural diagram of a power supply voltage control device according to another embodiment of the present application.
  • Figure 8 is an exemplary structural diagram of a blockchain server according to an embodiment of the present application.
  • the power output voltage of the blockchain server is usually maintained at a preset fixed voltage value.
  • This has at least the following disadvantages: a fixed voltage value that is too high will waste power, and a fixed voltage value that is too low may affect the computing power and stability of the blockchain server. Therefore, maintaining the power supply output voltage at a target voltage value that can not only ensure computing power and stability, but also save power consumption is an urgently needed technical means.
  • FIG. 1 is an exemplary flow chart of a power supply voltage control method according to an embodiment of the present application.
  • the method includes:
  • Step 101 Determine the voltage determination parameter based on the ratio of the first value to the second value, where the first value is the number of working cores in the blockchain server, and the second value is the number of cores in the block The total number of cores in the chain server.
  • the voltage determination parameters refer to parameters used to subsequently determine the target voltage value of the power supply of the blockchain server.
  • the method further includes: determining the second value based on the number of chips in the blockchain server and the number of cores included in each chip.
  • the method further includes: sending calculation tasks to all cores in the blockchain server respectively, counting cores that execute the calculation tasks to return specified random numbers, and determining the counted number of cores as the first value. .
  • the specified random number can be any random number that is used only once or a non-repeating random number, specifically a random number that meets the Nonce difficulty requirements.
  • the returned result is Nonce (its full name is Number used once or Number once).
  • the returned Nonce meets the difficulty requirements of virtual currency mining.
  • Each Nonce is the result obtained after the core performs a traversal operation.
  • the blockchain server When the blockchain server is started, it first goes through the frequency upgrading stage and then enters the working state where the chip frequency remains unchanged. Send computing tasks to all cores in the working blockchain server respectively. Then, count the cores that perform the computing task to return the Nonce, and determine the number of cores that perform the computing task to return the Nonce as the first value. For example, the control board in the blockchain server issues computing tasks to 180,000 cores respectively, and counts 170,000 cores that perform computing tasks to return Nonce. Then the number of working cores in the blockchain server is 170,000. That is, the first value is 170000.
  • the ratio of the first value to the second value may be determined as the voltage determination parameter.
  • the first value is 170000
  • the second value is 180000
  • the ratio of the first value to the second value is used as a calculation factor, and a mathematical operation (such as multiplying by a fixed coefficient or dividing by a fixed coefficient, etc.) is performed on the calculation factor to determine the voltage determination parameter. .
  • the second value is usually fixed, and the first value can change.
  • the real-time ratio of the first value and the second value may be continuously detected to serve as the real-time value of the voltage determination parameter.
  • Step 102 Determine the target voltage value of the power supply of the blockchain server based on the voltage determination parameter.
  • the target voltage value is the ideal value of the power supply output voltage of the blockchain server.
  • the target voltage value can ensure computing power and stability, and also save power consumption.
  • a latch is a unit that is sensitive to the input signal level in an asynchronous sequential circuit system and is used to store information.
  • the signal at the output terminal of the latch changes with the input signal, just like the signal passes through a buffer; once the latch signal is valid and the data is latched, the input signal has no effect.
  • the blockchain server uses a non-latch chip, the chip leakage problem can usually be overcome; when the blockchain server uses a latch chip, it usually has the chip leakage problem.
  • Figure 2 is a schematic diagram of the mapping relationship between voltage determination parameters and power supply voltage of a blockchain server including a non-latch chip according to an embodiment of the present application.
  • the blockchain server 10, the blockchain server 11 and the blockchain server 12 respectively use non-latch chips of different specifications, and the blockchain server 10, the blockchain server 11 and the blockchain server 12 are respectively in the upscaling stage. working status (chip frequency remains unchanged). It can be seen that when the power supply voltage is small, the voltage determination parameters of the blockchain server 10, the blockchain server 11 and the blockchain server 12 increase as the power supply voltage increases.
  • the specific improvement method can be linear improvement or non-linear improvement. , the implementation of this application is not limited to this.
  • the power supply voltage at point A is the target voltage of the blockchain server 10; the power supply voltage at point B is the target voltage of the blockchain server 11; and the power supply voltage at point C is the target voltage of the blockchain server 12. target voltage.
  • Figure 3 is a schematic diagram of the mapping relationship between voltage determination parameters and power supply voltage of a blockchain server including a latch chip according to an embodiment of the present application.
  • the blockchain server 20, the blockchain server 21 and the blockchain server 22 respectively use latch chips of different specifications, and the blockchain server 20, the blockchain server 21 and the blockchain server 22 are respectively in the upscaling stage. Working status (chip frequency remains unchanged). It can be seen that when the power supply voltage is small, the voltage determination parameters of the blockchain server 20, the blockchain server 21 and the blockchain server 22 increase as the power supply voltage increases.
  • the specific improvement method can be linear improvement or non-linear improvement. , the implementation of this application is not limited to this.
  • the voltage determination parameters of the blockchain server 20 When the power supply voltage increases to greater than point A, the voltage determination parameters of the blockchain server 20 will no longer increase as the power supply voltage increases, but remain unchanged at first, and then increase as the power supply voltage continues to increase. decline.
  • the voltage determination parameters of the blockchain server 21 When the power supply voltage increases to point B, the voltage determination parameters of the blockchain server 21 will no longer increase as the power supply voltage increases, but remain unchanged at first, and then decrease as the power supply voltage continues to increase. ;
  • the voltage determination parameter of the blockchain server 22 When the power supply voltage increases to point C, the voltage determination parameter of the blockchain server 22 will no longer increase as the power supply voltage increases, but remains unchanged at first, and then increases as the power supply voltage continues to increase. decline.
  • the power supply voltage at point A is the target voltage of the blockchain server 20; the power supply voltage at point B is the target voltage of the blockchain server 21; and the power supply voltage at point C is the target voltage of the blockchain server 22. target voltage.
  • step 102 includes: gradually increasing the voltage value of the power supply with a predetermined voltage adjustment step (for example, 10 millivolts); when the voltage value increases to a voltage determination parameter that remains unchanged or begins to decrease, Adjust the step size to gradually reduce the voltage value; when the voltage value drops to the point where the voltage determination parameter begins to decrease, the sum of the current voltage value of the power supply and the single voltage adjustment step size is determined as the target voltage value.
  • a predetermined voltage adjustment step for example, 10 millivolts
  • Example (1) When the blockchain server includes a non-latch chip, take the blockchain server 10 in Figure 2 as an example. No matter what the current voltage value of the power supply of the blockchain server 10 is, the voltage value of the power supply is gradually increased with a predetermined voltage adjustment step (for example, 10 millivolts); when the voltage value increases to the voltage determination parameter remains unchanged ( At this time, it may have just reached point A or has passed point A), and gradually reduces the voltage value with the voltage adjustment step size; when the voltage value drops to the point where the voltage determination parameter begins to decrease (at this time, it reaches the point before point A), the voltage value will be gradually reduced. The sum of the current voltage value of the power supply and a single voltage adjustment step is determined as the target voltage value.
  • a predetermined voltage adjustment step for example, 10 millivolts
  • the blockchain server uses a latch chip, take the blockchain server 20 in Figure 3 as an example for explanation.
  • the voltage value of the power supply is gradually increased with a predetermined voltage adjustment step (for example, 10 millivolts); when the voltage value increases to the voltage determination parameter remains unchanged ( At this time, it may have just reached point A, or it has passed point A but has not yet reached the decreasing range of the voltage determination parameter), and gradually reduces the voltage value with the voltage adjustment step size; when the voltage value drops to the point where the voltage determination parameter begins to decrease (at this time When reaching the previous point of point A), the sum of the current voltage value of the power supply and the single voltage adjustment step is determined as the target voltage value.
  • a predetermined voltage adjustment step for example, 10 millivolts
  • the voltage is adjusted in a predetermined voltage step (for example, 10 millivolts), gradually increase the voltage value of the power supply; when the voltage value increases to the voltage determination parameter and begins to decrease (at this time it has reached the descending interval of the voltage determination parameter, that is, it has passed the G point), the voltage adjustment step size is used to gradually decrease Voltage value; when the voltage value drops to the point where the voltage determination parameters begin to decrease (the voltage determination parameters go through a stage of first increasing, then remaining unchanged, and finally starting to decrease), it is determined that the point before point B is reached at this time, and the current value of the power supply is The summation result of the voltage value and a single voltage adjustment step is determined as the target voltage value.
  • a predetermined voltage step for example, 10 millivolts
  • the embodiment of the present application directly determines the target voltage value by increasing the voltage value of the power supply, thereby reducing the difficulty of determining the target voltage value.
  • step 102 also includes: recording the maximum value of the voltage determination parameter of the blockchain server in the up-conversion phase after startup; and determining the maximum value as the target value.
  • the embodiment of the present application can simplify the determination process of the target voltage value by comparing the voltage determination parameter with the target value.
  • Figure 4 is a schematic diagram of the mapping relationship between voltage determination parameters and chip frequency of a blockchain server including a non-latch chip according to an embodiment of the present application.
  • the blockchain server 30, the blockchain server 31 and the blockchain server 32 respectively use non-latch chips of different specifications, and the blockchain server 30, the blockchain server 31 and the blockchain server 32 respectively It is in the up-conversion stage after startup (the output voltage of the power supply remains unchanged). It can be seen that when the chip frequency is small, the voltage determination parameters of the blockchain server 30, the blockchain server 31 and the blockchain server 32 continue to be the maximum value. When the chip frequency continues to increase to point D, the voltage determination parameters of the blockchain server 30 will begin to decrease; when the chip frequency increases to point E, the voltage determination parameters of the blockchain server 31 will begin to decrease; when the chip frequency After increasing to point F, the voltage determining parameters of the blockchain server 32 will begin to decrease.
  • the voltage determination parameter at point D is recorded as the maximum value of the voltage determination parameter in the up-conversion phase after startup, that is, as the target value for comparison with the voltage determination parameter for the blockchain server 30;
  • the voltage at point E The determination parameter is recorded as the maximum value of the voltage determination parameter in the up-conversion phase after startup, which is the target value for comparison with the voltage determination parameter for the blockchain server 31;
  • the voltage determination parameter at point F is recorded as the voltage determination parameter after startup
  • the maximum value of the voltage determination parameter in the upconversion stage is the target value compared with the voltage determination parameter for the blockchain server 32 .
  • Figure 5 is a schematic diagram of the mapping relationship between voltage determination parameters and chip frequency of a blockchain server including a latch chip according to an embodiment of the present application.
  • the blockchain server 40, the blockchain server 41 and the blockchain server 42 respectively use latch chips of different specifications, and the blockchain server 40, the blockchain server 41 and the blockchain server 42 are respectively in Up-conversion stage after startup (the output voltage of the power supply remains unchanged). It can be seen that when the chip frequency is small, the voltage determination parameters of the blockchain server 40, the blockchain server 41 and the blockchain server 42 increase as the chip frequency increases.
  • the lifting method can be linear lifting or non-linear lifting, which is not limited in the implementation of the present application.
  • the voltage determination parameter of the blockchain server 40 will no longer increase with the increase of the chip frequency, but will first increase within the interval [A, D]. remains unchanged, and decreases as the chip frequency increases after passing point D.
  • the chip frequency of the blockchain server 41 increases to greater than point B
  • the voltage determination parameter of the blockchain server 41 will no longer increase with the increase of the chip frequency, but will first increase within the interval [B, E]. It remains unchanged and decreases as the chip frequency increases after passing point E.
  • the chip frequency of the blockchain server 42 increases to greater than point C
  • the voltage determination parameter of the blockchain server 42 will no longer increase with the increase of the chip frequency, but will first increase within the interval [C, F]. It remains unchanged and decreases as the chip frequency increases after passing point F.
  • the voltage-determining parameter at point D is recorded as the voltage-determining parameter in the post-start up-conversion phase
  • the maximum value of is the target value compared with the voltage determination parameter for the blockchain server 40
  • the voltage determination parameter at point E is recorded as the maximum value of the voltage determination parameter in the up-conversion phase after startup, which is the target value for the blockchain server 40.
  • Blockchain server 41 the target value compared with the voltage determination parameter
  • the voltage determination parameter at point F is recorded as the maximum value of the voltage determination parameter in the up-conversion phase after startup, that is, for the blockchain server 42, and The voltage determines the parameter to which the target value is compared.
  • the above describes in detail the specific method of determining the target value of the blockchain server.
  • the following describes the specific process of determining the target voltage value based on the comparison process of the voltage determination parameter and the target value.
  • step 102 includes: when the voltage determination parameter is equal to the target value, gradually reducing the voltage value of the power supply with a predetermined voltage adjustment step; when the voltage value is reduced to the point where the voltage determination parameter begins to decrease, adjusting the current value of the power supply.
  • the summation result of the voltage value and a single voltage adjustment step is determined as the target voltage value.
  • Example (1) When the blockchain server includes a non-latch chip, take the blockchain server 10 in Figure 2 as an example. If the current voltage determination parameter is equal to the target value, it can be determined that the current power supply voltage must be greater than or equal to the voltage at point A, so the voltage reduction adjustment process is directly performed.
  • the voltage reduction adjustment process specifically includes: gradually reducing the voltage value of the power supply with a voltage adjustment step size (for example, 10 millivolts); when the voltage value decreases to the point where the voltage determination parameter begins to decrease (at this time it reaches the previous point of point A), The target voltage value is determined by summing the current voltage value of the power supply and a single voltage adjustment step.
  • a voltage adjustment step size for example, 10 millivolts
  • the blockchain server uses a latch chip, take the blockchain server 20 in Figure 3 as an example for explanation. If the current voltage determination parameter is equal to the predetermined target value, it can be determined that the current voltage must be greater than or equal to the voltage at point A, so the voltage reduction adjustment process is directly performed.
  • the voltage reduction adjustment process specifically includes: gradually reducing the voltage value in voltage adjustment steps (for example, 10 millivolts); when the voltage value drops to the point where the voltage determination parameter begins to decrease (at this time it reaches the point before point A), the power supply The summation result of the current voltage value and a single voltage adjustment step is determined as the target voltage value.
  • step 102 includes: when the voltage determination parameter is less than a predetermined target value, gradually increasing the voltage value of the power supply with a predetermined voltage adjustment step; when the voltage value increases to the voltage determination parameter and remains unchanged, The result of subtracting a single voltage adjustment step from the current voltage value of the power supply is determined as the target voltage value; when the voltage value increases to the voltage determination parameter and begins to decrease, the voltage value is gradually reduced by the voltage adjustment step.
  • the voltage determination parameter first increases, then remains unchanged, and then begins to decrease, the sum of the current voltage value of the power supply and a single voltage adjustment step is determined as the target voltage value.
  • the voltage determination parameter when the voltage determination parameter is less than the predetermined target value, it can be determined that the current voltage value is located in the declining or rising interval of the voltage determining parameter, and the situation in the unchanged interval of the voltage determining parameter is excluded. Therefore, it can be targeted based on the decreasing or rising interval. to determine the target voltage value.
  • This implementation can be applied to blockchain servers containing non-latch chips or latch chips.
  • Example (1) When the blockchain server includes a non-latch chip, take the blockchain server 10 in Figure 2 as an example. If the current voltage determination parameter is less than the predetermined target value, it can be determined that the current voltage must be less than the voltage at point A, so the voltage boost adjustment process is directly performed.
  • the voltage boost adjustment process specifically includes: gradually increasing the voltage value with a voltage adjustment step size (for example, 10 millivolts); when the voltage value increases to the voltage determination parameter and remains unchanged (at this time it reaches the next point after point A), The result of subtracting a single voltage adjustment step from the current voltage value of the power supply is determined as the target voltage value.
  • a voltage adjustment step size for example, 10 millivolts
  • Voltage value when the voltage value decreases to the voltage determination parameter, it first increases (i.e., the process of returning to point G), then remains unchanged (i.e., the process of moving from point G to point B), and then begins to decrease (i.e., the process of reaching point B at this time) (previous point), the sum of the current voltage value of the power supply and the single voltage adjustment step is determined as the target voltage value.
  • Step 103 Control the value of the power supply output voltage to be the target voltage value.
  • the power supply of the blockchain server can maintain the output voltage at the target voltage value, which can not only ensure the computing power and stability, but also save power consumption.
  • FIG. 6 is an exemplary structural diagram of a power supply voltage control device according to an embodiment of the present application. As shown in Figure 6, the power supply voltage control device 600 includes:
  • the parameter determination module 601 is configured to determine the voltage determination parameter based on the ratio of the first value to the second value, where the first value is the number of working cores in the blockchain server, and the second value is the number of cores in the blockchain server. The total number of cores in the server;
  • the voltage determination module 602 is configured to determine the target voltage value of the power supply of the blockchain server based on the voltage determination parameter;
  • the control module 603 is configured to control the value of the power supply voltage to an output target voltage value.
  • the voltage determination module 602 is configured to gradually increase the voltage value of the power supply with a predetermined voltage adjustment step; when the voltage value increases, the voltage determination parameter remains unchanged or begins to decrease. , gradually reduce the voltage value with the voltage adjustment step; when the voltage value decreases to the point where the voltage determination parameter begins to decrease, sum the current voltage value of the power supply and a single voltage adjustment step. As a result, the target voltage value is determined.
  • the voltage determination module 602 is configured to gradually reduce the voltage value of the power supply with a predetermined voltage adjustment step when the voltage determination parameter is equal to a predetermined target value; when the voltage value decreases When the voltage determination parameter begins to decrease, the summation result of the current voltage value of the power supply and a single voltage adjustment step is determined as the target voltage value.
  • the voltage determination module 602 is configured to when the voltage determination parameter is less than When the predetermined target value is reached, the voltage value of the power supply is gradually increased with a predetermined voltage adjustment step; when the voltage value increases to the voltage determination parameter and remains unchanged, the current voltage value of the power supply is subtracted by a single The result of the voltage adjustment step is determined as the target voltage value; when the voltage value increases to the voltage determination parameter and begins to decrease, the voltage value is gradually reduced with the voltage adjustment step.
  • the voltage decreases to the point where the voltage determination parameter first increases, then remains unchanged, and then begins to decrease, the summation result of the current voltage value of the power supply and a single voltage adjustment step is determined as the target voltage value.
  • the voltage determination module 602 is further configured to record the maximum value of the voltage determination parameter in the up-conversion phase after the blockchain server is started; and determine the maximum value as the target value.
  • the parameter determination module 601 is further configured to determine the second value based on the number of chips in the blockchain server and the number of cores included in each chip.
  • the parameter determination module 601 is further configured to send calculation tasks to all cores in the blockchain server respectively; statistically execute the calculation tasks to return the cores specifying random numbers; and use the calculated The number of cores is determined as said first value.
  • FIG. 7 is an exemplary structural diagram of a power supply voltage control device with a memory-processor architecture according to another embodiment of the present application.
  • the power supply voltage control device includes: a processor 701; a memory 702; where the memory 702 stores an application program that can be executed by the processor 701, and is used to cause the processor 701 to execute the power supply voltage control method in the above embodiment. .
  • the memory 702 can be implemented as various storage media such as electrically erasable programmable read-only memory (EEPROM), flash memory (Flash memory), programmable programmable read-only memory (PROM), etc.
  • Processor 701 may be implemented to include one or more central processing units or one or more field programmable gate arrays, where a field programmable gate array integrates one or more central processing unit cores.
  • a central processing unit or central processing unit core may be implemented as a CPU, MCU or digital signal processor (DSP).
  • FIG. 8 is an exemplary structural diagram of a blockchain server according to an embodiment of the present application. As shown in Figure 8, the blockchain server includes:
  • the chip board 801 includes multiple chips, each chip including at least one core;
  • the control board 802 includes a memory and a processor; an application program is stored in the memory, and when the application program is executed by the processor, the power supply voltage control method as described above is implemented; the chip board 801 communicates with the processor through a signal connection interface.
  • the control board 802 forms a signal connection, and the chip board 801 forms an electrical connection with the power supply 803 through the power connection interface.
  • each step is not fixed and can be adjusted as needed.
  • the division of each module is only for the convenience of describing the functional division. In actual implementation, one module can be implemented by multiple modules, and the functions of multiple modules can also be implemented by the same module. These modules can be located on the same device. , or it can be on a different device.
  • the hardware modules in various embodiments may be implemented mechanically or electronically.
  • a hardware module may include specially designed permanent circuitry or logic devices (such as a dedicated processor such as an FPGA or ASIC) is used to complete specific operations.
  • Hardware modules may also include programmable logic devices or circuits (eg, including general-purpose processors or other programmable processors) temporarily configured by software to perform specific operations.
  • programmable logic devices or circuits eg, including general-purpose processors or other programmable processors
  • This application also provides a computer-readable storage medium that stores computer-readable instructions for causing a machine to execute the method described in the above embodiments of this application.
  • a system or device equipped with a storage medium may be provided, on which the software program code that implements the functions of any of the above embodiments is stored, and the computer (or CPU or MPU) of the system or device ) reads and executes the program code stored in the storage medium.
  • the computer or CPU or MPU of the system or device
  • some or all of the actual operations can also be completed by the operating system operating on the computer through instructions based on the program code.
  • the program code read from the storage medium can also be written into a memory provided in an expansion board inserted into the computer or into a memory provided in an expansion unit connected to the computer, and then based on the instructions of the program code, the program code is installed in the computer.
  • the CPU on the expansion board or expansion unit performs some and all actual operations, thereby realizing the functions of any of the above embodiments.
  • Storage media implementations for providing program codes include floppy disks, hard disks, magneto-optical disks, optical disks (such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD+RW), Tapes, non-volatile memory cards and ROM.
  • the program code can be downloaded from a server computer or the cloud by a communications network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Sources (AREA)

Abstract

一种电源电压控制方法、装置、区块链服务器和存储介质,方法包括:基于第一数值与第二数值的比值,确定电压确定参数,其中,所述第一数值为区块链服务器中处于工作状态的核的数目,所述第二数值为所述区块链服务器中的核的总数目(101);基于所述电压确定参数,确定所述区块链服务器的电源的目标电压值(102);及,控制所述电源输出电压的值为所述目标电压值(103)。

Description

一种电源电压控制方法、装置、区块链服务器和存储介质
本申请要求于2022年8月25日提交中国专利局、申请号为202211023509.9、申请名称为“一种电源电压控制方法、装置、区块链服务器和存储介质”的中国专利申请的优先权。
技术领域
本申请属于区块链技术领域,特别是涉及一种电源电压控制方法、装置、区块链服务器和存储介质。
发明背景
通常来说,区块链技术是一种全新的分布式基础架构与计算方式,其利用块链式数据结构来验证与存储数据,利用分布式节点共识算法来生成和更新数据,利用密码学方式保证数据传输和访问的安全,以及利用由自动化脚本代码组成的智能合约来编程和操作数据。区块链网络是去中心化的网络,是一种P2P(Peer-to-Peer)网络。区块链网络中不存在中央化的服务和层级结构,每个节点都是对等的节点,各个节点共同提供网络服务。区块链网络中的节点既是客户端,还是服务器。
在现有技术中,在区块链服务器正常运行时,通常将区块链服务器的电源输出电压维持在预设的固定电压值,并没有针对电源输出电压的优化机制。然而,电源输出电压过高会浪费功耗,而过低可能导致区块链服务器的算力及稳定性受到影响。
发明内容
本申请实施方式提出一种电源电压控制方法、装置、区块链服务器和存储介质。
一方面,本申请实施方式提供了一种电源电压控制方法,包括:
基于第一数值与第二数值的比值,确定电压确定参数,其中,所述第一数值为区块链服务器中处于工作状态的核的数目,所述第二数值为所述区块链服务器中的核的总数目;
基于所述电压确定参数,确定所述区块链服务器的电源的目标电压值;及,
控制所述电源输出电压的值为所述目标电压值。
另一方面,本申请实施方式提供了一种电源电压控制装置,包括:
参数确定模块,被配置为基于第一数值与第二数值的比值,确定电压确定参数,其中,所述第一数值为区块链服务器中处于工作状态的核的数目,所述第二数值为所述区块链服务器中的核的总数目;
电压确定模块,被配置为基于所述电压确定参数,确定所述区块链服务器的电源的目标电压值;及,
控制模块,被配置为控制所述电源输出电压的值为所述目标电压值。
另一方面,本申请实施方式提供了一种区块链服务器,包括:
芯片板,包含多个芯片,其中,每个芯片包含至少一个核;
控制板,包含存储器和处理器;其中,所述存储器中存储有应用程序,所述应用程序被所述处理器执行时,实现如上所述的电源电压控制方法;
其中,所述芯片板通过信号连接接口与所述控制板形成信号连接,所述芯片板通过电源连接接口与电源形成电力连接。
另一方面,本申请实施方式提供了一种计算机可读存储介质,存储有计算机可读指令,所述计算机可读指令用于执行如上所述的电源电压控制方法。
附图简要说明
图1为根据本申请实施方式的电源电压控制方法的示范性流程图。
图2为根据本申请实施方式的包含非latch芯片的区块链服务器的电压确定参数与电源电压的映射关系示意图。
图3为根据本申请实施方式的包含latch芯片的区块链服务器的电压确定参数与电源电压的映射关系示意图。
图4为根据本申请实施方式的包含非latch芯片的区块链服务器的电压确定参数与芯片频率的映射关系示意图。
图5为根据本申请实施方式的包含latch芯片的区块链服务器的电压确定参数与芯片频率的映射关系示意图。
图6为根据本申请实施方式的电源电压控制装置的示范性结构图。
图7为根据本申请另一实施方式的电源电压控制装置的示范性结构图。
图8为根据本申请实施方式的区块链服务器的示范性结构图。
实施方式
为使本申请的目的、技术方案和优点更加清楚,下面结合附图对本申请作进一步的详细描述。
为了描述上的简洁和直观,下文通过描述若干代表性的实施方式来对本申请的方案进行阐述。实施方式中大量的细节仅用于帮助理解本申请的方案。但是很明显,本申请的技术方案实现时可以不局限于这些细节。为了避免不必要地模糊了本申请的方案,一些实施方式没有进行细致地描述,而是仅给出了框架。下文中,“包括”是指“包括但不限于”,“根据……”是指“至少根据……,但不限于仅根据……”。由于汉语的语言习惯,下文中没有特别指出一个成分的数量时,意味着该成分可以是一个也可以是多个,或可理解为至少一个。
申请人发现,在现有技术中,通常将区块链服务器的电源输出电压维持在预设的固定电压值。这至少具有如下缺点:固定电压值过高会浪费功耗,固定电压值过低可能导致区块链服务器的算力及稳定性受到影响。因此,将电源输出电压维持在既可以保证算力及稳定性,还节约功耗的目标电压值是亟需的技术手段。
基于上述分析,图1为根据本申请实施方式的电源电压控制方法的示范性流程图。
如图1所示,该方法包括:
步骤101:基于第一数值与第二数值的比值,确定电压确定参数,其中,所述第一数值为区块链服务器中处于工作状态的核的数目,所述第二数值为所述区块链服务器中的核的总数目。
本步骤中,电压确定参数是指用于后续确定区块链服务器的电源的目标电压值的参数。
在一个实施方式中,该方法还包括:基于区块链服务器中的芯片数以及每个芯片所包含的核数,确定第二数值。
在一个实施方式中,该方法还包括:向区块链服务器中的所有核,分别发送计算任务,统计执行计算任务以返回指定随机数的核,将统计出的核的数目确定为第一数值。
其中,指定随机数可以为只被使用一次的任意随机数或非重复的随机数,具体指符合Nonce难度要求的随机数。例如,返回结果为Nonce(其全称为Number used once或Number once),返回的Nonce符合虚拟货币挖掘的难度要求,每个Nonce都是核执行遍历操作后得到的结果。
比如,假定区块链服务器中包含300个相同类型的芯片,且每个芯片包含600个核,则第二数值为:300*600=180000,即共有180000个核。
当区块链服务器启动后,先经历升频阶段,再进入芯片频率不变的工作状态。向工作状态的区块链服务器中的所有核,分别发送计算任务。然后,统计执行计算任务以返回Nonce的核,将执行计算任务以返回Nonce的核的数目确定为第一数值。例如,区块链服务器中的控制板向180000个核分别下发计算任务,并统计执行计算任务以返回Nonce的核有170000个,则区块链服务器中处于工作状态的核的数目为170000,即第一数值为170000。
在一个实施方式中,可以将第一数值与第二数值的比值,确定为电压确定参数。此时,电压确定参数为区块链服务器中处于工作状态的核的数目与区块链服务器中的核的总数目的比值。也就是:电压确定参数=(区块链服务器中处于工作状态的核的数目)/(区块链服务器中的核的总数目)。比如,第一数值为170000,第二数值为180000,电压确定参数=(170000/180000)=0.944。
在另一个实施方式中,以第一数值与第二数值的比值为计算因子,针对该计算因子执行数学运算(比如,乘以固定系数或除以固定系数,等等)以确定出电压确定参数。
在区块链服务器的工作状态下,第二数值通常是固定不变的,第一数值可以发生变化。可以持续检测第一数值与第二数值的实时比值,以作为电压确定参数的实时值。
以上示范性描述了确定第一数值、第二数值和电压确定参数的典型实例,本领域技术人员可以意识到,这种描述仅是示范性的,并不用于限定本申请实施方式的保护范围。
步骤102:基于电压确定参数,确定区块链服务器的电源的目标电压值。
在这里,目标电压值为区块链服务器的电源输出电压的理想值。目标电压值可以保证算力及稳定性,还节约功耗。
申请人经过大量研究,确定电压确定参数与区块链服务器的电源电压之间具有映射关系。而且,区块链服务器包含latch(锁存器)芯片或非latch芯片时,电压确定参数与电源电压之间的映射关系会有不同。latch是一种在异步时序电路系统中对输入信号电平敏感的单元,用来存储信息。在数据未锁存时,锁存器中输出端的信号随输入信号变化,就像信号通过一个缓冲器;一旦锁存信号有效,数据被锁存时,输入信号不起作用。当区块链服务器采用非latch芯片时,通常可以克服芯片漏电问题;当区块链服务器采用latch芯片时,通常具有芯片漏电问题。
图2为根据本申请实施方式的包含非latch芯片的区块链服务器的电压确定参数与电源电压的映射关系示意图。
区块链服务器10、区块链服务器11和区块链服务器12分别采用不同规格的非latch芯片,而且区块链服务器10、区块链服务器11和区块链服务器12分别处于升频阶段后的工作状态(芯片频率不变)。可见,当电源电压较小时,区块链服务器10、区块链服务器11和区块链服务器12的电压确定参数随着电源电压的增大而提升,具体提升方式可以为线性提升或非线性提升,本申请实施方式对此并无限定。
在图2中,当电源电压增大到大于点A时,区块链服务器10的电压确定参数将不再随着电源电压的增大而提升,而是保持不变;当电源电压增大到大于点B时,区块链服务器11的电压确定参数将不再随着电源电压的增大而提升,而是保持不变;当电源电压增大到大于点C时,区块链服务器12的电压确定参数将不再随着电源电压的增大而提升,而是保持不变。
因此,点A处的电源电压即为区块链服务器10的目标电压;点B处的电源电压即为区块链服务器11的目标电压;点C处的电源电压即为区块链服务器12的目标电压。
图3为根据本申请实施方式的包含latch芯片的区块链服务器的电压确定参数与电源电压的映射关系示意图。
区块链服务器20、区块链服务器21和区块链服务器22分别采用不同规格的latch芯片,而且区块链服务器20、区块链服务器21和区块链服务器22分别处于升频阶段后的工作状态(芯片频率不变)。可见,当电源电压较小时,区块链服务器20、区块链服务器21和区块链服务器22的电压确定参数随着电源电压的增大而提升,具体提升方式可以为线性提升或非线性提升,本申请实施方式对此并无限定。
当电源电压增大到大于点A时,区块链服务器20的电压确定参数将不再随着电源电压的增大而提升,而是先保持不变,然后随着电源电压的继续增大而 下降。当电源电压增大到点B时,区块链服务器21的电压确定参数将不再随着电源电压的增大而提升,而是先保持不变,然后随着电源电压的继续增大而下降;当电源电压增大到点C时,区块链服务器22的电压确定参数将不再随着电源电压的增大而提升,而是先保持不变,然后随着电源电压的继续增大而下降。
因此,点A处的电源电压即为区块链服务器20的目标电压;点B处的电源电压即为区块链服务器21的目标电压;点C处的电源电压即为区块链服务器22的目标电压。
在一个实施方式中,步骤102包括:以预定的电压调节步长(比如,10毫伏),逐步增加电源的电压值;当电压值增加到电压确定参数保持不变或开始下降时,以电压调节步长,逐步降低电压值;当电压值降低到电压确定参数开始下降时,将电源的当前电压值与单个的电压调节步长的求和结果,确定为目标电压值。这个实施方式可以适用于包含非latch芯片或latch芯片的区块链服务器。
举例(1):当区块链服务器包含非latch芯片时,比如以图2中的区块链服务器10为例进行说明。无论区块链服务器10的电源的当前电压值为多少,以预定的电压调节步长(比如,10毫伏),逐步增加电源的电压值;当电压值增加到电压确定参数保持不变时(此时可能刚到达点A或已经过了点A),以电压调节步长,逐步降低电压值;当电压值降低到电压确定参数开始下降(此时到达点A的前一个点)时,将电源的当前电压值与单个的电压调节步长的求和结果,确定为目标电压值。
举例(2)、当区块链服务器采用latch芯片时,比如以图3中的区块链服务器20为例进行说明。无论区块链服务器20的电源的当前电压值为多少,以预定的电压调节步长(比如,10毫伏),逐步增加电源的电压值;当电压值增加到电压确定参数保持不变时(此时可能刚到达点A,或已经过了点A但尚未到达电压确定参数的下降区间)时,以电压调节步长,逐步降低电压值;当电压值降低到电压确定参数开始下降(此时到达点A的前一个点)时,将电源的当前电压值与单个的电压调节步长的求和结果,确定为目标电压值。
举例(3)、当区块链服务器采用latch芯片时,比如以图3中的区块链服务器21为例进行说明,无论电源的当前电压为多少,以预定的电压调节步长(比如,10毫伏),逐步增加电源的电压值;当电压值增加到电压确定参数开始下降时(此时已到达电压确定参数的下降区间,即已经过了G点),以电压调节步长,逐步降低电压值;当电压值降低到电压确定参数开始下降(电压确定参数经历了先增加、再保持不变,最后开始下降的阶段)时,认定此时到达点B的前一个点,将电源的当前电压值与单个的电压调节步长的求和结果,确定为所述目标电压值。
因此,本申请实施方式直接以增加电源的电压值的调节方式,确定目标电压值,降低了确定目标电压值的难度。
优选地,步骤102还包括:记录区块链服务器在启动后升频阶段中的电压确定参数的最大值;将最大值确定为目标值。
后续,本申请实施方式通过将电压确定参数与目标值进行比较,可以简化目标电压值的确定过程。
图4为根据本申请实施方式的包含非latch芯片的区块链服务器的电压确定参数与芯片频率的映射关系示意图。
在图4中,区块链服务器30、区块链服务器31和区块链服务器32分别采用不同规格的非latch芯片,而且区块链服务器30、区块链服务器31和区块链服务器32分别处于启动后的升频阶段(电源的输出电压不变)。可见,当芯片频率较小时,区块链服务器30、区块链服务器31和区块链服务器32的电压确定参数持续为最大值。当芯片频率继续增大到点D后,区块链服务器30的电压确定参数将开始降低;当芯片频率增大到点E后,区块链服务器31的电压确定参数将开始降低;当芯片频率增大到点F后,区块链服务器32的电压确定参数将开始降低。
因此,点D处的电压确定参数被记录为启动后升频阶段中的电压确定参数的最大值,即为针对区块链服务器30、与电压确定参数进行比较的目标值;点E处的电压确定参数被记录为启动后升频阶段中的电压确定参数的最大值,即为针对区块链服务器31、与电压确定参数进行比较的目标值;点F处的电压确定参数被记录为启动后升频阶段中的电压确定参数的最大值,即为针对区块链服务器32、与电压确定参数进行比较的目标值。
图5为根据本申请实施方式的包含latch芯片的区块链服务器的电压确定参数与芯片频率的映射关系示意图。
在图5中,区块链服务器40、区块链服务器41和区块链服务器42分别采用不同规格的latch芯片,而且区块链服务器40、区块链服务器41和区块链服务器42分别处于启动后的升频阶段(电源的输出电压不变)。可见,当芯片频率较小时,区块链服务器40、区块链服务器41和区块链服务器42的电压确定参数随着芯片频率的增大而提升。提升方式可以为线性提升或非线性提升,本申请实施方式对此并无限定。
当区块链服务器40的芯片频率增大到大于点A时,区块链服务器40的电压确定参数将不再随着芯片频率的增大而提升,而是在区间[A,D]内先保持不变,并且过D点后随着芯片频率的增大而下降。当区块链服务器41的芯片频率增大到大于点B时,区块链服务器41的电压确定参数将不再随着芯片频率的增大而提升,而是在区间[B,E]内先保持不变,并且过E点后随着芯片频率的增大而下降。当区块链服务器42的芯片频率增大到大于点C时,区块链服务器42的电压确定参数将不再随着芯片频率的增大而提升,而是在区间[C,F]内先保持不变,并且过F点后随着芯片频率的增大而下降。
因此,点D处的电压确定参数被记录为启动后升频阶段中的电压确定参数 的最大值,即为针对区块链服务器40、与电压确定参数进行比较的目标值;点E处的电压确定参数被记录为启动后升频阶段中的电压确定参数的最大值,即为针对区块链服务器41、与电压确定参数进行比较的目标值;点F处的电压确定参数被记录为启动后升频阶段中的电压确定参数的最大值,即为针对区块链服务器42、与电压确定参数进行比较的目标值。
上述详细描述了确定区块链服务器的目标值的具体方式,下面描述基于电压确定参数与目标值的比较过程,确定目标电压值的具体过程。
在一个实施方式中,步骤102包括:当电压确定参数等于目标值时,以预定的电压调节步长,逐步降低电源的电压值;当电压值降低到电压确定参数开始下降时,将电源的当前电压值与单个的电压调节步长的求和结果,确定为目标电压值。这个实施方式可以适用于包含非latch芯片或latch芯片的区块链服务器。
可见,当电压确定参数等于目标值时,可以判定电压值可能偏高,因此直接执行降压调节过程,无需再执行升压调节过程。
举例(1):当区块链服务器包含非latch芯片时,比如以图2中的区块链服务器10为例进行说明。如果当前的电压确定参数等于目标值时,可以认定当前的电源电压必然大于或等于A点时的电压,因此直接执行降压调节过程。降压调节过程具体包括:以电压调节步长(比如,10毫伏),逐步降低电源的电压值;当电压值降低到电压确定参数开始下降(此时到达点A的前一个点)时,将电源的当前电压值与单个的电压调节步长的求和结果,确定为目标电压值。
举例(2)、当区块链服务器采用latch芯片时,比如以图3中的区块链服务器20为例进行说明。如果当前的电压确定参数等于预定的目标值时,可以认定当前的电压必然大于或等于A点时的电压,因此直接执行降压调节过程。降压调节过程具体包括:以电压调节步长(比如,10毫伏),逐步降低电压值;当电压值降低到电压确定参数开始下降(此时到达点A的前一个点)时,将电源的当前电压值与单个的电压调节步长的求和结果,确定为所述目标电压值。
在一个实施方式中,步骤102包括:当电压确定参数小于预定的目标值时,以预定的电压调节步长,逐步增加电源的电压值;当电压值增加到电压确定参数保持不变时,将电源的当前电压值减去单个的电压调节步长的结果,确定为目标电压值;当电压值增加到电压确定参数开始下降时,以电压调节步长,逐步降低电压值,当电压值降低到电压确定参数先增加、再保持不变、继而开始下降时,将电源的当前电压值与单个的电压调节步长的求和结果,确定为目标电压值。
可见,当电压确定参数小于预定的目标值时,可以判定当前电压值位于电压确定参数的下降或上升区间,而排除位于电压确定参数不变区间的情形,因此可以基于下降或上升区间,针对性地确定目标电压值。这个实施方式可以适用于包含非latch芯片或latch芯片的区块链服务器。
举例(1):当区块链服务器包含非latch芯片时,比如以图2中的区块链服务器10为例进行说明。如果当前的电压确定参数小于预定的目标值时,可以认定当前的电压必然小于A点时的电压,因此直接执行升压调节过程。升压调节过程具体包括:以电压调节步长(比如,10毫伏),逐步增加电压值;当电压值增加到电压确定参数保持不变(此时到达点A的后一个点)时,将电源的当前电压值减去单个的电压调节步长的结果,确定为目标电压值。
举例(2)、当区块链服务器采用latch芯片时,比如以图3中的区块链服务器21为例进行说明。如果当前的电压确定参数小于预定的目标值时,可以认定当前的电压必然不处于区间[B,G]内。首先,以预定的电压调节步长,逐步增加电源的电压值;当电压值增加到电压确定参数保持不变(即到达区间[B,G])时,此时到达点B的后一个点,将电源的当前电压值减去单个的电压调节步长的结果,确定为目标电压值;当电压值增加到电压确定参数开始下降时(即过了G点),以电压调节步长,逐步降低电压值;当电压值降低到电压确定参数先增加(即回到G点的过程)、再保持不变(即从G点到B点的移动过程),继而开始下降(此时到达点B的前一个点)时,将电源的当前电压值与单个的电压调节步长的求和结果,确定为目标电压值。
步骤103:控制所述电源输出电压的值为所述目标电压值。
因此,区块链服务器的电源可以将输出电压维持在目标电压值,既可以保证算力及稳定性,还节约功耗。
图6为根据本申请实施方式的电源电压控制装置的示范性结构图。如图6所示,电源电压控制装置600包括:
参数确定模块601,被配置为基于第一数值与第二数值的比值,确定电压确定参数,其中,第一数值为区块链服务器中处于工作状态的核的数目,第二数值为区块链服务器中的核的总数目;
电压确定模块602,被配置为基于电压确定参数,确定区块链服务器的电源的目标电压值;
控制模块603,被配置为控制电源电压的值为输出目标电压值。
在一个实施方式中,电压确定模块602,被配置为以预定的电压调节步长,逐步增加所述电源的电压值;当所述电压值增加到所述电压确定参数保持不变或开始下降时,以所述电压调节步长,逐步降低所述电压值;当所述电压值降低到所述电压确定参数开始下降时,将所述电源的当前电压值与单个的电压调节步长的求和结果,确定为所述目标电压值。
在一个实施方式中,电压确定模块602,被配置为当所述电压确定参数等于预定的目标值时,以预定的电压调节步长,逐步降低所述电源的电压值;当所述电压值降低到所述电压确定参数开始下降时,将所述电源的当前电压值与单个的电压调节步长的求和结果,确定为所述目标电压值。
在一个实施方式中,电压确定模块602,被配置为当所述电压确定参数小于 预定的目标值时,以预定的电压调节步长,逐步增加所述电源的电压值;当所述电压值增加到所述电压确定参数保持不变时,将电源的当前电压值减去单个的电压调节步长的结果,确定为所述目标电压值;当所述电压值增加到所述电压确定参数开始下降时,以所述电压调节步长,逐步降低所述电压值,当所述电压值降低到所述电压确定参数先增加、再保持不变、继而开始下降时,将所述电源的当前电压值与单个的电压调节步长的求和结果,确定为所述目标电压值。
在一个实施方式中,电压确定模块602,被进一步配置为记录区块链服务器启动后的升频阶段中的电压确定参数的最大值;将最大值确定为目标值。
在一个实施方式中,参数确定模块601,被进一步配置为基于区块链服务器中的芯片数以及每个芯片所包含的核数,确定第二数值。
在一个实施方式中,参数确定模块601,被进一步配置为向所述区块链服务器中的所有核,分别发送计算任务;统计执行所述计算任务以返回指定随机数的核;将统计出的核的数目确定为所述第一数值。
图7为根据本申请另一实施方式的电源电压控制装置的示范性结构图,具有存储器-处理器架构。如图7所示,电源电压控制装置包括:处理器701;存储器702;其中存储器702中存储有可被处理器701执行的应用程序,用于使得处理器701执行如上实施方式的电源电压控制方法。
其中,存储器702具体可以实施为电可擦可编程只读存储器(EEPROM)、快闪存储器(Flash memory)、可编程程序只读存储器(PROM)等多种存储介质。处理器701可以实施为包括一个或多个中央处理器或一个或多个现场可编程门阵列,其中现场可编程门阵列集成一个或多个中央处理器核。具体地,中央处理器或中央处理器核可以实施为CPU、MCU或数字信号处理器(DSP)。
本申请实施方式还提出了一种区块链服务器。图8为根据本申请实施方式的区块链服务器的示范性结构图。如图8所示,区块链服务器包括:
芯片板801,包含多个芯片,每个芯片包含至少一个核;
控制板802,包含存储器和处理器;其中,存储器中存储有应用程序,所述应用程序被所述处理器执行时,实现如上所述的电源电压控制方法;其中芯片板801通过信号连接接口与控制板802形成信号连接,芯片板801通过电源连接接口与电源803形成电力连接。
需要说明的是,上述各流程和各结构图中不是所有的步骤和模块都是必须的,可以根据实际的需要忽略某些步骤或模块。各步骤的执行顺序不是固定的,可以根据需要进行调整。各模块的划分仅仅是为了便于描述采用的功能上的划分,实际实现时,一个模块可以分由多个模块实现,多个模块的功能也可以由同一个模块实现,这些模块可以位于同一个设备中,也可以位于不同的设备中。
各实施方式中的硬件模块可以以机械方式或电子方式实现。例如,一个硬件模块可以包括专门设计的永久性电路或逻辑器件(如专用处理器,如FPGA 或ASIC)用于完成特定的操作。硬件模块也可以包括由软件临时配置的可编程逻辑器件或电路(如包括通用处理器或其它可编程处理器)用于执行特定操作。至于具体采用机械方式,或是采用专用的永久性电路,或是采用临时配置的电路(如由软件进行配置)来实现硬件模块,可以根据成本和时间上的考虑来决定。
本申请还提供了一种计算机可读存储介质,存储有计算机可读指令,用于使一机器执行如上本申请实施方式所述的方法。具体地,可以提供配有存储介质的系统或者装置,在该存储介质上存储着实现上述实施方式中任一实施方式的功能的软件程序代码,且使该系统或者装置的计算机(或CPU或MPU)读出并执行存储在存储介质中的程序代码。此外,还可以通过基于程序代码的指令使计算机上操作的操作系统等来完成部分或者全部的实际操作。还可以将从存储介质读出的程序代码写到插入计算机内的扩展板中所设置的存储器中或者写到与计算机相连接的扩展单元中设置的存储器中,随后基于程序代码的指令使安装在扩展板或者扩展单元上的CPU等来执行部分和全部实际操作,从而实现上述实施方式中任一实施方式的功能。
用于提供程序代码的存储介质实施方式包括软盘、硬盘、磁光盘、光盘(如CD-ROM、CD-R、CD-RW、DVD-ROM、DVD-RAM、DVD-RW、DVD+RW)、磁带、非易失性存储卡和ROM。可选择地,可以由通信网络从服务器计算机或云上下载程序代码。
以上,仅为本申请的较佳实施方式而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种电源电压控制方法,包括:
    基于第一数值与第二数值的比值,确定电压确定参数,其中,所述第一数值为区块链服务器中处于工作状态的核的数目,所述第二数值为所述区块链服务器中的核的总数目;
    基于所述电压确定参数,确定所述区块链服务器的电源的目标电压值;及,
    控制所述电源输出电压的值为所述目标电压值。
  2. 根据权利要求1所述的方法,其中,所述基于所述电压确定参数,确定所述区块链服务器的电源的目标电压值包括:
    以预定的电压调节步长,逐步增加所述电源的电压值;
    当所述电压值增加到所述电压确定参数保持不变或开始下降时,以所述电压调节步长,逐步降低所述电压值;
    当所述电压值降低到所述电压确定参数开始下降时,将所述电源的当前电压值与单个的电压调节步长的求和结果,确定为所述目标电压值。
  3. 根据权利要求1所述的方法,其中,所述基于所述电压确定参数,确定所述区块链服务器的电源的目标电压值包括:
    当所述电压确定参数等于预定的目标值时,以预定的电压调节步长,逐步降低所述电源的电压值;
    当所述电压值降低到所述电压确定参数开始下降时,将所述电源的当前电压值与单个的电压调节步长的求和结果,确定为所述目标电压值。
  4. 根据权利要求1所述的方法,其中,所述基于所述电压确定参数,确定所述区块链服务器的电源的目标电压值包括:
    当所述电压确定参数小于预定的目标值时,以预定的电压调节步长,逐步增加所述电源的电压值;
    当所述电压值增加到所述电压确定参数保持不变时,将电源的当前电压值减去单个的电压调节步长的结果,确定为所述目标电压值;
    当所述电压值增加到所述电压确定参数开始下降时,以所述电压调节步长,逐步降低所述电压值,当所述电压值降低到所述电压确定参数先增加、再保持不变、继而开始下降时,将所述电源的当前电压值与单个的电压调节步长的求和结果,确定为所述目标电压值。
  5. 根据权利要求3或4所述的方法,还包括:
    记录所述区块链服务器启动后的升频阶段中的电压确定参数的最大值;
    将所述最大值确定为所述目标值。
  6. 根据权利要求1-4中任一项所述的方法,还包括:
    基于所述区块链服务器中的芯片数以及每个芯片所包含的核数,确定所述第二数值。
  7. 根据权利要求1-4中任一项所述的方法,还包括:
    向所述区块链服务器中的所有核,分别发送计算任务;
    统计执行所述计算任务以返回指定随机数的核;
    将统计出的核的数目确定为所述第一数值。
  8. 一种电源电压控制装置,包括:
    参数确定模块,被配置为基于第一数值与第二数值的比值,确定电压确定参数,其中,所述第一数值为区块链服务器中处于工作状态的核的数目,所述第二数值为所述区块链服务器中的核的总数目;
    电压确定模块,被配置为基于所述电压确定参数,确定所述区块链服务器的电源的目标电压值;及,
    控制模块,被配置为控制所述电源输出电压的值为所述目标电压值。
  9. 根据权利要求8所述的装置,其中,所述电压确定模块,被配置为以预定的电压调节步长,逐步增加所述电源的电压值;当所述电压值增加到所述电压确定参数保持不变或开始下降时,以所述电压调节步长,逐步降低所述电压值;当所述电压值降低到所述电压确定参数开始下降时,将所述电源的当前电压值与单个的电压调节步长的求和结果,确定为所述目标电压值。
  10. 根据权利要求8所述的装置,其中,所述电压确定模块,被配置为当所述电压确定参数等于预定的目标值时,以预定的电压调节步长,逐步降低所述电源的电压值;当所述电压值降低到所述电压确定参数开始下降时,将所述电源的当前电压值与单个的电压调节步长的求和结果,确定为所述目标电压值。
  11. 根据权利要求8所述的装置,其中,所述电压确定模块,被配置为当所述电压确定参数小于预定的目标值时,以预定的电压调节步长,逐步增加所述电源的电压值;当所述电压值增加到所述电压确定参数保持不变时,将电源的当前电压值减去单个的电压调节步长的结果,确定为所述目标电压值;当所述电压值增加到所述电压确定参数开始下降时,以所述电压调节步长,逐步降低所述电压值,当所述电压值降低到所述电压确定参数先增加、再保持不变、继而开始下降时,将所述电源的当前电压值与单个的电压调节步长的求和结果,确定为所述目标电压值。
  12. 根据权利要求10或11所述的装置,其中,所述电压确定模块,被进一步配置为记录所述区块链服务器启动后的升频阶段中的电压确定参数的最大值;将所述最大值确定为所述目标值。
  13. 根据权利要求8-11中任一项所述的装置,其中,所述参数确定模块,被进一步配置为基于所述区块链服务器中的芯片数以及每个芯片所包含的核数,确定所述第二数值。
  14. 根据权利要求8-11中任一项所述的装置,其中,所述参数确定模块,被进一步配置为向所述区块链服务器中的所有核,分别发送计算任务;统计执行所述计算任务以返回指定随机数的核;将统计出的核的数目确定为所述第一数值。
  15. 一种区块链服务器,包括:
    芯片板,包含多个芯片,其中,每个芯片包含至少一个核;
    控制板,包含存储器和处理器;其中,所述存储器中存储有应用程序,所述应用程序被所述处理器执行时,实现如权利要求1至7中任一项所述的电源电压控制方法;
    其中,所述芯片板通过信号连接接口与所述控制板形成信号连接,所述芯片板通过电源连接接口与电源形成电力连接。
  16. 一种计算机可读存储介质,存储有计算机可读指令,所述计算机可读指令用于执行如权利要求1至7中任一项所述的电源电压控制方法。
PCT/CN2023/077091 2022-08-25 2023-02-20 一种电源电压控制方法、装置、区块链服务器和存储介质 WO2024040887A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3202924A CA3202924A1 (en) 2022-08-25 2023-02-20 Power supply voltage control method and apparatus, blockchain server, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211023509.9 2022-08-25
CN202211023509.9A CN115113675B (zh) 2022-08-25 2022-08-25 一种电源电压控制方法、装置、区块链服务器和存储介质

Publications (1)

Publication Number Publication Date
WO2024040887A1 true WO2024040887A1 (zh) 2024-02-29

Family

ID=83335413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077091 WO2024040887A1 (zh) 2022-08-25 2023-02-20 一种电源电压控制方法、装置、区块链服务器和存储介质

Country Status (2)

Country Link
CN (1) CN115113675B (zh)
WO (1) WO2024040887A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115113675B (zh) * 2022-08-25 2022-11-18 深圳比特微电子科技有限公司 一种电源电压控制方法、装置、区块链服务器和存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105677000A (zh) * 2016-02-14 2016-06-15 华为技术有限公司 动态电压频率调整的系统及方法
US20160246343A1 (en) * 2015-02-23 2016-08-25 Qualcomm Innovation Center, Inc. Dynamic multi-core processor voltage scaling based on online core count
US20170068309A1 (en) * 2015-09-09 2017-03-09 Qualcomm Incorporated Circuits and methods providing voltage adjustment as processor cores become active
US20180081382A1 (en) * 2016-09-20 2018-03-22 Huawei Technologies Co., Ltd. Load monitor, power supply system based on multi-core architecture, and voltage regulation method
CN108170257A (zh) * 2018-03-21 2018-06-15 苏州芯算力智能科技有限公司 一种动态电压调整系统及调整方法
CN110825208A (zh) * 2019-10-25 2020-02-21 展讯半导体(成都)有限公司 数字货币矿机参数的调整方法、装置、设备及存储介质
CN111752361A (zh) * 2019-03-29 2020-10-09 北京比特大陆科技有限公司 算力自适应方法和装置、设备和存储介质及程序产品
CN111966202A (zh) * 2020-08-18 2020-11-20 深圳比特微电子科技有限公司 数字货币矿机的电源电压控制方法、装置和数字货币矿机
CN115113675A (zh) * 2022-08-25 2022-09-27 深圳比特微电子科技有限公司 一种电源电压控制方法、装置、区块链服务器和存储介质

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703133B2 (ja) * 2004-05-25 2011-06-15 ルネサスエレクトロニクス株式会社 内部電圧発生回路および半導体集積回路装置
CN103529922A (zh) * 2013-10-29 2014-01-22 曙光信息产业(北京)有限公司 服务器的供电装置及服务器
US9645590B1 (en) * 2016-01-26 2017-05-09 Solomon Systech Limited System for providing on-chip voltage supply for distributed loads
CN207531168U (zh) * 2017-12-05 2018-06-22 深圳比特微电子科技有限公司 数据处理装置以及虚拟货币挖矿机和计算机服务器
CN207976832U (zh) * 2018-02-13 2018-10-16 深圳比特微电子科技有限公司 带电平转换单元的供电电路、电路板及虚拟数字币挖矿机
CN108446004A (zh) * 2018-03-21 2018-08-24 北京比特大陆科技有限公司 电路装置、电子设备挖矿机和服务器
CN108762460A (zh) * 2018-06-28 2018-11-06 北京比特大陆科技有限公司 一种数据处理电路、算力板、矿机以及挖矿系统
US10690707B2 (en) * 2018-10-31 2020-06-23 International Business Machines Corporation System and method for verifying an energy generation source
CN113597627B (zh) * 2019-01-15 2023-06-30 布洛克钱恩阿西克斯公司 区块链报头验证中的动态变换
CN111859829B (zh) * 2019-04-04 2024-04-16 北京比特大陆科技有限公司 控制算力板的方法、装置和设备以及介质、程序产品
CN111796651B (zh) * 2019-04-08 2021-10-08 北京比特大陆科技有限公司 数字凭证处理设备、芯片供电方法及存储介质和程序产品
US11489736B2 (en) * 2019-07-23 2022-11-01 Core Scientific, Inc. System and method for managing computing devices
CN112558507B (zh) * 2019-09-25 2022-03-01 北京比特大陆科技有限公司 频率自适应方法和装置、数据处理设备、介质和产品
CN111506154B (zh) * 2020-04-14 2021-05-25 深圳比特微电子科技有限公司 计算机提高算力和降低功耗算力比的方法及系统
CN111538382B (zh) * 2020-04-16 2021-08-27 深圳比特微电子科技有限公司 一种数字货币矿机的启动方法、装置和数字货币矿机
CN111781985B (zh) * 2020-06-12 2021-07-02 深圳比特微电子科技有限公司 矿机功率调整方法
CN111736059B (zh) * 2020-07-02 2022-08-26 深圳比特微电子科技有限公司 芯片测试方法、测试设备和测试系统
CN111966409B (zh) * 2020-07-30 2021-04-02 深圳比特微电子科技有限公司 矿机快速搜频方法和装置以及矿机
CN213182661U (zh) * 2020-09-17 2021-05-11 深圳比特微电子科技有限公司 串联供电电路和虚拟货币挖矿机设备
WO2022081596A1 (en) * 2020-10-14 2022-04-21 Intel Corporation 5-phase latch-based clocking and glitch-power aware clock apparatus
CN114384980A (zh) * 2020-10-20 2022-04-22 深圳比特微电子科技有限公司 数字货币矿机的算力板、供电系统和数字货币矿机
CN112445302B (zh) * 2020-11-20 2021-08-27 深圳比特微电子科技有限公司 一种数字货币矿机的启动方法、装置和数字货币矿机
US11630694B2 (en) * 2021-01-13 2023-04-18 Qualcomm Incorporated Core voltage regulator energy-aware task scheduling
CN113359935B (zh) * 2021-06-10 2022-09-09 海光信息技术股份有限公司 Soc电源域的电压调节方法、装置及存储介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160246343A1 (en) * 2015-02-23 2016-08-25 Qualcomm Innovation Center, Inc. Dynamic multi-core processor voltage scaling based on online core count
US20170068309A1 (en) * 2015-09-09 2017-03-09 Qualcomm Incorporated Circuits and methods providing voltage adjustment as processor cores become active
CN105677000A (zh) * 2016-02-14 2016-06-15 华为技术有限公司 动态电压频率调整的系统及方法
US20180081382A1 (en) * 2016-09-20 2018-03-22 Huawei Technologies Co., Ltd. Load monitor, power supply system based on multi-core architecture, and voltage regulation method
CN108170257A (zh) * 2018-03-21 2018-06-15 苏州芯算力智能科技有限公司 一种动态电压调整系统及调整方法
CN111752361A (zh) * 2019-03-29 2020-10-09 北京比特大陆科技有限公司 算力自适应方法和装置、设备和存储介质及程序产品
CN110825208A (zh) * 2019-10-25 2020-02-21 展讯半导体(成都)有限公司 数字货币矿机参数的调整方法、装置、设备及存储介质
CN111966202A (zh) * 2020-08-18 2020-11-20 深圳比特微电子科技有限公司 数字货币矿机的电源电压控制方法、装置和数字货币矿机
CN115113675A (zh) * 2022-08-25 2022-09-27 深圳比特微电子科技有限公司 一种电源电压控制方法、装置、区块链服务器和存储介质

Also Published As

Publication number Publication date
CN115113675B (zh) 2022-11-18
CN115113675A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
EP3242185B1 (en) Server rack power management
US9563510B2 (en) Electronic data store
US9436257B2 (en) Power supply engagement and method therefor
US20180254998A1 (en) Resource allocation in a cloud environment
CN103399800B (zh) 基于Linux并行计算平台的动态负载均衡方法
WO2024040887A1 (zh) 一种电源电压控制方法、装置、区块链服务器和存储介质
US8806256B2 (en) Power consumption monitor and method therefor
CN104516475A (zh) 用于管理多核片上系统上的全局芯片功率的方法和装置
US8515726B2 (en) Method, apparatus and computer program product for modeling data storage resources in a cloud computing environment
WO2024045540A1 (zh) 一种芯片频率控制方法、装置、区块链服务器和存储介质
CN111400041A (zh) 服务器配置文件的管理方法、装置及计算机可读存储介质
US20140359342A1 (en) System and method for redundant object storage
WO2021155665A1 (zh) 一种使用二阶滑模估测的风扇功率控制方法和系统
CN116301667B (zh) 一种数据库系统,数据访问方法、装置、设备及存储介质
CN104636397A (zh) 用于分布式计算的资源分配方法、计算加速方法以及装置
US9436258B1 (en) Dynamic service level objective power control in distributed process
CA3202924A1 (en) Power supply voltage control method and apparatus, blockchain server, and storage medium
JP2002109401A (ja) サービスレベル制御方法および装置
KR102214191B1 (ko) 가상머신의 어플리케이션 중요도 평가를 통한 bmc기반 서버 전원 임계치 설정 방법
CN114143226A (zh) 分布式数据库网络延迟的动态代价校准方法及系统
CN111431817B (zh) 一种连接池及其构造方法以及计算机可读存储介质
WO2024066330A1 (zh) Gpu资源调度方法、服务器及存储介质
US20230261935A1 (en) Optimizing network provisioning through cooperation
US9111039B2 (en) Limiting bandwidth for write transactions across networks of components in computer systems
CN109918192B (zh) 一种用于服务器的bmc资源分配方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23855984

Country of ref document: EP

Kind code of ref document: A1