WO2024040851A1 - 一种轴向磁通电机、电动设备和交通工具 - Google Patents

一种轴向磁通电机、电动设备和交通工具 Download PDF

Info

Publication number
WO2024040851A1
WO2024040851A1 PCT/CN2023/070184 CN2023070184W WO2024040851A1 WO 2024040851 A1 WO2024040851 A1 WO 2024040851A1 CN 2023070184 W CN2023070184 W CN 2023070184W WO 2024040851 A1 WO2024040851 A1 WO 2024040851A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
stator
rotor
flux motor
axial flux
Prior art date
Application number
PCT/CN2023/070184
Other languages
English (en)
French (fr)
Inventor
庄朝晖
夏继
Original Assignee
宁德时代(上海)智能科技有限公司
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代(上海)智能科技有限公司, 宁德时代新能源科技股份有限公司 filed Critical 宁德时代(上海)智能科技有限公司
Priority to PCT/CN2023/070184 priority Critical patent/WO2024040851A1/zh
Publication of WO2024040851A1 publication Critical patent/WO2024040851A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present application relates to the technical field of flux motors, and in particular to an axial flux motor, electric equipment and vehicles.
  • Electric equipment often uses motors as power sources to perform corresponding action processes.
  • vehicles such as electric vehicles employ electric motors such as induction motors and permanent magnet motors to drive the vehicle and capture braking energy when used as generators.
  • motors such as induction motors and permanent magnet motors to drive the vehicle and capture braking energy when used as generators.
  • motors such as induction motors and permanent magnet motors
  • radial flux motors and axial flux motors.
  • axial flux motors are relatively lightweight, produce increased power, and have compact dimensions.
  • the power density of the axial flux motor is high, and the motor generates a lot of heat when working.
  • the existing heat dissipation method for the axial flux motor is inefficient and difficult to meet the heat dissipation needs of the axial flux motor.
  • the main purpose of this application is to provide an axial flux motor, electric equipment and vehicle, aiming to solve the above technical problems existing in the prior art.
  • the axial flux motor includes a housing, a stator assembly, a rotor assembly and a partition assembly.
  • the housing is used to form a housing. space, the stator assembly and the rotor assembly are arranged in the accommodation space along the axial direction of the axial flux motor, the partition assembly includes a partition main body, and the partition main body is provided with Between the stator assembly and the rotor assembly, the housing cooperates with the partition main body to form a cooling space for containing coolant and the stator assembly. The cooling in the cooling space agent directly contacts the stator assembly.
  • the structure of the axial flux motor can be made more compact.
  • the shell and the partition body cooperate to form a cooling space, in which the coolant is in direct contact with the stator assembly, which can efficiently realize heat exchange between the coolant and the stator assembly and improve the cooling efficiency of the stator assembly.
  • the housing includes an end plate portion, an inner end surface of the end plate portion is disposed toward a side of the stator assembly away from the rotor assembly, and the inner end surface of the end plate portion is in contact with the partition.
  • the plate main bodies are spaced apart along the axial direction and define both sides of the cooling space in the axial direction. Therefore, the boundary of the cooling space is defined by the end plate part and the partition main body, which can improve the utilization of the housing space and make the structure of the entire axial flux motor more compact.
  • the housing includes two cylindrical parts nested in a radial direction of the axial flux motor, and the two cylindrical parts are sealingly matched with the separator body respectively, so
  • the cooling space is arranged in an annular shape.
  • the two cylindrical parts include a first cylindrical part and a second cylindrical part arranged around the first cylindrical part, and the first cylindrical part and the second cylindrical part
  • the first cylindrical portion extends toward the stator assembly, the first cylindrical portion allows the rotating shaft portion of the rotor assembly to pass, and the separator body includes an inner ring matching portion and an outer ring matching portion surrounding the inner ring matching portion. part, wherein the inner ring matching part is sealingly matched with the first cylindrical part, and the outer ring matching part is sealingly matched with the second cylindrical part.
  • the partition main body is embedded inside the second cylindrical part, and a sealing fit is formed between the outer peripheral surface of the outer ring matching part and the inner peripheral surface of the second cylindrical part, And/or a third cylindrical part is provided on the inner ring matching part, and the third cylindrical part is plugged into the first cylindrical part and forms a sealing fit between them. Therefore, the main body of the partition plate is located in the accommodation space, so as to form a cooling space and at the same time better protect the main body of the partition plate. In addition, better alignment and sealing effects are achieved through the plug-in fit between the third cylindrical part and the first cylindrical part.
  • the third cylindrical part is plugged into the periphery of the first cylindrical part
  • the axial flux motor further includes a bearing disposed in the first cylindrical part
  • the spacer The plate main body includes an oil collecting plate, and the oil collecting plate cooperates with the first cylindrical portion to form an oil reservoir. This can be used to improve the lubrication continuity and stability of the bearing.
  • the oil collecting plate is connected to the third cylindrical part and extends toward the inside of the third cylindrical part along the radial direction of the axial flux motor.
  • the stator assembly includes a stator core and a coil wound around the stator core.
  • the stator core is provided with a plurality of stator slots, and the coils are embedded in the plurality of stator slots.
  • the partition main body includes a plurality of embedded ribs respectively corresponding to the positions of the plurality of stator slots, and each of the embedded ribs is embedded in the corresponding stator slot. Therefore, by embedding the ribs into the stator slots, the coils in the stator slots can be effectively fixed.
  • the housing includes a first cylindrical part and a second cylindrical part arranged around the first cylindrical part, and the first cylindrical part and the second cylindrical part face toward the
  • the stator assembly extends, the first cylindrical portion allows the rotating shaft portion of the rotor assembly to pass, and the partition body includes an inner ring matching portion and an outer ring matching portion arranged around the inner ring matching portion, so The inner ring matching part is sealingly matched with the first cylindrical part, the outer ring matching part is sealingly matched with the second cylindrical part, and the plurality of stator slots and the plurality of embedded ribs are respectively relative to the The axial direction is radially expanded, and the plurality of embedded ribs are respectively connected to the inner ring matching part and/or the outer ring matching part.
  • the assembly process of the embedded ribs can be simplified, and at the same time, the embedded ribs can be used to assist in fixing the inner ring matching part and/or the outer ring matching part, thereby improving structural stability.
  • the partition body further includes a blocking plate for blocking the gaps between the plurality of embedded ribs.
  • a blocking plate for blocking the gaps between the plurality of embedded ribs.
  • the inner ring matching part and/or the outer ring matching part is sealingly matched with the stator assembly. As a result, the sealing property of the cooling space can be enhanced.
  • the diaphragm assembly includes a reinforcing member.
  • the reinforcing member is arranged in a cylindrical shape and is supported on a side of the diaphragm main body away from the stator assembly.
  • the rotor assembly is disposed on the stator assembly. inside the reinforcement. Therefore, the structural stability of the partition main body can be improved through the reinforcement.
  • the reinforcement member is configured to abut the housing. Therefore, the structural stability of the partition main body can be improved through the reinforcement.
  • the baffle assembly is provided with a plurality of pressure relief holes arranged at intervals along the circumferential direction of the axial flux motor. Therefore, the pressure relief hole can be used to balance the air pressure fluctuation caused by the rotor assembly during operation.
  • the rotor assembly and the separator body are spaced apart along the axial direction and form an air gap, and the pressure relief hole is used to connect the air gap with the outside of the separator assembly. space. Therefore, the pressure relief holes can be used to balance the air pressure fluctuations in the air gap caused by the operation of the rotor assembly.
  • the baffle assembly is further provided with a return hole, and the coolant that penetrates from the cooling space into the baffle assembly is discharged to the external space of the baffle assembly through the return hole.
  • the diaphragm assembly includes a reinforcing member.
  • the reinforcing member is arranged in a cylindrical shape and is supported on a side of the diaphragm main body away from the stator assembly.
  • the rotor assembly is disposed on the stator assembly.
  • the return hole is provided on the reinforcement member.
  • the reinforcement member is further provided with a plurality of pressure relief holes, and the plurality of pressure relief holes are arranged at intervals along the circumference of the axial flux motor on the reinforcement member toward the partition plate.
  • the return hole is centrally located along the axial direction relative to both edges of the reinforcement member.
  • the stator assembly includes a stator core and a coil wound around the stator core.
  • the stator core is arranged in an annular shape, and the coil is arranged along the axial flux motor. Radially protruding from the opposite side annulus surfaces of the stator core to form an inner ring coil part and an outer ring coil part, the inner ring coil part and/or the outer ring coil part being located in the cooling space, The coolant in the cooling space directly contacts the inner ring coil part and/or the outer ring coil part. As a result, the cooling efficiency of the stator assembly can be improved.
  • the housing includes an end plate portion, an inner end surface of the end plate portion is disposed toward a side of the stator assembly away from the rotor assembly, and the inner end surface of the end plate portion, the partition A cooling flow channel is provided on a side of the plate main body facing the end plate portion and/or the stator assembly, and the coolant in the cooling space flows along the cooling flow channel.
  • the cooling efficiency of the stator assembly can be improved.
  • the housing includes an end plate portion, an inner end surface of the end plate portion is disposed toward a side of the stator assembly away from the rotor assembly, and a hole for the coolant is disposed on the inner end surface.
  • a flowing cooling channel, the stator assembly is covered on at least part of the cooling channel to allow the coolant flowing in the cooling channel to directly contact the stator assembly. Therefore, by the coolant in the cooling channel directly contacting the stator assembly, heat exchange between the coolant and the stator assembly can be efficiently realized, and the cooling efficiency of the stator assembly can be improved.
  • the stator assembly includes a stator flange and a stator core.
  • the stator flange includes a disc-shaped body.
  • the stator core is attached and fixed to the disc-shaped body away from the end plate.
  • the disc-shaped body is covered with at least part of the cooling flow channel, and the coolant flowing in the cooling channel directly contacts the disc-shaped body. Therefore, the stator flange is used to fix the stator core, and the stator flange is used as the basis for matching with the housing, thereby reducing assembly difficulty.
  • the stator assembly further includes a coil wound around the stator core.
  • the stator core and the disc-shaped body are arranged in an annular shape.
  • the coil magnetically rotates along the axial direction.
  • the radial direction of the electric machine protrudes from the opposite side annular surfaces of the stator core to form an inner ring coil part and an outer ring coil part.
  • At least one of the inner ring coil part and the outer ring coil part is arranged along the The radial direction of the axial flux motor exceeds the disc-shaped body or maintains a predetermined gap with the disc-shaped body along the axial direction of the axial flux motor, and the coolant is in contact with the inner ring coil part and
  • the at least one of the outer ring coil portions is in direct contact. This facilitates the coolant to directly contact the inner ring coil part and/or the outer ring coil part through the predetermined gap, thereby improving the cooling efficiency of the stator assembly.
  • the cooling flow channels include at least two circumferential flow channels and at least one radial flow channel, the at least two circumferential flow channels are arranged at radial intervals along the axial flux motor, and the radial flow channels The forward flow channel is arranged along the radial direction of the axial flux motor and communicates with the at least two circumferential flow channels.
  • the stator assembly includes a first stator assembly and a second stator assembly spaced apart along the axial direction, and the rotor assembly is located between the first stator assembly and the second stator assembly.
  • the baffle body includes a first baffle body and a second baffle body, the first baffle body cooperates with the housing to form a third body for containing the coolant and the first stator assembly.
  • a cooling space, the second partition body cooperates with the housing to form a second cooling space for accommodating the coolant and the second stator assembly.
  • a communication channel is provided on the partition assembly, and the communication channel is used to communicate the first cooling space and the second cooling space. Therefore, connecting the first cooling space and the second cooling space through the communication channel allows the first cooling space and the second cooling space to communicate with each other and simplify the circulation of the coolant.
  • the communication channel includes a first communication channel and a second communication channel, and the first communication channel and the second communication channel are arranged oppositely along the radial direction.
  • the housing includes a first end plate portion and a second end plate portion spaced apart along the axial direction, and the stator assembly and the rotor assembly are arranged along the axial direction. Between the first end plate part and the second end plate part, a liquid inlet and a liquid outlet are provided on one of the first end plate part and the second end plate part, the The liquid inlet and the liquid outlet are respectively arranged opposite to the first communication channel and the second communication channel along the axial direction of the axial flux motor. As a result, the consistency of the cooling effects of the two cooling spaces can be improved.
  • the partition assembly further includes a reinforcement member and a channel member connected between the first partition body and the second partition body, the reinforcement member is arranged in a cylindrical shape, and the The rotor assembly is disposed in the reinforcement member, the channel member is disposed outside the reinforcement member, and the communication channel is disposed on the channel member.
  • the housing includes a first cylindrical portion, a rotating shaft portion of the rotor assembly is rotatably supported in the first cylindrical portion, and the first cylindrical portion is aligned with the stator assembly.
  • the axes at least partially overlap.
  • the stator assembly and/or the rotor assembly includes a flange and an iron core part
  • the flange includes a disc-shaped body
  • the disc-shaped body is provided with a connecting rod communicating with the disc-shaped body.
  • the disc-shaped main body and the iron core part are welded and fixed to each other along the mating edges of the through-groove and the protruding part. This reduces the difficulty of processing and assembling the core portion of the stator assembly and/or the rotor assembly, and reduces the electromagnetic losses of the core portion.
  • the rotor assembly includes a rotor core, a magnetic block and a stopper.
  • the rotor core is provided with a rotor slot, and the rotor slot has an opening located on an outer circumferential surface of the rotor core.
  • the magnetic block is disposed in the rotor slot
  • the stopper is located outside the rotor core in the radial direction of the rotor assembly, and blocks the rotor core along the axial direction of the rotor assembly. Open end. Therefore, the stopper is used to limit the magnetic block in the rotor slot to alleviate the risk of the magnetic block coming out of the rotor slot, thereby improving the limit speed capability of the rotor assembly.
  • the stopper is an annular structure surrounding the rotor core along the circumferential direction of the rotor assembly.
  • the rotor assembly further includes a rotor flange, and the rotor flange includes a disc-shaped
  • the main body, the rotor core is attached and fixed on one main surface of the disc-shaped body, the stopper is separated from the rotor flange or the stopper is fixed to the disc-shaped body superior. Therefore, arranging the stopper and the rotor flange separately can simplify the processing difficulty of the rotor flange. Fixing the stopper on the disc-shaped main body can improve the structural stability of the stopper and improve the stopper effect.
  • the rotor assembly includes a first rotor assembly and a second rotor assembly.
  • the first rotor assembly includes a first rotor flange and a first rotor core.
  • the first rotor flange includes a first rotor core.
  • a disc-shaped body and a rotating shaft portion provided on the first disc-shaped body, the first rotor core is arranged on one main surface of the first disc-shaped body and is arranged around the rotating shaft portion, so
  • the second rotor assembly includes a second rotor flange and a second rotor core.
  • the second rotor flange includes a second disc-shaped body and a shaft hole portion provided in the second disc-shaped body.
  • the rotor core is disposed on one main surface of the second disc-shaped body, the shaft hole portion is provided with a shaft hole, and the rotating shaft portion is inserted into the shaft hole along the axial direction of the rotor assembly.
  • the main surface of the other side of the first disc-shaped body facing away from the first rotor core and the other main surface of the second disc-shaped body facing away from the second rotor core are attached to each other, and are connected to each other. relatively fixed. As a result, the assembly difficulty of the two rotor assemblies can be reduced.
  • one of the first disc-shaped body and the second disc-shaped body is welded and fixed to the other of the first disc-shaped body and the second disc-shaped body along its outer peripheral surface.
  • the rotating shaft part and the shaft hole part are welded and fixed to each other along the edge of the shaft hole; or the rotating shaft part includes An insertion part and a butt part, the insertion part is inserted into the shaft hole, the butt part overlaps with the shaft hole part along the axial projection of the rotor assembly, the butt part and the shaft A plurality of sets of fixed matching pairs are provided on the hole part, and the butting part and the shaft hole part are relatively fixed to each other through the fixed matching pairs.
  • the fixing method of the two rotor assemblies can be simplified and the fixing effect can be improved.
  • the present application provides an electric equipment, which includes the axial flux motor described in any one of the above.
  • the present application provides a vehicle, which includes the axial flux motor described in any one of the above.
  • the axial flux motor of the present application includes a housing, a stator assembly, a rotor assembly and a partition assembly.
  • the housing is used to form an accommodation space.
  • the stator assembly and the rotor assembly are arranged along the axis. It is arranged in the accommodation space in the axial direction of the flux motor.
  • the partition assembly includes a partition main body.
  • the partition main body is arranged between the stator assembly and the rotor assembly.
  • the housing cooperates with the partition main body to form a container.
  • the partition main body is disposed between the stator assembly and the rotor assembly, and the internal space of the housing is rationally utilized, thereby making the structure of the axial flux motor more compact.
  • the shell cooperates with the main body of the partition to form a cooling space for accommodating the coolant and the stator assembly.
  • the coolant in it is in direct contact with the stator assembly, which can efficiently realize the heat exchange between the coolant and the stator assembly and improve the efficiency of the cooling space. Cooling efficiency of the stator assembly.
  • Figure 1 is a schematic disassembly diagram of the first embodiment of the axial flux motor provided by this application;
  • Figure 2 is a schematic cross-sectional view of the first embodiment of the axial flux motor provided by this application;
  • Figure 3 is a schematic structural diagram of an embodiment of the housing provided by the present application.
  • Figure 4 is a schematic plan view of the housing shown in Figure 3;
  • Figure 5 is a schematic cross-sectional view of the first embodiment of the partition assembly provided by the present application.
  • FIG. 6 is a schematic structural diagram of an embodiment of the stator assembly provided by this application.
  • Figure 7 is a schematic structural diagram of a second embodiment of the partition assembly provided by the present application.
  • Figure 8 is a schematic cross-sectional view of a second embodiment of the partition assembly provided by the present application.
  • Figure 9 is a schematic cross-sectional view of the second embodiment of the axial flux motor provided by the present application, excluding the rotor assembly;
  • Figure 10 is a schematic disassembly diagram of the second embodiment of the axial flux motor provided by this application.
  • Figure 11 is a schematic cross-sectional view of the second embodiment of the axial flux motor provided by this application.
  • Figure 12 is a disassembled schematic diagram of the first embodiment of the baffle assembly of the second embodiment of the axial flux motor provided by this application;
  • Figure 13 is a schematic disassembly view of the second embodiment of the baffle assembly of the second embodiment of the axial flux motor provided by this application;
  • Figure 14 is a disassembled schematic diagram of the third embodiment of the baffle assembly of the second embodiment of the axial flux motor provided by this application;
  • FIG. 15 is a schematic structural diagram of the first embodiment of the stator assembly provided by this application.
  • Figure 16 is a schematic disassembly diagram of the first embodiment of the stator assembly provided by this application.
  • FIG 17 is a schematic structural diagram of an embodiment of the stator flange provided by this application.
  • FIG. 18 is a schematic structural diagram of an embodiment of the stator core provided by this application.
  • Figure 19 is a schematic cross-sectional view of the stator core shown in Figure 15;
  • Figure 20 is a schematic structural diagram and a schematic cross-section of the second embodiment of the stator assembly provided by this application;
  • Figure 21 is a schematic disassembly view of the second embodiment of the stator assembly provided by this application.
  • Figure 22 is a schematic structural diagram and a schematic cross-section of the third embodiment of the stator assembly provided by this application;
  • Figure 23 is a schematic structural diagram of an embodiment of the stator flange in the third embodiment of the stator assembly provided by this application;
  • Figure 24 is a schematic structural diagram of another embodiment of the stator flange in the third embodiment of the stator assembly provided by this application;
  • Figure 25 is a schematic structural diagram and a schematic cross-section of the first embodiment of the rotor assembly provided by this application;
  • Figure 26 is an enlarged schematic diagram within the dotted box in Figure 25;
  • Figure 27 is a schematic disassembly view of the first embodiment of the rotor assembly provided by this application.
  • Figure 28 is a schematic structural diagram of an embodiment of the rotor core provided by this application.
  • Figure 29 is a schematic structural diagram and a schematic cross-section of the second embodiment of the rotor assembly provided by this application.
  • Figure 30 is a schematic disassembly view of the first rotor component in the second embodiment of the rotor assembly provided by this application;
  • Figure 31 is a schematic disassembly view of the second rotor component in the second embodiment of the rotor assembly provided by the present application;
  • Figure 32 is a schematic structural diagram and a schematic cross-section of the third embodiment of the rotor assembly provided by this application;
  • Figure 33 is a schematic disassembly view of the third embodiment of the rotor assembly provided by this application.
  • Figure 34 is a schematic structural diagram and a schematic cross-section of the fourth embodiment of the rotor assembly provided by this application;
  • Figure 35 is a schematic disassembly view of the fourth embodiment of the rotor assembly provided by this application.
  • Housing 10 accommodation space 11; end plate portion 12; inner end surface 121; first end plate portion 12a; second end plate portion 12b; first inner end surface 121a; second inner end surface 121b; cooling flow channel 122; circumferential flow Channel 1221; radial flow channel 1222; first radial flow channel 12221; second radial flow channel 12222; mounting blind hole 123; outer end surface 124; columnar portion 1241; liquid inlet 13; liquid outlet 14; first Cylindrical part 15; second cylindrical part 16; annular rib 17; first cooling channel 122a; second cooling channel 122b; first stator assembly 20a; second stator assembly 20b;
  • Stator assembly 20 stator core 21; outer ring coil part 211; inner ring coil part 212; stator slot 213; opening slot 2131; stator flange 22; disc-shaped body 221; stepped hole 2211; first hole section 22111; Second hole segment 22112; central portion 2212; annular edge portion 2213; protruding portion 222; through groove 223; through groove grouping 2231; protrusion 2221; fixing piece 23; stepped hole 24; first hole segment 241; second hole Section 242; third hole section 243; fixed column 25; internal threaded hole 251; fixed column grouping 252;
  • Rotor assembly 30 rotor core 31; rotor slot 311; protrusion 312; protrusion 3121; second through groove 3122; magnetic block 32; stopper 33; rotor flange 34; disc-shaped main body 341; first Through groove 342; first rotor assembly 30a; first rotor core 31a; first rotor slot 311a; first magnetic block 32a; first rotor flange 34a; first disc-shaped body 341a; rotating shaft portion 35a; first annular shape Table surface 351a; insertion portion 352a; butt portion 353a; first fixing hole 354a; first outer hole section 3541a; first inner hole section 3542a; second rotor assembly 30b; second rotor core 31b; second rotor slot 311b; second magnetic block 32b; second rotor flange 34b; second disc-shaped body 341b; shaft hole portion 35b; shaft hole 351b; second annular table 352b; second fixing hole 353b; second outer hole section 3531b; second
  • Baffle assembly 40 cooling space 41; baffle body 42; inner ring matching part 421; outer ring matching part 422; third cylindrical part 423; oil collecting plate 424; oil reservoir 4241; reinforcement 425; pressure relief hole 4251; return hole 4252; embedded rib 426; blocking plate 427; first partition body 42a; second partition body 42b; first cooling space 41a; second cooling space 41b; first communication channel 431; second communication Channel 432; Channel piece 440.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • the axial flux motor disclosed in this application can be used in electric equipment that uses batteries as power sources or various energy storage systems that use batteries as energy storage elements.
  • Electric equipment can be, but is not limited to, electric toys, electric tools, battery cars, electric cars, ships, spacecraft, etc.
  • electric toys may include mobile electric toys, such as electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • Electric equipment not only needs to convert electrical energy into kinetic energy to replace or partially replace fuel or natural gas to provide driving power, but also requires an electric motor (i.e., motor) to generate torque to convert electrical energy into mechanical energy.
  • an electric motor i.e., motor
  • the axial flux motor provided by this application can also be used in vehicles.
  • the vehicles can be but are not limited to battery vehicles, fuel vehicles, gas vehicles, new energy vehicles, electric vehicles, Ships, spacecraft, etc.
  • Spacecraft can include aircraft, rockets, space shuttles, spacecraft, etc. Taking electric vehicles as a means of transportation as an example, electric vehicles not only need to convert electrical energy into kinetic energy to replace or partially replace fuel or natural gas to provide driving power for the vehicle, but also need an electric motor (i.e., motor) to generate torque to convert electrical energy into mechanical energy.
  • an electric motor i.e., motor
  • electric vehicles use electric motors such as induction motors and permanent magnet motors to drive the vehicle and capture braking energy when used as a generator.
  • electric motors include a rotor that rotates during operation and a stator that is stationary.
  • two common types of motors include radial flux motors and axial flux motors.
  • the rotor and stator are usually in a concentric or nested configuration, and when the stator is energized, it generates a magnetic flux that extends radially from the stator to the rotor.
  • the conductive windings in the stator are usually arranged perpendicular to the axis of rotation, thereby generating a magnetic field that is oriented in a radial direction from the axis of rotation (along the rotor axis).
  • a magnetic field parallel to the axis of rotation is generated by windings of conductive wires in the stator, so the flux extends parallel to the axis of rotation (parallel to the rotor axis).
  • axial flux motors are ideal because they are relatively lightweight, produce increased power, and have a compact size compared to radial flux motors, making them ideal in applications where size, In application scenarios with weight and other restrictions, for example, in electric vehicle drive motor applications, axial flux motors have obvious application advantages compared to radial flux motors at the same speed.
  • the power density of the axial flux motor is high, and the motor generates a lot of heat when working.
  • the current heat dissipation method includes setting up water channels on the outside of the axial flux motor to indirectly cool the stator and rotor, but the outer water channel design does not cool the stator and rotor. The efficiency is low.
  • the stator is only cooled through indirect cooling, and the inner and outer coils of the stator cannot be fully cooled.
  • the outer water channel design also requires the installation of additional external covers and fastenings, and the integration level is low.
  • Figure 1 is a schematic disassembly diagram of the first embodiment of the axial flux motor provided by this application.
  • Figure 2 is a schematic cross-sectional view of the first embodiment of the axial flux motor provided by this application.
  • the axial flux motor 1 includes a housing 10 , a stator assembly 20 and a rotor assembly 30 .
  • the housing 10 is used to form an accommodating space 11 , and the stator assembly 20 and the rotor assembly 30 are arranged in the accommodating space 11 along the axial direction X of the axial flux motor 1 .
  • the housing 10 can be assembled from two hollow-structured shells to form an accommodation space 11 in the housing 10.
  • the stator assembly 20 and the rotor assembly 30 are located in the accommodation space 11.
  • the stator assembly can be accessed through the housing 10. 20 and the rotor assembly 30 play a better protective role.
  • the housing 10 may include an end plate portion 12 , the inner end surface 121 of the end plate portion 12 is disposed toward the side of the stator assembly 20 away from the rotor assembly 30 , and the accommodating space 11 may be columnar. , the inner end surface 121 is the end surface on one side forming the accommodation space 11 .
  • the rotor assembly 30 rotates around a preset central axis during operation, and the extending direction of the central axis can be identified as the axial direction X of the axial flux motor 1 .
  • the stator assembly 20 and the rotor assembly 30 are arranged in the accommodation space 11 along the axial direction Arranged in sequence and rationally utilizing the internal space of the housing 10, the structure of the axial flux motor 1 can be made more compact. Furthermore, the radial direction Y of the axial flux motor 1 described below is the direction perpendicular to the axial direction X, and the circumferential direction Z of the axial flux motor 1 is the direction surrounding the axial direction X. In addition, the axial direction, radial direction and circumferential direction of the stator assembly 20 and the rotor assembly 30 described below are all defined with reference to the directions shown by X, Y and Z.
  • a cooling flow channel 122 is provided on the inner end surface 121 of the end plate portion 12 .
  • the cooling flow channel 122 is arranged so that the coolant flowing in the cooling flow channel 122 directly contacts the stator assembly 20 .
  • the coolant is a fluid and can flow in the cooling channel 122.
  • the coolant can be cooling oil or water.
  • a cooling channel 122 is provided on the inner end surface 121, and the coolant in the cooling channel 122 directly contacts the stator assembly 20, so that cooling can be efficiently achieved.
  • the heat exchange between the agent and the stator assembly 20 improves the cooling efficiency of the stator assembly 20.
  • Figure 3 is a schematic structural diagram of an embodiment of the housing provided by the present application
  • Figure 4 is a schematic plan view of the housing shown in Figure 3.
  • the cooling flow channel 122 includes at least two circumferential flow channels 1221 , and the at least two circumferential flow channels 1221 are arranged at intervals along the radial direction Y of the axial flux motor 1 .
  • the functions of the cooling flow channels 122 include guiding the flow of coolant and quickly taking away heat while the coolant flowing in the cooling flow channels 122 directly contacts the stator assembly 20 .
  • the cooling flow channel 122 is configured to include at least two circumferential flow channels 1221 so that the contact range between the coolant and the stator assembly 20 is larger.
  • the coolant flows regularly along the circumferential flow channels 1221 in a predetermined direction, which can The cooling efficiency of the coolant to the stator assembly 20 is further improved.
  • the cooling flow channel 122 also includes a radial flow channel 1222 arranged along the radial direction Y of the axial flux motor 1 , and the radial flow channel 1222 is connected with at least two circumferential flow channels 1221 so that the coolant can flow in the axial flux motor 1 at the same time. There is flow between the radial flow channel 1222 and the circumferential flow channel 1221.
  • the radial flow channel 1222 extends along the radial direction Y of the axial flux motor 1, so that the coolant in the radial flow channel 1222 can be quickly distributed to each circumferential flow channel. 1221, or combine the coolant flowing out from each circumferential flow channel 1221, thereby improving the cooling efficiency of the stator assembly 20.
  • the radial flow channel 1222 includes a first radial flow channel 12221 and a second radial flow channel 12222, where the first radial flow channel 12221 is used to distribute coolant to each circumferential flow channel 1221, and the second radial flow channel 12222 is used to collect the coolant flowing out from each circumferential flow channel 1221.
  • the first radial flow channel 12221 and the second radial flow channel 12222 can be arranged on the inner end surface 121 at intervals along the circumferential direction Z of the axial flux motor 1, so as to facilitate the first radial flow channel 12221 and the second radial flow channel 12221.
  • the flow channel 12222 can communicate with the circumferential flow channel 1221 at different positions on the inner end surface 121 .
  • the first radial flow channel 12221 can be used to receive coolant and allow the coolant to flow in along the extension direction of the first radial flow channel 12221. During the inflow process of the coolant, it will flow into the circumferential flow channels 1221 at different radial positions one after another. And flows along the extension direction of the circumferential flow channel 1221, and then completes heat exchange with the stator assembly 20. After the coolant completes heat exchange with the stator assembly 20 , the coolant flowing along the circumferential flow channel 1221 will further flow into the second radial flow channel 12222 and achieve confluence along the second radial flow channel 12222 . The coolant flowing through the second radial flow channel 12222 can further flow out of the housing 10 and be recycled to the first radial flow channel 12221 after heat exchange with the external heat exchange element, thereby improving the cooling of the stator assembly 20 efficiency.
  • a liquid inlet 13 and a liquid outlet 14 may be provided on the housing 10 .
  • the first radial flow channel 12221 and the second radial flow channel 12222 are arranged oppositely along the radial direction Y.
  • the housing 10 is also provided with a liquid inlet 13 and a liquid outlet 14.
  • the liquid inlet 13 is used to communicate with the first
  • the radial flow channel 12221 is connected to the outside of the housing 10
  • the liquid outlet 14 is used to connect the second radial flow channel 12222 to the outside of the housing 10 . As shown in FIGS.
  • the liquid inlet 13 can be located at the end of the first radial flow channel 12221 away from the center of the inner end surface 121
  • the liquid outlet 14 can be located at the end of the second radial flow channel 12222 away from the inner end surface 121 . Center end.
  • the above method can make the time difference between the coolant in different circumferential flow channels 1221 flowing to the second radial flow channel 12222 as much as possible. reduction, thereby efficiently and comprehensively cooling the stator assembly 20 .
  • the liquid outlet 14 can be located at the end of the second radial flow channel 12222 away from the center of the inner end surface 121 , so that the two ends of the circumferential flow channel 1221 with a relatively large diameter have a large pressure difference, and thus different circumferential flow channels 1221 The time difference for the coolant in the coolant to flow to the second radial flow channel 12222 is minimized.
  • the inner end surface 121 is provided with a first cylindrical portion 15 and at least two annular ribs 17 surrounding the first cylindrical portion 15 .
  • the first cylindrical portion 15 can be used to accommodate bearings, and the annular ribs 17
  • the first cylindrical portion 15 can be integrally provided with the inner end surface 121 , and both the first cylindrical portion 15 and the annular rib 17 protrude from the inner end surface 121 , so as to form a cooling channel 122 on the inner end surface 121 .
  • annular ribs 17 are spaced apart from the first cylindrical portion 15 along the radial direction Y, and are spaced apart from each other along the radial direction Y, and further between the first cylindrical portion 15 and the adjacent annular rib 17 A circumferential flow channel 1221 is formed between them and between two adjacent annular ribs 17 .
  • the annular rib 17 and the first cylindrical portion 15 can be used to guide the flow of coolant in the circumferential flow channel 1221 .
  • the width of the outermost annular rib 17 can be larger than the width of the other annular ribs 17 to enhance the structural strength of the inner end surface 121 , and facilitate the use of the outermost annular rib 17 to assemble the housing 10 with other structures.
  • At least part of the annular rib 17 is provided with a notch to form a radial flow channel 1222 .
  • the inner end surface 121 is also provided with a mounting blind hole 123 , and the stator assembly 20 is fixed on the end plate portion 12 through a fixing member inserted into the mounting blind hole 123 .
  • the opening of the blind mounting hole 123 faces the stator assembly 20 , and the fixing member is inserted into the blind mounting hole 123 from the inside of the housing 10 .
  • the number of mounting blind holes 123 may be multiple.
  • the plurality of mounting blind holes 123 may be spaced apart along the circumferential direction Z of the axial flux motor 1.
  • the multiple mounting blind holes 123 may be located at the edge of the end plate part 12, Correspondingly, the number of fixing pieces can be in a one-to-one correspondence with the number of installation blind holes 123, so as to improve the stability of the installation of the housing 10 and the stator assembly 20.
  • the end plate portion 12 also has an outer end surface 124 arranged opposite to the inner end surface 121 .
  • a columnar portion 1241 is protrudingly provided on the outer end surface 124 , and the mounting blind hole 123 extends into the columnar portion 1241 .
  • the outer end surface 124 is located outside the accommodating space 11, and the cylindrical portion 1241 can correspond to the position of the installation blind hole 123.
  • the installation blind hole 123 extends into the cylindrical portion 1241, which can increase the depth of the installation blind hole 123.
  • the mounting blind hole 123 is provided on the outermost annular rib 17 of at least two annular ribs 17 . At this time, the mounting blind hole 123 is located at the edge of the end plate portion 12 . When the fixing member is inserted into the mounting blind hole 123 to achieve fixation, the direct contact between the coolant in the cooling channel 122 and the stator assembly 20 will not be affected.
  • the width of the outermost ring of annular ribs 17 along the radial direction Y is greater than the width of the remaining annular ribs 17 along the radial direction Y.
  • the stator assembly 20 includes a stator core 21 and a coil.
  • the coil is wound on the stator core 21 .
  • the stator core 21 is arranged in an annular shape.
  • the coil protrudes along the radial direction Y of the axial flux motor 1 .
  • the opposite sides of the annulus of the stator core 21 form an inner loop coil part 212 and an outer loop coil part 211, that is, a part of the coil can protrude from the inner annulus surface of the stator core 21 to form the inner loop coil part 212, and a part of the coil can
  • the outer ring coil part 211 is formed by protruding from the outer ring surface of the stator core 21 .
  • the coolant flowing in the cooling flow channel 122 or the coolant flowing in or out of the cooling flow channel 122 is in direct contact with at least one of the inner ring coil part 212 and the outer ring coil part 211 . Since the coils protrude from the stator core 21 to form the outer ring coil part 211 and the inner ring coil part 212, when the coolant flows in the cooling flow channel 122, the coolant can not only directly contact the stator core 21, but also directly contact the external coil part 211 and the inner ring coil part 212. The ring coil part 211 and/or the inner ring coil part 212 are in contact, thereby improving the cooling efficiency of the stator assembly 20 .
  • the coolant in the cooling flow channel 122 may be in direct contact with the stator core 21 , and the coolant flowing in or out of the cooling flow channel 122 may be in direct contact with the outer ring coil part 211 and/or the inner ring coil part 212 .
  • the stator assembly 20 includes a stator flange 22 .
  • the stator core 21 is attached and fixed on one main surface of the disc-shaped main body 221 of the stator flange 22 .
  • the stator flange 22 can be connected with the stator core 21 Fixed connection, the stator core 21 can be connected to the housing 10 through the stator flange 22, thereby reducing the assembly difficulty of the stator assembly 20.
  • At least one of the inner ring coil part 212 and the outer ring coil part 211 is disposed beyond the disc-shaped body 221 in the radial direction Y or maintains a predetermined gap with the disc-shaped body 221 in the axial direction X.
  • the inner ring coil part 212 or the outer ring coil part 211 may exceed the disc-shaped body 221 in the radial direction Y, or both the inner ring coil part 212 and the outer ring coil part 211 may exceed the disc-shaped body 221 in the radial direction Y. 221; or the inner ring coil part 212 and/or the outer ring coil part 211 maintains a predetermined gap with the disc-shaped main body 221 in the axial direction X.
  • the coolant can directly contact the inner ring coil part 212 and/or the outer ring coil part 211 through the predetermined gap, and the contact between the coolant and the inner ring coil part 212 and/or the outer ring coil part 211 can be increased. amount to improve the cooling effect.
  • the stator core 21 is attached and fixed on one main surface of the disc-shaped body 221 of the stator flange 22 , and the disc-shaped body 221 covers at least part of the cooling flow channel 122 .
  • the coolant flowing in the cooling channel 122 directly contacts the disc-shaped body 221. Therefore, the stator flange 22 is used to fix the stator core 21, and the stator flange 22 is used as the basis for matching with the housing 10, thereby reducing assembly time. Difficulty.
  • stator flange 22 can be fixedly connected to the stator core 21, and the stator core 21 can be connected to the housing 10 through the stator flange 22, thereby reducing the difficulty of processing and manufacturing the stator assembly 20 and the difficulty of assembling it with the housing 10. .
  • the housing 10 includes a second cylindrical portion 16 and two end plate portions (ie, a first end plate portion and a second first end plate portion) that block openings at both ends of the second cylindrical portion 16 part), so that the accommodation space 11 is formed by the cooperation of the two end plate parts and the second cylindrical part 16.
  • the stator assembly 20 and the rotor assembly 30 are arranged between the two end plate parts along the axial direction X.
  • the cooling flow channel 122 is provided on the inner end surface 12 .
  • cooling flow channels 122 may be provided on both inner end surfaces at the same time.
  • the coolant flowing in the cooling flow channel 122 can directly contact the stator assembly 20, so that the coolant and the stator assembly 20 can efficiently complete the thermal cycle. exchange to improve the cooling efficiency of the axial flux motor 1.
  • the axial flux motor 1 further includes a baffle assembly 40 .
  • the diaphragm assembly 40 includes a diaphragm main body 42 , which is disposed between the stator assembly 20 and the rotor assembly 30 .
  • the housing 10 cooperates with the diaphragm main body 42 to form a chamber for containing the coolant and the stator assembly 20 .
  • Cooling space 41 the coolant in the cooling space 41 directly contacts the stator assembly 20 .
  • the partition main body 42 can abut part of the inner circumferential surface of the housing 10 to divide the accommodation space 11 into at least two spaces, one of which is the cooling space 41 for accommodating the coolant and the stator assembly 20. Another space is used to accommodate the rotor assembly 30 .
  • the coolant can be stored in the cooling space 41, and the coolant in the cooling space 41 directly contacts the stator assembly 20. Therefore, the partition main body 42 is disposed between the stator assembly 20 and the rotor assembly 30 to rationally utilize the housing.
  • the internal space of 10% can make the structure of the axial flux motor 1 more compact.
  • the cooling space 41 is formed by the cooperation of the housing 10 and the partition main body 42, and the coolant in the cooling space 41 is directly in contact with the stator assembly 20, which can effectively realize the heat exchange between the coolant and the stator assembly 20, and improve the efficiency of the stator assembly. A cooling efficiency of 20%.
  • the housing 10 includes an end plate portion 12 , the inner end surface 121 of the end plate portion 12 is disposed toward the side of the stator assembly 20 away from the rotor assembly 30 , and the inner end surface 121 of the end plate portion 12 is aligned with the partition body 42 along the axis. They are spaced apart in the X direction to define both sides of the cooling space 41 in the axial direction X. Therefore, the boundary of the cooling space 41 is defined by the end plate portion 12 and the partition main body 42, which improves the utilization of the accommodation space 11 of the housing 10 and makes the structure of the entire axial flux motor 1 more compact.
  • the housing 10 includes two cylindrical parts nested along the radial direction Y of the axial flux motor 1 .
  • the two cylindrical parts are sealingly matched with the partition body 42 respectively, and the cooling space 41 is arranged in an annular shape. Therefore, the stator assembly 20 can be sealed in the cooling space 41 with a relatively simple structure, thereby reducing the risk of coolant leakage.
  • the stator assembly 20 is generally arranged in an annular shape.
  • a columnar shape can be formed inside the annular cooling space 41. Space is used to place the bearings and allow the rotation shaft of the rotor assembly 30 to be inserted. Since the columnar space and the annular cooling space 41 are isolated from each other, during the cooling process of the stator assembly 20 , the coolant in the cooling space 41 will not enter the columnar space and affect the rotor assembly 30 .
  • the two cylindrical parts include a first cylindrical part 15 and a second cylindrical part 16 arranged around the first cylindrical part 15 , and the first cylindrical part 15 and the second cylindrical part 16 face toward
  • the stator assembly 20 extends, and the first cylindrical portion 15 allows the rotating shaft portion of the rotor assembly 30 to pass through.
  • the partition body 42 includes an inner ring matching portion 421 and an outer ring matching portion 422 arranged around the inner ring matching portion 421, wherein the inner ring
  • the matching portion 421 is sealingly coupled with the first cylindrical portion 15
  • the outer ring matching portion 422 is sealingly coupled with the second cylindrical portion 16 .
  • the first cylindrical part 15 and the second cylindrical part 16 may be coaxially arranged, and the first cylindrical part 15 may contact the inner ring matching part 421 to achieve sealing fit between the inner ring matching part 421 and the first cylindrical part 15 , the second cylindrical part 16 can be in contact with the outer ring matching part 422, so as to realize the sealing fit between the outer ring matching part 422 and the second cylindrical part 16, so that between the first cylindrical part 15 and the second cylindrical part 16 An annular cooling space 41 is formed therebetween. Therefore, the stator assembly 20 can be sealed in the cooling space 41 with a relatively simple structure, thereby reducing the risk of coolant leakage.
  • the inner ring matching part 421 and/or the outer ring matching part 422 are sealingly matched with the stator assembly 20 , thereby sealing the stator assembly 20 into the cooling space 41 .
  • the sealing property of the cooling space 41 can be enhanced.
  • the rotating shaft portion of the rotor assembly 30 is rotatably supported in the first cylindrical portion 15 , and the first cylindrical portion 15 at least partially overlaps the stator assembly 20 along the axial direction X.
  • the rotating shaft portion of the rotor assembly 30 extends into the first cylindrical portion 15 along the axial direction By partially overlapping, the axial X dimension of the axial flux motor 1 can be reduced, making the structure of the entire axial flux motor 1 more compact.
  • Figure 5 is a schematic cross-sectional view of the first embodiment of the partition assembly provided by the present application.
  • the partition main body 42 is embedded inside the second cylindrical part 16, and a sealing fit is formed between the outer circumferential surface of the outer ring matching part 422 and the inner circumferential surface of the second cylindrical part 16, thereby allowing The partition main body 42 is located in the accommodation space 11, so as to form the cooling space 41 and at the same time provide better protection for the partition main body 42.
  • the inner ring matching part 421 is provided with a third cylindrical part 423.
  • the third cylindrical part 423 is plugged into the first cylindrical part 15 and forms a sealing fit between them. Through the third cylindrical part 423 The plug-in fit between 423 and the first cylindrical portion 421 achieves better alignment and sealing effects.
  • the third cylindrical part 423 , the second cylindrical part 16 and the first cylindrical part 15 may be disposed coaxially.
  • the size of the third cylindrical part 423 along the radial direction Y is not equal to the size of the first cylindrical part 15 along the radial direction Y. size, the third cylindrical part 423 and the first cylindrical part 15 are plug-fitted with each other along the axial direction or the inner circumferential surface of the third cylindrical part 423 is arranged to fit with the outer circumferential surface of the first cylindrical part 15 , so that the third cylindrical part 423 is limited in the radial direction Y by the first cylindrical part 15 Bit.
  • the side of the first cylindrical portion 15 facing the inner ring matching portion 421 can contact the inner ring matching portion 421 to limit the spacer body 42 in the axial direction X to fix the spacer body 42 to the shell.
  • the third cylindrical part 423 is plugged into the periphery of the first cylindrical part 15.
  • the size of the third cylindrical part 423 along the radial direction Y may be larger than the size of the first cylindrical part 15 along the radial direction Y.
  • a cylindrical part 15 is inserted into the third cylindrical part 423, and the inner circumferential surface of the third cylindrical part 423 can be arranged to fit with the outer circumferential surface of the first cylindrical part 15, so as to limit the space between the partition body 42 and the shell.
  • a space for installing the bearing is formed in the first cylindrical portion 15.
  • the axial flux motor 1 also includes a bearing disposed in the first cylindrical portion 15 , and the bearing can be used to connect the rotor assembly 30 .
  • the housing 10 can be made of metal material to provide relatively strong structural strength
  • the partition main body 42 can be made of lightweight materials such as plastic or silicone to provide better sealing effect and reduce the shaft load. To the overall weight of flux motor 1.
  • the separator body 42 includes an oil collecting plate 424.
  • the oil collecting plate 424 cooperates with the first cylindrical portion 15 to form an oil reservoir 4241.
  • the lubricating oil in the oil reservoir 4241 lubricates the bearings.
  • the oil collecting plate 424 may be located on the inner ring matching part 421 , or may be provided separately from the inner ring matching part 421 . After the bearing is placed in the first cylindrical part 15 , the bearing and the oil collecting plate 424 are mutually exclusive along the radial direction Y. Overlap and have a gap fit along the axial direction
  • the oil collecting plate 424 is connected to the third cylindrical portion 423 and extends toward the inside of the third cylindrical portion 423 along the radial direction Y of the axial flux motor 1 . Therefore, after the third cylindrical part 423 is plugged into place relative to the first cylindrical part 15 , the oil collecting plate 424 can cooperate with the first cylindrical part 15 to form the oil reservoir 4241 , which can simplify the installation of the oil collecting plate 424 During the assembly process, the oil collecting plate 424 can also be used to enhance the structural strength of the partition main body 42 .
  • the diaphragm assembly 40 includes a reinforcing member 425 .
  • the reinforcing member 425 is arranged in a cylindrical shape and is supported on a side of the diaphragm main body 42 away from the stator assembly 20 .
  • the rotor assembly 30 is disposed in the reinforcing member 425 .
  • the cylindrical reinforcing member 425 may be disposed coaxially with the partition body 42 and connected to the outer ring matching portion 422 .
  • the reinforcement 425 is provided to abut against the housing 10 .
  • the reinforcing member 425 is in contact with the other inner end surface opposite to the inner end surface 121 .
  • the reinforcement 425 may abut the second cylindrical portion 16 . Therefore, the structural stability of the partition main body 42 can be further improved through the supporting force of the housing 10 on the reinforcement 425 .
  • the stator assembly 20 includes a stator core 21 and a coil wound around the stator core 21 .
  • the stator core 21 is arranged in an annular shape, and the coil protrudes along the radial direction Y of the flux motor 1
  • Coil part 211 is part of the coil.
  • the inner ring coil part 212 and/or the outer ring coil part 211 are located in the cooling space 41, and the coolant in the cooling space 41 directly contacts the inner ring coil part 212 and/or the outer ring coil part 211, thereby improving the overall stability of the stator.
  • At least one of the inner ring coil part 212 and the outer ring coil part 211 may be disposed beyond the disc-shaped body 221 in the radial direction Y or A predetermined gap is maintained with the disc-shaped body 221 along the axial direction X, thereby obtaining a better cooling effect.
  • Figure 6 is a schematic structural diagram of an embodiment of a stator assembly provided by this application.
  • Figure 7 is a schematic structural diagram of a second embodiment of a partition assembly provided by this application.
  • Figure 8 is a schematic structural diagram of a second embodiment of a baffle assembly provided by this application. Schematic cross-section of a second embodiment of the baffle assembly.
  • the stator assembly 20 includes a stator core 21 and coils wound around the stator core 21.
  • the stator core 21 is provided with a plurality of stator slots 213, and the coils are embedded in the plurality of stator slots 213.
  • the partition main body 42 includes respective stator slots 213.
  • the number of stator slots 213 and the number of embedded ribs 426 can be in a one-to-one correspondence.
  • the embedded ribs 426 When the embedded ribs 426 are embedded in the corresponding stator slots 213, they can directly contact the coil through the embedded ribs 426, which can effectively fix the coils in the stator slots 213. Coil.
  • the partition main body 42 is made of a highly thermally conductive material, when there is coolant in the cooling space 41 , the coolant can contact the partition main body 42 to reduce the temperature of the partition main body 42 , and then be cooled through the embedded ribs 426 of the partition main body 42 Coils in stator slots 213.
  • the embedded ribs 426 can also be spaced apart from the coils in the stator slots 213 , as long as the coils do not come out of the stator slots 213 .
  • the plurality of stator slots 213 and the plurality of embedded ribs 426 are respectively expanded radially relative to the axial direction Connected to the inner ring matching part 421 and/or the outer ring matching part 422 . Therefore, the assembly process of the embedded ribs 426 can be simplified, and at the same time, the embedded ribs 426 can be used to assist in fixing the inner ring matching part 421 and/or the outer ring matching part 422, thereby improving structural stability.
  • the insert connected to the inner ring matching part 421 and/or the outer ring matching part 422 can be simultaneously embedded in the stator slot 213, making the assembly more convenient. Since the stator slots 213 and the embedded ribs 426 are spread out radially, the number of the two can be increased, allowing a larger contact area between the partition body 42 and the stator core 21 and coils, thereby further increasing the cooling effect of the coolant on the stator assembly 20 .
  • the embedded ribs 426 can provide good circumferential positioning and radial positioning for the connected inner ring matching part 421 and/or the outer ring matching part 422, and when the embedded ribs are 426 can also provide good axial positioning for the connected inner ring matching part 421 and/or the outer ring matching part 422 when it is fixed in the stator slot 213 by insert fitting or other means.
  • the plurality of embedded ribs 426 are arranged in a hollow manner.
  • the hollow arrangement is beneficial to reducing the air gap width between the partition body 42 and the rotor assembly 30, making the structure of the entire axial flux motor 1 more compact.
  • the partition body 42 also includes a blocking plate 427 for blocking the gaps between the plurality of embedded ribs 426.
  • the blocking plate 427 is located on the side of the embedded ribs 426 away from the stator slot 213, and the blocking plate 427 can As a whole plate, the gap between the embedded ribs 426 can be blocked by the blocking plate 427. Therefore, the sealing property of the cooling space 41 can be enhanced by the blocking plate 427, making it difficult for the coolant to leak from the cooling space 41.
  • the housing 10 includes the end plate portion 12 , the inner end surface 121 of the end plate portion 12 is disposed toward the side of the stator assembly 20 away from the rotor assembly 30 , and the inner end surface 121 of the end plate portion 12 A cooling flow channel 122 is provided along which the coolant in the cooling space 41 flows.
  • the stator assembly 20 is covered on at least part of the cooling flow channels 122 , and the coolant flowing in the cooling flow channels 122 directly contacts the stator assembly 20 .
  • the stator assembly 20 includes a stator flange 22 and a stator core 21.
  • the stator flange 22 includes a disc-shaped body 221.
  • the stator core 21 is attached and fixed on the main surface of the disc-shaped body 221 away from the end plate portion 12.
  • the disc-shaped main body 221 covers at least part of the cooling flow channel 122, and the coolant flowing in the cooling flow channel 122 directly contacts the disc-shaped main body 221.
  • At least one of the inner ring coil part 212 and the outer ring coil part 211 is disposed beyond the disk-shaped main body 221 in the radial direction Y of the axial flux motor 1 or is in contact with the disk in the axial direction X of the axial flux motor 1
  • the main body 221 maintains a predetermined gap, and the coolant is in direct contact with at least one of the inner ring coil part 212 and the outer ring coil part 211.
  • the cooling flow channel 122 includes at least two circumferential flow channels 1221 and at least one radial flow channel 1222.
  • the at least two circumferential flow channels 1221 are arranged at intervals along the radial direction Y of the axial flux motor 1, and the radial flow channel 1222 is arranged along the radial direction Y of the axial flux motor 1.
  • the axial flux motor 1 is arranged in the radial direction Y and communicates with at least two circumferential flow channels 1221 .
  • similar cooling flow channels may be provided on the side of the baffle body 42 facing the end plate portion 12 and/or on the stator assembly 20 for coolant flow.
  • the partition assembly 40 can also be eliminated, and the stator assembly 20 can be used to cooperate with the inner end surface 121 of the end plate portion 12 to form a sealed cooling space.
  • the description is mainly based on a single stator structure, that is, the stator assembly only includes one stator assembly.
  • the above-mentioned partition assembly 40 is also suitable for a dual-stator structure, that is, the stator assembly includes two stator assemblies spaced apart along the axial direction X, and the rotor assembly is located on the two stator assemblies. Between them, the stability and output efficiency of the axial flux motor 1 are improved through the two stator assemblies.
  • Figure 9 is a schematic cross-sectional view of a second embodiment of an axial flux motor provided by the present application without a rotor assembly.
  • Figure 10 is a second embodiment of an axial flux motor provided by the present application.
  • 11 is a schematic cross-sectional view of the second embodiment of the axial flux motor provided by this application.
  • the stator assembly 20 includes a first stator assembly 20a and a second stator assembly 20b spaced apart along the axial direction X, and the rotor assembly 30 is disposed between the first stator assembly 20a and the second stator assembly 20b.
  • the axial flux motor 1 can be a double-stator axial flux motor 1
  • the two stator assemblies are used to improve the stability and output efficiency of the axial flux motor 1, and to improve the axial flux.
  • the rotor assembly 30 may include one or two rotor assemblies. When the rotor assembly 30 includes two rotor assemblies, the two rotor assemblies may be connected through a rotating shaft, one of which corresponds to the first stator assembly 20a and the other.
  • the rotor assembly corresponds to the second stator assembly 20b, and the first stator assembly 20a, the two rotor assemblies and the second stator assembly 20b can be arranged in sequence along the axial direction X of the axial flux motor 1, thereby improving the performance of the axial flux motor. 1 degree of integration.
  • the axial flux motor 1 includes a baffle assembly 40.
  • the baffle assembly 40 includes a first baffle body 42a and a second baffle body 42b.
  • the first baffle body 42a cooperates with the housing 10 to accommodate cooling.
  • the first cooling space 41a of the coolant and the first stator assembly 20a, the second baffle body 42b cooperates with the housing 10 to form a second cooling space 41b for accommodating the coolant and the second stator assembly 20b, the first cooling space 41a
  • the coolant in the first cooling space 41a can directly contact the first stator assembly 20a in the first cooling space 41a, and the coolant in the second cooling space 41b can directly contact the second stator assembly 20b in the second cooling space 41b, thereby efficiently This enables heat exchange between the coolant and the first stator assembly 20a and the second stator assembly 20b, thereby improving the cooling efficiency of the stator assembly 20.
  • the housing 10 includes a first end plate portion 12a and a second end plate portion 12b.
  • the first end plate portion 12a includes a first inner
  • the end surface 121a and the second end plate portion 12b include a second inner end surface 121b.
  • the first inner end surface 121a is disposed toward the first stator assembly 20a.
  • the second inner end surface 121b is disposed toward the second stator assembly 20b.
  • the first inner end surface 121a can be A first cooling flow channel 122a is provided, and a second cooling flow channel 122b may be provided on the second inner end surface 121b.
  • the first cooling flow channel 122a may be configured such that the coolant flowing in the first cooling flow channel 122a directly contacts the second cooling flow channel 122a.
  • the stator assembly 20a and the second cooling flow channel 122b may be configured such that the coolant flowing in the second cooling flow channel 122b directly contacts the second stator assembly 20b, thereby allowing the coolant to directly interact with the first stator assembly 20a and the second cooling flow channel 122b.
  • the contact between the two stator assemblies 20b can efficiently allow the coolant to complete heat exchange with the first stator assembly 20a and the second stator assembly 20b, thereby improving the cooling efficiency of the stator assembly 20.
  • the first stator assembly 20a is located between the first inner end surface 121a and the first partition body 42a.
  • the first partition body 42a cooperates with the first inner end surface 121a to form a third chamber for containing the coolant and the first stator assembly 20a.
  • a cooling space 41a, the second stator assembly 20b is located between the second inner end surface 121b and the second partition body 42b, the second partition body 42b cooperates with the second inner end surface 121b to accommodate the coolant and the second stator assembly
  • a first cooling flow channel 122a can be provided on the first inner end surface 121a
  • a second cooling flow channel 122b can be provided on the second inner end surface 121b, thereby efficiently allowing the coolant to interact with the first certain amount.
  • the subassembly 20a and the second stator assembly 20b complete heat exchange, thereby improving the cooling efficiency of the stator assembly 20.
  • first cooling flow channel 122a and the second cooling flow channel 122b are not necessary conditions for forming the first cooling space 41a and the second cooling space 41b, and can be canceled according to actual needs, or in other ways. Set cooling flow channels at corresponding locations.
  • the partition assembly 40 is provided with a communication channel, and the communication channel is used to communicate the first cooling space 41a and the second cooling space 41b.
  • the communication channel includes a first communication channel 431 and a second communication channel 432.
  • the first communication channel 431 and the second communication channel 432 are arranged oppositely along the radial direction Y.
  • the first communication channel 431 and the second communication channel 432 may be located at the outer peripheral edge of the partition assembly 40, and one of the first communication channel 431 and the second communication channel 432 may be used to allow coolant to flow in from the first cooling space 41a. the second cooling space 41b, and the other allows coolant to flow from the second cooling space 41b into the first cooling space 41a.
  • the first cooling space 41a and the second cooling space 41b are both connected by the first communication channel 431 and the second communication channel 432. If the coolant enters the first cooling space 41a from the outside, it can pass through the first communication channel 431. Entering the second cooling space 41b, after the coolant completes heat exchange with the second stator assembly 20b in the second cooling space 41b, it can flow into the first cooling space 41a from the second communication channel 432, and then the coolant will be cooled from the first cooling space 41a. The agent is transported out of the housing 10 , thereby ensuring the cooling efficiency of the stator assembly 20 and improving the consistency of the cooling effects of the two cooling spaces 41 . Furthermore, the coolant circulation method can be simplified.
  • stator assembly 20 and the rotor assembly 30 are arranged along the axial direction X between the first end plate portion 12a and the second end plate portion 12b.
  • a liquid inlet 13 and a liquid outlet 14 are provided on one of them.
  • the liquid inlet 13 and the liquid outlet 14 are respectively opposite to the first communication channel 431 and the second communication channel 432 along the axial direction X of the axial flux motor 1. set up.
  • the coolant enters the first cooling space 41a from the liquid inlet 13, and part of the coolant flows in the first cooling space 41a. , directly contacts the first stator assembly 20a and completes heat exchange with the first stator assembly 20a.
  • the liquid After completing the heat exchange, it flows out of the first cooling space 41a from the liquid outlet 14, and the remaining coolant enters the second cooling space 41b from the first communication channel 431, After directly contacting the second stator assembly 20b and completing heat exchange with the second stator assembly 20b, the liquid flows out of the second cooling space 41b from the second communication channel 432 to the first cooling space 41a, and finally flows out from the liquid outlet 14. Since the liquid inlet 13 and the liquid outlet 14 are respectively arranged opposite to the first communication channel 431 and the second communication channel 432 along the axial direction X of the axial flux motor 1, the liquid flowing into the second cooling space 41b through the first communication channel 431 The coolant will not exchange too much heat with the first stator assembly 20a.
  • the coolant flowing into the first cooling space 41a through the second communication channel 431 is completed with the first stator assembly 20a in the first cooling space 41a.
  • the heat-exchanged coolants merge, thereby ensuring the cooling efficiency of the stator assembly 20 and the rotor assembly 30 and improving the consistency of the cooling effects of the two cooling spaces 41 .
  • Figure 12 is a disassembled schematic diagram of the first embodiment of the baffle assembly of the second embodiment of the axial flux motor provided by the present application
  • Figure 13 is the third axial flux motor provided by the present application.
  • Figure 14 is a schematic disassembly view of the third embodiment of the diaphragm assembly of the second embodiment of the axial flux motor provided by this application.
  • the diaphragm assembly 40 further includes a reinforcing member 425 and a channel member 440 connected between the first diaphragm body 42a and the second diaphragm body 42b.
  • the reinforcing member 425 is arranged in a cylindrical shape, and the rotor assembly 30 It is disposed in the reinforcing member 425, the channel member 440 is disposed outside the reinforcing member 425, and the communication channel is disposed on the channel member 440. Therefore, the structural stability of the first diaphragm body 42a and the second diaphragm body 42b can be improved, while preventing the communication channel from interfering with the rotor assembly 30.
  • the channel member 440 is located outside the reinforcement member 425, which can also expand the flow range of the coolant in the first cooling space 41a and the second cooling space 41b, making the cooling of the axial flux motor 1 more comprehensive, and also improving the performance of the two cooling spaces.
  • the reinforcing member 425 and the channel member 440 are both provided on the partition assembly 40 , which can increase the integration level of the axial flux motor 1 .
  • disposing the channel member 440 outside the reinforcement member can also alleviate the adverse impact on the rotor assembly 30 caused by coolant leakage in the communication channel.
  • the diaphragm assembly 40 is provided with a plurality of pressure relief holes 4251 arranged at intervals along the circumferential direction Z of the axial flux motor 1 .
  • the pressure relief hole 4251 may be a through hole, and the pressure relief hole 4251 is used to balance the air pressure fluctuation caused by the rotor assembly 30 during operation.
  • the rotor assembly 30 and the diaphragm main body 42 are spaced apart along the axial direction Interference occurs.
  • the air pressure in the air gap will change, thereby affecting the rotation performance of the rotor assembly 30.
  • the pressure relief hole 4251 is used to connect the air gap and the external space of the partition assembly 40.
  • the pressure relief hole 4251 can be used to balance the air pressure fluctuations in the air gap caused by the operation of the rotor assembly 30, so as to The impact of air pressure fluctuations on the rotational performance of the rotor assembly 30 is reduced.
  • the baffle assembly 40 is further provided with a return hole 4252 , which is configured to allow the coolant that penetrates into the baffle assembly 40 from the cooling space 41 to be discharged to an external space of the baffle assembly 40 .
  • the return hole 4252 may be a through hole, thereby mitigating the adverse impact of the coolant leaking from the cooling space 41 on the axial flux motor 1 .
  • the rotor assembly 30 is disposed in the reinforcing member 425 , so the pressure relief hole 4251 and the return hole 4252 may be disposed on the reinforcing member 425 .
  • the pressure relief hole 4251 and the return hole 4252 connect the internal space of the reinforcement 425 with the external space of the partition assembly 40 .
  • multiple pressure relief holes 4251 are arranged at intervals along the circumferential direction Z of the axial flux motor 1 on the edge of the reinforcement 425 facing the partition body 42.
  • the number of pressure relief holes 4251 can be set according to the actual situation.
  • the pressure relief holes 4251 can be arranged at equal intervals along the circumferential direction Z of the axial flux motor 1, so that the air pressure in the reinforcement 425 can be adjusted simultaneously through the plurality of pressure relief holes 4251.
  • the return hole 4252 is centrally located along the axial direction X relative to both edges of the reinforcement 425 to improve the pressure relief effect of the pressure relief hole 4251 and the return flow effect of the return hole 4252.
  • first partition main body 42a and the second partition main body 42b shown in Figure 11 can completely adopt the same structure as the partition main body 42 described in Figures 1-4 and adopt the same matching method with the housing 10. , which will not be described in detail here.
  • the first partition body 42a can be integrally formed with the reinforcement 425 and the channel member 440 or pre-assembled and fixed into an integrated component structure, while the second partition body 42b assembles the rotor assembly 30 to the reinforcement. 425, and then assemble it with the above-mentioned integrated component structure.
  • the gap between the embedded ribs 426 in Figure 12 is blocked by the blocking plate 427, while the gap between the embedded ribs 426 in Figure 13 is provided in a hollow manner.
  • the outer ring matching portions 422 of the first partition body 42a and the second partition body 42b are integrally formed or pre-assembled and fixed with the reinforcing member 425 and the channel member 440 to form an integrated component structure.
  • the inner ring matching part 421 and the embedded ribs 426 of the first partition body 42a are integrally formed or pre-assembled and fixed into an integrated component structure
  • the inner ring matching part 421 and the embedded ribs 426 of the second partition main body 42b are integrally formed or pre-assembled and fixed into The integrated component structure, by assembling the three components to form the partition assembly 40, can facilitate the disassembly and maintenance of the partition assembly 40.
  • the partition assembly 40 can be provided between the stator assembly 20 and the rotor assembly 30 and/or the cooling flow channel 122 can be opened on the housing 10 so that the coolant can directly contact the stator assembly 20, This allows the coolant to efficiently exchange heat with the stator assembly 20 to improve the cooling efficiency of the axial flux motor 1 .
  • the axial flux motor provided by this application also includes As for the improvement of the assembly, the following content mainly describes the structure of the stator assembly. See Figure 15.
  • Figure 15 is a schematic structural diagram of the first embodiment of the stator assembly provided by this application.
  • the stator assembly 20 includes a stator core 21 and a stator flange 22.
  • the stator flange 22 includes a disc-shaped body 221.
  • the stator core 21 is attached and fixed on one main surface of the disc-shaped body 221.
  • the disc-shaped body 221 is used for When the stator assembly 20 is placed in the housing, it is fixed to the end plate of the housing.
  • the stator core 21 can be fixedly connected or detachably connected to the main surface of the disc-shaped body 221.
  • the main surface can be defined as the surface with the largest area in the stator flange 22.
  • the disc-shaped body 221 can be disc-shaped, Both opposite side surfaces of the disc-shaped disc-shaped body 221 can be defined as the main surface.
  • the stator flange 22 can be used to install the stator core 21 on the end plate of the casing of the axial X-flux motor.
  • the stator assembly 20 can use the stator flange 22 as an installation and positioning reference, thereby improving the positioning accuracy of the stator assembly 20 and processing efficiency.
  • Figure 16 is a schematic disassembly view of the first embodiment of the stator assembly provided by this application.
  • the disc-shaped body 221 is provided with a plurality of through-grooves 223 that communicate with the main surfaces on both sides of the disc-shaped body 221 .
  • the stator core 21 is attached to one main surface of the disc-shaped body 221 and is provided with a plurality of through-grooves 223 .
  • the corresponding plurality of protrusions 222 are inserted into the corresponding through grooves 223 .
  • the disc-shaped main body 221 and the stator core 21 are welded and fixed to each other along the mating edges of the through grooves 223 and the protrusions 222 .
  • the numbers of the plurality of protrusions 222 and the through-grooves 223 are in a one-to-one correspondence.
  • One protrusion 222 can be inserted into one through-groove 223, and the two can be welded to the disc-shaped body 221 and the through-groove 223.
  • the stator core 21 is fixed so that the stator core 21 and the stator flange 22 are assembled to the housing as a whole.
  • the shapes of the through-groove 223 and the protruding portion 222 are similar.
  • the through-groove 223 and the protruding portion 222 both have a square structure.
  • the flanges 22 are limited by the through grooves 223 and the protrusions 222 , so that the disc-shaped body 221 and the stator core 21 can be welded and fixed to each other along the mating edges of the through grooves 223 and the protrusions 222 . Therefore, the difficulty of processing and assembling the stator core 21 of the stator assembly 20 can be reduced, and the electromagnetic loss of the stator core 21 can be reduced.
  • a plurality of through grooves 223 are provided at intervals along the circumferential direction Z of the disc-shaped body 221 .
  • the through-grooves 223 can be arranged at different positions of the disc-shaped body 221 along the circumferential direction Z of the disc-shaped body 221 , wherein a plurality of through-grooves 223 can be arranged at equal intervals along the circumferential direction Z of the disc-shaped body 221 to improve the performance of the disc-shaped body 221 .
  • the stability of the connection between the disc-shaped body 221 and the stator core 21 is provided at intervals along the circumferential direction Z of the disc-shaped body 221 .
  • a plurality of through grooves 223 are provided to extend along the radial direction Y of the disc-shaped body 221 and to expand radially.
  • the through grooves 223 can extend at different positions of the disc-shaped body 221 along the radial direction Y of the disc-shaped body 221 to improve the stability of the connection between the disc-shaped body 221 and the stator core 21 .
  • Figure 17 is a schematic structural diagram of an embodiment of the stator flange provided by the present application.
  • the plurality of through grooves 223 are provided to extend in an arc along the circumferential direction Z of the disc-shaped main body 221 .
  • the plurality of through grooves 223 can be distributed at intervals along the circumferential direction Z of the disc-shaped body 221 to increase the welding area between the disc-shaped body 221 and the stator core 21 and improve the stability of the connection between the disc-shaped body 221 and the stator core 21 sex.
  • the plurality of through-grooves 223 are divided into at least two through-groove groups 2231 that are nested and spaced apart from each other along the radial direction Y of the disc-shaped body 221 .
  • Each through-groove group 2231 includes a group of through-grooves 2231 along the circumferential direction Z of the disc-shaped body 221 .
  • At least two through-grooves 223 are arranged at intervals.
  • the through-grooves 223 in the same group can be located on the circumference of the same reference circle.
  • the through-grooves 223 in different groups can be located on the circumference of the reference circle with different diameters.
  • the through-grooves in each group are grouped 2231
  • the number of through-grooves 223 can be the same. The closer the through-groove group 2231 is to the central axis of the disc-shaped body 221, the smaller the extending length of each through-groove 223 is.
  • Multiple through-grooves 223 in the same group can be spaced along the disc-shaped body. Circumferential Z-spacing distribution of 221.
  • the through-grooves 223 in the two adjacent through-groove groups 2231 are at least partially offset along the circumferential direction Z of the disc-shaped body 221 .
  • the plurality of through-grooves 223 can be divided into three through-groove groups 2231.
  • Each group of through-grooves 223 includes eight through-grooves 223.
  • the eight through-grooves 223 are all arranged in an arc shape, and the eight through-grooves 223 are arranged along the
  • the disc-shaped body 221 is arranged at equal intervals in the circumferential direction Z.
  • the through-grooves 223 between different groups are spaced apart in the radial direction Y of the disc-shaped body 221, and the outermost through-groove grouping 2231 and the middle through-groove grouping 2231
  • the through grooves 223 in the disc-shaped body 221 are at least partially offset along the circumferential direction Z of the disc-shaped body 221, so as to ensure the structural strength of the disc-shaped body 221 and further improve the stability of the connection between the disc-shaped body 221 and the stator core 21. .
  • Figure 18 is a schematic structural diagram of an embodiment of the stator core provided by the present application.
  • the stator core 21 is formed by winding a strip-shaped sheet. One side edge of the strip-shaped sheet is protrudingly provided with a protrusion 2221. One side edge of the strip-shaped sheet is recessed with an opening groove 2131.
  • the protrusions 2221 follow the strip-shaped sheet.
  • the protrusions 222 are formed by the winding of the strip material, and the opening slots 2131 form the stator slots 213 for accommodating the coils along with the winding of the strip sheet.
  • the stator core 21 is formed by winding strip-shaped sheets, which allows the stator core 21 to be formed efficiently. And a plurality of protrusions 2221 are protrudingly provided on one side of the strip-shaped sheet.
  • the plurality of protrusions 2221 are arranged at predetermined intervals on one side of the strip-shaped sheet.
  • a plurality of protrusions 2221 are matched on the back of the stator core 21 to form a protruding portion 222, thereby facilitating efficient molding of the protruding portion 222; similarly, multiple opening slots can be provided at predetermined intervals on the other side of the strip sheet. 2131.
  • a plurality of opening slots 2131 are formed on the side of the stator core 21 away from the protruding portion 222 to form stator slots 213 for embedding coils, thereby facilitating the opening of the slots 2131. Efficient molding.
  • Figure 19 is a schematic cross-sectional view of the stator core shown in Figure 15.
  • the disc-shaped body 221 is provided with a plurality of stepped holes 2211.
  • the stepped holes 2211 include a first hole section 22111 and a second hole section 22112.
  • the first hole section 22111 is connected to the main surface of one side of the disc-shaped body 221 facing the stator core 21.
  • the second hole section 22112 is connected to the main surface of the other side of the disc-shaped body 221 away from the stator core 21.
  • the aperture of the first hole section 22111 is larger than the aperture of the second hole section 22112, and then between the second hole section 22112 and the first hole section
  • the connection of 22111 forms a ring-shaped table.
  • Both the first hole section 22111 and the second hole section 22112 can be cylindrical holes, and the first hole section 22111 and the second hole section 22112 are connected with each other and further connected with the main surfaces on both sides of the disc-shaped body 221 .
  • the plurality of stepped holes 2211 can be arranged at equal intervals around the circumferential direction Z of the disc-shaped body 221 , and the plurality of stepped holes 2211 are arranged away from the center of the disc-shaped body 221 in the radial direction Y of the disc-shaped body 221 .
  • the stator assembly 20 includes a fixing piece 23 inserted into the stepped hole 2211.
  • the fixing piece 23 is sunk in the first hole section 22111 and supported on the first annular table.
  • the fixing piece 23 can also have a two-section structure.
  • the size of the first section of the fixing piece 23 along the radial direction Y is greater than the size of the second section of the fixing piece 23 along the radial direction Y and is smaller than the size of the first hole section 22111 along the radial direction Y.
  • the size is such that the first section of the fixing member 23 is sunk in the first hole section 22111 and is supported on the first annular table, and the second section of the fixing member 23 at least partially protrudes from the second hole section 22112, thereby connecting with the first hole section 22112. Shell connection.
  • the number of fixing pieces 23 is the same as the number of stepped holes 2211.
  • the fixing pieces 23 and the stepped holes 2211 have a one-to-one correspondence, that is, one fixing piece 23 can be placed in
  • the fixing member 23 is pre-inserted into the stepped hole 2211 before the disc-shaped body 221 and the stator core 21 are welded and fixed, and the projection of the stator assembly 20 along the axial direction X of the stator assembly 20 covers the fixing member. 23, so that the fixing member 23 is retained in the stepped hole 2211.
  • the stator assembly 20 also includes a coil wound around the stator core 21.
  • the coil extends beyond both sides of the stator core 21 along the radial direction Y of the stator assembly 20. side ring surfaces to form the inner ring coil part 212 and the outer ring coil part 211.
  • stator core 21 has a ring shape, when the coils are wound around the stator core 21 , the coils can both protrude from the inner and outer ring sides of the stator core 21 and protrude from the inner ring surface of the stator core 21
  • the coil is the inner ring coil part 212, and the coil protruding from the outer ring surface of the stator core 21 is the outer ring coil part 211.
  • the disc-shaped body 221 includes a central portion 2212 and an annular edge portion 2213 arranged around the central portion 2212.
  • the annular edge portion 2213 cooperates with the central portion 2212 to form a recessed area.
  • the stator core 21 is provided in the recessed area, and the stepped hole 2211 is provided On the annular edge portion 2213, the projection of the outer ring coil portion 211 along the axial direction X of the stator assembly 20 covers the fixing member 23.
  • the thickness of the central portion 2212 can be smaller than the thickness of the annular edge portion 2213 to form a recessed area in the central portion 2212.
  • the size of the recessed area can match the size of the main surface of the stator core 21 so that the stator core 21 can be placed in the recessed area.
  • the stepped hole 2211 is disposed on the annular edge portion 2213 so that the projection of the outer ring coil portion 211 along the axial direction 211 covers the stepped hole 2211, so that the annular mesa and the outer ring coil part 211 can be used to hold the fixing member 23 in the stepped hole 2211, so that the fixing member 23 will not escape from the stepped hole 2211.
  • At least one of the inner ring coil part 212 and the outer ring coil part 211 exceeds the disc-shaped body 221 along the radial direction Y of the stator assembly 20 or is spaced apart from the disc-shaped body 221 along the axial direction
  • the coolant input from the end plate portion directly contacts at least one of the inner ring coil portion 212 and the outer ring coil portion 211 .
  • the inner ring coil part 212 or the outer ring coil part 211 may exceed the disc-shaped body 221 in the radial direction Y, or both the inner ring coil part 212 and the outer ring coil part 211 may exceed the disc-shaped body 221 in the radial direction Y.
  • the inner ring coil part 212 and/or the outer ring coil part 211 maintain a predetermined gap with the disk-shaped body 221 in the axial direction X of the disk-shaped body 221, so that the coolant can pass through the predetermined gap and the inner ring coil part 212 and/or the outer ring coil part 211 are in direct contact, which can increase the contact amount of the coolant with the inner ring coil part 212 and/or the outer ring coil part 211 to improve the cooling efficiency of the stator assembly 20 by the coolant.
  • the width of the disc-shaped body 221 along the radial direction Y is smaller than the width of the stator core 21 along the radial direction Y. Therefore, the coolant can be further directly contacted with the stator core 21 that is not covered by the disc-shaped body 221 , so as to further improve the cooling efficiency of the stator assembly 20 by the coolant. In addition, the weight of the stator flange 22 can be reduced and the production cost can be reduced.
  • stator flange 22 and the fixing part 23 are both non-magnetic conductive parts, thereby reducing electromagnetic losses.
  • a stepped hole is provided on the disc-shaped body 221, and the stepped hole on the disc-shaped body 221 is matched with a fixing member to achieve fixation.
  • holes can also be opened in the stator flange 22 and the disc-shaped body 221 at the same time to form a stepped hole in another embodiment.
  • Figures 20 and 21 are schematic structural diagram and a schematic cross-section of the second embodiment of the stator assembly provided by this application.
  • Figure 21 is a schematic disassembly diagram of the second embodiment of the stator assembly provided by this application.
  • a in Figure 20 is a schematic structural diagram of the second embodiment of the stator assembly
  • b in Figure 20 is a schematic cross-sectional view of a in Figure 20 along the A-A direction.
  • the stator assembly 20 is provided with a stepped hole 24.
  • the stepped hole 24 penetrates the disc-shaped body 221 and the stator core 21 along the axial direction X of the stator assembly 20.
  • the stepped hole 24 includes a first hole section 241 and a second hole section 242.
  • One hole section 241 is located in the stator core 21 and connects the main surface of the stator core 21 away from the disc-shaped body 221.
  • the second hole section 242 is located in the disc-shaped body 221 and connects the main surface of the disc-shaped body 221 away from the stator core 21.
  • the hole diameter of the first hole section 241 is larger than the hole diameter of the second hole section 242 .
  • Both the first hole section 241 and the second hole section 242 can be cylindrical holes, and the first hole section 241 is connected to the main surfaces on both sides of the stator core 21, and the second hole section 242 is connected to the main surfaces on both sides of the disc-shaped body 221. And the first hole section 241 and the second hole section 242 are arranged correspondingly in the axial direction X of the disc-shaped body 221 .
  • the stepped hole 24 is used to allow the fixing member 23 to be inserted from the side of the stator core 21 away from the disc-shaped body 221 when the stator assembly 20 is placed in the housing, and is sunk in the first hole section 241 to thereby secure the stator assembly. 20 is fixed on the end plate of the housing.
  • the fixing piece 23 can have a two-stage structure, and the size of the first section of the fixing piece 23 along the radial direction Y is larger than the size of the second section of the fixing piece 23 along the radial direction Y, so that the first section of the fixing piece 23 Set in the first hole section 241 , the second section of the fixing member 23 is inserted into the second hole section 242 and at least partially protrudes from the second hole section 242 .
  • a first hole section 241 is opened on the stator core 21
  • a second hole section 242 is opened on the disc-shaped body 221
  • the fixing member 23 is sunk in the first hole section 241, so that the stator can be
  • the assembly 20 is fixed to the end plate of the housing, eliminating the need for the stator core 21 to avoid the second hole section 242 , thereby increasing the overall volume of the stator core 21 and increasing the magnetic field strength of the stator assembly 20 .
  • the stepped hole 24 also includes a third hole section 243.
  • the third hole section 243 is located in the stator core 21 and is connected between the first hole section 241 and the second hole section 242.
  • the third hole section 243 is The hole diameter is smaller than the hole diameter of the first hole section 241, and an annular table is formed at the connection between the third hole section 243 and the first hole section 241, and the fixing member 23 is also pressed and fixed on the annular table.
  • the size of the third hole section 243 along the radial direction Y may be the same as the size of the second hole section 242 along the radial direction Y.
  • the first hole section 241 and the third hole section 243 are connected to each other and both sides of the stator core 21 together.
  • the larger section of the fixing member 23 can be fixed on the annular table, and the smaller section of the fixing member 23 can pass through the second hole section 242 and the third hole section 243 and protrude from the disc-shaped main body 221 The main surface facing away from the stator core 21 .
  • the stator core 21 can be further pressed and fixed to the disc-shaped main body 221 by using the fixing member 23 .
  • the hole diameter of the third hole section 243 is smaller than the hole diameter of the first hole section 241, which is also beneficial to alleviating the magnetic loss of the stator core 21.
  • the number of stepped holes 24 is multiple, and they are arranged at intervals along the circumferential direction Z of the stator assembly 20 .
  • the plurality of stepped holes 24 can be arranged at equal intervals around the circumferential direction Z of the disc-shaped body 221 , and the plurality of stepped holes 24 are all centrally arranged in the radial direction Y of the disc-shaped body 221 .
  • the number of fixing pieces 23 is the same as the number of stepped holes 24.
  • the fixing pieces 23 and the stepped holes 24 have a one-to-one correspondence, that is, one fixing piece 23 can be placed in one stepped hole 24.
  • the stepped holes 24 and the through grooves 223 are alternately arranged along the circumferential direction Z of the stator assembly 20 .
  • the processing difficulty of the stator assembly 20 is reduced; the stability of the installation of the stator core 21 and the stator flange 22 is improved, and the stability of the installation of the stator assembly 20 and the shell is improved. sex.
  • the fixing member 23 When the stator assembly 20 needs to be installed in the casing of the axial flux motor, the fixing member 23 only needs to be inserted into the stepped hole 24 from the side of the stator core 21 away from the disc-shaped body 221 and sunk into the first hole. In section 241, the stator assembly 20 is fixed on the end plate of the housing using the fixing piece 23.
  • Figure 22 is a schematic structural diagram and a schematic cross-sectional view of a third embodiment of the stator assembly provided by the present application.
  • a in Figure 22 is a schematic structural diagram of the third embodiment of the stator assembly
  • b in Figure 22 is a schematic cross-sectional view of a in Figure 22 along the B-B direction.
  • the stator flange 22 also includes a plurality of fixing posts 25.
  • the plurality of fixing posts 25 are disposed on the other main surface of the disc-shaped body 221 facing away from the stator core 21 and extend along the axial direction X of the stator assembly 20.
  • the fixing post 25 is used to fix the stator flange 22 on the end plate of the housing when the stator assembly 20 is placed in the housing.
  • the fixing post 25 can be in the shape of a hollow cylinder, and the fixing post 25 can be perpendicular to the main surface of the stator core 21, so that the housing can improve the integration of the stator assembly 20, and when it is necessary to fix the stator assembly 20 to the housing.
  • stator core 21 and the stator flange 22 can be fixed to the end plate of the housing through the fixing column 25, simplifying the installation of the stator core 21 and the stator flange 22, and improving production efficiency.
  • there is no need to drill holes in the stator flange 22 and the stator core 21 which can reduce the magnetic loss of the stator core 21 .
  • the fixing column 25 is provided with an internal threaded hole 251 extending along the axial direction X.
  • the internal threaded hole 251 can be threadedly connected to the stud, so that the fixing post 25 can be detachably installed on the end plate of the housing, thereby simplifying the assembly process.
  • a plurality of fixed posts 25 are arranged at intervals along the circumferential direction Z of the stator assembly 20 .
  • a plurality of studs can be arranged at equal intervals along the circumferential direction Z of the stator assembly 20 so that the stator assembly 20 can be stably installed on the end plate of the housing through the fixing posts 25 .
  • the plurality of fixing posts 25 are integrally formed with the disc-shaped body 221 or formed separately from the disc-shaped body 221 and assembled and fixed on the disc-shaped body 221 .
  • Figure 23 is a schematic structural diagram of an embodiment of the stator flange in the third embodiment of the stator assembly provided by the present application.
  • the plurality of fixed posts 25 are divided into a plurality of fixed post groups 252.
  • the plurality of fixed post groups 252 are arranged at intervals along the circumferential direction Z of the stator assembly 20.
  • Each fixed post group 252 includes a plurality of fixed post groups 252 along the stator assembly 20.
  • At least two fixed posts 25 are spaced apart in the radial direction Y.
  • the plurality of fixed column groups 252 can be arranged at equal intervals along the circumferential direction Z of the stator assembly 20 .
  • the number of fixed columns 25 in each fixed column group 252 can be the same, and the fixed columns 25 in the fixed column group 252 are in the stator assembly 20
  • the spacing in the radial direction Y can be the same. Therefore, a plurality of fixing posts 25 can be regularly distributed on the disc-shaped body 221, so that the stator assembly 20 can be stably installed on the end plate of the housing through the fixing posts 25.
  • the fixing posts 25 and the through grooves 223 are alternately arranged along the circumferential direction Z of the stator assembly 20 .
  • the number of through-grooves 223 may be multiple, and the plurality of through-grooves 223 are arranged at intervals along the circumferential direction Z of the disc-shaped body 221 .
  • a plurality of through grooves 223 are provided to extend along the radial direction Y of the disc-shaped body 221 and spread out radially.
  • the fixed column groups 252 and the through grooves 223 are alternately arranged along the circumferential direction Z of the stator assembly 20 .
  • FIG. 23 the fixed column groups 252 and the through grooves 223 are alternately arranged along the circumferential direction Z of the stator assembly 20 .
  • FIG. 23 the fixed column groups 252 and the through grooves 223 are alternately arranged along the circumferential direction Z of the stator assembly 20 .
  • a plurality of through grooves 223 are provided to extend in an arc along the circumferential direction Z of the disc-shaped body 221 .
  • the fixing posts 25 and the through grooves 223 along the circumferential direction Z of the stator assembly 20 , not only the stability of the connection between the stator core 21 and the disc-shaped body 221 can be improved, but also the disc-shaped body 221 can be improved. Stability when fixed to the end plate of the casing.
  • the axial flux motor provided by this application also includes As for the improvement of the rotor assembly, the following content mainly describes the structure of the rotor assembly, see Figures 25-27.
  • Figure 25 is a schematic structural diagram and a schematic cross-section of the first embodiment of the rotor assembly provided by this application.
  • FIG. 26 is an enlarged schematic diagram within the dotted line frame in FIG. 25 .
  • Figure 27 is a disassembled schematic diagram of the first embodiment of the rotor assembly provided by this application.
  • a in Fig. 25 is a schematic structural diagram of the first embodiment of the rotor assembly
  • b in Fig. 25 is a schematic cross-sectional view of a in Fig. 25 along the C-C direction.
  • the rotor assembly 30 includes a rotor core 31, a magnetic block 32 and a stopper 33.
  • the rotor core 31 is provided with a rotor slot 311.
  • the rotor slot 311 has an open end located on the outer circumferential surface of the rotor core 31.
  • the magnetic block 32 is provided with in the rotor slot 311.
  • the rotor core 31 can be in an annular shape to facilitate the installation of the rotor assembly 30 in the axial X flux motor.
  • the rotor slot 311 is opened on the outer circumferential surface of the rotor core 31 and along the radial direction Y of the rotor assembly 30 Extending toward the inside of the rotor core 31 , the open end of the rotor slot 311 faces the outside of the rotor core 31 , so that the magnetic block 32 can be inserted into the rotor slot 311 from the open end of the rotor core 31 .
  • the stopper 33 is located outside the rotor core 31 in the radial direction Y of the rotor assembly 30 and blocks the open end along the axial direction X of the rotor assembly 30 .
  • the stopper 33 can be attached to the outer edge of the rotor core 31 and block the open end through the stopper 33 so as to limit the magnetic block 32 in the rotor slot 311 through the stopper 33 .
  • the stopper 33 is used to limit the magnetic block 32 in the rotor slot 311 to alleviate the risk of the magnetic block 32 coming out of the rotor slot 311, thereby improving the limit rotational speed capability of the rotor assembly 30, and by limiting the stopper 32 to the rotor slot 311.
  • the stopper 33, the magnetic block 32 and the rotor core 31 are integrated into the rotor assembly 30, which can improve the integration level of the rotor assembly 30 and reduce the size of the axial X-flux motor.
  • the stopper 33 is an annular structure surrounding the rotor core 31 along the circumferential direction Z of the rotor assembly 30 .
  • the size of the inner side of the annular stopper 33 along the radial direction Y is equal to or slightly larger than the size of the outer peripheral surface of the rotor core 31 along the radial direction Y, so that the stopper 33 can surround the rotor core 31 and be in contact with the rotor.
  • the outer peripheral side of the iron core 31 is in contact with each other to limit the magnetic block 32 in the rotor slot 311 .
  • the rotor core 31 includes a first end surface and a second end surface oppositely arranged along the axial direction X of the rotor assembly 30 , and the rotor slot 311 is provided on the first end surface and the second end surface along the axial direction between the two end faces.
  • the rotor slot 311 extends toward the inside of the rotor core 31 along the radial direction Y of the rotor assembly 30 , and the magnetic block 32 located in the rotor slot 311 is limited along the axial direction X of the rotor assembly 30 .
  • the rotor assembly 30 further includes a rotor flange 34 .
  • the rotor flange 34 includes a disc-shaped body 341 .
  • the rotor core 31 is attached and fixed to one main surface of the disc-shaped body 341 .
  • the stopper 33 It is separated from the rotor flange 34.
  • the rotor flange 34 can be fixedly connected to the rotor core 31, and the rotor core 31 can be connected to the casing of the axial flux motor through the rotor flange 34, thereby reducing the difficulty of processing and manufacturing the rotor assembly 30.
  • the rotor core 31 Using the rotor flange 34 as the installation reference can improve the installation accuracy of the rotor core 31 and the processing efficiency of the rotor assembly 30 .
  • the rotor core 31 and the disc-shaped main body 341 can be detachably connected, or the disc-shaped main body 341 and the rotor iron core 31 can be welded and fixed.
  • the stopper 33 and the rotor flange 34 are provided separately to simplify the processing difficulty of the rotor flange 34.
  • the stopper 33 is fixed on the disc-shaped body 341.
  • the stopper 33 can be welded and fixed on the disc-shaped body 341, or integrally formed with the disc-shaped body 341, thereby improving the integration of the rotor assembly 30. Improve the structural stability of the stopper 33 and improve the stopper effect.
  • the stopper 33 and the disc-shaped main body 341 are integrally formed.
  • the assembly difficulty can be simplified, and the structural stability of the stopper 33 can be improved, thereby improving the stopper effect.
  • the stopper 33 is attached to the outer peripheral surface of the rotor core 31 , one end of the stopper 33 is connected to the outer edge of the disc-shaped body 341 , and extends along the axial direction X of the rotor assembly 30 to cover the The outer peripheral surfaces of the rotor core 31 on both sides of the rotor slot 311. Therefore, the rotor flange 34 can be used as an installation reference.
  • the stopper 33 can be used as a positioning reference to improve the alignment effect of the rotor core 31 and the disc-shaped body 341 .
  • the disc-shaped body 341 is provided with a plurality of first through-grooves 342 connecting the main surfaces of both sides of the disc-shaped body 341
  • the rotor core 31 is provided with a plurality of protrusions corresponding to the plurality of first through-grooves 342 .
  • the raised portion 312, each raised portion 312 is inserted into the corresponding first through groove 342, on the side of the disc-shaped body 341 away from the rotor core 31, the disc-shaped body 341 and the rotor core 31 are arranged along the first through groove. 342 and the mating edges of the protrusion 312 are welded and fixed to each other.
  • the number of the plurality of protrusions 312 and the plurality of first through grooves 342 is in a one-to-one correspondence.
  • One protrusion 312 can be inserted into one first through groove 342, and the two can be welded to the disk.
  • the main body 341 is fixed to the stator core, so that the rotor core 31 and the rotor flange 34 can be assembled to the housing as an integral component.
  • the shapes of the first through groove 342 and the protruding portion 312 are similar. For example, the first through groove 342 and the protruding portion 312 both have a square structure.
  • the rotor assembly of this embodiment is similar to the fixing method between the iron core part and the rotor flange of the stator assembly described above, the rotor assembly of this embodiment can use the various features of the stator assembly described above. kind of deformation.
  • Figure 28 is a schematic structural diagram of an embodiment of a rotor core provided by this application.
  • the rotor core 31 is formed by winding a strip-shaped sheet.
  • One side edge of the strip-shaped sheet is protrudingly provided with a protrusion 3121.
  • the strip-shaped sheet is provided with a connecting strip located between the two edges of the strip-shaped sheet.
  • the second through-grooves 3122 on the main surfaces of both sides of the sheet form the first and second end faces of the rotor core 31 along with the edges of both sides of the strip sheet.
  • the protrusions 3121 follow the winding of the strip sheet.
  • the rolling of the sheet forms the protruding portion 312, and the second through-groove 3122 forms the rotor groove 311 along with the rolling of the strip-shaped sheet.
  • this embodiment Compared with traditional die-casting, in this embodiment it can be formed by winding strip-shaped sheets, so that the rotor core 31 can be formed efficiently. And one side of the strip-shaped sheet is protrudingly provided with a plurality of protrusions 3121. The plurality of protrusions 3121 are arranged at predetermined intervals on one side of the strip-shaped sheet.
  • a plurality of protrusions 3121 cooperate to form a protruding portion 312 on the back of the stator core, thereby facilitating efficient molding of the protruding portion 312; similarly, a plurality of second protrusions 3121 can be provided at predetermined intervals on the other side of the strip-shaped sheet.
  • Through-grooves 3122 After the strip-shaped sheet is rolled to form the rotor core 31, a plurality of second through-grooves 3122 are fitted on the side of the rotor core 31 away from the protruding portion 312 to form rotor grooves for embedding the magnetic block 32. 311, thereby facilitating the efficient forming of the rotor slot 311.
  • Figure 29 is a schematic structural diagram and a schematic cross-section of the second embodiment of the rotor assembly provided by the present application.
  • Figure 30 is a schematic disassembly of the first rotor component in the second embodiment of the rotor assembly provided by the present application.
  • Figure 31 is an example of the second rotor component in the second embodiment of the rotor assembly provided by the present application.
  • Disassembly diagram of the embodiment Among them, a in Fig. 29 is a schematic structural diagram of the second embodiment of the rotor assembly, and b in Fig. 29 is a schematic cross-sectional view of a in Fig. 29 along the D-D direction.
  • the rotor assembly 30 includes a first rotor assembly 30a and a second rotor assembly 30b.
  • the rotor assembly 30 is formed by assembling the first rotor assembly 30a and the second rotor assembly 30b.
  • the rotor assembly 30 is used to form an axial flux motor , which can improve the output efficiency of the axial flux motor.
  • the first rotor assembly 30a includes a first rotor flange 34a and a first rotor core 31a.
  • the first rotor flange 34a includes a first disc-shaped body 341a and a rotating shaft portion 35a provided on the first disc-shaped body 341a.
  • the first rotor The iron core 31a is disposed on one main surface of the first disc-shaped body 341a and surrounds the rotating shaft portion 35a.
  • the first disc-shaped body 341a may be in the shape of a disc. Two opposite side surfaces of the disc-shaped first disc-shaped body 341a may be defined as the main surface.
  • the rotating shaft part 35a may be located in the middle of the first disc-shaped body 341a.
  • the rotating shaft portion 35a may be coaxially disposed with the first disc-shaped body 341a.
  • the first rotor flange 34a can be fixedly connected to the first rotor core 31a, thereby reducing the assembly difficulty of the first rotor assembly 30a, and the first rotor core 31a and the first rotor flange 34a can be integrated in the axial magnetic flux In the motor, the integration of the axial flux motor is improved.
  • the second rotor assembly 30b includes a second rotor flange 34b and a second rotor core 31b.
  • the second rotor flange 34b includes a second disc-shaped body 341b and a shaft hole portion 35b provided in the second disc-shaped body 341b.
  • the rotor core 31b is disposed on one main surface of the second disc-shaped body 341b, and the shaft hole portion 35b is provided with a shaft hole 351b.
  • the second disc-shaped body 341b can be in the shape of a disc.
  • the opposite side surfaces of the disc-shaped second disc-shaped body 341b can be defined as the main surface.
  • the shaft hole portion 35b can be located in the middle of the second disc-shaped body 341b.
  • the shaft hole portion 35b may be coaxially disposed with the second disc-shaped body 341b.
  • the second rotor flange 34b can be fixedly connected to the second rotor core 31b, thereby reducing the assembly difficulty of the second rotor assembly 30b, and the second rotor core 31b and the second rotor flange 34b can be integrated in the axial magnetic flux In the motor, the integration of the axial flux motor is improved.
  • the rotating shaft part 35a is inserted into the shaft hole 351b along the axial direction of the rotor assembly 30.
  • the other main surface of the first disc-shaped body 341a is away from the first rotor core 31a and the second disc-shaped body 341b is away from the second side.
  • the other main surfaces of the rotor core 31b are in contact with each other and fixed relative to each other.
  • the first rotor core 31a and the second rotor core 31b use the first rotor flange 34a and the second rotor flange 34b as the installation positioning reference, which can improve the installation of the first rotor assembly 30a and the second rotor assembly 30b. positioning accuracy and assembly efficiency.
  • first rotor assembly 30a and the second rotor assembly 30b are connected in a back-to-back manner through the first rotor core 31a and the second rotor core 31b, which can reduce the difficulty of assembling the two rotor assemblies.
  • one of the first disc-shaped body 341a and the second disc-shaped body 341b is welded and fixed to the other of the first disc-shaped body 341a and the second disc-shaped body 341b along its outer peripheral surface.
  • the fixing method of the two rotor assemblies can be simplified and the fixing effect can be improved.
  • the first rotor flange 34a and the second rotor flange 34b are axially welded along their outer peripheral surfaces to improve the processing efficiency of the rotor assembly 30.
  • first disc-shaped body 341a and the second disc-shaped body 341b are flush with each other along the radial direction of the rotor assembly 30, and the first disc-shaped body 341a and the second disc-shaped body 341b are aligned with each other along both sides.
  • the mating edges of the outer peripheral surfaces are welded and fixed to each other.
  • the outer peripheral surface of the first disc-shaped body 341a and the second disc-shaped body 341b are The outer peripheral surfaces of the disc-shaped body 341b are flush with each other in the radial direction of the rotor assembly 30.
  • the alignment can reduce the radial size of the rotor assembly 30, and at the same time facilitate welding of the first disc-shaped body 341a and the second disc-shaped body 341b along their outer peripheral surfaces, thereby improving the processing efficiency of the rotor assembly 30.
  • the rotating shaft portion 35a and the shaft hole portion 35b are welded and fixed to each other along the edge of the shaft hole 351b.
  • the outer circumferential surface of the portion 35a can fit with the inner wall surface of the shaft hole 351b, so that the rotating shaft portion 35a and the shaft hole portion 35b can be welded and fixed to each other along the edge of the shaft hole 351b. Therefore, the shaft hole portion 35b and the rotating shaft portion 35a are axially welded, thereby improving the processing efficiency of the rotor assembly 30.
  • the rotating shaft part 35a is provided with a first annular table surface 351a
  • the side of the shaft hole part 35b away from the first disc-shaped body 341a is provided with a second annular table surface 352b surrounding the shaft hole 351b.
  • the second annular table surface 352b is provided along the rotor assembly.
  • the axial direction of 30 is flush with the first annular table 351a and is arranged around the first annular table 351a.
  • the rotating shaft part 35a and the shaft hole part 35b are welded and fixed along the mating edges of the first annular table 351a and the second annular table 352b.
  • the radial size of the first annular mesa 351a may be equal to or slightly smaller than the radial size of the second annular mesa 352b, so as to facilitate the insertion of the rotating shaft portion 35a into the shaft hole 351b.
  • the first annular table surface 351a and the second annular table surface 352b are on the same plane, so that the rotating shaft part 35a and the shaft hole part 35b can move along the first annular table surface 351a and the second annular table surface 352b.
  • the matching edges are welded and fixed, thereby improving the processing efficiency of the rotor assembly 30 and reducing the radial size of the rotor assembly 30 .
  • the rotating shaft part 35a and the shaft hole part 35b can be fixed by welding.
  • other fixing methods can also be used. See Figures 32 and 33.
  • Figure 32 is provided by this application. Structural diagram and schematic cross-section diagram of the third embodiment of the rotor assembly.
  • Figure 33 is a schematic disassembly view of the third embodiment of the rotor assembly provided by this application.
  • a in Fig. 32 is a schematic structural diagram of the third embodiment of the rotor assembly
  • b in Fig. 32 is a schematic cross-sectional view of a in Fig. 35 along the E-E direction.
  • the rotating shaft part 35a includes an insertion part 352a and a butt part 353a.
  • the insertion part 352a is inserted into the shaft hole 351b.
  • the butt part 353a is overlapped with the shaft hole part 35b along the axial projection of the rotor assembly 30.
  • the butt part 353a and the shaft hole part Multiple sets of fixed matching pairs 36 are provided on the shaft 35b, and the butt portion 353a and the shaft hole portion 35b are relatively fixed to each other through the fixed matching pairs 36.
  • the radial size of the butt portion 353a can be larger than the radial size of the insertion portion 352a.
  • the butt portion 353a When the insertion portion 352a is inserted into the shaft hole 351b, the butt portion 353a can be in a face-to-face fit with the shaft hole portion 35b, so that the butt portion can pass through 353a and the shaft hole part 35b allow the rotating shaft part 35a and the shaft hole part 35b to limit each other in the radial direction of the rotor assembly 30.
  • multiple sets of fixed matching pairs 36 can be arranged at equal intervals along the circumferential direction of the rotor assembly 30.
  • the multiple sets of fixed matching pairs 36 can be interconnected through holes.
  • the rotating shaft portion 35a and the shaft hole portion 35b can be made accessible through other components.
  • the disassembly connection improves the flexibility of the rotor assembly 30 to facilitate the disassembly and maintenance of the rotor assembly 30 .
  • the fixed matching pair 36 may also be a pin matching pair or other matching pair.
  • the fixed matching pair 36 includes a first fixing hole 354a provided on the butt part 353a and a second fixing hole 353b provided on the shaft hole part 35b.
  • the butt part 353a and the shaft hole part 35b are inserted into the first fixing hole 354a.
  • the fixing member 37 in the hole 354a and the second fixing hole 353b is fixed relative to each other.
  • the first fixing hole 354a and the second fixing hole 353b of the same matching pair can be arranged coaxially.
  • the first fixing hole 354a and the second fixing hole 353b can be threaded holes.
  • the fixing parts 37 can be bolts.
  • the number of the fixing parts 37 depends on the number of fixing parts.
  • the number of matching pairs 36 is in a one-to-one correspondence.
  • At least one of the first fixing hole 354a and the second fixing hole 353b is in the form of a stepped hole.
  • the fixing member 37 is inserted into the first fixing hole 354a and the second fixing hole 353b. , the butt portion 353a and the shaft hole portion 35b are detachably connected.
  • the first fixing hole 354a includes a first outer hole section 3541a and a first inner hole section 3542a that communicate with each other, and the first inner hole section 3542a has a hole diameter larger than the first outer hole.
  • the second fixing hole 353b includes a second outer hole section 3531b and a second inner hole section 3532b that communicate with each other.
  • the second inner hole section 3532b has a hole diameter larger than the second outer hole section 3531b.
  • the first inner hole The segment 3542a and the second inner hole segment 3532b are butted with each other.
  • the rotor assembly 30 includes a positioning pin 38 inserted into the first inner hole segment 3542a and the second inner hole segment 3532b.
  • the fixing member 37 passes through the first outer hole segment 3541a. , positioning pin 38 and second outer hole section 3531b.
  • the radial dimensions of the first inner hole section 3542a and the second inner hole section 3532b can be the same.
  • the positioning pin 38 can be first put into the first inner hole section 3542a or in the second inner hole section 3532b, and then use the position of the positioning pin 38 as the positioning basis to align the first fixing hole 354a and the second fixing hole 353b of the same fixed matching pair 36, and finally insert the fixing member 37 into the second inner hole section 3532b.
  • One fixing hole 354a and the second fixing hole 353b thereby making the shaft hole part 35b and the butt part 353a relatively fixed. Therefore, the auxiliary positioning by the positioning pin 38 facilitates the relative fixation of the shaft hole portion 35b and the butt portion 353a, thereby improving the processing efficiency of the rotor assembly 30.
  • FIG. 34 is provided by this application. Schematic structural diagram and schematic cross-sectional view of the fourth embodiment of the rotor assembly.
  • Figure 35 is a schematic disassembly view of the fourth embodiment of the rotor assembly provided by this application.
  • b in Fig. 34 is a schematic structural diagram of the fourth embodiment of the rotor assembly
  • a in Fig. 34 is a schematic cross-sectional view of b in Fig. 34 along the F-F direction.
  • the outer circumferential surfaces of the first disc-shaped body 341a and the second disc-shaped body 341b are flush with each other in the radial direction of the rotor assembly 30, and the first rotor core 31a is provided with a first rotor slot 311a.
  • a rotor slot 311a has a first open end located on the outer circumferential surface of the first rotor core 31a.
  • the first rotor assembly 30a also includes a first magnetic block 32a disposed in the first rotor slot 311a.
  • a second rotor core 31b A second rotor slot 311b is provided.
  • the second rotor slot 311b has a second open end located on the outer circumferential surface of the second rotor core 31b.
  • the second rotor assembly 30b further includes a second magnetic element disposed in the second rotor slot 311b.
  • Block 32b The first rotor core 31a and the second rotor core 31b may be in an annular shape to facilitate installation of the rotor assembly 30 in the axial flux motor.
  • the first rotor slot 311a is opened on the outer peripheral surface of the first rotor core 31a and extends toward the inside of the first rotor core 31a along the radial direction of the rotor assembly 30. The first opening end of the first rotor slot 311a faces the first rotor core 31a.
  • the outer side of the rotor core 31a allows the first magnetic block 32a to be inserted into the first rotor slot 311a from the first open end of the first rotor core 31a.
  • the second rotor slot 311b is opened on the outer peripheral surface of the second rotor core 31b and extends toward the inside of the second rotor core 31b along the radial direction of the rotor assembly 30.
  • the second opening end of the second rotor slot 311b faces The outer side of the second rotor core 31b allows the second magnetic block 32b to be inserted into the second rotor slot 311b from the second open end of the second rotor core 31b.
  • the rotor assembly 30 further includes an annular stopper 39, which is integrally provided along the axial direction of the rotor assembly 30 and is wound around the periphery of the first rotor core 31a and the second rotor core 31b to prevent the rotor from moving along the rotor.
  • the axial direction of the assembly 30 blocks both the first open end and the second open end.
  • the radial size of the inner circle of the annular stopper 39 is equal to or slightly larger than the radial size of the outer peripheral sides of the first rotor core 31a and the second rotor core 31b, so that the annular stopper 39 can surround the first rotor iron
  • the core 31a and the second rotor core 31b are in contact with their outer peripheral sides.
  • the annular stopper 39 is located outside the first rotor core 31 a and the second rotor core 31 b in the radial direction of the rotor assembly 30 , and blocks the first open end and the second open end in the axial direction of the rotor assembly 30 .
  • the annular stopper 39 can fit on the outer peripheral surfaces of the first rotor core 31a and the second rotor core 31b, and block the first open end and the second open end through the annular stopper 39, so that the annular stopper 39 can pass through the annular stopper 39.
  • 39 restricts the first magnetic block 32a in the first rotor slot 311a, and restricts the second magnetic block 32b in the second rotor slot 311b.
  • the annular stopper 39 is used to limit the first magnetic block 32a in the first rotor slot 311a, and the second magnetic block 32b is limited in the second rotor slot 311b, so that the rotor assembly 30 can be lifted.
  • the limit rotation speed capability and by integrating the annular stopper 39, the first magnetic block 32a, the second magnetic block 32b, the first rotor core 31a and the second rotor core 31b into the rotor assembly 30, the rotor assembly can be improved.
  • the integration level reaches 30%, reducing the size of the axial flux motor.
  • both the first rotor assembly 30a and the second rotor assembly 30b may include the embodiment shown in the above single rotor assembly 30.
  • the annular stopper 39 may be provided separately from the first rotor flange 34a and the second rotor flange 34b; or the annular stopper 39 may be integrated with the first rotor flange 34a or the second rotor flange 34b. set; or the annular stopper 39 can be welded and fixed on the first rotor flange 34a or the second rotor flange 34b.
  • the first disc-shaped body 341a and the first rotor core 31a and the second disc-shaped body 341b and the second rotor core 31b are fixed by welding through grooves and protrusions.
  • the first rotor core 31a and the second rotor core 31b may respectively be formed by winding the strip-shaped sheet material described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请公开了轴向磁通电机、电动设备和交通工具,该轴向磁通电机包括壳体、定子总成、转子总成以及隔板组件,壳体用于形成一容置空间,定子总成和转子总成沿轴向磁通电机的轴向排布于容置空间内,隔板组件包括隔板主体,隔板主体设置于定子总成与转子总成之间,壳体与隔板主体配合,形成用于容纳冷却剂和定子总成的冷却空间,冷却空间内的冷却剂直接接触定子总成。通过上述实施方式,将隔板主体设置于定子总成和转子总成之间,合理利用壳体的内部空间,可使轴向磁通电机的结构更加紧凑。壳体与隔板主体配合,形成冷却空间,其中的冷却剂直接与定子总成接触,可高效地实现冷却剂与定子总成之间的热交换,提高对定子总成的冷却效率。

Description

一种轴向磁通电机、电动设备和交通工具 技术领域
本申请涉及磁通电机技术领域,特别是涉及一种轴向磁通电机、电动设备和交通工具。
背景技术
电动设备往往采用电机作为动力源,执行相应的动作过程。例如,交通工具,如电动车辆采用诸如感应马达和永磁马达的电动马达来驱动车辆,并且在用作发电机时捕获制动能量。目前,两种常见类型的电机包括径向磁通电机和轴向磁通电机。与径向磁通电机相比,轴向磁通电机相对较轻,产生增加的功率,并且具有紧凑的尺寸。
然而,轴向磁通电机的功率密度大,电机在工作时产热多,现有对轴向磁通电机进行散热的方式效率较低,难以满足轴向磁通电机的散热需求。
发明内容
本申请的主要目的是提供一种轴向磁通电机、电动设备和交通工具,旨在解决现有技术中存在的上述技术问题。
为解决上述问题,本申请提供了一种轴向磁通电机,所述轴向磁通电机包括壳体、定子总成、转子总成以及隔板组件,所述壳体用于形成一容置空间,所述定子总成和所述转子总成沿所述轴向磁通电机的轴向排布于所述容置空间内,所述隔板组件包括隔板主体,所述隔板主体设置于所述定子总成与所述转子总成之间,所述壳体与所述隔板主体配合,形成用于容纳冷却剂和所述定子总成的冷却空间,所述冷却空间内的冷却剂直接接触所述定子总成。由此,通过将隔板主体设置于定子总成和转子总成之间,合理利用壳体的内部空间,可使轴向磁通电机的结构更加紧凑。通过壳体与隔板主体配合形成冷却空间,其中的冷却剂直接与定子总成接触,可高效地实现冷却剂与定子总成之间热交换,提高对定子总成的冷却效率。
在一实施例中,所述壳体包括端板部,所述端板部的内端面朝向所述定子总成背离所述转子总成一侧设置,所述端板部的内端面与所述隔板主体沿所述轴向间隔设置,在所述轴向上限定所述冷却空间的两侧边界。由此,通过端板部和隔板主体限定冷却空间的边界,可以提高壳体的容置空间的利用率,使整个轴向磁通电机的结构更加紧凑。
在一实施例中,所述壳体包括沿所述轴向磁通电机的径向嵌套设置的两个筒状部,所述两个筒状部分别与所述隔板主体密封配合,所述冷却空间呈环形设置。由此,可通过相对简单的结构将定子总成密封在冷却空间内,降低冷却剂的泄露风险。
在一实施例中,所述两个筒状部包括第一筒状部以及环绕所述第一筒状部设置的第二筒状部,所述第一筒状部和所述第二筒状部朝向所述定子总成延伸,所述第一筒状部供所述转子总成的转轴部通过,所述隔板主体包括内环匹配部以及环绕所述内环匹配部设置的外环匹配部,其中所述内环匹配部与所述第一筒状部密封配合,所述外环匹配部与所述第二筒状部密封配合。由此,可通过相对简单的结构将定子总成密封在环形冷却空间内,降低冷却剂的泄露风险,同时降低对转子总成的干扰。
在一实施例中,所述隔板主体嵌入于所述第二筒状部的内部,所述外环匹配部的外周面与所述第二筒状部的内周面之间形成密封配合,并且/或者所述内环匹配部上设置有第三筒状部,所述第三筒状部与所述第一筒状部接插并在二者之间形成密封配合。由此,隔板主体处于容置空间内,以在形成冷却空间的同时,对隔板主体起到较好的保护作用。此外通过第三筒状部与第一筒状部之间的接插配合实现更好的对位和密封效果。
在一实施例中,所述第三筒状部接插于所述第一筒状部的外围,所述轴向磁通电机还包括设置于所述第一筒状部内的轴承,所述隔板主体包括集油板,所述集油板与所述第一筒状部配合形成储油池。由此,可用于提高轴承的润滑持续性与稳定性。
在一实施例中,所述集油板与所述第三筒状部连接,并沿所述轴向磁通电机的径向朝向所 述第三筒状部内部延伸。由此,可简化集油板的装配过程,还能利用集油板增强隔板主体的结构强度。
在一实施例中,所述定子总成包括定子铁芯和绕设于所述定子铁芯上的线圈,所述定子铁芯上设置有多个定子槽,所述线圈嵌入于所述多个定子槽内,所述隔板主体包括分别与所述多个定子槽位置对应的多个嵌入筋,各所述嵌入筋分别嵌入于对应的定子槽内。由此,通过嵌入筋嵌入至定子槽中,可有效固定定子槽内的线圈。
在一实施例中,所述壳体包括第一筒状部以及环绕所述第一筒状部设置的第二筒状部,所述第一筒状部和所述第二筒状部朝向所述定子总成延伸,所述第一筒状部供所述转子总成的转轴部通过,所述隔板主体包括内环匹配部以及环绕所述内环匹配部设置的外环匹配部,所述内环匹配部与所述第一筒状部密封配合,所述外环匹配部与所述第二筒状部密封配合,所述多个定子槽和所述多个嵌入筋分别相对于所述轴向呈放射状展开,所述多个嵌入筋分别与所述内环匹配部和/或所述外环匹配部连接。由此,可简化嵌入筋的装配过程,同时可利用嵌入筋辅助固定内环匹配部和/或外环匹配部,提高结构稳定性。
在一实施例中,所述隔板主体还包括用于封堵所述多个嵌入筋之间间隙的封堵板。由此,通过封堵板可增强冷却空间的封闭性。
在一实施例中,所述内环匹配部和/或所述外环匹配部与所述定子总成密封配合。由此,可增强冷却空间的封闭性。
在一实施例中,所述隔板组件包括加强件,所述加强件呈筒状设置,并支撑于所述隔板主体背离所述定子总成的一侧,所述转子总成设置于所述加强件内。由此,可通过加强件可提高所述隔板主体的结构稳定性。
在一实施例中,所述加强件设置成与所述壳体抵接。由此,可通过加强件可提高所述隔板主体的结构稳定性。
在一实施例中,所述隔板组件沿所述轴向磁通电机的周向设置有多个间隔排布的泄压孔。由此,可通过泄压孔来平衡转子总成在工作时所造成的气压波动。
在一实施例中,所述转子总成与所述隔板主体沿所述轴向间隔设置,并形成气隙,所述泄压孔用于连通所述气隙与所述隔板组件的外部空间。由此,可通过泄压孔来平衡转子总成在工作时所造成的气隙内的气压波动。
在一实施例中,所述隔板组件还设置有回流孔,从所述冷却空间渗透至所述隔板组件内的冷却剂经过所述回流孔排出到所述隔板组件的外部空间。由此,可缓解因冷却空间内的冷却剂泄露对轴向磁通电机造成的不利影响。
在一实施例中,所述隔板组件包括加强件,所述加强件呈筒状设置,并支撑于所述隔板主体背离所述定子总成的一侧,所述转子总成设置于所述加强件内,所述回流孔设置于所述加强件上。由此,可缓解因冷却空间内的冷却剂泄露对转子总成造成的不利影响。
在一实施例中,所述加强件还设置有多个泄压孔,所述多个泄压孔沿所述轴向磁通电机的周向间隔排布于所述加强件朝向所述隔板主体的边缘,所述回流孔沿所述轴向相对于所述加强件的两侧边缘居中设置。由此,可提升泄压孔的泄压效果以及回流孔的回流效果。
在一实施例中,所述定子总成包括定子铁芯和绕设于所述定子铁芯上的线圈,所述定子铁芯呈环状设置,所述线圈沿所述轴向磁通电机的径向突出于所述定子铁芯的相对两侧环面,以形成内环线圈部和外环线圈部,所述内环线圈部和/或所述外环线圈部位于所述冷却空间内,所述冷却空间内的冷却剂直接接触所述内环线圈部和/或所述外环线圈部。由此,可提高对定子总成的冷却效率。
在一实施例中,所述壳体包括端板部,所述端板部的内端面朝向所述定子总成背离所述转子总成一侧设置,所述端板部的内端面、所述隔板主体朝向所述端板部的一侧和/或所述定子总成上设置有冷却流道,所述冷却空间内的冷却剂沿所述冷却流道流动。由此,可提高对定子总成的冷却效率。
在一实施例中,所述壳体包括端板部,所述端板部的内端面朝向所述定子总成背离所述转子总成一侧设置,所述内端面上设置有供所述冷却剂流动的冷却流道,所述定子总成盖设于至少部分所述冷却流道上,以允许在所述冷却流道内流动的冷却剂直接接触所述定子总成。由此,通过冷却流道中的冷却剂直接与定子总成接触,可高效地实现冷却剂与定子总成之间的热交换,提高对定子总成的冷却效率。
在一实施例中,所述定子总成包括定子法兰和定子铁芯,所述定子法兰包括盘状主体,所 述定子铁芯贴附固定于所述盘状主体背离所述端板部的一侧主表面上,所述盘状主体盖设于至少部分所述冷却流道上,在所述冷却流道内流动的冷却剂直接接触所述盘状主体。由此,利用定子法兰来固定定子铁芯,并以定子法兰作为与壳体配合的基础,从而降低装配难度。
在一实施例中,所述定子总成还包括绕设于所述定子铁芯上的线圈,所述定子铁芯和所述盘状主体呈环状设置,所述线圈沿所述轴向磁通电机的径向突出于所述定子铁芯的相对两侧环面,以形成内环线圈部和外环线圈部,所述内环线圈部和外环线圈部中的至少一者设置成沿所述轴向磁通电机的径向超出所述盘状主体或者沿所述轴向磁通电机的轴向与所述盘状主体保持预定间隙,所述冷却剂与所述内环线圈部和外环线圈部中的所述至少一者直接接触。由此,便于冷却剂可通过预定的间隙与内环线圈部和/或外环线圈部直接接触,提高对定子总成的冷却效率。
在一实施例中,所述冷却流道包括至少两个周向流道以及至少一径向流道,所述至少两个周向流道沿所述轴向磁通电机的径向间隔排布,所述径向流道沿所述轴向磁通电机的径向设置,并与所述至少两个周向流道连通。由此,可使得冷却剂与定子总成的接触范围更大,进一步提高冷却剂对定子总成的冷却效率。
在一实施例中,所述定子总成包括沿所述轴向间隔设置第一定子组件和第二定子组件,所述转子总成位于所述第一定子组件和第二定子组件之间,所述隔板主体包括第一隔板主体和第二隔板主体,所述第一隔板主体与所述壳体配合形成用于容纳所述冷却剂和所述第一定子组件的第一冷却空间,所述第二隔板主体与所述壳体配合形成用于容纳所述冷却剂和所述第二定子组件的第二冷却空间。由此,通过两个定子组件提高轴向磁通电机的稳定性和输出效率,并使得冷却剂同时接触两个定子组件,提高轴向磁通电机的冷却效率。
在一实施例中,所述隔板组件上设置有连通通道,所述连通通道用于连通所述第一冷却空间和所述第二冷却空间。由此,通过连通通道连接第一冷却空间和第二冷却空间,可使得第一冷却空间和第二冷却空间互通冷却剂,简化冷却剂的循环方式。
在一实施例中,所述连通通道包括第一连通通道和第二连通通道,所述第一连通通道和第二连通通道沿所述径向相对设置。由此,可提高两个冷却空间的冷却效果的一致性。
在一实施例中,所述壳体包括沿所述轴向间隔设置的第一端板部和第二端板部,所述定子总成和所述转子总成沿所述轴向排布于所述第一端板部和所述第二端板部之间,所述第一端板部和所述第二端板部中的一者上设置有入液口和出液口,所述入液口和所述出液口分别沿所述轴向磁通电机的轴向与所述第一连通通道和所述第二连通通道相对设置。由此,可提高两个冷却空间的冷却效果的一致性。
在一实施例中,所述隔板组件还包括连接于所述第一隔板主体和所述第二隔板主体之间的加强件和通道件,所述加强件呈筒状设置,所述转子总成设置于所述加强件内,所述通道件设置于所述加强件的外部,所述连通通道设置于所述通道件上。由此,可提高第一隔板主体和第二隔板主体的结构稳定性,同时缓解连通通道对转子总成造成干涉,同时缓解连通通道内的冷却剂泄露而对转子总成造成的不利影响。
在一实施例中,所述壳体包括第一筒状部,所述转子总成的转轴部转动支撑于所述第一筒状部内,所述第一筒状部与所述定子总成沿所述轴向至少部分重叠。由此,可以减小轴向磁通电机的轴向尺寸,使整个轴向磁通电机的结构更加紧凑。
在一实施例中,所述定子总成和/或所述转子总成包括法兰以及铁芯部,所述法兰包括盘状主体,所述盘状主体设置有连通所述盘状主体的两侧主表面的多个贯通槽,所述铁芯部上设置有与所述多个贯通槽对应的多个凸起部,所述凸起部插置于对应的所述贯通槽内,所述盘状主体与所述铁芯部沿所述贯通槽和所述凸起部的配合边缘彼此焊接固定。由此,降低定子总成和/或转子总成的铁芯部的加工和装配难度,并降低铁芯部的电磁损耗。
在一实施例中,所述转子总成包括转子铁芯、磁性块以及止挡件,所述转子铁芯设置有转子槽,所述转子槽具有位于所述转子铁芯的外周面上的开口端,所述磁性块设置于所述转子槽内,所述止挡件在所述转子总成的径向上位于所述转子铁芯的外侧,并沿所述转子总成的轴向遮挡所述开口端。由此,利用止挡件将磁性块限位在转子槽内,以缓解磁性块从转子槽的脱出风险,可提升转子总成的极限转速能力。
在一实施例中,所述止挡件为沿所述转子总成的周向环绕所述转子铁芯的环形结构,所述转子总成还包括转子法兰,所述转子法兰包括盘状主体,所述转子铁芯贴合固定于所述盘状主体的一侧主表面上,所述止挡件与所述转子法兰分体设置或者所述止挡件固定于所述盘状主体 上。由此,将止挡件与转子法兰分体设置可简化转子法兰的加工难度,将止挡件固定于盘状主体上,则可以提高止挡件的结构稳定性,提高止挡效果。
在一实施例中,所述转子总成包括第一转子组件和第二转子组件,所述第一转子组件包括第一转子法兰以及第一转子铁芯,所述第一转子法兰包括第一盘状主体以及设置于所述第一盘状主体的转轴部,所述第一转子铁芯设置于所述第一盘状主体的一侧主表面上,并环绕所述转轴部设置,所述第二转子组件包括第二转子法兰以及第二转子铁芯,所述第二转子法兰包括第二盘状主体以及设置于所述第二盘状主体的轴孔部,所述第二转子铁芯设置于所述第二盘状主体的一侧主表面上,所述轴孔部开设有轴孔,所述转轴部沿所述转子总成的轴向插置于所述轴孔内,所述第一盘状主体背离所述第一转子铁芯的另一侧主表面与所述第二盘状主体背离所述第二转子铁芯的另一侧主表面彼此贴合,并彼此相对固定。由此,可降低两个转子组件的装配难度。
在一实施例中,所述第一盘状主体和所述第二盘状主体中的一者沿其外周面焊接固定于所述第一盘状主体和所述第二盘状主体中的另一者上。由此,可简化两个转子组件的固定方式,提高固定效果。
在一实施例中,在所述轴孔部背离所述第一盘状主体的一端,所述转轴部和所述轴孔部沿所述轴孔的边缘彼此焊接固定;或者所述转轴部包括插入部以及对接部,所述插入部插入于所述轴孔内,所述对接部沿所述转子总成的轴向的投影与所述轴孔部重叠设置,所述对接部和所述轴孔部上设置有多组固定匹配对,所述对接部和所述轴孔部通过所述固定匹配对彼此相对固定。由此,可简化两个转子组件的固定方式,提高固定效果。
为解决上述问题,本申请提供了一种电动设备,所述电动设备包括上述任意一项所述的轴向磁通电机。
为解决上述问题,本申请提供了一种交通工具,所述交通工具包括上述任意一项所述的轴向磁通电机。
与现有技术相比,本申请的轴向磁通电机包括壳体、定子总成、转子总成以及隔板组件,壳体用于形成一容置空间,定子总成和转子总成沿轴向磁通电机的轴向排布于容置空间内,隔板组件包括隔板主体,隔板主体设置于定子总成与转子总成之间,壳体与隔板主体配合,形成用于容纳冷却剂和定子总成的冷却空间,冷却空间内的冷却剂直接接触定子总成。通过上述实施方式,将隔板主体设置于定子总成和转子总成之间,合理利用壳体的内部空间,可使轴向磁通电机的结构更加紧凑。壳体与隔板主体配合,形成用于容纳冷却剂和定子总成的冷却空间,其中的冷却剂直接与定子总成接触,可高效地实现冷却剂与定子总成之间的热交换,提高对定子总成的冷却效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的轴向磁通电机第一实施例的拆解示意图;
图2是本申请提供的轴向磁通电机第一实施例的剖切示意图;
图3是本申请提供的壳体的一实施例的结构示意图;
图4是图3所示出的壳体的平面示意图;
图5是本申请提供的隔板组件的第一实施例的剖切示意图;
图6是本申请提供的定子总成的一实施例结构示意图;
图7是本申请提供的隔板组件的第二实施例的结构示意图;
图8是本申请提供的隔板组件的第二实施例的剖切示意图;
图9是本申请提供的轴向磁通电机不包括转子总成的第二实施例的剖切示意图;
图10是本申请提供的轴向磁通电机第二实施例的拆解示意图;
图11是本申请提供的轴向磁通电机第二实施例的剖切示意图;
图12是本申请提供的轴向磁通电机第二实施例的隔板组件的第一实施例的拆解示意图;
图13是本申请提供的轴向磁通电机第二实施例的隔板组件的第二实施例的拆解示意图;
图14是本申请提供的轴向磁通电机第二实施例的隔板组件的第三实施例的拆解示意图;
图15是本申请提供的定子总成的第一实施例结构示意图;
图16是本申请提供的定子总成的第一实施例拆解示意图;
图17是本申请提供的定子法兰的一实施例结构示意图;
图18是本申请提供的定子铁芯的一实施例结构示意图;
图19是图15所示出的定子铁芯的剖切示意图;
图20是本申请提供的定子总成的第二实施例的结构示意图以及剖切示意图;
图21是本申请提供的定子总成的第二实施例的拆解示意图;
图22是本申请提供的定子总成的第三实施例的结构示意图以及剖切示意图;
图23是本申请提供的定子总成的第三实施例中定子法兰的一实施例结构示意图;
图24是本申请提供的定子总成的第三实施例中定子法兰的另一实施例结构示意图;
图25是本申请提供的转子总成的第一实施例的结构示意图以及剖切示意图;
图26是图25中虚线框内的放大示意图;
图27是本申请提供的转子总成的第一实施例的拆解示意图;
图28是本申请提供的转子铁芯的一实施例结构示意图;
图29是本申请提供的转子总成的第二实施例的结构示意图以及剖切示意图;
图30是本申请提供的转子总成的第二实施例中第一转子组件的一实施例拆解示意图;
图31是本申请提供的转子总成的第二实施例中第二转子组件的一实施例拆解示意图;
图32是本申请提供的转子总成的第三实施例的结构示意图以及剖切示意图;
图33是本申请提供的转子总成的第三实施例的拆解示意图;
图34是本申请提供的转子总成的第四实施例的结构示意图以及剖切示意图;
图35是本申请提供的转子总成的第四实施例的拆解示意图。
附图标号:轴向磁通电机1;轴向X;径向Y;周向Z;
壳体10;容置空间11;端板部12;内端面121;第一端板部12a;第二端板部12b;第一内端面121a;第二内端面121b;冷却流道122;周向流道1221;径向流道1222;第一径向流道12221;第二径向流道12222;安装盲孔123;外端面124;柱状部1241;入液口13;出液口14;第一筒状部15;第二筒状部16;环形凸肋17;第一冷却流道122a;第二冷却流道122b;第一定子组件20a;第二定子组件20b;
定子总成20;定子铁芯21;外环线圈部211;内环线圈部212;定子槽213;开口槽2131;定子法兰22;盘状主体221;阶梯孔2211;第一孔段22111;第二孔段22112;中心部2212;环形边缘部2213;凸起部222;贯通槽223;贯通槽分组2231;凸起2221;固定件23;阶梯孔24;第一孔段241;第二孔段242;第三孔段243;固定柱25;内螺纹孔251;固定柱分组252;
转子总成30;转子铁芯31;转子槽311;凸起部312;凸起3121;第二贯通槽3122;磁性块32;止挡件33;转子法兰34;盘状主体341;第一贯通槽342;第一转子组件30a;第一转子铁芯31a;第一转子槽311a;第一磁性块32a;第一转子法兰34a;第一盘状主体341a;转轴部35a;第一环形台面351a;插入部352a;对接部353a;第一固定孔354a;第一外孔段3541a;第一内孔段3542a;第二转子组件30b;第二转子铁芯31b;第二转子槽311b;第二磁性块32b;第二转子法兰34b;第二盘状主体341b;轴孔部35b;轴孔351b;第二环形台面352b;第二固定孔353b;第二外孔段3531b;第二内孔段3532b;固定匹配对36;固定件37;定位销38;环形止挡件39;
隔板组件40;冷却空间41;隔板主体42;内环匹配部421;外环匹配部422;第三筒状部423;集油板424;储油池4241;加强件425;泄压孔4251;回流孔4252;嵌入筋426;封堵板427;第一隔板主体42a;第二隔板主体42b;第一冷却空间41a;第二冷却空间41b;第一连通通道431;第二连通通道432;通道件440。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它 们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
在本申请提供的其中一个实施例中,本申请公开的轴向磁通电机可以用于使用电池作为电源的电动设备或者使用电池作为储能元件的各种储能系统。电动设备可以为但不限于电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括移动式的电动玩具,例如,电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。电动设备不仅需要将电能转化动能代替或部分地代替燃油或天然气提供驱动动力,还需要电动马达(即电机)产生扭矩将电能转化为机械能。
在本申请提供的另一个实施例中,本申请提供的轴向磁通电机还可应用于交通工具中,交通工具可以为但不限于电瓶车、燃油汽车、燃气汽车、新能源汽车、电动汽车、轮船、航天器等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。以交通工具为电动车辆为例,电动车辆不仅需要将电能转化动能代替或部分地代替燃油或天然气为车辆提供驱动动力,还需要电动马达(即电机)产生扭矩将电能转化为机械能。
以交通工具和电动设备均为电动车辆为例,电动车辆(包括混合动力车辆)采用诸如感应马达和永磁马达的电动马达来驱动车辆,并且在用作发电机时捕获制动能量。通常,电动马达包括在操作期间旋转的转子和静止的定子。目前,两种常见类型的电机包括径向磁通电机和轴向磁通电机。其中,在径向磁通电机中,转子和定子通常位于同心或嵌套构造中,当定子通电时,它产生从定子径向延伸到转子的磁通量。定子中的导电绕组通常垂直于旋转轴线布置,从而产生磁场,该磁场从旋转轴线(沿着转子轴)在径向方向上定向。而在轴向磁通电机中,由定子中的导电线绕组产生平行于旋转轴线的磁场,因此磁通平行于旋转轴线(平行于转子轴)延伸。在某些应用中,轴向磁通电机是理想的,因为与径向磁通电机相比,轴向磁通电机相对较轻,产生增加的功率,并且具有紧凑的尺寸,因而在有尺寸、重量等限制要求的应用场景中,例如,电动汽车驱动电机应用中,在相同转速下轴向磁通电机相较于径向磁通电机具有明显的应用优势。
轴向磁通电机的功率密度大,电机在工作时产热多,目前的散热方式包括在轴向磁通电机的外侧设置水道以间接冷却定子和转子,但外侧水道设计对定子和转子的冷却效率较低,同时 仅通过间接冷却的方式来冷却定子,无法对定子内、外线圈进行全面冷却;同时外侧水道设计还需要安装额外的外置盖板及紧固等,集成度较低。
为了解决现有技术的轴向磁通电机存在的技术问题,使冷却剂可直接对定子和/或转子进行冷却,本申请提供了一种轴向磁通电机,参见图1和图2,图1是本申请提供的轴向磁通电机第一实施例的拆解示意图,图2是本申请提供的轴向磁通电机第一实施例的剖切示意图。
轴向磁通电机1包括壳体10、定子总成20和转子总成30。壳体10用于形成一容置空间11,定子总成20和转子总成30沿轴向磁通电机1的轴向X排布于容置空间11内。壳体10可由两个中空结构的外壳装配形成,以在壳体10内形成容置空间11,定子总成20和转子总成30位于容置空间11内,可通过壳体10对定子总成20和转子总成30起到较好的保护作用。
在本申请提供的一些可行实施例中,壳体10可包括端板部12,端板部12的内端面121朝向定子总成20背离转子总成30一侧设置,容置空间11可呈柱状,内端面121即为形成容置空间11的一侧端面。转子总成30在工作时绕预设的中心轴进行转动,该中心轴的延伸方向即可认定为轴向磁通电机1的轴向X。定子总成20和转子总成30沿轴向磁通电机1的轴向X排布于容置空间11内,也即端板部12、定子总成20、转子总成30在轴向X上依次排列,合理利用壳体10的内部空间,可使轴向磁通电机1的结构更加紧凑。进一步地,下文中描述的轴向磁通电机1的径向Y为垂直于轴向X的方向,轴向磁通电机1的周向Z即为环绕轴向X的方向。此外,下文中描述的定子总成20和转子总成30的轴向、径向以及周向均参照X、Y、Z所示方向进行定义。
端板部12的内端面121上设置有冷却流道122,冷却流道122设置成使得在冷却流道122内流动的冷却剂直接接触定子总成20。冷却剂为流体,冷却剂可在冷却流道122内流动,示例性地,冷却剂可为冷却油或水等。轴向磁通电机1在运行的过程中,定子总成20和转子总成30的温度会逐渐升高,为了让轴向磁通电机1的工作效率不受影响,需要快速地对定子总成20和转子总成30进行降温处理,在本实施例中,在内端面121上设置冷却流道122,并通过冷却流道122中的冷却剂直接与定子总成20接触,可高效地实现冷却剂与定子总成20之间的热交换,提高对定子总成20的冷却效率。
参见图3和图4,图3是本申请提供的壳体的一实施例结构示意图;图4是图3所示出的壳体的平面示意图。
冷却流道122包括至少两个周向流道1221,至少两个周向流道1221沿轴向磁通电机1的径向Y间隔排布。冷却流道122的作用包括引导冷却剂流动,并在冷却流道122内流动的冷却剂直接接触定子总成20的同时迅速带走热量。在本实施例中,将冷却流道122设置成包括至少两个周向流道1221,使得冷却剂与定子总成20的接触范围更大,同时冷却剂沿周向流道1221按照预定方向规律性流动,可进一步提高冷却剂对定子总成20的冷却效率。
进一步地,冷却流道122还包括沿轴向磁通电机1的径向Y设置的径向流道1222,径向流道1222与至少两个周向流道1221彼此连通,以使得冷却剂可同时在径向流道1222和周向流道1221之间流动,径向流道1222沿轴向磁通电机1的径向Y延伸设置,使径向流道1222内的冷却剂可快速地分配至各周向流道1221,或者汇流从各周向流道1221流出的冷却剂,从而提高对定子总成20的冷却效率。
进一步地,径向流道1222包括第一径向流道12221和第二径向流道12222,其中第一径向流道12221用于向各周向流道1221分配冷却剂,第二径向流道12222用于汇流从各周向流道1221流出的冷却剂。第一径向流道12221和第二径向流道12222可沿轴向磁通电机1的周向Z间隔地设置于内端面121上,以便于第一径向流道12221和第二径向流道12222可分别在内端面121的不同位置连通周向流道1221。第一径向流道12221可用于接收冷却剂,并使得冷却剂沿第一径向流道12221的延伸方向流入,在冷却剂流入的过程中,会先后流入不同径向位置的周向流道1221,并沿周向流道1221的延伸方向流动,进而与定子总成20完成热交换。在冷却剂与定子总成20完成热交换后,沿周向流道1221流动的冷却剂会进一步流入第二径向流道12222,并沿第二径向流道12222实现汇流。经汇流第二径向流道12222的冷却剂可以进一步流出壳体10,并在与外部换热元件进行热交换后再循环到第一径向流道12221,从而提高对定子总成20的冷却效率。
为了便于将热交换后的冷却剂引流出壳体10,以及将未进行热交换的冷却剂流入壳体10,可在壳体10上开设入液口13和出液口14。具体地,第一径向流道12221和第二径向流道12222沿径向Y相对设置,壳体10还设置有入液口13和出液口14,入液口13用于连通第一径向流 道12221与壳体10的外部,出液口14用于连通第二径向流道12222与壳体10的外部。如图3和图4所示,入液口13可位于第一径向流道12221远离内端面121的中心的端部,出液口14可位于第二径向流道12222远离内端面121的中心的端部。冷却剂从入液口13进入壳体10,并在第一径向流道12221流动时,会先分配到直径最大的周向流道1221,然后依次分配到直径逐渐变小的各个周向流道1221,虽然直径相对较大的周向流道1221的路径相对较长,但冷却剂的压力也相对较大,因此同时上述方式可使得不同周向流道1221内的冷却剂流至第二径向流道12222的时间差尽量缩小,从而高效且全面地对定子总成20进行冷却。同理,出液口14可位于第二径向流道12222远离内端面121的中心的端部可以使得直径相对较大的周向流道1221的两端具有较大压差,进而使得不同周向流道1221内的冷却剂流至第二径向流道12222的时间差尽量缩小。
在一实施例中,内端面121上设置有第一筒状部15以及环绕第一筒状部15的至少两条环形凸肋17,第一筒状部15可用于容纳轴承,环形凸肋17和第一筒状部15可与内端面121一体设置,第一筒状部15和环形凸肋17均凸出于内端面121,以便于在内端面121上形成冷却流道122。具体而言,至少两条环形凸肋17沿径向Y与第一筒状部15间隔设置,且沿径向Y彼此间隔设置,进而在第一筒状部15与相邻的环形凸肋17之间以及相邻的两个环形凸肋17之间形成周向流道1221。环形凸肋17和第一筒状部15可用于引导周向流道1221内的冷却剂流动,最外周的环形凸肋17的宽度可大于其他环形凸肋17的宽度,以加强内端面121的结构强度,以及便于利用最外周的环形凸肋17实现壳体10与其他结构的装配。至少部分环形凸肋17上开设有缺口,进而形成径向流道1222。通过利用第一筒状部15、环形凸肋17以及缺口之间的配合,降低冷却流道的加工难度。
参见图1-图4,内端面121上还设置有安装盲孔123,定子总成20通过插置于安装盲孔123内的固定件固定于端板部12上。此时,安装盲孔123的开口朝向定子总成20,固定件从壳体10的内部插置于安装盲孔123内。通过这种方式,可以有效降低冷却剂的泄露风险。可选地,安装盲孔123的数目可为多个,多个安装盲孔123沿轴向磁通电机1的周向Z间隔设置,多个安装盲孔123可位于端板部12的边缘,对应地,固定件的数量可与安装盲孔123的数量呈一一对应的关系,以便于提高壳体10与定子总成20安装的稳定性。
进一步地,端板部12还具有与内端面121相背设置的外端面124,外端面124上突出设置有柱状部1241,安装盲孔123延伸至柱状部1241内。外端面124位于容置空间11外,柱状部1241可与安装盲孔123的位置对应,安装盲孔123延伸至柱状部1241内,能够增加安装盲孔123的深度,当固定件插置于安装盲孔123内时,可通过端板部12和柱状部1241同时固定固定件,以进一步提高壳体10与定子总成20安装的稳定性。
可选地,安装盲孔123设置于至少两条环形凸肋17的最外圈环形凸肋17上。此时,安装盲孔123位于端板部12的边缘,在将固定件插置于安装盲孔123实现固定的同时,不会影响冷却流道122内的冷却剂与定子总成20直接接触。
可选地,最外圈环形凸肋17沿径向Y的宽度大于其余环形凸肋17沿径向Y的宽度。通过加大最外圈环形凸肋17的宽度可以加强内端面121的结构强度,以便于在最外圈的环形凸肋17上开设安装盲孔123,以及便于利用最外圈的环形凸肋17实现壳体10与定子总成20之间的装配。
在一实施例中,定子总成20包括定子铁芯21和线圈,线圈绕设于定子铁芯21上,定子铁芯21呈环形设置,线圈沿轴向磁通电机1的径向Y突出于定子铁芯21的相对两侧环面,形成内环线圈部212和外环线圈部211,也即线圈的一部分可突出于定子铁芯21的内环面,形成内环线圈部212,一部分可突出于定子铁芯21的外环面,形成外环线圈部211。在冷却流道122内流动的冷却剂或者流入或流出冷却流道122的冷却剂与内环线圈部212和外环线圈部211中的至少一者直接接触。由于线圈突出于定子铁芯21形成外环线圈部211和内环线圈部212,当冷却剂在冷却流道122中流动时,冷却剂不仅可直接与定子铁芯21接触,还可直接与外环线圈部211和/或内环线圈部212接触,由此,可提高对定子总成20的冷却效率。此外,可以是冷却流道122中的冷却剂与定子铁芯21直接接触,而流入或流出冷却流道122的冷却剂与外环线圈部211和/或内环线圈部212直接接触。
在一实施例中,定子总成20包括定子法兰22,定子铁芯21贴附固定于定子法兰22的盘状主体221的一侧主表面上,定子法兰22可与定子铁芯21固定连接,定子铁芯21可通过定子法兰22与壳体10连接,从而降低定子总成20的装配难度。内环线圈部212和外环线圈部211中 的至少一者设置成沿径向Y超出盘状主体221或者沿轴向X与盘状主体221保持预定间隙。可选地,可以是内环线圈部212或外环线圈部211在径向Y上超出盘状主体221,或者内环线圈部212和外环线圈部211在径向Y上均超出盘状主体221;亦或者内环线圈部212和/或外环线圈部211在轴向X上与盘状主体221保持预定间隙。通过上述方式,便于冷却剂可通过预定的间隙与内环线圈部212和/或外环线圈部211直接接触,可增大冷却剂与内环线圈部212和/或外环线圈部211的接触量,提升冷却效果。
在本申请的一些可选实施例中,定子铁芯21贴附固定于定子法兰22的盘状主体221的一侧主表面上,盘状主体221盖设于至少部分冷却流道122上,在冷却流道122内流动的冷却剂直接接触盘状主体221,由此,利用定子法兰22来固定定子铁芯21,并以定子法兰22作为与壳体10配合的基础,从而降低装配难度。其中,定子法兰22可与定子铁芯21固定连接,定子铁芯21可通过定子法兰22与壳体10连接,从而降低定子总成20的加工制造难度,以及与壳体10的装配难度。
在本实施例中,壳体10包括第二筒状部16以及封堵第二筒状部16的两端开口的两个端板部(即,第一端板部和第二第一端板部),以通过两个端板部和第二筒状部16配合形成容置空间11。定子总成20和转子总成30沿轴向X排布于两个端板部之间。内端面也为分别与两个端板部对应的两个(即,第一内端面和第二端面),冷却流道122设置于两个内端面与定子总成20相邻的至少一者上。具体而言,在图1-4所描述的单定子结构中,冷却流道122设置于内端面12上。在下文描述的双定子结构中,可以在两个内端面可同时设置冷却流道122。
上述实施例中,通过在壳体10上开设冷却流道122,使在冷却流道122中流动的冷却剂可以直接与定子总成20接触,以高效地让冷却剂与定子总成20完成热交换,提高轴向磁通电机1的冷却效率。
进一步如图1和图2所示,轴向磁通电机1进一步包括隔板组件40。隔板组件40包括隔板主体42,隔板主体42设置于定子总成20与转子总成30之间,壳体10与隔板主体42配合,形成用于容纳冷却剂和定子总成20的冷却空间41,冷却空间41内的冷却剂直接接触定子总成20。隔板主体42可与壳体10的部分内周面抵接,以将容置空间11划分为至少两个空间,其中一个空间则为用于容纳冷却剂和定子总成20的冷却空间41,另外一个空间用于容纳转子总成30。冷却剂可存储在冷却空间41内,冷却空间41内的冷却剂直接接触定子总成20,由此,将隔板主体42设置于定子总成20和转子总成30之间,合理利用壳体10的内部空间,可使轴向磁通电机1的结构更加紧凑。此外,通过壳体10与隔板主体42配合形成冷却空间41,其中的冷却剂直接与定子总成20接触,可高效地实现冷却剂与定子总成20之间的热交换,提高对定子总成20的冷却效率。
可选地,壳体10包括端板部12,端板部12的内端面121朝向定子总成20背离转子总成30一侧设置,端板部12的内端面121与隔板主体42沿轴向X间隔设置,以在轴向X上限定冷却空间41的两侧边界。由此,通过端板部12和隔板主体42限定冷却空间41的边界,可以提高壳体10的容置空间11的利用率,使整个轴向磁通电机1的结构更加紧凑。
可选地,壳体10包括沿轴向磁通电机1的径向Y嵌套设置的两个筒状部,两个筒状部分别与隔板主体42密封配合,冷却空间41呈环形设置。由此,可通过相对简单的结构将定子总成20密封在冷却空间41内,降低冷却剂的泄露风险。具体而言,由于为确保转子总成30的转轴通过,定子总成20一般采用环形设置,通过利用环形的冷却空间41来容纳定子总成20,可以在环形的冷却空间41的内部形成一柱状空间,用于放置轴承以及允许转子总成30的转轴插入。由于柱状空间和环形的冷却空间41彼此隔离,因此在对定子总成20进行冷却的过程中,冷却空间41内的冷却剂不会进入柱状空间,而影响转子总成30。
在一具体实施方式中,两个筒状部包括第一筒状部15以及环绕第一筒状部15设置的第二筒状部16,第一筒状部15和第二筒状部16朝向定子总成20延伸,第一筒状部15供转子总成30的转轴部通过,隔板主体42包括内环匹配部421以及环绕内环匹配部421设置的外环匹配部422,其中内环匹配部421与第一筒状部15密封配合,外环匹配部422与第二筒状部16密封配合。第一筒状部15和第二筒状部16可同轴设置,第一筒状部15可与内环匹配部421抵接,以实现内环匹配部421与第一筒状部15密封配合,第二筒状部16可与外环匹配部422抵接,以实现外环匹配部422与第二筒状部16密封配合,从而在第一筒状部15和第二筒状部16之间形成呈环形的冷却空间41。由此,可通过相对简单的结构将定子总成20密封在冷却空间41内,降低冷却剂的泄露风险。
可选地,内环匹配部421和/或外环匹配部422与定子总成20密封配合,从而将定子总成20密封至冷却空间41内。由此,可增强冷却空间41的封闭性。
可选地,转子总成30的转轴部转动支撑于第一筒状部15内,第一筒状部15与定子总成20沿轴向X至少部分重叠。转子总成30的转轴部沿轴向X延伸至第一筒状部15内,进而转动支撑于第一筒状部15内,且第一筒状部15与定子总成20沿轴向X至少部分重叠,由此,可以减小轴向磁通电机1的轴向X尺寸,使整个轴向磁通电机1的结构更加紧凑。
参见图5所示,图5是本申请提供的隔板组件的第一实施例的剖切示意图。
在一实施例中,隔板主体42嵌入于第二筒状部16的内部,外环匹配部422的外周面与第二筒状部16的内周面之间形成密封配合,由此可让隔板主体42处于容置空间11内,以在形成冷却空间41的同时,对隔板主体42起到较好的保护作用。可选地,内环匹配部421上设置有第三筒状部423,第三筒状部423与第一筒状部15接插并在二者之间形成密封配合,通过第三筒状部423与第一筒状部421之间的接插配合实现更好的对位和密封效果。
第三筒状部423、第二筒状部16以及第一筒状部15可同轴设置,第三筒状部423沿径向Y的尺寸不等于第一筒状部15沿径向Y的尺寸,第三筒状部423与第一筒状部15沿轴向X彼此接插配合,并可将第三筒状部423的外周面设置成与第一筒状部15的内周面贴合或将第三筒状部423的内周面设置成与第一筒状部15的外周面贴合,从而通过第一筒状部15在径向Y上对第三筒状部423进行限位。同时第一筒状部15朝向内环匹配部421的一侧可与内环匹配部421抵接,从而在轴向X上对隔板主体42进行限位,以将隔板主体42固定在壳体10内。
可选地,第三筒状部423接插于第一筒状部15的外围,第三筒状部423沿径向Y的尺寸可大于第一筒状部15沿径向Y的尺寸,第一筒状部15插入第三筒状部423,并可将第三筒状部423的内周面设置成与第一筒状部15的外周面贴合,以在限定隔板主体42在壳体10内的同时,在第一筒状部15内形成安装轴承的空间。轴向磁通电机1还包括设置于第一筒状部15内的轴承,轴承可用于连接转子总成30。此时,壳体10可采用金属材料制成,以提供相对较强的结构强度,而隔板主体42可采用塑胶或硅胶等轻质材料制成,以提供更好的密封效果,同时降低轴向磁通电机1的整体重量。
隔板主体42包括集油板424,集油板424与第一筒状部15配合形成储油池4241,储油池4241内的润滑油对轴承进行润滑。集油板424可位于内环匹配部421上,或者相对于内环匹配部421分体设置,当第一筒状部15内放置轴承后,轴承与集油板424之间沿径向Y彼此重叠,并沿轴向X呈间隙配合,进而形成储油池4241,储油池4241用于存储润滑油,润滑油可用于保障轴承的润滑持续与稳定。
可选地,集油板424与第三筒状部423连接,并沿轴向磁通电机1的径向Y朝向第三筒状部423内部延伸。由此,第三筒状部423相对于第一筒状部15接插就位后,集油板424即可与第一筒状部15配合形成储油池4241,可简化集油板424的装配过程,还能利用集油板424增强隔板主体42的结构强度。
在一实施例中,隔板组件40包括加强件425,加强件425呈筒状设置,并支撑于隔板主体42背离定子总成20的一侧,转子总成30设置于加强件425内。可选地,呈筒状的加强件425可与隔板主体42同轴设置,并与外环匹配部422连接。通过加强件425支撑隔板主体42,可缓解隔板主体42在壳体10的装配过程中产生不必要的形变,提高隔板主体42的结构稳定性。
可选地,加强件425设置成与壳体10抵接。例如,在图2中,加强件425与内端面121相对的另一侧内端面抵接。在其他实施例中,加强件425可以与第二筒状部16抵接。由此,可通过壳体10对加强件425的支撑力进一步提高隔板主体42的结构稳定性。
在本申请实施例中,定子总成20包括定子铁芯21和绕设于定子铁芯21上的线圈,定子铁芯21呈环状设置,线圈沿轴向磁通电机1的径向Y突出于定子铁芯21的相对两侧环面,也即线圈的一部分可突出于定子铁芯21的内环,形成内环线圈部212,一部分可突出于定子铁芯21的外环,形成外环线圈部211。内环线圈部212和/或外环线圈部211位于冷却空间41内,冷却空间41内的冷却剂直接接触内环线圈部212和/或外环线圈部211,由此,可提高对定子总成20的冷却效率。
进一步地,如上文描述的,定子铁芯21通过定子法兰22进行固定时,内环线圈部212和外环线圈部211中的至少一者可以设置成沿径向Y超出盘状主体221或者沿轴向X与盘状主体221保持预定间隙,进而获得更好的冷却效果。
参见图6-图8,图6是本申请提供的定子总成的一实施例结构示意图,图7是本申请提供 的隔板组件的第二实施例的结构示意图,图8是本申请提供的隔板组件的第二实施例的剖切示意图。
定子总成20包括定子铁芯21和绕设于定子铁芯21上的线圈,定子铁芯21上设置有多个定子槽213,线圈嵌入于多个定子槽213内,隔板主体42包括分别与多个定子槽213位置对应的多个嵌入筋426,各嵌入筋426分别嵌入于对应的定子槽213内。定子槽213的数量和嵌入筋426的数量可呈一一对应的关系,当嵌入筋426嵌入对应的定子槽213中时,可通过嵌入筋426与线圈直接接触,可有效固定定子槽213内的线圈。当隔板主体42采用高导热材质时,在冷却空间41中存在冷却剂时,冷却剂可与隔板主体42接触来降低隔板主体42的温度,进而通过隔板主体42的嵌入筋426冷却定子槽213中的线圈。在另外一些实施例中,嵌入筋426也可以与定子槽213内的线圈间隔设置,只需确保线圈不从定子槽213脱出即可。
进一步地,多个定子槽213和多个嵌入筋426分别相对于轴向X呈放射状展开,从而在有限的空间内,设置较多的定子槽213和嵌入筋426,且多个嵌入筋426分别与内环匹配部421和/或外环匹配部422连接。由此,可简化嵌入筋426的装配过程,同时可利用嵌入筋426辅助固定内环匹配部421和/或外环匹配部422,提高结构稳定性。在内环匹配部421与第一筒状部15密封配合,或者外环匹配部422与第二筒状部16密封配合时,与内环匹配部421和/或外环匹配部422连接的嵌入筋426能够同步嵌入定子槽213中,装配方式更加便捷。由于定子槽213和嵌入筋426呈放射状展开,能增加两者的数量,让隔板主体42与定子铁芯21和线圈的接触面积更大,从而进一步增加冷却剂对定子总成20的冷却效果。
进一步,由于定子槽213和嵌入筋426呈放射状展开,嵌入筋426可以为所连接的内环匹配部421和/或外环匹配部422提供良好的周向定位和径向定位,并且在嵌入筋426以嵌入配合方式或其他方式固定于定子槽213内时,还可以为所连接的内环匹配部421和/或外环匹配部422提供良好的轴向定位。
可选地,在多个嵌入筋426之间不进行填充,即呈镂空式设置。采用镂空式设置,有利于降低隔板主体42与转子总成30之间的气隙宽度,使整个轴向磁通电机1的结构更加紧凑。
可选地,隔板主体42还包括用于封堵多个嵌入筋426之间间隙的封堵板427,封堵板427位于嵌入筋426背离定子槽213的一侧,且封堵板427可为整板,通过封堵板427可封堵嵌入筋426之间的间隙,由此,通过封堵板427可增强冷却空间41的封闭性,使冷却剂难以从冷却空间41泄露。
需要说明的是,如上文所描述的,壳体10包括端板部12,端板部12的内端面121朝向定子总成20背离转子总成30一侧设置,端板部12的内端面121设置有冷却流道122,冷却空间41内的冷却剂沿冷却流道122流动。定子总成20盖设于至少部分冷却流道122上,在冷却流道122内流动的冷却剂直接接触定子总成20。定子总成20包括定子法兰22和定子铁芯21,定子法兰22包括盘状主体221,定子铁芯21贴附固定于盘状主体221背离端板部12的一侧主表面上,盘状主体221盖设于至少部分冷却流道122上,在冷却流道122内流动的冷却剂直接接触盘状主体221。
此外,内环线圈部212和外环线圈部211中的至少一者设置成沿轴向磁通电机1的径向Y超出盘状主体221或者沿轴向磁通电机1的轴向X与盘状主体221保持预定间隙,冷却剂与内环线圈部212和外环线圈部211中的至少一者直接接触。
进一步地,冷却流道122包括至少两个周向流道1221以及至少一径向流道1222,至少两个周向流道1221沿轴向磁通电机1的径向Y间隔排布,径向流道1222沿轴向磁通电机1的径向Y设置,并与至少两个周向流道1221连通。
在其他实施例中,可以在隔板主体42朝向端板部12的一侧和/或定子总成20上类似的冷却流道,以供冷却剂流动。
在其他实施例中,也可以取消隔板组件40,利用定子总成20与端板部12的内端面121配合形成密闭的冷却空间。
在上述实施例中,主要基于单定子结构进行的描述,即定子总成仅包括一个定子组件。在本申请的一些其他可行实施例中,在上述隔板组件40还适用于双定子结构,即定子总成包括沿轴向X间隔设置的两个定子组件,转子总成位于该两个定子组件之间,通过两个定子组件来提高轴向磁通电机1的稳定性和输出效率。
参见图9-图11,图9是本申请提供的轴向磁通电机不包括转子总成的第二实施例的剖切示意图,图10是本申请提供的轴向磁通电机第二实施例的拆解示意图,图11是本申请提供的轴 向磁通电机第二实施例的剖切示意图。
定子总成20包括沿轴向X间隔设置的第一定子组件20a和第二定子组件20b,转子总成30设置于第一定子组件20a和第二定子组件20b之间。也即在本实施例中,轴向磁通电机1可以为双定子的轴向磁通电机1,并通过两个定子组件来提高轴向磁通电机1的稳定性和输出效率,以及提高轴向磁通电机1的集成度。转子总成30可包括一个或两个转子组件,当转子总成30包括两个转子组件,两个转子组件之间可通过转轴连接,其中一个转子组件与第一定子组件20a对应,另一个转子组件与第二定子组件20b对应,且第一定子组件20a、两个转子组件和第二定子组件20b可依次沿轴向磁通电机1的轴向X排列,从而提高轴向磁通电机1的集成度。
进一步地,轴向磁通电机1包括隔板组件40,隔板组件40包括第一隔板主体42a和第二隔板主体42b,第一隔板主体42a与壳体10配合形成用于容纳冷却剂和第一定子组件20a的第一冷却空间41a,第二隔板主体42b与壳体10配合形成用于容纳冷却剂和第二定子组件20b的第二冷却空间41b,第一冷却空间41a内的冷却剂可直接接触处于第一冷却空间41a内的第一定子组件20a,第二冷却空间41b内的冷却剂可直接接触处于第二冷却空间41b内的第二定子组件20b,从而高效地使得冷却剂与第一定子组件20a和第二定子组件20b之间形成热交换,提高对定子总成20的冷却效率。
具体而言,为了能够快速地冷却第一定子组件20a和第二定子组件20b,壳体10包括第一端板部12a和第二端板部12b,第一端板部12a包括第一内端面121a,第二端板部12b包括第二内端面121b,第一内端面121a朝向第一定子组件20a设置,第二内端面121b朝向第二定子组件20b设置,第一内端面121a上可设置有第一冷却流道122a,第二内端面121b上可设置有第二冷却流道122b,第一冷却流道122a可设置成使得在第一冷却流道122a内流动的冷却剂直接接触第一定子组件20a,第二冷却流道122b可设置成使得在第二冷却流道122b内流动的冷却剂直接接触第二定子组件20b,从而让冷却剂直接与第一定子组件20a和第二定子组件20b接触,可高效地让冷却剂与第一定子组件20a和第二定子组件20b完成热交换,提高对定子总成20的冷却效率。
第一定子组件20a位于第一内端面121a和第一隔板主体42a之间,第一隔板主体42a与第一内端面121a配合形成用于容纳冷却剂和第一定子组件20a的第一冷却空间41a,第二定子组件20b位于第二内端面121b和第二隔板主体42b之间,第二隔板主体42b与第二内端面121b配合形成用于容纳冷却剂和第二定子组件20b的第二冷却空间41b,第一内端面121a上可设置有第一冷却流道122a,第二内端面121b上可设置有第二冷却流道122b,从而高效地让冷却剂与第一定子组件20a和第二定子组件20b完成热交换,提高对定子总成20的冷却效率。
值得注意的,如上文所描述的,第一冷却流道122a和第二冷却流道122b并不是形成第一冷却空间41a和第二冷却空间41b的必要条件,可以根据实际需要取消,或者在其他相应位置设置冷却流道。
进一步地,隔板组件40上设置有连通通道,连通通道用于连通第一冷却空间41a和第二冷却空间41b。
进一步地,连通通道包括第一连通通道431和第二连通通道432,第一连通通道431和第二连通通道432沿径向Y相对设置。由此,可提高两个冷却空间41的冷却效果的一致性。其中,第一连通通道431和第二连通通道432可位于隔板组件40的外周边缘,第一连通通道431和第二连通通道432中的一者可用于允许冷却剂从第一冷却空间41a流入第二冷却空间41b,另一者则允许冷却剂从第二冷却空间41b流入第一冷却空间41a。示例性地,第一连通通道431和第二连通通道432均连通的第一冷却空间41a和第二冷却空间41b,若冷却剂从外部进入第一冷却空间41a之后,可从第一连通通道431进入第二冷却空间41b,冷却剂在第二冷却空间41b中与第二定子组件20b完成热交换之后,可从第二连通通道432流入第一冷却空间41a,然后从第一冷却空间41a将冷却剂输送出壳体10,从而在确保对定子总成20的冷却效率的情况下,还可提高两个冷却空间41的冷却效果的一致性。进一步,还可以简化冷却剂的循环方式。
可选地,定子总成20和转子总成30沿轴向X排布于第一端板部12a和第二端板部12b之间,第一端板部12a和第二端板部12b中的一者上设置有入液口13和出液口14,入液口13和出液口14分别沿轴向磁通电机1的轴向X与第一连通通道431和第二连通通道432相对设置。示例性地,以第一端板部12a同时设置入液口13和出液口14为例,冷却剂从入液口13进入第一冷却空间41a,部分冷却剂在第一冷却空间41a中流动,直接接触第一定子组件20a并与第一定子组件20a完成热交换后从出液口14流出第一冷却空间41a,剩余部分冷却剂从第一连通通 道431进入第二冷却空间41b,以直接接触第二定子组件20b并与第二定子组件20b完成热交换后从第二连通通道432流出第二冷却空间41b至第一冷却空间41a,最终从出液口14处流出。由于入液口13和出液口14分别沿轴向磁通电机1的轴向X与第一连通通道431和第二连通通道432相对设置,经第一连通通道431流入第二冷却空间41b的冷却剂不会与第一定子组件20a进行过多的热交换,同时经第二连通通道431流入第一冷却空间41a的冷却剂是与第一冷却空间41a中与第一定子组件20a完成热交换的冷却剂进行合流,从而在确保对定子总成20和转子总成30的冷却效率的情况下,还可提高两个冷却空间41的冷却效果的一致性。
结合图12-图14,图12是本申请提供的轴向磁通电机第二实施例的隔板组件的第一实施例的拆解示意图;图13是本申请提供的轴向磁通电机第二实施例的隔板组件的第二实施例的拆解示意图;图14是本申请提供的轴向磁通电机第二实施例的隔板组件的第三实施例的拆解示意图。
在一实施例中,隔板组件40还包括连接于第一隔板主体42a和第二隔板主体42b之间的加强件425和通道件440,加强件425呈筒状设置,转子总成30设置于加强件425内,通道件440设置于加强件425的外部,连通通道设置于通道件440上。由此,可提高第一隔板主体42a和第二隔板主体42b的结构稳定性,同时避免连通通道对转子总成30造成干涉。此外,通道件440位于加强件425的外侧,还可以扩大冷却剂在第一冷却空间41a和第二冷却空间41b中的流动范围,使轴向磁通电机1的冷却更加全面,还可提高两个冷却空间41的冷却效果的一致性。此外,加强件425和通道件440均设置在隔板组件40上,可以增加轴向磁通电机1的集成度。同时,通道件440设置于加强件外侧还能够缓解连通通道内的冷却剂泄露而对转子总成30造成的不利影响。
在一实施例中,隔板组件40沿轴向磁通电机1的周向Z设置有多个间隔排布的泄压孔4251。泄压孔4251可为通孔,泄压孔4251用于平衡转子总成30在工作时所造成的气压波动。
可选地,转子总成30与隔板主体42沿轴向X间隔设置,并形成气隙,从而可以避免转子总成30在工作过程中,因沿轴向X的振动而与隔板主体42发生干涉。在转子总成30工作的过程中,气隙中的气压会发生改变,进而影响转子总成30的转动性能。在本实施例中,泄压孔4251用于连通气隙与隔板组件40的外部空间,可通过泄压孔4251来平衡转子总成30在工作时所造成的气隙内的气压波动,以减少因气压波动对转子总成30的转动性能的影响。
在一实施例中,隔板组件40还设置有回流孔4252,回流孔4252设置成使得从冷却空间41渗透至隔板组件40内的冷却剂排出到隔板组件40的外部空间。回流孔4252可为通孔,由此缓解从冷却空间41泄露的冷却剂对轴向磁通电机1造成的不利影响。
可选地,如上文描述的,转子总成30设置于加强件425内,因此泄压孔4251和回流孔4252可设置于加强件425上。此时,泄压孔4251和回流孔4252将加强件425的内部空间与隔板组件40的外部空间连通。
可选地,多个泄压孔4251沿轴向磁通电机1的周向Z间隔排布于加强件425朝向隔板主体42的边缘,泄压孔4251的数量可根据实际情况设定,多个泄压孔4251之间可沿轴向磁通电机1的周向Z等间距排布,从而可通过多个泄压孔4251同时调节加强件425内的气压。回流孔4252沿轴向X相对于加强件425的两侧边缘居中设置,以提升泄压孔4251的泄压效果以及回流孔4252的回流效果。
在一具体实施方式中,在轴向X沿水平方向设置时,回流孔4252沿重力方向设置于加强件425的下侧,进而允许泄漏到加强件425的冷却剂能够在自身重力下从回流孔4252流出。
值得注意的是,上述的泄压孔4251和回流孔4252同样适用于上文描述的单定子结构。
需要说明的是,图11所示的第一隔板主体42a和第二隔板主体42b完全可以采用与图1-4描述的隔板主体42相同的结构以及与壳体10采用相同的配合方式,在此不再赘述。
参见图12和13,第一隔板主体42a可以与加强件425和通道件440一体成型或预先装配固定成一体式组件结构,第二隔板主体42b则在将转子总成30装配到加强件425后,再与上述一体式组件结构进行装配。
需要注意的是,图12中的嵌入筋426之间的间隙通过封堵板427进行封堵,而图13中的嵌入筋426之间的间隙呈镂空式设置。
参见图14,在本实施例中,第一隔板主体42a和第二隔板主体42b的外环匹配部422与加强件425和通道件440一体成型或预先装配固定成一体式组件结构,第一隔板主体42a的内环匹配部421和嵌入筋426一体成型或预先装配固定成一体式组件结构,第二隔板主体42b的内环匹配部421和嵌入筋426一体成型或预先装配固定成一体式组件结构,通过将三者装配形成 隔板组件40,可便于对隔板组件40进行拆卸与维护。
通过上述实施方式,可在定子总成20和转子总成30之间设置隔板组件40和/或在壳体10上开设冷却流道122,以使得冷却剂可直接与定子总成20接触,以高效地让冷却剂与定子总成20完成热交换,提高轴向磁通电机1的冷却效率。
为了提高定子总成的装配效率,将定子总成精确地安装在壳体内,以及便于在壳体内利用冷却剂对定子总成直接冷却等,本申请提供的轴向磁通电机中还包括对定子总成的改进,以下内容主要对定子总成的结构进行描述,参见图15,图15是本申请提供的定子总成的第一实施例结构示意图。
定子总成20包括定子铁芯21以及定子法兰22,定子法兰22包括盘状主体221,定子铁芯21贴附固定于盘状主体221的一侧主表面上,盘状主体221用于在定子总成20放置于壳体内时,与壳体的端板部固定。定子铁芯21可固定连接或可拆卸连接在盘状主体221的主表面上,主表面可定义为定子法兰22中面积最大的表面,示例性地,盘状主体221可呈圆盘状,圆盘状的盘状主体221的两个相对设置的侧表面均可定义为主表面。定子法兰22可用于将定子铁芯21安装在轴向X磁通电机的壳体的端板部上,定子总成20可以定子法兰22为安装定位基准,从而提高定子总成20定位精度以及加工效率。
参见图16,图16是本申请提供的定子总成的第一实施例拆解示意图。
盘状主体221设置有连通盘状主体221的两侧主表面的多个贯通槽223,定子铁芯21贴合于盘状主体221的一侧主表面上,且设置有与多个贯通槽223对应的多个凸起部222,凸起部222插置于对应的贯通槽223内,盘状主体221与定子铁芯21沿贯通槽223和凸起部222的配合边缘彼此焊接固定。可选地,多个凸起部222和贯通槽223的数量呈一一对应关系,一个凸起部222可插置于一个贯通槽223内,两者可通过焊接的方式将盘状主体221与定子铁芯21固定,以便于将定子铁芯21和定子法兰22作为一个整体装配至壳体。贯通槽223和凸起部222的形状相仿,示例性地,贯通槽223和凸起部222均呈方形结构,在凸起部222插置于贯通槽223内后,定子铁芯21和定子法兰22之间利用贯通槽223和凸起部222彼此限位,便于将盘状主体221与定子铁芯21沿贯通槽223和凸起部222的配合边缘彼此焊接固定。由此,可降低定子总成20的定子铁芯21的加工和装配难度,并降低定子铁芯21的电磁损耗。
可选地,多个贯通槽223设置成沿盘状主体221的周向Z间隔排列。贯通槽223可从沿盘状主体221的周向Z排布在盘状主体221的不同位置,其中,多个贯通槽223可设置成沿盘状主体221的周向Z等间隔排列,以提高盘状主体221与定子铁芯21之间连接的稳定性。
可选地,多个贯通槽223设置成沿盘状主体221的径向Y延伸,并呈放射状展开。贯通槽223可沿盘状主体221的径向Y延伸在盘状主体221的不同位置,以提高盘状主体221与定子铁芯21之间连接的稳定性。
参见图17,图17是本申请提供的定子法兰的一实施例结构示意图。
多个贯通槽223设置成沿呈盘状主体221的周向Z呈弧形延伸。多个贯通槽223可沿盘状主体221的周向Z间隔分布,以增加盘状主体221与定子铁芯21之间的焊接面积,提高盘状主体221与定子铁芯21之间连接的稳定性。
进一步地,多个贯通槽223划分成沿盘状主体221的径向Y彼此嵌套且间隔设置的至少两个贯通槽分组2231,每个贯通槽分组2231包括沿盘状主体221的周向Z间隔排列的至少两个贯通槽223,同一组的贯通槽223可处于同一个参考圆的圆周上,不同组的贯通槽223处于不同直径大小的参考圆的圆周上,每组的贯通槽分组2231的贯通槽223的数量可相同,越靠近盘状主体221中心轴的贯通槽分组2231的每个贯通槽223的延伸的长度越小,同一组的多个贯通槽223之间可沿盘状主体221的周向Z间隔分布。相邻设置的两个贯通槽分组2231内的贯通槽223沿盘状主体221的周向Z至少部分错开。示例性地,多个贯通槽223可划分为三个贯通槽分组2231,每组贯通槽223组包括八个贯通槽223,八个贯通槽223均呈弧形设置,且八个贯通槽223沿盘状主体221的周向Z等间隔排布,不同组之间的贯通槽223在盘状主体221的径向Y上间隔设置,且最外圈的贯通槽分组2231和中间的贯通槽分组2231内的贯通槽223沿盘状主体221的周向Z至少部分错开,以通过上述方式可以确保盘状主体221的结构强度,并进一步提高盘状主体221与定子铁芯21之间连接的稳定性。
参见图18,图18是本申请提供的定子铁芯的一实施例结构示意图。
定子铁芯21由条状片材卷绕形成,条状片材的一侧边缘突出设置有凸起2221,条状片材的一侧边缘凹陷设置有开口槽2131,凸起2221随条状片材的卷绕形成凸起部222,开口槽2131 随条状片材的卷绕形成容纳线圈的定子槽213。相较于传统的压铸成型,定子铁芯21通过呈条状片材卷绕形成,可使得定子铁芯21可高效成型。并且条状片材的一侧便突出设置有多个凸起2221,多个凸起2221在条状片材的一侧按照预定间隔设置,当将条状片材卷绕形成定子铁芯21后,多个凸起2221配合在定子铁芯21的背部形成凸起部222,从而便于凸起部222高效成型;同理,在条状片材的另一侧可按照预定间隔设置多个开口槽2131,当将条状片材卷绕形成定子铁芯21后,多个开口槽2131配合在定子铁芯21背离凸起部222的一侧形成用于嵌入线圈定子槽213,从而便于开口槽2131高效成型。
参见图15-图19,图19是图15所示出的定子铁芯的剖切示意图。
盘状主体221上设置有多个阶梯孔2211,阶梯孔2211包括第一孔段22111和第二孔段22112,第一孔段22111连接盘状主体221朝向定子铁芯21的一侧主表面,第二孔段22112连接盘状主体221背离定子铁芯21的另一侧主表面,第一孔段22111的孔径大于第二孔段22112的孔径,进而在第二孔段22112与第一孔段22111的连接处形成一环形台面。第一孔段22111和第二孔段22112均可为圆柱孔,且第一孔段22111和第二孔段22112彼此连通,并进一步连通盘状主体221的两侧主表面。多个阶梯孔2211可绕盘状主体221的周向Z等间隔设置,多个阶梯孔2211在盘状主体221的径向Y上均远离盘状主体221的中心设置。
定子总成20包括插置于阶梯孔2211内的固定件23,固定件23沉设于第一孔段22111内,并支撑在第一环形台面上。固定件23也可呈两段式的结构,固定件23的第一段沿径向Y的尺寸大于固定件23的第二段沿径向Y的尺寸且小于第一孔段22111沿径向Y的尺寸,以使得固定件23的第一段沉设于第一孔段22111内,并支撑在第一环形台面上,固定件23的第二段至少部分突出于第二孔段22112,进而与壳体连接。固定件23的数量与阶梯孔2211的数量相同,固定件23与阶梯孔2211呈一一对应关系,也即一个阶梯孔2211内可用于放置一个固定件23。
在一实施例中,固定件23在盘状主体221与定子铁芯21焊接固定前,预先插置于阶梯孔2211内,定子总成20沿定子总成20的轴向X的投影覆盖固定件23,以使得固定件23保持在阶梯孔2211内。在将盘状主体221与定子铁芯21焊接固定之前,先将固定件23放入阶梯孔2211内,然后将盘状主体221与定子铁芯21连接固定,即可利用环形台面和定子铁芯21将固定件23保持在阶梯孔2211内,使固定件23不会脱离阶梯孔2211。
进一步地,盘状主体221和定子铁芯21均呈环形设置,定子总成20还包括绕设于定子铁芯21的线圈,线圈沿定子总成20的径向Y超出定子铁芯21的两侧环面,以形成内环线圈部212和外环线圈部211。由于定子铁芯21呈环形状,当线圈绕设在定子铁芯21上时,线圈即可均突出于定子铁芯21的内环侧和外环侧,突出于定子铁芯21的内环面的线圈即为内环线圈部212,突出于定子铁芯21的外环面的线圈即为外环线圈部211。
其中,盘状主体221包括中心部2212和环绕中心部2212设置的环形边缘部2213,环形边缘部2213与中心部2212配合形成一凹陷区,定子铁芯21设置于凹陷区内,阶梯孔2211设置于环形边缘部2213上,外环线圈部211沿定子总成20的轴向X的投影覆盖固定件23。中心部2212的厚度可小于环形边缘部2213的厚度,以在中心部2212形成凹陷区,凹陷区的尺寸可与定子铁芯21的主表面的尺寸匹配,以使定子铁芯21可放置在凹陷区内,且定子铁芯21的至少部分外周面与环形边缘部2213的内环面贴合。阶梯孔2211设置于环形边缘部2213上,能使外环线圈部211沿定子总成20的轴向X的投影覆盖阶梯孔2211,以当固定件23设置在阶梯孔2211时,外环线圈部211覆盖阶梯孔2211,以便于利用环形台面和外环线圈部211将固定件23保持在阶梯孔2211内,使固定件23不会脱离阶梯孔2211。
进一步地,内环线圈部212和外环线圈部211中的至少一者沿定子总成20的径向Y超出盘状主体221或沿轴向X与盘状主体221间隔设置,以使得在定子总成20固定于壳体的端板部上时,从端板部输入的冷却剂直接接触内环线圈部212和外环线圈部211中的至少一者。具体地,可以是内环线圈部212或外环线圈部211在径向Y上超出盘状主体221,或者是内环线圈部212和外环线圈部211在径向Y上均超出盘状主体221;亦或者内环线圈部212和/或外环线圈部211在盘状主体221的轴向X上与盘状主体221保持预定间隙,以便于冷却剂可通过预定的间隙与内环线圈部212和/或外环线圈部211直接接触,可增大冷却剂与内环线圈部212和/或外环线圈部211的接触量,以提高冷却剂对定子总成20冷却的效率。
进一步地,盘状主体221沿径向Y的宽度小于定子铁芯21沿径向Y的宽度。由此,可以让冷却剂进一步直接与未被盘状主体221覆盖的定子铁芯21接触,以进一步提高冷却剂对定子总成20冷却的效率。并且还能够减轻定子法兰22的重量,降低生产成本。
其中,定子法兰22和固定件23均为非导磁件,从而减少电磁损耗。
上述的定子总成20的实施例中,在盘状主体221上设置阶梯孔,并通过固定件将盘状主体221上的阶梯孔配合实现固定。然而,在本申请提供的另一实施例中,还可以在定子法兰22和盘状主体221上同时开设孔,以形成另一种实施例的阶梯孔,具体参见图20和图21,图20是本申请提供的定子总成的第二实施例的结构示意图以及剖切示意图,图21是本申请提供的定子总成的第二实施例的拆解示意图。图20中的a为定子总成的第二实施例的结构示意图,图20中的b为图20中的a沿A-A方向的剖切示意图。
定子总成20设置有阶梯孔24,阶梯孔24沿定子总成20的轴向X贯穿盘状主体221和定子铁芯21,阶梯孔24包括第一孔段241和第二孔段242,第一孔段241位于定子铁芯21内,并连接定子铁芯21背离盘状主体221的主表面,第二孔段242位于盘状主体221内,并连接盘状主体221背离定子铁芯21的主表面,第一孔段241的孔径大于第二孔段242的孔径。第一孔段241和第二孔段242均可为圆柱孔,且第一孔段241连通定子铁芯21的两侧主表面,第二孔段242连通盘状主体221的两侧主表面,并且第一孔段241和第二孔段242在盘状主体221的轴向X上对应设置。
阶梯孔24用于在定子总成20放置于壳体内时允许固定件23从定子铁芯21背离盘状主体221的一侧插入,并沉设于第一孔段241内,进而将定子总成20固定于壳体的端板部上。其中,固定件23可呈两段式的结构,固定件23的第一段沿径向Y的尺寸大于固定件23的第二段沿径向Y的尺寸,以使得固定件23的第一段沉设于第一孔段241内,固定件23的第二段插入第二孔段242,并至少部分突出于第二孔段242。
本实施例中,在定子铁芯21上开设第一孔段241,在盘状主体221上开设第二孔段242,并将固定件23沉设于第一孔段241内,进而可将定子总成20固定与壳体的端板部上,无需定子铁芯21避让第二孔段242,进而可提高定子铁芯21的整体体积,提高定子总成20的磁场强度。
进一步地,阶梯孔24还包括第三孔段243,第三孔段243位于定子铁芯21内,并连接于第一孔段241和第二孔段242之间,第三孔段243的段的孔径小于第一孔段241的孔径,进而在第三孔段243与第一孔段241的连接处形成一环形台面,固定件23还压持固定于环形台面上。第三孔段243沿径向Y的尺寸可与第二孔段242沿径向Y的尺寸相同,第一孔段241和第三孔段243彼此连通,且共同连通定子铁芯21的两侧主表面,固定件23的尺寸较大的一段则可固定于环形台面上,固定件23的尺寸小的一段则可穿过第二孔段242和第三孔段243并突出于盘状主体221背离定子铁芯21的主表面。通过上述方式,可进一步利用固定件23将定子铁芯21压持固定于盘状主体221。此外,第三孔段243的孔径小于第一孔段241的孔径还有利于缓解定子铁芯21的磁损。
进一步地,阶梯孔24的数量为多个,并沿定子总成20的周向Z间隔排列。多个阶梯孔24可绕盘状主体221的周向Z等间隔设置,且多个阶梯孔24在盘状主体221的径向Y上均居中设置。固定件23的数量与阶梯孔24的数量相同,固定件23与阶梯孔24呈一一对应关系,也即一个阶梯孔24内可用于放置一个固定件23。
可选地,阶梯孔24和贯通槽223沿定子总成20的周向Z交替设置。以将阶梯孔24和贯通槽223的分布均匀化,降低定子总成20的加工难度;提高定子铁芯21与定子法兰22安装的稳定性,以及提高定子总成20与壳体安装的稳定性。
在需要将定子总成20安装在轴向磁通电机的壳体内时,只需要将固定件23从定子铁芯21背离盘状主体221的一侧插入阶梯孔24,并沉设于第一孔段241内,然后利用固定件23将定子总成20固定于壳体的端板部上。
在本申请提供的第三实施例中,还可以将固定件23集成在定子法兰22上,从而简化定子铁芯21和定子法兰22的安装,提升定子总成20的集成度。参见图22,图22是本申请提供的定子总成的第三实施例的结构示意图以及剖切示意图。其中,图22中的a为定子总成的第三实施例的结构示意图,图22中的b为图22中的a沿B-B方向的剖切示意图。
定子法兰22还包括多个固定柱25,多个固定柱25设置于盘状主体221背离定子铁芯21的另一侧主表面上,并沿定子总成20的轴向X延伸,多个固定柱25用于在定子总成20放置于壳体内时将定子法兰22固定于壳体的端板部上。固定柱25可呈中空的圆柱状,固定柱25可垂直于定子铁芯21的主表面,从而壳体可提高定子总成20的集成度,并且在需要将定子总成20固定在壳体时,可通过固定柱25与壳体的端板部固定即可,简化定子铁芯21和定子法兰22的 安装,提高生产效率。此外,无需在定子法兰22和定子铁芯21打孔,可减低定子铁芯21的磁损。
进一步地,固定柱25设置有沿轴向X延伸的内螺纹孔251。内螺纹孔251可与螺柱螺纹连接,以便于将固定柱25可拆卸安装在壳体的端板部,进而简化装配过程。
进一步地,多个固定柱25沿定子总成20的周向Z间隔排列。多个螺柱可沿定子总成20的周向Z等间距排列,以便于通过固定柱25将定子总成20稳定安装在壳体的端板部。
其中,多个固定柱25与盘状主体221一体成型或与盘状主体221分体成型并装配固定于盘状主体221上。
参见图23,图23是本申请提供的定子总成的第三实施例中定子法兰的一实施例结构示意图。可选地,多个固定柱25划分成多个固定柱分组252,多个固定柱分组252沿定子总成20的周向Z间隔排列,每个固定柱分组252内包括沿定子总成20的径向Y间隔设置的至少两个固定柱25。多个固定柱分组252可沿定子总成20的周向Z等间隔排列,每个固定柱分组252中固定柱25的数量可相同,且固定柱分组252中的固定柱25在定子总成20的径向Y上的间距可相同。从而可将多个固定柱25规则地分布在盘状主体221上,以便于通过固定柱25将定子总成20稳定安装在壳体的端板部。
进一步地,固定柱25和贯通槽223沿定子总成20的周向Z交替设置。贯通槽223的数目可以为多个,多个贯通槽223设置成沿盘状主体221的周向Z间隔排列。在其中一个实施例中,参见图22,多个贯通槽223设置成沿盘状主体221的径向Y延伸,并呈放射状展开。参见图23,固定柱分组252和贯通槽223沿定子总成20的周向Z交替设置。在其中的另一个实施例中,参见图24,多个贯通槽223设置成沿呈盘状主体221的周向Z呈弧形延伸。在本实施例中,通过固定柱25和贯通槽223沿定子总成20的周向Z交替设置,不仅可以提升定子铁芯21和盘状主体221连接的稳定性,还可以提升盘状主体221与壳体的端板部固定时的稳定性。
为了便于转子总成的加工效率,便于将转子总成精确地安装在壳体内,以及便于在壳体内利用冷却剂对转子总成直接冷却等,本申请提供的轴向磁通电机中还包括对转子总成的改进,以下内容主要对转子总成的结构进行描述,参见图25-图27,图25是本申请提供的转子总成的第一实施例的结构示意图以及剖切示意图。图26是图25中虚线框内的放大示意图。图27是本申请提供的转子总成的第一实施例的拆解示意图。其中,图25中的a为转子总成的第一实施例的结构示意图,图25中的b为图25中的a沿C-C方向的剖切示意图。
转子总成30包括转子铁芯31、磁性块32和止挡件33,转子铁芯31设置有转子槽311,转子槽311具有位于转子铁芯31的外周面上的开口端,磁性块32设置于转子槽311内。转子铁芯31可呈圆环状,以便于将转子总成30安装在轴向X磁通电机中,转子槽311开设于转子铁芯31的外周面,并沿转子总成30的径向Y向转子铁芯31的内部延伸,转子槽311的开口端朝向转子铁芯31的外侧,以便于磁性块32从转子铁芯31的开口端嵌入转子槽311。止挡件33在转子总成30的径向Y上位于转子铁芯31的外侧,并沿转子总成30的轴向X遮挡开口端。止挡件33可贴合在转子铁芯31的外侧边,并通过止挡件33遮挡开口端,以通过止挡件33将磁性块32限位在转子槽311内。
通过上述实施方式,利用止挡件33将磁性块32限位在转子槽311内,以缓解磁性块32从转子槽311的脱出风险,可提升转子总成30的极限转速能力,并且通过将止挡件33、磁性块32和转子铁芯31集成为转子总成30,能够提高转子总成30的集成度,缩小轴向X磁通电机的尺寸。
进一步地,止挡件33为沿转子总成30的周向Z环绕转子铁芯31的环形结构。环形结构的止挡件33的内侧面沿径向Y的尺寸等于或略大于转子铁芯31的外周面沿径向Y的尺寸,以使止挡件33可环绕转子铁芯31,且与转子铁芯31的外周侧贴合,将磁性块32限位在转子槽311内。
在一实施例中,转子铁芯31包括沿转子总成30的轴向X相对设置的第一端面和第二端面,转子槽311沿转子总成30的轴向X设置于第一端面和第二端面之间。转子槽311沿转子总成30的径向Y向转子铁芯31的内部延伸,位于转子槽311内的磁性块32沿转子总成30的轴向X被限位。
在一实施例中,转子总成30还包括转子法兰34,转子法兰34包括盘状主体341,转子铁芯31贴合固定于盘状主体341的一侧主表面上,止挡件33与转子法兰34分体设置。转子法兰34可与转子铁芯31固定连接,转子铁芯31可通过转子法兰34与轴向磁通电机的壳体连接,从 而降低转子总成30的加工制造难度,同时转子铁芯31以转子法兰34为安装基准,可提高转子铁芯31的安装精度以及转子总成30的加工效率。转子铁芯31与盘状主体341可拆卸连接,或者盘状主体341与转子铁芯31焊接固定,止挡件33与转子法兰34分体设置可简化转子法兰34的加工难度。
可选地,止挡件33固定于盘状主体341上,止挡件33可焊接固定在盘状主体341上,或者与盘状主体341一体成型设置,从而提高转子总成30的集成度,提高止挡件33的结构稳定性,提高止挡效果。
进一步地,止挡件33与盘状主体341一体成型。由此,可简化装配难度,并可以提高止挡件33的结构稳定性,提高止挡效果。
可选地,止挡件33贴附于转子铁芯31的外周面上,止挡件33的一端与盘状主体341的外边缘连接,并沿转子总成30的轴向X延伸成覆盖位于转子槽311两侧的转子铁芯31的外周面。由此可将转子法兰34作为安装基准,可在转子铁芯31与盘状主体341进行装配时,利用止挡件33进行定位基准,提高转子铁芯31与盘状主体341的对齐效果。
在一实施例中,盘状主体341设置有连通盘状主体341的两侧主表面的多个第一贯通槽342,转子铁芯31设置有与多个第一贯通槽342对应的多个凸起部312,每个凸起部312插置于对应的第一贯通槽342内,在盘状主体341背离转子铁芯31的一侧,盘状主体341与转子铁芯31沿第一贯通槽342和凸起部312的配合边缘彼此焊接固定。由此,可降低转子总成30的转子铁芯31的加工和装配难度,并降低转子铁芯31的电磁损耗。多个凸起部312和多个第一贯通槽342的数量呈一一对应关系,一个凸起部312可插置于一个第一贯通槽342内,并在两者可通过焊接的方式将盘状主体341与定子铁芯固定,以便于将转子铁芯31和转子法兰34做为一体部件装配至壳体。第一贯通槽342和凸起部312的形状相仿,示例性地,第一贯通槽342和凸起部312均呈方形结构,在凸起部312插置于第一贯通槽342内后,转子铁芯31和转子法兰34之间利用第一贯通槽342和凸起部312彼此限位,便于将盘状主体341与定转子铁芯31沿第一贯通槽342和凸起部312的配合边缘彼此焊接固定。由于本实施例的转子总成和上文描述的定子总成的铁芯部和转子法兰之间的固定方式类似,因此本实施例的转子总成可以沿用上文描述的定子总成的各种变形。
参见图28,图28是本申请提供的转子铁芯的一实施例结构示意图。
转子铁芯31由条状片材卷绕形成,条状片材的一侧边缘突出设置有凸起3121,条状片材上设置有位于条状片材的两侧边缘之间且连通条状片材的两侧主表面的第二贯通槽3122,条状片材的两侧边缘随条状片材的卷绕形成转子铁芯31的第一端面和第二端面,凸起3121随条状片材的卷绕形成凸起部312,第二贯通槽3122随条状片材的卷绕形成转子槽311。相较于传统的压铸成型,在本实施例中可通过呈条状片材卷绕形成,可使得转子铁芯31可高效成型。并且条状片材的一侧便突出设置有多个凸起3121,多个凸起3121在条状片材的一侧按照预定间隔设置,当将条状片材卷绕形成转子铁芯31后,多个凸起3121配合在定子铁芯的背部形成凸起部312,从而便于凸起部312的高效成型;同理,在条状片材的另一侧可按照预定间隔设置多个第二贯通槽3122,当将条状片材卷绕形成转子铁芯31后,多个第二贯通槽3122配合在转子铁芯31背离凸起部312的一侧形成用于嵌入磁性块32的转子槽311,从而便于转子槽311的高效成型。
参见图29-图31,图29是本申请提供的转子总成的第二实施例的结构示意图以及剖切示意图。图30是本申请提供的转子总成的第二实施例中第一转子组件的一实施例拆解示意图,图31是本申请提供的转子总成的第二实施例中第二转子组件的一实施例拆解示意图。其中,图29中的a为转子总成的第二实施例的结构示意图,图29中的b为图29中的a沿D-D方向的剖切示意图。
转子总成30包括第一转子组件30a和第二转子组件30b,通过将第一转子组件30a和第二转子组件30b装配形成转子总成30,在用转子总成30形成轴向磁通电机时,可以提高轴向磁通电机的输出效率。
第一转子组件30a包括第一转子法兰34a以及第一转子铁芯31a,第一转子法兰34a包括第一盘状主体341a以及设置于第一盘状主体341a的转轴部35a,第一转子铁芯31a设置于第一盘状主体341a的一侧主表面上,并环绕转轴部35a设置。第一盘状主体341a可呈圆盘状,圆盘状的第一盘状主体341a的相对设置的两个侧表面均可定义为主表面,转轴部35a可位于第一盘状主体341a的中部,例如,转轴部35a可与第一盘状主体341a同轴设置。第一转子法兰34a 可与第一转子铁芯31a固定连接,从而降低第一转子组件30a的装配难度,以及可将第一转子铁芯31a和第一转子法兰34a集成在轴向磁通电机内,提高轴向磁通电机的集成度。
第二转子组件30b包括第二转子法兰34b以及第二转子铁芯31b,第二转子法兰34b包括第二盘状主体341b以及设置于第二盘状主体341b的轴孔部35b,第二转子铁芯31b设置于第二盘状主体341b的一侧主表面上,轴孔部35b开设有轴孔351b。第二盘状主体341b可呈圆盘状,圆盘状的第二盘状主体341b的相对设置的两侧表面均可定义为主表面,轴孔部35b可位于第二盘状主体341b的中部,例如,轴孔部35b可与第二盘状主体341b同轴设置。第二转子法兰34b可与第二转子铁芯31b固定连接,从而降低第二转子组件30b的装配难度,以及可将第二转子铁芯31b和第二转子法兰34b集成在轴向磁通电机内,提高轴向磁通电机的集成度。
其中,转轴部35a沿转子总成30的轴向插置于轴孔351b内,第一盘状主体341a背离第一转子铁芯31a的另一侧主表面与第二盘状主体341b背离第二转子铁芯31b的另一侧主表面彼此贴合,并彼此相对固定。通过上述方式,第一转子铁芯31a和第二转子铁芯31b以第一转子法兰34a和第二转子法兰34b为安装定位基准,可以提高第一转子组件30a和第二转子组件30b安装时的定位精度和装配效率。并且,第一转子组件30a和第二转子组件30b通过第一转子铁芯31a和第二转子铁芯31b以背对背的方式连接,可降低两个转子组件的装配难度。
可选地,第一盘状主体341a和第二盘状主体341b中的一者沿其外周面焊接固定于第一盘状主体341a和第二盘状主体341b中的另一者上。由此,可简化两个转子组件的固定方式,提高固定效果。且第一转子法兰34a和第二转子法兰34b沿其外周面采用轴向焊接的方式,提高转子总成30的加工效率。
进一步地,第一盘状主体341a的外周面和第二盘状主体341b的外周面沿转子总成30的径向彼此平齐,第一盘状主体341a和第二盘状主体341b沿二者的外周面的配合边缘彼此焊接固定。由此,可简化两个转子组件的固定方式,提高固定效果。第一盘状主体341a和第二盘状主体341b的径向尺寸可相同,当第一盘状主体341a和第二盘状主体341b贴合时,第一盘状主体341a的外周面和第二盘状主体341b的外周面在转子总成30的径向上彼此平齐,通过将第一盘状主体341a的外周面和第二盘状主体341b的外周面沿转子总成30的径向彼此平齐,可缩小转子总成30的径向尺寸,同时还便于对第一盘状主体341a和第二盘状主体341b沿其外周面进行焊接,提高转子总成30的加工效率。
可选地,在轴孔部35b背离第一盘状主体341a的一端,转轴部35a和轴孔部35b沿轴孔351b的边缘彼此焊接固定。当转轴部35a沿转子总成30的轴向X插置于轴孔351b内时,部分转轴部35a延伸至轴孔部35b背离第一盘状主体341a的一端,且位于轴孔351b内的转轴部35a的外周面可与轴孔351b的内壁面可彼此贴合,以便于将转轴部35a和轴孔部35b沿轴孔351b的边缘彼此焊接固定。由此轴孔部35b和转轴部35a采用轴向焊接的方式,提高转子总成30的加工效率。
进一步地,转轴部35a设置有第一环形台面351a,轴孔部35b背离第一盘状主体341a的一侧设置有环绕轴孔351b的第二环形台面352b,第二环形台面352b沿转子总成30的轴向与第一环形台面351a平齐,并环绕第一环形台面351a设置,转轴部35a和轴孔部35b沿第一环形台面351a和第二环形台面352b的配合边缘焊接固定。第一环形台面351a的径向尺寸可等于或略小于第二环形台面352b的径向尺寸,以便于将转轴部35a插置于轴孔351b内。当转轴部35a插置于轴孔351b内时,第一环形台面351a和第二环形台面352b处于同一平面上,便于转轴部35a和轴孔部35b沿第一环形台面351a和第二环形台面352b的配合边缘焊接固定,从而可提高转子总成30的加工效率,以及缩小转子总成30的径向尺寸。
在第二实施例中,可采用焊接转轴部35a和轴孔部35b的方式进行固定,在第三实施例中,还可采用其他固定方式,参见图32和33,图32是本申请提供的转子总成的第三实施例的结构示意图以及剖切示意图。图33是本申请提供的转子总成的第三实施例的拆解示意图。其中,图32中的a为转子总成的第三实施例的结构示意图,图32中的b为图35中的a沿E-E方向的剖切示意图。
转轴部35a包括插入部352a以及对接部353a,插入部352a插入于轴孔351b内,对接部353a沿转子总成30的轴向的投影与轴孔部35b重叠设置,对接部353a和轴孔部35b上设置有多组固定匹配对36,对接部353a和轴孔部35b通过固定匹配对36彼此相对固定。由此,可简化两个转子组件的固定方式,提高固定效果。对接部353a的径向尺寸可大于插入部352a的径向尺寸,在将插入部352a插入轴孔351b内时,对接部353a可与轴孔部35b呈面面贴合的形式,以 通过对接部353a和轴孔部35b让转轴部35a与轴孔部35b在转子总成30的径向上彼此限位。其中,多组固定匹配对36可沿转子总成30的周向等间隔排布,多组固定匹配对36可为相互连通的通孔,可通过其他部件使转轴部35a和轴孔部35b可拆卸连接,提高转子总成30的灵活度,以便于对转子总成30进行拆卸与维护。在其他实施例中,固定匹配对36也可是销轴匹配对或其他匹配对。
进一步地,固定匹配对36包括设置于对接部353a上的第一固定孔354a和设置于轴孔部35b上的第二固定孔353b,对接部353a和轴孔部35b通过插置于第一固定孔354a和第二固定孔353b内的固定件37彼此相对固定。同一匹配对的第一固定孔354a和第二固定孔353b可同轴设置,第一固定孔354a和第二固定孔353b可为螺纹孔,固定件37可为螺栓,固定件37的数量与固定匹配对36的数量呈一一对应关系,第一固定孔354a和第二固定孔353b中的至少一者呈阶梯孔,通过将固定件37插置于第一固定孔354a和第二固定孔353b中,使对接部353a和轴孔部35b实现可拆卸连接。
可选地,在至少一组固定匹配对36中,第一固定孔354a包括彼此连通的第一外孔段3541a和第一内孔段3542a,第一内孔段3542a的孔径大于第一外孔段3541a的孔径,第二固定孔353b包括彼此连通的第二外孔段3531b和第二内孔段3532b,第二内孔段3532b的孔径大于第二外孔段3531b的孔径,第一内孔段3542a和第二内孔段3532b彼此对接,转子总成30包括插置于第一内孔段3542a和第二内孔段3532b内的定位销38,固定件37穿设第一外孔段3541a、定位销38和第二外孔段3531b。第一内孔段3542a和第二内孔段3532b的径向尺寸可相同,在对接部353a和轴孔部35b进行安装的过程中,可先将定位销38放入第一内孔段3542a或第二内孔段3532b中,然后以定位销38所处位置为定位基础,让同一固定匹配对36的第一固定孔354a和第二固定孔353b对位,最后通过固定件37插置于第一固定孔354a和第二固定孔353b内,进而使得轴孔部35b和对接部353a相对固定。由此,通过定位销38进行辅助定位便于对轴孔部35b和对接部353a进行相对固定,提高转子总成30的加工效率。
在本实施例中,提高转子总成30的极限转速能力,可在第一转子组件30a和第二转子组件30b的外周侧设置止挡件,参见图34和35,图34是本申请提供的转子总成的第四实施例的结构示意图以及剖切示意图。图35是本申请提供的转子总成的第四实施例的拆解示意图。其中,图34中的b为转子总成的第四实施例的结构示意图,图34中的a为图34中的b沿F-F方向的剖切示意图。
可选地,第一盘状主体341a的外周面和第二盘状主体341b的外周面沿转子总成30的径向彼此平齐,第一转子铁芯31a设置有第一转子槽311a,第一转子槽311a具有位于第一转子铁芯31a的外周面上的第一开口端,第一转子组件30a还包括设置于第一转子槽311a内的第一磁性块32a,第二转子铁芯31b设置有第二转子槽311b,第二转子槽311b具有位于第二转子铁芯31b的外周面上的第二开口端,第二转子组件30b还包括设置于第二转子槽311b内的第二磁性块32b。第一转子铁芯31a和第二转子铁芯31b可呈圆环状,以便于将转子总成30安装在轴向磁通电机中。第一转子槽311a开设于第一转子铁芯31a的外周面,并沿转子总成30的径向向第一转子铁芯31a的内部延伸,第一转子槽311a的第一开口端朝向第一转子铁芯31a的外侧,以便于第一磁性块32a从第一转子铁芯31a的第一开口端嵌入第一转子槽311a。同理第二转子槽311b开设于第二转子铁芯31b的外周面,并沿转子总成30的径向向第二转子铁芯31b的内部延伸,第二转子槽311b的第二开口端朝向第二转子铁芯31b的外侧,以便于第二磁性块32b从第二转子铁芯31b的第二开口端嵌入第二转子槽311b。
转子总成30进一步包括环形止挡件39,环形止挡件39沿转子总成30的轴向一体设置,并绕设于第一转子铁芯31a和第二转子铁芯31b外围,以沿转子总成30的轴向同时遮挡第一开口端和第二开口端。环形止挡件39的内侧圆的径向尺寸等于或略大于第一转子铁芯31a和第二转子铁芯31b的外周侧的径向尺寸,以使环形止挡件39可环绕第一转子铁芯31a和第二转子铁芯31b与其外周侧贴合。环形止挡件39在转子总成30的径向上位于第一转子铁芯31a和第二转子铁芯31b的外侧,并沿转子总成30的轴向遮挡第一开口端和第二开口端。环形止挡件39可贴合在第一转子铁芯31a和第二转子铁芯31b的外周面,并通过环形止挡件39遮挡第一开口端和第二开口端,以通过环形止挡件39将第一磁性块32a限位在第一转子槽311a内,以及将第二磁性块32b限位在第二转子槽311b中。
通过上述实施方式,利用环形止挡件39将第一磁性块32a限位在第一转子槽311a内,以及将第二磁性块32b限位在第二转子槽311b内,可提升转子总成30的极限转速能力,并且通 过将环形止挡件39、第一磁性块32a、第二磁性块32b、第一转子铁芯31a和第二转子铁芯31b集成为转子总成30,能够提高转子总成30的集成度,缩小轴向磁通电机的尺寸。
需要说明的是,在集成双转子的转子总成30的实施例中,第一转子组件30a和第二转子组件30b均可包括上述单转子总成30所示出的实施例。示例性地,环形止挡件39可与第一转子法兰34a和第二转子法兰34b分体设置;或者环形止挡件39可与第一转子法兰34a或第二转子法兰34b一体设置;或者环形止挡件39可焊接固定在第一转子法兰34a或第二转子法兰34b。第一盘状主体341a与第一转子铁芯31a之间以及第二盘状主体341b与第二转子铁芯31b之间均贯通槽与凸起部配合焊接的方式进行固定。此外,第一转子铁芯31a和第二转子铁芯31b可分别由上文描述的的条状片材卷绕形成。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (38)

  1. 一种轴向磁通电机,其特征在于,所述轴向磁通电机包括壳体、定子总成、转子总成以及隔板组件,所述壳体用于形成一容置空间,所述定子总成和所述转子总成沿所述轴向磁通电机的轴向排布于所述容置空间内,所述隔板组件包括隔板主体,所述隔板主体设置于所述定子总成与所述转子总成之间,所述壳体与所述隔板主体配合,形成用于容纳冷却剂和所述定子总成的冷却空间,所述冷却空间内的冷却剂直接接触所述定子总成。
  2. 根据权利要求1所述的轴向磁通电机,其特征在于,所述壳体包括端板部,所述端板部的内端面朝向所述定子总成背离所述转子总成一侧设置,所述端板部的内端面与所述隔板主体沿所述轴向间隔设置,在所述轴向上限定所述冷却空间的两侧边界。
  3. 根据权利要求1或2所述的轴向磁通电机,其特征在于,所述壳体包括沿所述轴向磁通电机的径向嵌套设置的两个筒状部,所述两个筒状部分别与所述隔板主体密封配合,所述冷却空间呈环形设置。
  4. 根据权利要求3所述的轴向磁通电机,其特征在于,所述两个筒状部包括第一筒状部以及环绕所述第一筒状部设置的第二筒状部,所述第一筒状部和所述第二筒状部朝向所述定子总成延伸,所述第一筒状部供所述转子总成的转轴部通过,所述隔板主体包括内环匹配部以及环绕所述内环匹配部设置的外环匹配部,其中所述内环匹配部与所述第一筒状部密封配合,所述外环匹配部与所述第二筒状部密封配合。
  5. 根据权利要求4所述的轴向磁通电机,其特征在于,所述隔板主体嵌入于所述第二筒状部的内部,所述外环匹配部的外周面与所述第二筒状部的内周面之间形成密封配合,并且/或者所述内环匹配部上设置有第三筒状部,所述第三筒状部与所述第一筒状部接插并在二者之间形成密封配合。
  6. 根据权利要求5所述的轴向磁通电机,其特征在于,所述第三筒状部接插于所述第一筒状部的外围,所述轴向磁通电机还包括设置于所述第一筒状部内的轴承,所述隔板主体包括集油板,所述集油板与所述第一筒状部配合形成储油池。
  7. 根据权利要求6所述的轴向磁通电机,其特征在于,所述集油板与所述第三筒状部连接,并沿所述轴向磁通电机的径向朝向所述第三筒状部内部延伸。
  8. 根据权利要求1-7任意一项所述的轴向磁通电机,其特征在于,所述定子总成包括定子铁芯和绕设于所述定子铁芯上的线圈,所述定子铁芯上设置有多个定子槽,所述线圈嵌入于所述多个定子槽内,所述隔板主体包括分别与所述多个定子槽位置对应的多个嵌入筋,各所述嵌入筋分别嵌入于对应的定子槽内。
  9. 根据权利要求8所述的轴向磁通电机,其特征在于,所述壳体包括第一筒状部以及环绕所述第一筒状部设置的第二筒状部,所述第一筒状部和所述第二筒状部朝向所述定子总成延伸,所述第一筒状部供所述转子总成的转轴部通过,所述隔板主体包括内环匹配部以及环绕所述内环匹配部设置的外环匹配部,所述内环匹配部与所述第一筒状部密封配合,所述外环匹配部与所述第二筒状部密封配合,所述多个定子槽和所述多个嵌入筋分别相对于所述轴向呈放射状展开,所述多个嵌入筋分别与所述内环匹配部和/或所述外环匹配部连接。
  10. 根据权利要求8或9所述的轴向磁通电机,其特征在于,所述隔板主体还包括用于封堵所述多个嵌入筋之间间隙的封堵板。
  11. 根据权利要求4-7、9-10任意一项所述的轴向磁通电机,其特征在于,所述内环匹配部和/或所述外环匹配部与所述定子总成密封配合。
  12. 根据权利要求1-11任意一项所述的轴向磁通电机,其特征在于,所述隔板组件包括加强件,所述加强件呈筒状设置,并支撑于所述隔板主体背离所述定子总成的一侧,所述转子总成设置于所述加强件内。
  13. 根据权利要求12所述的轴向磁通电机,其特征在于,所述加强件设置成与所述壳体抵接。
  14. 根据权利要求1-13任意一项所述的轴向磁通电机,其特征在于,所述隔板组件沿所述轴向磁通电机的周向设置有多个间隔排布的泄压孔。
  15. 根据权利要求14所述的轴向磁通电机,其特征在于,所述转子总成与所述隔板主体沿所述轴向间隔设置,并形成气隙,所述泄压孔用于连通所述气隙与所述隔板组件的外部空间。
  16. 根据权利要求1-15任意一项所述的轴向磁通电机,其特征在于,所述隔板组件还设置有回流孔,从所述冷却空间渗透至所述隔板组件内的冷却剂经过所述回流孔排出到所述隔板组件的外部空间。
  17. 根据权利要求16所述的轴向磁通电机,其特征在于,所述隔板组件包括加强件,所述加强件呈筒状设置,并支撑于所述隔板主体背离所述定子总成的一侧,所述转子总成设置于所述加强件内,所述回流孔设置于所述加强件上。
  18. 根据权利要求17所述的轴向磁通电机,其特征在于,所述加强件还设置有多个泄压孔,所述多个泄压孔沿所述轴向磁通电机的周向间隔排布于所述加强件朝向所述隔板主体的边缘,所述回流孔沿所述轴向相对于所述加强件的两侧边缘居中设置。
  19. 根据权利要求1-18任意一项所述的轴向磁通电机,其特征在于,所述定子总成包括定子铁芯和绕设于所述定子铁芯上的线圈,所述定子铁芯呈环状设置,所述线圈沿所述轴向磁通电机的径向突出于所述定子铁芯的相对两侧环面,以形成内环线圈部和外环线圈部,所述内环线圈部和/或所述外环线圈部位于所述冷却空间内,所述冷却空间内的冷却剂直接接触所述内环线圈部和/或所述外环线圈部。
  20. 根据权利要求1-19任意一项所述的轴向磁通电机,其特征在于,所述壳体包括端板部,所述端板部的内端面朝向所述定子总成背离所述转子总成一侧设置,所述端板部的内端面、所述隔板主体朝向所述端板部的一侧和/或所述定子总成上设置有冷却流道,所述冷却空间内的冷却剂沿所述冷却流道流动。
  21. 根据权利要求1-20任意一项所述的轴向磁通电机,其特征在于,所述壳体包括端板部,所述端板部的内端面朝向所述定子总成背离所述转子总成一侧设置,所述内端面上设置有供所述冷却剂流动的冷却流道,所述定子总成盖设于至少部分所述冷却流道上,在所述冷却流道内流动的冷却剂直接接触所述定子总成。
  22. 根据权利要求21所述的轴向磁通电机,其特征在于,所述定子总成包括定子法兰和定子铁芯,所述定子法兰包括盘状主体,所述定子铁芯贴附固定于所述盘状主体背离所述端板部的一侧主表面上,所述盘状主体盖设于至少部分所述冷却流道上,在所述冷却流道内流动的冷却剂直接接触所述盘状主体。
  23. 根据权利要求22所述的轴向磁通电机,其特征在于,所述定子总成还包括绕设于所述定子铁芯上的线圈,所述定子铁芯和所述盘状主体呈环状设置,所述线圈沿所述轴向磁通电机的径向突出于所述定子铁芯的相对两侧环面,以形成内环线圈部和外环线圈部,所述内环线圈部和外环线圈部中的至少一者设置成沿所述轴向磁通电机的径向超出所述盘状主体或者沿所述轴向磁通电机的轴向与所述盘状主体保持预定间隙,所述冷却剂与所述内环线圈部和外环线圈部中的所述至少一者直接接触。
  24. 根据权利要求21-23任意一项所述的轴向磁通电机,其特征在于,所述冷却流道包括至少两个周向流道以及至少一径向流道,所述至少两个周向流道沿所述轴向磁通电机的径向间隔排布,所述径向流道沿所述轴向磁通电机的径向设置,并与所述至少两个周向流道连通。
  25. 根据权利要求1-24任意一项所述的轴向磁通电机,其特征在于,所述定子总成包括沿所述轴向间隔设置第一定子组件和第二定子组件,所述转子总成位于所述第一定子组件和第二定子组件之间,所述隔板主体包括第一隔板主体和第二隔板主体,所述第一隔板主体与所述壳体配合形成用于容纳所述冷却剂和所述第一定子组件的第一冷却空间,所述第二隔板主体与所述壳体配合形成用于容纳所述冷却剂和所述第二定子组件的第二冷却空间。
  26. 根据权利要求25所述的轴向磁通电机,其特征在于,所述隔板组件上设置有连通通道,所述连通通道用于连通所述第一冷却空间和所述第二冷却空间。
  27. 根据权利要求26所述的轴向磁通电机,其特征在于,所述连通通道包括第一连通通道和第二连通通道,所述第一连通通道和第二连通通道沿所述径向相对设置。
  28. 根据权利要求27所述的轴向磁通电机,其特征在于,所述壳体包括沿所述轴向间隔设置的第一端板部和第二端板部,所述定子总成和所述转子总成沿所述轴向排布于所述第一端板部和所述第二端板部之间,所述第一端板部和所述第二端板部中的一者上设置有入液口和出液口,所述入液口和所述出液口分别沿所述轴向磁通电机的轴向与所述第一连通通道和所述第二连通通道相对设置。
  29. 根据权利要求26-28任意一项所述的轴向磁通电机,其特征在于,所述隔板组件还包括连接于所述第一隔板主体和所述第二隔板主体之间的加强件和通道件,所述加强件呈筒状设置, 所述转子总成设置于所述加强件内,所述通道件设置于所述加强件的外部,所述连通通道设置于所述通道件上。
  30. 根据权利要求1-29任意一项所述的轴向磁通电机,其特征在于,所述壳体包括第一筒状部,所述转子总成的转轴部转动支撑于所述第一筒状部内,所述第一筒状部与所述定子总成沿所述轴向至少部分重叠。
  31. 根据权利要求1-30任意一项所述的轴向磁通电机,其特征在于,所述定子总成和/或所述转子总成包括法兰以及铁芯部,所述法兰包括盘状主体,所述盘状主体设置有连通所述盘状主体的两侧主表面的多个贯通槽,所述铁芯部上设置有与所述多个贯通槽对应的多个凸起部,所述凸起部插置于对应的所述贯通槽内,所述盘状主体与所述铁芯部沿所述贯通槽和所述凸起部的配合边缘彼此焊接固定。
  32. 根据权利要求1-31任意一项所述的轴向磁通电机,其特征在于,所述转子总成包括转子铁芯、磁性块以及止挡件,所述转子铁芯设置有转子槽,所述转子槽具有位于所述转子铁芯的外周面上的开口端,所述磁性块设置于所述转子槽内,所述止挡件在所述转子总成的径向上位于所述转子铁芯的外侧,并沿所述转子总成的轴向遮挡所述开口端。
  33. 根据权利要求32所述的轴向磁通电机,其特征在于,所述止挡件为沿所述转子总成的周向环绕所述转子铁芯的环形结构,所述转子总成还包括转子法兰,所述转子法兰包括盘状主体,所述转子铁芯贴合固定于所述盘状主体的一侧主表面上,所述止挡件与所述转子法兰分体设置或者所述止挡件固定于所述盘状主体上。
  34. 根据权利要求1-33任意一项所述的轴向磁通电机,其特征在于,所述转子总成包括第一转子组件和第二转子组件,所述第一转子组件包括第一转子法兰以及第一转子铁芯,所述第一转子法兰包括第一盘状主体以及设置于所述第一盘状主体的转轴部,所述第一转子铁芯设置于所述第一盘状主体的一侧主表面上,并环绕所述转轴部设置,所述第二转子组件包括第二转子法兰以及第二转子铁芯,所述第二转子法兰包括第二盘状主体以及设置于所述第二盘状主体的轴孔部,所述第二转子铁芯设置于所述第二盘状主体的一侧主表面上,所述轴孔部开设有轴孔,所述转轴部沿所述转子总成的轴向插置于所述轴孔内,所述第一盘状主体背离所述第一转子铁芯的另一侧主表面与所述第二盘状主体背离所述第二转子铁芯的另一侧主表面彼此贴合,并彼此相对固定。
  35. 根据权利要求34所述的轴向磁通电机,其特征在于,所述第一盘状主体和所述第二盘状主体中的一者沿其外周面焊接固定于所述第一盘状主体和所述第二盘状主体中的另一者上。
  36. 根据权利要求34或35所述的轴向磁通电机,其特征在于,在所述轴孔部背离所述第一盘状主体的一端,所述转轴部和所述轴孔部沿所述轴孔的边缘彼此焊接固定;或者
    所述转轴部包括插入部以及对接部,所述插入部插入于所述轴孔内,所述对接部沿所述转子总成的轴向的投影与所述轴孔部重叠设置,所述对接部和所述轴孔部上设置有多组固定匹配对,所述对接部和所述轴孔部通过所述固定匹配对彼此相对固定。
  37. 一种电动设备,其特征在于,所述电动设备包括如权利要求1-36任意一项所述的轴向磁通电机。
  38. 一种交通工具,其特征在于,所述交通工具包括如权利要求1-36任意一项所述的轴向磁通电机。
PCT/CN2023/070184 2023-01-03 2023-01-03 一种轴向磁通电机、电动设备和交通工具 WO2024040851A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/070184 WO2024040851A1 (zh) 2023-01-03 2023-01-03 一种轴向磁通电机、电动设备和交通工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/070184 WO2024040851A1 (zh) 2023-01-03 2023-01-03 一种轴向磁通电机、电动设备和交通工具

Publications (1)

Publication Number Publication Date
WO2024040851A1 true WO2024040851A1 (zh) 2024-02-29

Family

ID=90012291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070184 WO2024040851A1 (zh) 2023-01-03 2023-01-03 一种轴向磁通电机、电动设备和交通工具

Country Status (1)

Country Link
WO (1) WO2024040851A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334899A (en) * 1991-09-30 1994-08-02 Dymytro Skybyk Polyphase brushless DC and AC synchronous machines
KR960038858U (ko) * 1995-05-12 1996-12-18 편평형 직류전동기
CN108448822A (zh) * 2018-05-15 2018-08-24 华中科技大学 一种盘式电机定子水冷结构及电机
CN209627103U (zh) * 2019-04-03 2019-11-12 浙江盘毂动力科技有限公司 一种油冷式轴向电机定子及其隔板
CN216530754U (zh) * 2021-12-01 2022-05-13 中国第一汽车股份有限公司 一种带液冷的定子总成

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334899A (en) * 1991-09-30 1994-08-02 Dymytro Skybyk Polyphase brushless DC and AC synchronous machines
KR960038858U (ko) * 1995-05-12 1996-12-18 편평형 직류전동기
CN108448822A (zh) * 2018-05-15 2018-08-24 华中科技大学 一种盘式电机定子水冷结构及电机
CN209627103U (zh) * 2019-04-03 2019-11-12 浙江盘毂动力科技有限公司 一种油冷式轴向电机定子及其隔板
CN216530754U (zh) * 2021-12-01 2022-05-13 中国第一汽车股份有限公司 一种带液冷的定子总成

Similar Documents

Publication Publication Date Title
US9614417B2 (en) Axial flux permanent magnet motor
US20120025642A1 (en) Rotating electric machine
EP3672035A1 (en) Motor
CN110707843A (zh) 电机冷却结构及电动汽车用永磁同步电机
US11923754B2 (en) Methods and systems for oil cooled rotor laminations
CN103199652B (zh) 气液交织冷却高功率密度电机
WO2024040851A1 (zh) 一种轴向磁通电机、电动设备和交通工具
CN110868022B (zh) 一种油冷电机结构、主驱电机及电机冷却系统
KR101755492B1 (ko) 하이브리드 차량용 구동모터의 고정자 조립유닛
CN220043118U (zh) 一种轴向磁通电机、电动设备和交通工具
CN220043119U (zh) 一种轴向磁通电机、电动设备和交通工具
CN105610254B (zh) 一种油冷轮毂电机
CN216054821U (zh) 紧凑型氢燃料电池反应系统
CN220087019U (zh) 一种定子总成、轴向磁通电机和电动设备
KR20130123317A (ko) 전기 기계 모듈 냉각 시스템 및 방법
CN219960247U (zh) 一种转子总成、轴向磁通电机和电动设备
RU2283525C2 (ru) Электрическая машина с жидкостным охлаждением статора
KR102634861B1 (ko) 모터
CN219960237U (zh) 一种定子总成、轴向磁通电机和电动设备
CN219960238U (zh) 一种定子总成、轴向磁通电机和电动设备
CN219999133U (zh) 一种转子总成、轴向磁通电机和电动设备
CN115459549B (zh) 电磁泵
KR102135380B1 (ko) 모터
CN115001172B (zh) 一种轴向充磁的永磁电机转子结构及永磁电机
CN220628986U (zh) 一种电机转子冷却结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23855948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023855948

Country of ref document: EP

Effective date: 20240425