WO2024040806A1 - 特定细胞靶向的代谢系统递送的生物材料及制备方法和应用 - Google Patents

特定细胞靶向的代谢系统递送的生物材料及制备方法和应用 Download PDF

Info

Publication number
WO2024040806A1
WO2024040806A1 PCT/CN2022/139153 CN2022139153W WO2024040806A1 WO 2024040806 A1 WO2024040806 A1 WO 2024040806A1 CN 2022139153 W CN2022139153 W CN 2022139153W WO 2024040806 A1 WO2024040806 A1 WO 2024040806A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
delivered
cell
targeted
metabolic
Prior art date
Application number
PCT/CN2022/139153
Other languages
English (en)
French (fr)
Inventor
林贤丰
陈鹏飞
顾辰辉
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2024040806A1 publication Critical patent/WO2024040806A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/46Ingredients of undetermined constitution or reaction products thereof, e.g. skin, bone, milk, cotton fibre, eggshell, oxgall or plant extracts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues

Definitions

  • the present invention relates to a biological material, in particular to a biological material delivered by a specific cell-targeted metabolic system and its preparation method and application.
  • Metabolic homeostasis of cells is important for normal cell function. Under pathological conditions such as inflammation and aging, the metabolic patterns of cells undergo systemic changes. Although the molecular mechanisms of metabolic pathways of cells under these pathological conditions have been studied in depth, the current regulatory methods are often targeted at individual links or molecules. Due to the existence of cellular metabolic bypasses, heterogeneity, etc., single factors cannot be targeted. The regulation method currently cannot achieve ideal results, and there is still a lack of research and methods to regulate cell metabolism from a systemic level.
  • Metabolism in cells is divided into two parts, energy metabolism and material metabolism.
  • Energy metabolism mainly refers to the synthesis and decomposition of high-energy molecules such as ATP
  • material metabolism mainly refers to the synthesis and decomposition of biological molecules (proteins, lipids, sugars, etc.) based on energy supply such as ATP and NADPH.
  • These complex metabolic processes mainly occur in the nucleus, cytoplasmic matrix, mitochondria, chloroplasts, endoplasmic reticulum, and Golgi apparatus.
  • These cellular components may serve as sources of materials for systemic metabolic regulation of cells.
  • effective delivery is required, and cell membrane coating is an ideal membrane fusion delivery method.
  • the patent application number CN201610371113.1 discloses a mitochondria-targeted nanodrug delivery system and its preparation method and application. It can selectively locate in mitochondria through TPP and release chemotherapy drugs through ROS response.
  • the patent application number CN202011399804.5 discloses the construction and application of a type of cell endoplasmic reticulum-targeted nanodrug delivery system by modifying sulfonamides or sulfonylurea compounds with endoplasmic reticulum tropism into the nanocarriers. The constructed endoplasmic reticulum-targeting nanocompounds deliver drugs.
  • the present invention provides a biological material delivered by a specific cell-targeted metabolic system and its preparation method and application.
  • the biomaterial is based on cell membrane coating and delivers specific metabolic systems to specific cells through membrane fusion to achieve systematic metabolic regulation of specific cells.
  • the present invention provides a biological material delivered by a specific cell-targeted metabolic system.
  • the biological material is composed of the cell membrane of the target cell to be delivered and metabolic system components contained within.
  • the cell membranes of the target cells that need to be delivered include those of motor system-related cells, circulatory system-related cells, digestive system-related cells, urinary system-related cells, nervous system-related cells, germ cells, endocrine cells and tumor cells.
  • the cell membrane of the cells related to the movement system includes the cell membrane of chondrocytes, myocytes, osteoblasts, osteoclasts, and mesenchymal stem cells;
  • the cell membrane of the cells related to the circulatory system includes hematopoietic stem cells, monocytes, granulocytes Cell membranes of cells, macrophages, B lymphocytes, T lymphocytes, red blood cells, platelets, cardiomyocytes, and vascular endothelial cells;
  • the cell membranes of digestive system-related cells include hepatocytes, gastrointestinal epithelial cells, goblet cells, and pancreatic islets.
  • the cell membranes of cells; the cell membranes of urinary system-related cells include respiratory system cells such as alveolar cells and tracheal epithelial cells; the cell membranes of glomerular endothelial cells and renal tubular epithelial cells; the cell membranes of nervous system-related cells include neurons Cell membranes of cells, astrocytes, oligodendrocytes, microglia.
  • the cell membrane of the target cell that needs to be delivered is the cell membrane of chondrocytes, myocytes, monocytes, macrophages, endothelial cells, and epithelial cells.
  • the cell membrane of the target cell that needs to be delivered is a cell membrane of chondrocytes that has clear differentiation characteristics and can be targeted through intra-articular injection to avoid systemic effects.
  • the metabolic system includes the entire nucleus, cytoplasmic matrix, mitochondria, chloroplasts, endoplasmic reticulum and Golgi apparatus and part of their contents.
  • the metabolic system uses thylakoid vesicles, the content components of chloroplasts.
  • a method for preparing biomaterials delivered by a specific cell-targeted metabolic system including the following steps:
  • the metabolic system vesicles to be delivered are extracted, whole-sized, the cell membrane of the target cell to be delivered is extracted, and the cell membrane is encapsulated in the metabolic system to obtain cell membrane vesicles encapsulating the components of the metabolic system.
  • the metabolic system vesicles to be delivered are thylakoid vesicles, which are extracted by the following method:
  • the granulation process is ultrasonic extrusion, which is carried out in the following manner:
  • the metabolic system vesicles to be delivered were sonicated in a bath sonicator and repeatedly extruded using a polycarbonate porous membrane; the solution was then centrifuged at 3000g for 10 minutes; the pellet was resuspended in buffer D; the buffer The components of liquid D are HEPES-KOH, MgCl2 and sodium ascorbate.
  • the ultrasonic conditions of the ultrasonic instrument are: No. 2 horn, 20%-60% power, on for 2 seconds, off for 3 seconds, and working for 2 minutes.
  • the pore diameter of the above-mentioned polycarbonate membrane is 50-200 nm.
  • cell membrane extraction of the delivered target cells is performed in the following manner:
  • the Tris concentration is 10mM.
  • the MgCl 2 concentration is 1mM.
  • the loading process is carried out in the following manner:
  • methods include micropore extrusion, ultrasonic hydration, and microfluidics.
  • the encapsulation process adopts the filter membrane micropore gradient extrusion method, and the filter membrane micropore size gradient is 1000 nanometers, 400 nanometers, and 200 nanometers.
  • biomaterials delivered by a specific cell-targeted metabolic system applying biomaterials delivered by a specific cell-targeted metabolic system to target cells, allowing the target cells to take up the biomaterials and internalize the metabolic system, thereby realizing the metabolic system in specific functions within cells.
  • the application process includes adding biomaterials delivered by specific cell-targeted metabolic systems to the culture medium in an in vitro cell culture system, and delivering specific cell targets to specific cells through local injection, intravenous injection, etc. for in vivo use. Delivery of biological materials to the metabolic system.
  • the biological materials delivered by the specific cell-targeted metabolic system provided by the present invention have high targeting and high selectivity to target cells.
  • the biological materials delivered by the specific cell-targeted metabolic system provided by the present invention have an effective regulatory effect on key metabolic molecules of the target cells.
  • the biological materials delivered by the specific cell-targeted metabolic system provided by the present invention have significant therapeutic effects on diseases caused by cellular metabolism disorders.
  • Figure 1 is a flow cytometric analysis of biomaterials delivered by the chondrocyte-targeted thylakoid metabolism system in Example 1 being taken up by different cells in a mixed cell system. It shows that the uptake of chondrocytes is significantly higher than that of nucleus pulposus cells and adult cells. Fibrocytes, myosatellite cells and macrophages, indicating that the biomaterials delivered by the chondrocyte-targeted thylakoid metabolism system are highly targeted and selective to chondrocytes.
  • Figure 2 is a flow cytometric analysis of the uptake of biological materials delivered by the thylakoid metabolic system contained in the cell membrane of different cells by chondrocytes in Example 1, showing that the chondrocytes take up the biological materials delivered by the thylakoid metabolic system contained in the chondrocyte membrane.
  • the material is significantly higher than the biological material delivered by the thylakoid metabolic system contained in the cell membrane of nucleus pulposus cells, fibroblasts, myosatellite cells and macrophages, indicating that chondrocytes take up the delivery of the thylakoid metabolic system contained in the chondrocyte membrane.
  • Biological materials have tropism.
  • Figure 3 is a quantitative measurement of the key metabolic molecule ATP produced in chondrocytes by the biomaterials delivered by the chondrocyte-targeted thylakoid metabolism system in Example 1, showing that the thylakoid metabolism system can effectively increase the ATP content in chondrocytes.
  • Figure 4 is a fluorescence diagram showing how the biomaterials delivered by the chondrocyte-targeted thylakoid metabolism system in Example 1 regulate substance metabolism in chondrocytes, showing that the thylakoid metabolism system can effectively promote substance anabolism in chondrocytes.
  • Figure 5 is a joint transcriptomic and metabolomic analysis of the systemic regulation of metabolism in chondrocytes by biomaterials delivered by the chondrocyte-targeted thylakoid metabolism system of Example 1. It is shown that the thylakoid metabolic system can effectively promote oxidative phosphorylation and substance synthesis of chondrocytes, reduce glycolysis, and systemically stabilize the metabolic level of chondrocytes.
  • Figure 6 is safranin-fast green staining of the therapeutic effect of biomaterials delivered by the chondrocyte-targeted thylakoid metabolism system of Example 1 on osteoarthritis in mice. showed that the thylakoid metabolic system can effectively inhibit the progression of osteoarthritis by systemically regulating chondrocyte metabolism.
  • the present invention provides a biological material delivered by a specific cell-targeted metabolic system.
  • the biological material is composed of the cell membrane of the specific cell and the metabolic system components contained within.
  • Cell membrane of specific cells refers to the cell membrane of the target cell type that needs to be delivered, including cells related to the movement system such as chondrocytes, myocytes, osteoblasts, osteoclasts, mesenchymal stem cells, hematopoietic stem cells, monocytes, and granulocytes.
  • macrophages B lymphocytes, T lymphocytes, red blood cells, platelets, cardiomyocytes, vascular endothelial cells and other circulatory system-related cells, liver cells, gastrointestinal epithelial cells, goblet cells, pancreatic islet cells and other digestive system-related cells, alveoli cells, respiratory system cells such as tracheal epithelial cells, urinary system-related cells such as glomerular endothelial cells and renal tubular epithelial cells, nervous system-related cells such as neuronal cells, astrocytes, oligodendrocytes, and microglia. cells, as well as cell membranes of germ cells, endocrine cells, tumor cells and other cells.
  • the cell membranes of cells with clear differentiation characteristics such as chondrocytes, myocytes, monocytes, macrophages, endothelial cells, epithelial cells, etc. are used, and more preferably , using the cell membrane of chondrocytes that are well differentiated and can be targeted via intra-articular injection, avoiding systemic effects.
  • the "metabolic system” includes the entire nucleus, cytoplasmic matrix, mitochondria, chloroplasts, endoplasmic reticulum, and Golgi apparatus, as well as some of their contents.
  • chloroplasts are used, and more preferably, thylakoid vesicles, the content components of chloroplasts, are used.
  • the present invention provides a method for preparing biomaterials delivered by specific cell-targeted metabolic systems. Includes the following steps:
  • Step 1 The metabolic system vesicles to be delivered, preferably thylakoid vesicles, are extracted by the following method:
  • Plant green leaf material and cold buffer A are mixed at a ratio of 1g:1mL using a mixer.
  • the resulting solution was pressed through fine mesh gauze and the filtrate was centrifuged at 3000 ⁇ i>g for 10 min. Gently resuspend the pellet in buffer B.
  • This solution was added to 80/40% Percoll gradient solution. Collect the parts containing green layers to obtain thylakoids.
  • the above buffer A components are 330mM sorbitol, 50mM HEPES-KOH pH 7.6, 5mM MgCl 2 , and 0.1% BSA.
  • the above buffer B components are 300mM sorbitol, 50mM HEPES-KOH pH 7.6, 5mM MgCl 2 , 2mM EDTA and 10mM L-sodium ascorbate.
  • the preparation method of the above 80/40% Percoll gradient solution is: 80% Percoll: 80% v/v Percoll, 10mM L-sodium ascorbate, 300mM sucrose, 66mM MOPS-KOH pH 7.6; 40% Percoll: 40% v/v Percoll, 10mM L-sodium ascorbate, 300mM sucrose, 25mM MOPS-KOH pH 7.6.
  • Step 2 The granulation process, preferably ultrasonic extrusion, is carried out in the following manner:
  • Step 3 Extraction of specific cell membranes is carried out in the following way:
  • the above buffer E components are mannitol, sucrose, Tris, MgCl 2 , KCl, PMSF, EDTA-free protease inhibitors, DNase and RNase, and the pH is 7.4.
  • the Tris concentration is 5-30mM, and more preferably, the Tris concentration is 10mM.
  • the MgCl 2 concentration is 1-20mM, and more preferably, the MgCl 2 concentration is 1mM.
  • Step 4 The loading process is carried out in the following ways:
  • Loading metabolic system components into cell membrane vesicles includes methods such as micropore extrusion, ultrasonic hydration, and microfluidics.
  • the filter membrane microporous gradient extrusion method is used. More preferably, the pore size gradient of the filter membrane is 1000 nanometers, 400 nanometers, and 200 nanometers.
  • the present invention provides applications for the delivery of biomaterials to specific cell-targeted metabolic systems.
  • the application content is as follows:
  • Biomaterials delivered by a specific cell-targeted metabolic system are applied to the target cells, allowing the target cells to take up the biological materials and internalize the metabolic system to achieve the specific functions of the metabolic system within the cell.
  • the above-mentioned "application" process includes adding biomaterials delivered by specific cell-targeted metabolic systems to the culture medium in the in vitro cell culture system, and delivering specific cell-targeted metabolism to specific cells through local injection, intravenous injection, etc. during in vivo use. Systemically delivered biomaterials.
  • the present invention can also use the above-mentioned other metabolic system components, cell membranes of specific cells, and other encapsulation processes, all of which can achieve the same technical effects.
  • Example 1 Cartilage cell membrane filter microporous gradient extrusion method for articular cavity injection of encapsulated thylakoids for the treatment of osteoarthritis
  • Step 1 The metabolic system thylakoid vesicles to be delivered are extracted by the following method:
  • Plant green leaf material and cold buffer A are mixed at a ratio of 1g:1mL using a mixer.
  • the resulting solution was pressed through fine mesh gauze and the filtrate was centrifuged at 3000 ⁇ i>g for 10 min. Gently resuspend the pellet in buffer B.
  • This solution was added to 80/40% Percoll gradient solution. Collect the parts containing green layers to obtain thylakoids.
  • the above buffer A components are 330mM sorbitol, 50mM HEPES-KOH pH 7.6, 5mM MgCl 2 , and 0.1% BSA.
  • the above buffer B components are 300mM sorbitol, 50mM HEPES-KOH pH 7.6, 5mM MgCl 2 , 2mM EDTA and 10mM L-sodium ascorbate.
  • the preparation method of the above 80/40% Percoll gradient solution is: 80% Percoll: 80% v/v Percoll, 10mM L-sodium ascorbate, 300mM sucrose, 66mM MOPS-KOH pH 7.6; 40% Percoll: 40% v/v Percoll, 10mM L-sodium ascorbate, 300mM sucrose, 25mM MOPS-KOH pH 7.6.
  • Step 2 Granulation process and ultrasonic extrusion method are carried out in the following ways:
  • chondrocytes Collect the chondrocytes and resuspend them in buffer E at 4 degrees Celsius. Use an insulin needle to whip 20 times repeatedly to lyse the cells. Mix them with 1M sucrose buffer E solution at a ratio of 3:1 to a final concentration of 0.25M sucrose buffer E. Solution, centrifuge at 2000g for 10 minutes, take the supernatant and centrifuge at 3000g for 30 minutes. The precipitate is the cell membrane.
  • the above buffer E components are mannitol, sucrose, Tris, MgCl 2 , KCl, PMSF, EDTA-free protease inhibitors, DNase and RNase, and the pH is 7.4.
  • the Tris concentration is 5-30mM, and more preferably, the Tris concentration is 10mM.
  • the MgCl 2 concentration is 1-20mM, and more preferably, the MgCl 2 concentration is 1mM.
  • Step 4 The loading process is carried out in the following ways:
  • the metabolic system components are loaded into cell membrane vesicles, and the filter membrane micropore gradient extrusion method is used.
  • the filter membrane micropore size gradient is 1000 nanometers, 400 nanometers, and 200 nanometers.
  • Example 2 Tail vein injection of mitochondria encapsulated by hepatocyte membrane filter microporous gradient extrusion method for the treatment of acute hepatitis
  • Step 1 The metabolic system mitochondrial vesicles to be delivered are extracted by the following method:
  • the above buffer E components are mannitol, sucrose, Tris, MgCl 2 , KCl, PMSF, EDTA-free protease inhibitors, DNase and RNase, and the pH is 7.4.
  • the Tris concentration is 5-30mM, and more preferably, the Tris concentration is 10mM.
  • the MgCl 2 concentration is 1-20mM, and more preferably, the MgCl 2 concentration is 1mM.
  • Step 2 Granulation process and ultrasonic extrusion method are carried out in the following ways:
  • Step 3 Hepatocyte membrane extraction is carried out in the following way:
  • the above buffer E components are mannitol, sucrose, Tris, MgCl 2 , KCl, PMSF, EDTA-free protease inhibitors, DNase and RNase, and the pH is 7.4.
  • the Tris concentration is 5-30mM, and more preferably, the Tris concentration is 10mM.
  • the MgCl 2 concentration is 1-20mM, and more preferably, the MgCl 2 concentration is 1mM.
  • Step 4 The loading process is carried out in the following ways:
  • the mitochondrial vesicles of the metabolic system components were loaded into the liver cell membrane vesicles, and the filter membrane pore gradient extrusion method was used.
  • the filter membrane pore size gradient was 1000 nanometers, 400 nanometers, and 200 nanometers.
  • Example 3 Mononuclear cell membrane microfluidic method for encapsulating osteoblast cytoplasmic matrix
  • Step 1 The metabolic system osteoblast cytoplasmic matrix to be delivered is extracted by the following method:
  • the above buffer E components are mannitol, sucrose, Tris, MgCl 2 , KCl, PMSF, EDTA-free protease inhibitors, DNase and RNase, and the pH is 7.4.
  • the Tris concentration is 5-30mM, and more preferably, the Tris concentration is 10mM.
  • the MgCl 2 concentration is 1-20mM, and more preferably, the MgCl 2 concentration is 1mM.
  • the above buffer E components are mannitol, sucrose, Tris, MgCl 2 , KCl, PMSF, EDTA-free protease inhibitors, DNase and RNase, and the pH is 7.4. The Tris concentration is 10mM and the MgCl2 concentration is 1mM.
  • Step 3 The loading process is carried out in the following ways:
  • the biomaterials delivered by the chondrocyte membrane-encapsulated thylakoid metabolic system were injected into the joint cavity of arthritic mice through joint injection.
  • the biological materials delivered by the specific cell-targeted metabolic system obtained in Examples 2 and 3 were respectively subjected to a mixed cell culture system uptake test, different cell membrane inclusion uptake tests, quantitative measurement of key metabolic molecules, fluorescence quantification of material metabolism, and systematic regulation of metabolism. Joint analysis of transcriptomics and metabolomics, tissue section staining of in vivo therapeutic effects, and the results of osteoarthritis treatment results using chondrocyte membrane filter micropore gradient extrusion method for articular cavity injection of thylakoid Similarly, this indicates that the preparation and application of biomaterials delivered by specific cell-targeted metabolic systems can be achieved through the above-mentioned other metabolic system components, the cell membrane of specific cells, and other encapsulation processes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Rheumatology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Medical Informatics (AREA)
  • Mycology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

提供一种特定细胞靶向的代谢系统递送的生物材料及制备方法和应用。所述生物材料基于细胞膜包被,通过膜融合方式将特定代谢系统递送到特定细胞中,实现对特定细胞的系统化代谢调节作用,为细胞代谢系统性调节策略设计的生物材料的制备和应用提供新思路。

Description

特定细胞靶向的代谢系统递送的生物材料及制备方法和应用 技术领域
本发明设涉及一种生物材料,具体涉及一种特定细胞靶向的代谢系统递送的生物材料及其制备方法和应用。
背景技术
细胞的代谢稳态对细胞正常功能的发挥而言十分重要。在炎症、衰老等病理状态下,细胞的代谢模式会发生系统性变化。虽然目前对于细胞在这些病理状态下的代谢通路的分子机制的研究已经较为深入,但是目前的调节方式常针对于个别环节或者分子,由于细胞代谢旁路、异质性等的存在,针对单因素的调节方式目前无法取得理想效果,尚且缺乏从系统层面调节细胞代谢的研究和方法。
细胞中的代谢分为两个部分,能量代谢和物质代谢。能量代谢主要指ATP等高能分子的合成和分解,物质代谢主要指基于ATP、NADPH等供能基础上的生物分子(蛋白、脂质、糖类等)的合成和分解。这些复杂的代谢过程主要发生于细胞核、细胞质基质、线粒体、叶绿体、内质网和高尔基体中,这些细胞组分可能作为细胞系统化代谢调节的材料来源。同时,为了将这些代谢系统转入特定细胞,需要进行有效的递送,而细胞膜包被是一种理想的膜融合型递送方式。
首先,目前对于针对上述代谢系统的发明主要集中于靶向代谢系统本身的药物治疗。申请号为CN201610371113.1的专利公布了一种线粒体靶向的纳米药物递送系统及其制备方法与应用,通过TPP可选择性定位于线粒体,通过ROS响应释放化疗药物。申请号为CN202011399804.5的专利公布了一类细胞内质网靶向纳米载药系统的构建与应用,通过将具有内质网趋向性的磺酰胺或是磺酰脲类化合物修饰在纳米载体中构建的内质网靶向纳米化合物,借此递送药物。其次,目前对于细胞膜的应用主要限于小分子、蛋白、基因等的递送。申请号为CN201810588367.8的专利公布了一种仿自噬的免疫细胞负载抗肿瘤治疗剂的制备方法,通过利用带有凋亡基团的细胞膜包封抗肿瘤治疗剂,其中应用仅限于肿瘤细胞膜,且内部包载物仅限于药物纳米颗粒。诸如此类的专利未能设计将整个代谢系统递送到目标细胞,从而实现特定细胞的到系统化代谢调节作用。因此需要制备一种特定细胞靶向的代谢系统递送的生物材料,通过细胞膜进行膜融合型 的递送,将代谢系统递送至特定细胞内,从而实现系统化代谢调节,有效保持细胞的代谢状态。
发明内容
本发明针对现有技术的不足,提供了一种特定细胞靶向的代谢系统递送的生物材料及其制备方法和应用。所述生物材料基于细胞膜包被,通过膜融合方式将特定代谢系统递送到特定细胞中,实现对特定细胞的系统化代谢调节作用。
为实现上述目的,本发明提供以下技术方案:
本发明提供了一种特定细胞靶向的代谢系统递送的生物材料,该生物材料由需要进行递送的目标细胞的细胞膜和内部包载的代谢系统成分构成。
作为优选,所述的需要进行递送的目标细胞的细胞膜,包括运动系统相关细胞、循环系统相关细胞、消化系统相关细胞、泌尿系统相关细胞、神经系统相关细胞、生殖细胞、内分泌细胞和肿瘤细胞的细胞膜;所述的运动系统相关细胞的细胞膜包括软骨细胞、肌细胞、成骨细胞、破骨细胞、间充干细胞的细胞膜;所述的循环系统相关细胞的细胞膜包括造血干细胞、单核细胞、粒细胞、巨噬细胞、B淋巴细胞、T淋巴细胞、红细胞、血小板、心肌细胞、血管内皮细胞的细胞膜;所述的消化系统相关细胞的细胞膜包括肝细胞、胃肠上皮细胞、杯状细胞、胰岛细胞的细胞膜;所述的泌尿系统相关细胞的细胞膜包括肺泡细胞、气管上皮细胞等呼吸系统细胞,肾小球内皮细胞、肾小管上皮细胞的细胞膜;所述的神经系统相关细胞的细胞膜包括神经元细胞、星型胶质细胞、少突胶质细胞、小胶质细胞的细胞膜。
作为优选,所述的需要进行递送的目标细胞的细胞膜,采用软骨细胞、肌细胞、单核细胞、巨噬细胞、内皮细胞、上皮细胞的细胞膜。
作为优选,所述的需要进行递送的目标细胞的细胞膜,采用分化特征明确且可通过关节腔注射靶向,避免全身影响的软骨细胞的细胞膜。
作为优选,所述的代谢系统包括细胞核、细胞质基质、线粒体、叶绿体、内质网和高尔基体的整体及其部分内容物。
作为优选,所述的代谢系统采用叶绿体的内容物成分类囊体囊泡。
一种特定细胞靶向的代谢系统递送的生物材料的制备方法,包括以下步骤:
提取待递送的代谢系统囊泡,进行整粒,提取递送的目标细胞的细胞膜,将细胞膜包载代谢系统,得到包载代谢系统成分的细胞膜囊泡。
作为优选,待递送的代谢系统囊泡,为类囊体囊泡,由以下方式提取:
植物绿叶材料与冷缓冲液A使用搅拌机按1g:1mL比例混合;将所得溶液压过细网眼纱布,并将滤液以3000g离心10分钟;将沉淀重悬于缓冲液B中;该溶液加在80/40%Percoll梯度液;将含有绿色层面的部分收集,得到类囊体;所述的缓冲液A成分为山梨糖醇、pH 7.6的HEPES-KOH、MgCl 2和0.1%BSA;所述的缓冲液B成分为山梨糖醇、pH 7.6的HEPES-KOH、MgCl 2、EDTA、L-抗坏血酸钠。
作为优选,所述的整粒过程为超声挤出法,由以下方式进行:
将待递送的代谢系统囊泡在浴式超声仪中超声处理,使用聚碳酸酯多孔膜反复挤出;然后将溶液以3000g离心10分钟;将沉淀重新悬浮在缓冲液D中;所述的缓冲液D成分为HEPES-KOH、MgCl2和抗坏血酸钠。
作为优选,所述的超声仪的超声条件为:2号变幅杆,20%-60%功率,开2秒,关3秒,工作2分钟。
作为优选,上述聚碳酸酯膜的孔径为50-200nm。
作为优选,递送的目标细胞的细胞膜提取由以下方式进行:
收集细胞重悬于4摄氏度的缓冲液E中,使用胰岛素针反复抽打20次以裂解细胞,将其与1M蔗糖缓冲液E溶液混合至以3:1混合至终浓度0.25M蔗糖缓冲液E溶液,2000g离心10分钟,取上清后3000g离心30分钟,沉淀即为细胞膜;所述的缓冲液E成分为甘露醇、蔗糖、Tris、MgCl 2、KCl、PMSF、不含EDTA的蛋白酶抑制剂、DNA酶和RNA酶,pH为7.4;所述的Tris浓度为5-30mM,所述的MgCl 2浓度为1-20mM。
作为优选,所述的Tris浓度为10mM。
作为优选,所述的MgCl 2浓度为1mM。
作为优选,包载过程由以下方式进行:
将代谢系统成分装载到细胞膜囊泡内,方法包括微孔挤出、超声水化、微流控。
作为优选,包载过程采用滤膜微孔梯度挤出法,滤膜微孔孔径梯度为1000纳米、400纳米、200纳米。
一种特定细胞靶向的代谢系统递送的生物材料的应用;向目标细胞施加特定细胞靶向的代谢系统递送的生物材料,使目标细胞摄取生物材料,并内化该代谢系统,实现代谢系统在细胞内的特定功能。
作为优选,所述的施加过程包括体外细胞培养体系中向培养基中添加特定细胞靶向的代谢系统递送的生物材料,以及体内使用中通过局部注射、静脉注射等方式向特定细胞输送特定细胞靶向的代谢系统递送的生物材料。
本发明的有益效果:
1)本发明提供的特定细胞靶向的代谢系统递送的生物材料,其具有对目标细胞的高靶向性和高选择性。
2)本发明提供的特定细胞靶向的代谢系统递送的生物材料,具有有效的目标细胞的关键代谢分子的调控作用。
3)本发明提供的特定细胞靶向的代谢系统递送的生物材料,实现了目标细胞的系统性代谢状态的调整。
4)本发明提供的特定细胞靶向的代谢系统递送的生物材料,对细胞代谢失调的疾病具有显著的治疗作用。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供以下附图进行说明:
图1为实施例1的软骨细胞靶向的类囊体代谢系统递送的生物材料在混合细胞体系中被不同细胞摄取的流式细胞计数分析,显示软骨细胞摄取量明显高于髓核细胞、成纤维细胞、肌卫星细胞和巨噬细胞,说明软骨细胞靶向的类囊体代谢系统递送的生物材料对软骨细胞具有高度靶向性和选择性。
图2为实施例1的不同细胞细胞膜包载的类囊体代谢系统递送的生物材料被软骨细胞摄取的流式细胞计数分析,显示软骨细胞摄取软骨细胞膜包载的类囊体代谢系统递送的生物材料明显高于髓核细胞、成纤维细胞、肌卫星细胞和巨噬细胞的细胞膜包载的类囊体代谢系统递送的生物材料,说明软骨细胞对摄取软骨细胞膜包载的类囊体代谢系统递送的生物材料具有趋向性。
图3为实施例1的软骨细胞靶向的类囊体代谢系统递送的生物材料在软骨细胞中产生关键代谢分子ATP的定量测量,显示类囊体代谢系统可以有效提升软骨细胞内ATP含量。
图4为实施例1的软骨细胞靶向的类囊体代谢系统递送的生物材料在软骨细胞中调控物质代谢的荧光图,显示类囊体代谢系统可以有效促进软骨细胞内物质合成代谢。
图5为实施例1的软骨细胞靶向的类囊体代谢系统递送的生物材料在软骨细胞中系统性调控代谢的转录组学和代谢组学联合分析。显示类囊体代谢系统可以有效促进软骨细胞氧化磷酸化和物质合成,降低糖酵解,系统性稳定软骨细胞的代谢水平。
图6为实施例1的软骨细胞靶向的类囊体代谢系统递送的生物材料对小鼠骨关节炎的治疗效果的番红固绿染色。显示类囊体代谢系统可以通过系统性调节软骨细胞代谢而有效抑制骨关节炎进展。
具体实施方式
下面结合实施例对本发明提供的一种特定细胞靶向的代谢系统递送的生物材料及其制备方法和应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
本发明提供的特定细胞靶向的代谢系统递送的生物材料,该生物材料由特定细胞的细胞膜和内部包载的代谢系统成分构成。“特定细胞的细胞膜”指需要进行递送的目标细胞类型的细胞膜,包括软骨细胞、肌细胞、成骨细胞、破骨细胞、间充干细胞等运动系统相关细胞,造血干细胞、单核细胞、粒细胞、巨噬细胞、B淋巴细胞、T淋巴细胞、红细胞、血小板、心肌细胞、血管内皮细胞等循环系统相关细胞,肝细胞、胃肠上皮细胞、杯状细胞、胰岛细胞等消化系统相关细胞,肺泡细胞、气管上皮细胞等呼吸系统细胞,肾小球内皮细胞、肾小管上皮细胞等泌尿系统相关细胞,神经元细胞、星型胶质细胞、少突胶质细胞、小胶质细胞等神经系统相关细胞,以及生殖细胞、内分泌细胞、肿瘤细胞等细胞的细胞膜,优选的,采用软骨细胞、肌细胞、单核细胞、巨噬细胞、内皮细胞、上皮细胞等分化特征明确的细胞的细胞膜,更优选的,采用分化特征明确且可通过关节腔注射靶向,避免全身影响的软骨细胞的细胞膜。“代谢系统”包括细胞核、细胞质基质、线粒体、叶绿体、内质网和高尔基体的整体及其部分内容物。优选的,采用叶绿体,更优选的,采用叶绿体的内容物成分类囊体囊泡。
本发明提供的特定细胞靶向的代谢系统递送的生物材料的制备方法。包括以下步骤:
步骤1、待递送的代谢系统囊泡,优选的,类囊体囊泡,由以下方式提取:
植物绿叶材料与冷缓冲液A使用搅拌机按1g:1mL比例混合。将所得溶液压过细网眼纱布,并将滤液以3000g离心10分钟。将沉淀轻轻重悬于缓冲液B中。该溶液加在80/40%Percoll梯度液。将含有绿色层面的部分收集,得到类囊体。上述缓冲液A成分为330mM山梨糖醇,50mM HEPES-KOH pH 7.6,5mM MgCl 2,0.1%BSA。上述缓冲液B成分为300mM山梨糖醇、50mM HEPES-KOH pH 7.6、5mM MgCl 2、2mM EDTA和10mM L-抗坏血酸钠。上述80/40%Percoll梯度液配制方法为:80%Percoll:80%v/v Percoll、10mM L-抗坏血酸钠、300mM 蔗糖、66mM MOPS-KOH pH 7.6;40%Percoll:40%v/v Percoll、10mM L-抗坏血酸钠、300mM蔗糖、25mM MOPS-KOH pH 7.6。
步骤2、整粒过程,优选的,超声挤出法,由以下方式进行:
将待递送的代谢系统囊泡在浴式超声仪中超声处理(2号变幅杆,20%-60%功率,开2秒,关3秒,工作2分钟),使用100纳米孔径聚碳酸酯多孔膜反复挤出。然后将溶液以3000g离心10分钟。将沉淀重新悬浮在缓冲液D中。上述缓冲液D成分为10mM HEPES-KOH、10mM MgCl 2、10mM L-抗坏血酸钠。
步骤3、特定细胞膜提取,由以下方式进行:
收集细胞重悬于4摄氏度的缓冲液E中,使用胰岛素针反复抽打20次以裂解细胞,将其与1M蔗糖缓冲液E溶液混合至以3:1混合至终浓度0.25M蔗糖缓冲液E溶液,2000g离心10分钟,取上清后3000g离心30分钟,沉淀即为细胞膜。上述缓冲液E成分为甘露醇、蔗糖、Tris、MgCl 2、KCl、PMSF、不含EDTA的蛋白酶抑制剂、DNA酶和RNA酶,pH为7.4。Tris浓度为5-30mM,更优选的,Tris浓度为10mM。MgCl 2浓度为1-20mM,更优选的,MgCl 2浓度为1mM。
步骤4、包载过程,由以下方式进行:
将代谢系统成分装载到细胞膜囊泡内,包括微孔挤出、超声水化、微流控等方法。优选的,采用滤膜微孔梯度挤出法。更优选的,滤膜微孔孔径梯度为1000纳米、400纳米、200纳米。
本发明提供的特定细胞靶向的代谢系统递送的生物材料的应用。应用内容如下:
向目标细胞施加特定细胞靶向的代谢系统递送的生物材料,使目标细胞摄取生物材料,并内化该代谢系统,实现代谢系统在细胞内的特定功能。上述“施加”过程包括体外细胞培养体系中向培养基中添加特定细胞靶向的代谢系统递送的生物材料,以及体内使用中通过局部注射、静脉注射等方式向特定细胞输送特定细胞靶向的代谢系统递送的生物材料。
本发明还可以使用上述其他代谢系统成分、的特定细胞的细胞膜、其他的包载过程,均可获得相同的技术效果。
实施例1、软骨细胞膜滤膜微孔梯度挤出法包载类囊体关节腔注射用于骨关节炎治疗
步骤1、待递送的代谢系统类囊体囊泡,由以下方式提取:
植物绿叶材料与冷缓冲液A使用搅拌机按1g:1mL比例混合。将所得溶液压过细网眼纱布,并将滤液以3000g离心10分钟。将沉淀轻轻重悬于缓冲液B中。该溶液加在80/40%Percoll梯度液。将含有绿色层面的部分收集,得到类囊体。上述缓冲液A成分为330mM山梨糖醇,50mM HEPES-KOH pH 7.6,5mM MgCl 2,0.1%BSA。上述缓冲液B成分为300mM山梨糖醇、50mM HEPES-KOH pH 7.6、5mM MgCl 2、2mM EDTA和10mM L-抗坏血酸钠。上述80/40%Percoll梯度液配制方法为:80%Percoll:80%v/v Percoll、10mM L-抗坏血酸钠、300mM蔗糖、66mM MOPS-KOH pH 7.6;40%Percoll:40%v/v Percoll、10mM L-抗坏血酸钠、300mM蔗糖、25mM MOPS-KOH pH 7.6。
步骤2、整粒过程超声挤出法,由以下方式进行:
将待递送的代谢系统囊泡在浴式超声仪中超声处理(2号变幅杆,20%-60%功率,开2秒,关3秒,工作2分钟),使用100纳米孔径聚碳酸酯多孔膜反复挤出。然后将溶液以3000g离心10分钟。将沉淀重新悬浮在缓冲液D中。上述缓冲液D成分为10mM HEPES-KOH、10mM MgCl 2、10mM L-抗坏血酸钠。
步骤3、软骨细胞膜提取,由以下方式进行:
收集软骨细胞重悬于4摄氏度的缓冲液E中,使用胰岛素针反复抽打20次以裂解细胞,将其与1M蔗糖缓冲液E溶液混合至以3:1混合至终浓度0.25M蔗糖缓冲液E溶液,2000g离心10分钟,取上清后3000g离心30分钟,沉淀即为细胞膜。上述缓冲液E成分为甘露醇、蔗糖、Tris、MgCl 2、KCl、PMSF、不含EDTA的蛋白酶抑制剂、DNA酶和RNA酶,pH为7.4。Tris浓度为5-30mM,更优选的,Tris浓度为10mM。MgCl 2浓度为1-20mM,更优选的,MgCl 2浓度为1mM。
步骤4、包载过程,由以下方式进行:
将代谢系统成分装载到细胞膜囊泡内,采用滤膜微孔梯度挤出法,滤膜微孔孔径梯度为1000纳米、400纳米、200纳米。
实施例2、肝细胞膜滤膜微孔梯度挤出法包载线粒体尾静脉注射用于急性肝炎治疗
步骤1、待递送的代谢系统线粒体囊泡,由以下方式提取:
收集肝细胞重悬于4摄氏度的缓冲液E中,使用胰岛素针反复抽打20次以裂解细胞,将其与1M蔗糖缓冲液E溶液混合至以3:1混合至终浓度0.25M蔗糖缓冲液E溶液。该溶液加在Opti-prep梯度液离心,将含有线粒体比重梯度的 部分收集,得到线粒体。上述缓冲液E成分为甘露醇、蔗糖、Tris、MgCl 2、KCl、PMSF、不含EDTA的蛋白酶抑制剂、DNA酶和RNA酶,pH为7.4。Tris浓度为5-30mM,更优选的,Tris浓度为10mM。MgCl 2浓度为1-20mM,更优选的,MgCl 2浓度为1mM。
步骤2、整粒过程超声挤出法,由以下方式进行:
将待递送的代谢系统囊泡在浴式超声仪中超声处理(2号变幅杆,20%-60%功率,开2秒,关3秒,工作2分钟),使用100纳米孔径聚碳酸酯多孔膜反复挤出。然后将溶液以3000g离心10分钟。将沉淀重新悬浮在缓冲液D中。上述缓冲液D成分为10mM HEPES-KOH、10mM MgCl 2、10mM L-抗坏血酸钠。
步骤3、肝细胞膜提取,由以下方式进行:
收集肝细胞重悬于4摄氏度的缓冲液E中,使用胰岛素针反复抽打20次以裂解细胞,将其与1M蔗糖缓冲液E溶液混合至以3:1混合至终浓度0.25M蔗糖缓冲液E溶液,2000g离心10分钟,取上清后3000g离心30分钟,沉淀即为细胞膜。上述缓冲液E成分为甘露醇、蔗糖、Tris、MgCl 2、KCl、PMSF、不含EDTA的蛋白酶抑制剂、DNA酶和RNA酶,pH为7.4。Tris浓度为5-30mM,更优选的,Tris浓度为10mM。MgCl 2浓度为1-20mM,更优选的,MgCl 2浓度为1mM。
步骤4、包载过程,由以下方式进行:
将代谢系统成分线粒体囊泡装载到肝细胞膜囊泡内,采用滤膜微孔梯度挤出法,滤膜微孔孔径梯度为1000纳米、400纳米、200纳米。
实施例3、单核细胞膜微流控法包载成骨细胞细胞质基质
步骤1、待递送的代谢系统成骨细胞细胞质基质,由以下方式提取:
收集成骨细胞重悬于4摄氏度的缓冲液E中,使用胰岛素针反复抽打20次以裂解细胞,将其与1M蔗糖缓冲液E溶液混合至以3:1混合至终浓度0.25M蔗糖缓冲液E溶液。2000g离心10分钟。上清以3000g离心10分钟。将上清加入等量乙醇和1/4量的氯仿混匀。离心12000rpm 5min,弃上层。加500ul乙醇,平动混匀,离心12000rpm 5min,弃上层后将沉淀重悬,即为胞质蛋白。上述缓冲液E成分为甘露醇、蔗糖、Tris、MgCl 2、KCl、PMSF、不含EDTA的蛋白酶抑制剂、DNA酶和RNA酶,pH为7.4。Tris浓度为5-30mM,更优选的,Tris浓度为10mM。MgCl 2浓度为1-20mM,更优选的,MgCl 2浓度为1mM。
步骤2、单核细胞膜提取,由以下方式进行:
收集单核细胞重悬于4摄氏度的缓冲液E中,使用胰岛素针反复抽打20次以裂解细胞,将细胞匀浆与1M蔗糖缓冲液E溶液混合至以3:1混合至终浓度0.25M蔗糖缓冲液E溶液,2000g离心10分钟,取上清后3000g离心30分钟,沉淀即为细胞膜。上述缓冲液E成分为甘露醇、蔗糖、Tris、MgCl 2、KCl、PMSF、不含EDTA的蛋白酶抑制剂、DNA酶和RNA酶,pH为7.4。Tris浓度为10mM,MgCl 2浓度为1mM。
步骤3、包载过程,由以下方式进行:
将单核细胞膜溶于乙醇,将成骨细胞细胞质基质蛋白溶于水,通过微流控V字芯片,将成骨细胞细胞质基质蛋白水溶液包载入含有细胞膜液流中,并通过透析去除乙醇,制备单核细胞膜包载的成骨细胞细胞质基质蛋白。
实施例1中的软骨细胞靶向的类囊体代谢系统递送的生物材料在混合细胞体系中被不同细胞摄取的流式细胞计数分析
1、将软骨细胞、髓核细胞、成纤维细胞、肌卫星细胞和巨噬细胞混合培养。
2、将软骨细胞靶向的类囊体代谢系统递送的生物材料加入到混合培养体系中。
3、消化获取细胞,进行流式分析。显示软骨细胞摄取量明显高于髓核细胞、成纤维细胞、肌卫星细胞和巨噬细胞,说明软骨细胞靶向的类囊体代谢系统递送的生物材料对软骨细胞具有高度靶向性和选择性。如图1。
实施例1中的不同细胞细胞膜包载的类囊体代谢系统递送的生物材料被软骨细胞摄取的流式细胞计数分析
1、将软骨细胞、髓核细胞、成纤维细胞、肌卫星细胞和巨噬细胞分别提取细胞膜并包载代谢系统成分类囊体。
2、将不同细胞膜包载的类囊体代谢系统递送的生物材料加入到软骨细胞培养体系中。
3、消化获取细胞,进行流式分析。显示软骨细胞摄取软骨细胞膜包载的类囊体代谢系统递送的生物材料明显高于髓核细胞、成纤维细胞、肌卫星细胞和巨噬细胞的细胞膜包载的类囊体代谢系统递送的生物材料,说明软骨细胞对摄取软骨细胞膜包载的类囊体代谢系统递送的生物材料具有趋向性。如图2。
实施例1中软骨细胞靶向的类囊体代谢系统递送的生物材料在软骨细胞中产生关键代谢分子ATP的定量测量
1、将软骨细胞膜包载的类囊体代谢系统递送的生物材料加入到软骨细胞培养体系中。
2、对培养体系施加不同梯度的光照时间和光照强度。
3、结果显示类囊体代谢系统可以有效提升软骨细胞内ATP含量。如图3。
实施例1中软骨细胞靶向的类囊体代谢系统递送的生物材料在软骨细胞中调控物质代谢的荧光图
1、将软骨细胞膜包载的类囊体代谢系统递送的生物材料加入到软骨细胞和炎症软骨细胞培养体系中。
2、光照治疗后,对细胞进行固定,并分别加一抗和荧光二抗,观察合成代谢及分解代谢指标。
3、显示类囊体代谢系统可以有效促进软骨细胞内物质合成代谢。如图4。
实施例1中软骨细胞靶向的类囊体代谢系统递送的生物材料在软骨细胞中系统性调控代谢的转录组学和代谢组学联合分析
1、将软骨细胞膜包载的类囊体代谢系统递送的生物材料加入到软骨细胞和炎症软骨细胞培养体系中。
2、收集软骨细胞,进行转录组和代谢组测序。
3、对测序结果进行联合分析,结果显示类囊体代谢系统可以有效促进软骨细胞氧化磷酸化和物质合成,降低糖酵解,系统性稳定软骨细胞的代谢水平。如图5。
实施例1中软骨细胞靶向的类囊体代谢系统递送的生物材料对小鼠骨关节炎的治疗效果的番红固绿染色
1、将软骨细胞膜包载的类囊体代谢系统递送的生物材料通过关节腔注射施加到关节炎小鼠关节腔中。
2、收集小鼠关节组织,固定后切片进行番红固绿染色。
3、结果显示类囊体代谢系统可以通过系统性调节软骨细胞代谢而有效抑制骨关节炎进展。如图6。
对实施例2、3所得的特定细胞靶向的代谢系统递送的生物材料分别进行混合细胞培养体系摄取试验、不同细胞膜包载摄取试验、关键代谢分子定量测量、物质代谢荧光定量、系统性调控代谢的转录组学和代谢组学联合分析、在体治疗效果的组织切片染色,与实施例1中软骨细胞膜滤膜微孔梯度挤出法包载类囊体关节腔注射用于骨关节炎治疗结果相似,这表明可通过上述其他代谢系统成分、 的特定细胞的细胞膜、其他的包载过程,实现特定细胞靶向的代谢系统递送的生物材料的制备和应用。
以上所述仅是本发明的优选实施方式,应当指出,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本技术领域的技术人员来应当理解,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围,不偏离本发明权利要求书所限定的范围。

Claims (18)

  1. 特定细胞靶向的代谢系统递送的生物材料,其特征在于:该生物材料由需要进行递送的目标细胞的细胞膜和内部包载的代谢系统成分构成。
  2. 根据权利要求1所述的特定细胞靶向的代谢系统递送的生物材料,其特征在于:所述的需要进行递送的目标细胞的细胞膜,包括运动系统相关细胞、循环系统相关细胞、消化系统相关细胞、泌尿系统相关细胞、神经系统相关细胞、生殖细胞、内分泌细胞和肿瘤细胞的细胞膜;所述的运动系统相关细胞的细胞膜包括软骨细胞、肌细胞、成骨细胞、破骨细胞、间充干细胞的细胞膜;所述的循环系统相关细胞的细胞膜包括造血干细胞、单核细胞、粒细胞、巨噬细胞、B淋巴细胞、T淋巴细胞、红细胞、血小板、心肌细胞、血管内皮细胞的细胞膜;所述的消化系统相关细胞的细胞膜包括肝细胞、胃肠上皮细胞、杯状细胞、胰岛细胞的细胞膜;所述的泌尿系统相关细胞的细胞膜包括肺泡细胞、气管上皮细胞等呼吸系统细胞,肾小球内皮细胞、肾小管上皮细胞的细胞膜;所述的神经系统相关细胞的细胞膜包括神经元细胞、星型胶质细胞、少突胶质细胞、小胶质细胞的细胞膜。
  3. 根据权利要求1所述的特定细胞靶向的代谢系统递送的生物材料,其特征在于:所述的需要进行递送的目标细胞的细胞膜,采用软骨细胞、肌细胞、单核细胞、巨噬细胞、内皮细胞、上皮细胞的细胞膜。
  4. 根据权利要求1所述的特定细胞靶向的代谢系统递送的生物材料,其特征在于:所述的需要进行递送的目标细胞的细胞膜,采用分化特征明确且可通过关节腔注射靶向,避免全身影响的软骨细胞的细胞膜。
  5. 根据权利要求1所述的特定细胞靶向的代谢系统递送的生物材料,其特征在于:所述的代谢系统包括细胞核、细胞质基质、线粒体、叶绿体、内质网和高尔基体的整体及其部分内容物。
  6. 根据权利要求1或5所述的特定细胞靶向的代谢系统递送的生物材料,其特征在于:所述的代谢系统采用叶绿体的内容物成分类囊体囊泡。
  7. 根据权利要求1所述的特定细胞靶向的代谢系统递送的生物材料的制备方法,其特征在于:包括以下步骤:
    提取待递送的代谢系统囊泡,进行整粒,提取递送的目标细胞的细胞膜,将细胞膜包载代谢系统,得到包载代谢系统成分的细胞膜囊泡。
  8. 根据权利要求7所述的特定细胞靶向的代谢系统递送的生物材料的制备方法,其特征在于:待递送的代谢系统囊泡,为类囊体囊泡,由以下方式提取:
    植物绿叶材料与冷缓冲液A使用搅拌机按1g:1mL比例混合;将所得溶液压过细网眼纱布,并将滤液以3000g离心10分钟;将沉淀重悬于缓冲液B中;该溶液加在80/40%Percoll梯度液;将含有绿色层面的部分收集,得到类囊体;所述的缓冲液A成分为山梨糖醇、pH 7.6的HEPES-KOH、MgCl 2和0.1%BSA;所述的缓冲液B成分为山梨糖醇、pH 7.6的HEPES-KOH、MgCl 2、EDTA、L-抗坏血酸钠。
  9. 根据权利要求7所述的特定细胞靶向的代谢系统递送的生物材料的制备方法,其特征在于:所述的整粒过程为超声挤出法,由以下方式进行:
    将待递送的代谢系统囊泡在浴式超声仪中超声处理,使用聚碳酸酯多孔膜反复挤出;然后将溶液以3000g离心10分钟;将沉淀重新悬浮在缓冲液D中;所述的缓冲液D成分为HEPES-KOH、MgCl2和抗坏血酸钠。
  10. 根据权利要求9所述的特定细胞靶向的代谢系统递送的生物材料的制备方法,其特征在于:所述的超声仪的超声条件为:2号变幅杆,20%-60%功率,开2秒,关3秒,工作2分钟。
  11. 根据权利要求10所述的特定细胞靶向的代谢系统递送的生物材料的制备方法,其特征在于:上述聚碳酸酯膜的孔径为50-200nm。
  12. 根据权利要求9所述的特定细胞靶向的代谢系统递送的生物材料的制备方法,其特征在于:递送的目标细胞的细胞膜提取由以下方式进行:
    收集细胞重悬于4摄氏度的缓冲液E中,使用胰岛素针反复抽打20次以裂解细胞,将其与1M蔗糖缓冲液E溶液混合至以3:1混合至终浓度0.25M蔗糖缓冲液E溶液,2000g离心10分钟,取上清后3000g离心30分钟,沉淀即为细胞膜;所述的缓冲液E成分为甘露醇、蔗糖、Tris、MgCl 2、KCl、PMSF、不含EDTA的蛋白酶抑制剂、DNA酶和RNA酶,pH为7.4;所述的Tris浓度为5-30mM,所述的MgCl 2浓度为1-20mM。
  13. 根据权利要求12所述的特定细胞靶向的代谢系统递送的生物材料的制备方法,其特征在于:所述的Tris浓度为10mM。
  14. 根据权利要求12所述的特定细胞靶向的代谢系统递送的生物材料的制备方法,其特征在于:所述的MgCl 2浓度为1mM。
  15. 根据权利要求9所述的特定细胞靶向的代谢系统递送的生物材料的制备方法,其特征在于:包载过程由以下方式进行:
    将代谢系统成分装载到细胞膜囊泡内,方法包括微孔挤出、超声水化、微流控。
  16. 根据权利要求15所述的特定细胞靶向的代谢系统递送的生物材料的制备方法,其特征在于:包载过程采用滤膜微孔梯度挤出法,滤膜微孔孔径梯度为1000纳米、400纳米、200纳米。
  17. 特定细胞靶向的代谢系统递送的生物材料的应用:其特征在于:向目标细胞施加特定细胞靶向的代谢系统递送的生物材料,使目标细胞摄取生物材料,并内化该代谢系统,实现代谢系统在细胞内的特定功能。
  18. 特定细胞靶向的代谢系统递送的生物材料的应用:其特征在于:所述的施加过程包括体外细胞培养体系中向培养基中添加特定细胞靶向的代谢系统递送的生物材料,以及体内使用中通过局部注射、静脉注射等方式向特定细胞输送特定细胞靶向的代谢系统递送的生物材料。
PCT/CN2022/139153 2022-08-22 2022-12-14 特定细胞靶向的代谢系统递送的生物材料及制备方法和应用 WO2024040806A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211004654.2A CN115433708A (zh) 2022-08-22 2022-08-22 特定细胞靶向的代谢系统递送的生物材料及制备方法和应用
CN202211004654.2 2022-08-22

Publications (1)

Publication Number Publication Date
WO2024040806A1 true WO2024040806A1 (zh) 2024-02-29

Family

ID=84245111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139153 WO2024040806A1 (zh) 2022-08-22 2022-12-14 特定细胞靶向的代谢系统递送的生物材料及制备方法和应用

Country Status (2)

Country Link
CN (1) CN115433708A (zh)
WO (1) WO2024040806A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433708A (zh) * 2022-08-22 2022-12-06 浙江大学 特定细胞靶向的代谢系统递送的生物材料及制备方法和应用
CN115505554A (zh) * 2022-08-22 2022-12-23 浙江大学 基于细胞膜的跨物种细胞组分递送的生物材料及制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110097819A1 (en) * 2008-03-16 2011-04-28 Groves John T Membrane-coated particles
US20130145495A1 (en) * 2010-04-25 2013-06-06 Donald Danforth Plant Science Center Enhanced carbon fixation in photosynthetic hosts
CN107446884A (zh) * 2017-08-11 2017-12-08 汕头大学 人脐带间充质干细胞膜颗粒及其制备与应用
CN108186608A (zh) * 2018-02-28 2018-06-22 中南大学 一种纳米类囊体的应用
CN109078176A (zh) * 2018-08-14 2018-12-25 武汉大学 肿瘤细胞膜包覆的纳米材料及其制备方法与应用
US20190276852A1 (en) * 2016-11-14 2019-09-12 Paean Biotechnology Inc Method for delivering exogenous mitochondria into cells
CN112972420A (zh) * 2021-02-24 2021-06-18 中国药科大学 一种仿生细胞膜纳米粒及其制备方法和应用
CN113151251A (zh) * 2021-03-24 2021-07-23 北京理工大学 一种类囊体膜与nk细胞的融合细胞及其构建方法
CN113925856A (zh) * 2021-10-13 2022-01-14 郑州大学 一种靶向肝星状细胞的仿生纳米药物的制备方法及其应用
CN114901258A (zh) * 2019-12-27 2022-08-12 卢卡科学株式会社 分离的具有较小尺寸的线粒体和包裹分离的线粒体的基于脂质膜的囊泡
CN115433708A (zh) * 2022-08-22 2022-12-06 浙江大学 特定细胞靶向的代谢系统递送的生物材料及制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017210666A2 (en) * 2016-06-03 2017-12-07 Stemgenics, Inc. Functionalized nanoparticles for the intracellular delivery of biologically active molecules and methods for their manufacture and use
CN112168963B (zh) * 2020-09-18 2023-09-26 暨南大学 一种纳米光热治疗药物及其制备方法
CN112972422A (zh) * 2021-03-04 2021-06-18 上海糖愈生物科技有限公司 一种肿瘤细胞膜仿生氮化硼纳米球及其制备方法和应用
CN113499317A (zh) * 2021-07-09 2021-10-15 郑州大学 一种多功能仿生纳米药物的制备方法及应用
CN115537386A (zh) * 2022-09-26 2022-12-30 华南理工大学 一种基于脱核干细胞的促修复微囊泡及其制备方法和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110097819A1 (en) * 2008-03-16 2011-04-28 Groves John T Membrane-coated particles
US20130145495A1 (en) * 2010-04-25 2013-06-06 Donald Danforth Plant Science Center Enhanced carbon fixation in photosynthetic hosts
US20190276852A1 (en) * 2016-11-14 2019-09-12 Paean Biotechnology Inc Method for delivering exogenous mitochondria into cells
CN107446884A (zh) * 2017-08-11 2017-12-08 汕头大学 人脐带间充质干细胞膜颗粒及其制备与应用
CN108186608A (zh) * 2018-02-28 2018-06-22 中南大学 一种纳米类囊体的应用
CN109078176A (zh) * 2018-08-14 2018-12-25 武汉大学 肿瘤细胞膜包覆的纳米材料及其制备方法与应用
CN114901258A (zh) * 2019-12-27 2022-08-12 卢卡科学株式会社 分离的具有较小尺寸的线粒体和包裹分离的线粒体的基于脂质膜的囊泡
CN112972420A (zh) * 2021-02-24 2021-06-18 中国药科大学 一种仿生细胞膜纳米粒及其制备方法和应用
CN113151251A (zh) * 2021-03-24 2021-07-23 北京理工大学 一种类囊体膜与nk细胞的融合细胞及其构建方法
CN113925856A (zh) * 2021-10-13 2022-01-14 郑州大学 一种靶向肝星状细胞的仿生纳米药物的制备方法及其应用
CN115433708A (zh) * 2022-08-22 2022-12-06 浙江大学 特定细胞靶向的代谢系统递送的生物材料及制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN PENGFEI, LIU XIN, GU CHENHUI, ZHONG PEIYU, SONG NAN, LI MOBAI, DAI ZHANQIU, FANG XIANGQIAN, LIU ZHAOMING, ZHANG JIANFENG, TAN: "A plant-derived natural photosynthetic system for improving cell anabolism", NATURE, SPRINGER NATURE LIMITED, vol. 612, no. 7940, 15 December 2022 (2022-12-15), pages 546 - 554, XP093139740, ISSN: 0028-0836, DOI: 10.1038/s41586-022-05499-y *
MILLER TARRYN E., BENEYTON THOMAS, SCHWANDER THOMAS, DIEHL CHRISTOPH, GIRAULT MATHIAS, MCLEAN RICHARD, CHOTEL TANGUY, CLAUS PETER,: "Light-powered CO 2 fixation in a chloroplast mimic with natural and synthetic parts", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 368, no. 6491, 8 May 2020 (2020-05-08), US , pages 649 - 654, XP093143006, ISSN: 0036-8075, DOI: 10.1126/science.aaz6802 *

Also Published As

Publication number Publication date
CN115433708A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2024040806A1 (zh) 特定细胞靶向的代谢系统递送的生物材料及制备方法和应用
Piffoux et al. Extracellular vesicles for personalized medicine: The input of physically triggered production, loading and theranostic properties
Liu et al. Exosomes derived from platelet-rich plasma present a novel potential in alleviating knee osteoarthritis by promoting proliferation and inhibiting apoptosis of chondrocyte via Wnt/β-catenin signaling pathway
Gowen et al. Mesenchymal stem cell-derived extracellular vesicles: challenges in clinical applications
Zou et al. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon–bone healing
US9763986B2 (en) Encapsulated cells for hormone replacement therapy
Li et al. Extracellular vesicles in mesenchymal stromal cells: A novel therapeutic strategy for stroke
Piazza et al. Therapeutic potential of extracellular vesicles in degenerative diseases of the intervertebral disc
Zhang et al. Conscription of immune cells by light‐activatable silencing NK‐derived exosome (LASNEO) for synergetic tumor eradication
Hahm et al. Strategies to enhance extracellular vesicle production
Kang et al. Progress of research on exosomes in the protection against ischemic brain injury
Esmaeili et al. Engineering strategies for customizing extracellular vesicle uptake in a therapeutic context
Wang et al. Bone‐targeted exosomes: strategies and applications
Mazzitelli et al. Production and characterization of engineered alginate-based microparticles containing ECM powder for cell/tissue engineering applications
Zhang et al. Particle-based artificial three-dimensional stem cell spheroids for revascularization of ischemic diseases
Zhong et al. Neural stem cell-derived exosomes and regeneration: cell-free therapeutic strategies for traumatic brain injury
Liu et al. Hypoxia-pretreated mesenchymal stem cell-derived exosomes-loaded low-temperature extrusion 3D-printed implants for neural regeneration after traumatic brain injury in canines
You et al. MSC-EVs alleviate osteoarthritis by regulating microenvironmental cells in the articular cavity and maintaining cartilage matrix homeostasis
Wu et al. Scale-out production of extracellular vesicles derived from natural killer cells via mechanical stimulation in a seesaw-motion bioreactor for cancer therapy
Li et al. Atmospheric nanoparticles affect vascular function using a 3D human vascularized organotypic chip
Zou et al. Artificial cells for the treatment of liver diseases
Irfan et al. Stem cell-derived exosomes in bone healing: Focusing on their role in angiogenesis
Wang et al. Microvesicles as drug delivery systems: A new frontier for bionic therapeutics in cancer
Zou et al. Exosomes derived from odontogenic stem cells: Its role in the dentin-pulp complex
Xue et al. Recent advances of exosomes in soft tissue injuries in sports medicine: A critical review on biological and biomaterial applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956339

Country of ref document: EP

Kind code of ref document: A1