WO2024040611A1 - 控制方法、装置、系统、电子设备和存储介质 - Google Patents

控制方法、装置、系统、电子设备和存储介质 Download PDF

Info

Publication number
WO2024040611A1
WO2024040611A1 PCT/CN2022/115277 CN2022115277W WO2024040611A1 WO 2024040611 A1 WO2024040611 A1 WO 2024040611A1 CN 2022115277 W CN2022115277 W CN 2022115277W WO 2024040611 A1 WO2024040611 A1 WO 2024040611A1
Authority
WO
WIPO (PCT)
Prior art keywords
power module
state switching
control unit
central control
switch state
Prior art date
Application number
PCT/CN2022/115277
Other languages
English (en)
French (fr)
Inventor
张文平
王澜锦
Original Assignee
西门子股份公司
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子股份公司, 西门子(中国)有限公司 filed Critical 西门子股份公司
Priority to PCT/CN2022/115277 priority Critical patent/WO2024040611A1/zh
Publication of WO2024040611A1 publication Critical patent/WO2024040611A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Definitions

  • the present application relates to the field of communication technology, and in particular, to a control method, device, system, electronic equipment and storage medium.
  • the modular architecture of power electronic devices is widely used in modular multilevel converters (Modular Multilevel Converter, MMC) and parallel uninterruptible power supply (Uninterruptible Power Supply) systems.
  • the modular architecture of power electronic devices includes a central control unit (CCU) and multiple power modules (Power Module, PM). Each power module includes multiple switch tubes.
  • the central control unit controls each switch tube in the power module. On and off, realize rectification, filtering, inversion and other processing.
  • the central control unit communicates with the power module to realize the control of the power module.
  • the central control unit when the central control unit communicates with the power module, the central control unit sends the switch state switching command and the target count value to the power module.
  • the power module resets the counter after receiving the switch state switching command and the counter count value.
  • the power module performs the switching state switching action according to the switching state switching command.
  • the central control unit sends the target count value to the power module, which counts, and executes the switch state switching instruction after the counter reaches the target count value.
  • the power module needs to maintain clock synchronization with the central control unit, and the power module and the central control unit Clock synchronization of control units leads to increased system complexity.
  • control method, device, system, electronic device and storage medium provided by this application can reduce the complexity of the system.
  • a control method is provided, which is applied to a central control unit.
  • the method includes: determining the target count value and the switch state switching instruction according to the switching state of the power module; starting a preset counter , and after the count value of the counter reaches the target count value, the switch state switching instruction is sent to the power module, so that the power module executes the switch state in response to the received switch state switching instruction.
  • Switching action receiving the first operating status information sent by the power module in response to the switch state switching instruction.
  • control method further includes: periodically sending status detection instructions to the power module according to a preset communication cycle, wherein the length of the communication cycle is less than the duration of the power module. The duration of the switching cycle; receiving the second operating status information sent by the power module in response to each of the status detection instructions; and determining the operating status of the power module according to the second operating status information.
  • periodically sending status detection instructions to the power module according to a preset communication cycle includes: for each switching cycle, if there is no need to send a status detection command to the power module during the switching cycle, When the power module sends the switch state switching instruction, the state detection instruction is periodically sent to the power module according to the communication period during the switching period.
  • periodically sending status detection instructions to the power module according to a preset communication cycle includes: for each switching cycle, if it is necessary to The power module sends the switch state switching command, and if the status detection command is sent according to the communication cycle, the sending time interval between each of the status detection commands and the switch status switching command is greater than a preset time length threshold. , then the status detection command is periodically sent to the power module according to the communication cycle during the switching cycle.
  • periodically sending status detection instructions to the power module according to a preset communication cycle includes: for each switching cycle, if it is necessary to The power module sends the switch state switching command, and if the state detection command is sent according to the communication cycle, there is at least one target state detection command and the sending time interval of the switch state switching command is less than or equal to a preset If the duration threshold is reached, then the state detection instructions other than each of the target state detection instructions are sent to the power module according to the communication cycle during the switching period.
  • a control method is provided, which is applied to a power module.
  • the method includes: receiving a switch state switching instruction from a central control unit, wherein the switch state switching instruction is received from the central control unit.
  • the control unit sends the signal after the preset counter value reaches the target calculation value; in response to the switch state switching instruction, performs the switch state switching action and sends the first operating state information to the central control unit.
  • the method further includes: receiving status detection instructions periodically sent by the central control unit; in response to each status detection instruction received, sending a third status detection instruction to the central control unit.
  • the second operating status information enables the central control unit to determine the operating status of the power module according to the second operating status information.
  • a control device which is applied to a central control unit.
  • the device includes: a generating module for determining a target count value and a switching state switching instruction according to the switching state of the power module; and sending Module, used to start a preset counter, and after the count value of the counter reaches the target count value, send the switch state switching instruction to the power module, so that the power module responds to the received
  • the switch state switching instruction executes a switch state switching action; the first receiving module is configured to receive the first operating state information sent by the power module in response to the switch state switching instruction.
  • a control device which is applied to a power module.
  • the device includes: a second receiving module for receiving a switch state switching instruction from a central control unit, wherein the switch The state switching instruction is sent by the central control unit after the preset counter value reaches the target calculation value; the execution module is used to respond to the switch state switching instruction, execute the switching state switching action, and change the first operating state to Information is sent to the central control unit.
  • a control system including: a central control unit and at least one power module; the central control unit is used to execute any one of the first aspects of the embodiment of the present application.
  • the control method; the power module is used to execute the control method described in the second aspect of the embodiment of this application.
  • an electronic device including: a processor, a communication interface, a memory and a communication bus.
  • the processor, the memory and the communication interface complete communication with each other through the communication bus;
  • the memory is used to store At least one executable instruction, the executable instruction causes the processor to perform operations corresponding to the control method in the above-mentioned first aspect or any possible implementation of the first aspect and the second aspect or any possible implementation of the second aspect.
  • a computer-readable storage medium is provided.
  • Computer instructions are stored on the computer-readable storage medium. When executed by a processor, the computer instructions cause the processor to execute the above-mentioned first aspect or the third aspect. Any possible implementation of the first aspect and operations corresponding to the control method provided in the second aspect or any possible implementation of the second aspect.
  • a computer program product is provided.
  • the computer program product is tangibly stored on a computer-readable medium and includes computer-executable instructions.
  • the computer-executable instructions When executed, the computer-executable instructions cause at least one process
  • the controller executes the control method provided in the above-mentioned first aspect or any possible implementation of the first aspect and the second aspect or any possible implementation of the second aspect.
  • the target count value and switch state switching instruction to be achieved by the central control unit are determined.
  • the power module can immediately respond to the switch state switching instruction issued by the central control unit to perform the corresponding switch state switching action.
  • the central control unit receives the first operating status information sent by the power module in response to the switch state switching action instruction. .
  • This solution does not require timing synchronization between the central control unit and the power module. It only needs the counter in the central control unit to reach the target count value to issue a switching state switching command, so that the power module can execute the corresponding switching state switching command issued by the central control unit. action, thus reducing the communication steps between the central control unit and the power module and reducing the complexity of the system.
  • Figure 1 shows a schematic diagram of a control system provided by an embodiment of the present application.
  • Figure 2 shows a flow chart of a control method provided by an embodiment of the present application
  • Figure 3 shows a flow chart of a power module operating status detection method provided by an embodiment of the present application
  • Figure 4 shows a schematic diagram of a status detection instruction sending process provided by an embodiment of the present application
  • Figure 5 shows a schematic diagram of another status detection instruction sending process provided by the embodiment of the present application.
  • Figure 6 shows a schematic diagram of yet another status detection instruction sending process provided by an embodiment of the present application.
  • Figure 7 shows a flow chart of another control method provided by an embodiment of the present application.
  • Figure 8 shows a schematic diagram of a control device applied to a central control unit provided by an embodiment of the present application
  • Figure 9 shows a schematic diagram of a control device applied to a power module provided by an embodiment of the present application.
  • Figure 10 shows a schematic diagram of an electronic device provided by an embodiment of the present application.
  • Control system 200 Control method applied to central control unit
  • Power module operating status detection method 700 Control method applied to power module
  • Control device applied to central control unit 900 Control device applied to power module
  • T switching cycle SI: status detection command SS: switch status switching command
  • th duration threshold RT: second running status information RT′: first running status information
  • Second receiving module 902 Execution module 1002: Processor
  • the switch state switching command is sent to the power module.
  • the central control unit needs to control multiple power modules so that the power modules can execute corresponding switching state instructions. Therefore, the power modules can respond to the instructions of the central control unit in a timely manner and perform corresponding actions for the entire The rapid response of the system plays a very important role.
  • the current central control unit to control the power module needs to send both the switch state switching command and the target count value to the power module at the same time, and the power module will count. After the count value of the power module is equal to the received target count value , execute the switch state switching action according to the switch state switching instruction.
  • the power module needs to maintain clock synchronization with the central control unit, and the clock synchronization of the power module and the central control unit will cause the system to be complicated. Increased sex.
  • the central control unit determines the target count value and the switch state switching instruction according to the operating status of the power module, and counts the counter set in the central control unit. After the counter value reaches the target count value, The central control unit sends a switching state switching instruction to the power module, and the power module immediately executes the switching state switching action after receiving the switching state switching instruction. It can be seen that the central control unit counts through the counter, and sends a switch state switching instruction to the power module after the count value reaches the target count value. The power module immediately executes the switching state switching action after receiving the switch state switching instruction. The power module does not need to Counting is performed, so there is no need for clock synchronization between the power module and the central control unit, thereby reducing the complexity of the control system.
  • FIG. 1 is a schematic diagram of a control system according to an embodiment of the present application.
  • the control system 100 includes: a central control unit 101 and at least one power module 102 .
  • the central control unit 101 communicates with each power module 102 respectively.
  • the central control unit 101 can send a switch state switching instruction to the power module 102.
  • the power module 102 responds to the received switch state switching instruction and performs a switching state switching action to realize rectification. , filtering, inversion and other processing.
  • the power module 102 may send the operating status information to the central control unit 101, and the central control unit 101 generates a target count value and a switch state switching instruction according to the operating status information.
  • the central control unit 101 counts through a counter, and sends a switch state switching instruction to the power module 102 after the count value of the counter is equal to the target count value.
  • the power module 102 performs a switch state switching action and sends new operating state information to the central control unit 101 .
  • the power module 102 includes one or more switch tubes.
  • the power module 102 performs a switch state switching action to switch on and off some or all of the switch tubes according to the switch state switching instructions, such as controlling the forward conduction and reverse conduction of the switch tubes. On or off.
  • the central control unit 101 may be a field programmable gate array (Field Programmable Gate Array, FPGA), a digital signal processor (Digital Signal Processing, DSP), an ARM processor, etc.
  • FPGA Field Programmable Gate Array
  • DSP Digital Signal Processing
  • ARM processor etc.
  • the central control unit 101 generates a target count value and a switch state switching instruction based on the operating status information of the power module 102, and counts them through a counter. After the counter value equals the target count value, the central control unit 101 sends the switch state switching instruction to the power module 102. . In response to the received switch state switching instruction, the power module 102 immediately performs the switch state switching action and sends new operating status information to the central control unit 101 . Since counting is performed by the central control unit 101 and the power module 102 performs the switching state switching action in response to receiving the switching state switching instruction, the power module 102 does not need to perform counting. Therefore, the power module 102 and the central control unit 101 do not need to perform clock synchronization, thereby reducing the Control system 100 complexity.
  • the embodiment of the present application mainly focuses on the communication process between the central control unit 101 and the power module 102.
  • the communication process between the central control unit 101 and the power module 102 will be described in detail below.
  • FIG. 2 is a flow chart of a control method according to an embodiment of the present application.
  • the control method can be applied to the central control unit 101 in the above system embodiment.
  • the control system in the following method embodiment may be the control system 100 in the foregoing system embodiment
  • the central control unit in the following method embodiment may be the central control unit 101 in the foregoing system embodiment.
  • the power module in the above method embodiment may be the power module 102 in the foregoing system embodiment.
  • the control method 200 includes the following steps:
  • Step 201 Determine the target count value and the switch state switching instruction according to the switch state of the power module.
  • the central control unit can obtain the operating status of the power module and determine the target count value and switch state switching instructions based on the operating status.
  • the target count value defines the time for the power module to perform the switch state switching action.
  • the central control unit determines the target calculation value, it resets the counter at the beginning of the next switching cycle. After the counter's count value reaches the target count value, it sends the switch state switching instruction. sent to the power module.
  • Step 202 Start the preset counter, and after the count value of the counter reaches the target count value, send the switch state switching instruction to the power module.
  • the central control unit After generating the target count value and the switching state switching command, the central control unit resets the counter at the beginning of the next switching cycle, causing the calculator to start timing from zero. After the counter starts timing, the central control unit determines in real time whether the counter's count value reaches the target count value. After the counter's count value reaches the target count value, the central control unit communicates with the power module and sends the switch state switching command to the power module. . When the power module receives the switch state switching command, the switch state switching command immediately executes the switch state switching action.
  • the central controller and the power module can communicate through optical fiber or high-speed serial IO (Serial Rapid I/O, SRIO).
  • serial IO Serial Rapid I/O
  • Step 203 Receive the first operating status information sent by the power module in response to the switch state switching instruction.
  • the power module When the power module receives the switch state switching instruction, it immediately executes the corresponding switch state switching action in response to the switch state switching instruction, and sends the latest operating state information of the power module to the central control unit as the first operating state information. Specifically, the power module can control the channel of the switch tube according to the switch state switching instruction, so that the switch tube outputs high level, zero level or low level.
  • the central control unit can determine the operating state of the power module based on the received first operating state information, and then determine a new target count value and a new switch state switching instruction based on the operating state of the power module, thereby achieving continuous control of the power module.
  • the central control unit determines the target count value and the switch state switching instruction
  • the central control unit starts the counter to count, and after the counter value reaches the target count value, the switch state switching instruction is sent to the power module, so that The power module immediately executes the switch state switching action in response to the received switch state switching instruction, and sends the first operating state information to the central control unit.
  • the central control unit counts through the counter. After the counter value reaches the target count value, the switch state switching instruction is sent to the power module.
  • the power module immediately executes the switching state switching action after receiving the switch state switching instruction.
  • the power module does not need to communicate with The central control unit performs clock synchronization, which saves the clock synchronization processing between the central control unit and the power module in the control system, thereby reducing the complexity of the control system.
  • FIG. 3 is a flow chart of a power module operating status detection method according to an embodiment of the present application. As shown in Figure 3, the power module operating status detection method 300 includes the following steps:
  • Step 301 Periodically send status detection instructions to the power module according to a preset communication cycle.
  • the central control unit determines the target count value and switch state switching instruction based on the operating status of the power module. If no new switch state switching instruction is sent to the power module within a switching cycle, the central control unit cannot obtain the power module within a switching cycle. If the power module fails, the power module failure cannot be discovered in time.
  • the preset communication period is shorter than the switching period of the power module.
  • the communication period is equal to one-fifth of the switching period.
  • Step 302 Receive the second operating status information sent by the power module in response to each status detection instruction.
  • the power module responds to the status detection instruction and sends the latest operating status information to the central control unit as the second operating status information.
  • the second operating status information is used to indicate the operating status of the power module.
  • the second operating status information may include the voltage across the capacitor in the power module.
  • Step 303 Determine the operating state of the power module according to the second operating state information.
  • status detection instructions are periodically sent to the power module, so that the power module returns the second operating status information in response to the status detection instructions, and the central control unit responds to the status detection instructions.
  • the central control unit can send an information packet to the power module according to a set period.
  • the information packet is a sequence including multiple binary digits.
  • the information packet is a 64-bit binary sequence, switch state switching instructions and status detection.
  • the instructions correspond to different bits in the packet.
  • the central control unit sends information packets to the power module according to a set period, where the period for sending information packets is smaller than the communication period.
  • the central control unit changes the bit corresponding to the switch state switching command in the information packet, and the information packet is sent to the power module according to the set cycle to realize the new switch state switching command.
  • the switch state switching command is sent to the power module. If the switch state switching command does not change, the central control unit does not change the bit corresponding to the switch state switching command in the information packet.
  • the information packet is sent to the power module according to the set period, and the power module will not perform the switch state switching action.
  • the central control unit When the status detection command needs to be sent to the power module according to the communication cycle, the central control unit changes the bit corresponding to the status detection command in the information packet to make the status detection command effective.
  • the information packet is sent to the power module according to the cycle of the device to realize the status detection command. sent to the power module. If the time for sending the status detection command to the power module has not yet reached according to the communication cycle, the central control unit will not change the bit corresponding to the status detection command in the information packet, so that the status detection command will not take effect, and the information packet will be sent to the power module according to the cycle of the device. module, the power module will not return the second operating status information to the central control unit.
  • the switch state switching instruction since the time at which the central control unit sends the switch state switching instruction to the power module is not fixed, and the state detection instruction is sent to the power module according to the preset communication cycle, the switch state switching instruction is sent and the The status detection instructions may overlap in time. In order to ensure the reliability of communication, it is necessary to control the sending of the status detection instructions according to the sending time of the switch status switching instruction and the sending time of the status detection instructions.
  • FIG 4 is a schematic diagram of the status detection instruction sending process according to an embodiment of the present application. As shown in Figure 4, for each switching period T, if there is no need to send a switching state switching instruction to the power module 102 during the switching period T, the central control unit 101 periodically sends a switching instruction to the power module 102 according to the communication period during the switching period T. Send status detection instruction SI.
  • the power module 102 After receiving the status detection command SI, the power module 102 will immediately respond to the status detection command SI, obtain the latest operating status information of the power module 102 as the second operating status information RT, and send the second operating status information RT to the central control unit 101.
  • the central control unit for any switching period, if the central control unit does not send a new switching state switching instruction to the power module during the switching period, there will be no difference between the sending time of the switching state switching instruction and the status detection instruction.
  • the sending time overlaps, so the central control unit can periodically send status detection instructions to the power module according to the communication cycle to shorten the fault detection cycle of the power module, discover the fault of the power module as soon as possible, and ensure the reliability of the control system.
  • FIG. 5 is a schematic diagram of the status detection instruction sending process according to another embodiment of the present application.
  • the switching state switching command SS needs to be sent to the power module 102 within the switching period T, and the state detection command SI is sent according to the communication cycle, each state detection command SI and the switch state If the sending time intervals of the switching instructions SS are all greater than the preset duration threshold th, then within the switching period T, the status detection instructions SI are periodically sent to the power module 102 according to the communication period.
  • the preset duration threshold th is greater than or equal to the time it takes for the central control unit 101 to send the status detection instruction SI to the power module 102 .
  • the preset duration threshold th is equal to 1.5 microseconds.
  • the power module 102 After the central control unit 101 sends the status detection command SI to the power module 102, the power module 102 will immediately respond to the status detection command SI, obtain the latest operating status information and send it to the central control unit 101 as the second operating status information RT. After the central control unit 101 sends the switch state switching command SS to the power module 102, the power module 102 will immediately respond to the switch state switching command SS, perform the switch state switching action, and obtain the latest operating state information as the first operating state information. RT' is sent to the central control unit 101.
  • the central control unit 101 when the central control unit 101 sends the state detection command SI and the switch state switching command SS to the power module 102 within a switching period T, if the time interval between sending the state detection command SI and sending the switch state switching command SS is greater than With the duration threshold th, the sending of the state detection command SI will not affect the sending of the switch state switching command SS. Therefore, the central control unit 101 can normally send the state detection command SI to the power module 102 according to the communication cycle, thereby ensuring that the switch state switching command is normally affected. SS, the cycle of status detection of the power module 102 is shortened, power module faults are discovered as soon as possible, and the reliability of the control system is ensured.
  • FIG. 6 is a schematic diagram of the status detection instruction sending process according to another embodiment of the present application.
  • the switching state switching command SS needs to be sent to the power module 102 during the switching period T, and the state detection command SI is sent according to the communication cycle, there is at least one target state detection command and If the sending time interval of the switching state switching command SS is less than or equal to the preset duration threshold th, then within the switching period T according to the communication cycle, the state detection command SI except each target state detection command is sent to the power module 102 .
  • the state detection instruction SI is determined as the target state detection instruction, and then the central control unit 101 performs the following steps within a switching cycle T:
  • the status detection command SI is sent to the power module 102 in a preset communication cycle, the remaining status detection commands SI except the target status detection command are sent according to the communication cycle.
  • the central control unit 101 needs to send 5 status detection instructions SI to the power module 102 within a switching period T according to the communication cycle, and the target status detection instruction is the third status detection instruction SI among the 5 status detection instructions SI, then The central control unit 101 sends the 1st, 2nd, 4th and 5th status detection instructions SI to the power module 102 normally according to the communication cycle, and cancels the transmission of the 3rd status detection command SI.
  • the central control unit 101 when the central control unit 101 sends the state detection command SI and the switch state switching command SS to the power module 102 within a switching period T, if the time interval between sending a state detection command SI and the switch state switching command SS is less than Or equal to the duration threshold th, if the central control unit 101 normally sends the status detection command SI according to the communication cycle, the status detection command SI will be superimposed with the switch status switching command SS, causing the power module 102 to be unable to respond normally to the switch status switching command SS. , which in turn causes the power module 102 to operate abnormally. For this reason, the central control unit 101 cancels the sending of the target detection command to ensure that the switch state switching command SS can be sent to the power module 102 normally, ensuring the reliability and accuracy of the control system operation.
  • FIG. 7 is a flow chart of a control method according to an embodiment of the present application.
  • the control method can be applied to the power module 102 in the above system embodiment.
  • the central control unit in the following method embodiment may be the central control unit 101 in the foregoing system embodiment
  • the power module in the following method embodiment may be the power module 102 in the foregoing system embodiment.
  • the control method 700 includes the following steps:
  • Step 701 Receive a switch state switching instruction from the central control unit, wherein the switch state switching instruction is sent by the central control unit after the preset counter value reaches the target calculation value;
  • Step 702 In response to the switch state switching instruction, perform the switch state switching action and send the first operating state information to the central control unit.
  • the power module immediately performs the switch state switching action in response to the received switch state switching instruction, and sends the first operating state information to the central control unit, where the central control unit determines the target count value and the switch state.
  • the central control unit determines the target count value and the switch state.
  • the counter is started to count.
  • the switching state switching instruction is sent to the power module.
  • the counting is performed by the central control unit.
  • the power module immediately executes the switch state switching action after receiving the switch state switching command.
  • the power module does not need to clock synchronize with the central control unit, which saves the clock synchronization processing between the central control unit and the power module in the control system. , thus reducing the complexity of the control system.
  • the power module can receive status detection instructions periodically sent by the central control unit, and in response to each status detection instruction received, send second operating status information to the central control unit, so that the central control unit The unit determines the operating state of the power module based on the second operating state information.
  • the power module in addition to responding to the switch state switching command, can also receive the status detection command periodically sent by the central controller, and respond to the status detection command to send the second operating status information to the central control unit, so that The central control unit determines and detects whether the power module is operating normally based on the second operating status information. Since the communication cycle for the central control unit to send status detection instructions is shorter than the switching cycle, when a power module fails, it can be detected in a shorter time, thereby improving the reliability of the control system.
  • control method applied to the power module in the above embodiment is based on the same concept as the control method applied to the central control unit in the previous embodiment.
  • control method applied to the central control unit please refer to the aforementioned control method applied to the central control unit. The description in , will not be repeated here.
  • FIG 8 is a schematic diagram of a control device according to an embodiment of the present application.
  • the control device can be applied to the central control unit 101 in the above system embodiment.
  • the control device 800 includes:
  • the sending module 802 is used to start the preset counter, and after the count value of the counter reaches the target count value, send the switch state switching instruction to the power module, so that the power module performs the switch state switching in response to the received switch state switching instruction. action;
  • the first receiving module 803 is used to receive the first operating status information sent by the power module in response to the switch state switching instruction.
  • FIG. 9 is a schematic diagram of a control device according to another embodiment of the present application.
  • the control device can be applied to the power module 102 in the above system embodiment.
  • the control device 900 includes:
  • the second receiving module 901 is used to receive a switch state switching instruction from the central control unit, where the switch state switching instruction is sent by the central control unit after the preset counter value reaches the target calculation value;
  • the execution module 902 is configured to respond to the switch state switching instruction, execute the switch state switching action, and send the first operating state information to the central control unit.
  • FIG. 10 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • the specific embodiment of the present application does not limit the specific implementation of the electronic device.
  • an electronic device 1000 provided by an embodiment of the present application includes: a processor (processor) 1002, a communications interface (Communications Interface) 1004, a memory (memory) 1006, and a communication bus 1008.
  • processor processor
  • communications interface Communication Interface
  • memory memory
  • the processor 1002, the communication interface 1004, and the memory 1006 complete communication with each other through the communication bus 1008.
  • Communication interface 1004 is used to communicate with other electronic devices or servers.
  • the processor 1002 is used to execute the program 1010. Specifically, it can execute the relevant steps in any of the foregoing control method embodiments.
  • program 1010 may include program code including computer operating instructions.
  • the processor 1002 may be a central processing unit (CPU), an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present application.
  • the one or more processors included in the smart device can be the same type of processor, such as one or more CPUs; or they can be different types of processors, such as one or more CPUs and one or more ASICs.
  • Memory 1006 is used to store programs 1010.
  • the memory 1006 may include high-speed RAM memory, and may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the program 1010 can be specifically used to cause the processor 1002 to execute the control method in any of the foregoing embodiments.
  • each step in the program 1010 please refer to the corresponding description of the corresponding steps and units in any of the foregoing control method embodiments, and will not be described again here.
  • Those skilled in the art can clearly understand that for the convenience and simplicity of description, the specific working processes of the above-described devices and modules can be referred to the corresponding process descriptions in the foregoing method embodiments, and will not be described again here.
  • the central control unit After the central control unit determines the target count value and the switch state switching instruction, the central control unit starts the counter to count, and sends the switch state switching instruction to the power module after the counter value reaches the target count value. , so that the power module immediately executes the switch state switching action in response to the received switch state switching instruction, and sends the first operating state information to the central control unit.
  • the central control unit counts through the counter. After the counter value reaches the target count value, the switch state switching instruction is sent to the power module.
  • the power module immediately executes the switching state switching action after receiving the switch state switching instruction.
  • the power module does not need to communicate with The central control unit performs clock synchronization, which saves the clock synchronization processing between the central control unit and the power module in the control system, thereby reducing the complexity of the control system.
  • Embodiments of the present application also provide a computer-readable storage medium that stores instructions for causing a machine to execute the control method as described herein.
  • a system or device equipped with a storage medium may be provided, on which the software program code that implements the functions of any of the above embodiments is stored, and the computer (or CPU or MPU) of the system or device ) reads and executes the program code stored in the storage medium.
  • the program code itself read from the storage medium can implement the functions of any one of the above embodiments, and therefore the program code and the storage medium storing the program code form part of this application.
  • Examples of storage media for providing program codes include floppy disks, hard disks, magneto-optical disks, optical disks (such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD+RW), Tapes, non-volatile memory cards and ROM.
  • the program code can be downloaded from the server computer via the communications network.
  • the program code read from the storage medium is written into the memory provided in the expansion board inserted into the computer or written into the memory provided in the expansion module connected to the computer, and then based on the program code
  • the instructions cause the CPU installed on the expansion board or expansion module to perform part or all of the actual operations, thereby realizing the functions of any of the above embodiments.
  • Embodiments of the present application also provide a computer program product, which is tangibly stored on a computer-readable medium and includes computer-executable instructions that, when executed, cause at least one processor to Execute the control methods provided by the above embodiments. It should be understood that each solution in this embodiment has the corresponding technical effects in the above method embodiment, and will not be described again here.
  • the execution order of each step is not fixed and can be adjusted as needed.
  • the system structure described in the above embodiments may be a physical structure or a logical structure, that is, some modules may be implemented by the same physical entity, or some modules may be implemented by multiple physical entities, or may be implemented by multiple Some components in separate devices are implemented together.
  • the hardware module can be implemented mechanically or electrically.
  • a hardware module may include permanently dedicated circuitry or logic (such as a specialized processor, FPGA, or ASIC) to complete the corresponding operation.
  • Hardware modules may also include programmable logic or circuits (such as general-purpose processors or other programmable processors), which can be temporarily set by software to complete corresponding operations.
  • the specific implementation method mechanical method, or dedicated permanent circuit, or temporarily installed circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Sources (AREA)

Abstract

本申请提供了一种控制方法、装置、系统、电子设备和存储介质,应用于中央控制单元的控制方法包括:根据功率模块的开关状态,确定目标计数值和开关状态切换指令;启动预设的计数器,并在所述计数器的计数值达到所述目标计数值后,将所述开关状态切换指令发送给所述功率模块,使所述功率模块响应于接收到的所述开关状态切换指令执行开关状态切换动作;接收所述功率模块响应于所述开关状态切换指令发送的第一运行状态信息。本方案能够降低系统的复杂性,并提高系统可靠性。

Description

控制方法、装置、系统、电子设备和存储介质 技术领域
本申请涉及通信技术领域,尤其涉及一种控制方法、装置、系统、电子设备和存储介质。
背景技术
电力电子器件的模块化架构被广泛应用于模块化多电平换流器(Modular Multilevel Converter,MMC)和并联的不间断电源(Uninterruptible Power Supply)系统。电力电子器件的模块化架构包括中央控制单元(Central Control Unit,CCU)和多个功率模块(Power Module,PM),每个功率模块包括多个开关管,中央控制单元控制功率模块中各开关管的通断,实现整流、滤波、逆变等处理。中央控制单元与功率模块进行通信,以实现功率模块的控制。
目前,中央控制单元与功率模块通信时,中央控制单元将开关状态切换指令和目标计数值发送给功率模块,功率模块接收到开关状态切换指令和计数器计数值后会重置计数器,当计数器的计数值达到目标计数值后,功率模块根据开关状态切换指令执行开关状态切换动作。
然而,中央控制单元将目标计数值发送给功率模块,由功率模块进行计数,并在计数器达到目标计数值后执行开关状态切换指令,功率模块需要与中央控制单元保持时钟同步,而功率模块与中央控制单元的时钟同步会导致系统复杂性增加。
发明内容
有鉴于此,本申请提供的控制方法、装置、系统、电子设备和存储介质,能够降低系统的复杂性。
根据本申请实施例的第一方面,提供了一种控制方法,应用于中央控制单元,所述方法包括:根据功率模块的开关状态,确定目标计数值和开关状态切换指令;启动预设的计数器,并在所述计数器的计数值达到所述目标计数值后,将所述开关状态切换指令发送给所述功率模块,使所述功率模块响应于接收到的所述开关状态切换指令执行开关状态切换动作;接收所述功率模块响应于所述开关状态切换指令发送的第一运行状态信息。
在一种可能的实现方式中,该控制方法还包括:按照预先设定的通信周期,周期性的向所述功率模块发送状态检测指令,其中,所述通信周期的时长小于所述功率模块的开关周期 的时长;接收所述功率模块响应于每个所述状态检测指令发送的第二运行状态信息;根据所述第二运行状态信息,确定所述功率模块的运行状态。
在一种可能的实现方式中,所述按照预先设定的通信周期,周期性的向所述功率模块发送状态检测指令,包括:针对每个所述开关周期,若在该开关周期内无需向所述功率模块发送所述开关状态切换指令,则在该开关周期内按照所述通信周期,周期性向所述功率模块发送所述状态检测指令。
在一种可能的实现方式中,所述按照预先设定的通信周期,周期性的向所述功率模块发送状态检测指令,包括:针对每个所述开关周期,若在该开关周期内需向所述功率模块发送所述开关状态切换指令,且若按照所述通信周期发送所述状态检测指令时,各所述状态检测指令与所述开关状态切换指令的发送时间间隔均大于预设的时长阈值,则在该开关周期内按照所述通信周期,周期性向所述功率模块发送所述状态检测指令。
在一种可能的实现方式中,所述按照预先设定的通信周期,周期性的向所述功率模块发送状态检测指令,包括:针对每个所述开关周期,若在该开关周期内需向所述功率模块发送所述开关状态切换指令,且若按照所述通信周期发送所述状态检测指令时,存在至少一个目标状态检测指令与所述开关状态切换指令的发送时间间隔小于或等于预设的时长阈值,则在该开关周期内按照所述通信周期,向所述功率模块发送除各所述目标状态检测指令的所述状态检测指令。
根据本申请实施例的第二方面,提供了一种控制方法,应用于功率模块,所述方法包括:接收来自中央控制单元的开关状态切换指令,其中,所述开关状态切换指令由所述中央控制单元在预设的计数器的计数值达到目标计算值后发送;响应于所述开关状态切换指令,执行开关状态切换动作,并将第一运行状态信息发送给所述中央控制单元。
在一种可能的实现方式中,所述方法还包括:接收所述中央控制单元周期性发送的状态检测指令;响应于接收到的每个所述状态检测指令,向所述中央控制单元发送第二运行状态信息,使所述中央控制单元根据所述第二运行状态信息确定所述功率模块的运行状态。
根据本申请实施例的第三方面,提供一种控制装置,应用于中央控制单元,所述装置包括:生成模块,用于根据功率模块的开关状态,确定目标计数值和开关状态切换指令;发送模块,用于启动预设的计数器,并在所述计数器的计数值达到所述目标计数值后,将所述开关状态切换指令发送给所述功率模块,使所述功率模块响应于接收到的所述开关状态切换指令执行开关状态切换动作;第一接收模块,用于接收所述功率模块响应于所述开关状态切换 指令发送的第一运行状态信息。
根据本申请实施例的第四方面,提供了一种控制装置,应用于功率模块,所述装置包括:第二接收模块,用于接收来自中央控制单元的开关状态切换指令,其中,所述开关状态切换指令由所述中央控制单元在预设的计数器的计数值达到目标计算值后发送;执行模块,用于响应于所述开关状态切换指令,执行开关状态切换动作,并将第一运行状态信息发送给所述中央控制单元。
根据本申请实施例的第五方面,提供了一种控制系统,包括:中央控制单元和至少一个功率模块;所述中央控制单元,用于执行本申请实施例的第一方面中任一所述的控制方法;所述功率模块,用于执行本申请实施例的第二方面所述的控制方法。
根据本申请实施例的第六方面,提供了一种电子设备,包括:处理器、通信接口、存储器和通信总线,处理器、存储器和通信接口通过通信总线完成相互间的通信;存储器用于存放至少一可执行指令,可执行指令使处理器执行上述第一方面或第一方面的任一可能实现方式中以及第二方面或第二方面的任一可能实现方式中的控制方法对应的操作。
根据本申请实施例的第七方面,提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机指令,计算机指令在被处理器执行时,使处理器执行上述第一方面或第一方面的任一可能实现方式以及第二方面或第二方面的任一可能实现方式中所提供控制方法对应的操作。
根据本申请实施例的第八方面,提供了一种计算机程序产品,计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,计算机可执行指令在被执行时使至少一个处理器执行如上述第一方面或第一方面的任一可能的实现方式以及第二方面或第二方面的任一可能实现方式中提供的控制方法。
由上述技术方案,基于中央控制单元和功率模块之间的控制机制,根据功率模块的开关状态,确定中央控制单元要达到的目标计数值和开关状态切换指令,当其中的计数器的计数值达到目标计数值后,功率模块能够立即响应于中央控制单元发出的开关状态切换指令以执行相应的开关状态切换动作,最后由中央控制单元接收功率模块响应于开关状态切换动作指令发送的第一运行状态信息。本方案无需使得中央控制单元和功率模块进行时序同步,只需要中央控制单元中的计数器达到目标计数值就能够发出开关状态切换指令,以便使得功率模块执行中央控制单元发出的开关状态切换指令相应的动作,从而减少了中央控制单元和功率模块之间的通信步骤,降低了系统的复杂性。
附图说明
图1示出了本申请实施例提供的一种控制系统的示意图
图2示出了本申请实施例提供的一种控制方法的流程图;
图3示出了本申请实施例提供的一种功率模块运行状态检测方法的流程图;
图4示出了本申请实施例提供的一种状态检测指令发送过程的示意图;
图5示出了本申请实施例提供的另一种状态检测指令发送过程的示意图;
图6示出了本申请实施例提供的又一种状态检测指令发送过程的示意图;
图7示出了本申请实施例提供的另一种控制方法的流程图;
图8示出了本申请实施例提供的一种应用于中央控制单元的控制装置的示意图;
图9示出了本申请实施例提供的一种应用于功率模块的控制装置的示意图;
图10示出了本申请实施例提供的一种电子设备的示意图。
附图标记列表:
100:控制系统                        200:应用于中央控制单元的控制方法
300:功率模块运行状态检测方法        700:应用于功率模块的控制方法
800:应用于中央控制单元的控制装置    900:应用于功率模块的控制装置
1000:电子设备            101:中央控制单元       102:功率模块
T:开关周期               SI:状态检测指令        SS:开关状态切换指令
th:时长阈值              RT:第二运行状态信息    RT′:第一运行状态信息
801:生成模块             802:发送模块           803:第一接收模块
901:第二接收模块         902:执行模块           1002:处理器
1004:通信接口            1006:存储器            1008:通信总线
1010:程序
201:根据功率模块的开关状态确定目标计数值和开关状态切换指令
202:在计数器的计数值达到目标计数值后将开关状态切换指令发送给功率模块
203:接收功率模块响应于开关状态切换指令发送的第一运行状态信息
301:按照预先设定的通信周期,周期性的向功率模块发送状态检测指令
302:接收功率模块响应于每个状态检测指令发送的第二运行状态信息
303:根据第二运行状态信息确定功率模块的运行状态
701:接收来自中央控制单元的开关状态切换指令
702:响应于开关状态切换指令,执行开关状态切换动作,并返回第一运行状态信息
具体实施方式
如前所述,中央控制单元需要对多个功率模块进行控制,使得功率模块能够执行相应的开关切换状态指令,由此,功率模块能够及时的响应中央控制单元的指令并执行相应的动作对于整个系统的快速响应起到很重要的作用。然而,目前中央控制单元实现对功率模块的控制需要同时将开关状态切换指令和目标计数值都发送给功率模块,由功率模块进行计数,在功率模块的计数值等于所接收到的目标计数值后,根据开关状态切换指令执行开关状态切换动作,为了保证开关状态切换动作执行之间的准确性,功率模块需要与中央控制单元保持时钟同步,而功率模块与中央控制单元的时钟同步会导致系统复杂性增加。
在本申请实施例中,中央控制单元根据功率模块的运行状态,确定目标计数值和开关状态切换指令,由设置在中央控制单元中的计数器进行计数,在计数器的计数值达到目标计数值后,中央控制单元发送开关状态切换指令给功率模块,功率模块接收到的开关状态切换指令后即刻执行开关状态切换动作。由此可见,中央控制单元通过计数器进行计数,并在计数值达到目标计数值后向功率模块发送开关状态切换指令,功率模块在接收到开关状态切换指令后即刻执行开关状态切换动作,功率模块无需进行计数,所以功率模块与中央控制单元无需进行时钟同步,从而可以降低控制系统的复杂性。
控制系统
图1是本申请一个实施例的控制系统的示意图。如图1所示,该控制系统100包括:中央控制单元101和至少一个功率模块102。中央控制单元101分别与每个功率模块102进行通信,中央控制单元101可以向功率模块102发送开关状态切换指令,功率模块102响应于接收到的开关状态切换指令,执行开关状态切换动作,实现整流、滤波、逆变等处理。
功率模块102可以将运行状态信息发送给中央控制单元101,中央控制单元101根据运行状态信息生成目标计数值和开关状态切换指令。中央控制单元101通过计数器进行计数,在计数器的计数值等于目标计数值后,将开关状态切换指令发送给功率模块102。功率模块102响应于接收到的开关状态切换指令,执行开关状态切换动作,并将新的运行状态信息发送给中央控制单元101。
应理解,功率模块102包括一个或多个开关管,功率模块102执行开关状态切换动作是指根据开关状态切换指令,切换一部分或全部开关管的通断,比如控制开关管正向导通、反向导通或关断。
中央控制单元101可以是现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)、数字信号处理器(Digital Signal Processing,DSP)、ARM处理器等。
中央控制单元101根据功率模块102的运行状态信息,生成目标计数值和开关状态切换指令,并通过计数器进行计数,在计数器的计数值等于目标计数值后,将开关状态切换指令发送给功率模块102。功率模块102响应于接收到的开关状态切换指令,即刻执行开关状态切换动作,并将新的运行状态信息发送给中央控制单元101。由于计数由中央控制单元101执行,功率模块102响应于接收到开关状态切换指令执行开关状态切换动作,功率模块102无需进行计数,所以功率模块102与中央控制单元101无需进行时钟同步,从而可以降低控制系统100的复杂性。
本申请实施例主要着眼于中央控制单元101和功率模块102之间通信的过程,在后文中会对中央控制单元101和功率模块102的通信过程进行详细描述。
应用于中央控制单元的控制方法
图2是本申请一个实施例的控制方法的流程图,该控制方法可应用于上述系统实施例中的中央控制单元101。如无特别声明,下述方法实施例中的控制系统可为前述系统实施例中的控制系统100,下述方法实施例中的中央控制单元可为前述系统实施例中的中央控制单元101,下述方法实施例中的功率模块可为前述系统实施例中的功率模块102。如图2所示,该控制方法200包括如下步骤:
步骤201、根据功率模块的开关状态,确定目标计数值和开关状态切换指令。
中央控制单元可以获取功率模块的运行状态,并根据运行状态确定目标计数值和开关状态切换指令。目标计数值定义了功率模块执行开关状态切换动作的时间,中央控制单元确定目标计算值后,在下个开关周期开始时重置计数器,在计数器的计数值达到目标计数值后,将开关状态切换指令发送给功率模块。
步骤202、启动预设的计数器,并在计数器的计数值达到目标计数值后,将开关状态切换指令发送给功率模块。
生成目标计数值和开关状态切换指令后,中央控制单元在下个开关周期的开始重置计数器,使计算器从零开始计时。在计数器开始计时后,中央控制单元实时判断计数器的计数值是否达到目标计数值,在计数器的计数值达到目标计数值后,中央控制单元与功率模块进行通信,将开关状态切换指令发送给功率模块。当功率模块接收到开关状态切换指令时,立即开关状态切换指令执行开关状态切换动作。
中央控制器与功率模块之间可以通过光纤或高速串行IO(Serial Rapid I/O,SRIO)进行通信。
步骤203、接收功率模块响应于开关状态切换指令发送的第一运行状态信息。
当功率模块接收到开关状态切换指令后,即刻响应于开关状态切换指令执行相应的开关状态切换动作,并将功率模块最新的运行状态信息作为第一运行状态信息发送给中央控制单元。具体地,功率模块可以根据开关状态切换指令,控制开关管的通道,使开关管输出高电平、零电平或低电平。
中央控制单元可以根据接收到的第一运行状态信息确定功率模块的运行状态,进而重新根据功率模块的运行状态确定新的目标计数值和新的开关状态切换指令,从而实现功率模块的持续控制。
在本申请实施例中,中央控制单元确定目标计数值和开关状态切换指令后,中央控制单元启动计数器进行计数,在计数器的计数值达到目标计数值后将开关状态切换指令发送给功率模块,使得功率模块响应于接收到的开关状态切换指令立即执行开关状态切换动作,并将第一运行状态信息发送给中央控制单元。由中央控制单元通过计数器进行计数,在计数器的计数值达到目标计数值后,将开关状态切换指令发送给功率模块,功率模块接收到开关状态切换指令后立即执行开关状态切换动作,功率模块无需与中央控制单元进行时钟同步,节省了控制系统里中央控制单元与功率模块的时钟同步处理,从而可以降低控制系统的复杂性。
在一种可能的实现方式中,中央控制单元处理根据计数器的计数值向功率模块发送开关状态切换指令外,还可以周期性向功率模块发送状态检测指令,以检测功率模块是否运行正常。如图3是本申请一个实施例的功率模块运行状态检测方法的流程图。如图3所示,该功率模块运行状态检测方法300包括如下步骤:
步骤301、按照预先设定的通信周期,周期性的向功率模块发送状态检测指令。
中央控制单元根据功率模块的运行状态确定目标计数值和开关状态切换指令,如果在一个开关周期内没有新的开关状态切换指令发送给功率模块,则中央控制单元在一个开关周期内无法获得功率模块的运行状态信息,如果功率模块发生故障,无法及时发现功率模块的故障。
在正常向功率模块发送开关状态切换指令的基础上,按照预先设定的通信周期,周期性向功率模块发送状态检测指令,使功率模块响应于状态检测指令返回运行状态信息。其中,预设的通信周期的时长小于功率模块的开关周期的时长,比如,通信周期等于开关周期的五 分之一。
步骤302、接收功率模块响应于每个状态检测指令发送的第二运行状态信息。
当中央控制单元将状态检测指令发送给功率模块后,功率模块响应于状态检测指令,将最新的运行状态信息作为第二运行状态信息发送给中央控制单元。第二运行状态信息用来指示功率模块的运行状态,第二运行状态信息可以包括功率模块中电容器两端的电压。
步骤303、根据第二运行状态信息,确定功率模块的运行状态。
中央控制单元每次接收到功率模块发送的第二运行状态信息后,可以根据第二运行状态信息判断功率模块的运行状态是否正常,并在确定功率模块出现故障后发出报警信息。
在本申请实施例中,根据预先设定的通信周期,周期性的向功率模块发送状态检测指令,使得功率模块响应于状态检测指令返回第二运行状态信息,中央控制单元根据第二运行状态信息判断检测功率模块是否正常运行,由于发送状态检测指令的通信周期小于开关周期,当功率模块发生故障后可以在较短时间内被检测到,从而可以提高控制系统的可靠性。
在一个例子中,中央控制单元可以按照设定的周期向功率模块发送信息包,信息包是一个包括多位二进制数字的序列,比如信息包是一个64位二进制序列,开关状态切换指令和状态检测指令对应信息包中不同的位。中央控制单元按照设定的周期向功率模块发送信息包,其中,发送信息包的周期小于通信周期。
如果开关状态切换指令发生改变,即产生新的开关状态切换指令后,中央控制单元改变信息包中开关状态切换指令对应的位,信息包被按照设定的周期发送给功率模块,实现将新的开关状态切换指令发送给功率模块。如果开关状态切换指令没有发生改变,中央控制单元不改变信息包中开关状态切换指令对应的位,信息包被按照设定的周期发送给功率模块,功率模块不会执行开关状态切换动作。
按照通信周期需要向功率模块发送状态检测指令时,中央控制单元改变信息包中状态检测指令对应的位,使状态检测指令生效,信息包被按照设备的周期发送给功率模块,实现将状态检测指令发送给功率模块。如果按照通信周期还未达到向功率模块发送状态检测指令的时间,中央控制单元不会改变信息包中状态检测指令对应的位,使状态检测指令不生效,信息包被按照设备的周期发送给功率模块,功率模块不会向中央控制单元返回第二运行状态信息。
在一种可能的实现方式中,由于中央控制单元向功率模块发送开关状态切换指令的时间并不固定,而按照预设的通信周期向功率模块发送状态检测指令,所以发送开关状态切换指 令和发送状态检测指令可能在时间上重叠,为了保证通信的可靠性,需要根据开关状态切换指令的发送时间和状态检测指令的发送时间,控制状态检测指令的发送。
图4是本申请一个实施例的状态检测指令发送过程的示意图。如图4所示,针对每个开关周期T,若在该开关周期T内无需向功率模块102发送开关状态切换指令,中央控制单元101在该开关周期T内按照通信周期,周期性向功率模块102发送状态检测指令SI。
功率模块102在接收到状态检测指令SI后,会即刻响应状态检测指令SI,获取功率模块102最新的运行状态信息作为第二运行状态信息RT,并将第二运行状态信息RT发送给中央控制单元101。
在本申请实施例中,针对任一开关周期,如果中央控制单元在该开关周期内没有新的开关状态切换指令发送给功率模块,则不会出现开关状态切换指令的发送时间与状态检测指令的发送时间相重叠的情况,所以中央控制单元可以按照通信周期,周期性向功率模块发送状态检测指令,以缩短对功率模块进行故障检测的周期,尽快发现功率模块的故障,保证控制系统的可靠性。
图5是本申请另一个实施例状态检测指令发送过程的示意图。如图5所示,针对每个开关周期T,若在该开关周期T内需向功率模块102发送开关状态切换指令SS,且按照通信周期发送状态检测指令SI时,各状态检测指令SI与开关状态切换指令SS的发送时间间隔均大于预设的时长阈值th,则在该开关周期T内按照通信周期,周期性向功率模块102发送状态检测指令SI。
预设的时长阈值th大于或等于中央控制单元101将状态检测指令SI发送给功率模块102的耗时。比如,预设的时长阈值th等于1.5微秒。
中央控制单元101将状态检测指令SI发送给功率模块102后,功率模块102会即刻响应于状态检测指令SI,获取最新的运行状态信息作为第二运行状态信息RT发送给中央控制单元101。中央控制单元101将开关状态切换指令SS的发送给功率模块102后,功率模块102会即刻响应于开关状态切换指令SS,执行开关状态切换动作,并获取最新的运行状态信息作为第一运行状态信息RT′发送给中央控制单元101。
在本申请实施例中,中央控制单元101在一个开关周期T内向功率模块102发送状态检测指令SI和开关状态切换指令SS时,如果发送状态检测指令SI与发送开关状态切换指令SS的时间间隔大于时长阈值th,状态检测指令SI的发送不会影响开关状态切换指令SS的发送,因此中央控制单元101可以正常按照通信周期向功率模块102发送状态检测指令SI,从 而在保证正常影响开关状态切换指令SS的同时,缩短对功率模块102进行状态检测的周期,尽快发现功率模块的故障,保证控制系统的可靠性。
图6是本申请又一个实施例的状态检测指令发送过程的示意图。如图6所示,针对每个开关周期T,若在该开关周期T内需向功率模块102发送开关状态切换指令SS,且按照通信周期发送状态检测指令SI时,存在至少一个目标状态检测指令与开关状态切换指令SS的发送时间间隔小于或等于预设的时长阈值th,则在该开关周期T内按照通信周期,向功率模块102发送除各目标状态检测指令的状态检测指令SI。
当某一状态检测指令SI与开关状态切换指令SS的发送时间间隔小于或等于时长阈值th时,将该状态检测指令SI确定为目标状态检测指令,进而中央控制单元101在一个开关周期T内按照预设的通信周期向功率模块102发送状态检测指令SI时,按照通信周期发送除该目标状态检测指令之外的其余各状态检测指令SI。比如,中央控制单元101按照通信周期在一个开关周期T内需要向功率模块102发送5个状态检测指令SI,目标状态检测指令是5个状态检测指令SI中的第3个状态检测指令SI,则中央控制单元101按照通信周期正常向功率模块102发送第1、2、4和5个状态检测指令SI,取消第3个状态检测指令SI的发送。
在本申请实施例中,中央控制单元101在一个开关周期T内向功率模块102发送状态检测指令SI和开关状态切换指令SS时,如果一个状态检测指令SI与开关状态切换指令SS的发送时间间隔小于或等于时长阈值th,若中央控制单元101按照通信周期正常发送该状态检测指令SI,该状态检测指令SI会与开关状态切换指令SS发生信号叠加,导致功率模块102无法正常响应开关状态切换指令SS,进而导致功率模块102运行异常,为此中央控制单元101取消目标则检测指令的发送,保证开关状态切换指令SS能够正常发送到功率模块102,保证控制系统运行的可靠性和准确性。
应用于功率模块的控制方法
图7是本申请一个实施例的控制方法的流程图,该控制方法可应用于上述系统实施例中的功率模块102。如无特别声明,下述方法实施例中的中央控制单元可为前述系统实施例中的中央控制单元101,下述方法实施例中的功率模块可为前述系统实施例中的功率模块102。如图7所示,该控制方法700包括如下步骤:
步骤701、接收来自中央控制单元的开关状态切换指令,其中,开关状态切换指令由中央控制单元在预设的计数器的计数值达到目标计算值后发送;
步骤702、响应于开关状态切换指令,执行开关状态切换动作,并将第一运行状态信息 发送给中央控制单元。
在本申请实施例中,功率模块响应于接收到的开关状态切换指令立即执行开关状态切换动作,并将第一运行状态信息发送给中央控制单元,其中,中央控制单元确定目标计数值和开关状态切换指令后,启动计数器进行计数,在计数器的计数值达到目标计数值后将开关状态切换指令发送给功率模块。由计数由中央控制单元进行,功率模块接收到开关状态切换指令后立即执行开关状态切换动作,功率模块无需与中央控制单元进行时钟同步,节省了控制系统里中央控制单元与功率模块的时钟同步处理,从而可以降低控制系统的复杂性。
在一种可能的实现方式中,功率模块可以接收中央控制单元周期性发送的状态检测指令,并响应于接收到的每个状态检测指令,向中央控制单元发送第二运行状态信息,使中央控制单元根据第二运行状态信息确定功率模块的运行状态。
在本申请实施例中,功率模块除了响应于开关状态切换指令外,还可以接收中央控制器周期性发送的状态检测指令,并响应于状态检测指令向中央控制单元发送第二运行状态信息,使得中央控制单元根据第二运行状态信息判断检测功率模块是否正常运行。由于中央控制单元发送状态检测指令的通信周期小于开关周期,当功率模块发生故障后可以在较短时间内被检测到,从而可以提高控制系统的可靠性。
需要说明的是,上述实施例中应用于功率模块的控制方法,与前述实施例中应用于中央控制单元的控制方法基于同一构思,具体内容和有益效果可参见前述应用于中央控制单元的控制方法中的叙述,此处不再赘述。
控制装置
图8是本申请一个实施例的控制装置的示意图,该控制装置可应用于上述系统实施例中的中央控制单元101。如图8所示,该控制装置800包括:
生成模块801,用于根据功率模块的开关状态,确定目标计数值和开关状态切换指令;
发送模块802,用于启动预设的计数器,并在计数器的计数值达到目标计数值后,将开关状态切换指令发送给功率模块,使功率模块响应于接收到的开关状态切换指令执行开关状态切换动作;
第一接收模块803,用于接收功率模块响应于开关状态切换指令发送的第一运行状态信息。
图9是本申请另一个实施例的控制装置的示意图,该控制装置可应用于上述系统实施例中的功率模块102。如图9所示,该控制装置900包括:
第二接收模块901,用于接收来自中央控制单元的开关状态切换指令,其中,开关状态切换指令由中央控制单元在预设的计数器的计数值达到目标计算值后发送;
执行模块902,用于响应于开关状态切换指令,执行开关状态切换动作,并将第一运行状态信息发送给中央控制单元。
需要说明的是,上述控制装置中的各部分之间的交互等内容与前述控制方法的方法实施例基于同一构思,具体内容和有益效果可参见前述控制方法实施例中的叙述,此处不再赘述。
电子设备
图10是本申请实施例提供的一种电子设备的示意图,本申请具体实施例并不对电子设备的具体实现做限定。参见图10,本申请实施例提供的电子设备1000包括:处理器(processor)1002、通信接口(Communications Interface)1004、存储器(memory)1006、以及通信总线1008。其中:
处理器1002、通信接口1004、以及存储器1006通过通信总线1008完成相互间的通信。
通信接口1004,用于与其它电子设备或服务器进行通信。
处理器1002,用于执行程序1010,具体可以执行前述任一控制方法实施例中的相关步骤。
具体地,程序1010可以包括程序代码,该程序代码包括计算机操作指令。
处理器1002可能是中央处理器CPU,或者是特定集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本申请实施例的一个或多个集成电路。智能设备包括的一个或多个处理器,可以是同一类型的处理器,如一个或多个CPU;也可以是不同类型的处理器,如一个或多个CPU以及一个或多个ASIC。
存储器1006,用于存放程序1010。存储器1006可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
程序1010具体可以用于使得处理器1002执行前述任一实施例中的控制方法。
程序1010中各步骤的具体实现可以参见前述任一控制方法实施例中的相应步骤和单元中对应的描述,在此不赘述。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的设备和模块的具体工作过程,可以参考前述方法实施例中的对应过程描述,在此不再赘述。
通过本申请实施例的电子设备,中央控制单元确定目标计数值和开关状态切换指令后,中央控制单元启动计数器进行计数,在计数器的计数值达到目标计数值后将开关状态切换指令发送给功率模块,使得功率模块响应于接收到的开关状态切换指令立即执行开关状态切换 动作,并将第一运行状态信息发送给中央控制单元。由中央控制单元通过计数器进行计数,在计数器的计数值达到目标计数值后,将开关状态切换指令发送给功率模块,功率模块接收到开关状态切换指令后立即执行开关状态切换动作,功率模块无需与中央控制单元进行时钟同步,节省了控制系统里中央控制单元与功率模块的时钟同步处理,从而可以降低控制系统的复杂性。
计算机存储介质
本申请实施例还提供了一种计算机可读存储介质,存储用于使一机器执行如本文的控制方法的指令。具体地,可以提供配有存储介质的系统或者装置,在该存储介质上存储着实现上述实施例中任一实施例的功能的软件程序代码,且使该系统或者装置的计算机(或CPU或MPU)读出并执行存储在存储介质中的程序代码。
在这种情况下,从存储介质读取的程序代码本身可实现上述实施例中任何一项实施例的功能,因此程序代码和存储程序代码的存储介质构成了本申请的一部分。
用于提供程序代码的存储介质实施例包括软盘、硬盘、磁光盘、光盘(如CD-ROM、CD-R、CD-RW、DVD-ROM、DVD-RAM、DVD-RW、DVD+RW)、磁带、非易失性存储卡和ROM。可选择地,可以由通信网络从服务器计算机上下载程序代码。
此外,应该清楚的是,不仅可以通过执行计算机所读出的程序代码,而且可以通过基于程序代码的指令使计算机上操作的操作系统等来完成部分或者全部的实际操作,从而实现上述实施例中任意一项实施例的功能。
此外,可以理解的是,将由存储介质读出的程序代码写到插入计算机内的扩展板中所设置的存储器中或者写到与计算机相连接的扩展模块中设置的存储器中,随后基于程序代码的指令使安装在扩展板或者扩展模块上的CPU等来执行部分和全部实际操作,从而实现上述实施例中任一实施例的功能。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行上述各实施例提供的控制方法。应理解,本实施例中的各方案具有上述方法实施例中对应的技术效果,此处不再赘述。
需要说明的是,上述各流程和各系统结构图中不是所有的步骤和模块都是必须的,可以根据实际的需要忽略某些步骤或模块。各步骤的执行顺序不是固定的,可以根据需要进行调整。上述各实施例中描述的系统结构可以是物理结构,也可以是逻辑结构,即,有些模块可 能由同一物理实体实现,或者,有些模块可能分由多个物理实体实现,或者,可以由多个独立设备中的某些部件共同实现。
对于本申请中的控制方法、装置、电子设备和存储介质的实施例而言,其介绍较为简略,其相关内容和有益效果可以参照前面的控制方法的各个实施例进行理解,在此不再进行赘述。
以上各实施例中,硬件模块可以通过机械方式或电气方式实现。例如,一个硬件模块可以包括永久性专用的电路或逻辑(如专门的处理器,FPGA或ASIC)来完成相应操作。硬件模块还可以包括可编程逻辑或电路(如通用处理器或其它可编程处理器),可以由软件进行临时的设置以完成相应操作。具体的实现方式(机械方式、或专用的永久性电路、或者临时设置的电路)可以基于成本和时间上的考虑来确定。
上文通过附图和优选实施例对本申请进行了详细展示和说明,然而本申请不限于这些已揭示的实施例,基与上述多个实施例本领域技术人员可以知晓,可以组合上述不同实施例中的代码审核手段得到本申请更多的实施例,这些实施例也在本申请的保护范围之内。

Claims (13)

  1. 一种控制方法(200),应用于中央控制单元(101),所述方法包括:
    根据功率模块(102)的运行状态,确定目标计数值和开关状态切换指令(SS);
    启动预设的计数器,并在所述计数器的计数值达到所述目标计数值后,将所述开关状态切换指令(SS)发送给所述功率模块(102),使所述功率模块(102)响应于接收到的所述开关状态切换指令(SS)执行开关状态切换动作;
    接收所述功率模块(102)响应于所述开关状态切换指令(SS)发送的第一运行状态信息(RT′)。
  2. 根据权利要求1所述的方法,所述方法还包括:
    按照预先设定的通信周期,周期性的向所述功率模块(102)发送状态检测指令(SI),其中,所述通信周期的时长小于所述功率模块(102)的开关周期的时长;
    接收所述功率模块(102)响应于每个所述状态检测指令(SI)发送的第二运行状态信息(RT);
    根据所述第二运行状态信息(RT),确定所述功率模块(102)的运行状态。
  3. 根据权利要求2所述的方法,所述按照预先设定的通信周期,周期性的向所述功率模块(102)发送状态检测指令(SI),包括:
    针对每个所述开关周期,若在该开关周期内无需向所述功率模块(102)发送所述开关状态切换指令(SS),则在该开关周期内按照所述通信周期,周期性向所述功率模块(102)发送所述状态检测指令(SI)。
  4. 根据权利要求2所述的方法,所述按照预先设定的通信周期,周期性的向所述功率模块(102)发送状态检测指令(SI),包括:
    针对每个所述开关周期,若在该开关周期内需向所述功率模块(102)发送所述开关状态切换指令(SS),且若按照所述通信周期发送所述状态检测指令(SI)时,各所述状态检测指令(SI)与所述开关状态切换指令(SS)的发送时间间隔均大于预设的时长阈值(th),则在该开关周期内按照所述通信周期,周期性向所述功率模块(102)发送所述状态检测指令(SI)。
  5. 根据权利要求2-4中任一所述的方法,所述按照预先设定的通信周期,周期性的向所述功率模块(102)发送状态检测指令(SI),包括:
    针对每个所述开关周期,若在该开关周期内需向所述功率模块(102)发送所述开关状态切换指令(SS),且若按照所述通信周期发送所述状态检测指令(SI)时,存在至少一个目标状态检测指令(SI)与所述开关状态切换指令(SS)的发送时间间隔小于或等于预设的时长阈值(th),则在该开关周期内按照所述通信周期,向所述功率模块(102)发送除各所述 目标状态检测指令(SI)的所述状态检测指令(SI)。
  6. 一种控制方法(700),应用于功率模块(102),所述方法包括:
    接收来自中央控制单元(101)的开关状态切换指令(SS),其中,所述开关状态切换指令(SS)由所述中央控制单元(101)在预设的计数器的计数值达到目标计算值后发送;
    响应于所述开关状态切换指令(SS),执行开关状态切换动作,并将第一运行状态信息(RT′)发送给所述中央控制单元(101)。
  7. 根据权利要求6所述的方法,所述方法还包括:
    接收所述中央控制单元(101)周期性发送的状态检测指令(SI);
    响应于接收到的每个所述状态检测指令(SI),向所述中央控制单元(101)发送第二运行状态信息(RT),使所述中央控制单元(101)根据所述第二运行状态信息(RT)确定所述功率模块(102)的运行状态。
  8. 一种控制装置(800),应用于中央控制单元(101),所述装置包括:
    生成模块(801),用于根据功率模块(102)的运行状态,确定目标计数值和开关状态切换指令;
    发送模块(802),用于启动预设的计数器,并在所述计数器的计数值达到所述目标计数值后,将所述开关状态切换指令发送给所述功率模块(102),使所述功率模块(102)响应于接收到的所述开关状态切换指令执行开关状态切换动作;
    第一接收模块(803),用于接收所述功率模块(102)响应于所述开关状态切换指令发送的第一运行状态信息。
  9. 一种控制装置(900),应用于功率模块(102),所述装置包括:
    第二接收模块(901),用于接收来自中央控制单元(101)的开关状态切换指令,其中,所述开关状态切换指令由所述中央控制单元(101)在预设的计数器的计数值达到目标计算值后发送;
    执行模块(902),用于响应于所述开关状态切换指令,执行开关状态切换动作,并将第一运行状态信息发送给所述中央控制单元(101)。
  10. 一种控制系统(100),包括:中央控制单元(101)和至少一个功率模块(102);
    所述中央控制单元(101),用于执行权利要求1-5中任一所述的控制方法;
    所述功率模块(102),用于执行权利要求6或7所述的控制方法。
  11. 一种电子设备(1000),包括,处理器(1002)、通信接口(1004)、存储器(1006)和通信总线(1008),所述处理器(1002)、所述存储器(1006)和所述通信接口(1004)通过所述通信总线(1008)完成相互间的通信;
    所述存储器(1006)用于存放至少一可执行指令,所述可执行指令使所述处理器(1002)执行如权利要求1-5中任一项所述的方法对应的操作,或执行如权利要求6-7中任一项所述的方法对应的操作。
  12. 一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1-5或权利要求6-7中任一所述方法。
  13. 一种计算机程序产品,所述计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行根据权利要求1-5或权利要求6-7中任一项所述方法。
PCT/CN2022/115277 2022-08-26 2022-08-26 控制方法、装置、系统、电子设备和存储介质 WO2024040611A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115277 WO2024040611A1 (zh) 2022-08-26 2022-08-26 控制方法、装置、系统、电子设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115277 WO2024040611A1 (zh) 2022-08-26 2022-08-26 控制方法、装置、系统、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2024040611A1 true WO2024040611A1 (zh) 2024-02-29

Family

ID=90012236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115277 WO2024040611A1 (zh) 2022-08-26 2022-08-26 控制方法、装置、系统、电子设备和存储介质

Country Status (1)

Country Link
WO (1) WO2024040611A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790888A (zh) * 2005-12-19 2006-06-21 东北大学 一种逆变系统及控制方法
JP2010206325A (ja) * 2009-02-27 2010-09-16 Toshiba Corp 電子装置、及び制御方法
CN104865869A (zh) * 2015-03-31 2015-08-26 广西智通节能环保科技有限公司 基于单片机的防空烧暖手宝
CN204634072U (zh) * 2015-03-04 2015-09-09 佛山市顺德区美的电热电器制造有限公司 电磁加热系统及其中开关管的过零开通检测装置
CN107492874A (zh) * 2017-09-11 2017-12-19 广东美的制冷设备有限公司 智能功率模块及空调器控制器
CN111969871A (zh) * 2020-07-27 2020-11-20 深圳市汇川技术股份有限公司 整流控制方法、系统、设备及计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790888A (zh) * 2005-12-19 2006-06-21 东北大学 一种逆变系统及控制方法
JP2010206325A (ja) * 2009-02-27 2010-09-16 Toshiba Corp 電子装置、及び制御方法
CN204634072U (zh) * 2015-03-04 2015-09-09 佛山市顺德区美的电热电器制造有限公司 电磁加热系统及其中开关管的过零开通检测装置
CN104865869A (zh) * 2015-03-31 2015-08-26 广西智通节能环保科技有限公司 基于单片机的防空烧暖手宝
CN107492874A (zh) * 2017-09-11 2017-12-19 广东美的制冷设备有限公司 智能功率模块及空调器控制器
CN111969871A (zh) * 2020-07-27 2020-11-20 深圳市汇川技术股份有限公司 整流控制方法、系统、设备及计算机可读存储介质

Similar Documents

Publication Publication Date Title
US8392730B2 (en) Current sharing method of DC power supply and device thereof
JPH06324977A (ja) データ転送方法
CN103744753A (zh) 一种双机系统的数据交互方法与装置
WO2024040611A1 (zh) 控制方法、装置、系统、电子设备和存储介质
CN116089346B (zh) 一种嵌入式总线上错误数据重传方法、系统、介质及设备
CN109753368B (zh) 一种实时数据发送方法及系统
CN111522757A (zh) 一种基于i2c总线的中断读取与清除的控制方法
US20200065200A1 (en) Counter circuitry and methods
CN112837644B (zh) 时序控制器及其时钟复位方法、显示面板
JP5930469B2 (ja) エラー検出に応答するためのシステム及び方法
US10014072B2 (en) Diagnosis method for diagnosing memory, transmission apparatus, and computer-readable recording medium
JP2010117746A (ja) 計量システム
JPH08316946A (ja) クロック断検出回路
CN112637011B (zh) 数据传输方法、数据传输装置、数据传输设备及存储介质
CN114518972B (zh) 内存错误处理方法、装置、内存控制器及处理器
WO2023197972A1 (zh) 一种光传输设备、业务设备、业务传输的方法和系统
CN115561992A (zh) 功率模块控制系统、方法、电子设备和存储介质
CN116582392A (zh) 一种基于fpga多机并联高速通信互联方法及系统
CN116301267A (zh) I2c总线复位方法
CN117471965A (zh) 智能驾驶域控系统健康监控方法及装置
US9755888B2 (en) Information processing device, information processing system, and communication device
JP2004038555A (ja) プログラマブルコントローラ
KR890007083Y1 (ko) 실시간 클럭감시에 의한 중앙처리장치의 재개회로
CN114779881A (zh) 余度计算机的同步检测方法、装置、设备及存储介质
JPH1166020A (ja) マイクロコンピュータの異常検出回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956156

Country of ref document: EP

Kind code of ref document: A1