WO2024038891A1 - 再生自然素材 - Google Patents
再生自然素材 Download PDFInfo
- Publication number
- WO2024038891A1 WO2024038891A1 PCT/JP2023/029690 JP2023029690W WO2024038891A1 WO 2024038891 A1 WO2024038891 A1 WO 2024038891A1 JP 2023029690 W JP2023029690 W JP 2023029690W WO 2024038891 A1 WO2024038891 A1 WO 2024038891A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- recycled
- wood
- cutting
- recycled natural
- rod
- Prior art date
Links
- 239000005445 natural material Substances 0.000 title claims abstract description 36
- 239000000463 material Substances 0.000 claims abstract description 80
- 239000002023 wood Substances 0.000 claims abstract description 78
- 238000005520 cutting process Methods 0.000 claims abstract description 41
- 239000002028 Biomass Substances 0.000 claims abstract description 28
- 238000002844 melting Methods 0.000 claims abstract description 25
- 230000008018 melting Effects 0.000 claims abstract description 25
- 239000000843 powder Substances 0.000 claims abstract description 24
- 239000007787 solid Substances 0.000 claims abstract description 23
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 22
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 22
- 239000002245 particle Substances 0.000 claims abstract description 21
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 20
- 239000011230 binding agent Substances 0.000 claims description 18
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 18
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 17
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 14
- 238000000465 moulding Methods 0.000 claims description 10
- 239000004606 Fillers/Extenders Substances 0.000 claims description 8
- 229920002678 cellulose Polymers 0.000 claims description 7
- 239000001913 cellulose Substances 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 33
- 230000006872 improvement Effects 0.000 abstract description 8
- 239000000470 constituent Substances 0.000 abstract 2
- 235000013312 flour Nutrition 0.000 description 21
- 238000000034 method Methods 0.000 description 19
- 239000001993 wax Substances 0.000 description 19
- 239000004203 carnauba wax Substances 0.000 description 17
- 235000013869 carnauba wax Nutrition 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 12
- -1 polyethylene Polymers 0.000 description 11
- 241000218691 Cupressaceae Species 0.000 description 10
- 230000035515 penetration Effects 0.000 description 10
- 238000001035 drying Methods 0.000 description 8
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000007613 environmental effect Effects 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 240000007594 Oryza sativa Species 0.000 description 6
- 235000007164 Oryza sativa Nutrition 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 235000009566 rice Nutrition 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 239000002699 waste material Substances 0.000 description 6
- 150000004665 fatty acids Chemical class 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000011812 mixed powder Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 241000218645 Cedrus Species 0.000 description 4
- 235000019438 castor oil Nutrition 0.000 description 4
- 239000004359 castor oil Substances 0.000 description 4
- 239000002537 cosmetic Substances 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000010794 food waste Substances 0.000 description 4
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 3
- 235000017491 Bambusa tulda Nutrition 0.000 description 3
- 229920003043 Cellulose fiber Polymers 0.000 description 3
- 244000082204 Phyllostachys viridis Species 0.000 description 3
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- IJCWFDPJFXGQBN-RYNSOKOISA-N [(2R)-2-[(2R,3R,4S)-4-hydroxy-3-octadecanoyloxyoxolan-2-yl]-2-octadecanoyloxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCCCCCCCCCCCC IJCWFDPJFXGQBN-RYNSOKOISA-N 0.000 description 3
- 239000011425 bamboo Substances 0.000 description 3
- 239000004204 candelilla wax Substances 0.000 description 3
- 235000013868 candelilla wax Nutrition 0.000 description 3
- 229940073532 candelilla wax Drugs 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 235000019271 petrolatum Nutrition 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000008213 purified water Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000001589 sorbitan tristearate Substances 0.000 description 3
- 235000011078 sorbitan tristearate Nutrition 0.000 description 3
- 229960004129 sorbitan tristearate Drugs 0.000 description 3
- DSEKYWAQQVUQTP-XEWMWGOFSA-N (2r,4r,4as,6as,6as,6br,8ar,12ar,14as,14bs)-2-hydroxy-4,4a,6a,6b,8a,11,11,14a-octamethyl-2,4,5,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydro-1h-picen-3-one Chemical compound C([C@H]1[C@]2(C)CC[C@@]34C)C(C)(C)CC[C@]1(C)CC[C@]2(C)[C@H]4CC[C@@]1(C)[C@H]3C[C@@H](O)C(=O)[C@@H]1C DSEKYWAQQVUQTP-XEWMWGOFSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 240000000731 Fagus sylvatica Species 0.000 description 2
- 235000010099 Fagus sylvatica Nutrition 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 244000302661 Phyllostachys pubescens Species 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 241000219492 Quercus Species 0.000 description 2
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 244000299461 Theobroma cacao Species 0.000 description 2
- 235000005764 Theobroma cacao ssp. cacao Nutrition 0.000 description 2
- 235000005767 Theobroma cacao ssp. sphaerocarpum Nutrition 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 235000001046 cacaotero Nutrition 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000004709 eyebrow Anatomy 0.000 description 2
- 239000010903 husk Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 239000004200 microcrystalline wax Substances 0.000 description 2
- 235000019808 microcrystalline wax Nutrition 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012170 montan wax Substances 0.000 description 2
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- UQDVHJGNIFVBLG-UHFFFAOYSA-N octadecanoic acid;propane-1,2,3-triol Chemical compound OCC(O)CO.CCCCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O UQDVHJGNIFVBLG-UHFFFAOYSA-N 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000001587 sorbitan monostearate Substances 0.000 description 2
- 235000011076 sorbitan monostearate Nutrition 0.000 description 2
- 229940035048 sorbitan monostearate Drugs 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 239000010902 straw Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- 241001311472 Abies sachalinensis Species 0.000 description 1
- 241000157282 Aesculus Species 0.000 description 1
- 241001646648 Aesculus turbinata Species 0.000 description 1
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 241000609240 Ambelania acida Species 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 244000180278 Copernicia prunifera Species 0.000 description 1
- 235000010919 Copernicia prunifera Nutrition 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- FPVVYTCTZKCSOJ-UHFFFAOYSA-N Ethylene glycol distearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCCCCCCCC FPVVYTCTZKCSOJ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 241000218652 Larix Species 0.000 description 1
- 235000005590 Larix decidua Nutrition 0.000 description 1
- 241000039951 Lithocarpus glaber Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- GWFGDXZQZYMSMJ-UHFFFAOYSA-N Octadecansaeure-heptadecylester Natural products CCCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCCCC GWFGDXZQZYMSMJ-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000016856 Palma redonda Nutrition 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- 240000002264 Phyllostachys aurea Species 0.000 description 1
- 235000010792 Phyllostachys aurea Nutrition 0.000 description 1
- 235000003570 Phyllostachys pubescens Nutrition 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 235000000405 Pinus densiflora Nutrition 0.000 description 1
- 240000008670 Pinus densiflora Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 244000060616 Pseudosasa japonica var. japonica Species 0.000 description 1
- 241001480065 Quercus serrata Species 0.000 description 1
- 244000153801 Sasa kurilensis Species 0.000 description 1
- 235000010794 Sasa kurilensis Nutrition 0.000 description 1
- 240000001010 Semiarundinaria fastuosa Species 0.000 description 1
- 235000006577 Semiarundinaria fastuosa Nutrition 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 240000001142 Tilia japonica Species 0.000 description 1
- 235000017860 Tilia japonica Nutrition 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 241001673272 Tsuga diversifolia Species 0.000 description 1
- 241000417365 Ulmus davidiana var. japonica Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000012164 animal wax Substances 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 229940092738 beeswax Drugs 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229940100608 glycol distearate Drugs 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 235000010181 horse chestnut Nutrition 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- 239000010806 kitchen waste Substances 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000012184 mineral wax Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- NKBWPOSQERPBFI-UHFFFAOYSA-N octadecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCCCC NKBWPOSQERPBFI-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 235000019809 paraffin wax Nutrition 0.000 description 1
- 229940066842 petrolatum Drugs 0.000 description 1
- 239000012169 petroleum derived wax Substances 0.000 description 1
- 235000019381 petroleum wax Nutrition 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000012177 spermaceti Substances 0.000 description 1
- 229940084106 spermaceti Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K87/00—Fishing rods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27N—MANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
- B27N3/00—Manufacture of substantially flat articles, e.g. boards, from particles or fibres
- B27N3/02—Manufacture of substantially flat articles, e.g. boards, from particles or fibres from particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27N—MANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
- B27N5/00—Manufacture of non-flat articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B43—WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
- B43K—IMPLEMENTS FOR WRITING OR DRAWING
- B43K19/00—Non-propelling pencils; Styles; Crayons; Chalks
- B43K19/02—Pencils with graphite; Coloured pencils
Definitions
- the present specification relates to recycled natural materials such as recycled wood that have excellent moldability and cutting workability after molding, and that contribute to solving the problem of resource depletion.
- a wood-based molded product obtained by mixing and molding an explosive material (for example, see Patent Document 2), 3) has a low melt viscosity, has excellent moldability, and has a good appearance similar to natural wood, etc.
- a wood resin pellet it is possible to obtain a molded product with excellent physical properties by suppressing discoloration (scorching) during molding.
- Wood resin pellets (for example, see Patent Document 3), which are made of 1 to 15 parts by weight of a wax material between them, are known.
- Patent Documents 1 to 3 The composite materials, wood-based molded bodies, wood-based resin pellets, etc. disclosed in Patent Documents 1 to 3 above are made for the purpose of not only being easy to mold, but also preventing scorching during molding and obtaining an appearance similar to natural wood.
- petroleum-derived materials are used, they are less effective in solving the problem of resource depletion.
- JP 2000-103915 (Claims, Examples, etc.)
- JP2006-272696A (Claims, Examples, etc.)
- JP2011-236410A (Claims, Examples, etc.)
- the present disclosure attempts to solve the above-mentioned conventional problems, etc., and has excellent machinability without compromising strength or water resistance, has low environmental impact, is easy to manufacture, and uses resources.
- the aim is to provide recycled natural materials such as recycled wood that can help solve the issue of depletion.
- the present discloser has provided at least a physical material made of powder derived from biomass resources with a particle size of a specific value or less, and a cutting improvement material made of a thermoplastic solid with specific physical properties.
- the present disclosure has been completed based on the discovery that the above-described recycled natural material can be obtained by forming a binder in a predetermined ratio and molding it into a predetermined shape.
- the cutting improving material has a natural origin index defined by ISO16128 of 50% or more.
- the binder is cellulose or a cellulose derivative.
- the cellulose derivative is carboxymethyl cellulose ammonium. It is preferable to form the recycled natural material into a rod shape to obtain a rod-shaped recycled natural material, and it is also preferable to further process this rod-shaped recycled natural material to make a shaft for a writing instrument or a pencil shaft.
- recycled wood has excellent cutting workability without sacrificing strength or water resistance, has low environmental impact, can be easily manufactured, and contributes to solving the problem of resource depletion.
- We can provide recycled natural materials such as The objects and advantages of the present disclosure will be realized and obtained by means of the components and combinations particularly pointed out in the claims. Both the foregoing general description and the following detailed description are exemplary and explanatory and are not intended to limit the disclosure as claimed.
- the recycled natural material of the present disclosure combines at least a conditioning material made of at least one type of powder derived from biomass resources with a particle size of 2 mm or less, and a cutting improvement material made of a thermoplastic solid with a melting point of 40 ° C. or more.
- the present invention is characterized in that it is formed in a mass ratio of 20 to 65/15 to 55/10 to 50, and is formed into a predetermined shape.
- the extender used in the present disclosure is made of at least one type of powder selected from those derived from biomass resources and has a particle size of 2 mm or less.
- Biomass resources in the present disclosure include, for example, waste that is described and classified in the New Energy and Industrial Technology Development Organization (NEDO) Renewable Energy Technology White Paper, etc. Waste-based resources, unused resources, and production-based resources can be used. Although there are no particular limitations, it is preferable to use waste-based resources and unused resources because the uses are limited and the benefits of utilizing them are large. used for. Among waste resources and unused resources, those from woody biomass, food waste, and agricultural residue biomass are preferred from the viewpoint of ease of obtaining powder or pulverization.
- trees and bamboo such as sawmill residue, construction wood, forest residue, thinned wood, and unused trees, are used.
- a tree of natural origin such as a broad-leaved tree or a coniferous tree can be used, and the tree is not particularly limited.
- Specific trees include, for example, cedar, pine, larch, Japanese red pine, Sakhalin fir, cypress, beech, horse chestnut, Quercus serrata, Quercus oak, Japanese oak, Japanese linden, birch, Japanese elm, lauan, Japanese hemlock, and the like.
- cedar, cypress, beech, Japanese horse chestnut, Quercus oak, etc. are particularly preferably used because they are easily available.
- examples of the above-mentioned bamboo include naturally derived Madake mushroom, Moso-chiku, Hachiku, Hotei-chiku, Kikko-chiku, Horai-chiku, Narihiradake, Chishima-zasa, Tochiku, Shihou-chiku, Kanchiku, Yadake, Medake, and the like. Since it accumulates in a large amount and is easily available, mosouchiku and the like are preferably used.
- Examples of the above-mentioned food waste include those generated during the sorting of food raw materials and manufacturing processes, kitchen waste, etc., and are not particularly limited. It is preferable to use inedible parts. Specific inedible parts of food waste include tea leaves, coffee grounds, peach shells, walnut shells, corn cobs, and vegetable peels, seeds, or cores. As the agricultural residue biomass, rice straw, wheat straw, rice husk, bagasse, cacao husk, etc. are used.
- a powder obtained by mixing a plurality of powders derived from the above-mentioned biomass resources can also be used, as long as it has a particle size of 2 mm or less.
- the particle size in the present disclosure can be a value obtained by passing through a sieve or mesh with arbitrary openings. If the particle size exceeds 2 mm, the surface of the molded recycled natural material will become uneven, which will impair the appearance and cause cracks to occur during drying after molding, which is not preferable.
- the at least one powder selected from the above biomass resources with a particle size of 2 mm or less to be used includes wood biomass, food waste, and agricultural residue biomass derived from the above waste resources and unused resources. Sawdust, wood powder obtained from offcuts, waste wood, etc., powder that has been crushed and classified by optional attachment, etc. can be mentioned. At least one type of powder (including mixed powder) selected from the above-mentioned biomass resources having a particle size of 2 mm or less is preferable from the viewpoint of further exerting the effects of the present disclosure and from the viewpoint of environmental load.
- the natural origin index not including water
- ISO 16128 By setting the natural origin index (not including water) defined in ISO 16128 to 0.5 or more, more preferably 0.7 or more, the load on the environment is extremely small and the problem of resource depletion is avoided. This will contribute to the solution effect.
- the content of powder derived from these biomass resources is 20 to 65% of the total amount of recycled natural materials, in order to reduce the environmental burden mainly due to carbon dioxide emissions, and to ensure the dimensional accuracy and strength of recycled natural materials. It is preferably 30 to 65% by mass, particularly preferably 35 to 55% by mass. If the content of these is less than 20% by mass, shrinkage during drying may be large, the dimensional accuracy of the recycled natural material may be poor, and the environmental burden may be large; on the other hand, if the content exceeds 65% by mass, Recycled natural materials may lack strength.
- the cutting improving material used in the present disclosure is selected from at least one thermoplastic solid having a melting point of 40° C. or higher.
- the cutting improving material made of a thermoplastic solid used in the present disclosure can be used without particular limitation as long as it is a wax, a fatty acid, a derivative thereof, or a thermoplastic resin having a melting point of 40° C. or higher.
- waxes with a melting point of 40°C or higher examples include candelilla wax, carnauba wax, rice wax, Japanese wax, vegetable waxes such as jojoba oil, beeswax, lanolin, animal waxes such as spermaceti, montan wax, ozokerite, Mineral waxes such as ceresin, petroleum waxes such as paraffin wax, microcrystalline wax/petrolatum, synthetic hydrocarbons such as Fischer-Tropsch wax, polyethylene wax, and amide wax, montan wax derivatives, paraffin wax derivatives, microcrystalline wax derivatives, etc.
- Examples include hydrogenated waxes such as modified waxes, hydrogenated castor oil, hydrogenated castor oil derivatives, and hydrogenated palm oil.
- Carnauba wax is a wax extracted and purified from the leaves of the carnauba palm. Traditionally, the light yellow wax collected from young leaves is called No. 1, and the light brown one collected from old leaves is called No. 2 (or No. 3). (No.) and grade.
- examples of fatty acids or derivatives thereof having a melting point of 40°C or higher include fatty acids such as myristic acid, stearic acid, and behenic acid, fatty acid salts such as sodium, calcium, and magnesium salts of these fatty acids, and stearyl stearate. , fatty acid esters such as glycerin monostearate, glycerin distearate, sorbitan monostearate, sorbitan tristearate, and polyethylene glycol distearate, and fatty acid amides such as stearic acid amide.
- examples of the thermoplastic resin having a melting point of 40° C. or higher include polyethylene, polypropylene, and the like.
- thermoplastic solids can be used alone or in a mixture of two or more (hereinafter referred to as "at least one"), and if commercially available products are available, they can be used. can do.
- the melting point of the cutting improvement material made of a thermoplastic solid to be used is preferably 60°C or more and 150°C or less, from the viewpoint of ease of compounding with powder derived from biomass resources and the excellent strength of recycled natural materials. It is desirable to use a thermoplastic solid, more preferably a wax or fat having a temperature of 75°C or higher and 120°C or lower.
- Cutting improvers made of thermoplastic solids that can be preferably used include carnauba wax, rice wax, candelilla wax, hydrogenated castor oil, glycerin monostearate, glycerin distearate, sorbitan monostearate, sorbitan tristearate, and the like. desirable.
- the melting point of the thermoplastic solid such as wax or oil is lower than 40°C, it is not preferable because when using the recycled natural material, it will soften due to the temperature caused by external factors such as the environment and friction, and its strength will decrease.
- These cutting improving materials made of thermoplastic solids with a melting point of 40°C or higher are based on the natural origin index (not containing water) defined in ISO 16128, from the viewpoint of further demonstrating the effects of the present disclosure and from the viewpoint of environmental impact. ) is preferably 0.5 or more.
- natural origin index (not including water) refers to an index display according to ISO 16128, and this nature origin index (not including water) is 0.5 or more, More preferably, by setting it to 0.8 or more, the load on the environment is extremely small, and it is possible to contribute to solving the problem of resource depletion.
- the cutting improvement material made of the thermoplastic solid preferably has a penetration degree (25° C.) of 50 or less in order to further exhibit the effects of the present disclosure, particularly to improve strength.
- the penetration degree (25°C) in the present disclosure is defined by JIS K2235 5.4, and by setting it to 50 or less, more preferably 10 or less, a recycled natural material with high strength can be obtained while maintaining machinability. It will be. From this point of view, carnauba wax, rice wax, candelilla wax, hardened castor oil, and the like are preferably used as the cutting improving material made of the thermoplastic solid.
- the total content of the cutting improving materials made of these thermoplastic solids is 15 to 55% by mass based on the total amount of recycled natural materials, and The content is preferably 15 to 50% by weight, particularly preferably 15 to 40% by weight. If the content of these is less than 15% by mass, shrinkage may be large during drying after molding, dimensional accuracy may decrease, and machinability of the recycled natural material may not be sufficient. If the amount exceeds 55% by mass, it is not preferable because it may aggregate when mixed with the extender or binder powder, causing uneven distribution of the components.
- the binder used in the present disclosure is preferably water-soluble or hydrophilic, such as cellulose fibers (including nanofibers), methylcellulose, carboxymethylcellulose (CMC) or its salts, hydroxymethylpropylcellulose, sodium alginate, polyvinyl alcohol. At least one of polyoxyethylene, polyacrylamide, maleic acid copolymer resin, etc. can be used. Examples of the above carboxymethyl cellulose (CMC) salts include sodium and ammonium. These binders are preferably of natural origin, and more preferably carboxymethyl cellulose (CMC) ammonium from the viewpoint of imparting water resistance.
- CMC carboxymethylcellulose
- these binders have a natural origin index (not including water) of 0.5 or more as defined by ISO 16128, in order to further exhibit the effects of the present disclosure and to reduce the burden on the environment.
- a natural origin index not including water
- ISO 161208 a natural origin index
- the load on the environment is extremely small, and it is possible to contribute to solving the problem of resource depletion.
- the content of these binders is preferably 10 to 50% by mass, more preferably 20 to 50% by mass, particularly preferably 30 to 45% by mass, based on the total amount of recycled natural materials. If the content of these binders is less than 10% by mass, moldability may be poor, the shape may not be retained during drying, and the strength of the recycled natural material may be insufficient; If it exceeds this, the recycled natural material may become hard and have insufficient machinability.
- the recycled natural material in the present disclosure includes a physical material consisting of at least one type of powder (including mixed powder) selected from the above-mentioned biomass resource-derived materials with a particle size of 2 mm or less, and a physical material with a melting point of 40°C or higher. and a cutting improving material made of a certain thermoplastic solid, and as mentioned above, the content ratio of the extending material/cutting improving material/binding material in the total amount is 20 to 65/15 to 55/10 on a mass basis (mass%).
- a crosslinking agent for crosslinking the binder may be further included.
- the crosslinking agent for crosslinking the binding material is preferably one having a carboxylic acid group that crosslinks the binding material with ester, and specifically, succinic acid, malic acid, maleic acid, tartaric acid, citric acid, polyacrylic acid, etc. Can be mentioned.
- the content of these crosslinking agents is preferably 0.1 to 5 mass based on the total amount of recycled natural materials, from the viewpoint of developing water resistance, suppressing strength reduction due to moisture absorption, and suppressing discoloration of the material. %, more preferably 0.5 to 2% by mass.
- the recycled natural material of the present disclosure includes a physical material consisting of at least one type of powder (including mixed powder) selected from the above-mentioned biomass resource-derived materials having a particle size of 2 mm or less, and a melting point of 40°C.
- a physical material consisting of at least one type of powder (including mixed powder) selected from the above-mentioned biomass resource-derived materials having a particle size of 2 mm or less, and a melting point of 40°C.
- coloring agents dye, inorganic pigments, organic pigments
- iron oxide oxidized Zinc
- titanium oxide titanium oxide
- carbon black natural pigments, etc.
- These recycled natural materials preferably have a natural origin index (not including water) of 0.5 or more in order to further exhibit the effects of the present disclosure and reduce the burden on the environment.
- a natural origin index (not including water) of this recycled natural material By setting the natural origin index (not including water) of this recycled natural material to 0.75 or more, more preferably 0.85 or more, a recycled natural material with an extremely low burden on the environment can be obtained. It happens. Setting the natural origin index (not including water) of this recycled natural material to 0.75 or higher is achieved by appropriately selecting naturally derived thermoplastic solids and binders with melting points of 40°C or higher. be able to.
- the recycled natural material of the present disclosure consists of a physical material consisting of at least one type of powder (including mixed powder) selected from the above-mentioned biomass resource-derived materials with a particle size of 2 mm or less, and a thermal material with a melting point of 40°C or higher.
- a cutting improving material consisting of a plastic solid and a binding material in the above ratios
- adding water while stirring forming into a predetermined shape as a molding precursor, and drying.
- Recycled natural materials such as recycled wood can be obtained, for example, by using a kneading machine such as a Henschel mixer, a planetary mixer, or a kneader.
- the moisture content is reduced while stirring.
- Water purified water, distilled water, etc.
- a concentration of 40 to 80% is added to give a concentration of 40 to 80% to form a molded precursor, which is then formed into a predetermined shape, such as a rod, plate, tube, block, or sheet.
- the above-mentioned kneaded products can be molded into a rod, round bar, plate, or sheet using an extrusion molding machine or the like with a die of a predetermined diameter or a T-die, and then dried to form a predetermined shape. You can also create a body. Furthermore, press pressure during extrusion molding, moisture content, physical materials made of various powders derived from biomass resources (wood flour, etc.), cutting improving materials and binding materials made of naturally derived thermoplastic solids, etc. By combining them, the physical properties (including porosity) of the recycled natural material can be controlled over a wide range of areas, making it possible to obtain a recycled natural material that satisfies the desired texture, strength, moldability, etc.
- the form and use of the recycled natural material are not particularly limited.
- the recycled natural material may be further processed to be used as a shaft for a writing instrument or pencil shaft.
- Further examples include various recycled natural materials used for applications such as shafts for cosmetics such as eyeliners, eyebrows, and eye shadows, various containers, diaphragms and casings for audio equipment, and automobile interior parts.
- the recycled natural material of the present disclosure configured in this way has excellent machinability without compromising strength or water resistance, has a low impact on the environment, can be easily manufactured, and is free from resource depletion.
- Recycled natural materials such as recycled wood that contribute to problem-solving effects and methods for producing the same will be obtained.
- recycled natural materials are molded into rod shapes and further processed to make shafts for writing instruments or pencil shafts, which have the same ease of cutting, drop resistance, and water resistance as conventional wooden shafts, and are environmentally friendly.
- writing instruments are easy to manufacture because they have a low load and can be used without any modification to the molding machines used to mold conventional pencils and writing instruments (including wooden-shaft cosmetics).
- a shaft tree for a pencil shaft can be obtained.
- Example 1 In a Henschel mixer, cypress wood powder with a particle size of 2 mm or less obtained from sawmill residue as a biomass resource and an equal amount of carnauba wax No. 2 as a thermoplastic solid (melting point 82°C, penetration rate ( (25°C): less than 1, manufactured by Toyochem Co., Ltd.) and sodium carboxymethylcellulose (CMC) (manufactured by Nippon Paper Industries Co., Ltd., hereinafter the same) in an amount equal to the amount of wood flour as a binder and dry mixed with a Henschel mixer. Thereafter, a molded precursor was obtained by adding purified water in an amount equal to the content while stirring. This molded precursor was molded into a rod shape with a diameter of 8 mm and a length of 180 mm using an extrusion molding machine, and then dried at 50° C. to obtain a rod-shaped recycled wood with a diameter of 7 mm.
- a molded precursor was obtained by adding purified water in an
- Example 2 The same as in Example 1 above except that carboxymethyl cellulose ammonium (CMC ammonium) (manufactured by Nichirin Chemical Co., Ltd., hereinafter the same) was used instead of CMC sodium described in Example 1 above, and was heated at 150°C for 1 hour after drying. The same procedure was carried out to obtain a rod-shaped recycled wood having a diameter of 7 mm and a length of 180 mm.
- CMC ammonium carboxymethyl cellulose ammonium
- Example 3 The process was carried out in the same manner as in Example 1 above except that polyvinyl alcohol (PVA) (manufactured by Kuraray Co., Ltd.) was used instead of CMC sodium described in Example 1 above, and a rod-shaped recycled wood with a diameter of 7 mm and a length of 180 mm was obtained.
- PVA polyvinyl alcohol
- Example 4 The procedure was carried out in the same manner as in Example 2 above, except that instead of the cypress wood flour described in Example 2, cypress wood flour with a particle size of 1 mm or less obtained from sawmill residue was used as the biomass resource. A rod-shaped recycled wood with a diameter of 7 mm and a length of 180 mm was obtained. (Example 5) The procedure was carried out in the same manner as in Example 4 above, except that half of the CMC ammonium described in Example 4 was replaced with cellulose fiber (CF) (manufactured by Nippon Paper Industries). Obtained.
- CF cellulose fiber
- Example 6 The procedure was carried out in the same manner as in Example 2 above, except that cedar wood flour with a particle size of 0.6 mm or less obtained from thinned wood was used as the biomass resource instead of the cypress wood flour described in Example 2 above, A rod-shaped recycled wood with a diameter of 7 mm and a length of 180 mm was obtained.
- Example 7 The procedure was carried out in the same manner as in Example 2 above, except that cedar wood flour with a particle size of 0.3 mm or less obtained from thinned wood was used as the biomass resource instead of the cypress wood flour described in Example 2 above, A rod-shaped recycled wood with a diameter of 7 mm and a length of 180 mm was obtained.
- Example 8 The process was carried out in the same manner as in Example 7 above, except that the amount of carnauba wax No. 2 described in Example 7 was changed to two-thirds the amount of wood flour. Obtained.
- Example 9 A rod-shaped recycled wood having a diameter of 7 mm and a length of 180 mm was obtained by carrying out the same procedure as in Example 7 above, except that the amount of carnauba wax No. 2 described in Example 7 was half the amount of wood flour.
- Example 10 The process was carried out in the same manner as in Example 7 above, except that the amount of carnauba wax No. 2 described in Example 7 was changed to 4/3 times the amount of wood flour. Obtained.
- Example 11 The process was carried out in the same manner as in Example 7 above, except that the amount of CMC ammonium described in Example 7 was changed to 4/3 times the amount of wood flour, and a rod-shaped recycled wood with a diameter of 7 mm and a length of 180 mm was obtained. .
- Example 12 The process was carried out in the same manner as in Example 7 above, except that the amount of CMC ammonium described in Example 7 was changed to two-thirds the amount of wood flour, and a rod-shaped recycled wood with a diameter of 7 mm and a length of 180 mm was obtained. .
- Example 13 Example 7 above, except that the amount of carnauba wax No. 2 described in Example 7 was one-third the amount of wood flour, and the amount of CMC ammonium was two-thirds the amount of wood flour. A rod-shaped recycled wood having a diameter of 7 mm and a length of 180 mm was obtained in the same manner as above.
- Example 14 The procedure was carried out in the same manner as in Example 2 above, except that bamboo flour with a particle size of 0.1 mm or less obtained from an unused tree was used as a biomass resource instead of the cypress wood flour described in Example 2 above, A rod-shaped recycled wood with a diameter of 7 mm and a length of 180 mm was obtained.
- Example 15 A rod-shaped recycled wood having a diameter of 7 mm and a length of 180 mm was obtained in the same manner as in Example 14, except that the amount of carnauba wax No. 2 described in Example 14 was halved.
- Example 16 The procedure was carried out in the same manner as in Example 2 above, except that pulverized cacao shell powder with a particle size of 0.6 mm or less obtained from agricultural residue was used as the biomass resource instead of the cypress wood flour described in Example 2 above. A rod-shaped recycled wood having a diameter of 7 mm and a length of 180 mm was obtained.
- Example 17 The same as in Example 4 above, except that rice wax (melting point: 79°C, penetration (25°C): 5, manufactured by Boso Oil Co., Ltd.) was used instead of carnauba wax No. 2 described in Example 4 above. A rod-shaped recycled wood with a diameter of 7 mm and a length of 180 mm was obtained.
- Example 18 The above example except that Fischer-Tropsch wax (melting point 113°C, penetration (25°C): 1, manufactured by Nippon Seiro Co., Ltd.) was used instead of carnauba wax No. 2 described in Example 4 above. A rod-shaped recycled wood having a diameter of 7 mm and a length of 180 mm was obtained in the same manner as in 4.
- Example 19 Example 4 except that glycerin mono-distearate (melting point 63°C, penetration (25°C): 20, manufactured by Riken Vitamin Co., Ltd.) was used instead of carnauba wax No. 2 described in Example 4 above. The same procedure was carried out to obtain a rod-shaped recycled wood having a diameter of 7 mm and a length of 180 mm.
- Example 20 Same as Example 4 except that sorbitan tristearate (melting point: 54°C, penetration (25°C): 5, manufactured by Kao Corporation) was used instead of carnauba wax No. 2 described in Example 4 above. A rod-shaped recycled wood with a diameter of 7 mm and a length of 180 mm was obtained.
- Example 21 Same as Example 4 except that stearic acid amide (melting point: 102°C, penetration (25°C): 12, manufactured by Mitsubishi Chemical Corporation) was used instead of carnauba wax No. 2 described in Example 4 above. A rod-shaped recycled wood with a diameter of 7 mm and a length of 180 mm was obtained.
- Example 22 The same procedure as in Example 4 was used, except that stearic acid (melting point: 66°C, penetration (25°C): 18, manufactured by NOF Corporation) was used instead of carnauba wax No. 2 described in Example 4 above. A rod-shaped recycled wood with a diameter of 7 mm and a length of 180 mm was obtained.
- Example 23 Example 4 except that high-density polyethylene (melting point 126°C, penetration (25°C): less than 1, manufactured by Nippon Polyethylene Co., Ltd.) was used instead of carnauba wax No. 2 described in Example 4 above. The same procedure was carried out to obtain a rod-shaped recycled wood having a diameter of 7 mm and a length of 180 mm.
- Comparative example 1 Into a Henschel mixer, put cypress wood flour with a particle size of 1 mm or less similar to that in Example 4 above and the same amount of CMC sodium as in Example 1 above, and after dry mixing, add purified water in an amount equal to the content. A molded precursor was obtained by adding while stirring. This molded precursor was molded into a rod shape with a diameter of 8.5 mm using an extrusion molding machine, and then dried at 50° C. to obtain a rod-shaped recycled wood with a diameter of 7 mm and a length of 180 mm.
- Comparative example 3 A rod-shaped recycled wood having a diameter of 7 mm and a length of 180 mm was obtained in the same manner as in Comparative Example 2, except that half the amount of CMC ammonium relative to the wood flour was used.
- Comparative example 4 A rod-shaped recycled wood having a diameter of 7 mm and a length of 180 mm was obtained in the same manner as in Comparative Example 3, except that CMC ammonium was used in an amount one-fourth the amount of wood flour.
- the natural origin index was calculated from the following, and the breakage strength, cutting workability, and water resistance were measured using the following measurement method. evaluated. The results of these evaluations are shown in Table 1 below.
- Table 2 below also shows the compounding ratios of the extenders, cutting improvers, and binders used in Examples 1 to 23 and Comparative Examples 1 to 4 (16.7%, 33.3%, 66% in Table 2). 7% represents 1/6, 1/3, and 2/3, respectively), indicating the natural origin index.
- the natural origin index (not including water) of each stick-shaped wood obtained in Examples 1 to 23 and Comparative Examples 1 to 4 is determined from the weight ratio of the raw materials blended into the stick-shaped wood, as defined in ISO 16128. It is determined by calculating the composition ratio in percentage using the water-free weight of the naturally derived portion in the naturally derived raw material. The higher this value is, the higher the proportion of materials derived from animals and plants, and the lower the amount of petroleum-derived materials used, which can indicate that the load on the environment is smaller.
- the examples within the scope of the present disclosure can achieve both high breakage strength and low cutting torque while maintaining a high natural origin index compared to the comparative examples.
- rod-shaped recycled natural materials such as recycled wood, which contributes to solving the issue of resource depletion.
- rod-shaped recycled natural materials they can be used to make cosmetics such as pencil shafts (including colored pencil leads), writing instrument shafts, and rod-shaped cosmetics such as eyeliners, eyebrows, and eye shadows.
- a shaft tree (shaft body) etc. can be obtained.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Wood Science & Technology (AREA)
- Forests & Forestry (AREA)
- Environmental Sciences (AREA)
- Marine Sciences & Fisheries (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Dry Formation Of Fiberboard And The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Fishing Rods (AREA)
Abstract
強度や耐水性を損なうことなく、切削加工性に優れ、環境に対して負荷が少なく、容易に製造することができ、しかも、資源枯渇の課題解決効果に寄与する再生木材などの再生自然素材を提供する。 再生自然素材としては、例えば、粒子径2mm以下となるバイオマス資源由来の少なくとも1種の粉体からなる体質材と、融点が40℃以上である熱可塑性固体からなる切削向上材と、結合材とを少なくとも含み、体質材/切削向上材/結合材=20~65/15~55/10~50の質量比率で構成され、所定の形状、例えば、棒状、板状、管状、ブロック形状、シート状などに成形されたものが挙げられる。
Description
本明細書は、成形性および成形後の切削加工性に優れると共に、資源枯渇の課題解決効果に寄与する再生木材などの再生自然素材に関する。
従来より、木材の代替物として、樹脂等の成形の容易な素材と粘土鉱物粉等の体質材とを混練したものなどが提案されている。
例えば、1)樹脂の特性に由来するドローダウンや不均一流動性、あるいは成形体の表面肌荒れを改良し、押出成形に好適な複合材料として、特定物性のポリエチレン(A)とセルロース系粉末(B)と特定のワックス(C)からなる組成物であって、その重量比率が(A)/(B)/(C)=25~89/10~70/0.5~17.5の範疇(合計100重量部)である複合材料(例えば、特許文献1参照)、2)成形性、強度、耐水性を向上させ、均質でより良質の木質系成形体を提供するために、木質系材料を水蒸気存在下で加熱および加圧後急激に減圧して爆砕し乾燥した粉末状の爆砕材料に水を添加し、少なくとも、流動状態の樹脂と、粉末状の木質系材料と、前記水を添加した爆砕材料と、を混合して成形することにより得られる木質系成形体(例えば、特許文献2参照)、3)溶融粘度が低く、成形性に優れるとともに、天然木材等に近い良好な外観を付与することが可能で、しかも成形時の変色(焼けこげ)が抑制され、物性に優れる成形品を得ることができる木質樹脂ペレットとして、木粉70~91重量部と、融点を40~100℃の間に持つワックス材料1~15重量部とからなる木質樹脂ペレット(例えば、特許文献3参照)などが知られている。
例えば、1)樹脂の特性に由来するドローダウンや不均一流動性、あるいは成形体の表面肌荒れを改良し、押出成形に好適な複合材料として、特定物性のポリエチレン(A)とセルロース系粉末(B)と特定のワックス(C)からなる組成物であって、その重量比率が(A)/(B)/(C)=25~89/10~70/0.5~17.5の範疇(合計100重量部)である複合材料(例えば、特許文献1参照)、2)成形性、強度、耐水性を向上させ、均質でより良質の木質系成形体を提供するために、木質系材料を水蒸気存在下で加熱および加圧後急激に減圧して爆砕し乾燥した粉末状の爆砕材料に水を添加し、少なくとも、流動状態の樹脂と、粉末状の木質系材料と、前記水を添加した爆砕材料と、を混合して成形することにより得られる木質系成形体(例えば、特許文献2参照)、3)溶融粘度が低く、成形性に優れるとともに、天然木材等に近い良好な外観を付与することが可能で、しかも成形時の変色(焼けこげ)が抑制され、物性に優れる成形品を得ることができる木質樹脂ペレットとして、木粉70~91重量部と、融点を40~100℃の間に持つワックス材料1~15重量部とからなる木質樹脂ペレット(例えば、特許文献3参照)などが知られている。
上記特許文献1~3に開示の複合材料、木質系成形体や木質樹脂ペレットなどは、成形のしやすさの他、成形時の焦げ防止及び天然木材に近い外観を得ることを目的に作られており、切りやすさ、削りやすさといった成形後の加工しやすさなどについては配慮されたものではなく、更なる改善、改良などが切望されているのが現状であった。また、石油由来材料を使用している場合には、資源枯渇の課題解決効果に劣るものとなっていた。
本開示は、上記従来の課題等について解消しようとするものであり、強度や耐水性を損なうことなく、切削加工性に優れ、環境に対して負荷が少なく、容易に製造することができ、資源枯渇の課題解決効果に寄与する再生木材などの再生自然素材を提供することを目的とする。
本開示者は、上記従来の課題等について鋭意検討した結果、少なくとも、粒子径が特定値以下のバイオマス資源由来の粉体からなる体質材と、特定物性の熱可塑性固体からなる切削向上材と、結合材とから、所定の比率で構成され、所定の形状に成形することなどにより、上記目的の再生自然素材が得られることを見出し、本開示を完成するに至ったのである。
すなわち、本開示の再生自然素材は、少なくとも、粒子径2mm以下となるバイオマス資源由来の少なくとも1種の粉体からなる体質材と、融点が40℃以上である熱可塑性固体からなる切削向上材と、結合材とを少なくとも含み、体質材/切削向上材/結合材=20~65/15~55/10~50の比率で構成され、所定の形状に成形されたことを特徴とする。
前記切削向上材が、ISO16128で定義される自然由来指数が50%以上であることが好ましい。
前記結合材が、セルロース又はセルロース誘導体であることが好ましい。
前記セルロース誘導体が、カルボキシメチルセルロースアンモニウムであることが好ましい。
前記再生自然素材を棒状に成形して棒状再生自然素材とすることが好ましく、また、この棒状再生自然素材を更に加工して筆記具又は鉛筆軸用の軸木とすることが好ましい。
前記切削向上材が、ISO16128で定義される自然由来指数が50%以上であることが好ましい。
前記結合材が、セルロース又はセルロース誘導体であることが好ましい。
前記セルロース誘導体が、カルボキシメチルセルロースアンモニウムであることが好ましい。
前記再生自然素材を棒状に成形して棒状再生自然素材とすることが好ましく、また、この棒状再生自然素材を更に加工して筆記具又は鉛筆軸用の軸木とすることが好ましい。
本開示によれば、強度や耐水性を損なうことなく、切削加工性に優れ、環境に対して負荷が少なく、容易に製造することができ、しかも、資源枯渇の課題解決効果に寄与する再生木材などの再生自然素材を提供することができる。
本開示の目的及び効果は、特に請求項において指摘される構成要素及び組み合わせを用いることによって認識され且つ得られるものである。上述の一般的な説明及び後述の詳細な説明の両方は、例示的及び説明的なものであり、特許請求の範囲に記載されている本開示を制限するものではない。
本開示の目的及び効果は、特に請求項において指摘される構成要素及び組み合わせを用いることによって認識され且つ得られるものである。上述の一般的な説明及び後述の詳細な説明の両方は、例示的及び説明的なものであり、特許請求の範囲に記載されている本開示を制限するものではない。
以下に、本開示の実施形態を詳しく説明する。但し、本開示の技術的範囲は下記で詳述する実施の形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。また、本開示は、本明細書に開示されている内容と当該分野における技術常識(設計事項、自明事項を含む)に基づいて実施することができる。
本開示の再生自然素材は、少なくとも、粒子径2mm以下となるバイオマス資源由来の少なくとも1種の粉体からなる体質材と、融点が40℃以上である熱可塑性固体からなる切削向上材と、結合材とを少なくとも含み、体質材/切削向上材/結合材=20~65/15~55/10~50の質量比率で構成され、所定の形状に成形されたことを特徴とするものである。
本開示に用いる体質材は、粒子径2mm以下となるバイオマス資源由来のものから選ばれる少なくとも1種の粉体からなるものである。
本開示におけるバイオマス資源としては、例えば、NEDO(New Energy and Industrial Technology Development Organization、国立研究開発法人新エネルギー・産業技術総合開発機構)再生可能エネルギー技術白書などに記載され、分類されてなる、廃棄物系資源、未利用資源、生産系資源からのいずれも用いられ、特に限定されないが、使用用途が限られ、活用することの利点が大きいことから、廃棄物系資源および未利用資源からものが好適に用いられる。廃棄物系資源および未利用資源においては、粉体の入手もしくは粉砕加工の容易さから、木質系バイオマスや食品廃棄物、農業残渣系バイオマスからのものが好ましい。
上記木質系バイオマスとしては、製材工場残材や建設発生木材、森林の林地残材や間伐材、未利用樹といった、樹木や竹が用いられる。
上記樹木としては、例えば、広葉樹や針葉樹などの自然由来の樹木が用いられ、特に限定されない。具体的な樹木としては、例えば、スギ、マツ、カラマツ、アカマツ、トドマツ、ヒノキ、ブナ、トチ、コナラ、ミズナラ、ナラ、シナノキ、カンバ、ハルニレ、ラワン、ベイツガ等が挙げられる。これらの樹木の中から選ばれる材料では、入手が容易であることから、特に、スギ、ヒノキ、ブナ、トチ、ミズナラなどが好適に用いられる。
また、上記竹としては、自然由来のマダケ、モウソウチク、ハチク、ホテイチク、キッコウチク、ホウライチク、ナリヒラダケ、チシマザサ、トウチク、シホウチク、カンチク、ヤダケ、メダケなどが挙げられる。蓄積量が多く、入手が容易であることから、モウソウチクなどが好適に用いられる。
本開示におけるバイオマス資源としては、例えば、NEDO(New Energy and Industrial Technology Development Organization、国立研究開発法人新エネルギー・産業技術総合開発機構)再生可能エネルギー技術白書などに記載され、分類されてなる、廃棄物系資源、未利用資源、生産系資源からのいずれも用いられ、特に限定されないが、使用用途が限られ、活用することの利点が大きいことから、廃棄物系資源および未利用資源からものが好適に用いられる。廃棄物系資源および未利用資源においては、粉体の入手もしくは粉砕加工の容易さから、木質系バイオマスや食品廃棄物、農業残渣系バイオマスからのものが好ましい。
上記木質系バイオマスとしては、製材工場残材や建設発生木材、森林の林地残材や間伐材、未利用樹といった、樹木や竹が用いられる。
上記樹木としては、例えば、広葉樹や針葉樹などの自然由来の樹木が用いられ、特に限定されない。具体的な樹木としては、例えば、スギ、マツ、カラマツ、アカマツ、トドマツ、ヒノキ、ブナ、トチ、コナラ、ミズナラ、ナラ、シナノキ、カンバ、ハルニレ、ラワン、ベイツガ等が挙げられる。これらの樹木の中から選ばれる材料では、入手が容易であることから、特に、スギ、ヒノキ、ブナ、トチ、ミズナラなどが好適に用いられる。
また、上記竹としては、自然由来のマダケ、モウソウチク、ハチク、ホテイチク、キッコウチク、ホウライチク、ナリヒラダケ、チシマザサ、トウチク、シホウチク、カンチク、ヤダケ、メダケなどが挙げられる。蓄積量が多く、入手が容易であることから、モウソウチクなどが好適に用いられる。
上記食品廃棄物としては、例えば、食品の原材料の選別や製造工程で発生するもの、厨芥などが用いられ、特に限定されないが、可食部、不可食部の別では、汎用性の乏しさから不可食部を用いることが好ましい。具体的な食品廃棄物の不可食部としては、茶がら、コーヒーかす、桃殻、クルミ殻、とうもろこしの穂軸、野菜の皮または種または芯等が挙げられる。
上記農業残渣系バイオマスとしては、稲わらや麦わら、籾殻、バガス、カカオ殻等が用いられる。
上記農業残渣系バイオマスとしては、稲わらや麦わら、籾殻、バガス、カカオ殻等が用いられる。
本開示に用いる体質材において、上記バイオマス資源由来の複数の粉体を混合した粉体も使用することができるものであり、粒子径2mm以下となるものであればよい。なお、本開示における粒子径は、任意の目開きである篩またはメッシュを通過することで得られる値とすることができる。
この粒子径2mm超過のものでは、成形した再生自然材料の表面に凹凸が生じ、外観を損ね、成形後の乾燥時に割れを生じる原因となり、好ましくない。
この粒子径2mm超過のものでは、成形した再生自然材料の表面に凹凸が生じ、外観を損ね、成形後の乾燥時に割れを生じる原因となり、好ましくない。
用いる粒子径2mm以下の上記バイオマス資源由来のものから選ばれる少なくとも1種の粉体としては、上記廃棄物系資源および未利用資源の由来の、木質系バイオマスや食品廃棄物、農業残渣系バイオマスのおが屑、端材や廃材などから得られる木粉、任意の装着等により粉砕および分級を行った粉末などを挙げることができる。
これらの粒子径2mm以下の上記の各バイオマス資源由来のものから選ばれる少なくとも1種の粉体(混合した粉体を含む)は、本開示の効果を更に発揮せしめる点、環境に対する負荷の点から、ISO 16128で定義される自然由来指数(水を含まない)が0.5以上、更に好ましくは、0.7以上とすることにより、更に、環境に対して負荷がきわめて少なく、資源枯渇の課題解決効果に寄与することできることとなる。
これらの粒子径2mm以下の上記の各バイオマス資源由来のものから選ばれる少なくとも1種の粉体(混合した粉体を含む)は、本開示の効果を更に発揮せしめる点、環境に対する負荷の点から、ISO 16128で定義される自然由来指数(水を含まない)が0.5以上、更に好ましくは、0.7以上とすることにより、更に、環境に対して負荷がきわめて少なく、資源枯渇の課題解決効果に寄与することできることとなる。
これらのバイオマス資源由来の粉体の含有量は、二酸化炭素排出量を主とした環境負荷の低減、及び再生自然材料の寸法精度や強度の点から、再生自然素材全量に対して、20~65質量%であり、更に好ましくは、30~65質量%、特に好ましくは、35~55質量%とすることが望ましい。
これらの含有量が、20質量%未満であると、乾燥時の収縮が大きく、再生自然材料の寸法精度が劣ること、及び環境負荷が大きくなることがあり、一方、65質量%を超えると、再生自然材料の強度が不足することがある。
これらの含有量が、20質量%未満であると、乾燥時の収縮が大きく、再生自然材料の寸法精度が劣ること、及び環境負荷が大きくなることがあり、一方、65質量%を超えると、再生自然材料の強度が不足することがある。
本開示に用いる切削向上材は、少なくとも、融点が40℃以上である熱可塑性固体の少なくとも1種から選ばれたものである。
本開示に用いる熱可塑性固体からなる切削向上材は、融点が40℃以上となるワックスまたは脂肪酸またはその誘導体または熱可塑性樹脂であれば特に限定されずに用いることができる。
融点が40℃以上となるワックスとしては、例えば、キャンデリラワックス、カルナバワックス、ライスワックス、モクロウ、ホホバ油などの植物系ワックス、ミツロウ、ラノリン、鯨ろうなどの動物系ワックス、モンタンワックス、オゾケライト、セレシンなどの鉱物系ワックス、パラフィンワックス、マイクロクリスタリンワックス・ペトロラタムなどの石油ワックス、フイッシャ-トロプシュワックス、ポリエチレンワックス、アミドワックスなどの合成炭化水素、モンタンワックス誘導体、パラフィンワックス誘導体、マイクロクリスタリンワックス誘導体などの変性ワックス、硬化ひまし油、硬化ひまし油誘導体、硬化パーム油などの水素化ワックスなどが挙げられる。
なお、カルナバワックスは、カルナバヤシの葉から抽出精製されたワックスであり、従来より、若葉から採取された淡黄色のものを1号、古葉から採取された淡褐色のものを2号(または3号)とグレードが分類されている。
本開示に用いる熱可塑性固体からなる切削向上材は、融点が40℃以上となるワックスまたは脂肪酸またはその誘導体または熱可塑性樹脂であれば特に限定されずに用いることができる。
融点が40℃以上となるワックスとしては、例えば、キャンデリラワックス、カルナバワックス、ライスワックス、モクロウ、ホホバ油などの植物系ワックス、ミツロウ、ラノリン、鯨ろうなどの動物系ワックス、モンタンワックス、オゾケライト、セレシンなどの鉱物系ワックス、パラフィンワックス、マイクロクリスタリンワックス・ペトロラタムなどの石油ワックス、フイッシャ-トロプシュワックス、ポリエチレンワックス、アミドワックスなどの合成炭化水素、モンタンワックス誘導体、パラフィンワックス誘導体、マイクロクリスタリンワックス誘導体などの変性ワックス、硬化ひまし油、硬化ひまし油誘導体、硬化パーム油などの水素化ワックスなどが挙げられる。
なお、カルナバワックスは、カルナバヤシの葉から抽出精製されたワックスであり、従来より、若葉から採取された淡黄色のものを1号、古葉から採取された淡褐色のものを2号(または3号)とグレードが分類されている。
また、融点が40℃以上となる脂肪酸またはその誘導体としては、例えば、ミリスチン酸、ステアリン酸、ベヘン酸などの脂肪酸や、それら脂肪酸のナトリウム、カルシウム、マグネシウムなどの塩である脂肪酸塩、ステアリン酸ステアリル、グリセリンモノステアレート、グリセリンジステアレート、ソルビタンモノステアレート、ソルビタントリステアレート、ポリエチレングリコールジステアレートなどの脂肪酸エステル、ステアリン酸アミドなどの脂肪酸アミド等を挙げることができる。
さらに、融点が40℃以上となる熱可塑性樹脂は、ポリエチレン、ポリプロピレン等を挙げることができる。
これらの熱可塑性固体からなる切削向上材は、各単独で、または2種以上混合して(以下、「少なくとも1種」という)使用することができ、また、市販品があれば、それらを使用することができる。
用いる熱可塑性固体からなる切削向上材の融点は、バイオマス資源由来の粉体との複合化の容易さの点、再生自然材料の強度が優れる点から、好ましくは、60℃以上150℃以下である熱可塑性固体、更に好ましくは、75℃以上120℃以下のワックスまたは油脂の使用が望ましい。
好ましく用いることができる熱可塑性固体からなる切削向上材としては、カルナバワックス、ライスワックス、キャンデリラワックス、硬化ひまし油、グリセリンモノステアレート、グリセリンジステアレート、ソルビタンモノステアレート、ソルビタントリステアレートなどが望ましい。
なお、用いるワックスや油脂などの熱可塑性固体の融点が40℃未満のものであると、再生自然材料の使用時に環境や摩擦など外部要因による温度で軟化し、強度が低下するため、好ましくない。
さらに、融点が40℃以上となる熱可塑性樹脂は、ポリエチレン、ポリプロピレン等を挙げることができる。
これらの熱可塑性固体からなる切削向上材は、各単独で、または2種以上混合して(以下、「少なくとも1種」という)使用することができ、また、市販品があれば、それらを使用することができる。
用いる熱可塑性固体からなる切削向上材の融点は、バイオマス資源由来の粉体との複合化の容易さの点、再生自然材料の強度が優れる点から、好ましくは、60℃以上150℃以下である熱可塑性固体、更に好ましくは、75℃以上120℃以下のワックスまたは油脂の使用が望ましい。
好ましく用いることができる熱可塑性固体からなる切削向上材としては、カルナバワックス、ライスワックス、キャンデリラワックス、硬化ひまし油、グリセリンモノステアレート、グリセリンジステアレート、ソルビタンモノステアレート、ソルビタントリステアレートなどが望ましい。
なお、用いるワックスや油脂などの熱可塑性固体の融点が40℃未満のものであると、再生自然材料の使用時に環境や摩擦など外部要因による温度で軟化し、強度が低下するため、好ましくない。
これらの融点が40℃以上となる熱可塑性固体からなる切削向上材は、本開示の効果を更に発揮せしめる点、環境に対する負荷の点から、ISO 16128で定義される自然由来指数(水を含まない)が0.5以上であることが好ましい。
本開示(後述する実施例を含む)における「自然由来指数(水を含まない)」とは、ISO 16128に係る指数表示をいい、この自然由来指数(水を含まない)が0.5以上、更に好ましくは、0.8以上とすることにより、更に、環境に対して負荷がきわめて少なく、資源枯渇の課題解決効果に寄与することできることとなる。
また、上記熱可塑性固体からなる切削向上材は、本開示の効果を更に発揮せしめる点、特に強度を向上する点から、針入度(25℃)が50以下であることが好ましい。
本開示における針入度(25℃)は、JIS K2235 5.4で定義され、50以下、更に好ましくは、10以下とすることにより、切削性を維持しつつ、高強度の再生自然材料が得られることとなる。この点から、上記熱可塑性固体からなる切削向上材としては、カルナバワックス、ライスワックス、キャンデリラワックス、硬化ひまし油などが好適に用いられる。
本開示(後述する実施例を含む)における「自然由来指数(水を含まない)」とは、ISO 16128に係る指数表示をいい、この自然由来指数(水を含まない)が0.5以上、更に好ましくは、0.8以上とすることにより、更に、環境に対して負荷がきわめて少なく、資源枯渇の課題解決効果に寄与することできることとなる。
また、上記熱可塑性固体からなる切削向上材は、本開示の効果を更に発揮せしめる点、特に強度を向上する点から、針入度(25℃)が50以下であることが好ましい。
本開示における針入度(25℃)は、JIS K2235 5.4で定義され、50以下、更に好ましくは、10以下とすることにより、切削性を維持しつつ、高強度の再生自然材料が得られることとなる。この点から、上記熱可塑性固体からなる切削向上材としては、カルナバワックス、ライスワックス、キャンデリラワックス、硬化ひまし油などが好適に用いられる。
これらの熱可塑性固体からなる切削向上材の合計含有量としては、再生自然材料の寸法精度の点及び切削加工性の点から、再生自然素材全量に対して、15~55質量%であり、更に好ましくは、15~50質量%、特に好ましくは、15~40質量%とすることが望ましい。
これらの含有量が、15質量%未満であると、成形後の乾燥時に収縮が大きく、寸法精度が低下する可能性がある、及び再生自然材料の切削加工性が十分でなくなることがあり、一方、55質量%を超えると、体質材や結合材の粉末との混合時に凝集し、成分の偏在を引き起こすことがあるため、好ましくない。
これらの含有量が、15質量%未満であると、成形後の乾燥時に収縮が大きく、寸法精度が低下する可能性がある、及び再生自然材料の切削加工性が十分でなくなることがあり、一方、55質量%を超えると、体質材や結合材の粉末との混合時に凝集し、成分の偏在を引き起こすことがあるため、好ましくない。
本開示に用いる結合材としては、水溶性ないしは親水性のものが好ましく、例えば、セルロース繊維(ナノファイバー含む)、メチルセルロース、カルボキシメチルセルロース(CMC)又はその塩、ヒドロキシメチルプロピルセルロース、アルギン酸ナトリウム、ポリビニルアルコール、ポリオキシエチレン、ポリアクリルアミド、マレイン酸共重合樹脂などの、少なくとも1種を用いることができる。上記各カルボキシメチルセルロース(CMC)の塩としては、ナトリウム、アンモニウムなどを挙げられる。
これらの結合材は自然由来であることが好ましく、更には耐水性を付与する点から、カルボキシメチルセルロース(CMC)アンモニウムであることが好ましい。
これらの結合材は、本開示の効果を更に発揮せしめる点、環境に対する負荷の点から、ISO 16128で定義される自然由来指数(水を含まない)が0.5以上であることが好ましく、更に好ましくは、0.7以上とすることにより、更に、環境に対して負荷がきわめて少なく、資源枯渇の課題解決効果に寄与することできることとなる。
これらの結合材は自然由来であることが好ましく、更には耐水性を付与する点から、カルボキシメチルセルロース(CMC)アンモニウムであることが好ましい。
これらの結合材は、本開示の効果を更に発揮せしめる点、環境に対する負荷の点から、ISO 16128で定義される自然由来指数(水を含まない)が0.5以上であることが好ましく、更に好ましくは、0.7以上とすることにより、更に、環境に対して負荷がきわめて少なく、資源枯渇の課題解決効果に寄与することできることとなる。
これらの結合材の含有量は、再生自然素材全量に対して、10~50質量%であり、更に好ましくは、20~50質量%、特に好ましくは、30~45質量%とすることが望ましい。
これらの結合材の含有量が、10質量%未満であると、成形性が悪く、乾燥時に形状を保持できないこと、及び再生自然材料の強度が不十分となることがあり、一方、50質量%を超えると、再生自然材料が硬くなり、切削加工性が不足することがある。
これらの結合材の含有量が、10質量%未満であると、成形性が悪く、乾燥時に形状を保持できないこと、及び再生自然材料の強度が不十分となることがあり、一方、50質量%を超えると、再生自然材料が硬くなり、切削加工性が不足することがある。
本開示における再生自然素材には、上記粒子径2mm以下となる上記バイオマス資源由来のものから選ばれる少なくとも1種の粉体(混合粉体を含む)からなる体質材と、融点が40℃以上である熱可塑性固体からなる切削向上材とを含み、上述の如く、体質材/切削向上材/結合材の全量中の含有比率が質量基準(質量%)で、20~65/15~55/10~50の比率、好ましくは、30~65/15~50/20~50の比率、更に好ましくは、35~55/15~40/30~45の比率で構成される他、本開示の効果を更に発揮せしめる点、耐水性を付与する点から、前記結合材を架橋する架橋剤などを更に含有することができる。
前記結合材を架橋する架橋剤としては、結合材をエステル架橋するカルボン酸基を有するものが好ましく、具体的には、コハク酸、リンゴ酸、マレイン酸、酒石酸、クエン酸、ポリアクリル酸などを挙げられる。
これらの架橋剤の含有量は、再生自然素材全量に対して、耐水性発現の点、吸湿による強度低下を抑制する点、材料の変色を抑制する点から、好ましくは、0.1~5質量%、更に好ましくは、0.5~2質量%とすることが望ましい。
前記結合材を架橋する架橋剤としては、結合材をエステル架橋するカルボン酸基を有するものが好ましく、具体的には、コハク酸、リンゴ酸、マレイン酸、酒石酸、クエン酸、ポリアクリル酸などを挙げられる。
これらの架橋剤の含有量は、再生自然素材全量に対して、耐水性発現の点、吸湿による強度低下を抑制する点、材料の変色を抑制する点から、好ましくは、0.1~5質量%、更に好ましくは、0.5~2質量%とすることが望ましい。
更に、本開示の再生自然素材には、上記粒子径2mm以下となる上記バイオマス資源由来のものから選ばれる少なくとも1種の粉体(混合粉体を含む)からなる体質材と、融点が40℃以上である熱可塑性固体からなる切削向上材と、結合材、架橋剤の他、必要に応じて、再生自然素材を着色するための着色材(染料、無機顔料、有機顔料)、酸化鉄、酸化亜鉛、酸化チタン、カーボンブラック、天然色素などを適宜含有することができる。
これらの再生自然素材は、本開示の効果を更に発揮せしめる点、環境に対する負荷の点から、自然由来指数(水を含まない)0.5以上であることが好ましい。
この再生自然素材の自然由来指数(水を含まない)を0.75以上、更に好ましくは、0.85以上とすることにより、更に、環境に対して負荷がきわめて少ない、再生自然素材が得られることとなる。
この再生自然素材の自然由来指数(水を含まない)を0.75以上とすることは、前述した融点が40℃以上である熱可塑性固体、結合材を自然由来ものを適宜選択して達成することができる。
この再生自然素材の自然由来指数(水を含まない)を0.75以上、更に好ましくは、0.85以上とすることにより、更に、環境に対して負荷がきわめて少ない、再生自然素材が得られることとなる。
この再生自然素材の自然由来指数(水を含まない)を0.75以上とすることは、前述した融点が40℃以上である熱可塑性固体、結合材を自然由来ものを適宜選択して達成することができる。
本開示の再生自然素材は、粒子径2mm以下となる上記バイオマス資源由来のものから選ばれる少なくとも1種の粉体(混合粉体を含む)からなる体質材と、融点が40℃以上である熱可塑性固体からなる切削向上材と、結合材とを上記の各比率となるように混合した後、撹拌しながら加水を行い、成形前駆体として、所定の形状に成形後、乾燥を行うことにより目的の再生木材などの再生自然素材を得ることができるものであり、例えば、ヘンシェルミキサー、プラネタリミキサー、ニーダーなどの混練機などを用いて、粒子径2mm以下となる上記バイオマス資源由来のものから選ばれる少なくとも1種の粉体(混合粉体を含む)からなる体質材と、融点が40℃以上である熱可塑性固体からなる切削向上材と、結合材とを混合した後、撹拌しながら水分率が40~80%となるように水(精製水、蒸溜水など)加える加水を行い、成形前駆体とし、次いで、所定の形状、例えば、棒状、板状、管状、ブロック形状、シート状に形成し、乾燥を行うことにより目的の再生自然素材を製造することができる。
また、上記各混練物を押出成形機などを用いて所定径のダイス、もしくはTダイなどを用いて、棒状、丸棒、板状もしくはシート状に成形し、乾燥することで得る所定形状の成形体を作製したりすることができる。
更に、押出成形などの際のプレス圧力、含水率、バイオマス資源由来の各粉体(木粉等)からなる体質材と、天然由来の熱可塑性固体からなる切削向上材及び結合材などを好適に組み合わせることにより、幅広く再生自然素材の物性(気孔率含む)を制御できるため、求める再生自然素材の質感、強度、成形性などを満足できるものが得られることとなる。
更に、押出成形などの際のプレス圧力、含水率、バイオマス資源由来の各粉体(木粉等)からなる体質材と、天然由来の熱可塑性固体からなる切削向上材及び結合材などを好適に組み合わせることにより、幅広く再生自然素材の物性(気孔率含む)を制御できるため、求める再生自然素材の質感、強度、成形性などを満足できるものが得られることとなる。
本開示において、上記再生自然素材の形態、用途などは、特に限定されず、例えば、上記再生自然素材を棒状に成形したものでは、更に加工して筆記具又は鉛筆軸用の軸木としてもよく、更に、アイライナー、アイブロウ、アイシャドウなどの化粧具の軸木、各種容器、音響機器の振動板や筐体、自動車内装部品などの用途に用いられる各再生自然素材が挙げられる。
このように構成される本開示の再生自然素材は、強度や耐水性を損なうことなく、切削加工性に優れ、環境に対して負荷が少なく、容易に製造することができ、しかも、資源枯渇の課題解決効果に寄与する再生木材などの再生自然素材及びその製造方法が得られることとなる。
また、再生自然素材を棒状に成形し、更に加工して筆記具又は鉛筆軸用の軸木としたものでは、従来の木軸と同様の易削り性や落下耐性、耐水性を有し、環境に対して負荷が少なく、従来の鉛筆、筆記具(木軸の化粧具含む)の成形の際に用いている成形機などを改良することなく使用することができるので、容易に製造することができる筆記具又は鉛筆軸用の軸木が得られることとなる。
また、再生自然素材を棒状に成形し、更に加工して筆記具又は鉛筆軸用の軸木としたものでは、従来の木軸と同様の易削り性や落下耐性、耐水性を有し、環境に対して負荷が少なく、従来の鉛筆、筆記具(木軸の化粧具含む)の成形の際に用いている成形機などを改良することなく使用することができるので、容易に製造することができる筆記具又は鉛筆軸用の軸木が得られることとなる。
以下に本開示を実施例、比較例により説明するが、本開示はこれらの実施例に限定されるものではない。
(実施例1)
ヘンシェルミキサーに、バイオマス資源として、製材工場残材から得た粒子径2mm以下のヒノキ木粉と、切削向上材である熱可塑性固体として等量のカルナバワックス2号(融点82℃、針入度(25℃):1未満、トーヨーケム社製、以下同様)の粉末と、結合材として、木粉と等量のカルボキシメチルセルロース(CMC)ナトリウム(日本製紙社製、以下同様)を、ヘンシェルミキサーにより乾式混合後、内容量と等量の精製水を撹拌しながら加えることで、成形前駆体を得た。
この成形前駆体を押出成形機により、φ8mm、長さ180mmの棒状に成形後、50℃にて乾燥することで、φ7mmの棒状再生木材を得た。
ヘンシェルミキサーに、バイオマス資源として、製材工場残材から得た粒子径2mm以下のヒノキ木粉と、切削向上材である熱可塑性固体として等量のカルナバワックス2号(融点82℃、針入度(25℃):1未満、トーヨーケム社製、以下同様)の粉末と、結合材として、木粉と等量のカルボキシメチルセルロース(CMC)ナトリウム(日本製紙社製、以下同様)を、ヘンシェルミキサーにより乾式混合後、内容量と等量の精製水を撹拌しながら加えることで、成形前駆体を得た。
この成形前駆体を押出成形機により、φ8mm、長さ180mmの棒状に成形後、50℃にて乾燥することで、φ7mmの棒状再生木材を得た。
(実施例2)
上記実施例1に記載のCMCナトリウムの代わりに、カルボキシメチルセルロースアンモニウム(CMCアンモニウム)(ニチリン化学社製、以下同様)を使用し、乾燥後に150℃で1時間加熱した点以外は上記実施例1と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例3)
上記実施例1に記載のCMCナトリウムの代わりに、ポリビニルアルコール(PVA)(クラレ社製)を使用した点以外は上記実施例1と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
上記実施例1に記載のCMCナトリウムの代わりに、カルボキシメチルセルロースアンモニウム(CMCアンモニウム)(ニチリン化学社製、以下同様)を使用し、乾燥後に150℃で1時間加熱した点以外は上記実施例1と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例3)
上記実施例1に記載のCMCナトリウムの代わりに、ポリビニルアルコール(PVA)(クラレ社製)を使用した点以外は上記実施例1と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例4)
上記実施例2に記載のヒノキ木粉の代わりに、バイオマス資源として、製材工場残材から得た粒子径1mm以下のヒノキ木粉を使用した点以外は、上記実施例2と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例5)
上記実施例4に記載のCMCアンモニウムの半量をセルロース繊維(CF)(日本製紙社製)で置き換えた点以外は、上記実施例4と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
上記実施例2に記載のヒノキ木粉の代わりに、バイオマス資源として、製材工場残材から得た粒子径1mm以下のヒノキ木粉を使用した点以外は、上記実施例2と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例5)
上記実施例4に記載のCMCアンモニウムの半量をセルロース繊維(CF)(日本製紙社製)で置き換えた点以外は、上記実施例4と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例6)
上記実施例2に記載のヒノキ木粉の代わりに、バイオマス資源として、間伐材から得た粒子径0.6mm以下のスギ木粉を使用した点以外は、上記実施例2と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例7)
上記実施例2に記載のヒノキ木粉の代わりに、バイオマス資源として、間伐材から得た粒子径0.3mm以下のスギ木粉を使用した点以外は、上記実施例2と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
上記実施例2に記載のヒノキ木粉の代わりに、バイオマス資源として、間伐材から得た粒子径0.6mm以下のスギ木粉を使用した点以外は、上記実施例2と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例7)
上記実施例2に記載のヒノキ木粉の代わりに、バイオマス資源として、間伐材から得た粒子径0.3mm以下のスギ木粉を使用した点以外は、上記実施例2と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例8)
上記実施例7に記載のカルナバワックス2号の量を、木粉の3分の2倍量とした点以外は、上記実施例7と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例9)
上記実施例7に記載のカルナバワックス2号の量を、木粉の半量とした点以外は、上記実施例7と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
上記実施例7に記載のカルナバワックス2号の量を、木粉の3分の2倍量とした点以外は、上記実施例7と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例9)
上記実施例7に記載のカルナバワックス2号の量を、木粉の半量とした点以外は、上記実施例7と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例10)
上記実施例7に記載のカルナバワックス2号の量を、木粉の3分の4倍量とした点以外は、上記実施例7と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例11)
上記実施例7に記載のCMCアンモニウムの量を、木粉の3分の4倍量とした点以外は、上記実施例7と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
上記実施例7に記載のカルナバワックス2号の量を、木粉の3分の4倍量とした点以外は、上記実施例7と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例11)
上記実施例7に記載のCMCアンモニウムの量を、木粉の3分の4倍量とした点以外は、上記実施例7と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例12)
上記実施例7に記載のCMCアンモニウムの量を、木粉の3分の2倍量とした点以外は、上記実施例7と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例13)
上記実施例7に記載のカルナバワックス2号の量を、木粉の3分の1倍量とし、CMCアンモニウムの量を木粉の3分の2倍量とした点以外は、上記実施例7と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
上記実施例7に記載のCMCアンモニウムの量を、木粉の3分の2倍量とした点以外は、上記実施例7と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例13)
上記実施例7に記載のカルナバワックス2号の量を、木粉の3分の1倍量とし、CMCアンモニウムの量を木粉の3分の2倍量とした点以外は、上記実施例7と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例14)
上記実施例2に記載のヒノキ木粉の代わりに、バイオマス資源として、未利用樹から得た粒子径0.1mm以下のタケ粉を使用した点以外は、上記実施例2と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例15)
上記実施例14に記載のカルナバワックス2号を、半量とした点以外は、上記実施例14と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
上記実施例2に記載のヒノキ木粉の代わりに、バイオマス資源として、未利用樹から得た粒子径0.1mm以下のタケ粉を使用した点以外は、上記実施例2と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例15)
上記実施例14に記載のカルナバワックス2号を、半量とした点以外は、上記実施例14と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例16)
上記実施例2に記載のヒノキ木粉の代わりに、バイオマス資源として、農業残渣から得た粒子径0.6mm以下のカカオ殻粉砕粉を使用した点以外は、上記実施例2と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例17)
上記実施例4に記載のカルナバワックス2号の代わりに、ライスワックス(融点79℃、針入度(25℃):5、ボーソー油脂社製)を使用した点以外は、上記実施例4と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
上記実施例2に記載のヒノキ木粉の代わりに、バイオマス資源として、農業残渣から得た粒子径0.6mm以下のカカオ殻粉砕粉を使用した点以外は、上記実施例2と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例17)
上記実施例4に記載のカルナバワックス2号の代わりに、ライスワックス(融点79℃、針入度(25℃):5、ボーソー油脂社製)を使用した点以外は、上記実施例4と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例18)
上記実施例4に記載のカルナバワックス2号の代わりに、フイッシャ-トロプシュワックス(融点113℃、針入度(25℃):1、日本精蝋社製)を使用した点以外は、上記実施例4と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例19)
上記実施例4に記載のカルナバワックス2号の代わりに、グリセリンモノ・ジステアレート(融点63℃、針入度(25℃):20、理研ビタミン社製)を使用した点以外は、実施例4と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
上記実施例4に記載のカルナバワックス2号の代わりに、フイッシャ-トロプシュワックス(融点113℃、針入度(25℃):1、日本精蝋社製)を使用した点以外は、上記実施例4と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例19)
上記実施例4に記載のカルナバワックス2号の代わりに、グリセリンモノ・ジステアレート(融点63℃、針入度(25℃):20、理研ビタミン社製)を使用した点以外は、実施例4と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例20)
上記実施例4に記載のカルナバワックス2号の代わりに、ソルビタントリステアレート(融点54℃、針入度(25℃):5、花王社製)を使用した点以外は、実施例4と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例21)
上記実施例4に記載のカルナバワックス2号の代わりに、ステアリン酸アミド(融点102℃、針入度(25℃):12、三菱ケミカル社製)を使用した点以外は、実施例4と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
上記実施例4に記載のカルナバワックス2号の代わりに、ソルビタントリステアレート(融点54℃、針入度(25℃):5、花王社製)を使用した点以外は、実施例4と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例21)
上記実施例4に記載のカルナバワックス2号の代わりに、ステアリン酸アミド(融点102℃、針入度(25℃):12、三菱ケミカル社製)を使用した点以外は、実施例4と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例22)
上記実施例4に記載のカルナバワックス2号の代わりに、ステアリン酸(融点66℃、針入度(25℃):18、日油社製)を使用した点以外は、実施例4と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例23)
上記実施例4に記載のカルナバワックス2号の代わりに、高密度ポリエチレン(融点126℃、針入度(25℃):1未満、日本ポリエチレン社製)を使用した点以外は、実施例4と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
上記実施例4に記載のカルナバワックス2号の代わりに、ステアリン酸(融点66℃、針入度(25℃):18、日油社製)を使用した点以外は、実施例4と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(実施例23)
上記実施例4に記載のカルナバワックス2号の代わりに、高密度ポリエチレン(融点126℃、針入度(25℃):1未満、日本ポリエチレン社製)を使用した点以外は、実施例4と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(比較例1)
ヘンシェルミキサーに、上記実施例4と同様の粒子径1mm以下のヒノキ木粉と、等量となる上記実施例1と同様のCMCナトリウムを投入し乾式混合後、内容量と等量の精製水を撹拌しながら加えることで、成形前駆体を得た。
この成形前駆体を押出成形機により、φ8.5mmの棒状に成形後、50℃にて乾燥することで、φ7mm、長さ180mmの棒状再生木材を得た。
ヘンシェルミキサーに、上記実施例4と同様の粒子径1mm以下のヒノキ木粉と、等量となる上記実施例1と同様のCMCナトリウムを投入し乾式混合後、内容量と等量の精製水を撹拌しながら加えることで、成形前駆体を得た。
この成形前駆体を押出成形機により、φ8.5mmの棒状に成形後、50℃にて乾燥することで、φ7mm、長さ180mmの棒状再生木材を得た。
(比較例2)
上記比較例1に記載のCMCナトリウムの代わりに、CMCアンモニウムを使用し、乾燥後に150℃で1時間加熱した点以外は、上記実施例2と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
上記比較例1に記載のCMCナトリウムの代わりに、CMCアンモニウムを使用し、乾燥後に150℃で1時間加熱した点以外は、上記実施例2と同様に実施し、φ7mm、長さ180mmの棒状再生木材を得た。
(比較例3)
上記比較例2において、木粉に対して半量のCMCアンモニウムを使用した点以外は、上記比較例2と同様に実施した、φ7mm、長さ180mmの棒状再生木材を得た。
上記比較例2において、木粉に対して半量のCMCアンモニウムを使用した点以外は、上記比較例2と同様に実施した、φ7mm、長さ180mmの棒状再生木材を得た。
(比較例4)
上記比較例3において、木粉に対して4分の1倍量のCMCアンモニウムを使用した点以外は、上記比較例3と同様に実施した、φ7mm、長さ180mmの棒状再生木材を得た。
上記比較例3において、木粉に対して4分の1倍量のCMCアンモニウムを使用した点以外は、上記比較例3と同様に実施した、φ7mm、長さ180mmの棒状再生木材を得た。
上記で得られた実施例1~23及び比較例1~4の各棒状再生木材等について、下記より自然由来指数を算出し、また、下記測定方法で、折損強度、切削加工性、耐水性について評価した。
これらの評価結果などを下記表1に示す。また、下記表2に実施例1~23及び比較例1~4に用いた体質材、切削向上材、結合材の各配合比率(表2中の16.7%、33.3%、66.7%はそれぞれ1/6、1/3、2/3を表す)、自然由来指数を示す。
これらの評価結果などを下記表1に示す。また、下記表2に実施例1~23及び比較例1~4に用いた体質材、切削向上材、結合材の各配合比率(表2中の16.7%、33.3%、66.7%はそれぞれ1/6、1/3、2/3を表す)、自然由来指数を示す。
(自然由来指数)
実施例1~23及び比較例1~4の得られた各棒状木材等の自然由来指数(水を含まない)は棒状木材に配合した原料の重量比より、ISO 16128に定義された、自然原料および自然由来原料中の自然由来部分の、水を含まない重量を用いて組成比を百分率で算出することにより求められる。この値が高いほど、動物や植物由来の材料比率が高く、石油由来材料の使用量が少ないことから、環境への負荷が小さいと示すことができる。
実施例1~23及び比較例1~4の得られた各棒状木材等の自然由来指数(水を含まない)は棒状木材に配合した原料の重量比より、ISO 16128に定義された、自然原料および自然由来原料中の自然由来部分の、水を含まない重量を用いて組成比を百分率で算出することにより求められる。この値が高いほど、動物や植物由来の材料比率が高く、石油由来材料の使用量が少ないことから、環境への負荷が小さいと示すことができる。
(折損強度の評価方法)
得られた各棒状木材等を固定した位置から80mmの位置に90℃方向に荷重をかけ、折損した際の最大荷重を計測し、折損強度(N)の評価とした。
得られた各棒状木材等を固定した位置から80mmの位置に90℃方向に荷重をかけ、折損した際の最大荷重を計測し、折損強度(N)の評価とした。
(切削トルクの評価方法)
得られた各棒状木材等を、鉛筆削りを利用して先端を直径2mmに整えた後、回転モーメント測定装置に連結した固定治具に設置された鉛筆削りを使用して、鉛筆削りと反対側を機械で回転させ、木材が尖るまで切削を行った。この間の回転モーメントのピーク値(N・mm)を測定し、切削トルクの評価とした。
(切削加工性判定)
上記折損強度および切削トルクの結果から、切削加工時に必要となる、強度と切削性のバランスを下記指標に基づき判定を行った。
評価指標:
良:折損強度が12N以上かつ切削トルクが100N・mm未満
硬:切削トルクが100N・mm以上
弱:折損強度が12N未満
得られた各棒状木材等を、鉛筆削りを利用して先端を直径2mmに整えた後、回転モーメント測定装置に連結した固定治具に設置された鉛筆削りを使用して、鉛筆削りと反対側を機械で回転させ、木材が尖るまで切削を行った。この間の回転モーメントのピーク値(N・mm)を測定し、切削トルクの評価とした。
(切削加工性判定)
上記折損強度および切削トルクの結果から、切削加工時に必要となる、強度と切削性のバランスを下記指標に基づき判定を行った。
評価指標:
良:折損強度が12N以上かつ切削トルクが100N・mm未満
硬:切削トルクが100N・mm以上
弱:折損強度が12N未満
(耐水性の評価方法)
得られた各棒状木材等を水に浸漬し、24時間後に形状を維持しているか否かにより、耐水性有無の評価を行った。
得られた各棒状木材等を水に浸漬し、24時間後に形状を維持しているか否かにより、耐水性有無の評価を行った。
上記表1及び表2の評価結果などを考察すると、本開示の範囲内である実施例は、比較例に較べ、高い自然由来指数を維持しながら、高い折損強度、低い切削トルクを高度に両立し、切削加工性に優れるものであり、また、結合材としてセルロース誘導体(CMCアンモニウム)を用いたものでは、十分な耐水性を発揮できることを確認した。
強度や耐水性を損なうことなく、切削加工性に優れ、環境に対して負荷が少なく、容易に製造することができ、しかも、資源枯渇の課題解決効果に寄与する再生木材などの再生自然素材が得られ、棒状の再生自然素材を更に加工すれば、鉛筆軸(色鉛筆芯を含む)、筆記具の軸木(軸体)や、アイライナー、アイブロウ、アイシャドウなどの棒状化粧料などの化粧料の軸木(軸体)などが得られる。
Claims (6)
- 粒子径2mm以下となるバイオマス資源由来の少なくとも1種の粉体からなる体質材と、融点が40℃以上である熱可塑性固体からなる切削向上材と、結合材とを少なくとも含み、体質材/切削向上材/結合材=20~65/15~55/10~50の質量比率で構成され、所定の形状に成形されたことを特徴とする再生自然素材。
- 前記切削向上材が、ISO16128で定義される自然由来指数が50%以上であることを特徴とする請求項1に記載の再生自然素材。
- 前記結合材が、セルロース又はセルロース誘導体であることを特徴とする請求項1又は2に記載の再生自然素材。
- 前記セルロース誘導体が、カルボキシメチルセルロースアンモニウムであることを特徴とする請求項3に記載の再生自然素材。
- 請求項1又は2に記載の再生自然素材を棒状に成形したことを特徴とする棒状再生自然素材。
- 請求項5の棒状再生自然素材を更に加工したことを特徴とする筆記具又は鉛筆軸用の軸木。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-130938 | 2022-08-19 | ||
JP2022130938A JP2024027812A (ja) | 2022-08-19 | 2022-08-19 | 再生自然素材 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024038891A1 true WO2024038891A1 (ja) | 2024-02-22 |
Family
ID=89941718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/029690 WO2024038891A1 (ja) | 2022-08-19 | 2023-08-17 | 再生自然素材 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024027812A (ja) |
WO (1) | WO2024038891A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0596899A (ja) * | 1991-06-13 | 1993-04-20 | Lydall Inc | 剛性フアイバーボード |
JP2002529273A (ja) * | 1998-11-11 | 2002-09-10 | フラウンホファー・ゲゼルシャフト・ツール・フォルデルング・デル・アンゲバンテン・フォルシュング・アインゲトラーゲネル・フェライン | 棒状の複合部の製造方法および棒状の複合部 |
US20100003061A1 (en) * | 2006-09-29 | 2010-01-07 | Thies Andreas | Writing, drawing, painting and /or cosmetics pencil and method of producing the same |
JP2021520307A (ja) * | 2018-04-04 | 2021-08-19 | ストラ エンソ オーワイジェイ | 熱成形用の乾式(dry−laid)マットを製造する方法 |
-
2022
- 2022-08-19 JP JP2022130938A patent/JP2024027812A/ja active Pending
-
2023
- 2023-08-17 WO PCT/JP2023/029690 patent/WO2024038891A1/ja active Search and Examination
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0596899A (ja) * | 1991-06-13 | 1993-04-20 | Lydall Inc | 剛性フアイバーボード |
JP2002529273A (ja) * | 1998-11-11 | 2002-09-10 | フラウンホファー・ゲゼルシャフト・ツール・フォルデルング・デル・アンゲバンテン・フォルシュング・アインゲトラーゲネル・フェライン | 棒状の複合部の製造方法および棒状の複合部 |
US20100003061A1 (en) * | 2006-09-29 | 2010-01-07 | Thies Andreas | Writing, drawing, painting and /or cosmetics pencil and method of producing the same |
JP2021520307A (ja) * | 2018-04-04 | 2021-08-19 | ストラ エンソ オーワイジェイ | 熱成形用の乾式(dry−laid)マットを製造する方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2024027812A (ja) | 2024-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ayrilmis et al. | Waste pine cones as a source of reinforcing fillers for thermoplastic composites | |
Pantyukhov et al. | Preparation, structure, and properties of biocomposites based on low‐density polyethylene and lignocellulosic fillers | |
CN103254840B (zh) | 一种木材胶粘剂活性填料及其使用方法 | |
CN107964254B (zh) | 含茶粉的可降解复合材料及其制备方法与应用 | |
Pirayesh et al. | Particleboard from wood particles and sycamore leaves Physico-mechanical properties | |
JP5481623B2 (ja) | 木質樹脂組成物及び木質ペレット | |
JP2009073973A (ja) | 固体燃料及びその製造方法 | |
KR101733224B1 (ko) | 가로수 낙엽을 활용한 수분 저항성 및 내구성이 우수한 고밀도 제재 및 이의 제조방법 | |
CN107304288B (zh) | 麦粕纤维结合聚乳酸的组成物及其制造方法 | |
WO1994014886A1 (de) | Zusammensetzung für einen werkstoff, insbesondere für eine spritzgussmasse | |
DE202020107374U1 (de) | Granulat aus rein natürlichen Bestandteilen; Verwendung des Granulats zur Herstellung kompostierbarer Gebrauchsgegenstände und Verpackungsmaterialien sowie aus dem Granulat hergestellte Gebrauchsgegenstände und Verpackungsmaterialien | |
JP2020515506A (ja) | バイオベース複合材を製造するためのリグノセルロース繊維の混合物の処理方法 | |
WO2024038891A1 (ja) | 再生自然素材 | |
EP3660102B1 (en) | Chlorinated poly(propylene carbonate)/biomass composite material and preparation method therefor | |
KR101932834B1 (ko) | 율피차 부산물과 피마자유를 바인더로 첨가한 고등급 리기다소나무 및 신갈나무 펠릿 제조방법 및 이에 의하여 제조된 목재펠릿 | |
Dundar et al. | Utilization of waste pine cone in manufacture of wood/plastic composite | |
Osarenmwinda et al. | Development of composite material from agricultural wastes | |
JP2009096875A (ja) | 熱可塑性樹脂組成物の製造方法及び成形体の製造方法 | |
Atar et al. | EFFECT OF WASTE TEA (CAMELLIA SINENSIS) WOOD FIBERS AND MAPE ON SOME PROPERTIES OF HIGH DENSITY POLYETHYLENE (HDPE) BASED POLYMER COMPOSITES | |
TW201809149A (zh) | 含有麥粕纖維的生質複合塑料及其製造方法 | |
CN104057749B (zh) | 一种铅笔的笔杆生产方法 | |
WO2024214647A1 (ja) | 鉛筆又は化粧料の軸体 | |
CN105153729A (zh) | 一种高密度聚乙烯复合材料及其制备方法 | |
WO2023063259A1 (ja) | 鉛筆又は化粧料の軸体 | |
JP7158780B1 (ja) | フィラメント材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23854925 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) |