WO2024038872A1 - 分光システム - Google Patents

分光システム Download PDF

Info

Publication number
WO2024038872A1
WO2024038872A1 PCT/JP2023/029591 JP2023029591W WO2024038872A1 WO 2024038872 A1 WO2024038872 A1 WO 2024038872A1 JP 2023029591 W JP2023029591 W JP 2023029591W WO 2024038872 A1 WO2024038872 A1 WO 2024038872A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
cholesteric liquid
prism
crystal layer
Prior art date
Application number
PCT/JP2023/029591
Other languages
English (en)
French (fr)
Inventor
之人 齊藤
雄二郎 矢内
和也 久永
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024038872A1 publication Critical patent/WO2024038872A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a spectroscopic system.
  • An optical element having a cholesteric liquid crystal layer having a liquid crystal alignment pattern that changes while rotating has been proposed. Since such a cholesteric liquid crystal layer having an in-plane liquid crystal alignment pattern reflects incident light in a direction different from that of specular reflection, it has been proposed to use it as a diffraction element.
  • Patent Document 1 describes an optical element formed by laminating a plurality of cholesteric liquid crystal layers each having a fixed cholesteric liquid crystal phase, which has a plurality of cholesteric liquid crystal layers having different selective reflection center wavelengths,
  • the liquid crystal layer has a liquid crystal alignment pattern in which the direction of the optical axis derived from the liquid crystal compound changes while continuously rotating along at least one in-plane direction, and further includes: In one direction in which the direction of the optical axis derived from the liquid crystal compound changes while continuously rotating, when one period is defined as the length of 180° rotation of the direction of the optical axis derived from the liquid crystal compound, the selective reflection center wavelengths are different from each other.
  • An optical element is described in which a plurality of different cholesteric liquid crystal layers have the same order of lengths of selective reflection center wavelengths and the same order of lengths of one period.
  • a cholesteric liquid crystal layer having a liquid crystal alignment pattern depends on the wavelength of incident light. Therefore, a cholesteric liquid crystal layer having such a liquid crystal alignment pattern may be used as a member for separating light.
  • the cholesteric liquid crystal layer reflects light
  • the light that enters the cholesteric liquid crystal layer and is separated is emitted to the incident side. Therefore, when using split light, for example, when detecting each split light, it is necessary to place a detector for detecting the split light on the light incident side of the cholesteric liquid crystal layer. There is. Therefore, it is considered difficult to miniaturize the spectroscopic system.
  • An object of the present invention is to solve the problems of the prior art, and to provide a spectroscopic system that can be miniaturized.
  • a spectroscopic system including an optical element,
  • the optical element includes a prism and a liquid crystal diffraction element disposed directly on the first surface of the prism or via another layer, the prism has a second surface that is inclined with respect to the first surface; The angle of inclination of the second surface with respect to the first surface is 4° or more,
  • the liquid crystal diffraction element has a cholesteric liquid crystal layer formed by fixing a cholesteric liquid crystal phase,
  • the cholesteric liquid crystal layer has a liquid crystal alignment pattern in which the direction of the optical axis derived from the liquid crystal compound changes while continuously rotating along at least one in-plane direction, In the liquid crystal alignment pattern, when the length of 180° rotation of the direction of the optical axis derived from the liquid crystal compound is one period, the length of one period is 0.1 to 1.4 ⁇ m,
  • the light to be analyzed enters from the liquid crystal diffraction element
  • a spectroscopic system that allows the totally reflected light to enter a prism and output the separated light from the second surface.
  • Formula (1) 0.44 ⁇ / ⁇ 1.51
  • FIG. 2 is a diagram conceptually showing an optical element included in the spectroscopic system of the present invention.
  • 1 is a diagram conceptually showing a liquid crystal diffraction element included in an optical element of the present invention.
  • FIG. 3 is an enlarged plan view showing a part of the cholesteric liquid crystal layer of the liquid crystal diffraction element shown in FIG. 2.
  • FIG. 3 is a conceptual diagram for explaining the action of a cholesteric liquid crystal layer.
  • FIG. 2 is a conceptual diagram of an example of an exposure apparatus that exposes an alignment film for forming a cholesteric liquid crystal layer. It is a figure which shows conceptually another example of the optical element which the spectroscopic system of this invention has.
  • FIG. 7 is a diagram conceptually showing another example of a spectroscopic system having the optical element shown in FIG. 6.
  • FIG. It is a figure which shows conceptually another example of the optical element which the spectroscopic system of this invention has.
  • 9 is a diagram conceptually showing another example of a spectroscopic system having the optical element shown in FIG. 8.
  • FIG. 3 is a diagram for explaining angles at each position of light incident on an optical element.
  • FIG. 2 is a diagram for explaining spectroscopy using a conventional cholesteric liquid crystal layer.
  • means a range that includes the numerical values written before and after " ⁇ ” as lower and upper limits.
  • (meth)acrylate is used to mean “one or both of acrylate and methacrylate.”
  • the spectroscopic system of the present invention includes: A spectroscopy system including an optical element,
  • the optical element includes a prism and a liquid crystal diffraction element disposed directly on the first surface of the prism or via another layer, the prism has a second surface that is inclined with respect to the first surface; The angle of inclination of the second surface with respect to the first surface is 4° or more,
  • the liquid crystal diffraction element has a cholesteric liquid crystal layer formed by fixing a cholesteric liquid crystal phase,
  • the cholesteric liquid crystal layer has a liquid crystal alignment pattern in which the direction of the optical axis derived from the liquid crystal compound changes while continuously rotating along at least one in-plane direction, In the liquid crystal alignment pattern, when the length of 180° rotation of the direction of the optical axis derived from the liquid crystal compound is one period, the length of one period is 0.1 to 1.4 ⁇ m,
  • the light to be analyzed enters from the liquid crystal diffraction
  • FIG. 1 shows a conceptual diagram of optical elements included in the spectroscopic system of the present invention.
  • the optical element 100 shown in FIG. 1 includes a prism 102 and a liquid crystal diffraction element 10.
  • the prism 102 has a triangular prism shape with a right triangle cross section, and the liquid crystal diffraction element 10 is disposed on a first surface 102a that is one of the side surfaces. Further, in the prism 102, the second surface 102b, which is another one of the side surfaces, is inclined with respect to the first surface 102a, and the inclination angle with respect to the first surface 102a is 4 degrees or more. Further, the remaining side surface (third surface) of the prism 102 is perpendicular to the first surface 102a.
  • the prism 102 emits light that enters from the first surface 102a, on which the liquid crystal diffraction element 10 is disposed, from the second surface 102b. Therefore, the prism 102 is made of a material that transmits the separated light.
  • the prism 102 preferably has a transmittance of 50% or more for the light to be separated, more preferably 70% or more, and even more preferably 85% or more.
  • the size of the prism 102 there is no limit to the size of the prism 102, and it may be appropriately set depending on the material for forming the prism 102, the purpose of the optical element 100 (spectroscopy system), the required spectral performance, the spot diameter of the light to be spectralized, etc.
  • the material of the prism 102 glass, plastic resin, synthetic resin such as thermosetting resin, etc. can be used.
  • the liquid crystal diffraction element 10 is placed directly on the first surface 102a of the prism 102 or via another layer.
  • FIG. 2 shows a diagram conceptually representing an example of the liquid crystal diffraction element 10.
  • the liquid crystal diffraction element 10 shown in FIG. 2 includes a cholesteric liquid crystal layer 34, an alignment film 32, and a support 30.
  • the liquid crystal diffraction element 10 that the optical element 100 has on the first surface 102a of the prism 102 may have a cholesteric liquid crystal layer 34 laminated on the support 30 and the alignment film 32.
  • the liquid crystal diffraction element 10 may be in a state in which only the alignment film 32 and the cholesteric liquid crystal layer 34 are laminated, for example, with the support 30 removed. Further, the liquid crystal diffraction element 10 may have only the cholesteric liquid crystal layer 34 with the support 30 and the alignment film 32 removed.
  • the liquid crystal diffraction element 10 may be arranged with the support 30 side facing the prism 102. However, it may be arranged with the cholesteric liquid crystal layer 34 side facing the prism 102.
  • the cholesteric liquid crystal layer 34 is a layer formed by fixing a cholesterically aligned liquid crystal phase (cholesteric liquid crystal phase).
  • a cholesteric liquid crystal layer has a helical structure in which liquid crystal compounds are spirally rotated and stacked in the thickness direction, and the liquid crystal compounds are stacked in a spiral manner by making one rotation (360° rotation).
  • the liquid crystal compound has a structure in which a plurality of pitches of liquid crystal compounds spirally swirled are laminated with one helical pitch (helical pitch).
  • a cholesteric liquid crystal layer reflects right-handed or left-handed circularly polarized light in a specific wavelength range and transmits other light, depending on the length of the helical pitch and the direction of spiral rotation (sense) caused by the liquid crystal compound. do.
  • the cholesteric liquid crystal layer 34 has a liquid crystal alignment pattern in which the direction of the optical axis derived from the liquid crystal compound changes while continuously rotating along at least one in-plane direction.
  • the optical axis 40A originating from the liquid crystal compound 40 is an axis where the refractive index is the highest in the liquid crystal compound 40, which is the so-called slow axis.
  • the optical axis 40A is along the long axis direction of the rod shape.
  • the optical axis 40A of the liquid crystal compound 40 is intended to be an axis parallel to the normal direction to the disc surface of the discotic liquid crystal compound.
  • the optical axis 40A originating from the liquid crystal compound 40 is also referred to as "the optical axis 40A of the liquid crystal compound 40" or "the optical axis 40A.”
  • the liquid crystal compounds 40 are arranged along a plurality of alignment axes D in the XY plane.
  • the direction of the optical axis 40A of the liquid crystal compound 40 changes while continuously rotating along one direction in the plane along the alignment axis D.
  • the arrangement axis D is oriented in the X direction.
  • liquid crystal compounds 40 whose optical axes 40A are in the same direction are aligned at equal intervals.
  • the direction of the optical axis 40A of the liquid crystal compound 40 is changing while continuously rotating in one direction in the plane along the alignment axis D
  • the optical axis 40A of the liquid crystal compound 40 and the alignment axis D The angle between the optical axis 40A and the array axis D varies depending on the position in the direction of the array axis D, and the angle between the optical axis 40A and the array axis D gradually changes from ⁇ to ⁇ +180° or ⁇ 180°. It means there is. That is, the plurality of liquid crystal compounds 40 arranged along the arrangement axis D change while the optical axis 40A rotates by a constant angle along the arrangement axis D, as shown in FIG.
  • the difference in angle between the optical axes 40A of the liquid crystal compounds 40 adjacent to each other in the direction of the alignment axis D is preferably 45° or less, more preferably 15° or less, and even more preferably a smaller angle. preferable.
  • the rotation direction of the optical axis 40A of the liquid crystal compound in the direction of the alignment axis D is such that the rotation direction of the optical axis 40A of the liquid crystal compound 40A in the direction of the alignment axis D is such that the angle formed by the optical axis 40A of the liquid crystal compound 40 adjacent to each other in the direction of the alignment axis D becomes smaller. It is assumed that the shaft 40A) is rotating. Therefore, in the optically anisotropic layer shown in FIGS. 2 and 3, the optical axis 40A of the liquid crystal compound 40 rotates clockwise along the direction of the arrow of the alignment axis D.
  • the optical axis 40A of the liquid crystal compound 40 is rotated by 180° in the alignment axis D direction in which the optical axis 40A continuously rotates and changes within the plane.
  • the length (distance) of rotation be the length ⁇ of one period in the liquid crystal alignment pattern.
  • the distance between the centers of two liquid crystal compounds 40 having the same angle with respect to the alignment axis D direction in the alignment axis D direction is defined as the length of one period ⁇ .
  • the distance between the centers in the alignment axis D direction of two liquid crystal compounds 40 whose alignment axis D direction coincides with the optical axis 40A direction is defined as the length ⁇ of one period. shall be.
  • the length ⁇ of one period is also referred to as "one period ⁇ .”
  • the liquid crystal alignment pattern of the cholesteric liquid crystal layer 34 repeats this one period ⁇ in the alignment axis D direction, that is, one direction in which the direction of the optical axis 40A continuously rotates and changes.
  • the helical axis derived from the cholesteric liquid crystal phase is perpendicular to the main surface (XY plane), and its reflective surface is a plane parallel to the main surface (XY plane). Since the cholesteric liquid crystal phase is specularly reflective, when light is incident on a conventional cholesteric liquid crystal layer from the normal direction, for example, the light is reflected in the normal direction.
  • the cholesteric liquid crystal layer 34 having a liquid crystal alignment pattern reflects the incident light while tilting it in the alignment axis D direction.
  • the cholesteric liquid crystal layer 34 is a cholesteric liquid crystal layer that selectively reflects right-handed circularly polarized red light
  • the cholesteric liquid crystal layer 34 reflects right-handed circularly polarized red light. Reflects only polarized light and transmits all other light.
  • the optical axis 40A of the liquid crystal compound 40 changes while rotating along the alignment axis D direction (one direction).
  • the liquid crystal alignment pattern formed in the cholesteric liquid crystal layer 34 is a periodic pattern in the alignment axis D direction. Therefore, as shown in FIG. 4, right-handed circularly polarized red light R R that is perpendicularly incident on the cholesteric liquid crystal layer 34 is reflected (diffracted) in a direction (azimuth) corresponding to the period of the liquid crystal alignment pattern.
  • the right-handed circularly polarized red light R R is reflected (diffracted) in a direction tilted in the direction (azimuth) of the alignment axis D with respect to the XY plane (principal surface of the cholesteric liquid crystal layer).
  • the light reflection direction (reflection direction) can be adjusted.
  • the direction of reflection of the circularly polarized light can be reversed by reversing the direction of rotation of the optical axis 40A of the liquid crystal compound 40, which is directed toward the alignment axis D. .
  • the rotation direction of the optical axis 40A toward the array axis D is clockwise, and a certain circularly polarized light is tilted and reflected toward the array axis D, but this is assumed to be counterclockwise. As a result, a certain circularly polarized light is reflected tilted in a direction opposite to the direction of the arrangement axis D.
  • the direction of reflection is reversed depending on the direction of spiral rotation of the liquid crystal compound 40, that is, the direction of rotation of the circularly polarized light to be reflected.
  • the spiral when the direction of rotation of the spiral is right-handed, it selectively reflects right-handed circularly polarized light, and by having a liquid crystal alignment pattern in which the optical axis 40A rotates clockwise along the alignment axis D direction, The circularly polarized light is tilted in the direction of the alignment axis D and reflected.
  • the liquid crystal layer selectively reflects left-handed circularly polarized light, and has a liquid crystal alignment pattern in which the optical axis 40A rotates clockwise along the alignment axis D direction. reflects the left-handed circularly polarized light by tilting it in the direction opposite to the direction of the arrangement axis D.
  • the shorter one period ⁇ the larger the angle of reflected light with respect to incident light. That is, the shorter one period ⁇ is, the more the reflected light is reflected with respect to the incident light.
  • the angle of diffraction by the cholesteric liquid crystal layer 34 having such a liquid crystal alignment pattern differs depending on the wavelength of light. Specifically, the longer the wavelength of the light, the larger the angle of the reflected light with respect to the incident light. Therefore, the cholesteric liquid crystal layer 34 can separate the incident light by diffracting (reflecting) it at different angles depending on the wavelength.
  • the surface of the liquid crystal diffraction element 10 opposite to the prism 12 is used as the total reflection surface 11, and the light reflected and diffracted by the liquid crystal diffraction element 10 (the cholesteric liquid crystal layer 34) is reflected and diffracted by the total reflection surface 11. Totally reflected.
  • the liquid crystal diffraction element 10 (the cholesteric liquid crystal layer 34) reflects and diffracts the incident light at an angle at which total reflection occurs on the surface of the liquid crystal diffraction element 10 opposite to the prism 12. That is, the liquid crystal diffraction element 10 (the cholesteric liquid crystal layer 34) reflects the incident light at a large diffraction angle in order to cause total reflection.
  • the angle at which total reflection occurs is determined by the refractive index of the medium that sandwiches the total reflection surface 11 of the liquid crystal diffraction element 10. That is, when the total reflection surface 11 side of the liquid crystal diffraction element 10 is the cholesteric liquid crystal layer 34 and the liquid crystal diffraction element 10 is in contact with air, total reflection is caused by the refractive index of the cholesteric liquid crystal layer 34 and the refractive index of the air. The resulting angle is determined. Further, when the total reflection surface 11 side of the liquid crystal diffraction element 10 is the support body 30, the angle at which total reflection occurs is determined by the refractive index of the support body 30 and the refractive index of air.
  • the diffraction angle of light by the liquid crystal diffraction element 10 may be appropriately set at an angle at which total reflection occurs, depending on the refractive index of the layer on the total reflection surface 11 side of the liquid crystal diffraction element 10. .
  • the diffraction angle by the cholesteric liquid crystal layer 34 is basically determined according to the length of one period ⁇ of the liquid crystal alignment pattern. From the viewpoint that the cholesteric liquid crystal layer 34 reflects the light incident perpendicularly to the cholesteric liquid crystal layer 34 at an angle at which total reflection occurs on the total reflection surface 11, the length of one period ⁇ is set to 0.1 to 1.4 ⁇ m. do.
  • the length of one period ⁇ is preferably 0.2 to 1.2 ⁇ m, more preferably 0.3 to 1 ⁇ m.
  • the cholesteric liquid crystal layer performs spectroscopy by reflecting and diffracting the incident light to be spectrally targeted. That is, the cholesteric liquid crystal layer needs to reflect the light to be spectralized that has a somewhat broad bandwidth.
  • a general cholesteric liquid crystal layer has wavelength selective reflectivity and reflects light in a narrow band.
  • the cholesteric liquid crystal layer preferably has a structure in which the helical pitch changes in the thickness direction in order to widen the reflection wavelength band. Since the cholesteric liquid crystal layer has a structure in which the helical pitch changes in the thickness direction, the reflection wavelength band of the cholesteric liquid crystal layer can be widened. Furthermore, in order to widen the reflection wavelength band, it is also preferable to increase the birefringence ( ⁇ n) of the liquid crystal.
  • a cholesteric liquid crystal layer in which the helical pitch changes in the thickness direction shows a striped pattern of bright and dark areas when a cross section is observed using a scanning electron microscope (SEM). The intervals between the dark and dark areas become different.
  • the liquid crystal diffraction element may have a structure including a plurality of cholesteric liquid crystal layers having different helical pitches.
  • each of the multiple cholesteric liquid crystal layers has a liquid crystal alignment pattern, and among the incident light to be spectralized, light with a selective reflection wavelength is reflected and diffracted at an angle that allows total reflection on the total reflection surface. do.
  • each cholesteric liquid crystal layer reflects light at different angles (directions), thereby making it possible to separate the target light into spectra.
  • the cholesteric liquid crystal layer can be formed by fixing a cholesteric liquid crystal phase in a layered manner.
  • the structure in which the cholesteric liquid crystal phase is fixed may be any structure that maintains the orientation of the liquid crystal compound forming the cholesteric liquid crystal phase.
  • the structure in which the polymerizable liquid crystal compound is oriented in the cholesteric liquid crystal phase and then Preferably, the structure is polymerized and cured by ultraviolet irradiation, heating, etc. to form a layer with no fluidity, and at the same time changes to a state in which the orientation form does not change due to external fields or external forces.
  • the polymerizable liquid crystal compound may have a high molecular weight through a curing reaction and lose its liquid crystallinity.
  • An example of a material used to form a cholesteric liquid crystal layer having a fixed cholesteric liquid crystal phase is a liquid crystal composition containing a liquid crystal compound.
  • the liquid crystal compound is a polymerizable liquid crystal compound.
  • the liquid crystal composition used to form the cholesteric liquid crystal layer may further contain a surfactant and a chiral agent.
  • the polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a discotic liquid crystal compound.
  • An example of a rod-shaped polymerizable liquid crystal compound that forms a cholesteric liquid crystal phase is a rod-shaped nematic liquid crystal compound.
  • Rod-shaped nematic liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, and alkoxy-substituted phenylpyrimidines.
  • phenyldioxanes, tolans, alkenylcyclohexylbenzonitrile, and the like are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
  • a polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into a liquid crystal compound.
  • the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, with an unsaturated polymerizable group being preferred and an ethylenically unsaturated polymerizable group being more preferred.
  • the polymerizable group can be introduced into the molecules of the liquid crystal compound by various methods.
  • the number of polymerizable groups that the polymerizable liquid crystal compound has is preferably 1 to 6, more preferably 1 to 3.
  • Examples of polymerizable liquid crystal compounds include Makromol. Chem. , vol. 190, p. 2255 (1989), Advanced Materials vol. 5, p. 107 (1993), US Pat.
  • cyclic organopolysiloxane compounds having a cholesteric phase as disclosed in JP-A-57-165480 can be used.
  • the above-mentioned polymeric liquid crystal compounds include polymers with mesogenic groups introduced into the main chain, side chains, or both the main chain and side chains, and cholesteric polymers with cholesteryl groups introduced into the side chains.
  • Liquid crystals, liquid crystalline polymers as disclosed in JP-A-9-133810, liquid-crystalline polymers as disclosed in JP-A-11-293252, and the like can be used.
  • disc-shaped liquid crystal compound-- As the discotic liquid crystal compound, for example, those described in JP-A No. 2007-108732 and JP-A No. 2010-244038 can be preferably used.
  • the amount of the polymerizable liquid crystal compound added in the liquid crystal composition is preferably 75 to 99.9% by mass, and 80 to 99.9% by mass, based on the solid mass (mass excluding solvent) of the liquid crystal composition. It is more preferably 85 to 90% by mass, and even more preferably 85 to 90% by mass.
  • the liquid crystal composition used when forming the cholesteric liquid crystal layer may contain a surfactant.
  • the surfactant is preferably a compound that can function as an alignment control agent that stably or rapidly contributes to the alignment of the cholesteric liquid crystal phase.
  • examples of the surfactant include silicone surfactants and fluorosurfactants, with fluorosurfactants being preferred.
  • surfactants include compounds described in paragraphs [0082] to [0090] of JP2014-119605A and compounds described in paragraphs [0031] to [0034] of JP2012-203237A. , compounds exemplified in paragraphs [0092] and [0093] of JP-A No. 2005-099248, paragraphs [0076] to [0078] and paragraphs [0082] to [0085] of JP-A No. 2002-129162. Examples include the compounds exemplified therein, as well as the fluorine (meth)acrylate polymers described in paragraphs [0018] to [0043] of JP-A No. 2007-272185. Note that the surfactants may be used alone or in combination of two or more. As the fluorine-based surfactant, compounds described in paragraphs [0082] to [0090] of JP-A No. 2014-119605 are preferred.
  • the amount of surfactant added in the liquid crystal composition is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass, and 0.02 to 1% by mass based on the total mass of the liquid crystal compound. is even more preferable.
  • surfactants include, but are not limited to, the compounds shown below.
  • a chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
  • Chiral agents may be selected depending on the purpose, since the helical twist direction or helical period induced by the compound differs depending on the compound.
  • the chiral agent is not particularly limited and may be a known compound (for example, Liquid Crystal Device Handbook, Chapter 3, Section 4-3, Chiral Agent for TN (twisted nematic), STN (Super Twisted Nematic), p. 199, Japan Society for the Promotion of Science Isosorbide, isomannide derivatives, etc. can be used.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom can also be used as a chiral agent.
  • Examples of axially asymmetric compounds or planar asymmetric compounds include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound results in a repeating unit derived from the polymerizable liquid crystal compound and a repeating unit derived from the chiral agent.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same type of group as the polymerizable group possessed by the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. More preferred. Moreover, a liquid crystal compound may be sufficient as a chiral agent.
  • the chiral agent has a photoisomerizable group
  • a pattern with a desired reflection wavelength corresponding to the emission wavelength can be formed by irradiation with a photomask such as actinic rays after coating and orientation.
  • the photoisomerizable group is preferably an isomerization site of a compound exhibiting photochromic properties, an azo group, an azoxy group, or a cinnamoyl group.
  • JP 2002-080478, 2002-080851, 2002-179668, 2002-179669, 2002-179670, 2002- Compounds described in JP 179681, JP 2002-179682, JP 2002-338575, JP 2002-338668, JP 2003-313189, JP 2003-313292, etc. can be used.
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 to 200 mol%, more preferably 1 to 30 mol%, based on the molar amount of the liquid crystal compound.
  • the liquid crystal composition contains a polymerizable compound, it preferably contains a polymerization initiator.
  • the polymerization initiator used is preferably a photopolymerization initiator that can initiate the polymerization reaction by ultraviolet irradiation.
  • photopolymerization initiators include ⁇ -carbonyl compounds (described in U.S. Pat. No. 2,367,661 and U.S. Pat. No. 2,367,670), acyloin ether (described in U.S. Pat. No. 2,448,828), and ⁇ -hydrocarbons.
  • Substituted aromatic acyloin compounds (described in U.S. Pat. No. 2,722,512), polynuclear quinone compounds (described in U.S. Pat. No. 3,046,127 and U.S. Pat. No. 2,951,758), triarylimidazole dimer and p-aminophenyl ketone. combination (described in US Pat. No. 3,549,367), acridine and phenazine compounds (described in JP-A-60-105667, US Pat. No. 4,239,850), and oxadiazole compounds (described in US Pat. No. 4,212,970). ), etc.
  • the content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, more preferably 0.5 to 12% by mass, based on the content of the liquid crystal compound.
  • the liquid crystal composition may optionally contain a crosslinking agent in order to improve film strength and durability after curing.
  • a crosslinking agent those that are cured by ultraviolet rays, heat, moisture, etc. can be suitably used.
  • the crosslinking agent is not particularly limited and can be appropriately selected depending on the purpose, such as polyfunctional acrylate compounds such as trimethylolpropane tri(meth)acrylate and pentaerythritol tri(meth)acrylate; glycidyl (meth)acrylate and epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris[3-(1-aziridinyl)propionate] and 4,4-bis(ethyleneiminocarbonylamino)diphenylmethane; Isocyanate compounds such as methylene diisocyanate and biuret-type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; and alkoxysilane compounds such as vinyltrimethoxysilane and N-(2-aminoethyl)3-aminopropyltrimethoxysilane, etc.
  • polyfunctional acrylate compounds such as
  • the content of the crosslinking agent is preferably 3 to 20% by mass, more preferably 5 to 15% by mass, based on the solid mass of the liquid crystal composition. If the content of the crosslinking agent is within the above range, the effect of improving crosslinking density is likely to be obtained, and the stability of the cholesteric liquid crystal phase is further improved.
  • liquid crystal composition if necessary, polymerization inhibitors, antioxidants, ultraviolet absorbers, light stabilizers, coloring materials, metal oxide fine particles, etc. may be added within a range that does not deteriorate optical performance, etc. It can be added with.
  • the liquid crystal composition is preferably used as a liquid when forming the cholesteric liquid crystal layer.
  • the liquid crystal composition may contain a solvent.
  • the solvent is not particularly limited and can be appropriately selected depending on the purpose, but organic solvents are preferred.
  • the organic solvent is not limited and can be selected as appropriate depending on the purpose, such as ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, and ethers. Examples include. These may be used alone or in combination of two or more. Among these, ketones are preferred in consideration of the burden on the environment.
  • a liquid crystal composition is applied to the formation surface of the cholesteric liquid crystal layer to orient the liquid crystal compound to a cholesteric liquid crystal phase state, and then the liquid crystal compound is cured to form a cholesteric liquid crystal layer.
  • a liquid crystal composition is applied to the alignment film 32 to align the liquid crystal compound to a cholesteric liquid crystal phase, and then the liquid crystal compound is cured. It is preferable to form a cholesteric liquid crystal layer formed by fixing a cholesteric liquid crystal phase.
  • all known methods capable of uniformly applying a liquid to a sheet-like material can be used, such as printing methods such as inkjet and scroll printing, and spin coating, bar coating, and spray coating.
  • the applied liquid crystal composition is dried and/or heated as necessary, and then cured to form a cholesteric liquid crystal layer.
  • the liquid crystal compound in the liquid crystal composition may be oriented into a cholesteric liquid crystal phase.
  • the heating temperature is preferably 200°C or lower, more preferably 130°C or lower.
  • the aligned liquid crystal compound is further polymerized, if necessary.
  • the polymerization may be thermal polymerization or photopolymerization by light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet light for light irradiation.
  • the irradiation energy is preferably 20 mJ/cm 2 to 50 J/cm 2 , more preferably 50 to 1500 mJ/cm 2 .
  • light irradiation may be performed under heating conditions or under a nitrogen atmosphere.
  • the wavelength of the irradiated ultraviolet light is preferably 250 to 430 nm.
  • a composition containing a discotic liquid crystal compound is used to form a tilted liquid crystal layer in which the molecular axis of the discotic liquid crystal compound is tilted with respect to the surface.
  • a method of forming a cholesteric liquid crystal layer using a composition containing a liquid crystal compound is also suitably used. A method for forming a cholesteric liquid crystal layer using such a tilted liquid crystal layer is described in paragraphs [0049] to [0194] of International Publication 2019/181247.
  • the thickness of the cholesteric liquid crystal layer there is no limit to the thickness of the cholesteric liquid crystal layer, and it may be set as appropriate depending on the use of the liquid crystal diffraction element, the light reflectance required for the cholesteric liquid crystal layer, the material for forming the cholesteric liquid crystal layer, etc. .
  • the above-mentioned cholesteric liquid crystal layer whose helical pitch changes in the thickness direction causes return isomerization, dimerization, isomerization and dimerization, etc. when irradiated with light, and creates a helical twisting force (HTP). It can be formed by using a chiral agent that changes the HTP of the chiral agent and irradiating the cholesteric liquid crystal layer with light of a wavelength that changes the HTP of the chiral agent before or during curing of the liquid crystal composition that forms the cholesteric liquid crystal layer. .
  • the HTP of the chiral agent decreases when irradiated with light.
  • the irradiated light is absorbed by the material forming the cholesteric liquid crystal layer. Therefore, for example, when light is irradiated from above, the amount of light irradiated gradually decreases from above to below. That is, the amount of decrease in HTP of the chiral agent gradually decreases from the top to the bottom.
  • the helical pitch becomes longer because the helical induction is small, and in the lower part where HTP decreases less, the helix is induced by the HTP that the chiral agent originally has, so the helical pitch becomes shorter. Become. As a result, a cholesteric liquid crystal layer in which the helical pitch changes in the thickness direction can be formed.
  • Such light irradiation may be performed before exposure for curing the cholesteric liquid crystal layer, or may be performed simultaneously with exposure for curing. Further, the wavelength of light for changing the HTP of the chiral agent and the wavelength of light for curing the cholesteric liquid crystal layer may be the same or different.
  • the support 30 supports the alignment film 32 and the cholesteric liquid crystal layer 34.
  • various sheet-like materials films, plate-like materials
  • the support 30 preferably has a transmittance of 50% or more, more preferably 70% or more, and even more preferably 85% or more.
  • the thickness of the support 30 is preferably 1 to 1000 ⁇ m, more preferably 3 to 250 ⁇ m, and even more preferably 5 to 150 ⁇ m.
  • the support 30 may be a single layer or a multilayer.
  • Examples of the support 30 in the case of a single layer include glass, triacetyl cellulose (TAC), polyethylene terephthalate (PET), polycarbonate, polyvinyl chloride, acrylic, polyolefin, and the like.
  • Examples of the multilayer support 30 include one that includes any of the above-mentioned single-layer supports as a substrate and provides another layer on the surface of this substrate.
  • the alignment film 32 is formed on the surface of the support 30 .
  • the alignment film 32 is an alignment film for aligning the liquid crystal compound 40 into a predetermined liquid crystal alignment pattern when forming the cholesteric liquid crystal layer 34 .
  • the cholesteric liquid crystal layer 34 has a liquid crystal alignment pattern in which the direction of the optical axis 40A derived from the liquid crystal compound 40 changes while continuously rotating along one in-plane direction. (See Figure 3). Therefore, the alignment film 32 is formed such that the cholesteric liquid crystal layer 34 can form this liquid crystal alignment pattern.
  • “the direction of the optical axis 40A is rotated” is also simply referred to as "the optical axis 40A is rotated”.
  • Various known photo-alignment films can be used as the alignment film 32.
  • rubbed films made of organic compounds such as polymers, obliquely deposited films of inorganic compounds, films with microgrooves, and Langmuir films of organic compounds such as ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride, and methyl stearate.
  • Examples include a film in which LB (Langmuir-Blodgett) films are accumulated by the Blodgett method.
  • the alignment film 32 formed by rubbing treatment can be formed by rubbing the surface of the polymer layer several times in a fixed direction with paper or cloth.
  • Materials used for the alignment film 32 include polyimide, polyvinyl alcohol, polymers having polymerizable groups described in JP-A-9-152509, JP-A-2005-097377, JP-A-2005-099228, and , JP-A-2005-128503 and the like are preferably used for forming the alignment film 32 and the like.
  • a so-called photo-alignment film which is obtained by irradiating a photo-alignable material with polarized or non-polarized light to form the alignment film 32, is suitably used. That is, in the liquid crystal diffraction element, a photo-alignment film formed by applying a photo-alignment material on the support 30 is suitably used as the alignment film 32. Polarized light irradiation can be performed perpendicularly or obliquely to the photo-alignment film, and unpolarized light can be irradiated obliquely to the photo-alignment film.
  • photo-alignment materials used in the alignment film include those disclosed in JP-A-2006-285197, JP-A 2007-076839, JP-A 2007-138138, and JP-A 2007-094071. , JP 2007-121721, JP 2007-140465, JP 2007-156439, JP 2007-133184, JP 2009-109831, JP 3883848, and JP 4151746 Azo compounds described in JP-A No. 2002-229039, aromatic ester compounds described in JP-A No. 2002-265541 and JP-A No.
  • JP-A-2013 Preferred examples include photodimerizable compounds described in JP-A-177561 and JP-A-2014-012823, particularly cinnamate compounds, chalcone compounds, and coumarin compounds.
  • azo compounds, photocrosslinkable polyimides, photocrosslinkable polyamides, photocrosslinkable polyesters, cinnamate compounds, and chalcone compounds are preferably used.
  • the thickness of the alignment film 32 is preferably 0.01 to 5 ⁇ m, more preferably 0.05 to 2 ⁇ m.
  • the method for forming the alignment film 32 there are no restrictions on the method for forming the alignment film 32, and various known methods can be used depending on the material for forming the alignment film 32.
  • One example is a method in which the alignment film 32 is applied to the surface of the support 30 and dried, and then the alignment film 32 is exposed to laser light to form an alignment pattern.
  • FIG. 5 conceptually shows an example of an exposure apparatus that exposes an alignment film to form an alignment pattern.
  • the exposure apparatus 60 shown in FIG. 5 includes a light source 64 including a laser 62, a ⁇ /2 plate 65 that changes the polarization direction of the laser beam M emitted by the laser 62, and a ⁇ /2 plate 65 that changes the polarization direction of the laser beam M emitted by the laser 62. It includes a beam splitter 68 that separates the beam MB into two, mirrors 70A and 70B placed on the optical paths of the two separated beams MA and MB, and ⁇ /4 plates 72A and 72B. Note that the light source 64 emits linearly polarized light P 0 .
  • the ⁇ /4 plate 72A converts linearly polarized light P 0 (ray MA) into right-handed circularly polarized light PR
  • the ⁇ /4 plate 72B converts linearly polarized light P 0 (ray MB) into left-handed circularly polarized light PL .
  • a support 30 having an alignment film 32 on which an alignment pattern has not yet been formed is placed in the exposure section, and two light beams MA and MB are made to intersect and interfere with each other on the alignment film 32, and the interference light is transmitted to the alignment film 32. irradiate and expose. Due to this interference, the polarization state of the light irradiated onto the alignment film 32 changes periodically in the form of interference fringes. As a result, an alignment film (hereinafter also referred to as a patterned alignment film) having an alignment pattern in which the alignment state changes periodically is obtained.
  • the period of the alignment pattern can be adjusted by changing the intersection angle ⁇ of the two light beams MA and MB.
  • the optical axis 40A derived from the liquid crystal compound 40 rotates in one direction.
  • the length of one cycle in which the optical axis 40A rotates by 180° can be adjusted.
  • the optical axis 40A originating from the liquid crystal compound 40 rotates continuously along one direction.
  • a cholesteric liquid crystal layer having a liquid crystal alignment pattern can be formed.
  • the direction of the optical axis of the liquid crystal compound in the cholesteric liquid crystal layer formed on the patterned alignment film is changed while continuously rotating along at least one in-plane direction. It has an alignment pattern that orients the liquid crystal compound to form a liquid crystal alignment pattern.
  • the patterned alignment film has an alignment axis that is along the direction in which the liquid crystal compound is aligned, the direction of the alignment axis of the patterned alignment film changes while continuously rotating along at least one in-plane direction. It can be said that it has an orientation pattern.
  • the alignment axis of the patterned alignment film can be detected by measuring absorption anisotropy.
  • the direction in which the amount of light is maximum or minimum gradually changes along one direction within the plane. It is observed as it changes.
  • the alignment film is provided as a preferred embodiment and is not an essential component.
  • the cholesteric liquid crystal layer can be aligned in the direction of the optical axis 40A originating from the liquid crystal compound 40. It is also possible to have a configuration in which the liquid crystal alignment pattern is continuously rotated and changed along at least one in-plane direction. That is, in the present invention, the support may act as an alignment film.
  • the spectroscopic system causes light I 0 to be spectralized to enter an optical element 100 from the liquid crystal diffraction element 10 side.
  • light I 0 is incident on the liquid crystal diffraction element 10 from a direction substantially perpendicular to the main surface (total reflection surface 11) of the liquid crystal diffraction element 10.
  • the incident light I 0 is reflected and diffracted in the cholesteric liquid crystal layer 34 of the liquid crystal diffraction element 10 .
  • the diffraction angle differs depending on the wavelength, the light is separated into spectra.
  • the explanation will be made assuming that the light is separated into three lights I 1 , I 2 , and I 3 indicated by arrows. Furthermore, in the illustrated example, it is assumed that the light I 0 is diffracted in the azimuth direction on the second surface 102b side.
  • the separated lights I 1 , I 2 , and I 3 are reflected toward the surface of the liquid crystal diffraction element 10 on which the light I 0 is incident (ie, the total reflection surface 11 ). At that time, the lights I 1 , I 2 , and I 3 are reflected by the liquid crystal diffraction element 10 (the cholesteric liquid crystal layer 34) at a large diffraction angle. Therefore, the lights I 1 , I 2 , and I 3 are incident on the total reflection surface 11 at an angle where total reflection occurs, and are totally reflected. The totally reflected lights I 1 , I 2 , and I 3 travel toward the surface of the liquid crystal diffraction element 10 on the prism 102 side.
  • the totally reflected lights I 1 , I 2 , and I 3 are incident on the prism 102 side of the liquid crystal diffraction element 10 at a large incident angle, but since the difference in refractive index between the liquid crystal diffraction element 10 and the prism 102 is small, the liquid crystal The light is not totally reflected at the interface between the diffraction element 10 and the prism 102 and enters the prism 102 .
  • the lights I 1 , I 2 , and I 3 that have entered the prism 102 travel within the prism 102 and enter the second surface 102b.
  • the second surface 102b is inclined by 4 degrees or more with respect to the first surface 102a. Therefore, the angle of incidence of the lights I 1 , I 2 , and I 3 on the second surface 102b is smaller than the angle for total reflection (critical angle). Therefore, the lights I 1 , I 2 , and I 3 are emitted from the second surface 102b. That is, in the optical element 100, the separated lights I 1 , I 2 , and I 3 can be emitted from the surface opposite to the surface (total reflection surface 11) on which the light I 0 to be separated is incident. .
  • a cholesteric liquid crystal layer having a liquid crystal alignment pattern is used as a member for dispersing light, as shown in FIG. 12, the light I 1 , I 2 , I 3 is emitted to the incident side. Therefore, it is necessary to arrange a detector or the like for detecting the separated light on the light incident side of the cholesteric liquid crystal layer. In this case, there are constraints such as the need to arrange the detector so as not to block the optical path of the incident light, which makes it difficult to miniaturize the spectroscopic system.
  • the spectroscopy system of the present invention has an optical element having a prism and a liquid crystal diffraction element including a cholesteric liquid crystal layer having a liquid crystal alignment pattern as an optical element for dispersing spectra, and the optical element has a liquid crystal diffraction element provided with a cholesteric liquid crystal layer having a liquid crystal alignment pattern.
  • the angle of inclination of the second surface with respect to the first surface is 4° or more, and the length of one period of the liquid crystal alignment pattern of the cholesteric liquid crystal layer is 0.1 to 1.4 ⁇ m.
  • the spectroscopy system of the present invention allows the light to be analyzed to enter from the liquid crystal diffraction element side, reflects the incident light on the liquid crystal diffraction element, and directs the reflected light to the opposite side from the prism side of the liquid crystal diffraction element. It is possible to cause total reflection on the side total reflection surface, to make the totally reflected light enter the prism, and to emit the separated light from the second surface. That is, the spectroscopy system can emit the separated light from the surface opposite to the surface on which the light to be analyzed enters the optical element. Therefore, for example, when detecting spectroscopic light, the detector for detecting the spectroscopic light can be placed on the side opposite to the incident side, which limits the placement of the detector. This makes it possible to downsize the spectroscopic system.
  • the cholesteric liquid crystal layer (liquid crystal diffraction element) having a liquid crystal alignment pattern with a period length of 0.1 to 1.4 ⁇ m is not in contact with the prism, in other words, the incident light is transmitted to one surface of the liquid crystal diffraction element. If the cholesteric liquid crystal layer (liquid crystal diffraction element), which can be reflected and diffracted at an angle that causes total reflection, is not in contact with the prism, the light totally reflected by one main surface of the liquid crystal diffraction element will be reflected by the liquid crystal diffraction element.
  • the present invention has a liquid crystal alignment pattern with a period length of 0.1 to 1.4 ⁇ m, and reflects the incident light at an angle at which total reflection occurs on the total reflection surface of the liquid crystal diffraction element.
  • a cholesteric liquid crystal layer liquid crystal diffraction element
  • the cholesteric liquid crystal layer separates the light and the total reflection surface reflects it completely. This allows the light to be extracted and used as a component for spectroscopy.
  • the angle of inclination of the second surface of the prism with respect to the first surface is 4° to The angle is preferably 75°, more preferably 10° to 70°, and even more preferably 20° to 60°.
  • the length of one period of the liquid crystal alignment pattern of the cholesteric liquid crystal layer is 0.2 to 1.2 ⁇ m.
  • the thickness is preferably 0.3 to 1 ⁇ m, more preferably 0.4 to 1 ⁇ m.
  • the wavelength of the light to be subjected to spectroscopy is ⁇
  • Formula (1) 0.44 ⁇ / ⁇ 1.51
  • the wavelength ⁇ of the light to be analyzed is the central wavelength in the bandwidth of the light to be analyzed.
  • the wavelength ⁇ of the light to be spectralized and the one period ⁇ of the liquid crystal alignment pattern satisfy the relationship of the above formula (1), so that the incident light is totally reflected on the total reflection surface 11 (the diffracted light on the total reflection surface 11 is Even if the light returns, it does not exit from the total reflection surface 11), and conditions can be obtained in which the light is not totally reflected at the second surface of the prism.
  • the spectroscopic system has a configuration in which the light to be analyzed enters the optical element 100 from a direction substantially perpendicular to the main surface (total reflection surface 11) of the liquid crystal diffraction element 10. is not limited to.
  • the spectroscopic system may have a configuration in which the light to be analyzed enters the optical element 100 from a direction inclined with respect to the perpendicular to the main surface of the liquid crystal diffraction element 10.
  • the incident angle By increasing the angle (hereinafter also referred to as the incident angle) with respect to the perpendicular to the principal surface of the liquid crystal diffraction element when the light to be analyzed enters the optical element, the light that is reflected, diffracted, and separated by the cholesteric liquid crystal layer is The angle can be adjusted to achieve total reflection on the total reflection surface.
  • the angle of incidence of the light to be spectralized is preferably -45° to 45°, more preferably -40° to 40°, and even more preferably -30° to 30°.
  • the shape of the prism 102 is a triangular prism with a right triangle cross section, but the shape is not limited to this.
  • the prism 102 may have any shape as long as it has a first surface on which the liquid crystal diffraction element is arranged and a second surface inclined at 4° or more with respect to the first surface.
  • the prism 102 may have a cross-sectional shape of a polygon such as a quadrangle or a pentagon. Further, the prism 102 may have a curved surface portion.
  • the liquid crystal diffraction element 10 has a structure having one cholesteric liquid crystal layer 34, but the structure is not limited to this.
  • the liquid crystal diffraction element may have two or more cholesteric liquid crystal layers having a liquid crystal alignment pattern. Further, the liquid crystal diffraction element may have a structure including cholesteric liquid crystal layers whose helical structures have different twist directions.
  • the liquid crystal diffraction element may be provided in direct contact with the prism by forming an alignment film and an optically anisotropic layer on one surface of the prism. Further, the liquid crystal diffraction element may be provided in direct contact with one surface of the prism by a method such as alignment treatment, liquid crystal coating, or polymerization. Alternatively, the liquid crystal diffraction element may be attached to one surface of the prism using an adhesive such as an optical clear adhesive (OCA), an optically transparent double-sided tape, or an ultraviolet curing resin. . Further, the liquid crystal diffraction element may be directly bonded to one surface of the prism by surface treatment to enhance adhesion such as plasma treatment. If necessary, an antireflection film or the like may be provided between the prism and the liquid crystal diffraction element.
  • OCA optical clear adhesive
  • an antireflection film or the like may be provided between the prism and the liquid crystal diffraction element.
  • FIG. 6 is a diagram conceptually showing another example of an optical element included in the spectroscopic system of the present invention.
  • the optical element 100b shown in FIG. 6 includes a prism 102 and a liquid crystal diffraction element 10b. Since the prism 102 has the same configuration as the prism 102 of the optical element shown in FIG. 1, a description thereof will be omitted.
  • the liquid crystal diffraction element 10b has a cholesteric liquid crystal layer 34R and a cholesteric liquid crystal layer 34L. Although not shown, the liquid crystal diffraction element 10b may have a support and/or an alignment film.
  • the cholesteric liquid crystal layer has a circularly polarized light selective reflection property that reflects right-handed circularly polarized light or left-handed circularly polarized light depending on the direction of spiral rotation (sense) of the liquid crystal compound.
  • the cholesteric liquid crystal layer 34R included in the liquid crystal diffraction element 10b is a cholesteric liquid crystal layer that reflects right-handed circularly polarized light
  • the cholesteric liquid crystal layer 34L is a cholesteric liquid crystal layer that reflects left-handed circularly polarized light.
  • the selective reflection wavelength band of the cholesteric liquid crystal layer 34R and the selective reflection wavelength band of the cholesteric liquid crystal layer 34L overlap, and preferably substantially match.
  • the direction of the optical axis derived from the liquid crystal compound rotates continuously along at least one in-plane direction, similarly to the cholesteric liquid crystal layer 34 shown in FIGS. 2 and 3.
  • the liquid crystal alignment pattern is changing.
  • the two cholesteric liquid crystal layers reflect and diffract light in mutually opposite directions (opposite azimuth directions) along the alignment axis D direction. Therefore, the direction of rotation of the liquid crystal alignment pattern in the cholesteric liquid crystal layer 34R that selectively reflects right-handed circularly polarized light is reversed from the rotating direction of the liquid crystal alignment pattern in the cholesteric liquid crystal layer 34L that selectively reflects left-handed circularly polarized light. Accordingly, the two cholesteric liquid crystal layers can reflect and diffract light in the same direction (azimuthal direction) along the alignment axis D direction.
  • the length of one period in the liquid crystal alignment pattern of the cholesteric liquid crystal layer 34R is approximately the same as the length of one period in the liquid crystal alignment pattern of the cholesteric liquid crystal layer 34L.
  • the diffraction angle of light by the cholesteric liquid crystal layer having a liquid crystal alignment pattern changes depending on the length of one period of the liquid crystal alignment pattern.
  • FIGS. 6 and 7 The operation of a spectroscopic system having an optical element 100b having such a liquid crystal diffraction element 10b will be explained using FIGS. 6 and 7.
  • FIG. 6 for the sake of explanation, only arrows representing light of one wavelength among the light reflected and diffracted by the cholesteric liquid crystal layer 34R and the cholesteric liquid crystal layer 34L are shown. Further, in FIG. 7, arrows for reflection, spectroscopy, and total reflection in the total reflection surface within the cholesteric liquid crystal layer are omitted for explanation.
  • the spectroscopic system causes light to be analyzed ( IR0 and I L0 ) to enter the optical element 100b from the liquid crystal diffraction element 10b side.
  • the right-handed circularly polarized light component I R0 of the light to be spectralized is transmitted through the cholesteric liquid crystal layer 34L, reflected by the cholesteric liquid crystal layer 34R, and then spectralized.
  • the reflected light I R1 is totally reflected on the surface of the liquid crystal diffraction element 10b opposite to the prism 102 (total reflection surface 11), travels to the prism 102 side, enters the prism 102, and enters the prism 102.
  • the light is emitted from the second surface 102b.
  • the left-handed circularly polarized component I L0 of the light to be spectrally analyzed is reflected by the cholesteric liquid crystal layer 34L and spectrally separated.
  • the reflected light I L1 is totally reflected on the surface (total reflection surface 11) of the liquid crystal diffraction element 10b opposite to the prism 102, travels toward the prism 102, and is transmitted through the cholesteric liquid crystal layer 34R.
  • the light enters the prism 102 and exits from the second surface 102b of the prism 102.
  • the light I R1 of a certain wavelength separated by the cholesteric liquid crystal layer 34R The traveling direction and the traveling direction of the light I L1 having the same wavelength separated by the cholesteric liquid crystal layer 34L are approximately parallel to each other. Therefore, the light I R1 and the light I L1 emitted from the second surface 102b of the prism 102 become substantially parallel for each wavelength.
  • FIG. 7 shows an example of a spectroscopic system having an optical element that emits light to be spectrally analyzed substantially in parallel for each wavelength.
  • the spectroscopic system 150 shown in FIG. 7 includes the above-mentioned optical element 100b, a condenser lens 110 that is spaced apart from the second surface of the optical element 100b, and a condenser lens 110 on the side opposite to the optical element 100b of the condenser lens 110. and a sensor 112 located at.
  • the optical element 100b separates the right-handed circularly polarized light component and the left-handed circularly polarized component of the incident unpolarized light I 0 to be analyzed, and outputs the components from the second surface 102b of the prism 102.
  • right-handed circularly polarized light I R1 and left-handed circularly polarized light I L1 having the same wavelength are emitted in parallel, and right-handed circularly polarized light I R1 and left-handed circularly polarized light I L1 have a different wavelength.
  • the polarized light I R2 and the left-handed circularly polarized light I L2 are emitted in parallel and at different angles from the right-handed circularly polarized light I R1 and the left-handed circularly polarized light I L1 . are emitted in parallel and at different angles from right-handed circularly polarized light I R1 and left-handed circularly polarized light I L1 , and right-handed circularly polarized light I R2 and left-handed circularly polarized light IL2 .
  • the light emitted from the second surface 102b of the prism 102 enters the condenser lens 110.
  • the condensing lens 110 collects right-handed circularly polarized light I R1 and left-handed circularly polarized light I L1 , right-handed circularly polarized light I R2 and left-handed circularly polarized light I L2 , and right-handed circularly polarized light I R3 and left-handed circularly polarized light I L3 that are incident in parallel.
  • the light is focused on the detection surface of the sensor 112, respectively.
  • condensing lens 110 there is no particular restriction on the condensing lens 110, and a well-known convex lens or the like can be used.
  • the sensor 112 is a detector that detects light by photoelectric conversion, and may be a two-dimensional sensor in which a plurality of pixels are arranged two-dimensionally, or a two-dimensional sensor in which a plurality of pixels are arranged one-dimensionally (linearly). It may also be an array of line sensors.
  • a conventionally known image sensor such as a CCD (Charge-Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor can be used.
  • the right circularly polarized light I R1 and the left circularly polarized light I L1 , the right circularly polarized light I R2 and the left circularly polarized light I L2 , and the right circularly polarized light I R3 and the left circularly polarized light I L3 collected by the condenser lens 110 are sent to the sensor, respectively. 112.
  • the right-handed circularly polarized light I R1 and the left-handed circularly polarized light I L1 are incident on the same position (pixel) of the sensor 112.
  • the right-handed circularly polarized light I R2 and the left-handed circularly polarized light I L2 are incident on different positions (pixels) from the right-handed circularly polarized light I R1 and the left-handed circularly polarized light I L1 .
  • the right-handed circularly polarized light I R3 and the left-handed circularly polarized light I L3 are incident on different positions (pixels) from the right-handed circularly polarized light I R1 and the left-handed circularly polarized light I L1 and the right-handed circularly polarized light I R2 and the left-handed circularly polarized light I L2 . .
  • the spectroscopic system 150 can detect the total amount of light of right-handed circularly polarized light and left-handed circularly polarized light for each wavelength at different pixels of the sensor 112. That is, the spectroscopic system 150 can measure the wavelength distribution of the light to be spectrally analyzed.
  • the spectroscopic system 150 continuously spectrally and detects light in which a plurality of different wavelengths are superimposed, and includes information contained in each wavelength. It can be used as a detector to extract optical signals.
  • the cholesteric liquid crystal layer 34R and the cholesteric liquid crystal layer 34L of the liquid crystal diffraction element 10b have the same liquid crystal alignment pattern, but this is not limited to this. Instead, one period of the liquid crystal alignment pattern of the cholesteric liquid crystal layer 34R and one period of the liquid crystal alignment pattern of the cholesteric liquid crystal layer 34L may be different.
  • an optical element 100c included in the spectroscopic system of the present invention has the same configuration as the optical element 100b shown in FIG. 6, except that it has a liquid crystal diffraction element 10c instead of the liquid crystal diffraction element 10b. Therefore, a description of the same points as the optical element 100b will be omitted, and only different points will be explained.
  • the optical element 100c has a cholesteric liquid crystal layer 34Rb and a cholesteric liquid crystal layer 34Lb.
  • the cholesteric liquid crystal layer 34Rb is a cholesteric liquid crystal layer that reflects right-handed circularly polarized light
  • the cholesteric liquid crystal layer 34Lb is a cholesteric liquid crystal layer that reflects left-handed circularly polarized light.
  • the selective reflection wavelength band of the cholesteric liquid crystal layer 34Rb and the selective reflection wavelength band of the cholesteric liquid crystal layer 34Lb overlap, and preferably substantially match.
  • the direction of the optical axis derived from the liquid crystal compound rotates continuously along at least one in-plane direction, similarly to the cholesteric liquid crystal layer 34 shown in FIGS. 2 and 3.
  • the liquid crystal alignment pattern is changing.
  • the rotation direction of the liquid crystal alignment pattern in the cholesteric liquid crystal layer 34Rb that selectively reflects right-handed circularly polarized light is opposite to the rotating direction of the liquid crystal alignment pattern in the cholesteric liquid crystal layer 34Lb that selectively reflects left-handed circularly polarized light.
  • the length of one period in the liquid crystal alignment pattern of the cholesteric liquid crystal layer 34Rb is different from the length of one period in the liquid crystal alignment pattern of the cholesteric liquid crystal layer 34Lb. That is, the diffraction angle of light by the cholesteric liquid crystal layer 34Rb is different from the diffraction angle of light by the cholesteric liquid crystal layer 34Lb.
  • FIGS. 8 and 9 The operation of a spectroscopic system having an optical element 100c having such a liquid crystal diffraction element 10c will be explained using FIGS. 8 and 9.
  • FIG. 8 for the sake of explanation, only arrows representing light of one wavelength among the light reflected and diffracted by the cholesteric liquid crystal layer 34Rb and the cholesteric liquid crystal layer 34Lb are shown. Further, in FIG. 9, arrows for reflection, spectroscopy, and total reflection in the total reflection surface within the cholesteric liquid crystal layer are omitted for the sake of explanation.
  • the spectroscopic system causes light to be analyzed ( IR0 and I L0 ) to enter the optical element 100c from the liquid crystal diffraction element 10c side.
  • the right-handed circularly polarized light component I R0 of the light to be spectralized is transmitted through the cholesteric liquid crystal layer 34Lb, reflected by the cholesteric liquid crystal layer 34Rb, and then spectralized.
  • the reflected light I R1 is totally reflected on the surface (total reflection surface 11) of the liquid crystal diffraction element 10c opposite to the prism 102, travels to the prism 102 side, enters the prism 102, and enters the prism 102.
  • the light is emitted from the second surface 102b.
  • the left-handed circularly polarized light component I L0 of the light to be spectroscopy is reflected and spectrally separated by the cholesteric liquid crystal layer 34Lb.
  • the reflected light I L1 is totally reflected on the surface (total reflection surface 11) of the liquid crystal diffraction element 10c opposite to the prism 102, travels toward the prism 102, and is transmitted through the cholesteric liquid crystal layer 34Rb.
  • the light enters the prism 102 and exits from the second surface 102b of the prism 102.
  • the light I R1 of a certain wavelength separated by the cholesteric liquid crystal layer 34Rb advances.
  • the direction and the traveling direction of the light I L1 having the same wavelength separated by the cholesteric liquid crystal layer 34Lb are non-parallel. Therefore, the light I R1 and the light I L1 emitted from the second surface 102b of the prism 102 become non-parallel for each wavelength.
  • FIG. 9 shows an example of a spectroscopic system having an optical element that emits light to be spectrally analyzed non-parallelly for each wavelength.
  • the spectroscopic system 150b shown in FIG. 9 includes the above-mentioned optical element 100c, a condenser lens 110 that is spaced apart from the second surface of the optical element 100c, and a condenser lens 110 on the side opposite to the optical element 100b of the condenser lens 110. and a sensor 112 located at.
  • the optical element 100c separates the right-handed circularly polarized light component and the left-handed circularly polarized component of the incident unpolarized light I 0 to be analyzed, and outputs the components from the second surface 102b of the prism 102.
  • right-handed circularly polarized light I R1 and left-handed circularly polarized light I L1 having the same wavelength are emitted nonparallelly, and right-handed circularly polarized light I R1 and left-handed circularly polarized light I L1 have different wavelengths.
  • the circularly polarized light I R2 and the left circularly polarized light I L2 are emitted in a non-parallel manner, and further, the right circularly polarized light I R3 and the left circularly polarized light I L3 , which are different from these, are emitted in a non-parallel manner.
  • the light emitted from the second surface 102b of the prism 102 enters the condenser lens 110.
  • the condensing lens 110 condenses the right-handed circularly polarized light I R1 , the right-handed circularly polarized light I R2 , and the right-handed circularly polarized light I R3 emitted in different directions so as to focus them on the detection surface of the sensor 112 .
  • the condenser lens 110 converts the left-handed circularly polarized light I L1 , left-handed circularly polarized light I L2 , and left-handed circularly polarized light I L3 into the above-mentioned right-handed circularly polarized light I R1 , right-handed circularly polarized light I R2 , and right-handed circularly polarized light I The light is focused on a position on the detection surface of the sensor 112 different from R3 .
  • the spectroscopic system 150b can detect the amount of light having different wavelengths and polarization states at different pixels of the sensor 112.
  • the spectroscopic system 150b having such a configuration can be used for polarization spectrum imaging and the like.
  • one sensor 112 detects each wavelength of right-handed circularly polarized light and each wavelength of left-handed circularly polarized light; however, the present invention is not limited to this; A configuration may be adopted in which the polarized light of each wavelength and the left-handed circularly polarized light of each wavelength are detected by separate sensors.
  • the liquid crystal diffraction element 10 (the cholesteric liquid crystal layer 34) diffracts the incident light in the azimuth direction toward the second surface 102b of the prism 102, but this is not limiting. Not done.
  • FIG. 10 is a diagram conceptually representing another example of the optical element included in the spectroscopic system of the present invention.
  • the optical element 100d shown in FIG. 10 includes a prism 102, a liquid crystal diffraction element 10d disposed on the first surface 102a of the prism 102, and a reflective layer 104 disposed on the third surface 102c of the prism 102.
  • a prism 102 for the sake of explanation, only an arrow representing light of one wavelength among the light reflected and diffracted by the cholesteric liquid crystal layer is shown.
  • the azimuth direction in which light is reflected and diffracted by the cholesteric liquid crystal layer is opposite to the second surface 102b of the prism 102. That is, the cholesteric liquid crystal layer included in the liquid crystal diffraction element 10d diffracts the light I 0 to be separated in the azimuth direction toward the third surface 102c of the prism 102.
  • the light I 1 reflected, diffracted, and separated by the liquid crystal diffraction element 10d (cholesteric liquid crystal layer) is totally reflected by the total reflection surface 11 of the liquid crystal diffraction element 10d, and then enters the prism 102.
  • the light I 1 that has entered the prism 102 travels through the prism 102 and enters the third surface 102c. Since the reflective layer 104 is disposed on the third surface 102c, the light I 1 is reflected by the reflective layer 104, travels toward the second surface 102b, and is emitted from the second surface 102b.
  • liquid crystal diffraction element may be configured to diffract incident light in the azimuth direction toward the third surface 102c of the prism 102 opposite to the second surface 102b.
  • the third surface 102c when the third surface 102c is at 90 degrees with respect to the first surface 102a, the light is separated by the liquid crystal diffraction element 10d, diffracted toward the third surface 102c, and reflected by the reflective layer 104.
  • the traveling direction of the light emitted from the second surface 102b becomes parallel to the traveling direction of the light emitted from the second surface 102b when the liquid crystal diffraction element diffracts the light toward the second surface 102b.
  • the reflective layer 104 is not particularly limited, and any known reflective layer such as a metal layer can be used as appropriate.
  • the reflective layer 104 is provided on the third surface 102c of the prism 102, but the present invention is not limited to this, and the third surface 102c may completely reflect light.
  • the optical element may include members other than the prism and the liquid crystal diffraction element.
  • a retardation layer may be provided on the first surface of the prism.
  • the spectroscopic system has a configuration including an optical element, a condensing lens, and a sensor, but is not limited to this.
  • the spectroscopic system of the present invention may be configured to include, for example, an optical element and a sensor. In this case, by using a light source with a small beam diameter, separate spectral spots can be obtained on the sensor.
  • Example 1 ⁇ Preparation of liquid crystal diffraction element> (Formation of alignment film)
  • a glass substrate (EAGLE, Corning Inc.) was prepared as a support.
  • the following coating solution for forming an alignment film was applied onto the support by spin coating.
  • the support on which the coating film of the coating liquid for forming an alignment film was formed was dried on a hot plate at 60° C. for 60 seconds to form an alignment film P-2.
  • Coating liquid for forming alignment film
  • the following photo-alignment material 1.00 parts by mass ⁇ Water 16.00 parts by mass ⁇ Butoxyethanol 42.00 parts by mass ⁇ Propylene glycol monomethyl ether 42.00 parts by mass ⁇ ⁇
  • the alignment film was exposed using the exposure apparatus shown in FIG. 5 to form an alignment film P-2 having an alignment pattern.
  • a laser that emits a laser beam having a wavelength (325 nm) was used.
  • the exposure amount by interference light was 300 mJ/cm 2 .
  • the intersection angle (intersection angle ⁇ ) of the two laser beams is adjusted so that one period ⁇ (the length of rotation of the optical axis by 180°) of the alignment pattern formed by the interference of the two laser beams is 0.7 ⁇ m. adjusted.
  • composition B-2 (Formation of liquid crystal layer) The following composition B-2 was prepared as a liquid crystal composition for forming a liquid crystal layer.
  • Composition B-2 ⁇ ⁇ Rod-shaped liquid crystal compound L-1 100.00 parts by mass ⁇ Photopolymerization initiator (Nippon Kayaku, KAYACURE DETX-S) 1.00 parts by mass ⁇ Chiral agent Ch-3 4.00 parts by mass ⁇ Methyl ethyl ketone 142.06 parts by mass ⁇ ⁇
  • Rod-shaped liquid crystal compound L-1 (contains the following structure in the mass ratio shown on the right)
  • the above liquid crystal composition B-2 was applied onto the alignment film P-2 using a spin coater at 500 rpm for 10 seconds (coating step). Next, the coating film of liquid crystal composition B-2 was heated on a hot plate at 80° C. for 3 minutes (180 sec) (heating step). Next, in a nitrogen atmosphere using a high-pressure mercury lamp, the irradiation amount of light measured at a wavelength of 315 nm through a 300 nm long-pass filter and a 350-nm short-pass filter at 100°C was 9 mJ/ cm2.
  • the liquid crystal composition was exposed to light (first exposure step). The purpose of the first exposure step is to control the structure so that the helical pitch has regions that differ depending on the position in the thickness direction.
  • the coating film was exposed to ultraviolet light having a wavelength of 365 nm at a dose of 1000 mJ/cm 2 using a high-pressure mercury lamp in a nitrogen atmosphere at 100° C. (second exposure step).
  • the second exposure step is for curing the liquid crystal composition and fixing the orientation of the liquid crystal compound. In this way, a cholesteric liquid crystal layer was formed.
  • the final thickness of the cholesteric liquid crystal layer was 7 ⁇ m, one period ⁇ of the liquid crystal alignment pattern was 0.7 ⁇ m, and the cholesteric alignment was right-handed.
  • the cross-sectional image taken by SEM bright and dark lines oblique to the lower interface of the cholesteric liquid crystal layer (interface with the glass substrate) were observed due to the cholesteric alignment and the in-plane liquid crystal alignment pattern.
  • the angle of the bright and dark lines gradually changed in the thickness direction, and the angle was 15° to 50°, and a structure was observed that functioned as a broadband reflective diffraction element.
  • the prepared liquid crystal diffraction element was transferred and bonded to the bottom surface of the prepared prism.
  • the prism is an optical glass model number SK2 manufactured by SCHOTT, and has a refractive index of 1.605 at a wavelength of 633 nm.
  • the prepared prism is a prism in which an inclined surface (second surface) is formed with respect to the bottom surface (first surface), and the angle of the inclined surface is 53 degrees with respect to the bottom surface.
  • the direction of lamination of the cholesteric liquid crystal layer was such that the direction of the in-plane diffraction vector of the cholesteric liquid crystal layer (direction perpendicular to the bright/dark line) was perpendicular to the direction of the boundary line between the bottom surface and the slope.
  • the lamination was performed by directly laminating the cholesteric liquid crystal layer peeled from the support by subjecting it to surface treatment to enhance adhesion through plasma treatment. In this way, an optical element was produced.
  • a spectroscopic system was fabricated using the fabricated optical element.
  • collimated light to be spectralized is made to enter an optical element from the cholesteric liquid crystal layer side.
  • the incident angle was set to 30°.
  • the light to be subjected to spectroscopy is non-polarized light in the visible light region and has a wavelength of mainly 450 to 650 nm.
  • a spectroscopic system was fabricated by arranging a condenser lens and a line sensor on the second surface side of the prism of the optical element.
  • Table 1 shows the angle at each position of the light traveling inside the optical element as shown in FIG. ⁇ 1 shown in FIG. 11 is the angle (incident angle) of the incident light with respect to the direction perpendicular to the main surface of the liquid crystal diffraction element of the optical element.
  • ⁇ 2b is an angle of light incident on the prism from the liquid crystal diffraction element with respect to a direction perpendicular to the interface between the liquid crystal diffraction element and the prism.
  • ⁇ ib is the angle of the light traveling inside the prism and reaching the second surface with respect to the direction perpendicular to the second surface.
  • ⁇ ob is the angle of the light emitted from the second surface with respect to the direction perpendicular to the second surface.
  • ⁇ ob is the angle of light emitted from the second surface of the optical element with respect to the direction perpendicular to the main surface of the liquid crystal diffraction element.
  • Example 2 An optical element was produced in the same manner as in Example 1, except that the cholesteric liquid crystal layer was changed to the following two-layer cholesteric liquid crystal layer, and a spectroscopic system was produced.
  • the two-layer cholesteric liquid crystal layer was produced by laminating a right-handed cholesteric liquid crystal layer and a left-handed twisted cholesteric liquid crystal layer.
  • a right-handed cholesteric liquid crystal layer was produced in the same manner as in Example 1.
  • a left-handed cholesteric liquid crystal layer was produced in the same manner as in Example 1, except that Ch-4 was used as the chiral agent in Composition B-2.
  • the final thickness of the left-handed cholesteric liquid crystal layer was 7 ⁇ m, and one period ⁇ of the liquid crystal alignment pattern was 0.7 ⁇ m.
  • the angle of the bright and dark lines gradually changed in the thickness direction, and the angle was 15° to 50°, and a structure functioning as a broadband reflective diffraction element was observed.
  • the direction of the inclination of the bright and dark lines is opposite to that of the right-handed cholesteric liquid crystal layer, which is due to the opposite twist angles.
  • the prepared right-handed and left-handed cholesteric liquid crystal layers were laminated together.
  • the directions were reversed by 180° so that the directions of the inclinations of the bright and dark lines matched.
  • the cholesteric liquid crystal layer of Example 2 was produced.
  • Example 3 An optical element was fabricated in the same manner as in Example 2, except that a prism whose slope (second surface) was inclined at an angle of 35° with respect to the bottom surface (first surface) was used as the prism, and a spectroscopic system was fabricated.
  • Example 4 An optical element was produced in the same manner as in Example 2, except that a prism whose slope (second surface) was inclined at an angle of 70° with respect to the bottom surface (first surface) was used as the prism, and a spectroscopic system was produced.
  • Example 5 An optical element was produced in the same manner as in Example 2, except that one period of the liquid crystal alignment pattern of the right-handed and left-handed cholesteric liquid crystal layers was changed to 0.43 ⁇ m, and the incident angle of the light to be spectralized was set to 0°. A spectroscopic system was produced in the same manner as in Example 2 except for this.
  • Example 6 An optical element was produced in the same manner as in Example 2, except that one period of the liquid crystal alignment pattern of the right-handed and left-handed cholesteric liquid crystal layers was changed to 0.8 ⁇ m, and a spectroscopic system was produced.
  • Example 7 An optical element was produced in the same manner as in Example 2, except that one period of the liquid crystal alignment pattern of the right-handed and left-handed cholesteric liquid crystal layers was changed to 1.0 ⁇ m, and the incident angle of the light to be separated was set to 35°. A spectroscopic system was produced in the same manner as in Example 2 except for this.
  • Example 8 Same as Example 5 except that the following composition B-3 and composition B-4 were used as the liquid crystal compositions forming the liquid crystal layer, except that the liquid crystal alignment pattern had a right-handed twist with one period of 0.43 ⁇ m.
  • a spectroscopy system was produced in the same manner as in Example 5, except that the incident angle of the light to be spectralized was set to 0°.
  • Composition B-3 composition for right-handed cholesteric liquid crystal layer
  • ⁇ ⁇ Rod-shaped liquid crystal compound L-1 100.00 parts by mass
  • Photopolymerization initiator Nippon Kayaku, KAYACURE DETX-S
  • T-1 0.05 parts by mass ⁇ Chiral agent
  • Ch-3 4.00 parts by mass ⁇ Methyl ethyl ketone 142.06 parts by mass ⁇ ⁇
  • Composition B-4 composition for left-handed cholesteric liquid crystal layer
  • ⁇ ⁇ Rod-shaped liquid crystal compound L-1 100.00 parts by mass
  • Photopolymerization initiator Nippon Kayaku, KAYACURE DETX-S
  • T-1 0.05 parts by mass ⁇ Chiral agent
  • Ch-4 4.00 parts by mass ⁇ Methyl ethyl ketone 142.06 parts by mass ⁇ ⁇
  • Example 9 Optical fibers were prepared in the same manner as in Example 8 except that the surfactant was changed from T-1 to T-2 below, with right-handed and left-handed cholesteric liquid crystal layers laminated with each period of the liquid crystal alignment pattern being 0.43 ⁇ m.
  • a spectroscopic system was fabricated in the same manner as in Example 8, except that the element was fabricated and the incident angle of the light to be spectralized was set to 0°.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

小型化が可能な分光システムを提供する。プリズムとプリズムの第1面に直接または他の層を介して配置される液晶回折素子とを有し、プリズムが第1面に対して傾斜している第2面を有し、第2面の傾斜角度が4°以上であり、液晶回折素子がコレステリック液晶層を有し、コレステリック液晶層が液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有し、液晶配向パターンにおける光学軸の向きが180°回転する長さを1周期とした際に、1周期の長さが0.1~1.4μmであり、分光システムは、分光対象の光を液晶回折素子側から入射させて、入射させた光を液晶回折素子で反射し、反射された光を液晶回折素子のプリズム側とは反対側の面で全反射させ、全反射された光をプリズムに入射させて、第2面から分光された光を出射する。

Description

分光システム
 本発明は、分光システムに関する。
 液晶化合物が螺旋状に旋回して積み重ねられた螺旋構造を有するコレステリック液晶相を固定してなるコレステリック液晶層であって、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有するコレステリック液晶層を有する光学素子が提案されている。このような、面内で液晶配向パターン有するコレステリック液晶層は、入射した光を鏡面反射とは異なる方向に反射するため、回折素子として利用することが提案されている。
 特許文献1には、コレステリック液晶相を固定してなるコレステリック液晶層を、複数層、積層してなる光学素子であって、選択反射中心波長が互いに異なるコレステリック液晶層を、複数、有し、コレステリック液晶層は、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有し、さらに、コレステリック液晶層の液晶配向パターンの、液晶化合物由来の光学軸の向きが連続的に回転しながら変化する一方向における、液晶化合物由来の光学軸の向きが180°回転する長さを1周期とした際に、選択反射中心波長が互いに異なる複数のコレステリック液晶層は、選択反射中心波長の長さの順列と、1周期の長さの順列とが、一致している、光学素子が記載されている。
国際公開第2019/131966号
 特許文献1に記載されるとおり、液晶配向パターンを有するコレステリック液晶層による回折角度は、入射する光の波長に依存する。従って、このような液晶配向パターンを有するコレステリック液晶層は、光を分光する部材として利用できる可能性がある。
 しかしながら、コレステリック液晶層は、光を反射するものであるため、コレステリック液晶層に入射して分光された光は入射側に出射される。そのため、分光された光を利用する場合に、例えば、分光された光をそれぞれ検出する場合に、分光された光を検出するための検出器を、コレステリック液晶層の光の入射側に配置する必要がある。そのため、分光システムとしての小型化が難しいと考えられる。
 本発明の目的は、このような従来技術の問題点を解決することにあり、小型化が可能な分光システムを提供することにある。
 この課題を解決するために、本発明は、以下の構成を有する。
 [1] 光学素子を含む分光システムであって、
 光学素子が、プリズムと、プリズムの第1面に直接または他の層を介して配置される液晶回折素子とを有し、
 プリズムが、第1面に対して傾斜している第2面を有し、
 第2面の第1面に対する傾斜角度が4°以上であり、
 液晶回折素子が、コレステリック液晶相を固定してなるコレステリック液晶層を有し、
 コレステリック液晶層が、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有し、
 液晶配向パターンにおける、液晶化合物由来の光学軸の向きが180°回転する長さを1周期とした際に、1周期の長さが0.1~1.4μmであり、
 分光システムは、分光対象の光を液晶回折素子側から入射させて、入射させた光を液晶回折素子で反射し、反射された光を液晶回折素子のプリズム側とは反対側の面で全反射させ、全反射された光をプリズムに入射させて、第2面から分光された光を出射する、分光システム。
 [2] 液晶回折素子は、螺旋構造の捩れ方向が互いに異なるコレステリック液晶層を有する、[1]に記載の分光システム。
 [3] プリズムの第1面に対する第2面の傾斜角度が4°~5°である、[1]または[2]に記載の分光システム。
 [4] 分光対象の光の波長をλとした際に、波長λと液晶配向パターンの1周期Λとが、式(1)の関係を満たす、[3]に記載の分光システム。
 式(1)  0.44≦λ/Λ≦1.51
 本発明によれば、小型化が可能な分光システムを提供することができる。
本発明の分光システムが有する光学素子を概念的に示す図である。 本発明の光学素子が有する液晶回折素子を概念的に示す図である。 図2に示す液晶回折素子のコレステリック液晶層の一部を拡大して示す平面図である。 コレステリック液晶層の作用を説明するための概念図である。 コレステリック液晶層を形成するための配向膜を露光する露光装置の一例の概念図である。 本発明の分光システムが有する光学素子の他の一例を概念的に示す図である。 図6に示す光学素子を有する分光システムの他の一例を概念的に示す図である。 本発明の分光システムが有する光学素子の他の一例を概念的に示す図である。 図8に示す光学素子を有する分光システムの他の一例を概念的に示す図である。 本発明の分光システムが有する光学素子の他の一例を概念的に示す図である。 光学素子に入射する光の各位置における角度を説明するための図である。 従来のコレステリック液晶層による分光を説明するための図である。
 以下、本発明の分光システムについて、添付の図面に示される好適実施形態を基に詳細に説明する。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「(メタ)アクリレート」は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味で使用される。
 [分光システム]
 本発明の分光システムは、
 光学素子を含む分光システムであって、
 光学素子が、プリズムと、プリズムの第1面に直接または他の層を介して配置される液晶回折素子とを有し、
 プリズムが、第1面に対して傾斜している第2面を有し、
 第2面の第1面に対する傾斜角度が4°以上であり、
 液晶回折素子が、コレステリック液晶相を固定してなるコレステリック液晶層を有し、
 コレステリック液晶層が、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有し、
 液晶配向パターンにおける、液晶化合物由来の光学軸の向きが180°回転する長さを1周期とした際に、1周期の長さが0.1~1.4μmであり、
 分光システムは、分光対象の光を液晶回折素子側から入射させて、入射させた光を液晶回折素子で反射し、反射された光を液晶回折素子のプリズム側とは反対側の面で全反射させ、全反射された光をプリズムに入射させて、第2面から分光された光を出射する、分光システムである。
 図1に、本発明の分光システムが有する光学素子を概念的に表す図を示す。
 図1に示す光学素子100は、プリズム102と、液晶回折素子10と、を有する。
<プリズム>
 図1に示す例においては、プリズム102は、断面が直角三角形の三角柱状であり、側面のうちの一面である第1面102aに液晶回折素子10が配置される。また、プリズム102において、側面のうちの他の一面である第2面102bが第1面102aに対して傾斜しており、第1面102aに対する傾斜角度が4°以上である。また、プリズム102の残りの側面(第3面)は、第1面102aに対して垂直である。
 プリズム102は、液晶回折素子10が配置された第1面102aから入射する光を第2面102bから出射する。従って、プリズム102は、分光する光を透過する材料からなる。プリズム102は、分光する光に対する透過率が50%以上であるのが好ましく、70%以上であるのがより好ましく、85%以上であるのがさらに好ましい。
 プリズム102のサイズには、制限はなく、プリズム102の形成材料、光学素子100(分光システム)の用途、求められる分光性能、分光対象の光のスポット径、等に応じて適宜設定すればよい。
 プリズム102の材料としては、ガラス、可塑性樹脂、熱硬化性樹脂等の合成樹脂等を用いることができる。
<液晶回折素子>
 液晶回折素子10は、プリズム102の第1面102aに直接、または、他の層を介して配置される。
 図2に、液晶回折素子10の一例を概念的に表す図を示す。図3に液晶回折素子10が有するコレステリック液晶層の平面図を示す。なお、平面図とは、図2においてコレステリック液晶層を上方から見た図であり、すなわち、コレステリック液晶層を厚さ方向(=各層(膜)の積層方向)から見た図である。また、図3では、コレステリック液晶層の構成を明確に示すために、液晶化合物40は表面の液晶化合物40のみを示している。
 図2に示す液晶回折素子10は、コレステリック液晶層34と、配向膜32と、支持体30とを有する。なお、光学素子100がプリズム102の第1面102aに有する液晶回折素子10としては、コレステリック液晶層34が、支持体30および配向膜32の上に積層された状態であってもよい。あるいは、液晶回折素子10は、例えば、支持体30を剥離した、配向膜32およびコレステリック液晶層34のみが積層された状態でもよい。また、液晶回折素子10は、支持体30および配向膜32を剥離した、コレステリック液晶層34のみの状態でもよい。また、例えば、液晶回折素子10が支持体30、配向膜32およびコレステリック液晶層34を有する構成の場合には、液晶回折素子10は、支持体30側をプリズム102に向けて配置されてもよいし、コレステリック液晶層34側をプリズム102に向けて配置されてもよい。
 〔コレステリック液晶層〕
 コレステリック液晶層34は、コレステリック配向された液晶相(コレステリック液晶相)を固定してなる層である。周知のとおり、コレステリック液晶層は、厚さ方向に、液晶化合物が螺旋状に旋回して積み重ねられた螺旋構造を有し、液晶化合物が螺旋状に1回転(360°回転)して積み重ねられた構成を螺旋1ピッチ(螺旋ピッチ)として、螺旋状に旋回する液晶化合物が、複数ピッチ、積層された構造を有する。
 コレステリック液晶層は、螺旋ピッチの長さ、および、液晶化合物による螺旋の旋回方向(センス)に応じて、特定の波長域の右円偏光または左円偏光を反射して、それ以外の光を透過する。
 ここで、本発明においては、コレステリック液晶層34は、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する。
 なお、液晶化合物40に由来する光学軸40Aとは、液晶化合物40において屈折率が最も高くなる軸、いわゆる遅相軸である。例えば、液晶化合物40が棒状液晶化合物である場合には、光学軸40Aは、棒形状の長軸方向に沿っている。一方、液晶化合物40が円盤状液晶化合物である場合、液晶化合物40の光学軸40Aは、円盤状液晶化合物の円盤面に対する法線方向に平行な軸を意図する。以下の説明では、液晶化合物40に由来する光学軸40Aを、『液晶化合物40の光学軸40A』または『光学軸40A』ともいう。
 図3に示すように、コレステリック液晶層34の平面図(X-Y面)において、液晶化合物40は、X-Y面内の複数の配列軸Dに沿って配列しており、それぞれの配列軸D上において、液晶化合物40の光学軸40Aの向きは、配列軸Dに沿った面内の一方向に沿って連続的に回転しながら変化している。図3に示した領域では、説明のため、配列軸DがX方向に向いているとする。また、Y方向においては、光学軸40Aの向きが等しい液晶化合物40が等間隔で配向している。
 なお、「液晶化合物40の光学軸40Aの向きが配列軸Dに沿った面内の一方向に連続的に回転しながら変化している」とは、液晶化合物40の光学軸40Aと配列軸Dとのなす角度が、配列軸D方向の位置により異なっており、配列軸Dに沿って光学軸40Aと配列軸Dとのなす角度がθからθ+180°あるいはθ-180°まで徐々に変化していることを意味する。つまり、配列軸Dに沿って配列する複数の液晶化合物40は、図3に示すように、光学軸40Aが配列軸Dに沿って一定の角度ずつ回転しながら変化する。
 なお、配列軸D方向に互いに隣接する液晶化合物40の光学軸40Aの角度の差は、45°以下であるのが好ましく、15°以下であるのがより好ましく、より小さい角度であるのがさらに好ましい。
 また、本発明において、配列軸D方向における液晶化合物の光学軸40Aの回転方向は、配列軸D方向に互いに隣接する液晶化合物40の光学軸40Aがなす角度が小さくなる向きに液晶化合物40(光学軸40A)が回転しているものとする。従って、図2および図3に示す光学異方性層においては、液晶化合物40の光学軸40Aは、配列軸Dの矢印の方向に沿って、右回り(時計回り)に回転している。
 コレステリック液晶層34においては、このような液晶化合物40の液晶配向パターンにおいて、面内で光学軸40Aが連続的に回転して変化する配列軸D方向において、液晶化合物40の光学軸40Aが180°回転する長さ(距離)を、液晶配向パターンにおける1周期の長さΛとする。
 すなわち、配列軸D方向に対する角度が等しい2つの液晶化合物40の、配列軸D方向の中心間の距離を、1周期の長さΛとする。具体的には、図3に示すように、配列軸D方向と光学軸40Aの方向とが一致する2つの液晶化合物40の、配列軸D方向の中心間の距離を、1周期の長さΛとする。以下の説明では、この1周期の長さΛを『1周期Λ』とも言う。
 コレステリック液晶層34の液晶配向パターンは、この1周期Λを、配列軸D方向すなわち光学軸40Aの向きが連続的に回転して変化する一方向に繰り返す。
 以下、コレステリック液晶層による回折の作用について説明する。
 従来のコレステリック液晶層において、コレステリック液晶相由来の螺旋軸は、主面(X-Y面)に対して垂直であり、その反射面は主面(X-Y面)と平行な面となる。コレステリック液晶相は鏡面反射性であるため、従来のコレステリック液晶層に、例えば、法線方向から光が入射される場合、法線方向に光が反射される。
 これに対して、液晶配向パターンを有するコレステリック液晶層34は、入射した光を、配列軸D方向に傾けて反射する。
 一例として、コレステリック液晶層34は、赤色光の右円偏光を選択的に反射するコレステリック液晶層であるとすると、コレステリック液晶層34に光が入射すると、コレステリック液晶層34は、赤色光の右円偏光のみを反射し、それ以外の光を透過する。
 コレステリック液晶層34では、液晶化合物40の光学軸40Aが配列軸D方向(一方向)に沿って回転しながら変化している。コレステリック液晶層34に形成された液晶配向パターンは、配列軸D方向に周期的なパターンである。そのため、図4に示すように、コレステリック液晶層34に垂直に入射した赤色光の右円偏光RRは、液晶配向パターンの周期に応じた方向(方位)に反射(回折)され、反射された赤色光の右円偏光RRは、X-Y面(コレステリック液晶層の主面)に対して配列軸Dの方向(方位)に傾いた方向に反射(回折)される。
 従って、コレステリック液晶層34において、光学軸40Aが回転する一方向である配列軸D方向を、適宜、設定することで、光の反射方向(反射方位)を調節できる。
 また、同じ波長で、同じ旋回方向の円偏光を反射する場合に、配列軸D方向に向かう液晶化合物40の光学軸40Aの回転方向を逆にすることで、円偏光の反射方向を逆にできる。
 例えば、図2および図3においては、配列軸D方向に向かう光学軸40Aの回転方向は時計回りで、ある円偏光が配列軸D方向に傾けて反射されるが、これを反時計回りとすることで、ある円偏光が配列軸D方向とは逆方向に傾けて反射される。
 さらに、同じ液晶配向パターンを有するコレステリック液晶層では、液晶化合物40の螺旋の旋回方向すなわち反射する円偏光の旋回方向によって、反射方向が逆になる。
 例えば、螺旋の旋回方向が右捩じれの場合、右円偏光を選択的に反射するものであり、配列軸D方向に沿って光学軸40Aが時計回りに回転する液晶配向パターンを有することにより、右円偏光を配列軸D方向に傾けて反射する。
 また、例えば、螺旋の旋回方向が左捩じれの場合、左円偏光を選択的に反射するものであり、配列軸D方向に沿って光学軸40Aが時計回りに回転する液晶配向パターンを有する液晶層は、左円偏光を配列軸D方向と逆方向に傾けて反射する。
 液晶配向パターンを有するコレステリック液晶層34は、1周期Λが短いほど、入射光に対する反射光の角度が大きくなる。すなわち、1周期Λが短いほど、入射光に対して、反射光を大きく傾けて反射する。
 このような液晶配向パターンを有するコレステリック液晶層34による回折の角度は光の波長によって異なる。具体的には、長波長の光ほど、入射光に対する反射光の角度が大きくなる。従って、コレステリック液晶層34は、入射した光を波長に応じて異なる角度で回折(反射)することで光を分光することができる。
 ここで、本発明においては、液晶回折素子10のプリズム12とは反対側の面を全反射面11として、液晶回折素子10(コレステリック液晶層34)が反射、回折した光を全反射面11で全反射する。言い換えると、液晶回折素子10(コレステリック液晶層34)は、液晶回折素子10のプリズム12とは反対側の面で全反射が生じる角度に、入射した光を反射、回折する。すなわち、液晶回折素子10(コレステリック液晶層34)は、全反射を生じさせるために、入射した光を大きな回折角度で反射する。
 全反射が生じる角度(臨界角)は、液晶回折素子10の全反射面11を挟む媒質の屈折率によって定まる。すなわち、液晶回折素子10の全反射面11側がコレステリック液晶層34であり、液晶回折素子10が空気と接している場合には、コレステリック液晶層34の屈折率と空気の屈折率とによって全反射が生じる角度が定まる。また、液晶回折素子10の全反射面11側が支持体30である場合には、支持体30の屈折率と空気の屈折率とによって全反射が生じる角度が定まる。
 従って、液晶回折素子10(コレステリック液晶層34)による光の回折角度は、液晶回折素子10の全反射面11側の層の屈折率等に応じて、全反射が生じる角度を適宜設定すればよい。
 一般的な液晶材料を用いて形成されたコレステリック液晶層、および、後述する支持体の屈折率nは1.45~1.8程度である。そのため、空気界面とした場合の全反射面11で全反射が生じる角度(臨界角φ)は、sinφ=1/nから、34°~44°程度となる。
 前述のとおり、コレステリック液晶層34による回折角度は、基本的に液晶配向パターンの1周期Λの長さに応じて決まる。コレステリック液晶層34が、コレステリック液晶層34に垂直に入射する光を、全反射面11で全反射が生じる角度に反射する観点から、1周期Λの長さを、0.1~1.4μmとする。1周期Λの長さは、0.2~1.2μmであることが好ましく、0.3~1μmであることがより好ましい。
 また、上記のとおり、本発明においてコレステリック液晶層は、入射する分光対象の光を反射、回折することで、分光するものである。すなわち、コレステリック液晶層は、ある程度ブロードな帯域幅を有する分光対象の光を反射する必要がある。一方で、一般的なコレステリック液晶層は、波長選択反射性を有しており、狭帯域で光を反射するものである。
 そこで、本発明においては、コレステリック液晶層は、反射波長帯域を広くするためには、厚さ方向に螺旋ピッチが変化する構造であることが好ましい。コレステリック液晶層が、厚さ方向に螺旋ピッチが変化する構造を有することにより、コレステリック液晶層の反射波長帯域を広くすることができる。また、反射波長帯域を広くするためには、液晶の複屈折率(Δn)を大きくすることも好ましい。
 厚さ方向に螺旋ピッチが変化するコレステリック液晶層は、断面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて観察した際に見られる明部と暗部との縞模様において、厚み方向に明部および暗部の間隔が異なったものとなる。
 あるいは、本発明においては、液晶回折素子は、螺旋ピッチが異なるコレステリック液晶層を複数層有する構成としてもよい。この場合には、複数のコレステリック液晶層がそれぞれ液晶配向パターンを有しており、入射した分光対象の光のうち、選択反射波長の光を、全反射面で全反射可能な角度に反射、回折する。その際、各コレステリック液晶層による回折角度を異ならせることで、各コレステリック液晶層がそれぞれ異なる角度(方向)に光を反射して、分光対象の光を分光することができる。
 <<コレステリック液晶層の形成方法>>
 コレステリック液晶層は、コレステリック液晶相を層状に固定して形成できる。
 コレステリック液晶相を固定した構造は、コレステリック液晶相となっている液晶化合物の配向が保持されている構造であればよく、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射、加熱等によって重合、硬化し、流動性が無い層を形成して、同時に、外場または外力によって配向形態に変化を生じさせることない状態に変化した構造が好ましい。
 なお、コレステリック液晶相を固定した構造においては、コレステリック液晶相の光学的性質が保持されていれば十分であり、コレステリック液晶層において、液晶化合物40は液晶性を示さなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、液晶性を失っていてもよい。
 コレステリック液晶相を固定してなるコレステリック液晶層の形成に用いる材料としては、一例として、液晶化合物を含む液晶組成物が挙げられる。液晶化合物は重合性液晶化合物であるのが好ましい。
 また、コレステリック液晶層の形成に用いる液晶組成物は、さらに界面活性剤およびキラル剤を含んでいてもよい。
--重合性液晶化合物--
 重合性液晶化合物は、棒状液晶化合物であっても、円盤状液晶化合物であってもよい。
 コレステリック液晶相を形成する棒状の重合性液晶化合物の例としては、棒状ネマチック液晶化合物が挙げられる。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、および、アルケニルシクロヘキシルベンゾニトリル類等が好ましく用いられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
 重合性液晶化合物は、重合性基を液晶化合物に導入することで得られる。重合性基の例には、不飽和重合性基、エポキシ基、およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基がより好ましい。重合性基は種々の方法で、液晶化合物の分子中に導入できる。重合性液晶化合物が有する重合性基の個数は、好ましくは1~6個、より好ましくは1~3個である。
 重合性液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、米国特許第5622648号明細書、米国特許第5770107号明細書、国際公開第95/22586号、国際公開第95/24455号、国際公開第97/00600号、国際公開第98/23580号、国際公開第98/52905号、特開平1-272551号公報、特開平6-016616号公報、特開平7-110469号公報、特開平11-080081号公報、および、特開2001-328973号公報等に記載の化合物が含まれる。2種類以上の重合性液晶化合物を併用してもよい。2種類以上の重合性液晶化合物を併用すると、配向温度を低下させることができる。
 また、上記以外の重合性液晶化合物としては、特開昭57-165480号公報に開示されているようなコレステリック相を有する環式オルガノポリシロキサン化合物等を用いることができる。さらに、前述の高分子液晶化合物としては、液晶を呈するメソゲン基を主鎖、側鎖、あるいは主鎖および側鎖の両方の位置に導入した高分子、コレステリル基を側鎖に導入した高分子コレステリック液晶、特開平9-133810号公報に開示されているような液晶性高分子、および、特開平11-293252号公報に開示されているような液晶性高分子等を用いることができる。
--円盤状液晶化合物--
 円盤状液晶化合物としては、例えば、特開2007-108732号公報や特開2010-244038号公報に記載のものを好ましく用いることができる。
 また、液晶組成物中の重合性液晶化合物の添加量は、液晶組成物の固形分質量(溶媒を除いた質量)に対して、75~99.9質量%であるのが好ましく、80~99質量%であるのがより好ましく、85~90質量%であるのがさらに好ましい。
--界面活性剤--
 コレステリック液晶層を形成する際に用いる液晶組成物は、界面活性剤を含有してもよい。
 界面活性剤は、安定的に、または迅速に、コレステリック液晶相の配向に寄与する配向制御剤として機能できる化合物が好ましい。界面活性剤としては、例えば、シリコ-ン系界面活性剤およびフッ素系界面活性剤が挙げられ、フッ素系界面活性剤が好ましく例示される。
 界面活性剤の具体例としては、特開2014-119605号公報の段落[0082]~[0090]に記載の化合物、特開2012-203237号公報の段落[0031]~[0034]に記載の化合物、特開2005-099248号公報の段落[0092]および[0093]中に例示されている化合物、特開2002-129162号公報の段落[0076]~[0078]および段落[0082]~[0085]中に例示されている化合物、ならびに、特開2007-272185号公報の段落[0018]~[0043]等に記載のフッ素(メタ)アクリレート系ポリマー、などが挙げられる。
 なお、界面活性剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 フッ素系界面活性剤として、特開2014-119605号公報の段落[0082]~[0090]に記載の化合物が好ましい。
 液晶組成物中における、界面活性剤の添加量は、液晶化合物の全質量に対して0.01~10質量%が好ましく、0.01~5質量%がより好ましく、0.02~1質量%がさらに好ましい。
 界面活性剤の例として、以下に示す化合物が挙げられるが、これに制限されない。
--キラル剤(光学活性化合物)--
 キラル剤(カイラル剤)はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル剤は、化合物によって誘起する螺旋の捩れ方向または螺旋周期が異なるため、目的に応じて選択すればよい。
 キラル剤としては、特に制限はなく、公知の化合物(例えば、液晶デバイスハンドブック、第3章4-3項、TN(twisted nematic)、STN(Super Twisted Nematic)用キラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、イソソルビド、および、イソマンニド誘導体等を用いることができる。
 キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファン、および、これらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性キラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であるのが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であるのが好ましく、不飽和重合性基であるのがより好ましく、エチレン性不飽和重合性基であるのがさらに好ましい。
 また、キラル剤は、液晶化合物であってもよい。
 キラル剤が光異性化基を有する場合には、塗布、配向後に活性光線などのフォトマスク照射によって、発光波長に対応した所望の反射波長のパターンを形成することができるので好ましい。光異性化基としては、フォトクロッミック性を示す化合物の異性化部位、アゾ基、アゾキシ基、または、シンナモイル基が好ましい。具体的な化合物として、特開2002-080478号公報、特開2002-080851号公報、特開2002-179668号公報、特開2002-179669号公報、特開2002-179670号公報、特開2002-179681号公報、特開2002-179682号公報、特開2002-338575号公報、特開2002-338668号公報、特開2003-313189号公報、および、特開2003-313292号公報等に記載の化合物を用いることができる。
 液晶組成物における、キラル剤の含有量は、液晶化合物の含有モル量に対して0.01~200モル%が好ましく、1~30モル%がより好ましい。
--重合開始剤--
 液晶組成物が重合性化合物を含む場合は、重合開始剤を含有しているのが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であるのが好ましい。
 光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、米国特許第2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、米国特許第2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)、ならびに、オキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。
 液晶組成物中の光重合開始剤の含有量は、液晶化合物の含有量に対して0.1~20質量%であるのが好ましく、0.5~12質量%であるのがさらに好ましい。
--架橋剤--
 液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、および、湿気等で硬化するものが好適に使用できる。
 架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレートおよびペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレートおよびエチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]および4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネートおよびビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ならびに、ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 架橋剤の含有量は、液晶組成物の固形分質量に対して、3~20質量%が好ましく、5~15質量%がより好ましい。架橋剤の含有量が上記範囲内であれば、架橋密度向上の効果が得られやすく、コレステリック液晶相の安定性がより向上する。
--その他の添加剤--
 液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、および、金属酸化物微粒子等を、光学的性能等を低下させない範囲で添加することができる。
 液晶組成物は、コレステリック液晶層を形成する際には、液体として用いられるのが好ましい。
 液晶組成物は溶媒を含んでいてもよい。溶媒には、制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましい。
 有機溶媒には、制限はなく、目的に応じて適宜選択することができ、例えば、ケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、および、エーテル類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が好ましい。
 コレステリック液晶層を形成する際には、コレステリック液晶層の形成面に液晶組成物を塗布して、液晶化合物をコレステリック液晶相の状態に配向した後、液晶化合物を硬化して、コレステリック液晶層とするのが好ましい。
 すなわち、後述する配向膜32上にコレステリック液晶層を形成する場合には、配向膜32に液晶組成物を塗布して、液晶化合物をコレステリック液晶相の状態に配向した後、液晶化合物を硬化して、コレステリック液晶相を固定してなるコレステリック液晶層を形成するのが好ましい。
 液晶組成物の塗布は、インクジェットおよびスクロール印刷等の印刷法、ならびに、スピンコート、バーコートおよびスプレー塗布等のシート状物に液体を一様に塗布できる公知の方法が全て利用可能である。
 塗布された液晶組成物は、必要に応じて乾燥および/または加熱され、その後、硬化され、コレステリック液晶層を形成する。この乾燥および/または加熱の工程で、液晶組成物中の液晶化合物がコレステリック液晶相に配向すればよい。加熱を行う場合、加熱温度は、200℃以下が好ましく、130℃以下がより好ましい。
 配向させた液晶化合物は、必要に応じて、さらに重合される。重合は、熱重合、および、光照射による光重合のいずれでもよいが、光重合が好ましい。光照射は、紫外線を用いるのが好ましい。照射エネルギーは、20mJ/cm2~50J/cm2が好ましく、50~1500mJ/cm2がより好ましい。光重合反応を促進するため、加熱条件下または窒素雰囲気下で光照射を実施してもよい。照射する紫外線の波長は250~430nmが好ましい。
 また、コレステリック液晶層の形成方法としては、円盤状液晶化合物を含む組成物を用いて、上記円盤状液晶化合物の分子軸が表面に対して傾斜している傾斜液晶層を形成し、傾斜液晶層上に、液晶化合物を含む組成物を用いて、コレステリック液晶層を形成する方法も好適に用いられる。
 このような傾斜液晶層を用いたコレステリック液晶層の形成方法は、国際公開2019/181247の段落[0049]~[0194]に記載されている。
 コレステリック液晶層の厚さには、制限はなく、液晶回折素子の用途、コレステリック液晶層に要求される光の反射率、および、コレステリック液晶層の形成材料等に応じて、適宜、設定すればよい。
 また、上述した厚さ方向に螺旋ピッチが変化するコレステリック液晶層は、光の照射によって、戻り異性化、二量化、ならびに、異性化および二量化等を生じて、螺旋誘起力(HTP:Helical Twisting Power)が変化するキラル剤を用い、コレステリック液晶層を形成する液晶組成物の硬化前、または、液晶組成物の硬化時、キラル剤のHTPを変化させる波長の光を照射することで、形成できる。
 例えば、光の照射によってHTPが小さくなるキラル剤を用いることにより、光の照射によってキラル剤のHTPが低下する。ここで、照射される光は、コレステリック液晶層の形成材料によって吸収される。従って、例えば、上方から光を照射した場合には、光の照射量は、上方から下方に向かって、漸次、少なくなる。すなわち、キラル剤のHTPの低下量は、上方から下方に向かって、漸次、小さくなる。そのため、HTPが大きく低下した上方では、螺旋の誘起が小さいので螺旋ピッチが長くなり、HTPの低下が小さい下方では、キラル剤が、本来、有するHTPで螺旋が誘起されるので、螺旋ピッチが短くなる。これにより、厚さ方向に螺旋ピッチが変化するコレステリック液晶層が形成できる。
 このような光の照射は、コレステリック液晶層の硬化のための露光前に行ってもよいし、硬化のための露光と同時に行ってもよい。また、キラル剤のHTPを変化させるための光の波長と、コレステリック液晶層を硬化させるための光の波長とは同じであっても異なっていてもよい。
 〔支持体〕
 支持体30は、配向膜32、および、コレステリック液晶層34を支持するものである。
 支持体30は、配向膜32、コレステリック液晶層34を支持できるものであれば、各種のシート状物(フィルム、板状物)が利用可能である。
 なお、支持体30は、分光する光に対する透過率が50%以上であるのが好ましく、70%以上であるのがより好ましく、85%以上であるのがさらに好ましい。
 支持体30の厚さには、制限はなく、光学素子100の用途および支持体30の形成材料等に応じて、配向膜32、コレステリック液晶層34を保持できる厚さを、適宜、設定すればよい。
 支持体30の厚さは、1~1000μmが好ましく、3~250μmがより好ましく、5~150μmがさらに好ましい。
 支持体30は単層であっても、多層であってもよい。
 単層である場合の支持体30としては、ガラス、トリアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリ塩化ビニル、アクリル、および、ポリオレフィン等からなる支持体30が例示される。多層である場合の支持体30の例としては、前述の単層の支持体のいずれかなどを基板として含み、この基板の表面に他の層を設けたもの等が例示される。
 〔配向膜〕
 支持体30の表面には配向膜32が形成される。
 配向膜32は、コレステリック液晶層34を形成する際に、液晶化合物40を所定の液晶配向パターンに配向するための配向膜である。
 前述のとおり、本発明において、コレステリック液晶層34は、液晶化合物40に由来する光学軸40Aの向きが、面内の一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する(図3参照)。従って、配向膜32は、コレステリック液晶層34が、この液晶配向パターンを形成できるように、形成される。
 以下の説明では、『光学軸40Aの向きが回転』を単に『光学軸40Aが回転』とも言う。
 配向膜32は、各種の公知の光配向膜が利用可能である。
 例えば、ポリマーなどの有機化合物からなるラビング処理膜、無機化合物の斜方蒸着膜、マイクログルーブを有する膜、ならびに、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライドおよびステアリル酸メチルなどの有機化合物のラングミュア・ブロジェット法によるLB(Langmuir-Blodgett:ラングミュア・ブロジェット)膜を累積させた膜、等が例示される。
 ラビング処理による配向膜32は、ポリマー層の表面を紙または布で一定方向に数回こすることにより形成できる。
 配向膜32に使用する材料としては、ポリイミド、ポリビニルアルコール、特開平9-152509号公報に記載された重合性基を有するポリマー、特開2005-097377号公報、特開2005-099228号公報、および、特開2005-128503号公報記載の配向膜32等の形成に用いられる材料が好ましい。
 液晶回折素子においては、配向膜32は、光配向性の素材に偏光または非偏光を照射して配向膜32とした、いわゆる光配向膜が好適に利用される。すなわち、液晶回折素子においては、配向膜32として、支持体30上に、光配向材料を塗布して形成した光配向膜が、好適に利用される。
 偏光の照射は、光配向膜に対して、垂直方向または斜め方向から行うことができ、非偏光の照射は、光配向膜に対して、斜め方向から行うことができる。
 本発明に利用可能な配向膜に用いられる光配向材料としては、例えば、特開2006-285197号公報、特開2007-076839号公報、特開2007-138138号公報、特開2007-094071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号公報および特許第4151746号公報に記載のアゾ化合物、特開2002-229039号公報に記載の芳香族エステル化合物、特開2002-265541号公報および特開2002-317013号公報に記載の光配向性単位を有するマレイミドおよび/またはアルケニル置換ナジイミド化合物、特許第4205195号および特許第4205198号に記載の光架橋性シラン誘導体、特表2003-520878号公報、特表2004-529220号公報および特許第4162850号に記載の光架橋性ポリイミド、光架橋性ポリアミドおよび光架橋性ポリエステル、ならびに、特開平9-118717号公報、特表平10-506420号公報、特表2003-505561号公報、国際公開第2010/150748号、特開2013-177561号公報および特開2014-012823号公報に記載の光二量化可能な化合物、特にシンナメート化合物、カルコン化合物およびクマリン化合物等が、好ましい例として例示される。
 中でも、アゾ化合物、光架橋性ポリイミド、光架橋性ポリアミド、光架橋性ポリエステル、シンナメート化合物、および、カルコン化合物は、好適に利用される。
 配向膜32の厚さには、制限はなく、配向膜32の形成材料に応じて、必要な配向機能を得られる厚さを、適宜、設定すればよい。
 配向膜32の厚さは、0.01~5μmが好ましく、0.05~2μmがより好ましい。
 配向膜32の形成方法には、制限はなく、配向膜32の形成材料に応じた公知の方法が、各種、利用可能である。一例として、配向膜32を支持体30の表面に塗布して乾燥させた後、配向膜32をレーザ光によって露光して、配向パターンを形成する方法が例示される。
 図5に、配向膜を露光して、配向パターンを形成する露光装置の一例を概念的に示す。
 図5に示す露光装置60は、レーザ62を備えた光源64と、レーザ62が出射したレーザ光Mの偏光方向を変えるλ/2板65と、レーザ62が出射したレーザ光Mを光線MAおよびMBの2つに分離するビームスプリッター68と、分離された2つの光線MAおよびMBの光路上にそれぞれ配置されたミラー70Aおよび70Bと、λ/4板72Aおよび72Bと、を備える。
 なお、光源64は直線偏光P0を出射する。λ/4板72Aは、直線偏光P0(光線MA)を右円偏光PRに、λ/4板72Bは直線偏光P0(光線MB)を左円偏光PLに、それぞれ変換する。
 配向パターンを形成される前の配向膜32を有する支持体30が露光部に配置され、2つの光線MAと光線MBとを配向膜32上において交差させて干渉させ、その干渉光を配向膜32に照射して露光する。
 この際の干渉により、配向膜32に照射される光の偏光状態が干渉縞状に周期的に変化するものとなる。これにより、配向状態が周期的に変化する配向パターンを有する配向膜(以下、パターン配向膜ともいう)が得られる。
 露光装置60においては、2つの光線MAおよびMBの交差角αを変化させることにより、配向パターンの周期を調節できる。すなわち、露光装置60においては、交差角αを調節することにより、液晶化合物40に由来する光学軸40Aが一方向に沿って連続的に回転する配向パターンにおいて、光学軸40Aが回転する1方向における、光学軸40Aが180°回転する1周期の長さを調節できる。
 このような配向状態が周期的に変化した配向パターンを有する配向膜32上に、コレステリック液晶層を形成することにより、液晶化合物40に由来する光学軸40Aが一方向に沿って連続的に回転する液晶配向パターンを有する、コレステリック液晶層を形成できる。
 また、λ/4板72Aおよび72Bの光学軸を、それぞれ、90°回転することにより、光学軸40Aの回転方向を逆にすることができる。
 上述のとおり、パターン配向膜は、パターン配向膜の上に形成されるコレステリック液晶層中の液晶化合物の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンとなるように、液晶化合物を配向させる配向パターンを有する。パターン配向膜が、液晶化合物を配向させる向きに沿った軸を配向軸とすると、パターン配向膜は、配向軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している配向パターンを有するといえる。パターン配向膜の配向軸は、吸収異方性を測定することで検出することができる。例えば、パターン配向膜に直線偏光を回転させながら照射して、パターン配向膜を透過する光の光量を測定した際に、光量が最大または最小となる向きが、面内の一方向に沿って漸次変化して観測される。
 なお、本発明において、配向膜は、好ましい態様として設けられるものであり、必須の構成要件ではない。
 例えば、支持体をラビング処理する方法、支持体をレーザ光などで加工する方法等によって、支持体に配向パターンを形成することにより、コレステリック液晶層が、液晶化合物40に由来する光学軸40Aの向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する構成とすることも可能である。すなわち、本発明においては、支持体を配向膜として作用させてもよい。
<分光システムの作用>
 以上のような光学素子100を有する分光システムの作用について説明する。
 図1に示すように、分光システムは、分光対象の光I0を光学素子100に液晶回折素子10側から入射させる。図示例においては、光I0は液晶回折素子10の主面(全反射面11)に略垂直な方向から液晶回折素子10に入射される。入射された光I0は、液晶回折素子10のコレステリック液晶層34中で反射、回折される。また、その際、波長によって回折角度が異なるため、分光される。図示例においては、簡単のため、矢印で示す3つの光I1、I2、I3に分光されたものとして説明する。また、図示例においては、光I0は、第2面102b側の方位方向に回折されるものとする。
 分光された光I1、I2、I3は、液晶回折素子10の、光I0が入射された側の面(すなわち、全反射面11)に向かって反射される。その際、光I1、I2、I3は、液晶回折素子10(コレステリック液晶層34)によって大きな回折角度で反射される。そのため、光I1、I2、I3は、全反射面11に全反射が生じる角度で入射し、全反射される。全反射した光I1、I2、I3は、液晶回折素子10の、プリズム102側の面に向かって進行する。全反射した光I1、I2、I3は、液晶回折素子10の、プリズム102側に大きな入射角度で入射するが、液晶回折素子10とプリズム102との屈折率の差は小さいため、液晶回折素子10とプリズム102との界面では全反射されずに、プリズム102内に入射する。
 プリズム102内に入射した光I1、I2、I3は、プリズム102内を進行して第2面102bに入射する。ここで、第2面102bは、第1面102aに対して4°以上傾斜している。そのため、光I1、I2、I3の第2面102bに対する入射角度は、全反射する角度(臨界角)よりも小さくなる。従って、光I1、I2、I3は第2面102bから出射される。すなわち、光学素子100においては、分光した光I1、I2、I3を、分光対象の光I0が入射した面(全反射面11)とは反対側の面側から出射することができる。
 前述のとおり、液晶配向パターンを有するコレステリック液晶層を、光を分光する部材として利用する場合に、図12に示すように、コレステリック液晶層に入射して分光された光I1、I2、I3は、入射側に出射される。そのため、分光された光を検出するための検出器等を、コレステリック液晶層の光の入射側に配置する必要がある。この場合、検出器を入射する光の光路を遮らないように配置する必要がある等の制約が生じるため、分光システムとしての小型化が難しいと考えられる。
 これに対して、本発明の分光システムは、分光する光学素子として、プリズムと、液晶配向パターンを有するコレステリック液晶層を備える液晶回折素子を有する光学素子を有し、液晶回折素子が配置される第1面に対する第2面の傾斜角度が4°以上であり、コレステリック液晶層の液晶配向パターンの1周期の長さが0.1~1.4μmである。これにより、本発明の分光システムは、分光対象の光を液晶回折素子側から入射させて、入射させた光を液晶回折素子で反射し、反射された光を液晶回折素子のプリズム側とは反対側の全反射面で全反射させ、全反射された光をプリズムに入射させて、第2面から分光された光を出射させることができる。すなわち、分光システムは、分光した光を、分光対象の光が光学素子に入射した面とは反対側の面側から出射することができる。従って、例えば、分光された光を検出する場合には、分光された光を検出するための検出器を入射側とは反対側の面側に配置することができるため、検出器の配置の制約が少なく、分光システムを小型化することが可能となる。
 ここで、1周期の長さが0.1~1.4μmの液晶配向パターンを有するコレステリック液晶層(液晶回折素子)がプリズムと接していない場合、すなわち、入射した光を液晶回折素子の一面で全反射が生じる角度に反射、回折させることができるコレステリック液晶層(液晶回折素子)がプリズムと接していない場合には、液晶回折素子の一方の主面で全反射した光は、液晶回折素子の他方の主面に到達するが、他方の主面でも全反射が生じるため、液晶回折素子の両主面で全反射を繰り返し、液晶回折素子から分光した光を主面から出射させることができない。従って、このようなコレステリック液晶層単体では分光する部材として利用できない。
 これに対して、本発明は、1周期の長さが0.1~1.4μmの液晶配向パターンを有し、入射した光を液晶回折素子の全反射面で全反射が生じる角度に反射、回折させることができるコレステリック液晶層(液晶回折素子)をプリズムの第1面に直接、または、他の層を介して接して配置することで、コレステリック液晶層で分光され、全反射面で全反射した光を取り出すことができ、分光する部材として利用することが可能となる。
 ここで、コレステリック液晶層(液晶回折素子)で分光され、全反射した光をプリズムの第2面から外部に出射させる観点から、プリズムの第1面に対する第2面の傾斜角度は、4°~75が好ましく、10°~70°がより好ましく、20°~60°がさらに好ましい。
 また、入射した光を液晶回折素子の全反射面で全反射が生じる角度に反射、回折させる観点から、コレステリック液晶層の液晶配向パターンの1周期の長さは、0.2~1.2μmが好ましく、0.3~1μmがより好ましく、0.4~1μmがさらに好ましい。
 また、分光対象の光の波長をλとした際に、波長λと液晶配向パターンの1周期Λとが、式(1)の関係を満たすことが好ましい。
 式(1)  0.44≦λ/Λ≦1.51
 ここで、分光対象の光の波長λとは、分光対象の光の帯域幅における中央の波長とする。
 分光対象の光の波長λと、液晶配向パターンの1周期Λとが上記式(1)の関係を満たすことにより、入射光が全反射面11で全反射する条件(全反射面11に回折光が戻っても全反射面11から出射しない)、かつ、プリズムの第2面で全反射しない条件を得ることができる。
 また、図1に示す例においては、分光システムは、分光対象の光を、液晶回折素子10の主面(全反射面11)に略垂直な方向から光学素子100に入射させる構成としたがこれに限定はされない。分光システムは、分光対象の光を、液晶回折素子10の主面の垂線に対して傾斜した方向から光学素子100に入射させる構成としてもよい。
 分光対象の光が光学素子に入射する際の、液晶回折素子の主面の垂線に対する角度(以下、入射角ともいう)を大きくすることで、コレステリック液晶層で反射、回折され分光された光を全反射面で全反射する角度になるよう調整できる。
 分光対象の光の入射角は、-45°~45°が好ましく、-40°~40°がより好ましく、-30°~30°がさらに好ましい。
 また、図1に示す例では、プリズム102の形状は、断面が直角三角形の三角柱状としたがこれに限定はされない。プリズム102の形状は、液晶回折素子が配置される第1面と第1面に対して4°以上傾斜している第2面とを有する構成であればよい。例えば、プリズム102は断面形状が、四角形、五角形等の多角形状であってもよい。また、プリズム102は、曲面部を有していてもよい。
 ここで、図2に示す例では、液晶回折素子10は、1層のコレステリック液晶層34を有する構成としたがこれに限定はされない。液晶回折素子は、2層以上の、液晶配向パターンを有するコレステリック液晶層を有していてもよい。また、液晶回折素子は、螺旋構造の捩れ方向が互いに異なるコレステリック液晶層を有する構成としてもよい。
 また、液晶回折素子は、プリズムの一面に、配向膜および光学異方性層を形成することで、プリズムに直接、接して設けてもよい。また、液晶回折素子は、プリズムの一面に直接、配向処理、液晶塗布、重合等の方法によって、直接、接して設けてもよい。
 あるいは、液晶回折素子は、光学透明接着剤(OCA(Optical Clear Adhesive))、光学透明両面テープ、および、紫外線硬化型樹脂などの貼着剤を用いて、プリズムの一面に貼着してもよい。また、液晶回折素子は、プラズマ処理などの密着力強化表面処理により、プリズムの一面に直接貼合してもよい。必要に応じて、プリズムと液晶回折素子との間には、反射防止膜等を設けてもよい。
 図6は、本発明の分光システムが有する光学素子の他の一例を概念的に示す図である。
 図6に示す光学素子100bは、プリズム102と液晶回折素子10bとを有する。プリズム102は図1に示す光学素子のプリズム102と同様の構成を有するためその説明は省略する。
 液晶回折素子10bは、コレステリック液晶層34Rおよびコレステリック液晶層34Lを有する。なお、図示は省略したが、液晶回折素子10bは支持体および/または配向膜を有していてもよい。
 周知のとおり、コレステリック液晶層は、液晶化合物による螺旋の旋回方向(センス)に応じて、右円偏光または左円偏光を反射する円偏光選択反射性を有している。液晶回折素子10bが有するコレステリック液晶層34Rは、右円偏光を反射するコレステリック液晶層であり、コレステリック液晶層34Lは、左円偏光を反射するコレステリック液晶層である。
 また、コレステリック液晶層34Rの選択反射波長帯域とコレステリック液晶層34Lの選択反射波長帯域とは重複しており、好ましくは略一致している。
 コレステリック液晶層34Rおよびコレステリック液晶層34Lはいずれも、図2および図3に示すコレステリック液晶層34と同様に液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する。
 コレステリック液晶層34Rの液晶配向パターンにおける液晶化合物の光学軸の回転方向(以下、液晶配向パターンの回転方向ともいう)と、コレステリック液晶層34Lの液晶配向パターンにおける液晶化合物の光学軸の回転方向とは逆である。前述のとおり、右円偏光を選択的に反射するコレステリック液晶層における液晶配向パターンの回転方向と、左円偏光を選択的に反射するコレステリック液晶層における液晶配向パターンの回転方向とが同じ場合には、2つのコレステリック液晶層は、配列軸D方向に沿って互いに逆方向(逆の方位方向)に光を反射、回折する。従って、右円偏光を選択的に反射するコレステリック液晶層34Rにおける液晶配向パターンの回転方向と、左円偏光を選択的に反射するコレステリック液晶層34Lにおける液晶配向パターンの回転方向とを逆にすることにより、2つのコレステリック液晶層が、配列軸D方向に沿って同じ方向(方位方向)に光を反射、回折するものとすることができる。
 また、コレステリック液晶層34Rの液晶配向パターンにおける1周期長さと、コレステリック液晶層34Lの液晶配向パターンにおける1周期の長さとは略同じである。前述のとおり、液晶配向パターンを有するコレステリック液晶層による光の回折角度は、液晶配向パターンの1周期の長さに応じて変わるため、コレステリック液晶層34Rの液晶配向パターンにおける1周期長さと、コレステリック液晶層34Lの液晶配向パターンにおける1周期の長さとを略同じとすることで、コレステリック液晶層34Rによる光の回折角度と、コレステリック液晶層34Lによる光の回折角度を略同じとすることができる。
 このような液晶回折素子10bを有する光学素子100bを有する分光システムの作用について図6および図7を用いて説明する。なお、図6においては説明のため、コレステリック液晶層34Rおよびコレステリック液晶層34Lがそれぞれ反射、回折して分光する光のうち、1つの波長の光を表す矢印のみを示している。また、図7においては説明のため、コレステリック液晶層内における反射、分光、および、全反射面での全反射についての矢印の図示は省略している。
 図6に示すように、分光システムは、分光対象の光(IR0およびIL0)を光学素子100bに液晶回折素子10b側から入射させる。分光対象の光のうち右円偏光成分IR0は、コレステリック液晶層34Lを透過し、コレステリック液晶層34Rで反射、分光される。反射された光IR1は、液晶回折素子10bの、プリズム102とは反対側の面(全反射面11)にて全反射されてプリズム102側に進行してプリズム102に入射し、プリズム102の第2面102bから出射される。また、分光対象の光のうち左円偏光成分IL0は、コレステリック液晶層34Lで反射、分光される。反射された光IL1は、液晶回折素子10bの、プリズム102とは反対側の面(全反射面11)にて全反射されてプリズム102側に進行して、コレステリック液晶層34Rを透過してプリズム102に入射し、プリズム102の第2面102bから出射される。
 コレステリック液晶層34Rの液晶配向パターンにおける1周期長さと、コレステリック液晶層34Lの液晶配向パターンにおける1周期の長さとは略同じであるため、コレステリック液晶層34Rで分光されたある波長の光IR1の進行方向と、コレステリック液晶層34Lで分光された同じ波長の光IL1の進行方向とは、略平行となる。従って、プリズム102の第2面102bから出射される光IR1と光IL1とは、波長ごとに略平行になる。
 このように、分光対象の光を波長ごとに略平行に出射する光学素子を有する分光システムの一例を図7に示す。
 図7に示す分光システム150は、上述した光学素子100bと、光学素子100bの第2面側に離間して配置される集光レンズ110と、集光レンズ110の光学素子100b側とは反対側に配置されるセンサー112と、を有する。
 前述のとおり、光学素子100bは、入射した分光対象の無偏光I0の右円偏光成分および左円偏光成分をそれぞれ分光してプリズム102の第2面102bから出射する。その際、図7に示すように、同じ波長である右円偏光IR1と左円偏光IL1とが平行に出射され、右円偏光IR1および左円偏光IL1とは異なる波長の右円偏光IR2と左円偏光IL2とが平行に、右円偏光IR1および左円偏光IL1とは異なる角度に出射され、さらに、これらとは異なる右円偏光IR3と左円偏光IL3とが平行に、右円偏光IR1および左円偏光IL1、ならびに、右円偏光IR2および左円偏光IL2とは異なる角度に出射される。
 プリズム102の第2面102bから出射された光は集光レンズ110に入射する。
 集光レンズ110は、平行に入射する右円偏光IR1および左円偏光IL1と、右円偏光IR2および左円偏光IL2と、右円偏光IR3および左円偏光IL3と、をそれぞれセンサー112の検出面上に焦点を結ぶように集光する。
 集光レンズ110としては特に制限はなく、周知の凸レンズ等を用いることができる。
 センサー112は、光電変換により光を検出する検出器であって、複数の画素が2次元的に配列された2次元センサーであってもよいし、複数の画素が1次元的(直線状)に配列されたラインセンサーであってもよい。センサー112としては、CCD(Charge-Coupled Device)イメージセンサー、CMOS(complementary metal oxide semiconductor)イメージセンサー等の従来公知の撮像素子を用いることができる。
 集光レンズ110で集光された右円偏光IR1および左円偏光IL1、右円偏光IR2および左円偏光IL2、ならびに、右円偏光IR3および左円偏光IL3は、それぞれセンサー112に入射する。その際、右円偏光IR1および左円偏光IL1はセンサー112の同じ位置(画素)に入射する。また、右円偏光IR2および左円偏光IL2は、右円偏光IR1および左円偏光IL1とは異なる位置(画素)に入射する。さらに、右円偏光IR3および左円偏光IL3は、右円偏光IR1および左円偏光IL1、ならびに、右円偏光IR2および左円偏光IL2とは異なる位置(画素)に入射する。
 従って、分光システム150は、センサー112の異なる画素で、波長ごとの右円偏光と左円偏光の合計の光量を検出することができる。すなわち、分光システム150は、分光対象の光の波長分布を計測することができる。
 また、分光システム150は、複数の異なる波長に光信号を同時に載せて通信を行う光波長多重通信において、複数の異なる波長が重畳した光を、連続的に分光、検出して、各波長に含まれる光信号を取り出す検出器として利用可能である。
 ここで、図6および図7に示す分光システム150(光学素子100b)は、液晶回折素子10bが有するコレステリック液晶層34Rおよびコレステリック液晶層34Lの液晶配向パターンの1周期が同じとしたがこれに限定はされず、コレステリック液晶層34Rの液晶配向パターンの1周期と、コレステリック液晶層34Lの液晶配向パターンの1周期とが異なっていてもよい。
 図8に、本発明の分光システムが有する光学素子100cは、液晶回折素子10bに代えて液晶回折素子10cを有する以外は、図6に示す光学素子100bと同様の構成を有する。従って、光学素子100bと同様の点については説明を省略し、異なる点について説明する。
 光学素子100cは、コレステリック液晶層34Rbとコレステリック液晶層34Lbとを有する。コレステリック液晶層34Rbは、右円偏光を反射するコレステリック液晶層であり、コレステリック液晶層34Lbは、左円偏光を反射するコレステリック液晶層である。
 また、コレステリック液晶層34Rbの選択反射波長帯域とコレステリック液晶層34Lbの選択反射波長帯域とは重複しており、好ましくは略一致している。
 コレステリック液晶層34Rbおよびコレステリック液晶層34Lbはいずれも、図2および図3に示すコレステリック液晶層34と同様に液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する。また、右円偏光を選択的に反射するコレステリック液晶層34Rbにおける液晶配向パターンの回転方向と、左円偏光を選択的に反射するコレステリック液晶層34Lbにおける液晶配向パターンの回転方向とは逆である。
 ここで、コレステリック液晶層34Rbの液晶配向パターンにおける1周期長さと、コレステリック液晶層34Lbの液晶配向パターンにおける1周期の長さとは異なっている。すなわち、コレステリック液晶層34Rbによる光の回折角度と、コレステリック液晶層34Lbによる光の回折角度とは異っている。
 このような液晶回折素子10cを有する光学素子100cを有する分光システムの作用について図8および図9を用いて説明する。なお、図8においては説明のため、コレステリック液晶層34Rbおよびコレステリック液晶層34Lbがそれぞれ反射、回折して分光する光のうち、1つの波長の光を表す矢印のみを示している。また、図9においては説明のため、コレステリック液晶層内における反射、分光、および、全反射面での全反射についての矢印の図示は省略している。
 図8に示すように、分光システムは、分光対象の光(IR0およびIL0)を光学素子100cに液晶回折素子10c側から入射させる。分光対象の光のうち右円偏光成分IR0は、コレステリック液晶層34Lbを透過し、コレステリック液晶層34Rbで反射、分光される。反射された光IR1は、液晶回折素子10cの、プリズム102とは反対側の面(全反射面11)にて全反射されてプリズム102側に進行してプリズム102に入射し、プリズム102の第2面102bから出射される。また、分光対象の光のうち左円偏光成分IL0は、コレステリック液晶層34Lbで反射、分光される。反射された光IL1は、液晶回折素子10cの、プリズム102とは反対側の面(全反射面11)にて全反射されてプリズム102側に進行して、コレステリック液晶層34Rbを透過してプリズム102に入射し、プリズム102の第2面102bから出射される。
 コレステリック液晶層34Rbの液晶配向パターンにおける1周期長さと、コレステリック液晶層34Lbの液晶配向パターンにおける1周期の長さとは異なっているため、コレステリック液晶層34Rbで分光されたある波長の光IR1の進行方向と、コレステリック液晶層34Lbで分光された同じ波長の光IL1の進行方向とは、非平行となる。従って、プリズム102の第2面102bから出射される光IR1と光IL1とは、波長ごとに非平行になる。
 このように、分光対象の光を波長ごとに非平行に出射する光学素子を有する分光システムの一例を図9に示す。
 図9に示す分光システム150bは、上述した光学素子100cと、光学素子100cの第2面側に離間して配置される集光レンズ110と、集光レンズ110の光学素子100b側とは反対側に配置されるセンサー112と、を有する。
 前述のとおり、光学素子100cは、入射した分光対象の無偏光I0の右円偏光成分および左円偏光成分をそれぞれ分光してプリズム102の第2面102bから出射する。その際、図9に示すように、同じ波長である右円偏光IR1と左円偏光IL1とが非平行に出射され、右円偏光IR1および左円偏光IL1とは異なる波長の右円偏光IR2と左円偏光IL2とが非平行に出射され、さらに、これらとは異なる右円偏光IR3と左円偏光IL3とが非平行に出射される。
 プリズム102の第2面102bから出射された光は集光レンズ110に入射する。
 集光レンズ110は、それぞれ異なる方向に出射される右円偏光IR1、右円偏光IR2、および、右円偏光IR3をセンサー112の検出面上に焦点を結ぶようにそれぞれ集光する。また、集光レンズ110は、左円偏光IL1、左円偏光IL2、および、左円偏光IL3、を、上述した右円偏光IR1、右円偏光IR2、および、右円偏光IR3とは異なるセンサー112の検出面上の位置に焦点を結ぶようそれぞれ集光する。
 集光レンズ110を透過した各光は、センサー112の異なる位置(画素)に入射する。従って、分光システム150bは、センサー112の異なる画素で、波長および偏光状態が異なる光の光量を検出することができる。このような構成の分光システム150bは、偏光スペクトルイメージング等に用いることができる。
 なお、図9に示す例においては、1つのセンサー112で右円偏光の各波長の光と、左円偏光の各波長の光とを検出するものとしたがこれに限定はされず、右円偏光の各波長の光と、左円偏光の各波長の光をそれぞれ別のセンサーで検出する構成としてもよい。
 ここで、図1等に示す例においては、液晶回折素子10(コレステリック液晶層34)は、入射した光をプリズム102の第2面102bに向かう方位方向に回折するものとしたがこれに限定はされない。
 図10は、本発明の分光システムが有する光学素子の他の一例を概念的に表す図である。
 図10に示す光学素子100dは、プリズム102とプリズム102の第1面102aに配置される液晶回折素子10dと、プリズム102の第3面102cに配置される反射層104と、を有する。なお、図10においては説明のため、コレステリック液晶層が反射、回折して分光する光のうち、1つの波長の光を表す矢印のみを示している。
 液晶回折素子10dは、コレステリック液晶層により光を反射、回折する方位方向がプリズム102の第2面102bとは逆方向である。すなわち、液晶回折素子10dが有するコレステリック液晶層は、プリズム102の第3面102c側に向かう方位方向に分光対象の光I0を回折する。
 液晶回折素子10d(コレステリック液晶層)により反射、回折され、分光された光I1は、液晶回折素子10dの全反射面11で全反射して、プリズム102に入射する。プリズム102内に入射した光I1は、プリズム102内を進行して第3面102cに入射する。第3面102cには、反射層104が配置されているため、光I1は、反射層104で反射され、第2面102b側に向かって進行し、第2面102bから出射される。
 このように、液晶回折素子(コレステリック液晶層)は、入射した光をプリズム102の第2面102bとは反対側の第3面102cに向かう方位方向に回折する構成であってもよい。
 図10に示す構成において、第3面102cが第1面102aに対して90°である場合には、液晶回折素子10dで分光され第3面102c側に回折されて反射層104で反射されて第2面102bから出射される光の進行方向と、液晶回折素子が光を第2面102b側に回折した場合に第2面102bから出射される光の進行方向とは平行になる。
 反射層104としては特に制限はなく、金属層等の公知の反射層が適宜利用可能である。
 なお、図10に示す例では、プリズム102の第3面102cに反射層104を有する構成としたがこれに限定はされず、第3面102cが光を全反射するものであってもよい。
 また、本発明の分光システムにおいて、光学素子はプリズムおよび液晶回折素子以外の部材を有してもよい。例えば、プリズムの第1面に位相差層を有していてもよい。
 また、上述した例では、分光システムは、光学素子と、集光レンズと、センサーとを有する構成としたがこれに限定はされない。本発明の分光システムは、例えば、光学素子と、センサーを有する構成してもよい。この場合、ビーム径の小さい光源を用いることでセンサ上に分離した分光スポットを得ることが出来る。
 以上、本発明の分光システムについて詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、試薬、使用量、物質量、割合、処理内容、および、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 [実施例1]
<液晶回折素子の作製>
(配向膜の形成)
 支持体としてガラス基板(コーニング社EAGLE)を用意した。支持体上に、下記の配向膜形成用塗布液をスピンコートで塗布した。この配向膜形成用塗布液の塗膜が形成された支持体を60℃のホットプレート上で60秒間乾燥し、配向膜P-2を形成した。
  配向膜形成用塗布液
―――――――――――――――――――――――――――――――――
・下記光配向用素材                 1.00質量部
・水                       16.00質量部
・ブトキシエタノール               42.00質量部
・プロピレングリコールモノメチルエーテル     42.00質量部
―――――――――――――――――――――――――――――――――
  光配向用素材
(配向膜の露光)
 図5に示す露光装置を用いて配向膜を露光して、配向パターンを有する配向膜P-2を形成した。露光装置において、レーザとして波長(325nm)のレーザ光を出射するものを用いた。干渉光による露光量を300mJ/cm2とした。なお、2つのレーザー光の干渉により形成される配向パターンの1周期Λ(光学軸が180°回転する長さ)が、0.7μmとなるように、2つの光の交差角(交差角α)を調節した。
(液晶層の形成)
 液晶層を形成する液晶組成物として、下記の組成物B-2を調製した。
  組成物B-2
――――――――――――――――――――――――――――――――――
・棒状液晶化合物L-1              100.00質量部
・光重合開始剤(日本化薬製、KAYACURE DETX-S)
                           1.00質量部
・キラル剤Ch-3                  4.00質量部
・メチルエチルケトン               142.06質量部
――――――――――――――――――――――――――――――――――
  棒状液晶化合物L-1  (下記の構造を右に示す質量比で含む)
  キラル剤Ch-3
 配向膜P-2上に、上記の液晶組成物B-2を、スピンコータを用いて、500rpmで10秒間塗布した(塗布工程)。次に、液晶組成物B-2の塗膜をホットプレート上で80℃にて3分間(180sec)加熱した(加熱工程)。次に、窒素雰囲気下で、高圧水銀灯を用いて、100℃にて、300nmのロングバスフィルタ、および350nmのショートパスフィルタを介して波長315nmで測定される光の照射量が9mJ/cm2となるよう液晶組成物の露光を行った(第1露光工程)。第1露光工程は、厚さ方向の位置によって螺旋ピッチが異なる領域を有する構成になるよう制御するためである。その後、100℃にて、窒素雰囲気下で高圧水銀灯を用いて波長365nmの紫外線を1000mJ/cm2の照射量で塗膜に露光した(第2露光工程)。第2露光工程は液晶組成物を硬化して液晶化合物の配向を固定化するためである。このようにして、コレステリック液晶層を形成した。
 コレステリック液晶層は、最終的に膜厚が7μmで、液晶配向パターンの1周期Λが、0.7μmで、右ねじれのコレステリック配向であった。SEMによる断面像において、コレステリック配向であり、かつ、面内に液晶配向パターンを有することに起因して、コレステリック液晶層の下界面(ガラス基板との界面)に対する斜めの明暗線が観察された。明暗線は厚さ方向で徐々に角度が変わり、その角度は15°~50°であり、広帯域な反射型の回折素子として機能する構造が観察された。
<光学素子の作製>
 作製した液晶回折素子を、用意したプリズムの底面に転写して貼合した。プリズムはSCHOTT社のSK2の型番の光学ガラスであり、波長633nmにおける屈折率は1.605である。用意したプリズムは底面(第1面)に対し斜面(第2面)が構成されているプリズムであり、斜面の角度は底面に対し53°である。コレステリック液晶層の貼合方向は、コレステリック液晶層の面内の回折ベクトルの方向(明暗線と直交方向)が、底面と斜面の境界線の方向と直交になるようにした。貼合は、支持体から剥離したコレステリック液晶層を、プラズマ処理の密着力強化表面処理による直接貼合によって行った。このようにして、光学素子を作製した。
<分光システムの作製>
 作製した光学素子を用い、分光システムを作製した。
 分光システムにおいて、コリメートした分光対象の光をコレステリック液晶層側から光学素子に入射するようにした。その際、入射角が30°となるようにした。分光対象の光は、可視光領域の無偏光で波長は主に450~650nmである。
 また、光学素子のプリズムの第2面側に集光レンズおよびラインセンサーを配置して分光システムを作製した。
[評価]
 作製した分光システムにおいて、分光対象の光を光学素子に入射した。入射した分光対象の光のうち右円偏光成分は液晶回折素子により斜めに反射回折した後、全反射面で全反射した後に液晶回折素子を透過して、プリズムの第2面から出射された。分光システムにおいて、第2面から出射された各波長ごとの光を集光してラインセンサーで検出した。その結果、回折した右円偏光の全ての波長において入射時の光量に対して80%以上の光量で検出できた。また、図11に示すような、光学素子内を進行する光の各位置における角度を表1に示す。図11に示すθ1は、光学素子の液晶回折素子の主面に垂直な方向に対する入射光の角度(入射角)である。θ2bは、液晶回折素子からプリズムに入射した光の液晶回折素子とプリズムとの界面に垂直な方向に対する角度である。φibは、プリズム内を進行し第2面に到達した光の第2面に垂直な方向に対する角度である。φobは、第2面から出射された光の第2面に垂直な方向に対する角度である。ψobは、光学素子の液晶回折素子の主面に垂直な方向に対する第2面から出射された光の角度である。
[実施例2]
 コレステリック液晶層を以下の2層コレステリック液晶層に変えた以外は実施例1と同じように、光学素子を作製し、分光システムを作製した。
<2層コレステリック液晶層の作製>
 2層コレステリック液晶層は、右ねじれのコレステリック液晶層と左ねじれのコレステリック液晶層を貼合積層して作製した。
 右ねじれのコレステリック液晶層は、実施例1と同様に作製した。
 左ねじれのコレステリック液晶層は、組成物B-2のキラル剤をCh-4に変えた以外は、実施例1と同様に作製した。
  キラル剤Ch-4
 左ねじれのコレステリック液晶層は、最終的に膜厚が7μmで、液晶配向パターンの1周期Λが、0.7μmであった。SEMによる断面像において、コレステリック配向であり、かつ、面内に液晶配向パターンを有することに起因して、コレステリック液晶層の下界面(ガラス基板との界面)に対する斜めの明暗線が観察された。明暗線は厚さ方向で徐々に角度が変わり、その角度は15°~50°であり、広帯域な反射型の回折素子として機能する構造が観察された。明暗線の傾きの方向は右ねじれのコレステリック液晶層と反対であり、これはねじれ角が反対であることに起因する。
 作製した右ねじれと左ねじれのコレステリック液晶層を積層貼合した。積層時には明暗線の傾きの方向が一致するように、左ねじれコレステリック液晶層を貼合するときに180°方向を反転させて貼合した。以上のようにして、実施例2のコレステリック液晶層を作製した。
[評価]
 作製した分光システムについて実施例1と同様に評価を行った。評価の結果、回折した右円偏光および左円偏光をあわせて全ての波長において80%以上の効率で検出できた。また、光学素子内を進行する光の各々の角度は実施例1と同様であった。
[実施例3]
 プリズムとして、斜面(第2面)の底面(第1面)に対する傾斜角が35°のプリズムを用いた以外は実施例2と同様にして光学素子を作製し、分光システムを作製した。
[評価]
 作製した分光システムについて実施例1と同様に評価を行った。評価の結果、回折した右円偏光および左円偏光をあわせて全ての波長において80%以上の効率で検出できた。また、光学素子内を進行する光の各位置における角度は表2に示すとおりであった。
[実施例4]
 プリズムとして、斜面(第2面)の底面(第1面)に対する傾斜角が70°のプリズムを用いた以外は実施例2と同様にして光学素子を作製し、分光システムを作製した。
[評価]
 作製した分光システムについて実施例1と同様に評価を行った。評価の結果、回折した右円偏光および左円偏光をあわせて全ての波長において80%以上の効率で検出できた。また、光学素子内を進行する光の各位置における角度は表3に示すとおりであった。
[比較例1]
 プリズムとして、斜面(第2面)の底面(第1面)に対する傾斜角が3°のプリズムを用いた以外は実施例2と同様にして光学素子を作製し、分光システムを作製した。
[評価]
 作製した分光システムについて、実施例1と同様に評価を行ったところ、第2面に到達した光の第2面に対する角度が臨界角より大きいため第2面で全反射してしまい出射されず、分光システムとしては機能しなかった。光学素子内を進行する光の各位置における角度は表4に示すとおりであった。
[実施例5]
 右ねじれおよび左ねじれのコレステリック液晶層の液晶配向パターンの1周期を0.43μmに変更した以外は実施例2と同様にして光学素子を作製し、分光対象の光の入射角を0°とした以外は実施例2と同様にして分光システムを作製した。
[評価]
 作製した分光システムについて実施例1と同様に評価を行った。評価の結果、回折した右円偏光および左円偏光をあわせて全ての波長において80%以上の効率で検出できた。また、光学素子内を進行する光の各位置における角度は表5に示すとおりであった。
[実施例6]
 右ねじれおよび左ねじれのコレステリック液晶層の液晶配向パターンの1周期を0.8μmに変更した以外は実施例2と同様にして光学素子を作製し、分光システムを作製した。
[評価]
 作製した分光システムについて実施例1と同様に評価を行った。評価の結果、回折した右円偏光および左円偏光をあわせて全ての波長において80%以上の効率で検出できた。また、光学素子内を進行する光の各位置における角度は表6に示すとおりであった。
[実施例7]
 右ねじれおよび左ねじれのコレステリック液晶層の液晶配向パターンの1周期を1.0μmに変更した以外は実施例2と同様にして光学素子を作製し、分光対象の光の入射角を35°とした以外は実施例2と同様にして分光システムを作製した。
[評価]
 作製した分光システムについて実施例1と同様に評価を行った。評価の結果、回折した右円偏光および左円偏光をあわせて全ての波長において80%以上の効率で検出できた。また、光学素子内を進行する光の各位置における角度は表7に示すとおりであった。
[比較例2]
 右ねじれおよび左ねじれのコレステリック液晶層の液晶配向パターンの1周期を1.5μmに変更した以外は実施例2と同様にして光学素子を作製し、分光システムを作製した。
[評価]
 作製した分光システムについて、実施例1と同様に評価を行ったところ、液晶回折素子で反射されて入射側の面に戻ってきた光の角度が臨界角より小さいため、入射側の面で全反射せずプリズム内部に入射されないため、分光システムとしては機能しなかった。光学素子内を進行する光の各位置における角度は表8に示すとおりであった。
[実施例8]
 液晶層を形成する液晶組成物として、下記の組成物B-3と組成物B-4とを用いた以外は、実施例5と同様に、液晶配向パターンの1周期が0.43μmの右ねじれおよび左ねじれのコレステリック液晶層を貼合した光学素子を作製し、分光対象の光の入射角を0°とした以外は実施例5と同様にして分光システムを作製した。
  組成物B-3(右ねじれコレステリック液晶層用組成物)
――――――――――――――――――――――――――――――――――
・棒状液晶化合物L-1              100.00質量部
・光重合開始剤(日本化薬製、KAYACURE DETX-S)
                           1.00質量部
・界面活性剤T-1                  0.05質量部
・キラル剤Ch-3                  4.00質量部
・メチルエチルケトン               142.06質量部
――――――――――――――――――――――――――――――――――
  組成物B-4(左ねじれコレステリック液晶層用組成物)
――――――――――――――――――――――――――――――――――
・棒状液晶化合物L-1              100.00質量部
・光重合開始剤(日本化薬製、KAYACURE DETX-S)
                           1.00質量部
・界面活性剤T-1                  0.05質量部
・キラル剤Ch-4                  4.00質量部
・メチルエチルケトン               142.06質量部
――――――――――――――――――――――――――――――――――
  界面活性剤T-1
[評価]
 作製した分光システムについて実施例1と同様に評価を行った。評価の結果、回折した右円偏光および左円偏光をあわせて全ての波長において、85%以上の効率で検出できた。また、光学素子内を進行する光の各位置における角度は表5と同じであった。
[実施例9]
 界面活性剤をT-1から下記T-2に変更した以外は、実施例8と同様に、液晶配向パターンの1周期が0.43μmの右ねじれおよび左ねじれのコレステリック液晶層を貼合した光学素子を作製し、分光対象の光の入射角を0°とした以外は実施例8と同様にして分光システムを作製した。
  界面活性剤T-2
[評価]
 作製した分光システムについて実施例1と同様に評価を行った。評価の結果、回折した右円偏光および左円偏光をあわせて全ての波長において、85%以上の効率で検出できた。また、光学素子内を進行する光の各位置における角度は表5と同じであった。
 以上の結果より、本発明の効果は明らかである。
 10、10b~10d 液晶回折素子
 11 全反射面
 30 支持体
 32 配向膜
 34 コレステリック液晶層
 34R、34Rb 右円偏光を反射するコレステリック液晶層
 34L、34Lb 左円偏光を反射するコレステリック液晶層
 40 液晶化合物
 40A 光学軸
 60 露光装置
 62 レーザ
 64 光源
 65 λ/2板
 68 ビームスプリッター
 70A、70B ミラー
 72A、72B λ/4板
 100、100b、100c 光学素子
 102 プリズム
 102a 第1面
 102b 第2面
 102c 第3面
 104 反射層
 110 レンズ
 112 センサー
 150、150b 分光システム
 200 コレステリック液晶層
 I0 分光対象の光
 IR0 分光対象の光の右円偏光成分
 IL0 分光対象の光の左円偏光成分
 I1、I2、I3 分光された光
 IR1、IR2、IR3 分光された右円偏光
 IL1、IL2、IL3 分光された左円偏光
 Λ 1周期
 D 配列軸
 RR 右円偏光
 M レーザ光
 MA、MB 光線
 PO 直線偏光
 PR 右円偏光
 PL 左円偏光
 α 交差角

Claims (4)

  1.  光学素子を含む分光システムであって、
     前記光学素子が、プリズムと、前記プリズムの第1面に直接または他の層を介して配置される液晶回折素子とを有し、
     前記プリズムが、前記第1面に対して傾斜している第2面を有し、
     前記第2面の前記第1面に対する傾斜角度が4°以上であり、
     前記液晶回折素子が、コレステリック液晶相を固定してなるコレステリック液晶層を有し、
     前記コレステリック液晶層が、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有し、
     前記液晶配向パターンにおける、前記液晶化合物由来の光学軸の向きが180°回転する長さを1周期とした際に、前記1周期の長さが0.1~1.4μmであり、
     前記分光システムは、分光対象の光を前記液晶回折素子側から入射させて、入射させた光を前記液晶回折素子で反射し、前記反射された光を前記液晶回折素子の前記プリズム側とは反対側の面で全反射させ、前記全反射された光を前記プリズムに入射させて、前記第2面から分光された光を出射する、分光システム。
  2.  前記液晶回折素子は、螺旋構造の捩れ方向が互いに異なる前記コレステリック液晶層を有する、請求項1に記載の分光システム。
  3.  前記プリズムの前記第1面に対する前記第2面の傾斜角度が4°~5°である、請求項1に記載の分光システム。
  4.  前記分光対象の光の波長をλとした際に、波長λと前記液晶配向パターンの1周期Λとが、式(1)の関係を満たす、請求項3に記載の分光システム。
     式(1)  0.44≦λ/Λ≦1.51
PCT/JP2023/029591 2022-08-18 2023-08-16 分光システム WO2024038872A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-130598 2022-08-18
JP2022130598 2022-08-18
JP2023033564 2023-03-06
JP2023-033564 2023-03-06

Publications (1)

Publication Number Publication Date
WO2024038872A1 true WO2024038872A1 (ja) 2024-02-22

Family

ID=89941836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029591 WO2024038872A1 (ja) 2022-08-18 2023-08-16 分光システム

Country Status (1)

Country Link
WO (1) WO2024038872A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691994A (en) * 1981-10-06 1987-09-08 Afian Viktor V Method for a solar concentrator manufacturing
JPH11194295A (ja) * 1997-11-06 1999-07-21 Olympus Optical Co Ltd 光学系
JP2002090549A (ja) * 2000-09-13 2002-03-27 Shimada Precision Kk フロントライト導光板
US20090034077A1 (en) * 2007-08-01 2009-02-05 Horiba Jobin Yvon, Inc. Grating with angled output prism face for providing wavelength-dependent group delay
WO2021132630A1 (ja) * 2019-12-27 2021-07-01 富士フイルム株式会社 ハイパースペクトルセンサー、ハイパースペクトルカメラ
WO2021200228A1 (ja) * 2020-04-01 2021-10-07 富士フイルム株式会社 導光素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691994A (en) * 1981-10-06 1987-09-08 Afian Viktor V Method for a solar concentrator manufacturing
JPH11194295A (ja) * 1997-11-06 1999-07-21 Olympus Optical Co Ltd 光学系
JP2002090549A (ja) * 2000-09-13 2002-03-27 Shimada Precision Kk フロントライト導光板
US20090034077A1 (en) * 2007-08-01 2009-02-05 Horiba Jobin Yvon, Inc. Grating with angled output prism face for providing wavelength-dependent group delay
WO2021132630A1 (ja) * 2019-12-27 2021-07-01 富士フイルム株式会社 ハイパースペクトルセンサー、ハイパースペクトルカメラ
WO2021200228A1 (ja) * 2020-04-01 2021-10-07 富士フイルム株式会社 導光素子

Similar Documents

Publication Publication Date Title
JP7397954B2 (ja) 光学素子および光偏向装置
JP7153087B2 (ja) 導光素子、画像表示装置およびセンシング装置
WO2019131966A1 (ja) 光学素子、導光素子および画像表示装置
JP7175995B2 (ja) 光学積層体、導光素子および画像表示装置
JP7492001B2 (ja) 透過型液晶回折素子
WO2020022434A1 (ja) 光学素子およびセンサー
WO2021132630A1 (ja) ハイパースペクトルセンサー、ハイパースペクトルカメラ
JP7166445B2 (ja) センサー
WO2019131950A1 (ja) 光学素子およびセンサー
JP2023160888A (ja) 光学素子および画像表示装置
WO2022070799A1 (ja) 透過型液晶回折素子
JP7196290B2 (ja) 液晶回折素子および積層回折素子
WO2021182625A1 (ja) 液晶層の製造方法
WO2024038872A1 (ja) 分光システム
JP7355850B2 (ja) 光学素子の製造方法および光学素子
WO2024057917A1 (ja) 光学素子および光学センサー
JP7392160B2 (ja) 透過型液晶回折素子
WO2023100916A1 (ja) 光学素子および光学センサー
WO2023282085A1 (ja) 分光器
WO2022239858A1 (ja) 光学素子および光学センサー
WO2022239859A1 (ja) 光学素子、画像表示装置、ヘッドマウントディスプレイ、センシング装置、アイトラッキング装置
WO2022239835A1 (ja) 光学素子、画像表示装置、ヘッドマウントディスプレイ、センシング装置、アイトラッキング装置
WO2023090392A1 (ja) 透過型液晶回折素子
WO2022264908A1 (ja) 透過型液晶回折素子
JP7252355B2 (ja) 光偏向装置および光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854906

Country of ref document: EP

Kind code of ref document: A1