WO2024038585A1 - 回路基板、回路基板交換システム、回路基板交換方法 - Google Patents

回路基板、回路基板交換システム、回路基板交換方法 Download PDF

Info

Publication number
WO2024038585A1
WO2024038585A1 PCT/JP2022/031400 JP2022031400W WO2024038585A1 WO 2024038585 A1 WO2024038585 A1 WO 2024038585A1 JP 2022031400 W JP2022031400 W JP 2022031400W WO 2024038585 A1 WO2024038585 A1 WO 2024038585A1
Authority
WO
WIPO (PCT)
Prior art keywords
board
section
replacement
cutting
storage unit
Prior art date
Application number
PCT/JP2022/031400
Other languages
English (en)
French (fr)
Inventor
研一 山本
一暉 照井
浩由 森本
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to PCT/JP2022/031400 priority Critical patent/WO2024038585A1/ja
Publication of WO2024038585A1 publication Critical patent/WO2024038585A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements

Definitions

  • Embodiments of the present invention are, for example, a device control circuit board mounted on equipment such as a refrigeration cycle device such as an air conditioner, a circuit board replacement system for replacing the device control circuit board, and a device control circuit board.
  • the present invention relates to a circuit board replacement method for replacing a circuit board for a computer, and particularly relates to a control circuit board equipped with a memory storing various settings.
  • Patent Document 1 discloses a method for easily transferring function settings when replacing a device.
  • an indoor unit transmits setting information regarding various functions of the indoor unit stored in a nonvolatile memory to a remote controller.
  • the remote control stores the received configuration information in a non-volatile memory mounted on the circuit board.
  • the worker cuts off the power supply to the indoor unit and replaces the indoor unit.
  • the indoor unit determines whether its own setting information is registered in the nonvolatile memory. If the indoor unit's own setting information is not registered in the nonvolatile memory, the indoor unit acquires the indoor unit's setting information stored in the nonvolatile memory of the remote controller and registers it in its own nonvolatile memory.
  • Patent Document 2 discloses an air conditioner that includes an air conditioning control section, a data reading/writing section, a data control section, and an operation section.
  • an air conditioning control unit controls air conditioning operation based on operating information and operation setting information.
  • the data reading/writing section has a removable storage medium, and can write the operating information and operation setting information sent from the air conditioning control section to the storage medium during air conditioning operation, and can store it when restarting air conditioning operation. It is possible to read out the operating information and operation setting information stored in the medium before the operation is stopped.
  • the data control unit passes the operating information and operation setting information sent from the air conditioning control unit to the data reading/writing unit and causes the data reading/writing unit to write the information into the storage medium.
  • the data control section transfers the operating information and operation setting information before the shutdown, which the data reading/writing section reads from the storage medium, to the air conditioning control section.
  • the operation unit is capable of inputting operation setting information for operating the air conditioning operation.
  • the data of the indoor unit before the indoor unit is replaced is stored in the remote controller, and if there is no data on the indoor unit side after the indoor unit is replaced, the data can be acquired from the remote controller. can.
  • the remote control and indoor unit must have different configurations. There is a need.
  • the indoor unit's circuit board itself fails, for example the CPU on the circuit board, the peripheral circuits of the CPU, or the power supply circuit that supplies power to the CPU, etc., data from the indoor unit will not be able to be sent to the remote control. ,In the end, data migration cannot be achieved.
  • Patent Document 2 discloses a technical proposal using a removable storage medium, but in this case, the storage medium attached to the circuit board on which the control unit is mounted needs to be removable. . If the storage medium is soldered, it is difficult to remove it, so parts such as a socket that can attach and remove the storage medium from the circuit board are required, which increases the number of parts. Furthermore, since a storage medium such as a general non-volatile memory is basically a very small memory chip of about 1 cm square, there is a risk that it may be damaged when being removed from or attached to a circuit board.
  • the circuit board according to the present embodiment is a circuit board for device control, and includes a processing section configured to be able to execute various processes, a storage section configured to be able to store various types of data, and the above-described circuit board.
  • a cutting section that can cut the signal line; a section of the power supply line that is closer to the storage section than the cutting section; and a section of the signal line that is closer to the storage section than the cutting section;
  • a connection part that allows the part to be connected to the outside.
  • the circuit board according to the present embodiment is a circuit board for device control, and includes a processing section configured to be able to execute various processes, and a storage section configured to be able to store various types of data.
  • a power supply line for supplying power to the processing unit and the storage unit; a cutting unit capable of cutting a portion of the power supply line that supplies power to the storage unit; and one of the power supply lines.
  • a connecting portion that allows a portion closer to the storage unit than the cutting portion to be connected to the outside.
  • the circuit board according to the present embodiment is a circuit board for device control, and includes a processing section configured to be able to execute various processes, and a storage section configured to be able to store various types of data.
  • a signal line for signal transmission between the processing unit and the storage unit, a cutting unit that can cut the signal line, and a portion of the signal line closer to the storage unit than the cutting unit to the outside.
  • a connection part that allows connection to the.
  • the circuit board replacement system is a system for replacing a circuit board for device control, and the board includes a processing section that is configured to be able to execute various processes, and a processing section configured to execute various types of processing, and a system that exchanges various data.
  • a storage unit configured to be able to store data; a power supply line for supplying power to the processing unit and the storage unit; a signal line for signal transmission between the processing unit and the storage unit; A part of the supply line that supplies power to the storage unit, a cutting part that can cut the signal line, a part of the power supply line that is closer to the storage part than the cutting part, and the signal line a connecting part that allows a part of the power supply line closer to the storage part to be connected to the outside than the cutting part, and the cutting part supplies power to the storage part of the power supply line in the board before replacement.
  • the processing unit of the board after replacement reads data stored in the storage unit of the board before replacement via the connection part of the board before replacement, and stores the data in the storage unit of the board after replacement. Executes data transfer processing.
  • the circuit board replacement system according to the present embodiment is a system for replacing a circuit board for device control, and the board includes a processing unit configured to be able to execute various processes, and a processing unit configured to execute various processes.
  • a storage unit configured to be able to store data, a power supply line for supplying power to the processing unit and the storage unit, and a portion of the power supply line that supplies power to the storage unit can be disconnected. and a connection part that allows a portion of the power supply line closer to the storage unit than the cutting part to be connected to the outside, and the power supply line is connected to the cutting part by the cutting part in the board before replacement. With the part of the line that supplies power to the storage part disconnected, the storage part of the board before replacement is connected to the processing part of the board after replacement via the connection part of the board before replacement.
  • the processing unit of the board after replacement reads the data stored in the storage unit of the board before replacement via the connection part of the board before replacement, and processes the data of the board after replacement. Executes data transfer processing to be stored in the storage unit.
  • the circuit board replacement system according to the present embodiment is a system for replacing a circuit board for device control, and the board includes a processing unit configured to be able to execute various processes, and a processing unit configured to execute various processes.
  • a storage section configured to be able to store data
  • a signal line for signal transmission between the processing section and the storage section
  • a cutting section capable of cutting the signal line
  • a connecting part that allows a part closer to the storage part than the cutting part to be connected to the outside, and the storage part of the board before replacement is provided with the signal line being cut by the cutting part in the board before replacement.
  • the part is connected to the processing part of the board after replacement via the connection part of the board before replacement, and in this connected state, the processing part of the board after replacement is stored in the storage part of the board before replacement.
  • a data transfer process is executed in which data is read through the connection section of the board before replacement and stored in the storage section of the board after replacement.
  • the circuit board replacement method is a method for replacing a circuit board for device control, and the board includes a processing section that is configured to be able to execute various processes, and a processing section that is configured to be able to execute various types of processing, and that stores various types of data.
  • a storage unit configured to be able to store data; a power supply line for supplying power to the processing unit and the storage unit; a signal line for signal transmission between the processing unit and the storage unit; A part of the supply line that supplies power to the storage unit, a cutting part that can cut the signal line, a part of the power supply line that is closer to the storage part than the cutting part, and the signal line a connecting part that allows a part of the power supply line closer to the storage part to be connected to the outside than the cutting part, and the cutting part supplies power to the storage part of the power supply line in the board before replacement. Connect the storage section of the board before replacement to the processing section of the board after replacement via the connection part of the board before replacement with the signal line disconnected, and in the connected state.
  • the processing unit of the board after replacement reads the data stored in the storage unit of the board before replacement via the connection part of the board before replacement, and stores the data in the storage unit of the board after replacement.
  • Execute data transfer processing is a method for replacing a circuit board for device control, wherein the board includes a processing section configured to be able to execute various processes, and a processing section configured to execute various processes.
  • a storage unit configured to be able to store data, a power supply line for supplying power to the processing unit and the storage unit, and a portion of the power supply line that supplies power to the storage unit can be disconnected.
  • connection part that allows a portion of the power supply line closer to the storage unit than the cutting part to be connected to the outside, and the power supply line is connected to the cutting part by the cutting part in the board before replacement.
  • the circuit board replacement method is a method for replacing a circuit board for device control, wherein the board includes a processing section configured to be able to execute various processes, and a processing section configured to execute various processes.
  • a storage section configured to be able to store data; a signal line for signal transmission between the processing section and the storage section; a cutting section capable of cutting the signal line; a connection part that allows a part closer to the storage part than the cutting part to be connected to the outside, and the storage part of the board before replacement is set in a state where the signal line is cut by the cutting part in the board before replacement.
  • a data transfer process is executed in which data is read through the connection section of the board before replacement and stored in the storage section of the board after replacement.
  • a diagram schematically showing a configuration example of an air conditioner according to the first embodiment A diagram schematically showing a configuration example of a circuit board according to the first embodiment A diagram schematically showing a specific configuration example of a connecting line portion in a circuit board according to the first embodiment.
  • a flowchart schematically showing an example of the circuit board replacement method according to the first embodiment A flowchart schematically showing an example of the circuit board replacement method according to the second embodiment
  • a diagram schematically showing a configuration example of a circuit board according to a third embodiment A diagram schematically showing an example of a state in which a circuit board replacement system according to a third embodiment is constructed.
  • a diagram schematically showing a configuration example of a circuit board according to a fourth embodiment A diagram schematically showing an example of a state in which a circuit board replacement system according to a fourth embodiment is constructed.
  • circuit board for device control a plurality of embodiments will be described with reference to the drawings, taking as an example a circuit board mounted on an air conditioner. Furthermore, a plurality of embodiments of a circuit board replacement system and a circuit board replacement method for replacing the circuit board will be described with reference to the drawings. Substantially the same elements in the plurality of embodiments are given the same reference numerals, and the description thereof will be omitted.
  • a circuit board 1 according to the present disclosure is mounted, for example, in an outdoor unit 101 that constitutes an air conditioner 100.
  • the circuit board 1 may be simply referred to as the board 1.
  • the board 1 is a control circuit board that controls the overall operation of the outdoor unit 101 and the air conditioner 100 as a whole.
  • the outdoor unit 101 and the indoor unit 102 constitute an air conditioner 100.
  • the outdoor unit 101 is connected to a commercial AC power source AC, and is supplied with power necessary for operation from the commercial AC power source AC.
  • the commercial AC power supply AC will also be referred to as the AC power supply AC.
  • the indoor unit 102 is similarly connected to an alternating current power supply AC via a power line PL from the outdoor unit 101.
  • the indoor unit 102 is also equipped with a control circuit board 1' that operates in cooperation with the circuit board 1 of the outdoor unit 101.
  • the circuit board 1 of the outdoor unit 101 is connected to the control circuit board 1' of the indoor unit 102 by a communication line CL, and controls the overall operation of the air conditioner 100 while exchanging information with each other.
  • the board 1 includes a CPU 2 (Central Processing Unit), a nonvolatile memory 3, a basic connector 4, a special connector 5, a connecting line section 6, and a power supply circuit 8.
  • the CPU 2 constitutes a processing section in combination with a ROM, RAM, peripheral circuits thereof, etc. (not shown).
  • the CPU 2 is configured to be able to execute various processes related to the operation of the outdoor unit 101 and the indoor unit 102 based on the control program and various setting data stored in the ROM.
  • the CPU 2 can execute data transfer processing, which will be described in detail later.
  • the nonvolatile memory 3 is an example of a storage section made of a semiconductor, and is configured to be able to store various types of data. Note that a control program for executing normal driving processing and some control data are stored in a ROM connected to the CPU 2.
  • the nonvolatile memory 3 stores setting information regarding various functions of the outdoor unit 101 and the air conditioner 100.
  • the stored information is not only the default information when the outdoor unit 101 is shipped, but also information that is added by the installer or service person after the air conditioner 100 is installed according to the installation condition or the user's request. The settings you have made or changed are saved.
  • the basic connector 4 is configured to be connectable to the outside.
  • the basic connector 4 is a standard connector having six terminals soldered to this type of board 1 in order to input data from outside the board 1, for example.
  • the special connector 5 is a standard 6-terminal connector soldered to the board 1 like the basic connector 4, and is configured to be connectable to the outside.
  • the special connector 5 is an example of a connection part, and is a connector specially provided separately from the basic connector 4 in order to realize the board replacement method according to the present disclosure. It is desirable to use the same product as the basic connector 4 and the special connector 5 in order to reduce the number of types of parts.
  • the connecting line portion 6 electrically connects or connects the nonvolatile memory 3 and the special connector 5 to the CPU 2.
  • a cutting section 7 is provided in the middle of the connecting line section 6 .
  • the non-volatile memory 3 and the special connector 5 are connected to the CPU 2 by a plurality of connecting lines forming a connecting line section 6.
  • the basic connector 4 is connected to the CPU 2 by a connecting wire group 44 that is not electrically connected to any of the connecting wires that constitute the connecting wire section 6.
  • the portion of the connecting wire constituting the connecting wire portion 6 excluding the cutting portion 7 is mainly constituted by a conductive wire pattern on the circuit board 1, and in some cases, a lead wire is used for a part of it. Good too.
  • FIG. 3 illustrates an example of the board 1 embodying the circuit configuration.
  • the power supply circuit 8 is connected to the AC power supply AC via two power supply terminals R such as two receptacle terminals provided on the substrate 1 and two tab terminals T connected to the AC power supply AC.
  • the power supply circuit 8 is made up of various electrical and electronic elements soldered to the circuit pattern on the board 1 and connected to each other, and receives an AC voltage from the AC power supply AC as an input, and converts the AC voltage into a stepped-down DC voltage, for example, DC5. This is a circuit that converts it into an output such as volt (V).
  • a general AC-DC conversion circuit such as a combination of a rectifier circuit, a switching regulator, or a series regulator can be used. All the components on the board 1, such as the CPU 2 and the nonvolatile memory 3, operate using the DC output of the power supply circuit 8 as a power source.
  • the connecting line portion 6 is composed of a plurality of connecting lines, in this case, four connecting lines.
  • the connecting line section 6 has one power supply line 6a, one reference potential line 6b, and two signal lines 6c and 6d.
  • the power supply line 6a is a wiring for supplying power from the power supply circuit 8 to various components on the board 1, particularly the CPU 2 and the nonvolatile memory 3.
  • the reference potential line 6b is a connection line that has a reference potential of this circuit board 1, for example, 0 volt (V).
  • the signal lines 6c and 6d are connection lines for transmitting data and signals.
  • a DC voltage for example, DC5V, is applied from the power supply circuit 8 between the power supply line 6a and the reference potential line 6b.
  • the nonvolatile memory 3 has eight terminals, ports [1] to [8]. Two of the input/output ports [5] and [6] are connected to signal lines 6c and 6d, respectively, ports [1] to [4] and [7] are connected to the reference potential line 6b, and port [8] is connected to the power supply line 6a. Therefore, the nonvolatile memory 3 is connected to other circuits on the board 1 only by the power supply line 6a, reference potential line 6b, and signal lines 6c and 6d, which form the connection line part 6.
  • a simple element consisting of a resistor r provided on the substrate 1 in the middle of the power supply line 6a to stabilize the power supply voltage, and a capacitor C connected between the power supply line 6a and the reference potential line 6b, that is, a single element. They are not connected to the circuits on the substrate 1, except for elements that have a low possibility of failure.
  • the nonvolatile memory 3 is operated by a voltage applied between ports [7] and [8], which are power ports. Conversely, the nonvolatile memory 3 does not operate if no voltage is applied between the power ports [7] and [8]. However, since it is a non-volatile memory 3, the data stored during operation will not be erased even if the power supply voltage is interrupted and will remain stored. Therefore, if the power is turned on again, the data stored in the nonvolatile memory 3 before the power was turned off can be read.
  • the nonvolatile memory 3 exchanges electrical signals with external devices via its input/output ports [5] and [6], and saves the input data or stores it internally. Data can be provided externally. In its control, the CPU 2 writes information that needs to be stored into the nonvolatile memory 3 via the input/output ports [5] and [6] of the nonvolatile memory 3, and writes data stored in the nonvolatile memory 3. Read it out.
  • the cutting section 7 is composed of a plurality of jumper wires 7a to 7d, in this case four jumper wires depending on the number of connecting wires forming the connecting wire section 6.
  • the jumper wires 7a to 7d are wires that connect two unconnected circuit patterns on the substrate 1 through the space above the substrate 1.
  • the jumper wires 7a to 7d are uncoated, bare, electrically conductive thin metal wires.
  • the jumper line 7a is provided in the middle of the power supply line 6a, in this case, in a part of the power supply line 6a that supplies power to the nonvolatile memory 3.
  • the power supply line 6a supplies power to the CPU 2 through a wiring branched at a branch part located closer to the power supply circuit 8 than the jumper wire 7a, that is, a branch part indicated by a point K in FIG.
  • the jumper wire 7b is provided in the middle of the reference potential line 6b.
  • the jumper line 7c is provided in the middle of the signal line 6c.
  • the jumper line 7d is provided in the middle of the signal line 6d.
  • the jumper wires 7a to 7d be provided as close to the nonvolatile memory 3 as possible among the connection lines 6a to 6d, respectively. .
  • the connecting wire section 6 branches into two from the CPU 2 side to the tip of the jumper wire 7, that is, on the nonvolatile memory 3 side than the jumper wire 7, one of which is connected to the nonvolatile memory 3, and the other is connected to the special connector 5.
  • the connection wiring from this branched portion to the special connector 5 is formed by a conductive pattern provided on the board 1.
  • the [1] and [4] pins of the special connector 5 are not used, the [2] pin is connected to the reference potential line 6b, the [3] pin is connected to the power supply line 6a, and the [5] , [6] pins are connected to signal lines 6c and 6d, respectively.
  • the connection line group 44 includes four independent wiring lines. Each of the wiring includes one power supply line 4a, one reference potential line 4b, and two signal lines 4c and 4d.
  • the power supply line 4a like the power supply line 6a, is connected to a DC output end of the power supply circuit 8, for example, a point K.
  • the reference potential line 4b is connected to a reference potential location on the substrate 1 in the same way as the reference potential line 6b.
  • the two signal lines 4c and 4d are connected to input/output terminals of the CPU 2.
  • the CPU 2 is capable of transmitting and receiving electrical signals that can read, write, and erase data to the nonvolatile memory 3 via these two signal lines 4c and 4d as necessary.
  • the basic connector 4 Similarly to the special connector 5, in the basic connector 4, four out of six terminals (pins [1] to [6]) are used, and pins [1] and [4] are not used.
  • the [2] pin of the basic connector 4 is connected to the reference potential line 4b, the [3] pin is connected to the power supply line 4a, and the [5] and [6] pins are connected to the signal lines 4c and 4d extending from the CPU 2, respectively. linked.
  • the board 1 includes a switch section 10 that functions as an operation section and a display section.
  • the switch unit 10 includes, for example, a tact switch 11, a display 12, and a rotary switch 13.
  • a plurality of tact switches 11, three in this case, are provided, and are switched between an on state and an off state according to a pressing operation by an operator.
  • the display 12 is constituted in this case by five 7-segment light emitting diodes.
  • a plurality of rotary switches 13, three in this case, are provided, and the input value can be adjusted according to the rotation operation by the operator. The input value adjusted by rotating the rotary switch 13 is displayed on the display 12.
  • the board 1 configured as described above is mounted on the air conditioner 100 and may be replaced, for example, during maintenance, inspection, or when some kind of malfunction occurs.
  • the most frequently occurring failure is the failure of the board 1.
  • the board 1 is equipped with a large number of electrical and electronic parts, and if even one of them breaks down, it will no longer be able to operate normally, and the board 1 will need to be replaced.
  • an example of a method for replacing the board 1 in such a case will be described in detail.
  • the board 1 before replacement that is already installed in the air conditioner 100 and the board 1 after replacement that is newly installed in the air conditioner 100 both have the configuration of the board 1 described above. .
  • the board 1 before replacement and the board 1 after replacement have the same circuit configuration.
  • replacing the board 1 when replacing the outdoor unit 101 itself, that is, when removing the original outdoor unit 101 and replacing it with a new outdoor unit 101, it is necessary to update the data on the board of the original outdoor unit 101.
  • the same application is also possible when transferring to the board of the outdoor unit 101.
  • the board 1 before replacement that is, the old board 1
  • the board 1A the board 1A
  • the board 1B the board 1 after replacement
  • the CPU 2A the nonvolatile memory 3A
  • the basic connector 4A the switch part 10 included in the board 1A before replacement
  • the section 7 and the switch section 10 may be respectively referred to as a CPU 2B, a nonvolatile memory 3B, a basic connector 4B, a special connector 5B, a connecting line section 6B, a cutting section 7B, and a switch section 10B.
  • the operator should remove the old board 1 on which the setting data etc. are stored, that is, the board 1 where the problem occurred, from the outdoor unit 101, and connect the AC power supply from the power terminal R. Remove the wiring. Then, the operator attaches a new board 1 whose setting data and the like are not stored in the nonvolatile memory 3 to a predetermined position of the outdoor unit 101 as the new board 1, and connects the wiring of the AC power supply AC to the power terminal R. Subsequently, the operator cuts the cutting portion 7 of the old board 1.
  • the cutting operation of the cutting section 7 is performed by an external operation of cutting all or a predetermined one of the jumper wires 7a to 7d on the board 1 with a tool such as nippers.
  • the operator may cut all the jumper wires 7a to 7d, cut only the jumper wire 7a among the jumper wires 7a to 7d, or cut only the jumper wire 7a among the jumper wires 7a to 7d. Only 7c and 7d may be cut. However, if only the jumper wire 7a among the jumper wires 7a to 7d is cut, the ground potential of the components on the board 1 connected to the power supply line 6a becomes unstable.
  • the cutting section 7 forms a state in which the power supply line 6a, the reference potential line 6b, and the signal lines 6c and 6d are cut off by cutting off all the jumper wires 7a to 7d from the outside.
  • the cutting section 7 only the jumper wire 7a, or the jumper wires 7a and 7b are cut off from the outside, so that only the portion of the power supply line 6a that supplies power to the nonvolatile memory 3 is cut off. form a state.
  • only the jumper wires 7c and 7d are cut off from the outside, thereby creating a state in which only the signal lines 6c and 6d connected to the CPU 2A are cut off.
  • the operator cuts the cutting portion 7A on the board 1A before replacement. At this time, the operator does not cut the cutting portion 7B of the replaced board 1B. Then, with the cut section 7A of the board 1A before replacement cut, the operator connects the nonvolatile memory 3A of the board 1A to the special connector 5A of the board 1A before replacement and the basic connector 4B of the board 1B after replacement. It is connected to the CPU 2B of the replaced board 1B through the board 1B. As a result, a circuit board replacement system 1S is constructed in which the board 1A before replacement and the board 1B after replacement are connected to enable data transfer. At this time, for the connection between the special connector 5A of the board 1A and the basic connector 4B of the board 1B, a crossover wiring of a wired cable such as a harness 20 can be used, for example.
  • a crossover wiring of a wired cable such as a harness 20 can be used, for example.
  • the special connector 5A of the board 1A before replacement and the basic connector 4B of the board 1B after replacement are connected so that the pin numbers of each connector match. That is, for example, the [2] pin of the special connector 5A of the board 1A is connected by wire to the [2] pin of the basic connector 4B of the replaced board 1B.
  • the DC output from the power supply circuit 8B is transmitted to the [3] pin of the special connector 5A of the board 1A before replacement via the [3] pin of the basic connector 4B. ] pin, flows to the power supply line 6a of the board 1A beyond that, and power is supplied to the nonvolatile memory 3A.
  • the [2] pin of the basic connector 4B of the board 1B and the [2] pin of the special connector 5A of the board 1A before replacement are electrically connected, so the reference potentials of both the board 1B and the board 1A are at the same level. becomes. As a result, the nonvolatile memory 3A of the board 1A before replacement can operate normally.
  • the operator performs a predetermined operation on the switch section 10B provided on the replaced board 1B.
  • the predetermined operation is, for example, rotating the rotary switch 13 to select the board replacement mode, and pressing the tact switch 11 while the code number of this board replacement mode is displayed on the display 12. is possible.
  • the CPU 2B of the replaced board 1B starts data transfer processing.
  • the CPU 2B of the replaced board 1B reads the data stored in the nonvolatile memory 3A of the old board 1A via the special connector 5A of the board 1A and the basic connector 4B of the board 1B.
  • This is a process of storing data in the nonvolatile memory 3B of the replaced board 1B, a so-called copy process.
  • the CPU 2B transmits and receives signals via the two signal lines 4c and 4d of the board 1B.
  • the signals flowing through the signal lines 4c and 4d of the board 1B are connected to the [5] and [6] pins of the basic connector 4B of the board 1B and the [5] and [6] pins of the special connector 5A connected to these pins.
  • the signal lines 6c and 6d of the substrate 1A are connected to the nonvolatile memory 3A. Therefore, the CPU 2B can suck up all data and information stored in the nonvolatile memory 3A via the basic connector 4B and the special connector 5A. Then, the CPU 2B stores the data and information sucked from the board 1A into the nonvolatile memory 3B of its own board 1B through the connecting line portion 6B.
  • nonvolatile memory 3A can also store various data such as failure history data in addition to data related to device settings. In many cases, it is unnecessary to copy such failure history data to a new board 1B. Therefore, when copying data, the CPU 2B may select necessary data and copy only the necessary data from the nonvolatile memory 3A to the nonvolatile memory 3B.
  • whether or not there is a data shortage state can be determined based on, for example, checking whether data is stored in a plurality of predetermined data items.
  • the copying flag is on, it means that data is being copied from the nonvolatile memory 3A to the nonvolatile memory 3B, and if the copying flag is off, the data is being copied from the nonvolatile memory 3A to the nonvolatile memory 3B. This means that the process of copying data from 3A to nonvolatile memory 3B is not in progress.
  • the CPU 2B determines that the data transfer is not incomplete (S1: NO). Then, the CPU 2B normally starts up (S2) and controls the operation of the air conditioner 100, in this case mainly the operation of the outdoor unit 101, based on the control program and various data stored in the nonvolatile memory 3B. do.
  • the CPU 2B determines that the data transfer is not completed (S1: YES). Then, the CPU 2B waits until a predetermined operation is performed on the switch unit 10B (S3: NO). Then, when a predetermined operation is performed on the switch unit 10B (S3: YES), the CPU 2B switches the copying flag to the on state (S4).
  • the CPU 2B starts data transfer processing (S5), reads data from the nonvolatile memory 3A of the board 1A, writes data to the nonvolatile memory 3B of the board 1B, and writes data written to the nonvolatile memory 3B. Repeat the verification. Then, when the CPU 2B completes writing and verifying all the data stored in the nonvolatile memory 3A of the board 1A to the nonvolatile memory 3B of the board 1B (S6: YES), the CPU 2B turns the copying flag off. After switching (S7), this control flow ends. After this control flow is completed, it is desirable that the operator turn off the power supply to the board 1B.
  • the CPU 2B checks whether the data transfer is in an unfinished state (S1). At this time, since the necessary data is stored in the nonvolatile memory 3B of the board 1B and the copying flag is in the off state, the CPU 2B is not in the data transfer incomplete state in step S1 (S1: If the answer is NO, the process moves to step S2 to start normal startup.
  • the board 1 installed in the air conditioner 100 includes a CPU 2 that is configured to be able to execute various processes, and a nonvolatile memory that is configured to be able to store various types of data. 3, a special connector 5 that is configured to be connectable to the outside, a connecting line part 6 that connects the nonvolatile memory 3 and the special connector 5 to the CPU 2, and a connecting line part 6 that connects the CPU 2 and the nonvolatile memory 3.
  • the CPU 2 and the non-volatile memory 3 are separated by cutting the connecting part, and a cutting part 7 is provided to form a replacement form in which only the special connector 5 is connected to the non-volatile memory 3. .
  • the cutting section 7 can cut only the portion of the power supply line 6a that supplies power to the nonvolatile memory 3 by cutting only the jumper wire 7a among the plurality of jumper wires 7a to 7d.
  • the cutting section 7 can cut only the signal lines 6c and 6d by cutting only the jumper wires 7c and 7d among the plurality of jumper wires 7a to 7d.
  • the non-volatile memory 3A of the board 1A before replacement is specially selected while the plurality of jumper wires 7a to 7d of the cutting section 7A are appropriately selected and cut in the board 1A before replacement. It is connected to the CPU 2B of the replaced board 1B via the connector 5A, wiring such as the harness 20, and the basic connector 4B, and in this connected state, the non-volatile memory 3A of the replaced board 1A is connected to the CPU 2B of the replaced board 1B. It is possible to execute a data transfer process in which data stored in the board 1A before replacement is read through the special connector 5A of the board 1A before replacement and stored in the nonvolatile memory 3B of the board 1B after replacement.
  • the board 1A before replacement and the board 1B after replacement have the same configuration, and data is transferred between the new and old boards 1A and 1B when data is transferred from the nonvolatile memory 3A to the nonvolatile memory 3B. Migration can be done safely and quickly.
  • All that is required to transfer data between the two boards 1A and 1B is a crossover wire for connecting the two connectors, and no special tools are required.
  • the special connector 5 and the basic connector 4 use connectors having the same configuration as a single unit, there is no directionality in the wiring for connecting the two connectors, and connection errors do not occur.
  • the data can be left on the old board 1A, and the saved data can be used, for example, when investigating the cause of a failure at a later date. .
  • the cutting section 7 is composed of a jumper wire that electrically connects two or more patterns on the substrate 1. Therefore, the cutting section 7 can be realized at low cost. Once a jumper wire is disconnected, it is difficult or impossible to restore the original connection state. Therefore, the disconnection section 7 may be a DIP switch, for example. According to the DIP switch, even if the connection is accidentally disconnected, the original connection state can be easily restored.
  • the cutting portion 7 is a portion of the connecting line portion 6 consisting of four connecting wires 6a to 6d that supplies power to at least the nonvolatile memory 3, that is, a portion of the power supply line 6a that is closer to the nonvolatile memory 3 than the jumper wire 7a. Any configuration may be sufficient as long as it is possible to cut only the side portion or the portion of the power supply line 6a closer to the nonvolatile memory 3 than the jumper line 7a and the reference potential line 6b. As a result, before, during, and after data transfer from the board 1A before replacement to the board 1B after replacement during replacement work, power is transferred from the board 1B after replacement to the CPU 2A of the board 1A before replacement.
  • the cutting section 7 may be configured to be able to cut at least the signal lines 6c and 6d of the connecting line section 6. According to this configuration, even if power is supplied from the board 1B after replacement to the CPU 2A of the board 1A before replacement, signals are prevented from being transmitted from the CPU 2A to the nonvolatile memory 3A on the board 1A. can do. Therefore, the CPU 2B of the board 1B after replacement can exchange data with the nonvolatile memory 3A of the board 1A before replacement without being hindered by the CPU 1A of the board 1A before replacement.
  • the cutting section 7 may have a configuration that does not include the reference potential line 6b. Thereby, when power is supplied from the board 1B after replacement to the board 1A before replacement, the board 1A can be maintained at the reference potential or the ground potential.
  • the cutting section 7 cuts all the connecting lines included in the connecting line section 6, that is, the power supply line 6a, the reference potential line 6b, and the signal lines 6c and 6d.
  • the connecting line section 6 that is, the power supply line 6a, the reference potential line 6b, and the signal lines 6c and 6d.
  • the CPU 2B of the replaced board 1B When the switch section 10B provided on the replaced board 1B is operated, the CPU 2B of the replaced board 1B performs data transfer processing, that is, reads data from the non-volatile memory 3A, and transfers the data to the non-volatile memory 3B. Start writing.
  • the data transfer process can be started based on the operator's intentional operation of the switch unit 10B, and it is possible to prevent the data transfer process from being started against the operator's intention. .
  • the data transfer process is started based on a manual operation by the operator, but there may be cases where it is desired to eliminate the operator's operation and start the data transfer process quickly. Therefore, according to the control flow illustrated in FIG. 6, the CPU 2B of the board 1B after replacement is in the power-on state where the power is turned on to the board 1B, and the nonvolatile memory 3A of the board 1A before replacement is in the power-on state. If the data transfer from the board 1B after replacement to the nonvolatile memory 3B has not been completed (S1: YES), the replacement form is cut by the cutting part 7A on the board 1A before replacement.
  • the circuit board replacement system 1S is constructed.
  • the CPU 2B of the replaced board 1B switches the copying flag to the ON state (S4), regardless of whether a predetermined operation is performed on the switch unit 10B, and then starts data transfer processing. (S5).
  • the data can be changed in response to the satisfaction of the predetermined condition, in this case, in response to the construction of the circuit board replacement system 1S. Transfer processing can be started automatically. Thereby, the work burden on the operator associated with replacing the board 1 can be reduced.
  • the board 1 illustrated in FIG. 7 does not include the basic connector 4.
  • the nonvolatile memory 3 includes an address changeover switch 30.
  • the address changeover switch 30 is configured to be able to switch the nonvolatile memory 3 between an open state and a ground state by opening and closing the switch.
  • the address changeover switch 30 can switch the address of the nonvolatile memory 3 by switching the nonvolatile memory 3 between an open state and a ground state.
  • FIG. 8 illustrates a state in which a circuit board exchange system 1S is constructed by connecting two boards 1A and 1B equipped with an address changeover switch 30 to a nonvolatile memory 3.
  • the nonvolatile memory 3A is switched to an open state by the address changeover switch 30A, and thereby the address of the nonvolatile memory 3A is switched to a predetermined first address.
  • the nonvolatile memory 3B is switched to the ground state by the address changeover switch 30B, and the address of the nonvolatile memory 3B is thereby switched to a predetermined second address.
  • circuit board replacement system 1S two nonvolatile memories 3A and 3B are connected to the CPU 2B of the replaced board 1B.
  • the addresses of these two nonvolatile memories 3A and 3B are switched to different addresses by address changeover switches 30A and 30B, respectively. Therefore, the CPU 2B of the board 1B can identify the two nonvolatile memories 3A and 3B without confusing them.
  • the basic connector 4 is unnecessary and only the special connector 5 needs to be provided. Therefore, the number of connectors mounted on the board 1 can be reduced, and the configuration of the board 1 can be simplified.
  • connection line portion 6 includes a connection line 40 that connects the CPU 2 and the nonvolatile memory 3, a connection line 41 that connects the CPU 2 and the special connector 5, and a connection line 41 that connects the nonvolatile memory 3 and the special connector 5.
  • a connecting line 42 is provided.
  • the connection lines 40, 41, and 42 each include a connection line such as a power supply line or a signal line. According to the substrate 1, the connection lines 40, 41, and 42 are each provided with the cutting portions 7.
  • FIG. 10 illustrates a state in which a circuit board exchange system 1S is constructed by connecting two boards 1A and 1B each having a cutting section 7 to connection lines 40, 41, and 42.
  • the connecting lines 40A and 41A are cut by the cutting part 7A, and the connecting line 42A is not cut by the cutting part 7A and remains connected.
  • the connecting line 42B is cut by the cutting part 7B, and the connecting lines 40B and 41B are not cut by the cutting part 7B and are in a connected state.
  • the CPU 2B of the board 1B after replacement transfers the data stored in the nonvolatile memory 3A of the board 1A before replacement to the special connector 5A of the board 1A and the board 1B. It can be read through the special connector 5B of 1B and stored in the nonvolatile memory 3B of the replaced board 1B.
  • the basic connector 4 can be made unnecessary. Thereby, the number of connectors mounted on the board 1 can be reduced, and the configuration of the board 1 can be simplified.
  • the present disclosure is not limited to the plurality of embodiments described above, and can be modified and expanded as appropriate without departing from the gist thereof.
  • the plurality of embodiments described above can be implemented in combination as appropriate.
  • the board 1 may be, for example, a board mounted on the indoor unit 102, or further may be a board mounted on a device other than an air conditioner. It is preferable that the board 1A before replacement and the board 1B after replacement are the same product, but at least the parts related to the main parts of the present disclosure may have the same configuration, and the parts that are not the main parts of the present disclosure may have the same configuration. It may have a different configuration.
  • 1 is a board (circuit board), 1S is a circuit board exchange system, 2, 2A, 2B is a CPU (processing unit), 3, 3A, 3B is a non-volatile memory (storage unit), 4, 4A, 4B is a Basic connector, 5, 5A, 5B are special connectors (connection parts), 6, 6A, 6B are connection line parts, 6a is power supply line, 6b is reference potential line, 6c, 6d are signal lines (non-power supply line) , 7, 7A, and 7B are cutting sections, 10, 10A, and 10B are switch sections (operation sections), and 100 is an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)

Abstract

本実施形態によれば、機器制御用の回路基板は、各種の処理を実行可能に構成されている処理部と、各種のデータを記憶可能に構成されている記憶部と、前記処理部と前記記憶部への電力供給用の電力供給線と、前記処理部と前記記憶部との間の信号伝送用の信号線と、前記電力供給線のうち前記記憶部への電力供給を行う部分、及び、前記信号線のうち少なくとの何れか一方を切断可能とする切断部と、前記電力供給線のうち前記切断部よりも前記記憶部側の部分及び前記信号線のうち前記切断部よりも前記記憶部側の部分のうち少なくとも何れか一方を外部に接続可能とする接続部と、を備える。

Description

回路基板、回路基板交換システム、回路基板交換方法
 本発明の実施形態は、例えば空気調和機のような冷凍サイクル装置等といった機器類に搭載される機器制御用の回路基板、機器制御用の回路基板を交換するための回路基板交換システム、機器制御用の回路基板を交換するための回路基板交換方法、であって、特に、各種設定を記憶したメモリが搭載された制御回路基板に関する。
 例えば特許文献1には、装置の交換の際に機能設定の移行を容易に行う方法が開示されている。特許文献1によれば、室内機は、不揮発性メモリに格納されている室内機の各種機能に関する設定情報をリモコンに送信する。リモコンは、受信した設定情報を回路基板上に取り付けられている不揮発性メモリに格納する。作業者は、室内機への電源供給を遮断して室内機を交換する。その交換後に室内機に電源が投入されると、室内機は、不揮発性メモリに自身の設定情報が登録されているかどうかを判断する。室内機は、不揮発性メモリに自身の設定情報が登録されていない場合には、リモコンの不揮発性メモリに格納されている室内機の設定情報を取得して自らの不揮発性メモリに登録する。
 また、特許文献2には、空調制御部、データ読み書き部、データ制御部、操作部を備える空気調和機が開示されている。特許文献2によれば、空調制御部は、運転情報及び操作設定情報に基づいて空調運転を制御する。データ読み書き部は、記憶媒体が着脱可能であり、空調運転中においては空調制御部から送出された運転情報及び操作設定情報を記憶媒体に書き込むことが可能であり、空調運転再起動時においては記憶媒体に保存された運転停止前の運転情報及び操作設定情報を読み出すことが可能である。データ制御部は、空調制御部から送出された運転情報及び操作設定情報をデータ読み書き部に受け渡して記憶媒体に書き込ませる。あるいは、データ制御部は、データ読み書き部が記憶媒体から読み出した運転停止前の運転情報及び操作設定情報を空調制御部に受け渡す。操作部は、空調運転の操作を行うための操作設定情報の入力が可能である。
国際公開第2008/065923号 特開2013-234763号公報
 特許文献1によれば、室内機の交換前における室内機のデータをリモコンに格納しておき、室内機の交換後において室内機側にデータが無い場合には、リモコンからデータを取得することができる。しかしながら、この機能を実現するためには、リモコン及び室内機に、このようなデータ転送機能を実現するための特別な構成を設ける必要があり、しかも、リモコン及び室内機について、それぞれ異なる構成を設ける必要がある。さらに室内機の回路基板そのもの、例えば回路基板上のCPU、CPUの周辺回路もしくはCPU等への電力を供給する電源回路が故障してしまうと、室内機のデータをリモコンに送信することができず、結局、データの移行が達成できない。
 特許文献2は、着脱可能な記憶媒体を使用する技術案を開示しているが、この場合には、制御部が搭載される回路基板に取り付けられた記憶媒体を取り外し可能にしておく必要がある。記憶媒体を半田付けすると取り外しが困難なため、回路基板上に記憶媒体を取り付け及び取り外し可能なソケット等の部品が必要となり、部品点数が増える。また、一般的な不揮発性メモリのような記憶媒体は基本的に1cm角程度の非常に小さなメモリチップであるため、回路基板からの取り外し、取り付けの際に破損してしまうおそれもあった。
 そこで、交換前及び交換後の基板を同一の構成として、不揮発性メモリのデータ移行の際に新旧の基板間でデータの移行を安全かつ速やかに実施できる回路基板、回路基板交換システム、回路基板交換方法を提供する。
 本実施形態に係る回路基板は、機器制御用の回路基板であって、各種の処理を実行可能に構成されている処理部と、各種のデータを記憶可能に構成されている記憶部と、前記処理部と前記記憶部への電力供給用の電力供給線と、前記処理部と前記記憶部との間の信号伝送用の信号線と、前記電力供給線のうち前記記憶部への電力供給を行う部分、及び、前記信号線を切断可能とする切断部と、前記電力供給線のうち前記切断部よりも前記記憶部側の部分及び前記信号線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、を備える。
 或いは、本実施形態に係る回路基板は、機器制御用の回路基板であって、各種の処理を実行可能に構成されている処理部と、各種のデータを記憶可能に構成されている記憶部と、前記処理部と前記記憶部への電力供給用の電力供給線と、前記電力供給線のうち前記記憶部への電力供給を行う部分を切断可能とする切断部と、前記電力供給線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、を備える。
 或いは、本実施形態に係る回路基板は、機器制御用の回路基板であって、各種の処理を実行可能に構成されている処理部と、各種のデータを記憶可能に構成されている記憶部と、前記処理部と前記記憶部との間の信号伝送用の信号線と、前記信号線を切断可能とする切断部と、前記信号線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、を備える。
 本実施形態に係る回路基板交換システムは、機器制御用の回路基板を交換するためのシステムであって、前記基板は、各種の処理を実行可能に構成されている処理部と、各種のデータを記憶可能に構成されている記憶部と、前記処理部と前記記憶部への電力供給用の電力供給線と、前記処理部と前記記憶部との間の信号伝送用の信号線と、前記電力供給線のうち前記記憶部への電力供給を行う部分、及び、前記信号線を切断可能とする切断部と、前記電力供給線のうち前記切断部よりも前記記憶部側の部分及び前記信号線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、を備え、交換前の前記基板において前記切断部により前記電力供給線のうち前記記憶部への電力供給を行う部分、及び、前記信号線が切断された状態で交換前の前記基板の記憶部が交換前の前記基板の接続部を介して交換後の前記基板の処理部に接続され、当該接続状態において、交換後の前記基板の処理部は、交換前の前記基板の記憶部に記憶されているデータを交換前の前記基板の接続部を介して読み込んで交換後の前記基板の記憶部に記憶するデータ転送処理を実行する。
 或いは、本実施形態に係る回路基板交換システムは、機器制御用の回路基板を交換するためのシステムであって、前記基板は、各種の処理を実行可能に構成されている処理部と、各種のデータを記憶可能に構成されている記憶部と、前記処理部と前記記憶部への電力供給用の電力供給線と、前記電力供給線のうち前記記憶部への電力供給を行う部分を切断可能とする切断部と、前記電力供給線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、を備え、交換前の前記基板において前記切断部により前記電力供給線のうち前記記憶部への電力供給を行う部分が切断された状態で交換前の前記基板の記憶部が交換前の前記基板の接続部を介して交換後の前記基板の処理部に接続され、当該接続状態において、交換後の前記基板の処理部は、交換前の前記基板の記憶部に記憶されているデータを交換前の前記基板の接続部を介して読み込んで交換後の前記基板の記憶部に記憶するデータ転送処理を実行する。
 或いは、本実施形態に係る回路基板交換システムは、機器制御用の回路基板を交換するためのシステムであって、前記基板は、各種の処理を実行可能に構成されている処理部と、各種のデータを記憶可能に構成されている記憶部と、前記処理部と前記記憶部との間の信号伝送用の信号線と、前記信号線を切断可能とする切断部と、前記信号線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、を備え、交換前の前記基板において前記切断部により前記信号線が切断された状態で交換前の前記基板の記憶部が交換前の前記基板の接続部を介して交換後の前記基板の処理部に接続され、当該接続状態において、交換後の前記基板の処理部は、交換前の前記基板の記憶部に記憶されているデータを交換前の前記基板の接続部を介して読み込んで交換後の前記基板の記憶部に記憶するデータ転送処理を実行する。
 本実施形態に係る回路基板交換方法は、機器制御用の回路基板を交換するための方法であって、前記基板は、各種の処理を実行可能に構成されている処理部と、各種のデータを記憶可能に構成されている記憶部と、前記処理部と前記記憶部への電力供給用の電力供給線と、前記処理部と前記記憶部との間の信号伝送用の信号線と、前記電力供給線のうち前記記憶部への電力供給を行う部分、及び、前記信号線を切断可能とする切断部と、前記電力供給線のうち前記切断部よりも前記記憶部側の部分及び前記信号線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、を備え、交換前の前記基板において前記切断部により前記電力供給線のうち前記記憶部への電力供給を行う部分、及び、前記信号線を切断した状態で交換前の前記基板の記憶部を交換前の前記基板の接続部を介して交換後の前記基板の処理部に接続し、当該接続状態において、交換後の前記基板の処理部により、交換前の前記基板の記憶部に記憶されているデータを交換前の前記基板の接続部を介して読み込んで交換後の前記基板の記憶部に記憶するデータ転送処理を実行する。
 或いは、本実施形態に係る回路基板交換方法は、機器制御用の回路基板を交換するための方法であって、前記基板は、各種の処理を実行可能に構成されている処理部と、各種のデータを記憶可能に構成されている記憶部と、前記処理部と前記記憶部への電力供給用の電力供給線と、前記電力供給線のうち前記記憶部への電力供給を行う部分を切断可能とする切断部と、前記電力供給線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、を備え、交換前の前記基板において前記切断部により前記電力供給線のうち前記記憶部への電力供給を行う部分を切断した状態で交換前の前記基板の記憶部を交換前の前記基板の接続部を介して交換後の前記基板の処理部に接続し、当該接続状態において、交換後の前記基板の処理部により、交換前の前記基板の記憶部に記憶されているデータを交換前の前記基板の接続部を介して読み込んで交換後の前記基板の記憶部に記憶するデータ転送処理を実行する。
 或いは、本実施形態に係る回路基板交換方法は、機器制御用の回路基板を交換するための方法であって、前記基板は、各種の処理を実行可能に構成されている処理部と、各種のデータを記憶可能に構成されている記憶部と、前記処理部と前記記憶部との間の信号伝送用の信号線と、前記信号線を切断可能とする切断部と、前記信号線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、を備え、交換前の前記基板において前記切断部により前記信号線を切断した状態で交換前の前記基板の記憶部を交換前の前記基板の接続部を介して交換後の前記基板の処理部に接続し、当該接続状態において、交換後の前記基板の処理部により、交換前の前記基板の記憶部に記憶されているデータを交換前の前記基板の接続部を介して読み込んで交換後の前記基板の記憶部に記憶するデータ転送処理を実行する。
第1実施形態に係る空気調和機の構成例を概略的に示す図 第1実施形態に係る回路基板の構成例を概略的に示す図 第1実施形態に係る回路基板における連結線部の具体的構成例を概略的に示す図 第1実施形態に係る回路基板交換システムが構築された状態例を概略的に示す図 第1実施形態に係る回路基板交換方法の一例を概略的に示すフローチャート 第2実施形態に係る回路基板交換方法の一例を概略的に示すフローチャート 第3実施形態に係る回路基板の構成例を概略的に示す図 第3実施形態に係る回路基板交換システムが構築された状態例を概略的に示す図 第4実施形態に係る回路基板の構成例を概略的に示す図 第4実施形態に係る回路基板交換システムが構築された状態例を概略的に示す図
 以下、機器制御用の回路基板として、空気調和機に搭載される回路基板を例とする複数の実施形態について図面を参照しながら説明する。さらに、その回路基板を交換するための回路基板交換システム及び回路基板交換方法に係る複数の実施形態について図面を参照しながら説明する。複数の実施形態において実質的に同一の要素には同一の符号を付して、その説明を省略する。
 (第1実施形態)
 図1に例示するように、本開示に係る回路基板1は、例えば空気調和機100を構成する室外機101に搭載されている。以下、回路基板1を単に基板1と称する場合がある。基板1は、室外機101、さらには空気調和機100全体の動作全般を制御する制御用回路基板である。室外機101は、室内機102とともに空気調和機100を構成している。室外機101は、商用交流電源ACに接続され、この商用交流電源ACから運転に必要な電力が供給されている。以下、商用交流電源ACを交流電源ACとも称する。室内機102は、室外機101からの電源ラインPLを介して同様に交流電源ACに接続されている。なお、室内機102にも、室外機101の回路基板1と連携して動作する制御用回路基板1´が搭載されている。室外機101の回路基板1は、室内機102の制御用回路基板1´と通信ラインCLによってつながっており、相互に情報をやり取りしながら空気調和機100全体の動作を制御する。
 図2に例示するように、基板1は、CPU2(Central Processing Unit)、不揮発性メモリ3、基本コネクタ4、特別コネクタ5、連結線部6、電源回路8を備えている。回路基板1上の各部品は、例えばプリント基板に半田付け等で電気的に接続されるように固着されている。CPU2は、図示しないROMやRAM及びその周辺回路等と組み合わされて処理部を構成する。CPU2は、ROMに記憶されている制御プログラム及び各種の設定データ等に基づいて、室外機101や室内機102の動作等に係る各種の処理を実行可能に構成されている。CPU2は、詳しくは後述するデータ転送処理を実行可能である。
 不揮発性メモリ3は、半導体からなる記憶部の一例であり、各種のデータを記憶可能に構成されている。なお、通常の運転処理を実行するための制御プログラムや一部の制御用データは、CPU2に接続されたROMに記憶される。不揮発性メモリ3には、室外機101や空気調和機100の各種機能に関する設定情報が記憶されている。ここで、記憶されている情報は、室外機101の出荷時におけるデフォルトの情報だけでなく、空気調和装置100を設置後に設置業者やサービスマンが、設置状態や使用者の要望に応じて追加したり変更したりした設定内容が保存されている。
 基本コネクタ4は、外部に接続可能に構成されている。基本コネクタ4は、例えば基板1外部からのデータ入力等を行うために、この種の基板1に半田付けされた6端子を備えた標準的なコネクタである。特別コネクタ5は、基本コネクタ4と同様に基板1に半田付けされた標準的な6端子コネクタであり、外部に接続可能に構成されている。特別コネクタ5は、接続部の一例であり、本開示に係る基板交換方法を実現するために、基本コネクタ4とは別個に特別に備えられたコネクタである。基本コネクタ4と特別コネクタ5は、部品の種類を減らすために、同一品を使用することが望ましい。
 連結線部6は、CPU2に不揮発性メモリ3及び特別コネクタ5を電気的に連結あるいは接続している。連結線部6の途中部には、切断部7が備えられている。不揮発性メモリ3及び特別コネクタ5は、連結線部6を構成する複数の連結線によりCPU2に接続されている。一方、基本コネクタ4は、連結線部6を構成する連結線とはいずれも電気的に接続されていない連結線群44によりCPU2に接続されている。ここで、連結線部6を構成する連結線のうち切断部7を除く部分は、主として回路基板1上の導電線パターンにより構成されており、場合によっては、その一部にリード線を用いてもよい。
 ここまで図2の概念的な回路ブロックを説明したが、回路構成を具現化した基板1を図3に例示する。電源回路8は、基板1上に設けられた2つのリセプタクル端子などの電源端子R及び交流電源ACにつながる2つのタブ端子Tを介して交流電源ACに接続される。電源回路8は、基板1上の回路パターンに半田付けされて相互に接続された各種電気・電子素子からなり、この交流電源ACからの交流電圧を入力として、これを降圧した直流電圧、例えばDC5ボルト(V)等の出力に変換する回路である。この電源回路8としては、整流回路とスイッチングレギュレータやシリーズレギュレータの組み合わせ等の一般的なAC-DC変換回路を用いることができる。CPU2や不揮発性メモリ3等の基板1上のすべての構成要素は、この電源回路8の直流出力を電源として動作する。
 連結線部6は、複数、この場合、4本の連結線により構成されている。この場合、連結線部6は、1本の電力供給線6a、1本の基準電位線6b、2本の信号線6c,6dを有している。電力供給線6aは、電源回路8から基板1上の各種の構成要素、特に、CPU2及び不揮発性メモリ3への電力供給用の配線である。基準電位線6bは、この回路基板1の基準電位、例えば、0ボルト(V)となる連結線である。信号線6c,6dは、データや信号を伝送するための連結線である。電力供給線6aと基準電位線6bとの間に電源回路8からの直流電圧、例えばDC5Vが印加されている。
 不揮発性メモリ3は、ポート[1]~[8]の8端子を備えている。そのうち2つの入出力ポート[5],[6]は、それぞれ信号線6c,6dに接続され、ポート[1]~[4]及び[7]は、基準電位線6bにつながり、ポート[8]が電力供給線6aにつながっている。したがって、不揮発性メモリ3は、連結線部6をなす電力供給線6a、基準電位線6b、信号線6c,6dのみで基板1上の他の回路に接続されており、連結線部6以外では、電源電圧安定化のために電力供給線6a途中の基板1上に設けられている抵抗rと、電力供給線6aと基準電位線6b間に接続されているキャパシタCの単純な素子、すなわち単独での故障の可能性が低い素子、を除き基板1上の回路とは接続されていない。
 不揮発性メモリ3は、電源ポートであるポート[7],[8]間に印加される電圧によって動作する。逆に言うと、不揮発性メモリ3は、電源ポート[7],[8]間に電圧が印加されない場合、動作することはない。但し、不揮発性メモリ3であることから、動作中に保存されたデータは、その後、電源電圧が途絶えても消去されることなく、保存されたままの状態を維持する。したがって、再度電源を入れれば、電源遮断前に不揮発性メモリ3に保存されたデータを読み出し可能である。そして、不揮発性メモリ3は、その入出力ポート[5],[6]を介して外部機器との間で電気信号をやり取りして、入力されたデータを保存したり、内部に保存しているデータを外部に提供したりすることができる。CPU2は、その制御において、不揮発性メモリ3の入出力ポート[5],[6]を介して保存が必要な情報を不揮発性メモリ3に書き込んだり、不揮発性メモリ3に保存されているデータを読み出したりする。
 切断部7は、複数、この場合、連結線部6を構成する連結線の数に応じて4本のジャンパ線7a~7dにより構成されている。ジャンパ線7a~7dは、その各々が基板1上で接続されていない2つの回路パターンを、基板1の上の空間を通って接続する配線である。ジャンパ線7a~7dは、被覆されていない、むき出し状態の電気的に導通する細い金属線である。ジャンパ線7aは、電力供給線6aの途中部、この場合、電力供給線6aのうち不揮発性メモリ3への電力供給を行う部分に設けられている。なお、電力供給線6aは、ジャンパ線7aよりも電源回路8側にある分岐部、つまり、図3において点Kで示す分岐部で分岐した配線によってCPU2に電力を供給している。ジャンパ線7bは、基準電位線6bの途中部に設けられている。ジャンパ線7cは、信号線6cの途中部に設けられている。ジャンパ線7dは、信号線6dの途中部に設けられている。後述するように故障した基板1における他の回路の影響を避けるために、ジャンパ線7a~7dは、それぞれ、連結線6a~6dのうち、極力、不揮発性メモリ3に近い部位に設けることが望ましい。ジャンパ線7a~7dのすべてを切断すれば、不揮発性メモリ3の8端子のすべて、すなわち、ポート[1]~[8]が、基板1上の能動素子/回路であるCPU2及び電源回路8から切り離され、これら基板1上の回路から不揮発性メモリ3への影響がなくなる。
 特別コネクタ5は[1]~[6]のピンを備える6端子のうち4端子が使用され、連結線部6におけるジャンパ線7a~7dに対して、不揮発性メモリ3側で分岐した連結線部6に接続される。すなわち、連結線部6は、CPU2側からジャンパ線7の先つまりジャンパ線7よりも不揮発性メモリ3側で2分岐し、その一方が不揮発性メモリ3につながり、他方が特別コネクタ5につながっている。例えば、この分岐部分から特別コネクタ5への接続配線は、基板1に設けられた導通パターンによって形成される。特別コネクタ5の[1],[4]ピンは、不使用となっており、[2]ピンは、基準電位線6bにつながり、[3]ピンは、電力供給線6aにつながり、[5],[6]ピンは、それぞれ信号線6c,6dに接続されている。
 連結線群44は、4本の独立した配線を備える。その配線のそれぞれは、1本の電力供給線4a、1本の基準電位線4b及び2本の信号線4c,4dからなる。電力供給線4aは、電力供給線6aと同様に電源回路8の直流出力端であるたとえばK点につながる。基準電位線4bは、基準電位線6bと同じように基板1の基準電位箇所につながる。2本の信号線4c,4dは、CPU2の入出力端子につながる。CPU2は、必要に応じてこの2本の信号線4c,4dを介して、不揮発性メモリ3に対するデータの読み出し、書き込み、消去が可能な電気信号の送受信が可能となっている。
 基本コネクタ4も、特別コネクタ5と同じように[1]~[6]ピンの6端子のうち4端子が使用され、[1],[4]ピンは、不使用となっている。基本コネクタ4の[2]ピンは、基準電位線4bに、[3]ピンは、電力供給線4aに、[5],[6]ピンは、それぞれCPU2から延びている信号線4c,4dにつながっている。
 基板1は、操作部及び表示部として機能するスイッチ部10を備えている。スイッチ部10は、例えば、タクトスイッチ11、表示器12、ロータリースイッチ13を備えている。タクトスイッチ11は、複数、この場合、3つ備えられており、作業者による押圧操作に応じてオン状態及びオフ状態が切り換わる。表示器12は、この場合、5つの7セグメント発光ダイオードにより構成されている。ロータリースイッチ13は、複数、この場合、3つ備えられており、作業者による回転操作に応じて入力値を調整することができる。ロータリースイッチ13の回転操作によって調整された入力値は、表示器12に表示される。
 以上のように構成される基板1は、空気調和機100に搭載され、例えばメンテナンス時や点検時あるいは何らかの不具合の発生時に交換される場合がある。最も発生頻度が高いのは、基板1の故障である。基板1には多数の電気部品や電子部品が搭載されており、そのうちの1つでも故障すると本来の正常な動作を行うことができなくなり、基板1の交換が必要となる。次に、このような場合における基板1の交換方法の一例について詳細に説明する。本開示において、空気調和機100に既に搭載されている交換前の基板1、及び、空気調和機100に新たに搭載される交換後の基板1は、何れも、上述した基板1の構成である。つまり、交換前の基板1及び交換後の基板1は、同じ回路構成である。なお、以後の基板1交換の説明において、室外機101そのものを交換する場合、すなわち元の室外機101を取り外して新しい室外機101に置き換える際に、元の室外機101の基板のデータを新らしい室外機101の基板に移し替える場合にも同様に適用が可能である。
 以下、説明の便宜上、交換前の基板1つまり旧基板1を基板1Aと称し、交換後の基板1つまり新基板1を基板1Bと称する場合がある。また、交換前の基板1Aが備えるCPU2、不揮発性メモリ3、基本コネクタ4、特別コネクタ5、連結線部6、切断部7、スイッチ部10を、それぞれCPU2A、不揮発性メモリ3A、基本コネクタ4A、特別コネクタ5A、連結線部6A、切断部7A、スイッチ部10Aと称する場合があり、交換後の基板1Bが備えるCPU2、不揮発性メモリ3、基本コネクタ4、特別コネクタ5、連結線部6、切断部7、スイッチ部10を、それぞれCPU2B、不揮発性メモリ3B、基本コネクタ4B、特別コネクタ5B、連結線部6B、切断部7B、スイッチ部10Bと称する場合がある。
 作業者は、仮に基板1に何らかの不具合が発生した場合には、設定データ等が保存されている旧基板1つまり不具合が発生した基板1を室外機101から取り外すとともに、電源端子Rから交流電源ACの配線を外す。そして、作業者は、不揮発性メモリ3に設定データ等が保存されていない新たな基板1を新基板1として室外機101の所定位置に取り付け、交流電源ACの配線を電源端子Rに接続する。続いて、作業者は、旧基板1の切断部7を切断する。
 切断部7の切断操作は、基板1の上にあるジャンパ線7a~7dの全て或いは所定の何れかを例えばニッパ等の工具により切断するという外部からの操作により行われる。このとき、作業者は、全てのジャンパ線7a~7dを切断してもよいし、ジャンパ線7a~7dのうちジャンパ線7aのみを切断してもよいし、ジャンパ線7a~7dのうちジャンパ線7c,7dのみを切断してもよい。ただし、ジャンパ線7a~7dのうちジャンパ線7aのみを切断すると、電力供給線6aにつながっている基板1上の部品の対地電位が不安定になる。そのため、ジャンパ線7aを切断する場合、同時にジャンパ線7bもセットで切断することが望ましい。なお、旧基板1の切断部7を切断する作業と新基板1を室外機101の所定位置に取り付ける作業は、その順序を問わない。
 切断部7は、全てのジャンパ線7a~7dが外部から切断されることにより、電力供給線6a、基準電位線6b、及び、信号線6c,6dが切断された状態を形成する。或いは、切断部7は、ジャンパ線7aのみ、もしくは、ジャンパ線7a及び7bが外部から切断されることにより、電力供給線6aのうち不揮発性メモリ3への電力供給を行う部分のみが切断された状態を形成する。或いは、切断部7は、ジャンパ線7c,7dのみが外部から切断されることにより、CPU2Aにつながる信号線6c,6dのみが切断された状態を形成する。
 以上の3種類の切断部7におけるジャンパ線7a~7dの選択的な切断状態、すなわち、
(1)電力供給線6a、基準電位線6b及び信号線6c,6dのすべてが切断された状態、
(2)電力供給線6aのみ、もしくは、電力供給線6a及び基準電位線6bの両方のみが切断された状態、
(3)信号線6c,6dのみが切断された状態
のいずれもが「切断部7が切断された状態」の概念に含まれる。
 以下、図面においては、「切断されていない状態」の切断部7を実線で示し、「切断された状態」の切断部7を空間で示す。
 図4に例示するように、作業者は、交換前の基板1Aにおいて切断部7Aを切断する。このとき、作業者は、交換後の基板1Bについては切断部7Bを切断しない。そして、作業者は、交換前の基板1Aの切断部7Aを切断した状態で、当該基板1Aの不揮発性メモリ3Aを交換前の基板1Aの特別コネクタ5A及び交換後の基板1Bの基本コネクタ4Bを介して交換後の基板1BのCPU2Bに接続する。これにより、交換前の基板1Aと交換後の基板1Bとがデータ転送可能に接続された回路基板交換システム1Sが構築される。このとき、基板1Aの特別コネクタ5Aと基板1Bの基本コネクタ4Bとの間の接続には、例えばハーネス20等といった有線ケーブルの渡り配線を用いることができる。
 交換前の基板1Aの特別コネクタ5Aと交換後の基板1Bの基本コネクタ4Bの接続においては、各々のコネクタのピン番号が一致するように接続される。すなわち、例えば、基板1Aの特別コネクタ5Aの[2]ピンは、交換後の基板1Bの基本コネクタ4Bの[2]ピンに渡り配線によって有線接続される。
 本回路基板交換システム1Sにおいては、交流電源ACからの直接的な電力供給は、交換後の基板1Bに対して行われ、交換前の基板1Aに対しては行われない。このため、交換前の基板1Aの不揮発性メモリ3Aへの電力供給は、基板1Aの特別コネクタ5Aの[2],[3]ピンと接続されている基板1Bの基本コネクタ4Bの[2],[3]ピンを介して交流電源ACからの電力が供給されている交換後の基板1Bから間接的に行われる。すなわち、交換後の基板1Bが交流電源ACに接続されると、その電源回路8Bからの直流出力が基本コネクタ4Bの[3]ピンを介して、交換前の基板1Aの特別コネクタ5Aの[3]ピンにつながり、その先で基板1Aの電力供給線6aに流れ、不揮発性メモリ3Aに電力が供給される。
 同様に基板1Bの基本コネクタ4Bの[2]ピンと、交換前の基板1Aの特別コネクタ5Aの[2]ピンが電気的に接続されるため、基板1Bと基板1Aの双方の基準電位が同レベルとなる。この結果、交換前の基板1Aの不揮発性メモリ3Aが正常に動作可能となる。
 そして、当該接続状態において、作業者は、交換後の基板1Bに備えられているスイッチ部10Bに対し所定の操作を行う。所定の操作は、例えば、ロータリースイッチ13を回転操作して基板交換用モードを選択し、この基板交換用モードのコード番号が表示器12に表示されている状態でタクトスイッチ11を押圧する操作等が考えられる。
 そして、このような所定の操作がスイッチ部10Bに対し行われると、交換後の基板1BのCPU2Bは、データ転送処理を開始する。データ転送処理は、交換後の基板1BのCPU2Bにより、交換前の基板1Aの不揮発性メモリ3Aに記憶されているデータを、基板1Aの特別コネクタ5A及び基板1Bの基本コネクタ4Bを介して読み込んで、交換後の基板1Bの不揮発性メモリ3Bに記憶する処理、いわゆるコピー処理である。
 この際のデータ、すなわち電気信号の流通路を説明すると、CPU2Bは、基板1Bの2本の信号線4c,4dを介して信号を送受信する。基板1Bの信号線4c,4dを流れる信号は、基板1Bの基本コネクタ4Bの[5],[6]ピン及び、このピンに接続されている特別コネクタ5Aの[5],[6]ピンを経由し、基板1Aの信号線6c,6dに至り、不揮発性メモリ3Aにつながる。よって、CPU2Bは、基本コネクタ4B、特別コネクタ5Aを経由して不揮発性メモリ3Aに保存されているすべてのデータや情報を吸い上げることができる。そして、CPU2Bは、基板1Aから吸い上げたデータや情報を連結線部6Bを通じて自らの基板1Bの不揮発性メモリ3Bに保存する。
 このようなデータ転送処理によれば、交換前の基板1Aの不揮発性メモリ3Aに格納されている各種のデータを、当該基板1Aに残したまま、交換後の基板1Bの不揮発性メモリ3Bに複製することができる。なお、不揮発性メモリ3Aには、機器設定に関するデータ以外にも、例えば故障履歴データ等の様々なデータも保存することができる。このような故障履歴データについては、新たな基板1Bへの複製は、不要な場合が多い。このため、データコピーの際にCPU2Bが必要なデータを取捨選択して、必要なデータのみを不揮発性メモリ3Aから不揮発性メモリ3Bに複製しても良い。
 次に、上述した基板1の交換システム1S及び基板1の交換方法に基づく制御フローの一例について詳細に説明する。図5に例示するように、交換後の基板1BのCPU2Bは、当該基板1Bに電源が投入されると、交換前の基板1Aの不揮発性メモリ3Aから交換後の基板1Bの不揮発性メモリ3Bへのデータの転送が完了していないデータ転送未完状態であるか否かを確認する(S1)。即ち、CPU2Bは、基板1Bの不揮発性メモリ3Bに必要なデータが格納されていないデータ不足状態であるか否か、及び、詳しくは後述するコピー中フラグがオン状態であるか否か、を確認する。なお、データ不足状態であるか否かは、例えば、所定の複数のデータ項目にデータが格納されているか否かを確認することに基づいて判断することができる。ここで、コピー中フラグがオン状態の場合は、不揮発性メモリ3Aから不揮発性メモリ3Bへのデータのコピー処理が途中であることを意味し、コピー中フラグがオフ状態の場合は、不揮発性メモリ3Aから不揮発性メモリ3Bへのデータのコピー処理の途中ではないことを意味する。
 CPU2Bは、データ不足状態ではない場合かつコピー中フラグがオフ状態である場合には、データ転送未完状態ではないと判断する(S1:NO)。そして、CPU2Bは、通常起動して(S2)、制御プログラム及び不揮発性メモリ3Bに格納されている各種のデータ等に基づいて空気調和機100の動作、この場合、主として室外機101の動作を制御する。
 CPU2Bは、データ不足状態である場合またはコピー中フラグがオン状態である場合には、データ転送未完状態であると判断する(S1:YES)。そして、CPU2Bは、スイッチ部10Bにおいて所定の操作が行われるまで待機する(S3:NO)。そして、CPU2Bは、スイッチ部10Bにおいて所定の操作が行われると(S3:YES)、コピー中フラグをオン状態に切り替える(S4)。
 そして、CPU2Bは、データ転送処理を開始して(S5)、基板1Aの不揮発性メモリ3Aからのデータの読み込み、基板1Bの不揮発性メモリ3Bへのデータの書き込み、不揮発性メモリ3Bに書き込んだデータの検証を繰り返す。そして、CPU2Bは、基板1Aの不揮発性メモリ3Aに格納されている全てのデータについて、基板1Bの不揮発性メモリ3Bへの書き込み及び検証を完了すると(S6:YES)、コピー中フラグをオフ状態に切り替えて(S7)、この制御フローを終了する。そして、この制御フローが終了した後、作業者は、基板1Bへの電源投入をオフすることが望ましい。
 仮にデータ転送処理の完了(S6:YES)に引き続いて通常起動(S2)に移行する制御フローを想定すると、例えば、基板1Aと基板1Bとがハーネス20等によって接続された状態のまま空気調和機100が作動したり、電源供給等の安全性が確保されていない状態のまま空気調和機100が作動したりするおそれがあり好ましくない。よって、上述した制御フローが終了した場合には、つまり、データ転送処理が完了した場合には、作業者は、いったん基板1Bへの電源投入をオフすることが望ましい。これにより、基板1Bに新たに電源投入がされない限り、基板1Bが意図せず通常起動してしまうことを回避することができる。
 電源投入がオフされた後において、再び基板1Bに電源が投入されると、CPU2Bは、データ転送未完状態であるか否かを確認する(S1)。このとき、基板1Bの不揮発性メモリ3Bには必要なデータが格納されており、且つ、コピー中フラグがオフ状態であることから、CPU2Bは、ステップS1にてデータ転送未完状態ではない(S1:NO)と判断し、ステップS2に移行して通常起動を開始する。
 以上に例示した実施形態によれば、空気調和機100に搭載される基板1は、各種の処理を実行可能に構成されているCPU2と、各種のデータを記憶可能に構成されている不揮発性メモリ3と、外部に接続可能に構成されている特別コネクタ5と、CPU2に不揮発性メモリ3及び特別コネクタ5を連結する連結線部6と、連結線部6のうちCPU2と不揮発性メモリ3とを連結する部分を切断することにより、CPU2と不揮発性メモリ3とが切り離され、且つ、不揮発性メモリ3に特別コネクタ5のみが連結された交換用形態を形成する切断部7と、を備えている。
 切断部7は、複数のジャンパ線7a~7dのうちジャンパ線7aのみが切断されることにより電力供給線6aのうち不揮発性メモリ3への電力供給を行う部分のみを切断することができる。或いは、切断部7は、複数のジャンパ線7a~7dのうちジャンパ線7c,7dのみが切断されることにより信号線6c,6dのみを切断することができる。
 このように構成される基板1によれば、交換前の基板1Aにおいて切断部7Aの複数のジャンパ線7a~7dを適宜選択して切断した状態で交換前の基板1Aの不揮発性メモリ3Aを特別コネクタ5A、ハーネス20等の配線、基本コネクタ4Bを介して交換後の基板1BのCPU2Bに接続し、当該接続状態において、交換後の基板1BのCPU2Bにより、交換前の基板1Aの不揮発性メモリ3Aに記憶されているデータを交換前の基板1Aの特別コネクタ5Aを介して読み込んで交換後の基板1Bの不揮発性メモリ3Bに記憶するデータ転送処理を実行することができる。
 この構成例によれば、交換前の基板1A及び交換後の基板1Bを同一の構成として、不揮発性メモリ3Aから不揮発性メモリ3Bへのデータ移行の際に新旧の基板1A,1B間でデータの移行を安全かつ速やかに実施できる。そして、新旧の基板1A,1Bを同一の構成とすることで、部品の種類を減らすことができる。2つの基板1A,1B間でデータを移行させる際に必要なのは、2つのコネクタ間を接続するための渡り配線のみであり、特殊な工具を必要としない。また、特別コネクタ5と基本コネクタ4は、単体として同一構成のコネクタを使用しているため、2つのコネクタ間を接続するための配線には接続の方向性がなく、接続ミスが発生しない。また、交換後の基板1Bにデータを転送した後においても交換前の基板1Aにデータを残すこともでき、例えば後日の故障原因の究明時等に、保存されているデータを活用することもできる。
 切断部7は、基板1上の2か所以上のパターン間を電気的に接続するジャンパ線で構成されている。よって、切断部7を安価に実現することができる。ジャンパ線は、いったん切断すると、もとの接続状態に復帰させることが困難あるいは不可能である。そのため、切断部7は、例えばDIPスイッチであってもよい。DIPスイッチによれば、仮に誤って切断つまり切離してしまった場合であっても、もとの接続状態に容易に復帰させることができる。
 切断部7は、4本の連結線6a~6dからなる連結線部6のうち少なくとも不揮発性メモリ3への電力供給を行う部分、すなわち電力供給線6aのうちジャンパ線7aよりも不揮発性メモリ3側の部分のみ、もしくは、電力供給線6aのうちジャンパ線7aよりも不揮発性メモリ3側の部分及び基準電位線6bを切断可能な構成であればよい。これにより、交換作業の際の交換前の基板1Aから交換後の基板1Bへのデータ転送前、データ転送中、データ転送後において、交換後の基板1Bから交換前の基板1AのCPU2Aに電力が供給されてしまうことを回避することができ、交換前の基板1AのCPU2Aが意図せず動作してしまい、データ転送に悪影響を与えることを防止できる。なお、交換前の基板1Aにおいて電力供給線6aのうち不揮発性メモリ3への電力供給を行う部分を切断しても、この不揮発性メモリ3Aには、特別コネクタ5Aの端子[6]ピン、通常コネクタ4Bの端子[6]ピンを介して交換後の基板1Bから電力を供給できる。
 或いは、切断部7は、連結線部6のうち少なくとも信号線6c,6dを切断可能な構成としてもよい。この構成によれば、仮に交換後の基板1Bから交換前の基板1AのCPU2Aに電力が供給されたとしても、基板1AにおいてCPU2Aから不揮発性メモリ3Aに対して信号が伝達されてしまうことを阻止することができる。そのため、交換後の基板1BのCPU2Bは、交換前の基板1AのCPU1Aに阻害されることなく、交換前の基板1Aの不揮発性メモリ3Aとの間でデータのやり取りを行うことができる。
 或いは、切断部7は、基準電位線6bを含まない構成としてもよい。これにより、交換後の基板1Bから交換前の基板1Aに電力を供給する際に、基板1Aを基準電位あるいは接地電位に維持することができる。
 一般に基板1Aを交換せざるを得なくなる故障原因には様々なケースがある。例えば、CPU1Aが動作しなくなったり、電源回路8Aの回路や配線が経年変化により断線したり、短絡したりするなどの種々の状況が考えられる。このため、不揮発性メモリ3Aから不揮発性メモリ3Bへのデータの移行つまり複写を最も安全に実施するには、基板1A上の回路や基板1A上のパターンつまり通電路は極力使用しないことが望ましく、仮に使用するとしても、その使用は必要最低限の範囲にとどめるとよい。
 このような観点からは、切断部7は、連結線部6に含まれる連結線、すなわち電力供給線6a、基準電位線6b及び信号線6c,6dのすべてを切断することが最も好ましい。これにより、不揮発性メモリ3の持つ端子のすべてが電源回路8、CPU2及びその周辺回路から電気的に切り離される。したがって、基板1A上の様々な個所で故障が発生しているとしても、その故障の影響を受けることを最大限回避でき、不揮発性メモリ3と特別コネクタ5とが連結された交換用形態を確実に形成することができる。
 交換後の基板1BのCPU2Bは、交換後の基板1Bに備えられているスイッチ部10Bが操作されるとデータ転送処理、すなわち不揮発性メモリ3Aからのデータ読み出し、そのデータの不揮発性メモリ3Bへの書き込みを開始する。この構成例によれば、作業者による意図的なスイッチ部10Bの操作に基づいてデータ転送処理を開始することができ、作業者の意図に反してデータ転送処理が開始されてしまうことを抑制できる。
 (第2実施形態)
 第1実施形態では、データの転送処理の開始を作業者による手動操作に基づき実施したが、作業者による操作をなくして迅速に実施させたい場合もある。そこで、図6に例示する制御フローによれば、交換後の基板1BのCPU2Bは、当該基板1Bに電源が投入されている電源投入状態であり、且つ、交換前の基板1Aの不揮発性メモリ3Aから交換後の基板1Bの不揮発性メモリ3Bへのデータの転送が完了していないデータ転送未完状態である場合(S1:YES)には、交換前の基板1Aにおいて切断部7Aにより交換用形態が形成された状態で交換前の基板1Aの不揮発性メモリ3Aが交換前の基板1Aの特別コネクタ5Aを介して交換後の基板1BのCPU2Bに接続されると、つまり、回路基板交換システム1Sが構築されると、スイッチ部10Bにおいて所定の操作が行われたか否かに関わらず、交換後の基板1BのCPU2Bにより、コピー中フラグをオン状態に切り替え(S4)、その後、データ転送処理を開始する(S5)。
 この制御例によれば、作業者によるスイッチ部10Bの操作を要しなくとも、所定の条件が満たされることに応じて、この場合、回路基板交換システム1Sが構築されることに応じて、データ転送処理を自動的に開始することができる。これにより、基板1の交換に伴う作業者の作業負担を軽減することができる。
 (第3実施形態)
 図7に例示する基板1は、基本コネクタ4を備えていない。基板1によれば、不揮発性メモリ3は、アドレス切替スイッチ30を備えている。アドレス切替スイッチ30は、スイッチを開閉させることにより不揮発性メモリ3をオープン状態およびグランド状態に切り替え可能に構成されている。アドレス切替スイッチ30は、不揮発性メモリ3をオープン状態およびグランド状態に切り替えることにより、当該不揮発性メモリ3のアドレスを切り替えることができる。
 図8には、不揮発性メモリ3にアドレス切替スイッチ30を備えた2つの基板1A,1Bを接続することにより回路基板交換システム1Sを構築した状態を例示している。この場合、交換前の基板1Aにおいては、不揮発性メモリ3Aは、アドレス切替スイッチ30Aによりオープン状態に切り替えられており、これにより、不揮発性メモリ3Aのアドレスは、所定の第1アドレスに切り替えられている。一方、交換後の基板1Bにおいては、不揮発性メモリ3Bは、アドレス切替スイッチ30Bによりグランド状態に切り替えられており、これにより、不揮発性メモリ3Bのアドレスは、所定の第2アドレスに切り替えられている。
 回路基板交換システム1Sにおいて、交換後の基板1BのCPU2Bには、2つの不揮発性メモリ3A,3Bが接続されている。これら2つの不揮発性メモリ3A,3Bのアドレスは、アドレス切替スイッチ30A,30Bにより、それぞれ異なるアドレスに切り替えられている。よって、基板1BのCPU2Bは、2つの不揮発性メモリ3A,3Bを、それぞれ混同することなく識別することができる。また、この構成例によれば、基本コネクタ4を不要として特別コネクタ5のみを備えておけばよい。このため、基板1に実装するコネクタの数を減らすことができ、基板1の構成の簡素化を図ることができる。
 (第4実施形態)
 図9に例示する基板1は、基本コネクタ4を備えていない。基板1によれば、連結線部6は、CPU2と不揮発性メモリ3とを連結する連結ライン40、CPU2と特別コネクタ5とを連結する連結ライン41、不揮発性メモリ3と特別コネクタ5とを連結する連結ライン42を備えている。連結ライン40,41,42は、それぞれ電力供給線や信号線などといった連結線を含む。基板1によれば、連結ライン40,41,42に、それぞれ切断部7を備えている。
 図10には、連結ライン40,41,42にそれぞれ切断部7を備えた2つの基板1A,1Bを接続することにより回路基板交換システム1Sを構築した状態を例示している。この場合、交換前の基板1Aにおいては、連結ライン40A,41Aは切断部7Aにより切断され、連結ライン42Aは切断部7Aにより切断されておらず連結された状態となっている。一方、交換後の基板1Bにおいては、連結ライン42Bは切断部7Bにより切断され、連結ライン40B,41Bは切断部7Bにより切断されておらず連結された状態となっている。
 このように構成される回路基板交換システム1Sによれば、交換後の基板1BのCPU2Bは、交換前の基板1Aの不揮発性メモリ3Aに記憶されているデータを、基板1Aの特別コネクタ5A及び基板1Bの特別コネクタ5Bを介して読み込んで、交換後の基板1Bの不揮発性メモリ3Bに記憶することができる。また、この構成例によれば、基本コネクタ4を不要とすることができる。これにより、基板1に実装するコネクタの数を減らすことができ、基板1の構成の簡素化を図ることができる。
 (その他の実施形態)
 本開示は、上述した複数の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において、適宜、変形や拡張を行うことができる。例えば、上述した複数の実施形態は、適宜、組み合わせて実施することができる。基板1は、例えば室内機102に搭載される基板であってもよく、さらには空気調和機以外の機器に搭載される基板でも良い。交換前の基板1Aと交換後の基板1Bは、同一品であることが望ましいが、少なくとも、本開示の要部に係る部分が同じ構成であればよく、本開示の要部ではない部分については異なる構成であってもよい。
 以上、本発明に係る複数の実施形態を説明したが、これらの実施形態は、あくまでも例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲において、種々の省略、置き換え、変更、複数の実施形態間での適宜部分組合せや置き換え等の変形を行うことができる。本実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明及びその均等の範囲に含まれる。
 図面において、1は基板(回路基板)、1Sは回路基板交換システム、2,2A,2BはCPU(処理部)、3,3A,3Bは不揮発性メモリ(記憶部)、4,4A,4Bは基本コネクタ、5,5A,5Bは特別コネクタ(接続部)、6,6A,6Bは連結線部、6aは電力供給線、6bは基準電位線、6c,6dは信号線(非電力供給線)、7,7A,7Bは切断部、10,10A,10Bはスイッチ部(操作部)、100は空気調和機を示す。

Claims (19)

  1.  機器制御用の回路基板であって、
     各種の処理を実行可能に構成されている処理部と、
     各種のデータを記憶可能に構成されている記憶部と、
     前記処理部と前記記憶部への電力供給用の電力供給線と、
     前記処理部と前記記憶部との間の信号伝送用の信号線と、
     前記電力供給線のうち前記記憶部への電力供給を行う部分、及び、前記信号線を切断可能とする切断部と、
     前記電力供給線のうち前記切断部よりも前記記憶部側の部分及び前記信号線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、
    を備える回路基板。
  2.  機器制御用の回路基板であって、
     各種の処理を実行可能に構成されている処理部と、
     各種のデータを記憶可能に構成されている記憶部と、
     前記処理部と前記記憶部への電力供給用の電力供給線と、
     前記電力供給線のうち前記記憶部への電力供給を行う部分を切断可能とする切断部と、
     前記電力供給線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、
    を備える回路基板。
  3.  機器制御用の回路基板であって、
     各種の処理を実行可能に構成されている処理部と、
     各種のデータを記憶可能に構成されている記憶部と、
     前記処理部と前記記憶部との間の信号伝送用の信号線と、
     前記信号線を切断可能とする切断部と、
     前記信号線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、
    を備える回路基板。
  4.  前記切断部は、ジャンパ線である請求項1から3の何れか1項に記載の回路基板。
  5.  前記電力供給線は、前記処理部と前記接続部とを連結する部分及び前記記憶部と前記接続部とを連結する部分を有するとともに、前記処理部と前記接続部とを連結する部分に前記切断部を備え、
     前記信号線は、前記処理部と前記接続部とを連結する部分及び前記記憶部と前記接続部とを連結する部分を有するとともに、前記処理部と前記接続部とを連結する部分に前記切断部を備える請求項1に記載の回路基板。
  6.  前記記憶部は、複数の接続端子を備えた不揮発性メモリであって、これらの接続端子のすべてが前記切断部によって切断可能となっている請求項1から3の何れか1項に記載の回路基板。
  7.  前記接続部として、前記回路基板上に取り付けられている外部と接続可能なコネクタを備えた請求項1から3の何れか1項に記載の回路基板。
  8.  交流電源が接続され、前記電力供給線に電力を供給する電源回路を備えた請求項1から3の何れか1項に記載の回路基板。
  9.  機器制御用の回路基板を交換するためのシステムであって、
     前記基板は、
     各種の処理を実行可能に構成されている処理部と、
     各種のデータを記憶可能に構成されている記憶部と、
     前記処理部と前記記憶部への電力供給用の電力供給線と、
     前記処理部と前記記憶部との間の信号伝送用の信号線と、
     前記電力供給線のうち前記記憶部への電力供給を行う部分、及び、前記信号線を切断可能とする切断部と、
     前記電力供給線のうち前記切断部よりも前記記憶部側の部分及び前記信号線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、
    を備え、
     交換前の前記基板において前記切断部により前記電力供給線のうち前記記憶部への電力供給を行う部分、及び、前記信号線が切断された状態で交換前の前記基板の記憶部が交換前の前記基板の接続部を介して交換後の前記基板の処理部に接続され、当該接続状態において、交換後の前記基板の処理部は、交換前の前記基板の記憶部に記憶されているデータを交換前の前記基板の接続部を介して読み込んで交換後の前記基板の記憶部に記憶するデータ転送処理を実行する回路基板交換システム。
  10.  機器制御用の回路基板を交換するためのシステムであって、
     前記基板は、
     各種の処理を実行可能に構成されている処理部と、
     各種のデータを記憶可能に構成されている記憶部と、
     前記処理部と前記記憶部への電力供給用の電力供給線と、
     前記電力供給線のうち前記記憶部への電力供給を行う部分を切断可能とする切断部と、
     前記電力供給線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、
    を備え、
     交換前の前記基板において前記切断部により前記電力供給線のうち前記記憶部への電力供給を行う部分が切断された状態で交換前の前記基板の記憶部が交換前の前記基板の接続部を介して交換後の前記基板の処理部に接続され、当該接続状態において、交換後の前記基板の処理部は、交換前の前記基板の記憶部に記憶されているデータを交換前の前記基板の接続部を介して読み込んで交換後の前記基板の記憶部に記憶するデータ転送処理を実行する回路基板交換システム。
  11.  機器制御用の回路基板を交換するためのシステムであって、
     前記基板は、
     各種の処理を実行可能に構成されている処理部と、
     各種のデータを記憶可能に構成されている記憶部と、
     前記処理部と前記記憶部との間の信号伝送用の信号線と、
     前記信号線を切断可能とする切断部と、
     前記信号線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、
    を備え、
     交換前の前記基板において前記切断部により前記信号線が切断された状態で交換前の前記基板の記憶部が交換前の前記基板の接続部を介して交換後の前記基板の処理部に接続され、当該接続状態において、交換後の前記基板の処理部は、交換前の前記基板の記憶部に記憶されているデータを交換前の前記基板の接続部を介して読み込んで交換後の前記基板の記憶部に記憶するデータ転送処理を実行する回路基板交換システム。
  12.  交換後の前記基板の処理部は、交換後の前記基板に備えられている操作部が操作されると前記データ転送処理を開始する請求項9から11の何れか1項に記載の回路基板交換システム。
  13.  交換後の前記基板の処理部は、交換後の前記基板に電源が投入されている電源投入状態であり、且つ、交換前の前記基板の記憶部から交換後の前記基板の記憶部へのデータの転送が完了していないデータ転送未完状態である場合には、交換前の前記基板において前記切断部が切断された状態で交換前の前記基板の記憶部が交換前の前記基板の接続部を介して交換後の前記基板の処理部に接続されると前記データ転送処理を開始する請求項9から11の何れか1項に記載の回路基板交換システム。
  14.  前記電力供給線は、前記処理部と前記接続部とを連結する部分及び前記記憶部と前記接続部とを連結する部分を有するとともに、前記処理部と前記接続部とを連結する部分に前記切断部を備え、
     前記信号線は、前記処理部と前記接続部とを連結する部分及び前記記憶部と前記接続部とを連結する部分を有するとともに、前記処理部と前記接続部とを連結する部分に前記切断部を備える請求項9に記載の回路基板交換システム。
  15.  機器制御用の回路基板を交換するための方法であって、
     前記基板は、
     各種の処理を実行可能に構成されている処理部と、
     各種のデータを記憶可能に構成されている記憶部と、
     前記処理部と前記記憶部への電力供給用の電力供給線と、
     前記処理部と前記記憶部との間の信号伝送用の信号線と、
     前記電力供給線のうち前記記憶部への電力供給を行う部分、及び、前記信号線を切断可能とする切断部と、
     前記電力供給線のうち前記切断部よりも前記記憶部側の部分及び前記信号線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、
    を備え、
     交換前の前記基板において前記切断部により前記電力供給線のうち前記記憶部への電力供給を行う部分、及び、前記信号線を切断した状態で交換前の前記基板の記憶部を交換前の前記基板の接続部を介して交換後の前記基板の処理部に接続し、当該接続状態において、交換後の前記基板の処理部により、交換前の前記基板の記憶部に記憶されているデータを交換前の前記基板の接続部を介して読み込んで交換後の前記基板の記憶部に記憶するデータ転送処理を実行する回路基板交換方法。
  16.  機器制御用の回路基板を交換するための方法であって、
     前記基板は、
     各種の処理を実行可能に構成されている処理部と、
     各種のデータを記憶可能に構成されている記憶部と、
     前記処理部と前記記憶部への電力供給用の電力供給線と、
     前記電力供給線のうち前記記憶部への電力供給を行う部分を切断可能とする切断部と、
     前記電力供給線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、
    を備え、
     交換前の前記基板において前記切断部により前記電力供給線のうち前記記憶部への電力供給を行う部分を切断した状態で交換前の前記基板の記憶部を交換前の前記基板の接続部を介して交換後の前記基板の処理部に接続し、当該接続状態において、交換後の前記基板の処理部により、交換前の前記基板の記憶部に記憶されているデータを交換前の前記基板の接続部を介して読み込んで交換後の前記基板の記憶部に記憶するデータ転送処理を実行する回路基板交換方法。
  17.  機器制御用の回路基板を交換するための方法であって、
     前記基板は、
     各種の処理を実行可能に構成されている処理部と、
     各種のデータを記憶可能に構成されている記憶部と、
     前記処理部と前記記憶部との間の信号伝送用の信号線と、
     前記信号線を切断可能とする切断部と、
     前記信号線のうち前記切断部よりも前記記憶部側の部分を外部に接続可能とする接続部と、
    を備え、
     交換前の前記基板において前記切断部により前記信号線を切断した状態で交換前の前記基板の記憶部を交換前の前記基板の接続部を介して交換後の前記基板の処理部に接続し、当該接続状態において、交換後の前記基板の処理部により、交換前の前記基板の記憶部に記憶されているデータを交換前の前記基板の接続部を介して読み込んで交換後の前記基板の記憶部に記憶するデータ転送処理を実行する回路基板交換方法。
  18.  交換後の前記基板に備えられている操作部が操作されると、交換後の前記基板の処理部により前記データ転送処理を開始する請求項15から17の何れか1項に記載の回路基板交換方法。
  19.  交換後の前記基板に電源が投入されている電源投入状態であり、且つ、交換前の前記基板の記憶部から交換後の前記基板の記憶部へのデータの転送が完了していないデータ転送未完状態である場合には、交換前の前記基板において前記切断部を切断した状態で交換前の前記基板の記憶部を交換前の前記基板の接続部を介して交換後の前記基板の処理部に接続すると、交換後の前記基板の処理部により前記データ転送処理を開始する請求項15から17の何れか1項に記載の回路基板交換方法。
PCT/JP2022/031400 2022-08-19 2022-08-19 回路基板、回路基板交換システム、回路基板交換方法 WO2024038585A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031400 WO2024038585A1 (ja) 2022-08-19 2022-08-19 回路基板、回路基板交換システム、回路基板交換方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031400 WO2024038585A1 (ja) 2022-08-19 2022-08-19 回路基板、回路基板交換システム、回路基板交換方法

Publications (1)

Publication Number Publication Date
WO2024038585A1 true WO2024038585A1 (ja) 2024-02-22

Family

ID=89941636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031400 WO2024038585A1 (ja) 2022-08-19 2022-08-19 回路基板、回路基板交換システム、回路基板交換方法

Country Status (1)

Country Link
WO (1) WO2024038585A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188803A (ja) * 2003-12-25 2005-07-14 Toshiba Kyaria Kk 電気機器制御装置
JP2005321949A (ja) * 2004-05-07 2005-11-17 Seiko Epson Corp コンピュータの起動方法、起動装置およびコンピュータシステム
JP2021018030A (ja) * 2019-07-22 2021-02-15 シャープ株式会社 空気調和機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188803A (ja) * 2003-12-25 2005-07-14 Toshiba Kyaria Kk 電気機器制御装置
JP2005321949A (ja) * 2004-05-07 2005-11-17 Seiko Epson Corp コンピュータの起動方法、起動装置およびコンピュータシステム
JP2021018030A (ja) * 2019-07-22 2021-02-15 シャープ株式会社 空気調和機

Similar Documents

Publication Publication Date Title
US7562164B2 (en) Remote terminal apparatus for programmable controller
JP4835842B2 (ja) ビルディングブロック型のセーフティ・コントローラにおけるioユニット
JP5225838B2 (ja) 機械の駆動制御部からの、また、機械の駆動制御部用のデータと同一化されたデータを有するメモリ
US20090128080A1 (en) System and method for controlling multiple servo motors
CN110024248A (zh) 功率分配器和具有至少一个功率分配器的车载电网
JP4704073B2 (ja) 通信機器用の接続装置
TW200825911A (en) Plc
WO2009053384A1 (en) A modular power distribution system to drive dc and ac electrical loads, in particular for vehicle or domotics application
JP5204432B2 (ja) 電気機器、電気機器のサービス方法
CN111758078B (zh) 用于连接到现场总线控制器的i/o模块的配置方法和设备
CN114008984B (zh) 计算机可读存储介质以及管理方法
WO2024038585A1 (ja) 回路基板、回路基板交換システム、回路基板交換方法
JP4376892B2 (ja) プログラマブルコントローラ
JP4271592B2 (ja) セーフティコントローラ
CN111844015A (zh) 机器人系统
JP2007189878A (ja) 消費電力制御方法とそれを実現する電力供給システム、接続装置及び機器の電力制御手段
TWI753606B (zh) 主從互換式電源供應裝置及其主機、主從互換式電源供應方法及其電腦可讀取記錄媒體
TWI576707B (zh) 可攜式電子裝置及其中使用者資料的存取方法
JP5522178B2 (ja) 情報システム
US7429002B2 (en) Electrical device with stored data
JP4423029B2 (ja) 電気機器制御装置
JP3819304B2 (ja) 燃焼機器の制御ユニットの交換方法及び燃焼機器の制御ユニット
JP4288424B2 (ja) プログラム書込システム
TWI764481B (zh) 機箱管理控制裝置以及機箱管理控制系統
JP6869427B2 (ja) 制御基板および空気調和機の室内機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955757

Country of ref document: EP

Kind code of ref document: A1