WO2024037361A1 - 电池单体、电池和用电设备 - Google Patents

电池单体、电池和用电设备 Download PDF

Info

Publication number
WO2024037361A1
WO2024037361A1 PCT/CN2023/111255 CN2023111255W WO2024037361A1 WO 2024037361 A1 WO2024037361 A1 WO 2024037361A1 CN 2023111255 W CN2023111255 W CN 2023111255W WO 2024037361 A1 WO2024037361 A1 WO 2024037361A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
cell according
electrode assembly
along
tab
Prior art date
Application number
PCT/CN2023/111255
Other languages
English (en)
French (fr)
Inventor
雷育永
郭志君
王鹏
金海族
李川
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202380010958.6A priority Critical patent/CN117916931A/zh
Publication of WO2024037361A1 publication Critical patent/WO2024037361A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells

Definitions

  • This application relates to the field of battery technology, and in particular to a battery cell, a battery and electrical equipment.
  • This application provides a battery cell, a battery and electrical equipment, which can improve the reliability of the battery.
  • a battery cell including: an electrode assembly including a body part and tabs extending from the body part; and a housing for accommodating the electrode assembly, and the housing is provided with a third An opening; a first end cover for covering the first opening; a tab bracket located between the first end cover and the body part, and the tab bracket is used to support the tab;
  • the first end cap is provided with a first snap-in structure
  • the tab bracket is provided with a second snap-in structure
  • the first snap-in structure and the second snap-in structure are snap-connected.
  • the battery cell includes an electrode assembly, a casing, a first end cap and a tab bracket.
  • the electrode assembly includes a body part and tabs extending from the body part
  • the housing has a first opening and is used to accommodate the electrode assembly
  • the first end cover is used to cover the first opening
  • the tab bracket is located between the first end cap and the body part and used to support the tab. In this way, it can reduce the risk of the tab being inserted upside down into the electrode assembly due to the tab being too long. short circuit and other problems caused by the battery, which is helpful to improve the reliability of the battery.
  • the first end cover is provided with a first snap-in structure
  • the pole bracket is provided with a second snap-in structure.
  • the first snap-in structure is snap-connected with the second snap-in structure, so that the first snap-in structure and the second snap-in structure are fixed. connection, the lug bracket is fixedly connected to the first end cap. In this way, when the battery cell is shaken or inverted, since the tab bracket is fixed on the first end cover, the risk of the tab bracket becoming loose or moving inside the battery cell is reduced, thereby improving the battery life. Monolithic reliability.
  • the first clamping structure is a protruding structure protruding toward the electrode assembly in the first direction
  • the second clamping structure is an opening structure corresponding to the protruding structure
  • the first direction is the thickness direction of the first end cap.
  • a protruding structure protruding toward the electrode assembly is provided on the first end cover, and an opening structure corresponding to the protruding structure is provided on the tab bracket.
  • the protruding structure can be snapped into the opening structure, thereby realizing the integration of the protruding structure and the opening structure. Card access.
  • the protruding structure and the opening structure are easy to process and help reduce the complexity of production.
  • the opening structure includes a guide portion, and the radial size of the guide portion gradually decreases from a first end of the guide portion to a second end of the guide portion, wherein, Along a first direction, the first end of the guide part is away from the electrode assembly relative to the second end of the guide part, and the first direction is the thickness direction of the first end cap.
  • the guide portion can guide the protruding structure to snap into the opening structure along the guide portion.
  • the protruding structure, the guide part, the housing and the tab bracket satisfy: D1-d1 ⁇ K'; where D1 is the first element of the guide part.
  • the radial dimension of the end; d1 is the radial dimension of the first end of the protruding structure, and the first end of the protruding structure is the protruding structure close to the electrode assembly along the first direction.
  • One end; K' is the sum of the gaps between the housing and the tab bracket along the second direction, and the second direction is the length direction of the first end cap.
  • the guide portion can guide the protruding structure into the opening. structure.
  • the protruding structure, the guide part, the housing and the tab bracket satisfy: D1-d1 ⁇ W0-W1; where D1 is the third element of the guide part.
  • the radial dimension of one end; d1 is the radial dimension at the first end of the protruding structure, and the first end of the protruding structure is close to the electrode assembly along the first direction.
  • the difference between D1-d1 is large, so that when the tab bracket and the first end cap are greatly offset in the second direction, the guide portion can guide the protruding structure to snap into the opening structure. , to realize the snap connection between the protruding structure and the opening structure.
  • the opening structure further includes a slot portion, the slot portion is connected to the second end of the guide portion along the first direction, and the slot portion is connected to the second end of the guide portion.
  • the protruding structure snaps into place. In this way, the protruding structure is locked into the slot portion, which can realize the position limiting between the opening structure and the protruding structure in the first direction, and achieve the fixation of the first end cover and the tab bracket in the first direction.
  • the slot portion includes a limiting portion and a receiving portion, the receiving portion is close to the electrode assembly relative to the limiting portion, and the radial dimension D2 of the limiting portion is less than The radial dimension D3 of the accommodation part.
  • the limiting part and the accommodating part form a step structure. After the protruding structure enters the accommodating part, the protruding structure can be partially accommodated in the accommodating part, and the limiting part can restrict the protruding structure from moving in the first direction to reduce the protruding structure. Risk of the structure detaching from the housing.
  • the opening structure further includes a first fixing part, the first fixing part is connected to the first end of the guide part, and the radial size of the first fixing part is equal to the radial size of the first fixing part.
  • the first ends of the guide portions have the same radial dimension D1.
  • the angle between the guide portion and the first direction is less than 45°. In this way, it is convenient for the guide portion to guide the protruding structure to snap into the opening structure.
  • the angle between the guide portion and the first direction is greater than or equal to 30°.
  • the included angle has a relatively appropriate value
  • the guide portion has an appropriate height in the first direction, and it is also convenient for the guide portion to guide the protruding structure to snap into the opening structure.
  • the protruding structure includes a second fixing part and a buckle part, the buckle part is close to the electrode assembly relative to the second fixation part, and the buckle part is connected with the The slot portion of the opening structure is engaged, and the second fixing portion is in contact with the first fixing portion of the opening structure.
  • the buckle portion is engaged with the groove portion, thereby limiting the relative movement of the protruding structure and the opening structure in the first direction; the first fixing portion is in contact with the second fixing portion, thereby limiting the protruding structure.
  • the size of the second fixing part is smaller than or equal to the size of the first fixing part. In this way, it is convenient to fix the second fixing part in the first fixing part.
  • the size of the second fixing part is greater than 0.8 mm, and/or the size of the first fixing part is greater than 0.8 mm.
  • the size of the first fixing part and the second fixing part in the first direction is larger, and the contact area between the first fixing part and the second fixing part is larger, which is beneficial to increasing the distance between the first fixing part and the second fixing part. the connection strength between them.
  • the size h1 of the second fixing part satisfies: 0.8mm ⁇ h1 ⁇ 1.4mm
  • the size h2 of the first fixing part satisfies: 0.8mm ⁇ h2 ⁇ 1.4mm.
  • the first fixing part and the second fixing part have appropriate sizes in the first direction, and at the same time, there is appropriate connection strength between the first fixing part and the second fixing part.
  • the buckle part includes a connection part and a buckle part, the buckle part is close to the electrode assembly relative to the connection part, and the maximum radial dimension of the buckle part is greater than The maximum radial dimension of the connecting portion, the engaging portion is engaged with the engaging groove portion. In this way, the locking part can be locked in the locking groove part, thereby reducing the risk of the locking part coming out of the locking groove part.
  • the buckle part is provided with a deformation groove, and the deformation groove extends along the first direction from an end of the buckle part close to the electrode assembly.
  • the deformation groove deforms when the engaging portion enters the engaging groove portion, so that the engaging portion engages in the engaging groove portion.
  • the size of the buckle part in the second direction can be reduced, so that the buckle part can enter the accommodating part, thereby realizing the buckle part and the buckle groove part.
  • the slot portion, the buckle portion and the deformation groove satisfy: d3>D2>d3-d4; where d3 is the maximum radial dimension of the buckle portion; D2 is the maximum radial dimension of the limiting portion, and d4 is the maximum radial dimension of the deformation groove. In this way, it not only facilitates the buckle part to be locked into the buckle groove part, but also reduces the risk of the buckle part coming out of the buckle groove part.
  • the buckle portion and the groove portion satisfy: d3-D2>0.5mm.
  • the buckle part and the buckle groove part have more overlapping areas, which is beneficial to reducing the risk of the buckle part coming out of the buckle groove part.
  • the latching groove portion, the latching portion and the deformation groove satisfy: D2-d3+d4>0.2mm. In this way, there is a large gap between the latching groove part and the latching part, which is conducive to the latching part being inserted into the latching groove part.
  • the protruding structure further includes a transition portion, and the transition portion is respectively connected to the second fixing portion and the buckling portion along the first direction. In this way, through the provision of the transition part, the second fixing part and the buckling part can be connected together.
  • the size of the protruding structure is smaller than or equal to the size of the opening structure. In this way, after the protruding structure is engaged with the opening structure, the protruding structure will not protrude from the opening structure, thereby reducing the risk of damaging the electrode assembly caused by the protruding structure exceeding the opening structure.
  • the cross-sections of the first clamping structure and the second clamping structure are circular. In this way, the first clamping structure and the second clamping structure can be assembled and limited in both the length direction and the width direction of the battery cell.
  • the pole bracket is provided with a slot extending along the second direction, and the pole is configured to pass through the slot and be connected to the first end cap. In this way, the pole can pass through the slot of the pole bracket and be connected to the first end cap, so that the pole can be limited and fixed through the slot of the pole bracket.
  • the battery cell further includes a first isolation film, which is sleeved on the outer surface of the electrode assembly and located in the housing.
  • a first isolation film which is sleeved on the outer surface of the electrode assembly and located in the housing.
  • the battery cell further includes a second isolation film, and the second isolation film is sleeved on the outer surface of the housing.
  • the second isolation film can protect the battery cells and insulate the battery cells from the external environment, which is beneficial to improving the reliability of the battery cells.
  • the first end cover is provided with a plurality of first snap-in structures
  • the tab bracket is provided with a plurality of third snap-in structures corresponding to the plurality of first snap-in structures.
  • Two card connection structures In this way, it is beneficial to increase the connection strength between the tab bracket and the first end cap.
  • the first end cover further includes an insulating piece and an end cover piece.
  • the insulating piece is used to isolate the end cover piece from the electrode assembly.
  • the insulating piece is connected to the third end cover piece.
  • the first snap-in structure is an integrally formed structure. In this way, the processing of the first snap-in structure and the insulating member is facilitated.
  • the battery cell further includes a second end cover, the second end cover is opposite to the first end cover along a first direction, and the first direction is the first end cover. Thickness direction of one end cap.
  • a second aspect provides a battery, including the battery cell as described in the first aspect and any one of the possible embodiments.
  • an electrical device including the battery described in the second aspect.
  • the battery cell includes an electrode assembly, a casing, a first end cap and a tab bracket.
  • the electrode assembly includes a body part and tabs extending from the body part
  • the housing has a first opening and is used to accommodate the electrode assembly
  • the first end cover is used to cover the first opening
  • the tab bracket is located between the first end cap and the body part and used to support the tab. In this way, problems such as short circuits caused by over-long pole tabs inserted into the electrode assembly can be reduced, which is beneficial to improving the reliability of the battery.
  • the first end cover is provided with a first snap-in structure
  • the pole bracket is provided with a second snap-in structure.
  • the first snap-in structure is snap-connected with the second snap-in structure, so that the first snap-in structure and the second snap-in structure are fixed. connection, the lug bracket is fixedly connected to the first end cap. In this way, when the battery cell is shaken or inverted, since the tab bracket is fixed on the first end cover, the risk of the tab bracket becoming loose or moving inside the battery cell is reduced, thereby improving the battery life. Monolithic reliability.
  • Figure 1 is a schematic structural diagram of a vehicle according to an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a battery according to an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a battery cell according to an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a first end cap according to an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of the tab bracket according to an embodiment of the present application.
  • Figure 6 is an enlarged schematic diagram of a partial structure of the electrode assembly in Figure 3;
  • Figure 7 is a top view of the tab bracket according to an embodiment of the present application.
  • Figure 8 is a cross-sectional view along the C-C direction of the tab bracket in Figure 7;
  • Figure 9 is a cross-sectional view of the opening structure in Figure 8.
  • Figure 10 is an enlarged structural schematic diagram of the protruding structure in Figure 4.
  • Figure 11 is a left side view of a battery cell according to an embodiment of the present application.
  • Figure 12 is a cross-sectional view of the battery cell in Figure 11 along the A-A direction;
  • Figure 13 is an enlarged schematic diagram of area D in Figure 12;
  • FIG. 14 is an enlarged structural schematic diagram of area B in FIG. 12 .
  • 20 battery cell; 210: case; 211: first end cover; 212: second end cover; 22: electrode assembly; 23: pole lug bracket; 24: first isolation film; 25: second isolation film; 210a: first opening; 220a: second opening; 211a: first electrode terminal; 212a: second electrode terminal; 221: tab; 221a: bending part; 222: body part; 601: groove; 210b: inner wall; 2112: Insulating parts; 2113: End cover.
  • 2111 First snapping structure; 50: Protruding structure; 51: Second fixing part; 52: Snapping part; 53: Transition part; 521: connecting part; 522: snapping part; 523: deformation groove; 5221: first part; 5222: second part.
  • 231 Second clamping structure; 60: Opening structure; 61: Guide part; 62: Slot part; 63: First fixing part; 621: Limiting part; 622: Accommodating part.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this. Battery cells are generally divided into cylindrical battery cells and rectangular battery cells according to packaging methods, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery pack and the like.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode sheet, a negative electrode sheet and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector that is not coated with the positive electrode active material layer protrudes from the current collector that is coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector that is not coated with the negative electrode active material layer protrudes from the current collector that is coated with the negative electrode active material layer.
  • the current collector coated with the negative active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be polypropylene (PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel, or in mixed connection.
  • Hybrid connection refers to a mixture of series and parallel connection.
  • multiple battery cells The cells can be connected in series, parallel or mixed to form a battery module, and then multiple battery modules can be connected in series, parallel or mixed to form a battery.
  • multiple battery cells can directly form a battery, or they can first form a battery module, and then the battery module can form a battery.
  • the battery is further installed in the electrical equipment to provide electrical energy to the electrical equipment.
  • the development of battery technology must consider multiple design factors at the same time, such as energy density, cycle life, discharge capacity, charge and discharge rate, safety, etc. Among them, the structure of the battery cell is crucial to the performance of the battery.
  • the battery cell includes an electrode assembly, an end cover and a casing.
  • the tabs in the electrode assembly are connected to the end cover.
  • the length of the tab is long. When the length of the tab is long, it is easy for the tab or tab to be bent and inserted upside down into the electrode assembly, causing a short circuit.
  • a tab bracket is provided between the tab and the end cover of the electrode assembly to support the tab.
  • the tab bracket is tightly attached to the root of the tab so that the bent part of the tab is located between the tab bracket and the end cover, and then the bent part of the tab is aligned with the end cover. connect.
  • the tab bracket catches the bent part of the tab, the tab bracket is not fixed, and the position of the tab bracket within the battery cell is unstable.
  • the tab bracket is prone to move, which affects the support effect of the tab and is not conducive to improving the reliability of the battery cell.
  • embodiments of the present application provide a battery cell.
  • the first end cap is provided with a first snap-in structure
  • the tab bracket is provided with a second snap-in structure
  • the first snap-in structure is snap-connected with the second snap-in structure.
  • batteries such as mobile phones, portable devices, laptops, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spacecraft, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an electric vehicle.
  • a motor 40 , a controller 30 and a battery 10 may be disposed inside the vehicle 1 .
  • the controller 30 is used to control the battery 10 to power the motor 40 .
  • the battery 10 may be disposed at the bottom, front or rear of the vehicle 1 .
  • the battery 10 may be used to power the vehicle 1.
  • the battery 10 may be used as an operating power source of the vehicle 1 for
  • the circuit system of the vehicle 1 is, for example, used for the starting, navigation and operating power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may include multiple battery cells.
  • FIG. 2 which is a schematic structural diagram of a battery according to an embodiment of the present application, the battery 10 may include multiple battery cells 20 .
  • the battery 10 may also include a box 11.
  • the inside of the box 11 is a hollow structure, and a plurality of battery cells 20 are accommodated in the box 11.
  • a plurality of battery cells 20 are connected in parallel or in series or in a mixed combination and then placed in the box 11 .
  • the battery 10 may also include other structures, which will not be described in detail here.
  • the battery 10 may further include a bus component, which is used to realize electrical connection between multiple battery cells 20 , such as parallel connection, series connection, or mixed connection.
  • the bus component can realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus part may be fixed to the electrode terminal of the battery cell 20 by welding.
  • the electric energy of the plurality of battery cells 20 can be further drawn out through the box 11 through the conductive mechanism.
  • the electrically conductive means can also be part of the busbar.
  • the number of battery cells 20 can be set to any value. Multiple battery cells 20 can be connected in series, parallel or mixed connection to achieve larger capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, in order to facilitate installation, the battery cells 20 may be arranged in groups, and each group of battery cells 20 forms a battery module. The number of battery cells 20 included in the battery module is not limited and can be set according to requirements.
  • the battery may include multiple battery modules, which may be connected in series, parallel or mixed connection.
  • FIG. 3 is a schematic structural diagram of a battery cell according to an embodiment of the present application.
  • the battery cell 20 includes an electrode assembly 22, a casing 210, a first end cap 211, and a tab bracket 23.
  • the electrode assembly 22 includes a body portion 222 and tabs 221 extending from the body portion 222 .
  • the body portion 222 of the electrode assembly 22 is electrically connected to the first electrode terminal 211 a on the first end cap 211 through the tab 221 .
  • the tabs 221 extend from the body portion 222 along the thickness direction of the first end cap 211 .
  • the pole tabs 221 may include positive pole tabs and negative pole tabs, wherein the positive pole tabs and the negative pole tabs may extend from the same end of the body part 222 , or may extend from different ends of the body part 222 .
  • the positive electrode tab extends from an end of the body portion 222 close to the first end cover 211 along the thickness direction of the first end cover 211
  • the negative electrode tab extends along the thickness direction of the first end cover 211 from an end of the body portion 222 away from the first end cover 211 .
  • One end of the end cap 211 extends out.
  • the relative position of the positive and negative terminals It can be specifically set according to actual needs, and the embodiments of this application include but are not limited to this.
  • the housing 210 is provided with a first opening 210a and is used to accommodate the electrode assembly 22.
  • the first opening 210a may be provided at an end of the housing 210 close to the first end cover 211 along a first direction, and the first direction is the thickness direction of the first end cover 211.
  • the first direction is the z direction.
  • the shape of the housing 210 may be determined according to the combined shape of one or more electrode assemblies 22 .
  • the housing 210 is a hollow rectangular parallelepiped.
  • Embodiments of the present application include, but are not limited to, the housing 210 may also be a hollow cube, cylinder, or other shapes.
  • Figure 4 is a schematic structural diagram of a first end cap according to an embodiment of the present application.
  • the first end cover 211 may be flat, and the first end cover 211 is used to cover the first opening 210 a to achieve alignment.
  • the first opening 210 is sealed to isolate the electrode assembly 22 in the housing 210 from the outside world.
  • the first end cap 211 is provided with a first electrode terminal 211a, and the tab 221 of the electrode assembly 22 is electrically connected to the first electrode terminal 211a.
  • the battery cell 20 may further include a second end cover 212, and the second end cover 212 is opposite to the first end cover 211 along the first direction.
  • the housing 210 is provided with a second opening 220a.
  • the second opening 220a is provided at an end of the housing 210 close to the second end cap 212 in the first direction.
  • the second end cap 212 is used to cover the second end cap 212. Two openings 220a.
  • the second end cap 212 is provided with a second electrode terminal 212 a , and the second electrode terminal 212 a is electrically connected to a tab (not shown in the figure) close to the second opening 220 a.
  • the second end cap 212 may have the same structure as the first end cap 211 , that is, the second end cap 212 is provided with the same structure as the first clamping structure.
  • the second end cap 212 has a different structure from the first end cap 211, and the second end cap 212 is not provided with the same structure as the first snap-in structure; correspondingly, the pole close to the second opening 220a
  • the length of the lug is smaller than the length of the lug 221 close to the first opening 210a (for example, the lug 221 close to the second opening 220a is not bent and has a shorter length).
  • the second end cap 212 is not provided with an electrode terminal
  • the first end cap 211 is provided with a first electrode terminal 211a and an electrode terminal with an opposite polarity to the first electrode terminal 211a.
  • FIG. 5 is a schematic structural diagram of a tab bracket according to an embodiment of the present application
  • FIG. 6 is an enlarged schematic diagram of a partial structure of the electrode assembly in FIG. 3 .
  • the tab bracket 23 is provided between the body part 222 and the first end cover 211 , and the tab bracket 23 is used to support the tab 221 .
  • the tab bracket 23 is used to support The bent portion 221a of the tab 221.
  • the arrangement of the tab bracket 23 can reduce the risk of a short circuit caused by the tab 221 being inserted upside down into the electrode assembly 22 .
  • the first end cover 211 is provided with a first snap-in structure 2111
  • the tab bracket 23 is provided with a second snap-in structure 231
  • the first snap-in structure 2111 and the second snap-in structure 231 are snap-on. catch.
  • the tab bracket 23 is fixedly connected to the first end cover 211.
  • the embodiment of the present application provides a battery cell 20 , which includes: an electrode assembly 22 , a housing 210 , a first end cap 211 and a tab bracket 23 .
  • the electrode assembly 22 includes a body portion 222 and tabs 221 extending from the body portion 222 .
  • the housing 210 has a first opening 210a and is used to accommodate the electrode assembly 22.
  • the first end cover 211 is used to cover the first opening 210a.
  • the tab bracket 23 is located between the first end cover 211 and the body part 222 and is used to support the tabs. 221. In this way, problems such as short circuit caused by the pole tab 221 being inserted upside down into the electrode assembly 22 due to the pole tab 221 being too long can be avoided, which is beneficial to improving the reliability of the battery.
  • the first end cover 211 is provided with a first snap-in structure 2111
  • the tab bracket 23 is provided with a second snap-in structure 231.
  • the first snap-in structure 2111 and the second snap-in structure 231 can be snap-connected to each other.
  • the fixed connection of the pole bracket 23 In this way, when the battery cell 20 is shaken or inverted, since the tab bracket 23 is fixed on the first end cover 211, the risk of the tab bracket 23 becoming loose or positionally shifting inside the battery cell 20 is reduced. , thereby improving the reliability of the battery cell 20 .
  • the first clamping structure 2111 is a protruding structure 50 protruding toward the electrode assembly 22 in the first direction
  • the second clamping structure 231 is an opening structure 60 corresponding to the protruding structure 50
  • the third One direction is the thickness direction of the first end cap 211 .
  • the first direction may be the z direction in FIGS. 3 to 5 .
  • the protruding structure 50 protrudes toward the electrode assembly 22 in the z direction relative to the first end cap 211 , and the position of the opening structure 60 corresponds to the position of the protruding structure 50 .
  • the opening structure 60 may or may not penetrate the tab bracket 23 along the first direction. That is to say, the opening structure 60 may be a groove recessed toward the electrode assembly 22 or a through hole.
  • the protruding structure 50 and the opening structure 60 corresponding to the protruding structure are engaged.
  • the protruding structure 50 and the opening structure 60 are easy to process and manufacture, which is beneficial to reducing the complexity of production.
  • the second latching structure 231 is a protruding junction protruding away from the electrode assembly 22 .
  • the first snap-in structure 2111 is an opening structure corresponding to the protruding structure.
  • the first snap-in structure 2111 or the second snap-in structure 231 can be configured as a protruding structure according to actual needs, and the second snap-in structure 231 or the first snap-in structure 2111 can be configured as a protruding structure. Open structure.
  • FIG. 7 is a top view of the tab bracket according to an embodiment of the present application.
  • FIG. 8 is a cross-sectional view of the tab bracket in FIG. 7 along the C-C direction.
  • FIG. 9 is a cross-sectional view of the opening structure in FIG. 8 .
  • the opening structure 60 includes a guide portion 61 . From the first end of the guide portion 61 to the second end of the guide portion 61 , the radial size of the guide portion 61 gradually increases. decrease.
  • the first end of the guide portion 61 is farther away from the electrode assembly 22 relative to the second end of the guide portion 61 , and the first direction is the thickness direction of the first end cap 211 .
  • the first end of the guide portion 61 has the largest radial dimension, so that during the process of assembling the first end cover 211 and the tab bracket 23 , the guide portion 61 can easily guide the protruding structure 50 to snap into the opening structure 60 .
  • the shape of the guide part 61 may be a truncated cone or a prism, and the radial dimension of the guide part 61 is the dimension of the projection of the guide part 61 on the xoz plane along the x direction.
  • the radial dimension of the guide portion 61 is the diameter of the guide portion 61 .
  • the radial dimension of the guide portion 61 is the maximum dimension along the x direction of the projection of the guide portion on the xoz plane.
  • the radial size of the guide portion 61 is the size of the guide portion 61 along the second direction, and the guide portion 61 has different radial sizes at different positions in the first direction.
  • the radial dimension of the guide portion 61 at the first end is D1 and the radial dimension at the second end is D2.
  • the second direction is the length direction of the first end cap 211 .
  • the second direction is the x direction.
  • the second direction may be perpendicular to the first direction, and the size of the first end cap 211 in the length direction is greater than its size in the width direction, and the width direction may be the y direction in FIG. 3 .
  • the guide portion 61 can guide the The protruding structure 50 is inserted into the opening structure 60 along the guide portion 61 . That is to say, the guide portion 61 can guide the protruding structure 50 to move in the second direction, so that the protruding structure 50 moves to a suitable position, so that the protruding structure 50 can gradually snap into the opening structure 60 along the guide portion 61 .
  • Figure 10 is an enlarged structural schematic diagram of the protruding structure in Figure 4.
  • Figure 11 is a left side view of a battery cell according to an embodiment of the present application.
  • Figure 12 is a cross-sectional view of the battery cell in Figure 11 along the AA direction.
  • Figure 13 is Figure 12
  • FIG. 14 is an enlarged schematic diagram of area D in FIG. 12 .
  • the protruding structure 50 , the guide portion 61 , the housing 210 and the tab bracket 23 satisfy: D1-d1 ⁇ K'.
  • One end of 22; K' is the sum of the gaps between the housing 210 and the tab bracket 23 along the second direction, and the second direction is the length direction of the first end cover 211.
  • a first isolation film 24 is also provided between the housing 210 and the tab bracket 23 .
  • the gap k between the housing 210 and the tab bracket 23 is the distance between the first isolation film 24 and the inner wall 210 b of the housing 210 .
  • the gap here refers to the distance between the housing 210 and the tab bracket 23 along the second direction without filling material.
  • structural glue is also provided between the first isolation film 24 and the tab bracket 23 .
  • Figure 14 shows the gap k at one end along the second direction, and there is also a gap at the other end in the second direction.
  • K' 2k.
  • the guide portion 61 can guide the protruding structure 50 into the opening structure 60 .
  • the protruding structure 50 , the guide portion 61 , the housing 210 and the tab bracket 23 satisfy: D1-d1 ⁇ W0-W1.
  • the inner wall 210a of the housing 210 is the wall of the housing 210 facing the electrode assembly 22.
  • the protruding structure 50 by providing the protruding structure 50, the guide portion 61, the housing 210 and the tab bracket 23 The dimensional relationship between the two further facilitates the guide portion 61 to guide the protruding structure 50 into the opening structure 60 when the tab bracket 23 and the first end cover 211 are relatively displaced in the second direction.
  • K' is smaller than W0-W1.
  • K’ a ⁇ (W0-W1)
  • a is 0.4, 0.5, 0.8 or any value within the above range.
  • a is 0.5 to 0.6, which can make the sizes of the guide portion 61 and the protruding structure 50 within a more appropriate range, which is beneficial to the processing and assembly of the guide portion 61 and the protruding structure 50 .
  • the distance between the outer walls of the housing 210 is the same as the size of the first end cap 211 .
  • the electrode assembly 22 has the same size as the tab bracket 23 .
  • the opening structure 60 further includes a slot portion 62 .
  • the slot portion 62 is connected to the second end of the guide portion 61
  • the protruding structure 50 is connected to the slot portion 62 Card access.
  • the slot portion 62 is provided at a first end of the opening structure 60 , and the first end of the opening structure 60 is an end of the opening structure 60 close to the electrode assembly 22 along the first direction.
  • the slot portion 62 and the guide portion 61 are connected and communicated along the first direction. Under the action of the guide structure 61 , the protruding structure 50 can enter the slot portion 62 along the guide portion 61 and engage with the slot portion 62 . In this way, after the protruding structure 50 and the slot portion 62 are engaged, the positions of the protruding structure 50 and the opening structure 60 in the first direction are fixed, that is, the protruding structure 50 and the opening structure in the first direction are realized. 60, thereby achieving the fixation of the first end cover 211 and the tab bracket 23 in the first direction.
  • the slot portion 62 includes a limiting portion 621 and a receiving portion 622.
  • the receiving portion 622 is close to the electrode assembly 22 relative to the limiting portion 621.
  • the radial dimension D2 of the limiting portion 621 is smaller than the radial dimension D2 of the receiving portion 622. Size D3.
  • the radial dimension D2 of the limiting portion 621 is the maximum dimension of the limiting portion 621 along the second direction
  • the radial dimension D3 of the accommodating portion 622 is the dimension of the accommodating portion 622 along the second direction.
  • the limiting part 621 and the receiving part 622 are both cylindrical grooves, and the limiting part 621 and the receiving part 622 have the same radial size at different positions along the first direction.
  • the limiting part 621 and the accommodating part 622 are connected and communicate with each other in the first direction, the accommodating part 622 is close to the electrode assembly relative to the limiting part 621, and the radial dimension D2 of the limiting part 621 is smaller than the radial dimension D3 of the accommodating part 622, Therefore, the limiting part 621 and the receiving part 622 form a stepped structure. In this way, after the protruding structure 50 enters the slot portion 62, The protruding structure 50 may be partially received in the receiving part 622 , and the limiting part 621 may restrict the protruding structure 50 from moving in the first direction to reduce the risk of the protruding structure 50 protruding from the receiving part 622 .
  • the opening structure 60 further includes a first fixing portion 63 connected to the first end of the guide portion 61 , and the radial size of the first fixing portion 63 is consistent with the first end of the guide portion 61 .
  • the radial dimension D1 is the same.
  • the first fixing part 63 is connected to the first end of the guide part 61, so that the first fixing part 63 communicates with the guide part 61, and at the connection point, the first fixing part 63 and the guide part 61 have the same radial size.
  • the first fixing part 63 is a cylindrical groove, and the first fixing part 63 has the same radial size at different positions along the first direction. In this way, the provision of the first fixing part 63 facilitates the contact between the protruding structure 50 and the first fixing part 63 , thereby facilitating the fixation between the protruding structure 50 and the first fixing part 63 in the second direction.
  • one end of the first fixing part 63 close to the guide part 61 is provided with a rounded corner structure, so that the interference between the first fixing part 63 and the protruding structure 50 can be reduced.
  • the first fixing part 63 and the protruding structure 50 can be fixed in the second direction, thereby limiting the contact between the tab bracket 23 and the third One end cap 211 moves relatively in the second direction.
  • the angle ⁇ between the guide portion 61 and the first direction is less than 45°. In this way, it is convenient for the guide portion 61 to guide the protruding structure 50 to snap into the opening structure 60 .
  • the angle ⁇ between the guide portion 61 and the first direction satisfies: 30° ⁇ 45°.
  • the radial size of the guide portion 61 is constant, the smaller the included angle ⁇ is, the larger the size of the guide portion 61 in the first direction is.
  • has a relatively appropriate value, the guide portion 61 has an appropriate height in the first direction, and it is also convenient for the guide portion 61 to guide the protruding structure 50 to snap into the opening structure 60 .
  • the protruding structure 50 includes a second fixing part 51 and a buckle part 52 .
  • the buckle part 52 is close to the electrode assembly 22 relative to the second fixation part 51 .
  • the buckle part 52 is connected to the opening.
  • the slot portion 62 of the structure 60 is engaged, and the second fixing portion 51 is in contact with the first fixing portion 63 of the opening structure 60 .
  • the second fixing part 51 may directly communicate with the buckle part 52 , or may communicate with the buckle part 52 through other components.
  • the second fixing part 51 and the buckling part 52 are directly connected, the second fixing part 51 and the buckling part 52 form a step structure.
  • the buckle part 52 is buckled with the groove part 62, thereby limiting the protruding structure 50 and the The relative movement of the opening structure 60 in the first direction; the first fixing part 63 abuts the second fixing part 51, thereby limiting the relative movement of the protruding structure 50 and the opening structure 60 in the second direction.
  • the tab bracket 23 and the first end cover 211 are fixedly connected in both the first direction and the second direction, which can reduce the risk of the tab bracket 23 shaking or moving inside the battery cell 20 due to factors such as shaking of the battery cell 20 . risk.
  • the size h1 of the second fixing part 51 is less than or equal to the size h2 of the first fixing part 63 . In this way, it is convenient to fix the second fixing part 51 in the first fixing part 63 .
  • the size h1 of the second fixing part 51 is the maximum size of the second fixing part 51 along the first direction
  • the size h2 of the first fixing part 63 is the maximum size of the first fixing part 63 along the first direction.
  • the size h1 of the second fixing part 51 is equal to the size h2 of the first fixing part 63
  • the first fixing part 63 is provided with a rounded corner at one end close to the electrode assembly in the first direction. In this way, the second fixing part 51 and the second fixing part 63 can be fixedly connected in the second direction, and the risk of interference between the second fixing part 51 and the second fixing part 63 can be reduced.
  • the size h1 of the second fixing part 51 is smaller than the size h2 of the first fixing part 63 . In this way, the risk of the second fixing part 51 hanging in the air, resulting in a reduction in the connection strength between the second fixing part 51 and the first fixing part 63, can be reduced.
  • the size h1 of the second fixing part 51 is greater than 0.8 mm, and/or the size h2 of the first fixing part 63 is greater than 0.8 mm. In this way, the sizes of the first fixing part 63 and the second fixing part 51 in the first direction are larger, and the contact area between the first fixing part 63 and the second fixing part 51 is larger, which is beneficial to increasing the number of the first fixing part 63 and the second fixing part 51 .
  • the connection strength between the second fixing parts 51 is provided along the first direction.
  • the size h1 of the second fixing part 51 satisfies: 0.8mm ⁇ h1 ⁇ 1.4mm
  • the size h2 of the first fixing part 63 satisfies: 0.8mm ⁇ h2 ⁇ 1.4mm. .
  • the first fixing part 63 and the second fixing part 51 have appropriate sizes in the first direction, and at the same time, there is appropriate connection strength between the first fixing part 63 and the second fixing part 51 .
  • h1 can be 0.85mm, 1mm, 1.2mm, 1.4mm or any value within the above range
  • h2 can be 0.85mm, 1mm, 1.2mm, 1.4mm or any value within the above range.
  • h1 is 1.4mm and h2 is 1.4mm.
  • the buckle part 52 includes a connection part 521 and a buckle part 522.
  • the buckle part 522 is close to the electrode assembly 22 relative to the connection part 521.
  • the maximum radial dimension d3 of the buckle part 522 is greater than the maximum radial dimension d3 of the connection part 521.
  • Radial dimension d2 the engaging portion 522 engages with the engaging groove portion 62. In this way, the engaging portion 522 can be engaged with the engaging groove portion 62 In this way, the risk of the latching portion 522 coming out of the latching groove portion 62 is reduced.
  • connection structure 521 has the same radial size at different positions in the first direction;
  • the clamping portion 522 includes a first part 5221 and a second part 5222, and the second part 5222 is close to the electrode assembly 22 relative to the first part 5221, In the first direction, directed toward the electrode assembly 22, the radial size of the second portion 5222 gradually decreases.
  • the buckle portion 52 is provided with a deformation groove 523 that extends in the first direction from an end of the buckle portion 52 close to the electrode assembly 22 .
  • the deformation groove 523 deforms when the engaging portion 522 enters the engaging groove portion 62 , so that the engaging portion 522 engages in the engaging groove portion 62 .
  • the size of the buckle portion 52 in the second direction can be reduced, so that the buckle portion 52 can enter the receiving portion to realize the buckle portion 52 and the buckle groove portion 62 .
  • the latching groove portion 62 , the latching portion 52 and the deformation groove 523 satisfy: d3>D2>d3-d4.
  • d3 is the maximum radial dimension of the clamping part 522
  • D2 is the maximum radial dimension of the limiting part 621
  • d4 is the maximum radial dimension of the deformation groove 523.
  • d4 may be the maximum distance between two groove wall surfaces of the deformation groove 523 that are oppositely arranged along the second direction.
  • the maximum radial dimension d3 of the engaging portion 522 is larger than the maximum radial dimension of the limiting portion 621 , so that after the engaging portion 522 is engaged in the engaging groove portion 62 , the engaging portion 522 will not come out of the engaging groove portion 62 ; D2 >d3-d4, in this way, after the deformation groove is deformed, the engaging portion 522 can enter the engaging groove portion 62 through the limiting portion 621.
  • the engaging portion 522 can enter into the engaging groove portion 62 but will not come out of the engaging groove portion 62.
  • the maximum radial dimension D3 of the accommodating portion 622 is larger than the maximum radial dimension d3 of the clamping portion 522 , so that the clamping portion 522 can be accommodated in the accommodating portion 622 without deformation of the deformation groove 523 .
  • the buckle portion 52 and the groove portion 62 satisfy: d3-D2>0.5mm. In this way, the buckling portion 52 and the buckling groove portion 62 have a large overlapping area in the second direction, so that the buckling portion 52 is not easily detached from the buckling groove portion 62 .
  • the latching groove portion 62, the latching portion 52 and the deformation groove 523 satisfy: D2-d3+d4>0.2mm. In this way, it can be reduced that the radial dimension of the limiting portion 621 is too small and the buckling portion 52 is not easily inserted into the slot portion 62 , which is advantageous for the buckling portion 52 to be inserted into the slot portion 62 .
  • the protruding structure 50 further includes a transition portion 53 , which is connected to the second fixing portion 51 and the buckling portion 52 respectively along the first direction.
  • the radial direction of the transition portion 53 The size gradually decreases.
  • the transition part 53 and the second fixing part 51 have the same radial size; at the connection between the transition part 53 and the buckle part 52 , the transition part 53 and the buckle part 52 has the same radial dimensions.
  • the radial size of the transition portion 53 is the same as the radial size of the connecting portion 521 , and a step structure is formed between the transition portion 53 and the second fixing portion 51 .
  • the transition part 53 only needs to be able to realize the connection between the second fixing part 511 and the buckling part 52 , and the embodiments of the present application include but are not limited to this.
  • the dimension h3 of the protruding structure 50 is smaller than the dimension h4 of the opening structure 60 .
  • the size h3 of the protruding structure 50 is the maximum size of the protruding structure 50 along the first direction.
  • the size h4 of the protruding structure 60 is the maximum size of the opening structure 60 along the first direction.
  • the opening structure 60 When the opening structure 60 is a groove, it is convenient to reduce the wear between the protruding structure 50 and the opening structure 60; when the opening structure 60 is a through hole penetrating the tab bracket 23, the protruding structure 50 will not protrude from the opening. structure 60 , thereby reducing the risk of the protruding structure 50 abutting and damaging the electrode assembly 22 .
  • the cross-sections of the first clamping structure 2111 and the second clamping structure 231 are circular.
  • the cross section is perpendicular to the first direction, that is, the cross section is parallel to the first end cap 211 . In this way, the first clamping structure 2111 and the second clamping structure 231 can be assembled and limited in both the length direction and the width direction of the first end cover 211 .
  • the first clamping structure 2111 and the second clamping structure 231 include a rotary body structure.
  • the second snap-in structure 231 is the opening structure 60
  • the limiting part 621, the receiving part 622 and the first fixing part 63 in the opening structure 60 are all cylindrical rotary structures
  • the guide part 61 is truncated.
  • Rotary structure when the first clamping structure 2111 is the protruding structure 50, the second fixing part 51 may be a cylindrical rotary structure, the transition part 53 may be a truncated cone-shaped rotary structure, and the connecting part 521 may be a concave structure in the middle.
  • the groove has a cylindrical rotary structure, the second part 5222 of the clamping part 522 can be a truncated cone-shaped rotary structure, and the first part 5221 of the clamping part 522 can be a cylindrical rotary structure.
  • the tab bracket 23 is provided with a slot 601 extending in the second direction, and the tab 221 is configured to pass through the slot 601 to connect with the first end cap 211 .
  • the tab bracket 23 separates the bent portion 221a of the tab 221 from the portion of the electrode assembly 22 that does not include the tab 221, thereby lowering the bending portion 221a of the tab 221 for insertion into the electrode assembly. Part 22 creates the risk of short circuit.
  • the battery cell 20 further includes a first isolation film 24 , which is sleeved on the outer surface of the electrode assembly 22 and located in the housing 210 .
  • the first isolation film 24 is an insulating thermoplastic isolation film, for example, the first isolation film 24 is a mylar film.
  • the electrode assembly 22 can be isolated from the housing 210, thereby reducing the risk of short circuit caused by the contact between the electrode assembly 22 and the housing 210; in addition, the isolation film 22 can also be used to separate the tab bracket 23 from the housing 210.
  • the electrode assemblies 22 are connected to facilitate the assembly of the battery cells 20 .
  • the battery cell further includes a second isolation film 25 , and the second isolation film 25 is sleeved on the outer surface of the housing 210 .
  • the second isolation film 25 can protect the battery cell 20 and insulate the battery cell 20 from the external environment, which is beneficial to improving the reliability of the battery cell 20 .
  • the second isolation film 25 is an insulating film, for example, the second isolation film 25 is a "blue film”.
  • the battery cell 20 further includes a second end cover 212 , and the second end cover 212 is opposite to the first end cover 211 along the first direction.
  • the first end cover 211 also includes an insulating piece 2112 and an end cover piece 2113.
  • the insulating piece 2112 is used to isolate the end cover piece 2113 and the electrode assembly 22.
  • the insulating piece 2112 and the first clamping structure 2111 are integrally formed. structure.
  • the insulating member 2112 is used to achieve electrical insulation between the end cover piece 2113 and the body part 222 of the electrode assembly 22, thereby reducing the risk of short circuit.
  • the insulating member 2112 and the first clamping structure 2111 are an integrally formed structure, which is conducive to processing.
  • the end cover piece 2113 can be made of metal and can conduct electricity, and the first electrode terminal 211a is provided on the end cover piece.
  • the insulator 2112 is disposed between the end cover piece and the main body portion 222 of the electrode assembly 22 to achieve electrical insulation between the end cover piece and the main body portion 222 .
  • the first clamping structure 2111 and the second clamping structure 213 may be made of electrically insulating materials to ensure electrical insulation between the body part 222 of the electrode assembly 22 and the end cover 2113 .
  • the first end cap 211 is provided with a plurality of first engaging structures 2111
  • the tab bracket 23 is provided with a plurality of second engaging structures 231 corresponding to the plurality of first engaging structures 2111 . In this way, it is beneficial to enhance the firmness of the connection between the first clamping structure 2111 and the second clamping structure 231.
  • Multiple in the embodiments of this application refers to two or more than two.
  • the first end cover 211 is provided with two first snap-in structures 2111.
  • the two first snap-in structures 2111 2111 are respectively located at both ends of the first end cover 211 in the second direction; correspondingly, the tab bracket 23 is provided with two second snap-in structures 231 .
  • the battery cell 20 includes: an electrode assembly 22, a casing 210, a first end cover 211, a second end cover 212, a first isolation film 24, a second isolation film 25 and an electrode. Ear supports 23.
  • the pole bracket 23 is provided with an opening structure 60 , and the opening structure 60 includes a first fixing part 63 , a guide part 61 and a slot part 62 that are sequentially connected along the first direction.
  • the first end cap 211 is provided with a protruding structure 50 protruding toward the electrode assembly 22.
  • the protruding structure 50 is sequentially provided with a second fixing part 51, a transition part 53 and a buckling part 52 along the first direction.
  • the buckle portion 52 can be clipped into the groove portion 62 under the action of the guide portion 61 It is engaged with the slot portion 62 and the second fixing portion 511 abuts the first fixing portion 63 , thereby realizing the connection between the first end cover 211 and the tab bracket 23 and the fixation in the second direction and the first direction.
  • the first direction is the thickness direction of the first end cap 211
  • the second direction is the length direction of the first end cap 211 .
  • the positions of the first end cover 211 and the case 210 are fixed, and the electrode assembly 22 equipped with the tab bracket 23 is installed into the case 210 through the second opening 220a.
  • the second clamping structure 231 cooperates with the first clamping structure 2111 of the first end cover 211 to realize the connection between the first end cover 211 and the tab bracket 23 or the electrode assembly 22 .
  • the expansion space of the electrode assembly 22 is reserved in the housing 210 . Therefore, after the electrode assembly 22 equipped with the tab bracket 23 is installed into the housing 210 , the tab bracket 23 may move along the first end cover 211 along the first end cover 211 .
  • the two directions shift, causing the opening structure 60 and the protruding structure 50 to shift relative to each other.
  • the guide portion 61 guides the protruding structure 50 into the opening structure 60 , thereby realizing the engagement between the opening structure 60 and the protruding structure 50 .
  • the assembly steps of the battery cell 20 are briefly described below.
  • the electrode assembly 22, the tab bracket 23, the first isolation film 24 and the second end cap 212 are connected together to form a whole.
  • the first isolation film 24 is wrapped on the outer surface of the electrode assembly 22, and then the first isolation film 24 is connected to the second end cap 212 and the tab bracket 23 by heat melting to form a whole body.
  • the tab 221 can be passed through the slot 601 corresponding to the tab 221 on the tab bracket 23 so that the tab bracket 23 supports the tab 221 .
  • the whole body is put into the housing 210 through the second opening 220a.
  • the tab bracket 23 is connected to the first end cover 211
  • the first end cover 211 is connected to the housing 210.
  • the embodiment of the present application provides a battery 10 including the battery cell 20 described in any one of the above embodiments.
  • the battery 10 may also include a box 11 for accommodating the battery cells 20 .
  • the embodiment of the present application provides an electrical device, including the battery 10 of the above embodiment.
  • the battery 10 is used to provide power to electrical equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请实施例提供一种电池单体,电池和用电设备。电池单体包括:电极组件,包括本体部和从本体部延伸出的极耳;壳体,用于容纳电极组件,壳体设置有第一开口;第一端盖,用于盖合第一开口;极耳支架,位于第一端盖和本体部之间,极耳支架用于支撑极耳;第一端盖设置有第一卡接结构,极耳支架设置有第二卡接结构,第一卡接结构和第二卡接结构卡接。本申请实施例的技术方案可以提高电池单体的可靠性。

Description

电池单体、电池和用电设备
相关申请的交叉引用
本申请要求享有于2022年8月19日提交的名称为“电池单体、电池和用电设备”的国际申请PCT/CN2022/113651的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池和用电设备。
背景技术
随着环境污染的日益加剧,新能源产业越来越受到人们的关注。在新能源产业中,电池技术是关乎其发展的一项重要因素。
电池技术的发展需要考虑多方面的设计因素,例如,能量密度、循环寿命、可靠性能等,其中,电池单体的结构对于电池的可靠性能至关重要。因此,如何提供一种电池单体以提高电池的可靠性是一项亟待解决的技术问题。
发明内容
本申请提供了一种电池单体、电池和用电设备,可以提高电池的可靠性。
第一方面,提供了一种电池单体,包括:电极组件,包括本体部和从所述本体部延伸出的极耳;壳体,用于容纳所述电极组件,所述壳体设置有第一开口;第一端盖,用于盖合所述第一开口;极耳支架,位于所述第一端盖和所述本体部之间,所述极耳支架用于支撑所述极耳;所述第一端盖设置有第一卡接结构,所述极耳支架设置有第二卡接结构,所述第一卡接结构和所述第二卡接结构卡接。
在本申请实施例中,电池单体包括电极组件,壳体,第一端盖和极耳支架。在该电池单体中,电极组件包括本体部和从本体部延伸出的极耳,壳体具有第一开口并用于容纳电极组件,第一端盖用于盖合第一开口,极耳支架位于第一端盖和本体部之间并用于支撑极耳。这样,可以降低由于极耳过长导致的极耳倒插进入电极组件引 起的短路等问题,有利于提高电池的可靠性。第一端盖设置有第一卡接结构,极耳支架设置有第二卡接结构,第一卡接结构与第二卡接结构卡接,从而第一卡接结构和第二卡接结构固定连接,极耳支架与第一端盖固定连接。这样,在电池单体发生晃动或者倒置等现象的情况下,由于极耳支架固定于第一端盖上,极耳支架在电池单体的内部发生松动或位置移动的风险降低,从而可以提高电池单体的可靠性。
在一种可能的实现方式中,第一卡接结构为沿第一方向朝向所述电极组件凸出的凸出结构,所述第二卡接结构为与所述凸出结构对应的开口结构,其中,所述第一方向为所述第一端盖的厚度方向。
在第一端盖上设置朝向电极组件凸出的凸出结构,在极耳支架上设置与凸出结构对应的开口结构,凸出结构可以卡入开口结构,从而实现凸出结构与开口结构的卡接。此外,凸出结构和开口结构便于加工,有利于降低生产的复杂度。
在一种可能的实现方式中,所述开口结构包括导向部,从所述导向部的第一端到所述导向部的第二端,所述导向部的径向尺寸逐渐减小,其中,沿第一方向,所述导向部的第一端相对于所述导向部的第二端远离所述电极组件,所述第一方向为所述第一端盖的厚度方向。这样,导向部可以引导凸出结构沿导向部卡入开口结构。
在一种可能的实现方式中,所述凸出结构、所述导向部、所述壳体及所述极耳支架满足:D1-d1≥K’;其中,D1为所述导向部的第一端的径向尺寸;d1为所述凸出结构的第一端处的径向尺寸,所述凸出结构的第一端为沿所述第一方向所述凸出结构靠近所述电极组件的一端;K’为沿第二方向,所述壳体与所述极耳支架之间的间隙之和,所述第二方向为所述第一端盖的长度方向。
在该实现方式中,通过合理配置D1-d1与K’之间的关系,在极耳支架与第一端盖在第二方向发生较大相对偏移时,导向部能够引导凸出结构进入开口结构。
在一种可能的实现方式中,所述凸出结构、所述导向部、所述壳体及所述极耳支架满足:D1-d1≥W0-W1;其中,D1为所述导向部的第一端的径向尺寸;d1为所述凸出结构的第一端处的径向尺寸,所述凸出结构的第一端为沿所述第一方向所述凸出结构靠近所述电极组件的一端;W0为沿第二方向,所述壳体的内壁之间的距离;W1为沿所述第二方向,所述极耳支架的尺寸,所述第二方向为所述第一端盖的长度方向。
在该实现方式中,D1-d1之间的差值较大,从而在极耳支架与第一端盖在第二方向发生较大的偏移时,导向部能够引导凸出结构卡入开口结构,实现凸出结构与开口结构的卡接。
在一种可能的实现方式中,所述开口结构还包括卡槽部,沿所述第一方向,所述卡槽部与所述导向部的第二端相连,所述卡槽部与所述凸出结构卡接。这样,凸出结构卡入卡槽部中,可以实现在第一方向上开口结构与凸出结构之间的限位,实现第一端盖与极耳支架在第一方向上的固定。
在一种可能的实现方式中,所述卡槽部包括限位部和容纳部,所述容纳部相对于所述限位部靠近所述电极组件,所述限位部的径向尺寸D2小于所述容纳部的径向尺寸D3。这样,限位部与容纳部形成台阶结构,在凸出结构进入容纳部后,凸出结构可以部分容纳于容纳部中,限位部可以限制凸出结构沿第一方向移动,以降低凸出结构从容纳部脱出的风险。
在一种可能的实现方式中,所述开口结构还包括第一固定部,所述第一固定部与所述导向部的第一端相连,所述第一固定部的径向尺寸与所述导向部的第一端的径向尺寸D1相同。这样,在凸出结构卡入开口结构中的情况下,第一固定部与凸出结构之间可以在第二方向上固定,从而限制极耳支架与第一端盖在第二方向上发生相对移动。
在一种可能的实现方式中,所述导向部与所述第一方向之间的夹角小于45°。这样,便于导向部引导凸出结构卡入开口结构。
可选地,所述导向部与所述第一方向之间的夹角大于等于30°。这样,夹角具有较为合适的数值,导向部在第一方向上具有合适的高度,同时还便于导向部引导凸出结构卡入开口结构。
在一种可能的实现方式中,所述凸出结构包括第二固定部和卡扣部,所述卡扣部相对于所述第二固定部靠近所述电极组件,所述卡扣部与所述开口结构的卡槽部卡接,所述第二固定部与所述开口结构的第一固定部抵接。
在该实现方式中,卡扣部与卡槽部卡接,从而可以限制凸出结构和开口结构在第一方向上的相对移动;第一固定部与第二固定部抵接,从而可以限制凸出结构和开口结构在第二方向上的相对移动。
在一种可能的实现方式中,沿所述第一方向,所述第二固定部的尺寸小于或等于所述第一固定部的尺寸。这样,便于将第二固定部固定于第一固定部中。
在一种可能的实现方式中,沿所述第一方向,所述第二固定部的尺寸大于0.8mm,和/或,所述第一固定部的尺寸大于0.8mm。这样,第一固定部和第二固定部在第一方向的尺寸较大,第一固定部和第二固定部之间的接触面积较大,有利于增加第一固定部和第二固定部之间的连接强度。
在一种可能的实现方式中,沿所述第一方向,所述第二固定部的尺寸h1满足:0.8mm<h1≤1.4mm,和/或,所述第一固定部的尺寸h2满足:0.8mm<h2≤1.4mm。这样,第一固定部和第二固定部在第一方向上具有合适的尺寸,同时第一固定部和第二固定部之间具有合适的连接强度。
在一种可能的实现方式中,所述卡扣部包括连接部和卡接部,所述卡接部相对于所述连接部靠近所述电极组件,所述卡接部的最大径向尺寸大于所述连接部的最大径向尺寸,所述卡接部与所述卡槽部卡接。这样,卡接部可以卡接在卡槽部中,降低卡接部从卡槽部中脱出的风险。
在一种可能的实现方式中,所述卡扣部设置有变形槽,所述变形槽从所述卡扣部靠近所述电极组件的一端沿所述第一方向延伸。这样,变形槽在卡接部进入卡槽部时变形,以使所述卡接部卡入所述卡槽部。当卡扣部经过限位部时,卡扣部在第二方向的尺寸可以变小,从而卡扣部可以进入容纳部,实现卡扣部与卡槽部的卡接。
在一种可能的实现方式中,所述卡槽部,所述卡扣部与所述变形槽满足:d3>D2>d3-d4;其中,d3为所述卡接部的最大径向尺寸;D2为所述限位部的最大径向尺寸,d4为所述变形槽的最大径向尺寸。这样,既有利于卡扣部卡入卡槽部,又可以降低卡扣部从卡槽部脱出的风险。
在一种可能的实现方式中,所述卡扣部与所述卡槽部满足:d3-D2>0.5mm。这样,卡扣部和卡槽部有较多的重合区域,有利于降低卡扣部从卡槽部脱出的风险。
在一种可能的实现方式中,所述卡槽部,所述卡扣部与所述变形槽满足:D2-d3+d4>0.2mm。这样,卡槽部和卡扣部之间有较大的间隙,有利于卡扣部嵌入卡槽部。
在一种可能的实现方式中,所述凸出结构还包括过渡部,沿所述第一方向,所述过渡部分别与所述第二固定部和所述卡扣部连接。这样,通过过渡部的设置,可以将第二固定部和卡扣部连接在一起。
在一种可能的实现方式中,沿所述第一方向,所述凸出结构的尺寸小于或等于所述开口结构的尺寸。这样,在凸出结构与开口结构卡接后,凸出结构不会凸出于开口结构,从而可以降低凸出结构超出开口结构导致的损伤电极组件的风险。
在一种可能的实现方式中,所述第一卡接结构和所述第二卡接结构的横截面为圆形。这样,在电池单体的长度方向和宽度方向均可以实现对第一卡接结构和第二卡接结构的装配和限位。
在一种可能的实现方式中,所述极耳支架设置有沿第二方向延伸的槽,所述极耳被配置为穿过所述槽与所述第一端盖连接。这样,极耳可以穿过极耳支架的槽与第一端盖连接,从而可以通过极耳支架的槽实现对极耳的限位与固定。
在一种可能的实现方式中,所述电池单体还包括第一隔离膜,所述第一隔离膜套设于所述电极组件的外表面并位于所述壳体内。通过第一隔离膜的设置,可以将电极组件与壳体隔离开,降低电极组件与壳体接触发生的短路的风险;此外,还可以通过隔离膜将极耳支架与电极组件连接,从而便于电池单体的组装。
在一种可能的实现方式中,所述电池单体还包括第二隔离膜,所述第二隔离膜套设于所述壳体的外表面。第二隔离膜可以起到保护电池单体和使电池单体与外部环境绝缘的作用,有利于提高电池单体的可靠性。
在一种可能的实现方式中,所述第一端盖设置有多个所述第一卡接结构,所述极耳支架设置有与多个所述第一卡接结构对应设置的多个第二卡接结构。这样,有利于增加极耳支架和第一端盖之间的连接强度。
在一种可能的实现方式中,所述第一端盖还包括绝缘件和端盖片,所述绝缘件用于隔离所述端盖片和所述电极组件,所述绝缘件与所述第一卡接结构为一体成型结构。这样,便于第一卡接结构和绝缘件的加工。
在一种可能的实现方式中,所述电池单体还包括第二端盖,所述第二端盖与所述第一端盖沿第一方向相对设置,所述第一方向为所述第一端盖的厚度方向。
第二方面,提供了一种电池,包括如第一方面及其中任一项可能的实施方式所述的电池单体。
第三方面,提供了一种用电设备,包括第二方面所述的电池。
在本申请实施例中,电池单体包括电极组件,壳体,第一端盖和极耳支架。在该电池单体中,电极组件包括本体部和从本体部延伸出的极耳,壳体具有第一开口并用于容纳电极组件,第一端盖用于盖合第一开口,极耳支架位于第一端盖和本体部之间并用于支撑极耳。这样,可以降低由于极耳过长导致的极耳倒插进入电极组件引起的短路等问题,有利于提高电池的可靠性。第一端盖设置有第一卡接结构,极耳支架设置有第二卡接结构,第一卡接结构与第二卡接结构卡接,从而第一卡接结构和第二卡接结构固定连接,极耳支架与第一端盖固定连接。这样,在电池单体发生晃动或者倒置等现象的情况下,由于极耳支架固定于第一端盖上,极耳支架在电池单体的内部发生松动或位置移动的风险降低,从而可以提高电池单体的可靠性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例的一种车辆的结构示意图;
图2是本申请一实施例的一种电池的结构示意图;
图3是本申请一实施例的一种电池单体的结构示意图;
图4是本申请一实施例的第一端盖的结构示意图;
图5是本申请一实施例的极耳支架的结构示意图;
图6是图3中的电极组件的部分结构的放大示意图;
图7是本申请一实施例的极耳支架的俯视图;
图8是图7中的极耳支架的沿C-C方向的剖视图;
图9是图8中的开口结构的剖视图;
图10是图4中的凸出结构的放大的结构示意图;
图11是本申请一实施例的电池单体的左视图;
图12是图11中的电池单体的沿A-A方向的剖视图;
图13是图12中的区域D的放大示意图;
图14是图12中的区域B的放大的结构示意图。
在附图中,附图并未按照实际的比例绘制。
附图标记:
1:车辆;10:电池;30:控制器;40:马达;11:箱体。
20:电池单体;210:壳体;211:第一端盖;212:第二端盖;22:电极组件;23:极
耳支架;24:第一隔离膜;25:第二隔离膜;210a:第一开口;220a:第二开口;211a:第一电极端子;212a:第二电极端子;221:极耳;221a:弯折部;222:本体部;601:槽;210b:内壁;2112:绝缘件;2113:端盖片。
2111:第一卡接结构;50:凸出结构;51:第二固定部;52:卡扣部;53:过渡部;
521:连接部;522:卡接部;523:变形槽;5221:第一部分;5222:第二部分。
231:第二卡接结构;60:开口结构;61:导向部;62:卡槽部;63:第一固定部;
621:限位部;622:容纳部。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个及以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连 接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成柱形电池单体、方体方形电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
为了满足不同的电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。可选地,多个电池单 体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。电池再进一步设置于用电设备中,为用电设备提供电能。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率、安全性等,其中,电池单体的结构对于电池的性能至关重要。电池单体包括电极组件,端盖和壳体,电极组件中的极耳与端盖连接。为了便于端盖与极耳之间的连接,极耳的长度较长,而极耳的长度较长的情况下,极耳或极耳弯折后容易倒插入电极组件,从而引起短路。
为了解决上述短路问题,在电极组件的极耳与端盖之间设置了极耳支架以支撑极耳。在极耳与端盖的装配过程中,极耳支架紧贴极耳的根部以使极耳的弯折部位于极耳支架和端盖之间,之后再使极耳的弯折部与端盖连接。然而,在极耳支架卡住极耳的弯折部之后,并未对极耳支架进行固定,极耳支架在电池单体内的位置不稳定。在电池单体受到震动等情况下,极耳支架容易发生移动,从而影响极耳的支撑效果,不利于电池单体的可靠性的提高。
有鉴于此,本申请实施例提供一种电池单体。在该电池单体中,第一端盖上设置有第一卡接结构,极耳支架上设置有第二卡接结构,第一卡接结构与第二卡接结构卡接。这样,极耳支架与第一端盖之间固定连接,从而可以降低极耳支架的位置发生移动的风险,有利于提高电池单体的可靠性。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于 车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体。例如,如图2所示,为本申请一个实施例的一种电池的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体11,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。例如,多个电池单体20相互并联或串联或混联组合后置于箱体11内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体11而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。电池可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方式进行连接。
图3为本申请一实施例的电池单体的结构示意图。在本申请一实施例中,如图3所示,电池单体20包括电极组件22,壳体210,第一端盖211,和极耳支架23。
电极组件22包括本体部222和从本体部222延伸出的极耳221。
电极组件22的本体部222通过极耳221实现和第一端盖211上的第一电极端子211a的电连接。
可选地,极耳221沿第一端盖211的厚度方向从本体部222延伸出来。极耳221可以包括正极耳和负极耳,其中,正极耳和负极耳可以从本体部222的同一端延伸出来,也可以从本体部222的不同端延伸出来。例如,正极耳沿第一端盖211的厚度方向,从本体部222的靠近第一端盖211的一端延伸出来,负极耳沿第一端盖211的厚度方向,从本体部222的远离第一端盖211的一端延伸出来。正极耳和负极耳的相对位置 可以根据实际需求具体设置,本申请实施例包括但不限于此。
壳体210设置有第一开口210a并用于容纳电极组件22。其中,第一开口210a可以设置在壳体210沿第一方向靠近第一端盖211的一端,第一方向为第一端盖211的厚度方向。例如,如图3所示,第一方向为z方向。
壳体210的形状可以根据一个或多个电极组件22组合后的形状而定,例如,如图3所示,壳体210为中空的长方体。本申请实施例包括但不限于此,壳体210还可以为中空的正方体、圆柱体或其他形状。
图4为本申请一实施例的第一端盖的结构示意图。结合图3和图4所示,在电池单体20为方形电池单体的情况下,第一端盖211可以为平板状,第一端盖211用于盖合第一开口210a,以实现对第一开口210的密封,从而将壳体210内的电极组件22与外界隔离。
第一端盖211设置有第一电极端子211a,电极组件22的极耳221与第一电极端子211a电连接。
电池单体20还可以包括第二端盖212,第二端盖212与第一端盖211沿第一方向相对设置。在电池单体20中,壳体210设置有第二开口220a,第二开口220a设置在壳体210的沿第一方向靠近第二端盖212的一端,第二端盖212用于盖合第二开口220a。
可选地,如图3所示,第二端盖212设置有第二电极端子212a,第二电极端子212a与靠近第二开口220a的极耳(图中未示出)电连接。作为一种示例,第二端盖212可以具有与第一端盖211相同的结构,即第二端盖212设置有与第一卡接结构相同的结构。作为另一种示例,第二端盖212具有与第一端盖211不同的结构,第二端盖212未设置有与第一卡接结构相同的结构;对应地,靠近第二开口220a的极耳的长度小于靠近第一开口210a的极耳221的长度(例如,靠近第二开口220a的极耳未经过弯折并且长度较短)。
可选地,第二端盖212未设置有电极端子,第一端盖211设置有第一电极端子211a和与第一电极端子211a极性相反的电极端子。
图5为本申请一实施例的极耳支架的结构示意图,图6为图3中的电极组件的部分结构的放大示意图。结合图3,图5和图6所示,极耳支架23设置于本体部222和第一端盖211之间,极耳支架23用于支撑极耳221。具体地,极耳支架23用于支撑 极耳221的弯折部221a。
极耳支架23的设置可以降低极耳221倒插入电极组件22导致短路的风险。
结合图4和图5所示,第一端盖211设置有第一卡接结构2111,极耳支架23设置有第二卡接结构231,第一卡接结构2111和第二卡接结构231卡接。这样,极耳支架23与第一端盖211固定连接,在电池单体20发生晃动、倒置等现象时,极耳支架23的位置发生移动的风险降低,从而可以降低极耳支架23发生移动时对极耳22的支撑作用减弱或极耳支架23拉扯极耳22的风险,有利于提高电池单体20的可靠性。
本申请实施例提供了一种电池单体20,该电池单体20包括:电极组件22,壳体210,第一端盖211和极耳支架23。电极组件22包括本体部222和从本体部222延伸出的极耳221。壳体210具有第一开口210a并用于容纳电极组件22,第一端盖211用于盖合第一开口210a,极耳支架23位于第一端盖211和本体部222之间并用于支撑极耳221。这样,可以避免由于极耳221过长导致的极耳221倒插进入电极组件22引起的短路等问题,有利于提高电池的可靠性能。第一端盖211设置有第一卡接结构2111,极耳支架23设置有第二卡接结构231,第一卡接结构2111与第二卡接结构231卡接可以实现第一端盖211与极耳支架23的固定连接。这样,在电池单体20发生晃动或者倒置等现象的情况下,由于极耳支架23固定于第一端盖211上,极耳支架23在电池单体20的内部发生松动或位置移动的风险降低,从而可以提高电池单体20的可靠性。
在本申请一实施例中,第一卡接结构2111为沿第一方向朝向电极组件22凸出的凸出结构50,第二卡接结构231为与凸出结构50对应的开口结构60,第一方向为第一端盖211的厚度方向。
第一方向可以为图3至图5中的z方向。凸出结构50相对于第一端盖211沿z方向朝向电极组件22凸出,开口结构60的位置与凸出结构50的位置相对应。
开口结构60可以沿第一方向贯穿极耳支架23也可以不贯穿极耳支架23,也就是说,开口结构60可以为朝向电极组件22凹陷的凹槽,也可以为通孔。
在该实施例中,通过凸出结构50和与凸出结构对应的开口结构60,实现了第一卡接结构2111与第二卡接结构231的卡接。此外,凸出结构50和开口结构60便于加工制作,有利于降低生产的复杂度。
在一些其他实施例中,第二卡接结构231为远离电极组件22凸出的凸出结 构,第一卡接结构2111为与凸出结构对应的开口结构。在本申请实施例中,可以根据实际需要设置第一卡接结构2111或第二卡接结构231为凸出结构,第二卡接结构231或第一卡接结构2111为与凸出结构对应的开口结构。
图7为本申请一实施例的极耳支架的俯视图,图8为图7中的极耳支架的沿C-C方向的剖视图,图9为图8中的开口结构的剖视图。在本申请一实施例中,结合图7至图9所示,开口结构60包括导向部61,从导向部61的第一端到导向部61的第二端,导向部61的径向尺寸逐渐减小。
沿第一方向,导向部61的第一端相对于导向部61的第二端远离电极组件22,第一方向为第一端盖211的厚度方向。
导向部61的第一端的径向尺寸最大,这样,在将第一端盖211与极耳支架23组装的过程中,便于导向部61引导凸出结构50卡入开口结构60。
导向部61的形状可以为圆台形或棱台形,导向部61的径向尺寸为导向部61在xoz平面上的投影沿x方向的尺寸。例如,当导向部61为圆台形的导向部时,导向部61的径向尺寸为导向部61的直径。再例如,当导向部61位棱台形的导向部时,导向部61的径向尺寸为,导向部在xoz平面上的投影的沿x方向的最大尺寸。
导向部61的径向尺寸为导向部61沿第二方向的尺寸,在第一方向的不同位置处,导向部61具有不同的径向尺寸。例如,结合图9所示,导向部61在第一端处的径向尺寸为D1,在第二端处的径向尺寸为D2。其中,第二方向为第一端盖211的长度方向。
如图9所示,第二方向为x方向。第二方向可以垂直于第一方向,并且,第一端盖211在长度方向的尺寸大于其在宽度方向的尺寸,宽度方向可以为图3中的y方向。
在组装极耳支架23与第一端盖211的过程中,极耳支架23与第一端盖211在第二方向上发生相对偏移时,在导向部61的作用下,导向部61可以引导凸出结构50沿导向部61卡入开口结构60。也就是说,导向部61可以引导凸出结构50沿第二方向移动,以使凸出结构50移动至合适的位置,从而可以使凸出结构50沿导向部61逐渐卡入开口结构60。
图10为图4中的凸出结构的放大的结构示意图,图11为本申请一实施例的电池单体的左视图,图12为图11中的电池单体的沿A-A方向的剖视图,图13为图12 中的区域D的放大示意图,图14为图12中的区域B的放大的结构示意图。在本申请一实施例中,结合图8至图14所示,凸出结构50、导向部61、壳体210及极耳支架23满足:D1-d1≥K’。
D1为导向部61的第一端的径向尺寸;d1为凸出结构50的第一端处的径向尺寸,凸出结构50的第一端为沿第一方向凸出结构50靠近电极组件22的一端;K’为沿第二方向,壳体210与极耳支架23之间的间隙之和,第二方向为第一端盖211的长度方向。
沿第二方向,壳体210与极耳支架23之间还可以设置有其它结构。例如,如图14所示,壳体210与极耳支架23之间还设置有第一隔离膜24。在这种情况下,壳体210与极耳支架23之间的间隙k为第一隔离膜24与壳体210的内壁210b之间的距离。这里的间隙指的是,沿第二方向,壳体210与极耳支架23之间没有填充物质的距离。
可选地,沿第二方向,第一隔离膜24和极耳支架23之间还设置有结构胶。
图14示出了沿第二方向的一端的间隙k,在第二方向的另一端,也同样存在间隙。在开口结构60和凸出结构50沿第二方向对称设置的情况下,K’=2k。
在该实施例中,通过设置凸出结构50,导向部61,壳体210和极耳支架23之间的尺寸关系,在极耳支架23与第一端盖211在第二方向发生相对较大的偏移,甚至极耳支架23完全偏移至第一端盖211在第二方向的一端时,导向部61能够引导凸出结构50进入开口结构60。
在一些实施例中,凸出结构50、导向部61、壳体210及极耳支架23满足:D1-d1≥W0-W1。
D1为导向部61的第一端的径向尺寸;d1为凸出结构50的第一端处的径向尺寸,凸出结构50的第一端为沿第一方向凸出结构50靠近电极组件22的一端;W0为沿第二方向,壳体210的内壁210b之间的距离;W1为沿第二方向,极耳支架23的尺寸,第二方向为第一端盖211的长度方向。
W0可以为沿第二方向,壳体210的内壁210b之间的最大距离;W1可以为第二方向,极耳支架23的最大尺寸。
壳体210的内壁210a为壳体210朝向电极组件22的壁。
在该实施例中,通过设置凸出结构50,导向部61,壳体210和极耳支架23 之间的尺寸关系,在极耳支架23与第一端盖211在第二方向发生相对偏移时,进一步便于导向部61引导凸出结构50进入开口结构60。
沿第二方向,在极耳支架23与壳体210之间设置有第一隔离膜24等结构的情况下,K’小于W0-W1。根据电池单体20的不同设置以及装配工艺的不同,K’=a×(W0-W1),a为0.4~1。例如,a为0.4,0.5,0.8或上述范围内的任意值。
可选地,a为0.5~0.6,可以使导向部61和凸出结构50的尺寸处于更合适的范围内,有利于导向部61和凸出结构50的加工及装配。
可选地,沿第二方向,壳体210的外壁之间的距离与第一端盖211的尺寸相同。
可选地,沿第二方向,电极组件22的尺寸与极耳支架23的尺寸相同。
在一些实施例中,结合图9所示,开口结构60还包括卡槽部62,沿第一方向,卡槽部62与导向部61的第二端相连,凸出结构50与卡槽部62卡接。
卡槽部62设置在开口结构60的第一端,开口结构60的第一端为开口结构60沿第一方向靠近电极组件22的一端。
卡槽部62与导向部61沿第一方向连接并相通,在导向结构61的作用下,凸出结构50可以沿导向部61进入卡槽部62并与卡槽部62卡接。这样,在凸出结构50与卡槽部62卡接后,凸出结构50与开口结构60在第一方向上的位置固定,即,实现了在第一方向上的凸出结构50与开口结构60的限位,从而实现了第一端盖211与极耳支架23在第一方向上的固定。
在一些实施例中,卡槽部62包括限位部621和容纳部622,容纳部622相对于限位部621靠近电极组件22,限位部621的径向尺寸D2小于容纳部622的径向尺寸D3。
限位部621的径向尺寸D2为限位部621沿第二方向的最大尺寸,容纳部622的径向尺寸D3为容纳部622沿第二方向的尺寸。
作为一种示例,限位部621和容纳部622均为柱形的凹槽,沿第一方向的不同位置,限位部621和容纳部622具有相同的径向尺寸。
限位部621和容纳部622在第一方向上连接并相通,容纳部622相对于限位部621靠近电极组件,并且限位部621的径向尺寸D2小于容纳部622的径向尺寸D3,从而限位部621与容纳部622形成台阶结构。这样,在凸出结构50进入卡槽部62后, 凸出结构50可以部分容纳于容纳部622中,并且限位部621可以限制凸出结构50沿第一方向移动,以减小凸出结构50从容纳部622脱出的风险。
在一些实施例中,开口结构60还包括第一固定部63,第一固定部63与导向部61的第一端相连,第一固定部63的径向尺寸与导向部61的第一端的径向尺寸D1相同。
第一固定部63与导向部61的第一端相连,这样,第一固定部63与导向部61连通,并且在连接处,第一固定部63和导向部61具有相同的径向尺寸。作为一种示例,第一固定部63为圆柱形的凹槽,沿第一方向的不同位置,第一固定部63具有相同的径向尺寸。这样,通过第一固定部63的设置,便于凸出结构50与第一固定部63抵接,从而便于实现第二方向上,凸出结构50与第一固定部63之间的固定。
可选地,第一固定部63的靠近导向部61的一端设置有圆角结构,这样,可以减少第一固定部63与凸出结构50之间的干涉。
在该实施例中,在凸出结构50卡入开口结构60中的情况下,第一固定部63与凸出结构50之间可以在第二方向上实现固定,从而限制极耳支架23与第一端盖211在第二方向上发生相对移动。
在一些实施例中,导向部61与第一方向之间的夹角α小于45°。这样,便于导向部61引导凸出结构50卡入开口结构60。
在一些实施例中,导向部61与第一方向之间的夹角α满足:30°≤α<45°。
夹角α越小,越有利于导向部61引导凸出结构50进入开口结构60。在导向部61的径向尺寸一定的情况下,夹角α越小,导向部61在第一方向的尺寸越大。通过设置30°≤α<45°,α具有较为合适的数值,导向部61在第一方向上具有合适的高度,同时还便于导向部61引导凸出结构50卡入开口结构60。
在一些实施例中,结合图10所示,凸出结构50包括第二固定部51和卡扣部52,卡扣部52相对于第二固定部51靠近电极组件22,卡扣部52与开口结构60的卡槽部62卡接,第二固定部51与开口结构60的第一固定部63抵接。
第二固定部51可以直接和卡扣部52连通,也可以通过其他部件与卡扣部52连通。在第二固定部51和卡扣部52直接连通的情况下,第二固定部51和卡扣部52形成台阶结构。
在该实施例中,卡扣部52与卡槽部62卡接,从而可以限制凸出结构50和 开口结构60在第一方向上的相对移动;第一固定部63与第二固定部51抵接,从而可以限制凸出结构50和开口结构60在第二方向上的相对移动。这样,极耳支架23和第一端盖211在第一方向和第二方向均固定连接,可以降低因电池单体20晃动等因素导致极耳支架23在电池单体20的内部晃动或移动的风险。
在一些实施例中,沿第一方向,第二固定部51的尺寸h1小于或等于第一固定部63的尺寸h2。这样,便于将第二固定部51固定于第一固定部63中。
第二固定部51的尺寸h1为第二固定部51沿第一方向上的最大尺寸,第一固定部63的尺寸h2为第一固定部63沿第一方向上的最大尺寸。
作为一种示例,第二固定部51的尺寸h1等于第一固定部63的尺寸h2,并且第一固定部63在第一方向上靠近电极组件的一端设置有圆角。这样,第二固定部51和第二固定部63既可以在第二方向上固定连接,又可以降低第二固定部51和第二固定部63发生干涉的风险。
作为一种示例,第二固定部51的尺寸h1小于第一固定部63的尺寸h2。这样,可以减少第二固定部51悬空而导致第二固定部51与第一固定部63之间的连接强度降低的风险。
在一些实施例中,沿第一方向,第二固定部51的尺寸h1大于0.8mm,和/或,第一固定部63的尺寸h2大于0.8mm。这样,第一固定部63和第二固定部51在第一方向的尺寸较大,第一固定部63和第二固定部51之间的接触面积较大,有利于增加第一固定部63和第二固定部51之间的连接强度。
在一些实施例中,沿第一方向,第二固定部51的尺寸h1满足:0.8mm<h1≤1.4mm,和/或,第一固定部63的尺寸h2满足:0.8mm<h2≤1.4mm。这样,第一固定部63和第二固定部51在第一方向上具有合适的尺寸,同时第一固定部63和第二固定部51之间具有合适的连接强度。
h1可以为0.85mm,1mm,1.2mm,1.4mm或上述范围内的任意值;h2可以为0.85mm,1mm,1.2mm,1.4mm或上述范围内的任意值。
作为一种示例,h1为1.4mm,h2为1.4mm。
在一些实施例中,卡扣部52包括连接部521和卡接部522,卡接部522相对于连接部521靠近电极组件22,卡接部522的最大径向尺寸d3大于连接部521的最大径向尺寸d2,卡接部522与卡槽部62卡接。这样,卡接部522可以卡接在卡槽部62 中,降低卡接部522从卡槽部62中脱出的风险。
作为一种示例,连接结构521在第一方向的不同位置具有相同的径向尺寸;卡接部522包括第一部分5221和第二部分5222,第二部分5222相对于第一部分5221靠近电极组件22,在第一方向上,沿指向电极组件22的方向,第二部分5222的径向尺寸逐渐减小。
在一些实施例中,卡扣部52设置有变形槽523,变形槽523从卡扣部52靠近电极组件22的一端沿第一方向延伸。这样,变形槽523在卡接部522进入卡槽部62时变形,以使卡接部522卡入卡槽部62。当卡扣部52经过限位部时,卡扣部52在第二方向的尺寸可以变小,从而卡扣部52可以进入容纳部,实现卡扣部52与卡槽部62的卡接。
在一些实施例中,卡槽部62,卡扣部52与变形槽523满足:d3>D2>d3-d4。其中,d3为卡接部522的最大径向尺寸;D2为限位部621的最大径向尺寸,d4为变形槽523的最大径向尺寸。
d4可以为变形槽523的沿第二方向相对设置的两个槽壁面之间的最大距离。
卡接部522的最大径向尺寸d3大于限位部621的最大径向尺寸,这样,在卡接部522卡入卡槽部62后,卡接部522不会从卡槽部62脱出;D2>d3-d4,这样,在变形槽发生变形后,卡接部522可以经过限位部621进入卡槽部62。通过设置d3>D2>d3-d4,卡接部522既可以进入卡槽部62中,又不会从卡槽部62中脱出。
可选地,容纳部622的最大径向尺寸D3大于卡接部522最大径向尺寸d3,这样,卡接部522可以在变形槽523不发生变形的状态下容纳于容纳部622中。
在一些实施例中,卡扣部52与卡槽部62满足:d3-D2>0.5mm。这样,卡扣部52与卡槽部62在第二方向有较多的重合区域,从而卡扣部52不易从卡槽部62脱离。
在一些实施例中,卡槽部62,卡扣部52与变形槽523满足:D2-d3+d4>0.2mm。这样,可以减少限位部621的径向尺寸过小导致的卡扣部52不易嵌入卡槽部62的情况,有利于卡扣部52嵌入卡槽部62。
在一些实施例中,凸出结构50还包括过渡部53,沿第一方向,过渡部53分别与第二固定部51和卡扣部52连接。
作为一种示例,在第一方向,沿指向电极组件22的方向,过渡部53的径向 尺寸逐渐减小。在过渡部53与第二固定部51的连接处,过渡部53和第二固定部51具有相同的径向尺寸;在过渡部53与卡扣部52的连接处,过渡部53和卡扣部52具有相同的径向尺寸。
可选地,过渡部53的径向尺寸与连接部521的径向尺寸相同,过渡部53和第二固定部51之间形成台阶结构。过渡部53只要能够实现对第二固定部511和卡扣部52的连接即可,本申请实施例包括但不限于此。
在一些实施例中,沿第一方向,凸出结构50的尺寸h3小于开口结构60的尺寸h4。
凸出结构50的尺寸h3,为沿第一方向,凸出结构50的最大尺寸。凸出结构60的尺寸h4,为沿第一方向,开口结构60的最大尺寸。
当开口结构60为凹槽时,便于减小凸出结构50与开口结构60之间的磨损;当开口结构60为贯穿极耳支架23的通孔时,凸出结构50不会凸出于开口结构60,从而可以降低凸出结构50抵接并损坏电极组件22的风险。
在一些实施例中,第一卡接结构2111和第二卡接结构231的横截面为圆形。横截面垂直于第一方向,也就是说,横截面平行于第一端盖211。这样,在第一端盖211的长度方向和宽度方向均可以实现对第一卡接结构2111和第二卡接结构231的装配和限位。
可选地,第一卡接结构2111和第二卡接结构231包括回转体结构。例如,当第二卡接结构231为开口结构60时,开口结构60中的限位部621、容纳部622和第一固定部63均为圆柱形的回转体结构,导向部61为圆台形的回转体结构。例如,当第一卡接结构2111为凸出结构50时,第二固定部51可以为圆柱形的回转体结构,过渡部53可以为圆台形的回转体结构,连接部521可以为中部具有凹槽的圆柱形回转体结构,卡接部522的第二部分5222可以为圆台形的回转体结构,卡接部522的第一部分5221可以为圆柱形的回转体结构。
在一些实施例中,极耳支架23设置有沿第二方向延伸的槽601,极耳221被配置为穿过槽601与第一端盖211连接。
例如,极耳221的弯折部221a穿过槽601后,极耳221的远离电极组件22的一端与第一电极端子211a连接。这样,极耳支架23将极耳221的弯折部221a与电极组件22的不包括极耳221的部分隔开,可以降低极耳221的弯折部221a插入电极组 件22造成短路的风险。
在一些实施例中,电池单体20还包括第一隔离膜24,第一隔离膜24套设于电极组件22的外表面并位于壳体210内。
作为一种示例,第一隔离膜24为绝缘的具有热塑性的隔离膜,例如第一隔离膜24为mylar膜。
通过第一隔离膜24的设置,可以将电极组件22与壳体210隔离开,降低电极组件22与壳体210接触发生的短路的风险;此外,还可以通过隔离膜22将极耳支架23与电极组件22连接,从而便于电池单体20的组装。
在一些实施例中,电池单体还包括第二隔离膜25,第二隔离膜25套设于壳体210的外表面。第二隔离膜25可以起到保护电池单体20和使电池单体20与外部环境绝缘的作用,有利于提高电池单体20的可靠性。
作为一种示例,第二隔离膜25为绝缘膜,例如第二隔离膜25为“蓝膜”。
在一些实施例中,电池单体20还包括第二端盖212,第二端盖212与第一端盖211沿第一方向相对设置。
在一些实施例中,第一端盖211还包括绝缘件2112和端盖片2113,绝缘件2112用于隔离端盖片2113和电极组件22,绝缘件2112与第一卡接结构2111为一体成型结构。绝缘件2112用于实现端盖片2113和电极组件22的本体部222之间的电绝缘,从而可以降低短路的风险,此外,绝缘件2112与第一卡接结构2111为一体成型结构,有利于加工。
端盖片2113可以为金属制成并能够导电,端盖片上设置有第一电极端子211a。此外,绝缘件2112设置于端盖片和电极组件22的本体部222之间,用于实现端盖片与本体部222的电绝缘。
第一卡接结构2111和第二卡接结构213可以由电绝缘的材料制成,以保证电极组件22的本体部222与端盖片2113之间的电绝缘。
在一些实施例中,第一端盖211设置有多个第一卡接结构2111,极耳支架23设置有与多个第一卡接结构2111对应设置的多个第二卡接结构231。这样,有利于增强第一卡接结构2111和第二卡接结构231之间的连接的牢固性。本申请实施例中的多个,指两个及两个以上。
可选地,第一端盖211设置有两个第一卡接结构2111,两个第一卡接结构 2111分别位于第一端盖211的第二方向的两端;对应的,极耳支架23设置有两个第二卡接结构231。
本申请提供了一种电池单体20,电池单体20包括:电极组件22,壳体210,第一端盖211,第二端盖212,第一隔离膜24,第二隔离膜25和极耳支架23。极耳支架23设置有开口结构60,开口结构60包括沿第一方向依次连通的第一固定部63,导向部61和卡槽部62。第一端盖211设置有朝向电极组件22凸出的凸出结构50,凸出结构50沿第一方向依次设置有第二固定部51,过渡部53和卡扣部52。在组装电池单体20的过程中,在第一端盖211和极耳支架23在第二方向发生相对偏移时,在导向部61的作用下,卡扣部52可以卡入卡槽部62并与卡槽部62卡接,第二固定部511与第一固定部63抵接,从而实现第一端盖211和极耳支架23的连接以及在第二方向和第一方向的固定。其中,第一方向为第一端盖211的厚度方向,第二方向为第一端盖211的长度方向。
在电池单体20的组装过程中,第一端盖211和壳体210的位置固定,装配有极耳支架23的电极组件22通过第二开口220a装入壳体210中,极耳支架23的第二卡接结构231与第一端盖211的第一卡接结构2111配合以实现第一端盖211与极耳支架23或电极组件22的连接。通常壳体210中预留有电极组件22的膨胀空间,因此,在装配有极耳支架23的电极组件22装入壳体210后,极耳支架23可能会相对于第一端盖211沿第二方向发生偏移,导致开口结构60与凸出结构50发生相对偏移。通过设置导向部61,导向部61引导凸出结构50进入开口结构60,进而实现开口结构60与凸出结构50的卡接。
作为一种示例,以下简要说明电池单体20的组装步骤。将电极组件22,极耳支架23,第一隔离膜24以及第二端盖212连接在一起,以形成一个整体。例如,将第一隔离膜24包覆于电极组件22的外表面,之后通过热熔的方式将第一隔离膜24与第二端盖212和极耳支架23连接,从而形成整体。其中,在将第一隔离膜24与极耳支架23连接前,可以将极耳221穿过极耳支架23上与极耳221对应的槽601,以使极耳支架23支撑极耳221。在形成上述整体后,通过第二开口220a将该整体放入壳体210内,在极耳支架23与第一端盖211连接后,再将第一端盖211与壳体210连接。
本申请实施例提供了一种电池10,包括上述实施例中的任一项所述的电池单体20。
电池10还可以包括箱体11,箱体11用于容纳电池单体20。
本申请实施例提供了一种用电设备,包括上述实施例的电池10。其中,电池10用于向用电设备供电。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (30)

  1. 一种电池单体,其特征在于,包括:
    电极组件(22),包括本体部(222)和从所述本体部(222)延伸出的极耳(221);
    壳体(210),用于容纳所述电极组件(22),所述壳体(210)设置有第一开口(210a);
    第一端盖(211),用于盖合所述第一开口(210a);
    极耳支架(23),位于所述第一端盖(211)和所述本体部(222)之间,所述极耳支架(23)用于支撑所述极耳(221);
    所述第一端盖(211)设置有第一卡接结构(2111),所述极耳支架(23)设置有第二卡接结构(231),所述第一卡接结构(2111)和所述第二卡接结构(231)卡接。
  2. 根据权利要求1所述的电池单体,其特征在于,所述第一卡接结构(2111)为沿第一方向朝向所述电极组件(22)凸出的凸出结构(50),所述第二卡接结构(231)为与所述凸出结构(50)对应的开口结构(60),其中,所述第一方向为所述第一端盖(211)的厚度方向。
  3. 根据权利要求2所述的电池单体,其特征在于,所述开口结构(60)包括导向部(61),沿所述导向部(61)的第一端到所述导向部(61)的第二端,所述导向部(61)的径向尺寸逐渐减小,其中,沿所述第一方向,所述导向部(61)的第一端相对于所述导向部(61)的第二端远离所述电极组件(22)。
  4. 根据权利要求3所述的电池单体,其特征在于,所述凸出结构(50)、所述导向部(61)、所述壳体(210)及所述极耳支架(23)满足:D1-d1≥K’;
    其中,D1为所述导向部(61)的第一端的径向尺寸;d1为所述凸出结构(50)的第一端处的径向尺寸,所述凸出结构(50)的第一端为所述凸出结构(50)沿所述第一方向靠近所述电极组件(22)的一端;K’为沿第二方向,所述壳体(210)与所述极耳支架(23)之间的间隙之和,所述第二方向为所述第一端盖(211)的长度方向。
  5. 根据权利要求3或4所述的电池单体,其特征在于,所述凸出结构(50)、所述导向部(61)、所述壳体(210)及所述极耳支架(23)满足:D1-d1≥W0-W1;
    其中,D1为所述导向部(61)的第一端的径向尺寸;d1为所述凸出结构(50)的 第一端处的径向尺寸,所述凸出结构(50)的第一端为所述凸出结构(50)沿所述第一方向靠近所述电极组件(22)的一端;W0为沿第二方向,所述壳体(210)的内壁之间的距离;W1为沿所述第二方向,所述极耳支架(23)的尺寸,所述第二方向为所述第一端盖(211)的长度方向。
  6. 根据权利要求3-5中任一项所述的电池单体,其特征在于,所述开口结构(60)还包括卡槽部(62),沿所述第一方向,所述卡槽部(62)与所述导向部(61)的第二端相连,所述卡槽部(62)与所述凸出结构(50)卡接。
  7. 根据权利要求6所述的电池单体,其特征在于,所述卡槽部(62)包括限位部(621)和容纳部(622),所述容纳部(622)相对于所述限位部(621)靠近所述电极组件(22),所述限位部(621)的径向尺寸D2小于所述容纳部(622)的径向尺寸D3。
  8. 根据权利要求3-7中任一项所述的电池单体,其特征在于,所述开口结构(60)还包括第一固定部(63),所述第一固定部(63)与所述导向部(61)的第一端相连,所述第一固定部(63)的径向尺寸与所述导向部(61)的第一端的径向尺寸D1相同。
  9. 根据权利要求3-8中任一项所述的电池单体,其特征在于,所述导向部(61)与所述第一方向之间的夹角小于45°。
  10. 根据权利要求9所述的电池单体,其特征在于,所述导向部(61)与所述第一方向之间的夹角大于等于30°。
  11. 根据权利要求3-10中任一项所述的电池单体,其特征在于,所述凸出结构(50)包括第二固定部(51)和卡扣部(52),所述卡扣部(52)相对于所述第二固定部(51)靠近所述电极组件(22),所述卡扣部(53)与所述开口结构(60)的卡槽部(62)卡接,所述第二固定部(51)与所述开口结构(60)的第一固定部(63)抵接。
  12. 根据权利要求11所述的电池单体,其特征在于,沿所述第一方向,所述第二固定部(51)的尺寸小于或等于所述第一固定部(63)的尺寸。
  13. 根据权利要求11或12所述的电池单体,其特征在于,沿所述第一方向,所述第二固定部(51)的尺寸大于0.8mm,和/或,所述第一固定部(63)的尺寸大于0.8mm。
  14. 根据权利要求13所述的电池单体,其特征在于,沿所述第一方向,所述第二固定部(51)的尺寸h1满足:0.8mm<h1≤1.4mm,和/或,所述第一固定部(63)的尺寸 h2满足:0.8mm<h2≤1.4mm。
  15. 根据权利要求11-14中任一项所述的电池单体,其特征在于,所述卡扣部(52)包括连接部(521)和卡接部(522),所述卡接部(522)相对于所述连接部(521)靠近所述电极组件(22),所述卡接部(522)的最大径向尺寸大于所述连接部(521)的最大径向尺寸,所述卡接部(522)与所述卡槽部(62)卡接。
  16. 根据权利要求11-15中任一项所述的电池单体,其特征在于,所述卡扣部(52)设置有变形槽(523),所述变形槽(523)从所述卡扣部(52)靠近所述电极组件(22)的一端沿所述第一方向延伸。
  17. 根据权利要求16所述的电池单体,其特征在于,所述卡槽部(62),所述卡扣部(52)与所述变形槽(523)满足:d3>D2>d3-d4;
    其中,d3为所述卡接部(522)的最大径向尺寸;D2为所述卡槽部(62)的限位部(621)的最大径向尺寸,d4为所述变形槽(523)的最大径向尺寸。
  18. 根据权利要求17所述的电池单体,其特征在于,所述卡扣部(52)与所述卡槽部(62)满足:d3-D2>0.5mm。
  19. 根据权利要求17或18所述的电池单体,其特征在于,所述卡槽部(62),所述卡扣部(52)与所述变形槽(523)满足:D2-d3+d4>0.2mm。
  20. 根据权利要求11-19中任一项所述的电池单体,其特征在于,所述凸出结构(50)还包括过渡部(53),沿所述第一方向,所述过渡部(53)分别与所述第二固定部(51)和所述卡扣部(52)连接。
  21. 根据权利要求2-20中任一项所述的电池单体,其特征在于,沿所述第一方向,所述凸出结构(50)的尺寸小于或等于所述开口结构(60)的尺寸。
  22. 根据权利要求1-21中任一项所述的电池单体,其特征在于,所述第一卡接结构(2111)和所述第二卡接结构(231)的横截面为圆形。
  23. 根据权利要求1-22中任一项所述的电池单体,其特征在于,所述极耳支架设置有沿第二方向延伸的槽(601),所述极耳(221)被配置为穿过所述槽(601)与所述第一端盖(211)连接。
  24. 根据权利要求1-23中任一项所述的电池单体,其特征在于,所述第一端盖(211)设置有多个所述第一卡接结构(2111),所述极耳支架(23)设置有与多个所述第一卡接结构(2111)对应设置的多个第二卡接结构(231)。
  25. 根据权利要求1-24中任一项所述的电池单体,其特征在于,所述电池单体还包括第一隔离膜(24),所述第一隔离膜(24)套设于所述电极组件(22)的外表面并位于所述壳体(210)内。
  26. 根据权利要求1-25中任一项所述的电池单体,其特征在于,所述电池单体还包括第二隔离膜(25),所述第二隔离膜(25)套设于所述壳体(210)的外表面。
  27. 根据权利要求1-26中任一项所述的电池单体,其特征在于,所述第一端盖(211)还包括端盖片(2113)和绝缘件(2112),所述绝缘件(2112)用于隔离所述端盖片(2113)和所述电极组件(22),所述绝缘件(2112)与所述第一卡接结构(2111)为一体成型结构。
  28. 根据权利要求1-27中任一项所述的电池单体,其特征在于,所述电池单体还包括第二端盖(212),所述第二端盖(212)与所述第一端盖(211)沿第一方向相对设置,所述第一方向为所述第一端盖(211)的厚度方向。
  29. 一种电池,其特征在于,包括:如权利要求1-28中任一项所述的电池单体。
  30. 一种用电设备,其特征在于,包括如权利要求29所述的电池。
PCT/CN2023/111255 2022-08-19 2023-08-04 电池单体、电池和用电设备 WO2024037361A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380010958.6A CN117916931A (zh) 2022-08-19 2023-08-04 电池单体、电池和用电设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/113651 WO2024036612A1 (zh) 2022-08-19 2022-08-19 电池单体、电池和用电设备
CNPCT/CN2022/113651 2022-08-19

Publications (1)

Publication Number Publication Date
WO2024037361A1 true WO2024037361A1 (zh) 2024-02-22

Family

ID=89940346

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/113651 WO2024036612A1 (zh) 2022-08-19 2022-08-19 电池单体、电池和用电设备
PCT/CN2023/111255 WO2024037361A1 (zh) 2022-08-19 2023-08-04 电池单体、电池和用电设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113651 WO2024036612A1 (zh) 2022-08-19 2022-08-19 电池单体、电池和用电设备

Country Status (2)

Country Link
CN (1) CN117916931A (zh)
WO (2) WO2024036612A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208315616U (zh) * 2018-03-21 2019-01-01 深圳市瑞德丰精密制造有限公司 一种电池盖板的固定结构
CN111162209A (zh) * 2020-03-16 2020-05-15 惠州亿纬锂能股份有限公司 一种二次锂离子豆式电池及其制作方法
JP2020135962A (ja) * 2019-02-14 2020-08-31 株式会社Gsユアサ 蓄電素子
CN212011114U (zh) * 2020-04-26 2020-11-24 宁德时代新能源科技股份有限公司 二次电池、电池模块以及使用二次电池作为电源的装置
CN216055077U (zh) * 2021-08-31 2022-03-15 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019121586A (ja) * 2017-12-28 2019-07-22 株式会社豊田自動織機 蓄電装置
CN208904075U (zh) * 2018-11-27 2019-05-24 天津市捷威动力工业有限公司 用于锂离子软包电池模组极耳安装的绝缘导向结构件
CN214957100U (zh) * 2020-12-23 2021-11-30 上海卡耐新能源有限公司 极耳支架及电池模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208315616U (zh) * 2018-03-21 2019-01-01 深圳市瑞德丰精密制造有限公司 一种电池盖板的固定结构
JP2020135962A (ja) * 2019-02-14 2020-08-31 株式会社Gsユアサ 蓄電素子
CN111162209A (zh) * 2020-03-16 2020-05-15 惠州亿纬锂能股份有限公司 一种二次锂离子豆式电池及其制作方法
CN212011114U (zh) * 2020-04-26 2020-11-24 宁德时代新能源科技股份有限公司 二次电池、电池模块以及使用二次电池作为电源的装置
CN216055077U (zh) * 2021-08-31 2022-03-15 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置

Also Published As

Publication number Publication date
WO2024036612A1 (zh) 2024-02-22
CN117916931A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
WO2023070290A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2022199129A1 (zh) 电池单体、电池及用电设备
WO2023065923A1 (zh) 电池单体、电池和用电设备
WO2023186034A1 (zh) 端盖、电池单体、电池及用电设备
WO2024093100A1 (zh) 电极极片、电极组件、电池单体、电池和用电设备
WO2023160034A1 (zh) 电池箱体上盖、电池箱体、电池及用电设备
WO2023133749A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024037361A1 (zh) 电池单体、电池和用电设备
WO2022226964A1 (zh) 连接部件、电池单体、电池及用电设备
EP4113732A1 (en) Cylindrical battery cell, battery, and power consuming device
WO2023000511A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023082155A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023082150A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
CN214957173U (zh) 电池包与用电装置
CN114144934B (zh) 集流构件及其制造方法、二次电池及其制造方法、电池模块和装置
CN218300182U (zh) 电池单体、电池和用电设备
WO2024000507A1 (zh) 电池单体、电池及用电设备
WO2024021082A1 (zh) 电池及用电设备
WO2024001058A1 (zh) 电池单体、电池及用电设备
WO2024000505A1 (zh) 电池及用电装置
WO2024055144A1 (zh) 转接部件、电池单体、电池及用电装置
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023240744A1 (zh) 电池单体、电池及用电装置
US20240154251A1 (en) Current collecting component, battery cell, battery, and electric device
CN219017776U (zh) 电池单体、电池、用电装置以及制备电池单体的装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202380010958.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854264

Country of ref document: EP

Kind code of ref document: A1