WO2024000505A1 - 电池及用电装置 - Google Patents

电池及用电装置 Download PDF

Info

Publication number
WO2024000505A1
WO2024000505A1 PCT/CN2022/103106 CN2022103106W WO2024000505A1 WO 2024000505 A1 WO2024000505 A1 WO 2024000505A1 CN 2022103106 W CN2022103106 W CN 2022103106W WO 2024000505 A1 WO2024000505 A1 WO 2024000505A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
limiting
battery
electrode lead
section
Prior art date
Application number
PCT/CN2022/103106
Other languages
English (en)
French (fr)
Inventor
李贺远
张凡
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/103106 priority Critical patent/WO2024000505A1/zh
Publication of WO2024000505A1 publication Critical patent/WO2024000505A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, specifically, to a battery and an electrical device.
  • Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy conservation and environmental protection.
  • battery technology is an important factor related to their development.
  • This application provides a battery and an electrical device, which are beneficial to improving assembly efficiency.
  • the application provides a battery, including: a plurality of battery cells, which are stacked along a first direction.
  • the battery cells include a casing and an electrode lead-out assembly, and the electrode lead-out assembly is disposed on the third side of the casing.
  • the electrode lead-out assembly is used to lead out the electric energy of the battery cells;
  • the bus piece connects the electrode lead-out assemblies of the two battery cells; wherein, the electrode lead-out assembly is provided with a limiting portion, and the limit portion is used to hold the bus piece Limit the position.
  • the bus piece connects the electrode lead-out assemblies of two battery cells, and the limiting portion of the electrode lead-out assembly directly limits the bus piece, so that the relative position of the bus piece and the electrode lead-out assembly is limited, and the battery structure is effective Simplifying the assembly process significantly improves battery assembly efficiency.
  • the electrode lead-out assembly includes a conductive member and a first insulating member, the conductive member is connected to the bus member, the first insulating member insulates and isolates the conductive member and the first wall; the limiting part is provided on the first insulating member or Conductive parts.
  • the electrode lead-out assembly includes a conductive member and a first insulating member.
  • the conductive member is connected to the busing member to draw out the electric energy of the battery cell.
  • the first insulating member insulates and isolates the conductive member and the first wall, effectively avoiding the conductive member and the first wall.
  • the limiting portion is provided on the first insulating member or the conductive member to limit the position of the bus piece connected to the conductive member.
  • the battery cell includes an electrode assembly, the electrode assembly is accommodated in the casing, and the electrode assembly has a tab; the conductive member includes a first part and a second part, the first part is parallel to the first wall, and the first part is parallel to the pole.
  • the ear is electrically connected; the second part is connected to the bus piece, and the plane where the connecting surface of the second part and the bus piece intersects with the first wall.
  • the conductive member includes a first part electrically connected to the tab of the electrode assembly and a second part connected to the bus piece, wherein the plane of the connecting surface of the second part and the bus piece intersects with the first wall, so as to facilitate
  • the connection between the electrode lead-out assembly and the pole lug and the connection between the electrode lead-out assembly and the bus piece are realized in two different directions, which facilitates the bus connection operation and thereby improves the assembly efficiency of the battery; and the pole tab and the bus piece are connected to the conductive member
  • the two different parts avoid mutual influence on the stability of the connection between the pole lug and the bus piece and the conductive piece, which facilitates battery maintenance.
  • the second part includes a first section, a second section and a third section, the first section extends from the first section in a direction away from the first wall, and the second section is located away from the first section.
  • One end of a wall connects the first section and the third section, the third section extends from the second section in a direction close to the first wall, and the busbar is connected to a side of the third section away from the first section.
  • the conductive parts include the first section, the second section and the third section.
  • the conductive parts of this structure have a certain margin of movement, which can effectively release the effects of the later expansion of the battery cells on the conductive parts or bus parts. force, which plays a good role in buffering the expansion force.
  • the first section extends from the first part in a direction away from the first wall, giving space for the third section to expand in a direction away from the first wall.
  • the third section extends from the second section in a direction close to the first wall, so that the third section has enough area and space to connect to the manifold in the direction away from the first wall, which facilitates the connection operation between the third section and the manifold. , while also ensuring the reliability of the connection between the third section and the busbar, and improving the overcurrent capacity of the connection.
  • the first insulating member includes a body and a protruding portion.
  • the body is disposed between the first wall and the conductive member.
  • the protruding portion protrudes from the body along the thickness direction of the first wall.
  • the protruding portion is inserted into between the first and third paragraphs.
  • the body part of the first insulating member is disposed between the first wall and the conductive member to effectively insulate the conductive member and the first wall.
  • the protruding part of the first insulating member is inserted into the first part of the conductive member.
  • the protruding part plays a supporting role in the second section of the U-shaped structure of the conductive part, effectively strengthening the structural strength of the second section of the conductive part; at the same time, the protruding part can effectively bear the busbar
  • the pressing force connected to the third section effectively ensures the force stability of the conductive parts.
  • the limiting portion is provided on the protruding portion and/or the body.
  • the limiting portion is provided on the first insulating member and is located on the protruding portion and/or the body of the first insulating member.
  • the limiting portion can be effectively avoided Occupy and interfere with the connection surface between bus parts and conductive parts, thereby effectively ensuring the operational convenience and connection stability of the connection between bus parts and conductive parts.
  • the electrode lead-out assembly further includes: an electrode terminal, the first wall is provided with an electrode lead-out hole, the electrode terminal is passed through the electrode lead-out hole, the conductive member is arranged outside the first wall, the first part and the tab Electrical connections are made through electrode terminals.
  • the electrode lead-out assembly also includes an electrode terminal penetrated on the first wall.
  • the first part of the conductive member and the tab of the electrode assembly are connected through the electrode terminal.
  • the electrode terminal leads the electric energy of the electrode assembly from the battery cell to Outside the battery cell, it facilitates the electrical connection between the conductive parts and the tabs of the electrode assembly.
  • the limiting portion is configured to guide the movement of the busbar in a second direction that intersects the first direction and intersects the connection surface.
  • the limiting portion is configured to guide the bus piece to move in the second direction.
  • the limiting portion is arranged to guide the bus piece to approach the conductive member in the second direction and limit the movement of the bus piece with the second direction. It moves in a plane with a vertical direction, thereby effectively reducing the risk of the busbar being detached from the electrode lead-out assembly due to the influence of gravity and other forces after being limited by the stopper.
  • the busbar is provided with a limiting fitting part, and the limiting fitting part cooperates with the limiting part.
  • the bus piece is provided with a limiting fitting part, and the limiting fitting part of the bus piece cooperates with the limiting part of the electrode lead assembly to further improve the stability of the electrode lead assembly limiting the bus piece.
  • the limiting part includes a protrusion
  • the limiting fitting part includes a concave part
  • the limiting part includes a concave part
  • the limiting fitting part includes a protrusion
  • the limiting part and the limiting matching part adopt a structure in which a protrusion and a concave part cooperate.
  • the protrusion and the concave part cooperate with each other to have better limiting performance and can ensure the restriction of the relative position of the busbar.
  • the matching assembly of the protrusions and the recesses is simple and easy to implement, which can further simplify the assembly of the busbar and improve the efficiency of battery assembly.
  • the electrode lead-out assembly is provided with multiple limiting parts
  • the busbar is provided with multiple limiting fitting parts
  • the limiting fitting parts correspond to the limiting parts one-to-one.
  • the electrode lead-out assembly and the bus piece are provided with a plurality of one-to-one corresponding limiting parts and limiting matching parts, so as to form a multi-point, multi-directional limit for the bus piece and further improve the stability of the bus piece limitation. sex.
  • the plurality of limiting fitting parts are spaced apart along a third direction, and the third direction intersects the first direction.
  • a plurality of limiting fitting parts are arranged at intervals along the third direction, so that the busbar forms multi-point limiting in the third direction.
  • a plurality of limiting fitting parts are distributed at both ends of the bus piece along the third direction.
  • a plurality of limiting fitting parts are located at both ends of the bus piece along the third direction, thereby more stably limiting the movement of the bus piece along the third direction, and the plurality of limiting fitting parts are distributed on both sides of the bus piece.
  • the end structure facilitates simplifying the structure of the bus piece and prevents the limiting fitting portion from occupying too much the area of the connection surface of the bus piece for connecting with the electrode lead-out assembly, thereby effectively ensuring the stability of the connection between the bus piece and the electrode lead-out assembly.
  • the manifold includes: a bottom wall; two side walls, the two side walls are arranged oppositely along the first direction, the bottom wall connects the two side walls; two flanging parts, and two flanging parts Set corresponding to the two side walls, each flange portion extends from one end of the corresponding side wall away from the bottom wall in a direction away from the other side wall.
  • the two flange portions are respectively connected to the electrode lead-out assemblies of the two battery cells. connect.
  • the overall bus piece has a digit-shaped structure, which effectively improves the structural strength of the bus piece itself.
  • the two flanged parts of the bus piece are connected to the electrode lead-out components of the two battery cells.
  • the sides of the digit-shaped bus piece are The wall and the bottom wall form a step surface, so that the manifold has a certain margin of movement, which can effectively release the force brought by the later expansion of the battery cells to the manifold, and play a good role in buffering the expansion force.
  • the limiting fitting part is provided on the flange part.
  • the limiting fitting part is provided on the flange part, and the flanging part is connected to the electrode lead-out assembly, that is, the limit part directly acts on the flange part of the bus piece to restrain the part of the bus piece that is connected to the electrode lead-out assembly. Limit the position, thereby effectively ensuring the limit accuracy and connection accuracy of the manifold.
  • the distance between the flange portion and the bottom wall is D1, which satisfies 2mm ⁇ D1 ⁇ 10mm, preferably, 4mm ⁇ D1 ⁇ 6mm; the second direction is perpendicular to the bottom wall.
  • the distance between the flange portion and the bottom wall is too large, the distance between the bottom wall of the busbar and the battery cells will be large, and the busbar will occupy a large amount of space around the battery cells; and the distance between the flange portion and the bottom wall will be too large. If it is too small, the margin for force deformation of the manifold will be too small, which is not conducive to effectively exerting the buffer expansion force of the manifold. Controlling the distance between the flange part and the bottom wall between 2mm and 10mm can ensure the confluence. While the parts have a good buffering effect on expansion force, they prevent the busbars from occupying a large amount of battery space.
  • the bus piece is connected to the electrode lead-out assembly to form a connection area, and the size of the connection area along the first direction is D2, satisfying 3mm ⁇ D2 ⁇ 10mm, preferably, 4mm ⁇ D2 ⁇ 6mm.
  • the width dimension of the connection area along the first direction is D2. If D2 is too large, the area of the connection surface that needs to be reserved for the bus part and the electrode lead-out part is too large. Correspondingly, the bus part and the electrode lead-out assembly will be Occupying a large amount of space around the battery cell is not conducive to improving the space utilization of the battery; and if D2 is too small, the width of the connection area is too small, and the connection strength and connection stability of the busbar and the electrode lead-out assembly cannot be guaranteed; this The technical solution applied for limits the width of the connection area between the bus piece and the electrode lead assembly to between 3mm and 10mm, which can effectively ensure the connection strength and stability of the bus piece and the electrode lead assembly while avoiding excessive occupation of battery space.
  • the first direction is parallel to the thickness direction of the first wall.
  • the first direction is parallel to the thickness direction of the first wall, that is to say, the first wall is located on one side of the battery cell along the first direction, and the electrode lead-out assembly is disposed on the first wall and located on the battery cell.
  • the side along the stacking direction of the battery cells can further reduce the occupation rate of the top space of the battery cells by the busbars and the electrode lead-out components, thereby helping to increase the energy density of the battery.
  • the first wall is a wall with the largest area among all walls of the housing.
  • the first wall is the large surface of the casing, that is to say, the electrode lead-out assembly is arranged on the large surface of the battery cell and is located on one side of the battery cells along the stacking direction.
  • the component is arranged on the narrow surface of the battery cell.
  • the housing further includes a second wall disposed opposite to the first wall, a first area of an edge of the second wall is indented to form a recess, and the recess is used to accommodate a battery adjacent to the second wall.
  • the single electrode leads to at least a portion of the assembly.
  • the electrode lead-out assembly is arranged on the first wall, and at the same time, the electrode lead-out assembly is accommodated in the recess formed on the second wall of the adjacent battery cell.
  • This kind of The structural arrangement is conducive to further reducing the space occupation rate of the electrode lead-out assembly, thereby further improving the structural compactness of the battery, and is conducive to increasing the energy density of the battery; at the same time, the setting of the concave portion is beneficial to the electrode lead-out assembly and the connection between the electrode lead-out assembly and the busbar.
  • the connection area plays a certain protective role and reduces the risk of the electrode lead assembly being subjected to uncontrollable external forces, thereby effectively improving the structural stability of the electrode lead assembly and the stability of the connection with the busbar.
  • the housing includes a shell and an end cover, the shell has an opening, the end cover closes the opening, and the first wall is the end cover.
  • the first wall is an end cover, and the electrode lead-out component is arranged on the end cover of the housing, which is beneficial to improving the assembly convenience of the electrode lead-out component being installed on the first wall.
  • this application also provides an electrical device, including the battery described in any of the above solutions, where the battery is used to provide electrical energy.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of a battery provided by some embodiments of the present application.
  • Figure 3 is an isometric view of the connection relationship between battery cells and busbars provided by some embodiments of the present application.
  • Figure 4 is a partially enlarged schematic diagram of part A shown in Figure 3;
  • Figure 5 is a schematic structural diagram of a conductive member provided by some embodiments of the present application.
  • Figure 6 is a schematic structural diagram of the first insulating member provided by some embodiments of the present application.
  • Figure 7 is a front view of the connection relationship between battery cells and busbars provided by some embodiments of the present application.
  • Figure 8 is a partial cross-sectional view along the B-B direction shown in Figure 7;
  • Figure 9 is a partial enlarged view of part C shown in Figure 8.
  • Figure 10 is a front view of the limiting part and the limiting matching part in some embodiments of the present application.
  • Figure 11 is a front view of the limiting part and the limiting matching part in some embodiments of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • the term “plurality” refers to two or more (including two).
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cells may be in the shape of a flat body, a rectangular parallelepiped, or other shapes, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • multiple battery cells can be connected in series, parallel or mixed connection to directly form a battery.
  • Mixed connection means that multiple battery cells are connected in series and in parallel.
  • Multiple battery cells can also be connected in series, parallel or mixed to form a battery cell group, and then multiple battery cell groups can be connected in series, parallel or mixed to form a battery.
  • the battery may include a case for enclosing one or more battery cells.
  • the box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery also includes a busbar, which is used for electrical connection between multiple battery cells to achieve series, parallel or mixed connection of multiple battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode plate, a negative electrode plate and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer. Fluid, the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer.
  • Fluid, the negative electrode current collector that is not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • a conventional battery includes a wire harness isolating plate, a busbar and a battery cell.
  • the busbar is fixed and limited by the wire harness isolating plate, and then the busbar fixed on the wire harness isolating plate is connected to the battery cell.
  • the electrode lead-out parts are connected, and the battery has many components and a complex structure, which makes the assembly process of the battery cumbersome and is not conducive to improving the assembly efficiency of the battery.
  • the applicant provides a battery in which a limiter is provided on the electrode lead-out assembly to directly limit the busbar connecting the electrode lead-out assemblies of two battery cells.
  • the electrode lead-out assembly is provided with a limiting portion to limit the bus piece, so that the relative position of the bus piece and the electrode lead-out assembly is limited, effectively simplifying the assembly process, thereby significantly improving the assembly efficiency of the battery.
  • the wire harness isolation plate used to limit the busbar of traditional batteries can also be eliminated, thereby effectively simplifying the overall structure of the battery and improving the energy density of the battery.
  • the battery when the battery is subsequently connected to the bus part and the electrode lead-out assembly, it is not necessary to set up a special positioning tool to position the bus part, thereby further simplifying the process and improving the assembly efficiency of the battery.
  • the batteries disclosed in the embodiments of this application can be used in, but are not limited to, electrical equipment such as vehicles, ships, or aircrafts, and the batteries disclosed in this application can be used to form the power supply system of the electrical equipment.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device can be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • the battery described in the embodiments of the present application is not limited to the above-described electrical devices, but can also be applied to all electrical devices using batteries. However, for the sake of simplicity of description, the following embodiment uses an example of an embodiment of the present application.
  • An electrical device is a vehicle as an example for illustration.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 shows an exploded view of a battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a plurality of battery cells 10 and a box 30.
  • the battery cells 10 are accommodated in the box 30.
  • the box 30 is used to provide an accommodation space for the battery cells 10 , and the box 30 can adopt a variety of structures.
  • the box 30 may include a first box 31 and a second box 32.
  • the first box 31 and the second box 32 are covered with each other to form a battery cavity, and a plurality of battery cells 10 are placed therein. inside the battery cavity.
  • the shapes of the first box 31 and the second box 32 may be determined according to the combined shapes of the plurality of battery cells 10 , and each of the first box 31 and the second box 32 may have an opening.
  • both the first box 31 and the second box 32 can be hollow rectangular parallelepipeds and each has only one open surface.
  • the openings of the first box 31 and the second box 32 are arranged oppositely, and the first box 31 and the second box 32 are open.
  • the second boxes 32 interlock with each other to form a box 30 with a closed chamber.
  • the battery 100 may also include a bus 20 through which a plurality of battery cells 10 are connected in parallel or in series or in mixed combination and then placed in the box 30 formed by fastening the first box 31 and the second box 32. .
  • Figure 3 is an isometric view of the connection relationship between battery cells and busbars provided by some embodiments of the present application.
  • Figure 4 is a partially enlarged schematic diagram of part A shown in Figure 3.
  • Figure 4 is a diagram 3 is a partially enlarged schematic diagram of part A.
  • Figure 5 is a schematic structural diagram of the conductive member provided by some embodiments of the present application.
  • Figure 6 is a schematic structural diagram of the first insulating member provided by some embodiments of the present application.
  • Figure 7 is a schematic structural diagram of the first insulating member provided by some embodiments of the present application.
  • Some embodiments provide a front view of the connection relationship between the battery cell and the busbar.
  • Figure 8 is a partial cross-sectional view along the B-B direction shown in Figure 7
  • Figure 9 is a partial enlarged view of part C shown in Figure 8 .
  • the battery 100 includes a plurality of battery cells 10 and a bus 20.
  • the plurality of battery cells 10 are stacked along the first direction X.
  • the battery cell 10 includes a housing 11 and an electrode lead-out assembly 12 .
  • the electrode lead-out assembly 12 is disposed on the first wall 111 of the housing 11 .
  • the electrode lead-out assembly 12 is used to draw out the electric energy of the battery cell 10 .
  • the bus 20 connects the electrode lead-out assemblies 12 of the two battery cells 10.
  • the electrode lead-out assembly 12 is provided with a limiting portion 13 , and the limiting portion 13 is used to limit the bus piece 20 .
  • the housing 11 can have various structural forms.
  • the housing 11 may include a housing 112 and a cover.
  • the housing 112 is a hollow structure with an opening on one side.
  • the cover covers the opening of the housing 112 and forms a sealed connection to form a structure for accommodating the battery.
  • the housing 11 includes a first wall 111, and the first wall 111 can be any wall part of the housing 11.
  • the first wall 111 can be a cover, or It can be any wall portion of the housing 112 .
  • the electrode extraction assembly 12 is used to extract the electric energy from the battery cell 10 .
  • the electrode extraction assembly 12 is used to output or input the electric energy from the battery cell 10 .
  • each battery cell may include a positive electrode lead-out assembly and a negative electrode lead-out assembly.
  • the electrode lead-out assembly 12 in the embodiment of the present application may be the positive electrode lead-out assembly of the battery cell 10 or a battery.
  • the negative electrode of the cell 10 leads to the assembly.
  • the bus 20 is a component that can connect a plurality of battery cells 10 in series or in parallel to achieve electrical connection between the plurality of battery cells 10 .
  • the bus piece 20 can also be called a bus bar, a bar or a bus bar.
  • the bus piece 20 is generally a metal sheet-like structure.
  • the bus piece 20 and the electrode lead-out assembly 12 can be connected through welding, conductive adhesive bonding, etc. to achieve multiple purposes. The purpose of connecting 10 battery cells in series or parallel.
  • the busbar 20 can connect two battery cells 10 adjacently arranged along the first direction X, or can connect any two battery cells 10 spaced apart along the first direction X.
  • the bus 20 connects two adjacent battery cells 10 along the first direction X.
  • the limiting part 13 may have a variety of implementation structures.
  • the limiting part 13 may be a clamping member provided on the electrode lead-out assembly 12, and the relative position of the bus piece 20 and the electrode lead-out assembly 12 is limited by engagement.
  • the limiting part 13 may also be an adhesive member provided on the electrode lead assembly 12, and the relative position of the bus piece 20 and the electrode lead assembly 12 is limited by the direction of adhesion.
  • the limiting portion 13 can also be a protrusion provided on the electrode lead-out assembly 12, and the relative position of the bus piece 20 and the electrode lead-out assembly 12 can be limited by controlling the position, shape or number of the protrusions, etc. .
  • This embodiment does not uniquely limit the specific implementation structure of the limiting portion 13 , as long as the relative positions of the bus piece 20 and the electrode lead-out assembly 12 can be limited.
  • the electrode lead-out assembly 12 is provided with a limiting portion 13 to limit the position of the bus piece 20, so that the relative position of the bus piece 20 and the electrode lead-out assembly 12 is limited, effectively simplifying the assembly process, thereby enabling the assembly of the battery 100 Efficiency is significantly improved.
  • the wire harness isolation plate used for the limiting bus 20 of the traditional battery can also be eliminated, thereby effectively simplifying the overall structure of the battery 100 and helping to improve the energy density of the battery 100; in addition, the battery 100 will be used later.
  • the electrode lead assembly 12 includes a conductive member 121 and a first insulating member 122 .
  • the conductive member 121 is connected to the bus member 20 .
  • the first insulating member 122 insulates and isolates the conductive member 121 and the first insulating member 122 .
  • a wall 111; the limiting portion 13 is provided on the first insulating member 122 or the conductive member 121.
  • the conductive member 121 refers to a component with good conductive properties.
  • the conductive member 121 can have a variety of implementation structures.
  • the conductive member 121 can be in the form of sheet or block structures of various conventional shapes.
  • the conductive member 121 It can also have a special-shaped structure, and the conductive member 121 can be made of copper, aluminum or other materials with good conductivity.
  • the first insulating member 122 is made of a material with insulating properties, such as plastic or rubber.
  • the first insulating member 122 is used to insulate and isolate the conductive member 121 from the first wall 111 of the housing 11 , so that the conductive member 121 is insulated from the housing 11 and prevents short circuit between the conductive member 121 and the housing 11 .
  • the first insulating member 122 can also have a variety of implementation structures.
  • the structure of the first insulating member 122 can be designed accordingly according to the structure of the conductive member 121.
  • the first insulating member 122 and the conductive member 121 can both have a sheet structure.
  • the first insulating member 122 is disposed between the conductive member 121 and the first wall 111 .
  • the limiting part 13 may be provided on the conductive member 121 or the first insulating member 122.
  • the limiting part 13 may be made of the same material as the conductive member 121 and be integrally formed.
  • the limiting part 13 It can also be provided separately and fixed to the conductive member 121 through welding or other connection methods; similarly, when the limiting portion 13 is provided on the first insulating member 122, the limiting portion 13 can be made of the same material as the first insulating member 122. It is integrally formed.
  • the limiting part 13 can also be provided separately and connected to the first insulating member 122 . For example, as shown in FIG. 4 , the limiting part 13 is provided on the first insulating member 122 .
  • the limiting portion is provided on the first insulating member 122 or the conductive member 121 , both of which can limit the position of the bus piece 20 connected to the conductive member 121 .
  • the battery cell 10 includes an electrode assembly 14 , the electrode assembly 14 is accommodated in the housing 11 , and the electrode assembly 14 has a tab 141 ;
  • the conductive member 121 includes a first part 121a and a second part 121b.
  • the first part 121a is parallel to the first wall 111, and the first part 121a is electrically connected to the tab 141; the second part 121b is connected to the bus 20, and the second part 121b is connected to the bus 20.
  • the plane of the connecting surface 40 of the member 20 intersects the first wall 111 .
  • the electrode assembly 14 is a component in the battery cell 10 where electrochemical reactions occur.
  • the electrode assembly 14 is mainly formed by winding or stacking a positive electrode piece and a negative electrode piece, and an isolation film is usually provided between the positive electrode piece and the negative electrode piece.
  • the body of the electrode assembly 14 includes a positive electrode piece and a part of the negative electrode piece containing active material, as well as a separator.
  • the part of the positive electrode piece without active material constitutes the positive electrode tab, and the part of the negative electrode piece without active material constitutes the negative electrode tab.
  • the positive pole tab and the negative pole tab can be located together at one end of the body or respectively at both ends of the body.
  • the tab 141 of this embodiment can be a positive tab or a negative tab.
  • the positive active material and the negative active material react with the electrolyte.
  • the tab 141 is directly or indirectly connected to the first part 121a of the conductive member 121 to form a current loop.
  • connection surface 40 refers to the interconnected surface of the second part 121b and the bus 20.
  • the plane of the connection surface 40 of the second part 121b and the bus 20 intersects the first wall 111.
  • the angle ⁇ between the plane where the connecting surface 40 is located and the first wall 111 is 60 degrees to 120 degrees.
  • the angle ⁇ between the plane where the connection surface 40 of the second part 121b and the bus 20 is located and the first wall 111 is 85 degrees to 95 degrees.
  • the connection surface 40 of the second part 121b and the bus 20 The angle ⁇ between the plane and the first wall 111 is 90 degrees.
  • the second part 121b may be implemented in various forms.
  • the second part 121b may be a convex part protruding from the first part 121a extending in a direction away from the first wall 111.
  • the convex part may be any conventional
  • the shape structure may also be a special-shaped structure.
  • the convex portion includes a first connection surface 1211 for connecting with the busbar 20 , and the connection plane intersects with the first wall 111 .
  • connection surface 40 of the second part and the bus piece 20 intersects the first wall 111 so as to realize the connection between the electrode lead assembly 12 and the tab 141 and the connection between the electrode lead assembly 12 and the bus piece 20 in two different directions. , which facilitates the connection operation of the bus 20, thereby improving the assembly efficiency of the battery 100; and the tabs 141 and the bus 20 are connected to two different parts of the conductive member 121, preventing the tabs 141 and the bus 20 from being connected to the conductive member 121.
  • the stability affects each other and facilitates battery 100 maintenance.
  • the second part 121b includes a first section 1212, a second section 1213 and a third section 1214.
  • the first section 1212 moves away from the first section 121a towards the first section.
  • the second section 1213 extends in the direction of the wall 111.
  • the second section 1213 connects the first section 1212 and the third section 1214 at the end of the first section 1212 away from the first wall 111.
  • the third section 1214 extends from the second section 1213 toward the end close to the first wall 111. Extending in the direction, the busbar 20 is connected to a side of the third section 1214 away from the first section 1212 .
  • the shape of the second portion 121b may be U-shaped, V-shaped, or other shapes.
  • the second part is U-shaped
  • first section 1212, the second section 1213 and the third section 1214 of the second part 121b are encircled to form a U-shaped structure.
  • any one, two or all of the first section 1212, the second section 1213 and the third section 1214 can be a flat structure, and the length and width of the first section 1212, the second section 1213 and the third section 1214 are and thickness can be the same or different.
  • any one, two or all of the first section 1212, the second section 1213 and the third section 1214 can also be arc-shaped, pleated, wavy or other special-shaped structures.
  • the side of the third section 1214 away from the first section 1212 has a first connection surface 1211 for connecting to the bus 20 , and the first connection surface 1211 is connected to the bus 20 .
  • the second part 121b of the conductive member is U-shaped, and the busbar 20 is connected to the side of the third section 1214 away from the first section 1212.
  • the conductive member 121 of this structure has a certain margin of movement and can effectively release the battery cells 10
  • the force brought by the later expansion to the conductive member 121 or bus member 20 plays a good role in buffering the expansion force.
  • the first section 1212 extends from the first portion 121a in a direction away from the first wall 111, providing space for the third section to expand in a direction away from the first wall 111.
  • the third section 1214 extends from the second section 1213 in a direction close to the first wall 111, so that the third section 1214 has enough area and space to connect with the busbar 20 in the direction away from the first wall 111, so that the third section 1214 can easily connect to the busbar 20.
  • the connection operation between 1214 and the bus 20 also ensures the reliability of the connection between the third section 1214 and the bus 20 and improves the current flow capacity of the connection.
  • the first insulating member 122 includes a body 1221 and a protruding portion 1222 .
  • the body 1221 is disposed between the first wall 111 and the conductive member 121 .
  • the protruding portion 1222 The protruding portion 1222 protrudes from the body 1221 along the thickness direction of the first wall 111 , and is inserted between the first section 1212 and the third section 1214 .
  • the conductive member 121 includes a first part 121a and a second part 121b in a U-shaped structure.
  • the body 1221 is disposed between the first wall 111 and the conductive member 121. That is, the body 1221 insulates and isolates the first part 121a and the first wall 111, and isolates the second part 121a from the first wall 111.
  • the protruding portion 1222 there are many implementation structures of the protruding portion 1222.
  • the protruding portion 1222 is formed along the first section 1212 and the second In the width direction of the segment 1213 (the third direction Z shown in the figure), both ends of the protruding portion 1222 extend beyond both ends of the first segment 1212 and the second segment 1213.
  • the protruding portion 1222 protrudes from the body 1221 along the thickness direction of the first wall 111 (ie, the first direction
  • the depth along the first direction and the third section 1214 surrounds the depth of the formed groove along the first direction X.
  • the protruding portion 1222 protrudes from the body 1221 along the thickness direction of the first wall 111 (ie, the first direction
  • the depths of the grooves along the first direction X match.
  • the protruding portion 1222 includes a first surface 1223 facing the third section 1214 , the first surface 1223 has a recessed area 1224 , and the third section 1214 is received therein. Within the recessed area 1224.
  • the body 1221 of the first insulating member 122 is partially disposed between the first wall 111 and the conductive member 121 to effectively insulate the conductive member 121 from the first wall 111.
  • the protruding portion 1222 of the first insulating member 122 is inserted into the conductive member. Between the first section 1212 and the second section 1213 of 121, the protruding portion 1222 supports the second section 1213 of the U-shaped structure of the conductive member 121, effectively strengthening the structural strength of the second section 1213 of the conductive member 121. ; At the same time, the protruding portion 1222 can effectively bear the pressing force of the busbar 20 connected to the third section 1214, thereby effectively ensuring the force stability of the conductive member 121.
  • the limiting part 13 is provided on the protruding part 1222 and/or the body 1221.
  • the limiting portion 13 is provided on the first insulating member 122 and may be located on the protruding portion 1222 or the body 1221 of the first insulating member 122 .
  • the limiting portion 13 can be provided on the body 1221. Since the body 1221 insulates the first wall 111 and the conductive member 121, the third section 1214 of the conductive member 121 is connected to the bus 20 on a side away from the first section 1212. In order to improve the convenience of the limiting part 13 in limiting the busbar 20 , the limiting part 13 may be disposed at the end of the body 1221 away from the first section 1212 .
  • the limiting portion 13 can be provided on the protruding portion 1222.
  • the third section 1214 of the conductive member 121 is connected to the bus 20 on a side away from the first section 1212, in order to improve the limiting portion 13.
  • the protruding portion 1222 includes a first surface 1223 facing the third section 1214, and the limiting portion 13 can be disposed on the first surface 1223.
  • the limiting portion 13 can also be provided in the recessed area 1224.
  • the limiting part 13 may also include a first limiting part and a second limiting part.
  • the first limiting part is provided on the protruding part 1222 and the second limiting part is provided on the body 1221 .
  • the limiting portion is provided on the first insulating member 122 and is located on the protruding portion 1222 and/or the body 1221 of the first insulating member 122. Compared with the structure in which the limiting portion 13 is provided on the conductive member 121, the limiting portion can be effectively avoided.
  • the portion 13 occupies and interferes with the connection surface between the bus piece 20 and the conductive piece 121, thereby effectively ensuring the operational convenience and connection stability of the connection between the bus piece 20 and the conductive piece 121.
  • the electrode lead-out assembly 12 also includes an electrode terminal 123.
  • the first wall 111 is provided with an electrode lead-out hole, and the electrode terminal 123 is inserted through the electrode lead-out hole.
  • the conductive member 121 is disposed outside the first wall 111 , and the first portion 121 a and the tab 141 are electrically connected through the electrode terminal 123 .
  • the electrode terminal 123 plays an overcurrent role.
  • the electrode terminal 123 connects the first part 121a of the conductive member 121 located outside the housing 11 and the tab 141 accommodated inside the housing 11 to lead the electric energy inside the battery cell 10 to the battery cell.
  • the conductive member 121 on the outside of 10. It can be understood that the electrode terminal 123 is insulated from the first wall 111 , that is, there is no electrical conduction between the electrode terminal 123 and the housing 11 .
  • the first part 121a of the conductive member 121 and the electrode terminal 123 are connected in various ways, such as welding, riveting, etc.
  • the first part 121a of the conductive member 121 is riveted to the electrode terminal 123.
  • the conductive member 121 can be called Riveted blocks.
  • the electrode terminal 123 and the tab 141 can be directly welded or indirectly connected through an intermediate adapter component.
  • the battery cell 10 further includes an adapter 15 .
  • the adapter 15 is disposed in the housing 11 and between the tab 141 and the electrode terminal 123 .
  • the adapter 15 includes a tab connection. and the terminal connection part, the tab connection part of the adapter 15 is connected to the tab, the terminal connection part of the adapter 15 is connected to the electrode terminal 123, and the tab 141 and the electrode terminal 123 are connected through the adapter 15.
  • the battery cell 10 may further include a second insulator 124 disposed in the housing 11 and located between the adapter 15 and the first wall 111 Therebetween, the second insulating member 124 insulates the adapter 15 and the first wall 111 .
  • the second insulating member 124 can also be called lower plastic, and accordingly, the first insulating member 122 can also be called upper plastic.
  • the electrode terminal 123 leads the electric energy of the electrode assembly 14 from the inside of the battery cell 10 to the outside of the battery cell 10 to facilitate the electrical connection between the conductive member 121 and the tab 141 of the electrode assembly 14 .
  • the limiting portion 13 is configured to guide the movement of the busbar 20 along the second direction Y, which intersects the first direction X and intersects the connection surface 40 .
  • connection surface 40 refers to the interconnected surface of the second part 121b and the bus 20.
  • the angle between the second direction Y and the first direction X may be 60 degrees to 120 degrees.
  • the angle between the second direction Y and the first direction X can be 85 degrees to 95 degrees.
  • the angle between the second direction Y and the first direction X may be 90 degrees.
  • the angle between the second direction Y and the connection surface 40 may be 60 degrees to 120 degrees.
  • the angle between the second direction Y and the connecting surface 40 can be 85 degrees to 95 degrees.
  • the angle between the second direction Y and the connection surface 40 may be 90 degrees.
  • first direction X is parallel to the connecting surface 40
  • second direction Y is perpendicular to the first direction X
  • second direction Y is perpendicular to the connecting surface 40 .
  • the limiting portion 13 is configured to guide the bus 20 to move along the second direction Y.
  • the limiting portion 13 is provided to guide the bus 20 to approach the conductive member 121 along the second direction Y and restrict the bus 20.
  • the risk of the busbar 20 being detached from the electrode lead-out assembly 12 due to the influence of gravity and other forces after being limited by the limiting portion 13 is effectively reduced.
  • the busbar 20 is located on one side of the housing 11 in the second direction Y.
  • the second direction Y is along the horizontal direction at this time, and the plane perpendicular to the second direction Y is here.
  • the limiting portion 13 can support the bus component 20 in the vertical direction, guide the bus component 20 to approach the conductive component 121 along the second direction Y (horizontal direction), and restrict the bus component 20 to move perpendicularly to the second direction Y.
  • the movement in the plane (vertical direction) prevents the risk of the bus piece 20 from being separated from the electrode lead-out assembly 12 due to the influence of gravity and other forces, and facilitates the connection operation between the bus piece 20 and the electrode lead-out assembly 12 .
  • Figure 10 is a front view of the limiting portion and the limiting matching portion of some embodiments of the present application, and the busbar 20 is configured There is a limited fitting part 24 which matches with the limiting part 13 .
  • the limiting fitting part 24 may also have various implementation structures.
  • the limiting part 13 and the limiting fitting part 24 may be two mutually snappable structures.
  • Structural components for example, the limiting part 13 can be an annular structure, and the limiting fitting part 24 can be a columnar structure inserted into the middle hole of the annular limiting part 13. The annular structure and the columnar structure can be engaged with each other to achieve the purpose of converging the flow.
  • the limiting function of piece 20 can be used to achieve the purpose of converging the flow.
  • the limiting part 13 may be a protrusion, and the limiting fitting part 24 may be a concave part for the protrusion to be inserted.
  • the limiting fitting part 24 may also be a protrusion, and the limiting part 13 may be The recessed portion for the protrusion to be inserted, the limiting portion 13 and the limiting matching portion 24 are sleeved with each other to limit the position of the bus piece 20 .
  • the bus piece is provided with a limiting fitting part 24, and the limiting fitting part 24 of the bus piece 20 cooperates with the limiting part 13 of the electrode lead assembly 12 to further improve the stability of the electrode lead assembly 12 limiting the bus piece 20.
  • the limiting part 13 includes a protrusion
  • the limiting fitting part 24 includes a concave part
  • the limiting part 13 includes a concave part
  • the limiting fitting part 24 includes a protrusion
  • the limiting portion 13 and the limiting matching portion 24 can be a structure in which protrusions and recesses are nested with each other, and the positions of the protrusions and recesses can be interchanged.
  • Figure 11 is a front view of the limiting portion and the limiting matching portion in some embodiments of the present application.
  • the opening can be cylindrical, and correspondingly, the recessed portion can be a circular blind hole or a through hole, and the recessed portion can also be a strip-shaped notch, a strip-shaped hole, a strip-shaped blind groove, and other structures.
  • the protrusions can also be in the form of elliptical cylinders, conical blocks, trapezoidal blocks and other special-shaped structures.
  • protrusions and recesses may be one or multiple.
  • the limiting portion 13 and the limiting matching portion 24 adopt a structure in which protrusions and concave portions cooperate.
  • the protrusions and concave portions cooperate with each other to have better limiting performance and can ensure the restriction of the relative position of the bus piece 20 .
  • the matching assembly of the protrusions and the recesses is simple and easy to implement, which can further simplify the assembly of the bus 20 and improve the assembly efficiency of the battery 100 .
  • the electrode lead-out assembly 12 is provided with a plurality of limiting parts 13
  • the busbar 20 is provided with a plurality of limiting fitting parts 24
  • the limiting fitting parts 24 correspond to the limiting parts 13 one-to-one.
  • the plurality of limiting portions 13 can be spaced apart from each other. At the same time, the plurality of limiting portions 13 can be spaced apart in a linear manner, spaced in a matrix, or distributed in a scattered point shape on the electrode lead-out assembly 12 . different positions.
  • the electrode lead-out assembly and the bus piece 20 are provided with a plurality of one-to-one corresponding limiting portions 13 and limiting matching portions 24 to facilitate multi-point and multi-directional limiting of the bus piece 20 and further improve the stability of the limiting of the bus piece 20 sex.
  • the plurality of limiting fitting portions 24 are spaced apart along the third direction Z, and the third direction Z intersects the first direction X.
  • the first direction X and the third direction Z may be perpendicular to each other or not perpendicular to each other.
  • the angle between the first direction X and the third direction Z may be 60 degrees to 120 degrees.
  • the angle between the first direction X and the third direction Z can be 85 degrees to 95 degrees.
  • the angle between the first direction X and the third direction Z may be 90 degrees, that is, the third direction Z is perpendicular to the first direction X, and the plurality of limiting fitting portions 24 are spaced apart along the third direction Z.
  • the plurality of limiting fitting parts 24 are spaced apart along the third direction Z, so that the busbar 20 forms multi-point limiting in the third direction Z.
  • a plurality of limiting fitting portions 24 are distributed at both ends of the bus piece 20 along the third direction Z.
  • two limiting fitting portions 24 can be provided on the bus piece 20 , and the two limiting fitting portions 24 are distributed at both ends of the bus piece 20 along the third direction Z. More than two odd or even number of limiting fitting portions 24 can also be provided on the bus piece 20 . The plurality of limiting fitting portions 24 are equally or unequally distributed on both sides of the bus piece 20 along the third direction Z. end.
  • four limiting fitting parts 24 are provided on the same bus piece 20 , and the four limiting fitting parts 24 are equally distributed at both ends of the bus piece 20 along the third direction Z, located at The two limiting fitting portions 24 at the same end of the bus piece along the third direction Z are spaced apart along the first direction X.
  • the plurality of limiting fitting portions 24 are divided at both ends of the bus piece 20 along the third direction Z, thereby more stably limiting the movement of the bus piece 20 along the third direction Z, and the plurality of limiting fitting portions 24 are distributed on the bus piece.
  • the structure of both ends of the bus 20 facilitates simplifying the structure of the bus 20 and prevents the limiting fitting portion 24 from occupying too much of the area of the connection surface of the bus 20 used to connect with the electrode lead-out assembly 12, thereby effectively ensuring that the bus 20 is connected to the electrode.
  • the stability of the lead-out assembly 12 connection is provided at both ends of the bus piece 20 along the third direction Z, thereby more stably limiting the movement of the bus piece 20 along the third direction Z, and the plurality of limiting fitting portions 24 are distributed on the bus piece.
  • the manifold 20 includes a bottom wall 21, two side walls 22 and two flange portions 23.
  • the two side walls 22 are arranged oppositely along the first direction X, and the bottom wall 21 connects the two side walls. twenty two.
  • Two flanging portions 23 are provided corresponding to the two side walls 22. Each flanging portion 23 extends from an end of the corresponding side wall 22 away from the bottom wall 21 in a direction away from the other side wall 22.
  • the two flanging portions 23 are arranged correspondingly to the two side walls 22. 23 are respectively connected to the electrode lead-out assemblies 12 of the two battery cells 10 .
  • the two flange parts 23 are respectively connected to the electrode lead-out assemblies 12 of the two battery cells 10 ” means that the side of the two flange parts 23 away from the bottom wall 21 is connected to the electrode lead-out assembly 12 .
  • each flange portion 23 may also extend toward the direction of the other side wall 22 .
  • the bus piece 20 has a figure-shaped structure, which effectively improves the structural strength of the bus piece 20 itself.
  • the two flange portions 23 of the bus piece 20 are connected to the electrode lead-out assemblies 12 of the two battery cells 10.
  • the figure-shaped bus piece 20 has The side wall 22 and the bottom wall 21 form a step surface, so that the manifold 20 has a certain margin of movement, which can effectively release the force brought by the later expansion of the battery cell 10 to the manifold 20 and play a good role in buffering the expansion force.
  • the limiting fitting portion 24 is provided on the flange portion 23 .
  • the limiting fitting portion 24 is provided on the flange portion 23 , and the limiting portion 13 acts on the flange portion 23 to limit the manifold 20 .
  • the electrode lead assembly 12 is provided with a plurality of limiting parts 13
  • the busbar 20 is provided with a plurality of limiting fitting parts 24, the limiting fitting parts 24 correspond to the limiting parts 13 one-to-one", each flange
  • the portion 23 may be provided with a plurality of limiting fitting portions 24.
  • Each flange portion 23 is provided with two limiting fitting portions 24.
  • the two limiting fitting portions 24 are distributed at both ends of the flanging portion 23 in the third direction Z. , wherein the thickness direction of the bottom wall 21 extends along the second direction Y, and the first direction X, the second direction Y and the third direction Z are each perpendicular to each other.
  • the limiting portion 13 directly acts on the flange portion 23 of the bus piece 20 to limit the portion of the bus piece 20 that is connected to the electrode lead-out assembly 12 , thereby effectively ensuring the limiting accuracy and connection accuracy of the bus piece 20 .
  • the distance between the flange portion 23 and the bottom wall 21 is D1, which satisfies 2mm ⁇ D1 ⁇ 10mm, preferably, 4mm ⁇ D1 ⁇ 6mm; the second direction Y is perpendicular to the bottom wall. twenty one.
  • the plane of the bottom wall 21 is parallel to the first direction X, and the second direction Y is perpendicular to the first direction X.
  • the bottom wall 21 has a second surface 211 facing the battery cell 10, and the flange portion 23 has a second connection surface 231 facing the battery cell 10 , and the distance of the bottom wall 21 along the second direction Y is the distance between the second surface 211 and the second connection surface 231 .
  • the distance D1 from the flange portion 23 to the bottom wall 21 may be 2 mm, may be 10 mm, or may be any value greater than 2 mm and less than 10 mm.
  • the distance D1 from the flange portion 23 to the bottom wall 21 may be 4 mm, may be 6 mm, or may be any value greater than 4 mm and less than 6 mm.
  • the distance D1 between the flange portion 23 and the bottom wall 21 is 5 mm.
  • the busbar 20 can be prevented from occupying a large space of the battery 100 while ensuring that the bus 20 has a good buffering expansion force effect.
  • the bus 20 is connected to the electrode lead-out assembly 12 to form a connection area, and the size of the connection area along the first direction X is D2, satisfying 3mm ⁇ D2 ⁇ 10mm, preferably, 4mm ⁇ D2 ⁇ 6mm.
  • the bus part 20 includes a first connection surface 1211 for connecting with the electrode lead-out assembly 12 .
  • the electrode lead-out component 12 includes a second connection surface 231 for connecting with the bus part 20 .
  • the dimension D2 of the connection area along the first direction For example, D2 is 4.5mm.
  • the bus piece 20 and the electrode lead-out assembly 12 will occupy a large amount of space around the battery cell 10, which is not conducive to improving the efficiency of the battery cell.
  • the width of the connection area of the assembly 12 is limited to between 3 mm and 10 mm, which can effectively ensure the connection strength and stability of the bus 20 and the electrode lead assembly 12 while avoiding occupying too much space of the battery 100 .
  • the first direction X is parallel to the thickness direction of the first wall 111 .
  • a plurality of battery cells 10 are stacked along the first direction X, and the thickness direction of the first wall 111 extends along the first direction side, and the first direction X is perpendicular to the plane where the first wall 111 is located.
  • the electrode lead-out component 12 is disposed on the first wall 111 , that is, the electrode lead-out component 12 is located on one side of the battery cell 10 in the first direction X.
  • a battery composed of battery cells 10 with this structure can effectively reduce the occupation of the top space of the battery cell 10 by the busbar 20 and the electrode lead-out assembly 12, thereby effectively improving the space utilization of the battery 100 and thereby improving the battery 100's efficiency.
  • Energy Density
  • the first wall 111 is the wall with the largest area among all the walls of the housing 11 .
  • the electrode lead-out assembly 12 is disposed on the large surface of the battery cell 10 , and the large surface of the battery cell 10 is perpendicular to the stacking direction of the battery cells 10 (the first direction X).
  • the battery cell 10 may have a flat blade-like structure, the thickness of the battery cell 10 extends along the first direction X, and the thickness of the battery cell 10 is less than the length of the battery cell 10 and smaller than the width of the battery cell 10 .
  • the size of the electrode lead assembly 12 will be limited. If the size of the electrode lead assembly 12 is too small, it will not be able to meet the requirements of the battery cell. body 10 overcurrent requirements.
  • the electrode lead-out component 12 is disposed on the large surface of the battery cell 10 and is located on one side of the battery cell 10 along its stacking direction. Compared with the traditional electrode lead-out component 12 which is disposed on the narrow surface of the battery cell 10 . structure, the technical solution of the present application can effectively ensure the stability of the size and structure of the electrode lead assembly 12, thereby ensuring that the electrode lead assembly 12 can meet the overcurrent requirements of the battery cell 10.
  • the housing 11 further includes a second wall 113 disposed opposite to the first wall 111.
  • the first area of the edge of the second wall 113 is indented to form a recessed portion 1131.
  • the recessed portion 1131 is used to accommodate the second wall 113 with the first wall 111.
  • the electrodes of the battery cells 10 adjacent to the two walls 113 lead out at least a part of the assembly 12 .
  • the first wall 111 and the second wall 113 are spaced apart along the first direction X. After multiple battery cells 10 are stacked along the first direction X, the first wall of the single battery cell 10 111 is adjacent to the second wall 113 of the adjacent battery cell 10 .
  • the second wall 113 includes a first area located at an edge of the second wall 113 facing the busbar 20 .
  • the first area is indented to form a recess 1131 ” means that the first area faces the first wall along the first direction X. 111 is recessed to form a recessed portion 1131.
  • the recess 1131 on the second wall 113 is used to accommodate at least a part of the electrode extraction assembly 12 provided on the first wall 111 adjacent to the second wall 113 .
  • the recessed portion 1131 is provided on the edge of the second wall 113 of each battery cell 10, and the electrode lead-out assembly 12 of each battery cell 10 is disposed on the first wall 111 opposite to the second wall 113, when multiple battery cells 10 are arranged along the first direction, the recessed portion 1131 of the first battery cell among the two adjacent battery cells can accommodate at least a portion of the electrode lead assembly 12 of the second battery cell. This allows This structure is conducive to further reducing the space occupation rate of the electrode lead assembly 12, thereby further improving the structural compactness of the battery 100, and is conducive to increasing the energy density of the battery 100; at the same time, the recessed portion 1131 is opposite to the electrode lead assembly 12 and the electrode lead assembly 12.
  • connection area connected to the bus piece 20 plays a certain protective role, reducing the risk of the electrode lead assembly 12 being subjected to uncontrollable external forces, thereby effectively improving the structural stability of the electrode lead assembly 12 and the stability of the electrode lead assembly 12 and the connection with the bus piece 20 .
  • the housing 11 includes a housing 112 and an end cover.
  • the housing 112 has an opening, the end cover closes the opening, and the first wall 111 is an end cover.
  • the end cap refers to a component that covers the opening of the case 112 to isolate the internal environment of the battery cell 10 from the external environment.
  • the shape of the end cap may be adapted to the shape of the housing 112 to fit the housing 112 .
  • the end cap can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the end cap is less likely to deform when subjected to extrusion and collision, allowing the battery cell 10 to have a higher structure. strength.
  • the end cap can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiments of the present application.
  • the housing 112 is a component used to cooperate with the end cover to form the internal environment of the battery cell 10.
  • the housing 112 can be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc. This application implements There are no special restrictions on this.
  • the first wall 111 is an end cover, and the electrode lead-out assembly 12 is disposed on the end cover of the housing 11 , which is helpful to improve the assembly convenience of the electrode lead-out assembly 12 installed on the first wall 111 .
  • Some embodiments of the present application provide an electrical device, including the battery 100 of any of the above solutions, and the battery 100 is used to provide electrical energy.
  • the power-consuming device may be any of the aforementioned devices or systems using the battery 100 .
  • an embodiment of the present application provides a battery 100 .
  • the battery 100 includes a plurality of battery cells 10 and a bus 20 .
  • the plurality of battery cells 10 are stacked along the first direction X.
  • Each battery cell 10 includes a housing 11 , an electrode lead-out assembly 12 , an electrode assembly 14 , an adapter 15 and a second insulating member 124 .
  • the housing 11 includes a housing 112 and an end cover.
  • the housing 112 has an opening, and the end cover closes the opening.
  • the first wall 111 is the end cap.
  • the first direction X is parallel to the thickness direction of the first wall 111
  • the first wall 111 is the wall with the largest area among all the walls of the housing 11 .
  • the electrode assembly 14 , the adapter 15 and the second insulating member 124 are accommodated in the housing 11 .
  • the electrode assembly 14 has tabs 141 .
  • the electrode lead-out assembly 12 is disposed on the first wall 111 of the housing 11 .
  • the electrode lead-out assembly 12 includes a conductive member 121 , a first insulating member 122 and an electrode terminal 123 .
  • the first wall 111 is provided with an electrode lead-out hole, the electrode terminal 123 is passed through the electrode lead-out hole, the adapter 15 is provided between the tab 141 and the electrode terminal 123, and the tab 141 and the electrode terminal 123 are connected through the adapter 15 , wherein the second insulating member is disposed between the adapter 15 and the first wall 111 .
  • the conductive member 121 is arranged outside the first wall 111.
  • the conductive member 121 includes a first part 121a and a second part 121b.
  • the first part 121a is parallel to the first wall 111.
  • the first part 121a is riveted to the electrode terminal 123.
  • the second part 121b is U-shaped. shape, and the second part 121b includes a first section 1212, a second section 1213 and a third section 1214.
  • the first section 1212 extends from the first section 121a in a direction away from the first wall 111, and the second section 1213 is in the first section.
  • the end of 1212 away from the first wall 111 connects the first section 1212 and the third section 1214.
  • the third section 1214 extends from the second section 1213 in a direction close to the first wall 111.
  • the end of the third section 1214 is away from the first section 1212.
  • One side has a first connection surface 1211 for connection with the bus 20 .
  • the first insulating member 122 insulates and isolates the conductive member 121 and the first wall 111.
  • the first insulating member 122 includes a body 1221 and a protruding portion 1222.
  • the body 1221 is disposed between the first wall 111 and the conductive member 121.
  • the protruding portion 1222 is along the The first direction X protrudes from the body 1221, and the protruding portion 1222 is inserted between the first section 1212 and the third section 1214.
  • the bus 20 connects the electrode lead-out assemblies 12 of two adjacent battery cells 10 .
  • the manifold 20 includes a bottom wall 21, two side walls 22 and two flange portions 23.
  • the two side walls 22 are oppositely arranged along the first direction X, and the bottom wall 21 connects the two side walls 22.
  • Two flanging portions 23 are provided correspondingly to the two side walls 22 .
  • Each flanging portion 23 extends from an end of the corresponding side wall 22 away from the bottom wall 21 in a direction away from the other side wall 22 .
  • One flange portion 23 is connected to the first connecting surface 1211 of the conductive member of the first battery cell of the two adjacent battery cells 10, and the other flange portion 23 of the busbar 20 is connected to the two adjacent battery cells. 10.
  • the connection surface 40 after the flange portion 23 is connected to the first connection surface 1211 is perpendicular to the first wall 111 .
  • the electrode lead-out assembly 12 is provided with a limiting portion 13, and the flange portion 23 is provided with a limiting fitting portion 24.
  • the limiting portion 13 cooperates with the limiting fitting portion 24 to limit the bus piece 20.
  • the protruding portion 1222 includes a first surface 1223 adjacent to the third section 1214.
  • the limiting portion 13 is a protrusion and protrudes from the first surface 1223 along the second direction Y.
  • the limiting portion 13 includes two protrusions. First, two protrusions are arranged on the first surface 1223 at intervals along the third direction Z, and the first direction X, the second direction Y and the third direction Z are perpendicular to each other.
  • both ends of the flange part 23 along the third direction Z are each provided with a limiting fitting part 24.
  • the limiting fitting part 24 is a recessed part that penetrates the flanging part 23 along the second direction Y.
  • the recessed part is the same as the protrusion.
  • the limiting portion 13 can guide the busbar 20 to move along the second direction Y.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请提供一种电池及用电装置,电池包括:多个电池单体,多个电池单体沿第一方向层叠设置,电池单体包括外壳和电极引出组件,电极引出组件设置于外壳的第一壁,电极引出组件用于将电池单体的电能引出;汇流件,汇流件连接两个电池单体的电极引出组件;其中,电极引出组件设有限位部,限位部用于对汇流件进行限位。本申请技术方案中,电极引出组件的限位部直接对汇流件进行限位,有效简化了该电池的装配工艺,使得电池的装配效率得到显著提高。

Description

电池及用电装置 技术领域
本申请涉及电池技术领域,具体而言,涉及一种电池及用电装置。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池生产中,如何提高电池装配效率,是一个亟需解决的问题。
发明内容
本申请提供一种电池及用电装置,该电池有利于提高装配效率。
第一方面,本申请提供了一种电池,包括:多个电池单体,多个电池单体沿第一方向层叠设置,电池单体包括外壳和电极引出组件,电极引出组件设置于外壳的第一壁,电极引出组件用于将电池单体的电能引出;汇流件,汇流件连接两个电池单体的电极引出组件;其中,电极引出组件设有限位部,限位部用于对汇流件进行限位。
本申请技术方案中,汇流件连接两个电池单体的电极引出组件,电极引出组件的限位部直接对汇流件限位,使得汇流件与电极引出组件的相对位置得到限定,该电池结构有效简化装配工艺,从而使得电池的装配效率得到显著提高。
根据本申请的一些实施例,电极引出组件包括导电件和第一绝缘件,导电件与汇流件连接,第一绝缘件绝缘隔离导电件和第一壁;限位部设置于第一绝缘件或导电件。
上述技术方案中,电极引出组件包括导电件和第一绝缘件,导电件与汇流件连接以将电池单体的电能引出,第一绝缘件绝缘隔离导电件和第一壁,有效避免导电件和外壳短路,限位部设置于第一绝缘件或导电件,以对和导电件连接的汇流件起到位置限定作用。
根据本申请的一些实施例,电池单体包括电极组件,电极组件容纳于外壳内,电极组件具有极耳;导电件包括第一部分和第二部分,第一部分与第一壁平行,第一部分与极耳电连接;第二部分与汇流件连接,第二部分与汇流件的连接面所在平面与第一壁相交。
上述技术方案中,导电件包括与电极组件的极耳电连接的第一部分和与汇流件连接的第二部分,其中,第二部分与汇流件的连接面所在平面与第一壁相交,以便于在两个不同的方向实现电极引出组件与极耳的连接以及电极引出组件与汇流件的连接,便于汇流件连接操作,从而提高该电池的装配效率;并且极耳和汇流件连接于导 电件的不同的两部分,避免极耳和汇流件连接于导电件的稳定性相互影响,便于电池维护。
根据本申请的一些实施例,第二部分包括第一段、第二段和第三段,第一段从第一部分朝着背离第一壁的方向延伸,第二段在第一段的远离第一壁的一端连接第一段和第三段,第三段自第二段朝接近第一壁的方向延伸,汇流件连接于第三段的背离第一段的一侧。
上述技术方案中,导电件包括第一段、第二段和第三段,这种结构的导电件具有一定活动余量,可有效释放电池单体后期膨胀给导电件或汇流件带来的作用力,起到良好的缓冲膨胀力的作用。并且,第一段从第一部分朝着背离第一壁的方向延伸,给第三段在背离第一壁的方向上拓展了空间。第三段自第二段朝接近第一壁的方向延伸,进而使得第三段在背离第一壁的方向上有足够的面积和空间与汇流件连接,便于第三段与汇流件的连接操作,同时也保证了第三段与汇流件的连接处的可靠性,提高了连接处的过流能力。
根据本申请的一些实施例,第一绝缘件包括本体和凸出部,本体设置于第一壁与导电件之间,凸出部沿第一壁的厚度方向凸出于本体,凸出部插入第一段和第三段之间。
上述技术方案中,第一绝缘件的本体部分设置在第一壁和导电件之间,以有效绝缘隔离导电件和第一壁,同时,第一绝缘件的凸出部插入导电件的第一段和第二段之间,凸出部对导电件的呈U形结构的第二段起到支撑作用,有效加强导电件的第二段的结构强度;同时,凸出部可有效承担汇流件连接于第三段的压紧力,从而有效保证导电件的受力稳定性。
根据本申请的一些实施例,限位部设置于凸出部和/或本体上。
上述技术方案中,限位部设置于第一绝缘件上且位于第一绝缘件的凸出部和/或本体上,相较于限位部设置于导电件的结构,可有效避免限位部占用、干涉汇流件与导电件的连接面,从而有效保证汇流件与导电件连接的操作便捷性和连接稳定性。
根据本申请的一些实施例,电极引出组件还包括:电极端子,第一壁设置有电极引出孔,电极端子穿设于电极引出孔,导电件设置在第一壁的外侧,第一部分和极耳通过电极端子电连接。
上述技术方案中,电极引出组件还包括穿设在第一壁上的电极端子,导电件的第一部分和电极组件的极耳通过电极端子连接,电极端子将电极组件的电能从电池单体内引出至电池单体外,便于导电件与电极组件的极耳的电连接。
根据本申请的一些实施例,限位部被配置为可引导汇流件沿第二方向运动,第二方向与第一方向相交并与连接面相交。
上述技术方案中,限位部配置为引导汇流件沿第二方向运动,在电池装配过程中,限位部的设置便于引导汇流件沿第二方向靠近导电件,并限制汇流件在与第二方向垂直的平面内移动,从而有效降低汇流件经限位部限位后受重力等作用力影响而脱离电极引出组件的风险。
根据本申请的一些实施例,汇流件设置有限位配合部,限位配合部与限位部相 配合。
上述技术方案中,汇流件设置限位配合部,汇流件的限位配合部与电极引出组件的限位部配合,以进一步提高电极引出组件对汇流件限位的稳定性。
根据本申请的一些实施例,限位部包括凸起,限位配合部包括凹部,和/或,限位部包括凹部,限位配合部包括凸起。
上述技术方案中,限位部和限位配合部采用凸起和凹部配合的结构,一方面,凸起与凹部配合具有较好的限位性能,能够保证对汇流件的相对位置的限制。另一方面,凸起与凹部的配合装配简单,易于实现,能够进一步简化汇流件的装配,提升电池组装效率。
根据本申请的一些实施例,电极引出组件设置有多个限位部,汇流件设置有多个限位配合部,限位配合部与限位部一一对应。
上述技术方案中,电极引出组件和汇流件设置有多个一一对应的限位部和限位配合部,以便于对汇流件形成多点位、多方位限位,进一步提高汇流件限位稳定性。
根据本申请的一些实施例,多个限位配合部沿第三方向间隔设置,第三方向与第一方向相交。
上述技术方案中,多个限位配合部沿第三方向间隔设置,使得汇流件在第三方向上形成多点限位。
根据本申请的一些实施例,多个限位配合部分布于汇流件的沿第三方向的两端。
上述技术方案中,多个限位配合部分部于汇流件的沿第三方向的两端,从而更稳定地限制汇流件沿第三方向移动,且多个限位配合部分布于汇流件的两端的结构,便于简化汇流件的结构,且避免限位配合部过多占用汇流件的用于与电极引出组件连接的连接面的面积,从而有效保证汇流件与电极引出组件连接的稳定性。
根据本申请的一些实施例,汇流件包括:底壁;两个侧壁,两个侧壁沿第一方向相对设置,底壁连接两个侧壁;两个翻边部,两个翻边部与两个侧壁对应设置,每个翻边部从对应的侧壁的远离底壁的一端向背离另一个侧壁的方向延伸,两个翻边部分别与两个电池单体的电极引出组件连接。
上述技术方案中,整体汇流件呈几字形结构,有效提高汇流件本身的结构强度,同时,汇流件的两个翻边部与两个电池单体的电极引出组件连接,几字形汇流件的侧壁和底壁形成台阶面,使得汇流件具有一定活动余量,可有效释放电池单体后期膨胀给汇流件带来的作用力,起到良好的缓冲膨胀力的作用。
根据本申请的一些实施例,限位配合部设置于翻边部。
上述技术方案中,限位配合部设置于翻边部,而翻边部与电极引出组件连接,即限位部直接作用于汇流件的翻边部以对汇流件的与电极引出组件连接的部分进行限位,从而有效保证汇流件的限位精度及连接精度。
根据本申请的一些实施例,沿第二方向,翻边部到底壁的距离为D1,满足2mm≤D1≤10mm,优选地,4mm≤D1≤6mm;第二方向垂直于底壁。
上述技术方案中,翻边部到底壁的距离过大,则汇流件的底壁距离电池单体的 间距较大,汇流件会占用大量电池单体外周的空间;而翻边部到底壁的距离过小,则汇流件的受力变形的余量过小,不利于有效发挥汇流件的缓冲膨胀力的作用;而将翻边部到底壁的距离控制在2mm到10mm之间,可在保证汇流件具有较好的缓冲膨胀力作用的同时,避免汇流件占用大量电池空间。
根据本申请的一些实施例,汇流件与电极引出组件连接形成连接区,连接区沿第一方向的尺寸为D2,满足3mm≤D2≤10mm,优选地,4mm≤D2≤6mm。
上述技术方案中,连接区沿第一方向的宽度尺寸为D2,如果D2过大,则汇流件和电极引出件需要预留的连接面的面积过大,相应的,汇流件和电极引出组件会占用大量的电池单体外周的空间,不利于提高电池的空间利用率;而如果D2过小,则连接区的宽度过小,无法保证汇流件与电极引出组件的连接强度和连接稳定性;本申请技术方案将汇流件与电极引出组件的连接区的宽度限定在3mm至10mm之间,可有效保证汇流件与电极引出组件连接强度和连接稳定性的同时,避免过多占用电池空间。
根据本申请的一些实施例,第一方向与第一壁的厚度方向平行。
上述技术方案中,第一方向与第一壁的厚度方向平行,也就是说第一壁位于电池单体的沿第一方向的一侧,则电极引出组件设置于第一壁并位于电池单体的沿电池单体层叠排列方向的一侧,可进一步减少汇流件和电极引出组件对电池单体的顶部空间的占用率,从而有利于提高电池的能量密度。
根据本申请的一些实施例,第一壁为外壳的所有壁中面积最大的壁。
上述技术方案中,第一壁为外壳的大面,也就是说电极引出组件设置于电池单体的大面且位于电池单体的沿其层叠排列方向的一侧,相较于传统的电极引出组件设置于电池单体的窄面的结构,本申请技术方案可有效保证电极引出组件的尺寸结构稳定,从而保证电极引出组件能够满足电池单体过电流的需求。
根据本申请的一些实施例,外壳还包括与第一壁相对设置的第二壁,第二壁的边缘的第一区域内陷形成凹陷部,凹陷部用于容纳与第二壁相邻的电池单体的电极引出组件的至少一部分。
上述技术方案中,多个电池单体沿第一方向层叠排列后,电极引出组件设置于第一壁,同时电极引出组件容纳于相邻电池单体的第二壁上形成的凹部内,这种结构设置有利于进一步降低电极引出组件的空间占用率,从而进一步提高电池的结构紧凑性,有利于提高电池的能量密度;同时,凹部的设置对电极引出组件以及与电极引出组件与汇流件连接的连接区起到一定保护作用,降低电极引出组件承受不可控外力的风险,从而有效提高电极引出组件的结构稳定性和与汇流件连接的稳定性。
根据本申请的一些实施例,外壳包括壳体和端盖,壳体具有开口,端盖封闭开口,第一壁为端盖。
上述技术方案中,第一壁为端盖,电极引出组件设置在外壳的端盖上,有利于提高电极引出组件安装在第一壁的装配便捷性。
第二方面,本申请还提供了一种用电装置,包括上述任一方案所述的电池,所述电池用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸图;
图3为本申请一些实施例提供的电池单体与汇流件的连接关系轴测图;
图4为图3所示的A部分的局部放大示意图;
图5为本申请一些实施例提供的导电件的结构示意图;
图6为本申请一些实施例提供的第一绝缘件的结构示意图;
图7为本申请一些实施例提供的电池单体与汇流件的连接关系的主视图;
图8为图7所示的B-B向的局部剖面图;
图9为图8所示的C部分的局部放大图;
图10为本申请一些实施例的限位部和限位配合部相配合的主视图;
图11为本申请又一些实施例的限位部和限位配合部相配合的主视图;
在附图中,附图并未按照实际的比例绘制。
标记说明:1000-车辆;100-电池;10-电池单体;11-外壳;111-第一壁;112-壳体;113-第二壁;1131-凹陷部;12-电极引出组件;121-导电件;121a-第一部分;121b-第二部分;1211-第一连接面;1212-第一段;1213-第二段;1214-第三段;122-第一绝缘件;1221-本体;1222-凸出部;1223-第一表面;1224-凹陷区;123-电极端子;124-第二绝缘件;13-限位部;14-电极组件;15-转接件;141-极耳;20-汇流件;21-底壁;211-第二表面;22-侧壁;23-翻边部;231-第二连接面;24-限位配合部;30-箱体;31-第一箱体;32-第二箱体;40-连接面;200-控制器;300-马达;
X-第一方向;Y-第二方向;Z-第三方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的 保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“设置”“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接、信号连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈扁平体、长方体或其它形状等,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。其中,多个电池单体之间可以串联、并联或者混联直接组成电池,混联指的是,多个电池单体中既有串联又有并联。多个电池单体也可以先串联、并联或者混联组成电池单体组,多个电池单体组再串联、并联或者混联组成电池。电池可以包括用于封 装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池还包括汇流件,汇流件用于多个电池单体之间的电连接,以实现多个电池单体的串联、并联或者混联。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池生产技术的发展要从多方面进步,比如能量密度、生产效率等等。
现有的一些技术的电池,其结构和装配工艺复杂,不利于提高电池的生产效率。
本发明人分析其原因注意到,常规的电池包括线束隔离板、汇流件和电池单体,汇流件通过线束隔离板固定限位,然后再将固定在线束隔离板上的汇流件与电池单体的电极引出部件连接,电池的组成构件多、结构复杂,导致该电池的装配工艺繁琐,不利于提高电池的组装效率。
基于以上问题,为了提高电池装配效率,申请人提供了一种电池,该电池在电极引出组件设置限位部,对连接两个电池单体的电极引出组件的汇流件直接进行限位。
在这样的电池中,电极引出组件设置限位部对汇流件进行限位,使得汇流件与电极引出组件的相对位置得到限定,有效简化了装配工序,从而使得电池的装配效率得到显著提高。
在一些实施例中,还可以取消传统电池的用于限位汇流件的线束隔离板,从而有效简化电池的整体结构,有利于提高电池的能量密度。
在一些实施例中,该电池在后续进行汇流件与电极引出组件的连接作业时,还可以不必专门设置定位工装对汇流件进行定位,从而进一步简化工序,提高电池的装配效率。
本申请实施例公开的电池可以但不限用于车辆、船舶或飞行器等用电设备中,可以使用本申请公开的电池组成该用电设备的电源系统。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限 于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
本申请的实施例描述的电池不仅仅局限适用于上述所描述的用电装置,还可以适用于所有使用电池电池的用电装置,但为描述简洁,以下实施例以本申请一实施例的一种用电装置为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在其他一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
如图2所示,图2示出的是本申请一些实施例提供的电池100的爆炸图,电池100包括多个电池单体10和箱体30,电池单体10容纳于箱体30内,箱体30用于为电池单体10提供容纳空间,箱体30可以采用多种结构。在一些实施例中,箱体30可以包括第一箱体31和第二箱体32,第一箱体31和第二箱体32相互盖合后形成电池腔,多个电池单体10放置于电池腔内。其中,第一箱体31和第二箱体32的形状可以根据多个电池单体10组合的形状而定,第一箱体31和第二箱体32可以均具有一个开口。例如,第一箱体31和第二箱体32均可以为中空长方体且各自只有一个面为开口面,第一箱体31和第二箱体32的开口相对设置,并且第一箱体31和第二箱体32相互扣合形成具有封闭腔室的箱体30。
电池100还可以包括汇流件20,多个电池单体10通过汇流件20相互并联或串联或混联组合后置于第一箱体31和第二箱体32扣合后形成的箱体30内。
请参照图3至图7,图3为本申请一些实施例提供的电池单体与汇流件的连接关系轴测图,图4为图3所示的A部分的局部放大示意图,图4为图3所示的A部分的局部放大示意图,图5为本申请一些实施例提供的导电件的结构示意图,图6为本申请一些实施例提供的第一绝缘件的结构示意图,图7为本申请一些实施例提供的电池单体与汇流件的连接关系的主视图,图8为图7所示的B-B向的局部剖面图,图9为图8所示的C部分的局部放大图。
本申请一些实施例提供了一种电池100,如图3和图4所示,该电池100包括多个电池单体10和汇流件20,多个电池单体10沿第一方向X层叠设置,电池单体10包括外壳11和电极引出组件12,电极引出组件12设置于外壳11的第一壁111,电极引出组件12用于将电池单体10的电能引出。汇流件20连接两个电池单体10的电极 引出组件12。其中,电极引出组件12设有限位部13,限位部13用于对汇流件20进行限位。
外壳11可以是多种结构形式。在一些实施例中,外壳11可以包括壳体112和盖体,壳体112为一侧开口的空心结构,盖体盖合于壳体112的开口处并形成密封连接,以形成用于容纳电池单体10的电极组件、电解液及其他相关组成部件的密封空间。
其中,外壳11包括第一壁111,第一壁111可以是外壳11的任意壁部,在“外壳11包括壳体112和盖体”的实施形式中,第一壁111可以为盖体,也可以为壳体112的任意壁部。
电极引出组件12用于将电池单体10的电能引出,在广义理解中,电极引出组件12用于输出或输入电池单体10的电能。
可以理解的是,每个电池单体可以包括正极的电极引出组件和负极的电极引出组件,本申请实施例的电极引出组件12既可以是电池单体10的正极电极引出组件,也可以是电池单体10的负极电极引出组件。
汇流件20是能够串联或并联多个电池单体10、以实现多个电池单体10之间的电连接的部件。汇流件20也可以称之为汇流排、巴片或汇流条,汇流件20一般为金属薄片状结构,汇流件20与电极引出组件12可以通过焊接、导电胶粘接等方向连接,以达到多个电池单体10串联或并联的目的。
可以理解的是,汇流件20可以连接沿第一方向X相邻设置的两个电池单体10,也可以连接沿第一方向X相间隔的任意两个电池单体10。示例性的,汇流件20连接沿第一方向X相邻的两个电池单体10。
限位部13的实施结构可以有多种,比如,限位部13可以是设置在电极引出组件12上的卡接件,通过卡合的方式限定汇流件20和电极引出组件12的相对位置。限位部13也可以是设置在电极引出组件12上的粘接件,通过粘接的方向限定汇流件20和电极引出组件12的相对位置。当然,限位部13也可以为设置在电极引出组件12上的凸起,通过控制凸起的设置位置、设置形状或设置数量,以限定汇流件20和电极引出组件12的相对位置,等等。本实施例并不对限位部13的具体实施结构做唯一性限定,只要能实现汇流件20和电极引出组件12的相对位置的限定即可。
本申请技术方案中,电极引出组件12设置限位部13对汇流件20进行限位,使得汇流件20与电极引出组件12的相对位置得到限定,有效简化了装配工艺,从而使得电池100的装配效率得到显著提高。并且,在一些情形中,还可以取消传统电池的用于限位汇流件20的线束隔离板,从而有效简化电池100的整体结构,有利于提高电池100的能量密度;另外,该电池100在后续进行汇流件20与电极引出组件12的连接作业时,还可以不必专门设置定位工装对汇流件20进行定位,有利于进一步简化工序,提高电池的装配效率。
根据本申请的一些实施例,请继续参照图4,电极引出组件12包括导电件121和第一绝缘件122,导电件121与汇流件20连接,第一绝缘件122绝缘隔离导电件121和第一壁111;限位部13设置于第一绝缘件122或导电件121。
可以理解的是,导电件121是指具备良好导电性能的部件,导电件121的实施结构可以有多种,例如,导电件121可以呈各种常规形状的片状、块状结构,导电件121也可以为异形结构,导电件121可以使用铜、铝等导电性能好的材质制成。
第一绝缘件122为具有绝缘特性的材料制得,例如塑料或橡胶等。第一绝缘件122用于绝缘隔离导电件121和外壳11的第一壁111,使得导电件121与外壳11相绝缘,避免导电件121和外壳11发生短路。
第一绝缘件122的实施结构也可以有多种,第一绝缘件122的结构可根据导电件121的结构进行相应性设计,比如,第一绝缘件122和导电件121可以均为片状结构,第一绝缘件122设置在导电件121和第一壁111之间。
限位部13可以设置于导电件121或第一绝缘件122,当限位部13设置于导电件121时,限位部13可以和导电件121材质相同、一体成型,当然,限位部13也可以分体设置并通过焊接或其他连接方式固定于导电件121;同理的,当限位部13设置于第一绝缘件122时,限位部13可以和第一绝缘件122材质相同、一体成型,当然,限位部13也可以分体设置并连接于第一绝缘件122。示例性的,如图4所示,限位部13设置于第一绝缘件122。
限位部设置于第一绝缘件122或导电件121,均可对和与导电件121连接的汇流件20起到位置限定作用。
根据本申请的一些实施例,请参照图4至图7,并进一步参照图8和图9,电池单体10包括电极组件14,电极组件14容纳于外壳11内,电极组件14具有极耳141;导电件121包括第一部分121a和第二部分121b,第一部分121a与第一壁111平行,第一部分121a与极耳141电连接;第二部分121b与汇流件20连接,第二部分121b与汇流件20的连接面40所在平面与第一壁111相交。
电极组件14是电池单体10中发生电化学反应的部件。电极组件14主要由正极极片和负极极片卷绕或层叠放置形成,并且通常在正极极片与负极极片之间设有隔离膜。电极组件14的本体包括正极极片和负极极片具有活性物质的部分以及隔离膜,正极极片不具有活性物质的部分构成正极极耳,负极极片不具有活性物质的部分构成负极极耳。正极极耳和负极极耳可以共同位于本体的一端或是分别位于本体的两端。
可以理解的是,本实施例的极耳141可以是正极极耳也可以是负极极耳,在电池100的充放电过程中,正极活性物质和负极活性物质与电解液发生反应。极耳141直接或间接连接导电件121的第一部分121a以形成电流回路。
连接面40是指第二部分121b和汇流件20的相互连接的表面,第二部分121b与汇流件20的连接面40所在平面与第一壁111相交,例如,第二部分121b与汇流件20的连接面40所在平面与第一壁111之间的角度α为60度-120度。较优的,第二部分121b与汇流件20的连接面40所在平面与第一壁111之间的角度α为85度-95度.优选地,第二部分121b与汇流件20的连接面40所在平面与第一壁111之间的角度α为90度。
其中,第二部分121b的实施形式可以有多种,比如,第二部分121b可以 为朝着背离第一壁111的方向延伸的凸出于第一部分121a的凸部,该凸部可以为任意常规形状的结构,也可以为异型结构,该凸部包括用于与汇流件20连接的第一连接面1211,该连接平面与第一壁111相交。
第二部分与汇流件20的连接面40所在平面与第一壁111相交,以便于在两个不同的方向实现电极引出组件12与极耳141的连接以及电极引出组件12与汇流件20的连接,便于汇流件20连接操作,从而提高该电池100的装配效率;并且极耳141和汇流件20连接于导电件121的不同的两部分,避免极耳141和汇流件20连接于导电件121的稳定性相互影响,便于电池100维护。
根据本申请的一些实施例,请继续参照图4至图8,第二部分121b包括第一段1212、第二段1213和第三段1214,第一段1212从第一部分121a朝着背离第一壁111的方向延伸,第二段1213在第一段1212的远离第一壁111的一端连接第一段1212和第三段1214,第三段1214自第二段1213朝接近第一壁111的方向延伸,汇流件20连接于第三段1214的背离第一段1212的一侧。
在一些实施例中,第二部分121b的形状可以为U形、V形或者其他形状。
“第二部分呈U形”是指第二部分121b的第一段1212、第二段1213和第三段1214合围形成类似U型的结构。
其中,第一段1212、第二段1213和第三段1214中的任意一个、两个或全部可以为平板状结构,且第一段1212、第二段1213和第三段1214的长度、宽度和厚度可以相同也可以不同。当然,第一段1212、第二段1213和第三段1214中的任意一个、两个或全部也可以为弧形、褶型、波浪型等异型结构。
第三段1214的背离第一段1212的一侧具有用于与汇流件20连接的第一连接面1211,第一连接面1211与汇流件20连接。
导电件的第二部分121b呈U形,汇流件20连接于第三段1214的背离第一段1212的一侧,这种结构的导电件121具有一定活动余量,可有效释放电池单体10后期膨胀给导电件121或汇流件20带来的作用力,起到良好的缓冲膨胀力的作用。第一段1212从第一部分121a朝着背离第一壁111的方向延伸,给第三段在背离第一壁111的方向上拓展了空间。第三段1214自第二段1213朝接近第一壁111的方向延伸,进而使得第三段1214在背离第一壁111的方向上有足够的面积和空间与汇流件20连接,便于第三段1214与汇流件20的连接操作,同时也保证了第三段1214与汇流件20的连接处的可靠性,提高了连接处的过流能力。
根据本申请的一些实施例,请继续参照图4至图8,第一绝缘件122包括本体1221和凸出部1222,本体1221设置于第一壁111与导电件121之间,凸出部1222沿第一壁111的厚度方向凸出于本体1221,凸出部1222插入第一段1212和第三段1214之间。
导电件121包括第一部分121a和呈U型结构的第二部分121b,本体1221设置在第一壁111和导电件121之间,即本体1221绝缘隔离第一部分121a和第一壁111,并隔离第二部分121b和第一壁111,沿第一段1212、第二段1213以及第三段1214的排列方向(图中所示的第二方向Y),本体1221可以自第一部分121a的端部 延伸至第三段1214的端部,从而完全绝缘隔离导电件121和第一壁111。
凸出部1222的实施结构有多种,示例性的,如图4所示,为了保证第一绝缘件122绝缘隔离第一壁111和导电件121的充分性,沿第一段1212和第二段1213的宽度方向(图中所示的第三方向Z),凸出部1222的两端伸出第一段1212和第二段1213的两端。
其中,凸出部1222沿第一壁111的厚度方向(即第一方向X)凸出于本体1221的高度可以与第一段1212、第二段1213和第三段1214围设形成的凹槽的沿第一方向X的深度相匹配,当然,凸出部1222沿第一壁111的厚度方向(第一方向X)凸出于本体1221的高度也可以小于第一段1212、第二段1213和第三段1214围设形成的凹槽的沿第一方向X的深度。示例性的,凸出部1222沿第一壁111的厚度方向(即第一方向X)凸出于本体1221的高度可以与第一段1212、第二段1213和第三段1214围设形成的凹槽的沿第一方向X的深度相匹配。
在又一些实施例中,请参照图4,并进一步参照图6,凸出部1222包括朝向第三段1214的第一表面1223,第一表面1223具有凹陷区1224,第三段1214容纳于该凹陷区1224内。
第一绝缘件122的本体1221部分设置在第一壁111和导电件121之间,以有效绝缘隔离导电件121和第一壁111,同时,第一绝缘件122的凸出部1222插入导电件121的第一段1212和第二段1213之间,凸出部1222对导电件121的呈U形结构的第二段1213起到支撑作用,有效加强导电件121的第二段1213的结构强度;同时,凸出部1222可有效承担汇流件20连接于第三段1214的压紧力,从而有效保证导电件121的受力稳定性。
根据本申请的一些实施例,限位部13设置于凸出部1222和/或本体1221上。
也就是说,限位部13设置于第一绝缘件122上,且可以位于第一绝缘件122的凸出部1222或本体1221。
具体而言,限位部13可以设置于本体1221,因本体1221绝缘隔离第一壁111和导电件121,导电件121的第三段1214远离第一段1212的一侧与汇流件20连接,为了提高限位部13对汇流件20的限位的便捷性,限位部13可以设置于本体1221的背离第一段1212的端部。
在其他一些实施例中,限位部13可以设置于凸出部1222,同样的,因为导电件121的第三段1214远离第一段1212的一侧与汇流件20连接,为了提高限位部13对汇流件20的限位的便捷性,凸出部1222包括朝向第三段1214的第一表面1223,限位部13可以设置于第一表面1223。
并且,基于“第一表面1223具有凹陷区1224,第三段1214容纳于该凹陷区1224内”的实施形式,限位部13也可以设置于该凹陷区1224内。
当然,限位部13也可以包括第一限位部和第二限位部,第一限位部设置于凸出部1222,第二限位部设置于本体1221。
限位部设置于第一绝缘件122上且位于第一绝缘件122的凸出部1222和/ 或本体1221上,相较于限位部13设置于导电件121的结构,可有效避免限位部13占用、干涉汇流件20与导电件121的连接面,从而有效保证汇流件20与导电件121连接的操作便捷性和连接稳定性。
根据本申请的一些实施例,请继续参照图8,并进一步参照图9,电极引出组件12还包括电极端子123,第一壁111设置有电极引出孔,电极端子123穿设于电极引出孔,导电件121设置在第一壁111的外侧,第一部分121a和极耳141通过电极端子123电连接。
电极端子123起到过流作用,电极端子123连接位于外壳11外侧的导电件121的第一部分121a和容纳于外壳11内部的极耳141,以将电池单体10内部的电能引出至电池单体10的外侧的导电件121。可以理解的是,电极端子123与第一壁111之间绝缘连接,也就是电极端子123与外壳11之间没有形成电导通。
其中,导电件121的第一部分121a和电极端子123的连接方式有多种,比如焊接、铆接等,示例性的,导电件121的第一部分121a和电极端子123铆接,导电件121可以称之为铆接块。
并且,电极端子123和极耳141可以直接焊接,也可以通过中间转接部件间接连接。
示例性的,如图9所示,电池单体10还包括转接件15,转接件15设置在外壳11内且位于极耳141和电极端子123之间,转接件15包括极耳连接部和端子连接部,转接件15的极耳连接部与极耳连接,转接件15的端子连接部与电极端子123连接,极耳141和电极端子123通过转接件15连接。
为了避免转接件15与第一壁111之间发生短路,电池单体10还可以包括第二绝缘件124,第二绝缘件124设置在外壳11内且位于转接件15和第一壁111之间,第二绝缘件124绝缘隔离转接件15和第一壁111。第二绝缘件124也可以称之为下塑胶,相应的,第一绝缘件122也可以称之为上塑胶。
电极端子123将电极组件14的电能从电池单体10内引出至电池单体10外,便于导电件121与电极组件14的极耳141的电连接。
根据本申请的一些实施例,限位部13被配置为可引导汇流件20沿第二方向Y运动,第二方向Y与第一方向X相交并与连接面40相交。
如前文所述,连接面40是指第二部分121b和汇流件20的相互连接的表面,第二部分121b与汇流件20的连接面40所在平面与第一壁111相交,第二方向Y与第一方向X相交并与连接面40相交。
其中,第二方向Y与第一方向X之间的角度可以为60度-120度。较优的,第二方向Y与第一方向X之间的角度可以为85度-95度。优选地,第二方向Y与第一方向X之间的角度可以为90度。
相应的,第二方向Y与连接面40之间的角度可以为60度-120度。较优的,第二方向Y与连接面40之间的角度可以为85度-95度。优选地,第二方向Y与连接面40之间的角度可以为90度。
示例性的,第一方向X与连接面40平行,第二方向Y与第一方向X垂直, 且第二方向Y垂直于连接面40。
限位部13配置为引导汇流件20沿第二方向Y运动,在电池100装配过程中,限位部13的设置便于引导汇流件20沿第二方向Y靠近导电件121,并限制汇流件20在垂直于第二方向Y的平面内移动,从而有效降低汇流件20经限位部13限位后受重力等作用力影响而脱离电极引出组件12的风险。
根据本申请的一些实施例,请参照图4和图7,汇流件20位于外壳11的第二方向Y的一侧,第二方向Y此时沿水平方向,垂直于第二方向Y的平面此时位于竖直方向,限位部13可在竖直方向支撑汇流部件20,引导汇流件20沿第二方向Y(水平方向)靠近导电件121,并限制汇流件20在垂直于第二方向Y的平面(竖直方向)内移动,防止汇流件20受重力等作用力影响而脱离电极引出组件12的风险,便于汇流件20与电极引出组件12的连接操作。
根据本申请的一些实施例,请再次参照图4和图7,并进一步参照图10,图10为本申请一些实施例的限位部和限位配合部相配合的主视图,汇流件20设置有限位配合部24,限位配合部24与限位部13相配合。
与限位部13的实施结构相对应,限位配合部24的实施结构也可以有多种,在一些实施例中,限位部13和限位配合部24可以为两个可相互卡接的结构件,比如,限位部13可以为环形结构,限位配合部24可以为插入环形的限位部13的中间孔的柱状结构,该环形结构与柱状结构相互卡接即可起到对汇流件20的限位作用。
在其他一些实施例中,限位部13可以为凸起,限位配合部24可以为供该凸起插入的凹部,当然,限位配合部24也可以为凸起,限位部13可以为供该凸起插入的凹部,限位部13与限位配合部24相互套接以起到对汇流件20的限位作用。
汇流件设置限位配合部24,汇流件20的限位配合部24与电极引出组件12的限位部13配合,以进一步提高电极引出组件12对汇流件20限位的稳定性。
根据本申请的一些实施例,限位部13包括凸起,限位配合部24包括凹部,和/或,限位部13包括凹部,限位配合部24包括凸起。
具体而言,限位部13和限位配合部24可以为凸起和凹部相互套接的结构,凸起和凹部的位置可以互换。
凸起和凹部的实施结构可以有多种,比如,请参照图10,并进一步参照图11,图11为本申请又一些实施例的限位部和限位配合部相配合的主视图,凸起可以为圆柱体状,相应的,凹部可以为圆形盲孔或通孔,凹部也可以为条形缺口、条形孔、条形盲槽等结构。当然,凸起也可以呈椭圆形柱体、锥形块、梯形块等异型结构。
可以理解的是,凸起和凹部的数量可以为一个也可以为多个。
限位部13和限位配合部24采用凸起和凹部配合的结构,一方面,凸起与凹部配合具有较好的限位性能,能够保证对汇流件20的相对位置的限制。另一方面,凸起与凹部的配合装配简单,易于实现,能够进一步简化汇流件20的装配,提升电池100组装效率。
根据本申请的一些实施例,电极引出组件12设置有多个限位部13,汇流件20设置有多个限位配合部24,限位配合部24与限位部13一一对应。
可以理解的是,多个限位部13可以相互间隔设置,同时,多个限位部13可以呈线型间隔设置,也可以呈矩阵间隔设置,或者呈散点状分布于电极引出组件12的不同位置。
电极引出组件和汇流件20设置有多个一一对应的限位部13和限位配合部24,以便于对汇流件20形成多点位、多方位限位,进一步提高汇流件20限位稳定性。
根据本申请的一些实施例,多个限位配合部24沿第三方向Z间隔设置,第三方向Z与第一方向X相交。
第一方向X与第三方向Z可以相互垂直也可以相互不垂直。其中,第一方向X与第三方向Z之间的角度可以为60度-120度。较优的,第一方向X与第三方向Z之间的角度可以为85度-95度。优选地,第一方向X与第三方向Z之间的角度可以为90度,即第三方向Z与第一方向X垂直,多个限位配合部24沿第三方向Z间隔设置。
多个限位配合部24沿第三方向Z间隔设置,使得汇流件20在第三方向Z上形成多点限位。
根据本申请的一些实施例,多个限位配合部24分布于汇流件20的沿第三方向Z的两端。
可以理解的是,汇流件20上可以设置两个限位配合部24,两个限位配合部24分布于汇流件20的沿第三方向Z的两端。汇流件20上也可以设置大于两个的奇数个或偶数个的限位配合部24,多个限位配合部24等量或不等量的分布于汇流件20的沿第三方向Z的两端。
示例性的,如图7所示,同一个汇流件20上设置4个限位配合部24,4个限位配合部24等量分布于汇流件20的沿第三方向Z的两端,位于汇流件的沿第三方向Z的同一端的两个限位配合部24沿第一方向X间隔分布。
多个限位配合部24分部于汇流件20的沿第三方向Z的两端,从而更稳定地限制汇流件20沿第三方向Z移动,且多个限位配合部24分布于汇流件20的两端的结构,便于简化汇流件20的结构,且避免限位配合部24过多占用汇流件20的用于与电极引出组件12连接的连接面的面积,从而有效保证汇流件20与电极引出组件12连接的稳定性。
根据本申请的一些实施例,汇流件20包括底壁21、两个侧壁22和两个翻边部23,两个侧壁22沿第一方向X相对设置,底壁21连接两个侧壁22。两个翻边部23与两个侧壁22对应设置,每个翻边部23从对应的侧壁22的远离底壁21的一端向背离另一个侧壁22的方向延伸,两个翻边部23分别与两个电池单体10的电极引出组件12连接。
“两个翻边部23分别与两个电池单体10的电极引出组件12连接”,是指两个翻边部23的背离底壁21的一侧与电极引出组件12连接。
在其他一些实施例中,每个翻边部23也可以朝向另一个侧壁22的方向延伸。
汇流件20呈几字形结构,有效提高汇流件20本身的结构强度,同时,汇流件20的两个翻边部23与两个电池单体10的电极引出组件12连接,几字形汇流件20的侧壁22和底壁21形成台阶面,使得汇流件20具有一定活动余量,可有效释放电池单体10后期膨胀给汇流件20带来的作用力,起到良好的缓冲膨胀力的作用。
根据本申请的一些实施例,限位配合部24设置于翻边部23。
具体而言,限位配合部24设置于翻边部23,则限位部13作用于翻边部23以对汇流件20进行限位。
基于“电极引出组件12设置有多个限位部13,汇流件20设置有多个限位配合部24,限位配合部24与限位部13一一对应”的实施形式,每个翻边部23可以设置多个限位配合部24。
示例性的,请再次参照图10和图11,每个翻边部23设置有两个限位配合部24,两个限位配合部24分布于翻边部23的第三方向Z的两端,其中,底壁21的厚度方向沿第二方向Y延伸,第一方向X、第二方向Y和第三方向Z两两垂直。
限位部13直接作用于汇流件20的翻边部23,以对汇流件20的与电极引出组件12连接的部分进行限位,从而有效保证汇流件20的限位精度及连接精度。
根据本申请的一些实施例,沿第二方向Y,翻边部23到底壁21的距离为D1,满足2mm≤D1≤10mm,优选地,4mm≤D1≤6mm;第二方向Y垂直于底壁21。
具体而言,请参照图9,底壁21所在平面与第一方向X平行,第二方向Y垂直于第一方向X,底壁21具有朝向电池单体10的第二表面211,翻边部23具有朝向电池单体10的第二连接面231,底壁21的沿第二方向Y的距离即为第二表面211到第二连接面231之间的距离。
可以理解的是,翻边部23到底壁21的距离D1可以为2mm,可以为10mm,也可以为大于2mm小于10mm的任意数值。
进一步地,翻边部23到底壁21的距离D1可以为4mm,可以为6mm,也可以为大于4mm小于6mm的任意数值。示例性的,翻边部23到底壁21的距离D1为5mm。
翻边部到底壁21的距离过大,则汇流件20的底壁21距离电池单体10的间距较大,汇流件20会占用大量电池单体10外周的空间;而翻边部23到底壁21的距离过小,则汇流件20的受力变形的余量过小,不利于有效发挥汇流件20的缓冲膨胀力的作用;而将翻边部23到底壁21的距离控制在2mm到10mm之间,可在保证汇流件20具有较好的缓冲膨胀力作用的同时,避免汇流件20占用大量电池100空间。
根据本申请的一些实施例,汇流件20与电极引出组件12连接形成连接区,连接区沿第一方向X的尺寸为D2,满足3mm≤D2≤10mm,优选地,4mm≤D2≤6mm。
具体而言,请继续参照图9,汇流件20包括用于与电极引出组件12连接的第一连接面1211,电极引出组件12包括用于与汇流件20连接的第二连接面231,汇流件20与电极引出组件12连接后,第一连接面1211与第二连接面231相互连接的区域形成上述连接区。
连接区的沿第一方向X(多个电池单体10层叠方向)的尺寸D2可以为3mm,可以为10mm,也可以为大于3mm且小于10mm的任意数值。
进一步地,连接区的沿第一方向X(多个电池单体10层叠方向)的尺寸D2可以为4mm,可以为6mm,也可以为大于4mm且小于6mm的任意数值。示例性的,D2为4.5mm。
如果D2过大,则汇流件20和电极引出件需要预留的连接面的面积过大,相应的,汇流件20和电极引出组件12会占用大量的电池单体10外周的空间,不利于提高电池100的空间利用率;而如果D2过小,则连接区的宽度过小,无法保证汇流件20与电极引出组件12的连接强度和连接稳定性;本申请技术方案将汇流件20与电极引出组件12的连接区的宽度限定在3mm至10mm之间,可有效保证汇流件20与电极引出组件12连接强度和连接稳定性的同时,避免过多占用电池100空间。
根据本申请的一些实施例,第一方向X与第一壁111的厚度方向平行。
具体而言,多个电池单体10沿第一方向X层叠设置,第一壁111的厚度方向沿第一方向X延伸,则第一壁111位于电池单体10的沿第一方向X的一侧,且第一方向X垂直于第一壁111所在平面。
相应的,电极引出组件12设置于第一壁111,即电极引出组件12位于电池单体10的第一方向X的一侧。
采用这种结构的电池单体10组成的电池,可有效减少汇流件20和电极引出组件12对电池单体10的顶部空间的占用,从而有效提高电池100的空间利用率,进而提高电池100的能量密度。
根据本申请的一些实施例,第一壁111为外壳11的所有壁中面积最大的壁。
具体而言,电极引出组件12设置于电池单体10的大面,且该电池单体10的大面垂直于电池单体10层叠方向(第一方向X)。
示例性的,如图3所示,电池单体10可以呈扁平的刀片状结构,电池单体10的厚度沿第一方向X延伸,且电池单体10的厚度小于电池单体10的长度并小于电池单体10的宽度。
由于电池单体10的厚度减小,在电池单体10的端部设置电极引出组件12时,会限制电极引出组件12的尺寸,而如果电极引出组件12的尺寸过小,就无法满足电池单体10过电流的需求。
而将电极引出组件12设置于电池单体10的大面且位于电池单体10的沿其层叠排列方向的一侧,相较于传统的电极引出组件12设置于电池单体10的窄面的结构,本申请技术方案可有效保证电极引出组件12的尺寸结构稳定,从而保证电极引出组件12能够满足电池单体10过电流的需求。
根据本申请的一些实施例,外壳11还包括与第一壁111相对设置的第二壁113,第二壁113的边缘的第一区域内陷形成凹陷部1131,凹陷部1131用于容纳与第二壁113相邻的电池单体10的电极引出组件12的至少一部分。
具体而言,请参照图8,第一壁111和第二壁113沿第一方向X间隔设置, 多个电池单体10沿第一方向X层叠设置后,单个电池单体10的第一壁111与相邻电池单体10的第二壁113相邻。
第二壁113包括第一区域,第一区域位于第二壁113的朝向汇流件20的边缘,“第一区域内陷形成凹陷部1131”是指第一区域沿第一方向X朝向第一壁111凹陷而形成凹陷部1131。
第二壁113上的凹陷部1131用于容纳与该第二壁113相邻的第一壁111上设置的电极引出组件12的至少一部分。
由于每个电池单体10的第二壁113的边缘设置有凹陷部1131,且每个电池单体10的电极引出组件12设置于与第二壁113相对的第一壁111上,因此,当多个电池单体10沿第一方向排列时,相邻两个电池单体中的第一个电池单体的凹陷部1131可以容纳第二个电池单体的电极引出组件12的至少一部分,这种结构有利于进一步降低电极引出组件12的空间占用率,从而进一步提高电池100的结构紧凑性,有利于提高电池100的能量密度;同时,凹陷部1131对电极引出组件12以及电极引出组件12与汇流件20连接的连接区起到一定保护作用,降低电极引出组件12承受不可控外力的风险,从而有效提高电极引出组件12的结构稳定性以及电极引出组件12和与汇流件20连接的稳定性。
根据本申请的一些实施例,外壳11包括壳体112和端盖,壳体112具有开口,端盖封闭开口,第一壁111为端盖。
端盖是指盖合于壳体112的开口处以将电池单体10的内部环境隔绝于外部环境的部件。不限地,端盖的形状可以与壳体112的形状相适应以配合壳体112。在一些实施例中,端盖可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖在受挤压碰撞时不易发生形变,使电池单体10能够具备更高的结构强度。端盖的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
壳体112是用于配合端盖以形成电池单体10的内部环境的组件,壳体112的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
第一壁111为端盖,电极引出组件12设置在外壳11的端盖上,有利于提高电极引出组件12安装在第一壁111的装配便捷性。
本申请的一些实施例提供一种用电装置,包括上述任一方案的电池100,电池100用于提供电能。
其中,用电装置可以是前述任一应用电池100的设备或系统。
请参照图2至图9,本申请实施例提供一种电池100,该电池100包括多个电池单体10和汇流件20,多个电池单体10沿第一方向X层叠设置。
每个电池单体10包括外壳11、电极引出组件12、电极组件14、转接件15和第二绝缘件124,外壳11包括壳体112和端盖,壳体112具有开口,端盖封闭开口,第一壁111为端盖。并且,第一方向X与第一壁111的厚度方向平行,第一壁111为外壳11的所有壁中面积最大的壁。
电极组件14、转接件15和第二绝缘件124容纳于外壳11内,电极组件14具有极耳141。
电极引出组件12设置于外壳11的第一壁111,电极引出组件12包括导电件121、第一绝缘件122和电极端子123。第一壁111设置有电极引出孔,电极端子123穿设于电极引出孔,转接件15设置在极耳141和电极端子123之间,且极耳141和电极端子123通过转接件15连接,其中,第二绝缘件设置在转接件15和第一壁111之间。
导电件121设置在第一壁111的外侧,导电件121包括第一部分121a和第二部分121b,第一部分121a与第一壁111平行,第一部分121a与电极端子123铆接,第二部分121b呈U形,并且第二部分121b包括第一段1212、第二段1213和第三段1214,第一段1212从第一部分121a朝着背离第一壁111的方向延伸,第二段1213在第一段1212的远离第一壁111的一端连接第一段1212和第三段1214,第三段1214自第二段1213朝接近第一壁111的方向延伸,第三段1214的背离第一段1212的一侧具有用于与汇流件20连接的第一连接面1211。
第一绝缘件122绝缘隔离导电件121和第一壁111,第一绝缘件122包括本体1221和凸出部1222,本体1221设置于第一壁111与导电件121之间,凸出部1222沿第一方向X凸出于本体1221,凸出部1222插入第一段1212和第三段1214之间。
汇流件20连接相邻两个电池单体10的电极引出组件12。汇流件20包括底壁21、两个侧壁22和两个翻边部23,两个侧壁22沿第一方向X相对设置,底壁21连接两个侧壁22。两个翻边部23与两个侧壁22对应设置,每个翻边部23从对应的侧壁22的远离底壁21的一端向背离另一个侧壁22的方向延伸,汇流件20的其中一个翻边部23与相邻两个电池单体10的第一个电池单体的导电件的第一连接面1211连接,汇流件20的另一个翻边部23与相邻两个电池单体10的第二个电池单体的导电件的第一连接面1211连接。翻边部23与第一连接面1211连接后的连接面40垂直于第一壁111。
其中,电极引出组件12设有限位部13,翻边部23设有限位配合部24,限位部13与限位配合部24相配合,对汇流件20进行限位。
具体地,凸出部1222包括与第三段1214相邻的第一表面1223,限位部13为凸起且沿第二方向Y凸出于第一表面1223,限位部13包括两个凸起,两个凸起沿第三方向Z间隔设置于第一表面1223,第一方向X、第二方向Y和第三方向Z两两垂直。
相应的,翻边部23的沿第三方向Z的两端各设有一个限位配合部24,限位配合部24为沿第二方向Y贯穿翻边部23的凹部,凹部与凸起一一对应,限位部13可引导汇流件20沿第二方向Y运动。
需要说明的是,在不冲突的情况下,本申请中的实施例中的特征可以相互结合。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要 不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (22)

  1. 一种电池,包括:
    多个电池单体,多个所述电池单体沿第一方向层叠设置,所述电池单体包括外壳和电极引出组件,所述电极引出组件设置于所述外壳的第一壁,所述电极引出组件用于将所述电池单体的电能引出;
    汇流件,所述汇流件连接两个所述电池单体的所述电极引出组件;
    其中,所述电极引出组件设有限位部,所述限位部用于对所述汇流件进行限位。
  2. 根据权利要求1所述的电池,其中,所述电极引出组件包括导电件和第一绝缘件,所述导电件与所述汇流件连接,所述第一绝缘件绝缘隔离所述导电件和所述第一壁;
    所述限位部设置于所述第一绝缘件或所述导电件。
  3. 根据权利要求2所述的电池,其中,所述电池单体包括电极组件,所述电极组件容纳于所述外壳内,所述电极组件具有极耳;
    所述导电件包括第一部分和第二部分,所述第一部分与所述第一壁平行,所述第一部分与所述极耳电连接;所述第二部分与所述汇流件连接,所述第二部分与所述汇流件的连接面所在平面与所述第一壁相交。
  4. 根据权利要求3所述的电池,其中,所述第二部分包括第一段、第二段和第三段,所述第一段从所述第一部分朝着背离所述第一壁的方向延伸,所述第二段在所述第一段的远离所述第一壁的一端连接所述第一段和所述第三段,所述第三段自所述第二段朝接近所述第一壁的方向延伸,所述汇流件连接于所述第三段的背离所述第一段的一侧。
  5. 根据权利要求4所述的电池,其中,所述第一绝缘件包括本体和凸出部,所述本体设置于所述第一壁与所述导电件之间,所述凸出部沿所述第一壁的厚度方向凸出于所述本体,所述凸出部插入所述第一段和所述第三段之间。
  6. 根据权利要求5所述的电池,其中,所述限位部设置于所述凸出部和/或本体上。
  7. 根据权利要求3-6中任一项所述的电池,其中,所述电极引出组件还包括:
    电极端子,所述第一壁设置有电极引出孔,所述电极端子穿设于所述电极引出孔,所述导电件设置在所述第一壁的外侧,所述第一部分和所述极耳通过所述电极端子电连接。
  8. 根据权利要求3-7中任一项所述的电池,其中,所述限位部被配置为可引导所述汇流件沿第二方向运动,所述第二方向与所述第一方向相交并与所述连接面相交。
  9. 根据权利要求1-8中任一项所述的电池,其中,所述汇流件设置有限位配合部,所述限位配合部与所述限位部相配合。
  10. 根据权利要求9所述的电池,所述限位部包括凸起,所述限位配合部包括凹部,和/或
    所述限位部包括凹部,所述限位配合部包括凸起。
  11. 根据权利要求9或10所述的电池,其中,所述电极引出组件设置有多个所述限位部,所述汇流件设置有多个所述限位配合部,所述限位配合部与所述限位部一一对应。
  12. 根据权利要求11所述的电池,其中,多个所述限位配合部沿第三方向间隔设置,所述第三方向与所述第一方向相交。
  13. 根据权利要求12所述的电池,其中,多个所述限位配合部分布于所述汇流件的沿所述第三方向的两端。
  14. 根据权利要求9-13中任一项所述的电池,其中,所述汇流件包括:
    底壁;
    两个侧壁,两个所述侧壁沿所述第一方向相对设置,所述底壁连接所述两个侧壁;
    两个翻边部,两个所述翻边部与两个所述侧壁对应设置,每个所述翻边部从对应的所述侧壁的远离所述底壁的一端向背离另一个所述侧壁的方向延伸,两个所述翻边部分别与两个所述电池单体的所述电极引出组件连接。
  15. 根据权利要求14所述的电池,其中,所述限位配合部设置于所述翻边部。
  16. 根据权利要求15所述的电池,其中,沿第二方向,所述翻边部到所述底壁的距离为D1,满足2mm≤D1≤10mm,优选地,4mm≤D1≤6mm;所述第二方向垂直于所述底壁。
  17. 根据权利要求1-16中任一项所述的电池,其中,所述汇流件与所述电极引出组件连接形成连接区,所述连接区沿所述第一方向的尺寸为D2,满足3mm≤D2≤10mm,优选地,4mm≤D2≤6mm。
  18. 根据权利要求1-17中任一项所述的电池,其中,所述第一方向与所述第一壁的厚度方向平行。
  19. 根据权利要求18所述的电池,其中,所述第一壁为所述外壳的所有壁中面积最大的壁。
  20. 根据权利要求18或19所述的电池,其中,所述外壳还包括与所述第一壁相对设置的第二壁,所述第二壁的边缘的第一区域内陷形成凹陷部,所述凹陷部用于容纳与所述第二壁相邻的电池单体的电极引出组件的至少一部分。
  21. 根据权利要求1-20中任一项所述的电池,其中,所述外壳包括壳体和端盖,所述壳体具有开口,所述端盖封闭所述开口,所述第一壁为所述端盖。
  22. 一种用电装置,其中,包括权利要求1-21中任一项所述的电池,所述电池用于提供电能。
PCT/CN2022/103106 2022-06-30 2022-06-30 电池及用电装置 WO2024000505A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103106 WO2024000505A1 (zh) 2022-06-30 2022-06-30 电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103106 WO2024000505A1 (zh) 2022-06-30 2022-06-30 电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024000505A1 true WO2024000505A1 (zh) 2024-01-04

Family

ID=89383855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103106 WO2024000505A1 (zh) 2022-06-30 2022-06-30 电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024000505A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202282415U (zh) * 2010-09-30 2012-06-20 三菱重工业株式会社 电池组
JP2017126537A (ja) * 2016-01-15 2017-07-20 株式会社東芝 組電池
CN207320191U (zh) * 2017-08-24 2018-05-04 多氟多(焦作)新能源科技有限公司 软包锂电池模组及其电芯单元、电芯单元的框架
CN111033804A (zh) * 2017-12-21 2020-04-17 株式会社东芝 蓄电模块以及电池组
CN216085053U (zh) * 2021-10-22 2022-03-18 宁德时代新能源科技股份有限公司 电池和用电设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202282415U (zh) * 2010-09-30 2012-06-20 三菱重工业株式会社 电池组
JP2017126537A (ja) * 2016-01-15 2017-07-20 株式会社東芝 組電池
CN207320191U (zh) * 2017-08-24 2018-05-04 多氟多(焦作)新能源科技有限公司 软包锂电池模组及其电芯单元、电芯单元的框架
CN111033804A (zh) * 2017-12-21 2020-04-17 株式会社东芝 蓄电模块以及电池组
CN216085053U (zh) * 2021-10-22 2022-03-18 宁德时代新能源科技股份有限公司 电池和用电设备

Similar Documents

Publication Publication Date Title
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
WO2023065923A1 (zh) 电池单体、电池和用电设备
WO2023000234A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023221598A1 (zh) 连接组件、电池单体、电池及用电设备
CN117203830A (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2023142700A1 (zh) 电池顶盖、顶盖组件、电池单体、电池及用电装置
WO2023186034A1 (zh) 端盖、电池单体、电池及用电设备
WO2023240749A1 (zh) 电极组件、电池单体、电池和用电设备
WO2023025104A1 (zh) 电池单体、电池以及用电装置
WO2024016491A1 (zh) 极片、电极组件、电池单体、电池及用电装置
WO2024001058A1 (zh) 电池单体、电池及用电设备
CN219017777U (zh) 电池单体、电池、用电设备以及制备电池单体的装置
CN217740741U (zh) 电池单体、电池及用电设备
WO2024000505A1 (zh) 电池及用电装置
WO2022226964A1 (zh) 连接部件、电池单体、电池及用电设备
WO2024000507A1 (zh) 电池单体、电池及用电设备
WO2024021082A1 (zh) 电池及用电设备
WO2023070288A1 (zh) 端盖组件、电池单体及其制备方法、电池和用电装置
WO2023240744A1 (zh) 电池单体、电池及用电装置
WO2023240633A1 (zh) 电池单体、电池以及用电装置
WO2023092529A1 (zh) 外壳及其制备方法和系统、电池单体、电池、用电装置
WO2023065366A1 (zh) 电池、用电设备、制备电池单体的方法和设备
CN215496869U (zh) 端盖组件、电池单体、电池及用电设备
WO2024045065A1 (zh) 端盖组件、电池组件、电池及用电设备
WO2024031347A1 (zh) 端盖组件、电池组件、电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948607

Country of ref document: EP

Kind code of ref document: A1