WO2024034607A1 - Coated metal sheet - Google Patents

Coated metal sheet Download PDF

Info

Publication number
WO2024034607A1
WO2024034607A1 PCT/JP2023/028922 JP2023028922W WO2024034607A1 WO 2024034607 A1 WO2024034607 A1 WO 2024034607A1 JP 2023028922 W JP2023028922 W JP 2023028922W WO 2024034607 A1 WO2024034607 A1 WO 2024034607A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
layer
zinc
mass
film layer
Prior art date
Application number
PCT/JP2023/028922
Other languages
French (fr)
Japanese (ja)
Inventor
史生 柴尾
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024034607A1 publication Critical patent/WO2024034607A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to a painted metal plate.
  • Patent Document 1 for example, a technique for imparting an antiviral function to steel materials in advance is known. This technique is based on coated steel and sequentially forms a protective layer and a photocatalyst layer on the coated steel.
  • an object of the present invention is to provide a coated metal plate that can be manufactured more easily, can further improve the antiviral function, and has durability. .
  • the inventors of the present invention made extensive studies and found that a metal plate having a zinc-containing metal layer further formed with a photocatalyst layer was subjected to an antiviral test specified in JIS R1756:2020. It has been experimentally found that the more easily a metal plate dissolves zinc into a virus-containing solution, the better its antiviral properties will be. Based on this knowledge, the present inventors conducted further studies and found that it is possible to further improve the antiviral function of a painted metal plate by creating conditions in which zinc is easily eluted. It was completed. The gist of the present invention, which was completed based on this knowledge, is as follows.
  • a painted metal plate comprising a metal plate and a film layer located on at least one surface of the metal plate, wherein the metal plate has a zinc-containing metal containing at least zinc on at least one surface.
  • the metal plate has a layer, and the film layer includes a first film layer located on the outermost surface of the coated metal plate and containing at least a compound having photocatalytic activity, and the average of the first film layer is The thickness is 0.05 to 5.00 ⁇ m, and the total thickness from the surface of the zinc-containing metal layer to the outermost surface of the first coating layer is 15.0 ⁇ m or less, as specified in JIS R1756:2020.
  • the thickness of the first coating layer is 0.05 to 0.95 ⁇ m, and the total thickness from the surface of the zinc-containing metal layer to the outermost surface of the first coating layer is less than 1.0 ⁇ mm.
  • the painted metal plate according to (1) the painted metal plate according to (1).
  • the coated metal plate according to (1) or (2), wherein the total content of elements with a nobler potential than zinc in the coating layer is 0 to 20.0% by mass.
  • the first film layer further contains at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag.
  • the first coating layer further contains at least one of Si or Zr, and the total content of the elements is 5 to 50% by mass in terms of silica for Si and zirconia for Zr.
  • a painted metal plate comprising a metal plate and a film layer located on at least one surface of the metal plate, the film layer being located on the outermost surface of the painted metal plate and having photocatalytic activity. and a first film layer containing a zinc element of 0.2 to 20.0% by mass in terms of metallic Zn, and the average thickness of the first film layer is 0.05 to 5% by mass.
  • the first coating layer further contains at least one of Si or Zr, and the total content of the elements is 5 to 50% by mass in terms of silica for Si and zirconia for Zr.
  • the painted metal plate according to (6). The film layer further includes a second film layer located below the first film layer and made of an inorganic component, and the second film layer contains Si or The coated metal plate according to (1) or (6), which contains at least one element of Zr, and wherein the second coating layer has an average thickness of 0.05 to 5.00 ⁇ m. (11) The coated metal plate according to (10), wherein the second film layer further contains at least one of P or V as the inorganic component.
  • the film layer further includes a third film layer located below the second film layer and containing a resin component, and the third film layer has an average thickness of 0.50 to 14
  • the coated metal plate according to (15), wherein the compound having photocatalytic activity is a metal-supported titanium oxide in which at least one of Cu and Fe is supported on titanium oxide.
  • the painted metal plate according to (1), wherein the metal plate is a zinc-based plated steel plate having a zinc-based plating layer as the zinc-containing metal layer.
  • the zinc-based plating layer is a plating layer containing 30% by mass or more of Zn in terms of metallic Zn.
  • the zinc-based plating layer is any one of a zinc plating layer, a zinc-aluminum alloy plating layer, a zinc-aluminum-magnesium alloy plating layer, a zinc-nickel alloy plating layer, or a zinc-iron alloy plating layer.
  • FIG. 1 is an explanatory diagram schematically showing an example of the structure of a coated metal plate according to a first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram schematically showing an example of the structure of a painted metal plate according to a second embodiment of the present invention.
  • FIG. 7 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the second embodiment of the present invention.
  • FIG. 7 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the second embodiment of the present invention.
  • FIG. 7 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the second embodiment of the present invention.
  • FIG. 7 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the second embodiment of the present invention.
  • a first embodiment of the present invention is a painted metal plate having a metal plate and a film layer located on at least one surface of the metal plate, wherein the metal plate contains at least zinc on at least one surface.
  • the present invention relates to a metal plate having a zinc-containing metal layer.
  • FIG. 1 is an explanatory diagram schematically showing an example of the structure of a painted metal plate according to the present embodiment.
  • a coated metal plate 1 has a coating layer on at least one surface of the metal plate, and has a coating layer on at least one surface of the metal plate 10, and a coating layer on at least one surface of the metal plate. It has at least a photocatalyst layer 20 as an example of a first film layer.
  • the metal plate 10 includes a base metal 11 as a base material of the metal plate 10 and a zinc-containing metal layer 13 that is a metal layer containing at least zinc. There is.
  • various metal plates can be used as the base metal 11.
  • Examples of such metal plates include various steel plates, aluminum plates, stainless steel plates, etc., and may be selected depending on the strength, characteristics, etc. required of the base metal 11.
  • the zinc-containing metal layer 13 is a metal layer provided on the surface of the base metal 11, and contains at least zinc.
  • the presence of such a zinc-containing metal layer 13 on the surface of the base metal 11 prevents the virus from entering the virus-containing liquid in the antiviral test specified in JIS R1756:2020, which the inventors discovered. leaching of zinc begins to occur.
  • the antiviral function of the coated metal plate 1 can be further improved over a longer period of time using a simpler method.
  • the zinc-containing metal layer 13 preferably contains zinc in an amount of 30% by mass or more in terms of metal Zn. Further, the zinc-containing metal layer 13 may contain impurities. By setting the zinc content in the zinc-containing metal layer 13 to 30% by mass or more, the amount of zinc eluted into the virus-containing liquid as described above can be further increased while ensuring the corrosion resistance of the base metal 11. becomes possible. This makes it possible to further improve the antiviral function of the coated metal plate 1.
  • the zinc content in the zinc-containing metal layer 13 is more preferably 40% by mass or more, and even more preferably 70% by mass or more. Note that the higher the zinc content in the zinc-containing metal layer 13, the better, and the zinc content in the zinc-containing metal layer 13 may be 100% by mass.
  • Examples of such a zinc-containing metal layer 13 include a zinc vapor-deposited layer in which metallic zinc or the like is vapor-deposited, and a zinc-based plating layer that is a plating layer containing zinc.
  • zinc-based plating is used as the zinc-containing metal layer 13.
  • a layer is provided.
  • a preferred zinc-based plating layer as the zinc-containing metal layer 13 is a zinc-based plating layer containing 30% by mass or more of zinc in terms of metal Zn. Moreover, such a zinc-based plating layer may contain impurities. By setting the zinc content in the zinc-based plating layer to 30% by mass or more, it is possible to further increase the amount of zinc eluted into the virus-containing liquid as described above while ensuring the corrosion resistance of the base metal 11. This makes it possible to further improve the antiviral function of the coated metal plate 1.
  • the zinc content in the zinc-based plating layer is more preferably 40% by mass or more, and even more preferably 70% by mass or more. Note that the zinc content in the zinc-based plating layer may be 100% by mass.
  • a zinc-based plating layer various types of plating can be used, such as a zinc plating layer, a zinc-aluminum alloy plating layer, a zinc-aluminum-magnesium alloy plating layer, a zinc-nickel alloy plating layer, a zinc-iron alloy plating layer, etc. layers can be mentioned. Further, from the viewpoint of further increasing the amount of zinc eluted, it is more preferable to provide a zinc-nickel alloy plating layer or a zinc-iron alloy plating layer as the zinc-based plating layer.
  • the element Fe is an element that promotes the elution of zinc from the viewpoint of ionization tendency, and the coexistence of metal Fe and zinc is advantageous in terms of potential from the viewpoint of zinc elution, so it is preferable.
  • the amount of adhesion of the zinc-containing metal layer 13 as described above is preferably 8 g/m 2 or more, more preferably 17 g/m 2 or more in terms of metal Zn per one side of the base metal 11. preferable.
  • the adhesion amount of the zinc-containing metal layer 13 as described above is preferably 250 g/m 2 or less, more preferably 170 g/m 2 or less, in terms of metal Zn per one side of the base metal 11.
  • the adhesion amount of the zinc-containing metal layer 13 as described above is preferably 250 g/m 2 or less, more preferably 170 g/m 2 or less, in terms of metal Zn per one side of the base metal 11. preferable.
  • the thickness of the metal plate 10 as described above is not particularly limited, and depends on the mechanical strength (for example, tensile strength, etc.), workability, etc. required for the coated metal plate 1 according to the present embodiment. It may be set as appropriate depending on the situation.
  • various patterns such as a hairline pattern or a spangle pattern along the rolling direction of the base metal 11 may be present on the surface of the zinc-containing metal layer 13. By providing such a pattern, it becomes possible to further improve the design of the painted metal plate 1.
  • the hairline pattern in particular is a pattern realized by forming fine irregularities on the surface of the zinc-containing metal layer 13, the surface area of the zinc-containing metal layer 13 is increased. As a result, it becomes possible to further increase the amount of zinc eluted from the zinc-containing metal layer 13, which is more preferable not only from the viewpoint of design but also from the viewpoint of antiviral properties.
  • FIG. 1 shows a form in which the zinc-containing metal layer 13 is formed on one surface of the base metal 11, the zinc-containing metal layer 13 may be formed on both surfaces of the base metal 11. may have been done.
  • the photocatalyst layer 20 as an example of the first film layer is formed on the outermost surface of the film layer on at least one surface of the metal plate 10, as schematically shown in FIG. It is a layer located in the photocatalyst and contains at least a compound having photocatalytic activity (hereinafter sometimes abbreviated as "photocatalytic compound"). Since the photocatalytic layer 20 contains a compound having photocatalytic activity, the compound having photocatalytic activity causes a photocatalytic reaction by light (particularly light in the ultraviolet to visible light band) incident on the photocatalytic layer 20.
  • the photocatalytic layer 20 according to the present embodiment exhibits various photocatalytic effects including antiviral effects and sterilizing effects.
  • the coated metal plate 1 according to the present embodiment can realize various properties including an antiviral effect and a sterilizing effect.
  • Compounds with such photocatalytic activity include those that react with light in the ultraviolet band (more specifically, when excited by light in the ultraviolet band) to exhibit photocatalytic activity, and compounds that exhibit photocatalytic activity mainly in the visible range. There exists a compound that reacts with light in the optical band (more specifically, is excited by light in the visible light band) and exhibits photocatalytic activity.
  • Examples of compounds that exhibit photocatalytic activity by reacting with light in the ultraviolet light range include titanium oxide (more specifically, anatase titanium oxide), zinc oxide, cerium oxide, tin oxide, bismuth oxide, zirconium oxide, and Tungsten, chromium oxide, molybdenum oxide, iron oxide, nickel oxide, ruthenium oxide, cobalt oxide, copper oxide, manganese oxide, germanium oxide, lead oxide, cadmium oxide, vanadium oxide, niobium oxide, tantalum oxide, rhodium oxide, rhenium oxide, etc.
  • metal oxides, metal sulfides such as cadmium sulfide and zinc sulfide
  • titanium compounds such as strontium titanate and barium titanate.
  • anatase-type titanium oxide, zinc oxide, tin oxide, zirconium oxide, tungsten oxide, iron oxide, niobium oxide, strontium titanate, etc. are particularly effective as compounds that react with light in the ultraviolet light band to exhibit photocatalytic activity.
  • Anatase titanium oxide is preferably used, and anatase titanium oxide is more preferably used.
  • metal-supported titanium oxide in which at least one of Cu or Fe is supported on titanium oxide (more specifically is anatase-type titanium oxide), anatase-type titanium oxide in which Cr, V, Mn, Ni, and Pt are supported on anatase-type titanium oxide, and anatase-type titanium oxide in which anatase-type titanium oxide is doped with anions such as nitrogen and sulfur.
  • type titanium oxide a solid solution of AgNbO 3 and SrTiO 3 , and the like.
  • anatase-type titanium oxide in which at least one of Cu and Fe is supported on anatase-type titanium oxide is more preferably used.
  • anatase-type titanium oxide on which Cu is supported is particularly preferably used because the attached Cu exhibits the effect of promoting the elution of zinc from the zinc-containing metal layer 13 as described above.
  • the average particle size (primary particle size) of anatase-type titanium oxide is preferably 5 nm or more.
  • the average particle size (primary particle size) of the anatase-type titanium oxide is 5 nm or more, it becomes possible to disperse the anatase-type titanium oxide more uniformly in the photocatalyst layer 20.
  • the average particle size (primary particle size) of the anatase titanium oxide is more preferably 20 nm or more.
  • the average particle size (primary particle size) of anatase-type titanium oxide (including those in a metal-supported state) is preferably 200 nm or less.
  • the average particle size (primary particle size) of the anatase-type titanium oxide is 200 nm or less, the anatase-type titanium oxide is more uniformly distributed in the photocatalyst layer 20 while suppressing excessive aggregation of the anatase-type titanium oxide in the photocatalyst layer 20. It becomes possible to disperse the
  • the average particle size (primary particle size) of the anatase titanium oxide is more preferably 100 nm or less.
  • the average particle size of the above-mentioned anatase-type titanium oxide can be measured, for example, by a dynamic light scattering method using a laser beam. Such a method can easily obtain highly accurate measurement values.
  • the size of the aggregates may be measured, so it is also possible to directly measure the size of the aggregates using a transmission electron microscope (TEM). It is preferable to check the primary particle size. If the presence of aggregated particles is confirmed as a result of TEM observation, it is preferable to change the dispersion conditions and perform the measurement again using a dynamic light scattering method.
  • TEM transmission electron microscope
  • the size of the primary particles observed and measured by TEM can be used as the primary particle diameter.
  • the inventor's experience has shown that by measuring approximately 100 or more arbitrarily selected particles, a value representative of all the particles can be obtained.
  • the following may be performed. That is, a cross section of the photocatalyst layer 20 cut along the thickness direction can be observed or analyzed using a transmission electron microscope (TEM). By using TEM, the primary particle diameter of the photocatalytic compound can be measured. Furthermore, by performing EDS analysis in conjunction with TEM, elements contained in the photocatalytic compound can be measured. Furthermore, the crystal structure of a photocatalytic compound (for example, in the case of titanium oxide, whether it is anatase type or rutile type) can be determined by electron diffraction. In the experience of the present inventor, it has been found that by measuring approximately 100 or more arbitrarily selected particles, a value representative of all particles can be obtained.
  • TEM transmission electron microscope
  • the concentration of anatase-type titanium oxide (including metal-supported titanium oxide) in the photocatalyst layer 20 is preferably 50% by mass or more in terms of titania.
  • concentration of anatase titanium oxide in the photocatalyst layer 20 is 50% by mass or more, it is possible to reliably exhibit various photocatalytic effects including antiviral effects.
  • concentration of anatase titanium oxide in the photocatalyst layer 20 is more preferably 60% by mass or more in terms of titania.
  • the concentration of anatase-type titanium oxide (including metal-supported titanium oxide) in the photocatalyst layer 20 is preferably 95% by mass or less in terms of titania.
  • concentration of anatase titanium oxide in the photocatalytic layer 20 By setting the concentration of anatase titanium oxide in the photocatalytic layer 20 to 95% by mass or less, it is possible to suppress an increase in manufacturing costs and to exhibit various photocatalytic effects including antiviral effects.
  • concentration of anatase titanium oxide in the photocatalyst layer 20 is more preferably 80% by mass or less in terms of titania.
  • photocatalytic compounds other than anatase titanium oxide preferably have an average particle size of 5 to 200 nm, and the concentration thereof is preferably 50 to 95% by mass.
  • photocatalytic compounds such as the anatase-type titanium oxide mentioned above, include not only particles, but also sol-like substances that cannot be called particles, substances produced by heating metal complexes, etc. can also be used as necessary.
  • the photocatalyst layer 20 further contains at least one element of Si or Zr, and the total concentration of these elements is 5% by mass or more in terms of silica for Si and zirconia for Zr. It is preferable.
  • the photocatalytic layer 20 is an inorganic film having a skeleton of an inorganic component having a three-dimensional network structure containing at least one element of Si or Zr, and possibly impurities.
  • the total concentration of at least one element of Zr is preferably 5% by mass or more in terms of silica for Si and zirconia for Zr.
  • the total content of at least one element of Si or Zr is more preferably 10% by mass or more.
  • the inorganic component means a component that does not contain an organic resin.
  • the photocatalytic layer 20 further contains at least one element of Si or Zr, and the total concentration of these elements is 50% by mass or less in terms of silica for Si and zirconia for Zr. It is preferable. By containing at least one element of Si or Zr at the above concentration, it is possible to realize a photocatalyst layer 20 with even better corrosion resistance.
  • the total content of at least one element of Si or Zr is more preferably 40% by mass or less.
  • the Si or Zr contained preferably has excellent light transmittance, and is preferably an inorganic component that is less susceptible to decomposition by photocatalysts. Examples of such inorganic components containing Si and Zr include silica and zirconia.
  • the photocatalytic layer 20 further contains at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag. It is preferable to contain.
  • the elements Cu, Fe, Ni, and Ag are elements that promote the elution of zinc from the zinc-containing metal layer 13 as described above, so that the photocatalyst layer 20 further contains these elements, thereby making it more effective. This is preferable because a large amount of zinc is eluted from the zinc-containing metal layer 13.
  • the elements Cu, Zn, and Ag are particularly preferable because they are also elements that exhibit antibacterial effects.
  • the photocatalyst layer 20 further contains the element Zn, since it is possible to further increase the amount of zinc eluted from the coated metal plate 1.
  • the total content of at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag in the photocatalyst layer 20 is preferably 0.2% by mass or more in terms of metal elements. When the total content of the metal elements is 0.2% by mass or more, the above effects can be expressed in a more preferable state.
  • the total content of the metal elements is more preferably 0.6% by mass or more, and still more preferably 1.0% by mass or more.
  • the total content of at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag in the photocatalyst layer 20 is preferably 5.0% by mass or less in terms of metal elements. .
  • the total content of the above-mentioned metal elements is more preferably 3.5% by mass or less, still more preferably 2.5% by mass or less.
  • the photocatalyst layer 20 containing the above photocatalytic compound may contain an antibacterial agent and an adsorbent such as activated carbon or zeolite, as necessary, within a range that does not impair the effects of the present invention.
  • the average thickness d 1 of the photocatalyst layer 20 (in the case of the layer structure shown in FIG. 1 , the total thickness d from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 20 (which can also be considered as the outermost surface of the film layer) T ) is 0.05 ⁇ m or more. If the average thickness d1 of the photocatalytic layer 20 is less than 0.05 ⁇ m, it will be difficult to uniformly form the photocatalytic layer 20 as described above, and the obtained photocatalytic effect will be uneven, so it is preferable. do not have.
  • the average thickness d1 By setting the average thickness d1 to 0.05 ⁇ m or more, the elution route for zinc from the zinc-containing metal layer 13 is ensured, and the zinc is sufficiently eluted, and the desired photocatalytic effect is uniformly distributed over the entire photocatalytic layer 20. It becomes possible to express it.
  • the average thickness d 1 of the photocatalyst layer 20 (in the case of the layer configuration shown in FIG. 1, this is also the total thickness d T from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 20) is 5.00 ⁇ m or less It is. If the average thickness d 1 of the photocatalyst layer 20 exceeds 5.00 ⁇ m, the resulting photocatalytic effect will be saturated while the manufacturing cost will increase, which is not preferable. Furthermore, it becomes difficult to ensure a sufficient amount of zinc eluted from the zinc-containing metal layer 13, which is also unfavorable from this point of view. Furthermore, since the photocatalyst layer is an inorganic film, processability is reduced.
  • the average thickness d 1 By setting the average thickness d 1 to 5.00 ⁇ m or less, it is possible to suppress deterioration in ease of manufacturing and deterioration in workability, and to secure a route for elution of zinc from the zinc-containing metal layer 13 to sufficiently elute zinc. Furthermore, it becomes possible to uniformly exhibit the desired photocatalytic effect over the entire photocatalytic layer 20.
  • the average thickness d1 of the photocatalyst layer 20 is preferably 0.10 ⁇ m or more, more preferably 0.15 ⁇ m or more. Further, the average thickness d1 of the photocatalyst layer 20 is preferably 2.00 ⁇ m or less, more preferably 1.00 ⁇ m or less, still more preferably less than 1.0 ⁇ m, even more preferably 0.80 ⁇ m or less. , 0.60 ⁇ m or less, or 0.50 ⁇ m or less.
  • FIG. 1 shows a configuration in which the photocatalyst layer 20 is formed on one surface of the metal plate 10, the photocatalyst layer 20 may be formed on both surfaces of the metal plate 10.
  • the structure of the painted metal plate 1 as described above has a zinc ion concentration of 0.60 to 5.5% when an antiviral test specified in JIS R1756:2020 is conducted for 4 hours. This is one of the conditions for the content to be within the range of 0.00% by mass.
  • the reason why the above structure is one of the conditions is that in the coated metal plate 1 according to the present embodiment, the zinc-containing metal layer 13 is provided in an appropriate state, and the photocatalyst layer 20 is further removed from the surface of the metal plate 10. This is because since the total thickness dT to the outermost surface is within a specific range, an appropriate amount of zinc can be eluted from the zinc-containing metal layer 13. In this way, in the coated metal plate 1 according to the present embodiment, the zinc-containing metal layer 13, which is originally provided to ensure the corrosion resistance of the metal plate 10, improves the antiviral properties of the coated metal plate 1. It also works for this purpose.
  • the amount of zinc eluted from the zinc-containing metal layer 13 can be controlled to a desired state by adjusting the amount of attachment of the zinc-containing metal layer 13 and the total thickness dT . Furthermore, the amount of zinc leached from the zinc-containing metal layer 13 can also be controlled by further controlling the density of the film layer existing on the path from the zinc-containing metal layer 13 to the outermost surface of the photocatalyst layer 20. It is possible.
  • the zinc ion concentration in the virus-containing liquid is less than 0.60% by mass, it means that the amount of zinc eluted from the zinc-containing metal layer 13 is insufficient, and the coated metal plate 1 shows Antiviral function cannot be further improved.
  • the zinc ion concentration in the virus-containing liquid is preferably 0.90% by mass or more, more preferably 1.20% by mass or more.
  • the zinc ion concentration in the virus-containing liquid is preferably 4.50% by mass or less, more preferably 3.50% by mass or less.
  • the total content of elements having a nobler potential than zinc (more specifically, ions) present in the coating layer is 20.0 in terms of metal elements. It is preferably less than % by mass.
  • elements having a nobler potential than zinc include Cu, Ag, and the like.
  • the total content of elements with a nobler potential than zinc in the coating layer is more preferably 15.0% by mass or less, still more preferably 11.0% by mass or less, and even more preferably 7.5% by mass. % by mass or less. Note that the lower limit of the total content of elements having a nobler potential than zinc in the coating layer is not particularly specified, and may be 0% by mass.
  • the above antiviral test is conducted for 4 hours in accordance with the method specified in JIS R1756:2020. Further, the concentration of zinc ions eluted into the virus-containing liquid may be measured by inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • the coated metal plate 1 according to the present embodiment which has the layer structure shown in FIG. 1, has an additional film layer that functions as a chemical conversion film layer between the metal plate 10 and the photocatalyst layer 20. It's okay.
  • a chemical conversion coating layer between the metal plate 10 and the photocatalyst layer 20 it becomes possible to further improve the adhesion between the metal plate 10 and the photocatalyst layer 20.
  • FIGS. 2A and 2B are explanatory diagrams schematically showing other examples of the structure of the coated metal plate according to the present embodiment.
  • FIGS. 2A and 2B are schematic diagrams schematically showing the layer structure of the coated metal plate 1 in the case of providing an inorganic film layer 30 functioning as a chemical conversion film layer as an example of the second film layer.
  • the painted metal plate 1 according to the present embodiment has an inorganic film layer 30 as an example of a second film layer between the metal plate 10 and the photocatalyst layer 20 as described above.
  • Photocatalytic compounds typified by anatase-type titanium oxide, have extremely excellent oxidizing properties, so when a film layer is provided below the layer where the photocatalytic compound is present, protection is required to protect the film layer. Often forms layers.
  • the chemical conversion coating layer from an inorganic component, it becomes possible to arrange the chemical conversion coating layer without providing a protective layer.
  • the inorganic component means a component that does not contain an organic resin.
  • Such an inorganic film layer 30 is formed by a chemical conversion treatment after impurities such as oil and surface oxides adhering to the surface of the metal plate 10 are removed by a known degreasing process and cleaning process.
  • This inorganic film layer 30 is preferably made of an inorganic component such as a silane compound or a zirconia compound containing at least one element of Si or Zr. Further, the inorganic film layer 30 may further contain an inorganic component containing at least one element of P or V.
  • the inorganic film layer 30 contains an inorganic component having the above-mentioned elements, it improves the film formability after application of the chemical conversion treatment solution and the barrier property (denseness) of the film against corrosion factors such as moisture and corrosive ions. ), it improves the adhesion of the film to the metal plate surface, contributing to raising the corrosion resistance of the film.
  • the inorganic component containing Si for example, ⁇ -(2-aminoethyl)aminopropyltrimethoxysilane, ⁇ -(2-aminoethyl)aminopropylmethyldimethoxysilane, ⁇ -(2- Examples include aminoethyl)aminopropyltriethoxysilane and the like.
  • the inorganic component containing Zr include zirconium carbonate, ammonium zirconium carbonate, potassium zirconium carbonate, sodium zirconium carbonate, and ammonium zirconium carbonate.
  • inorganic components containing P include phosphoric acids and their salts such as phosphoric acid, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, and tetraphosphoric acid, ammonium dihydrogen phosphate, etc. be able to.
  • inorganic components containing V include ammonium metavanadate (V), potassium metavanadate (V), sodium metavanadate (V), vanadyl sulfate (IV), and the like.
  • the various inorganic components described above can be used alone or in combination. Further, the contents of the various inorganic components as described above may be adjusted as appropriate.
  • the average thickness d2 of the inorganic film layer 30 is preferably 0.05 ⁇ m or more, more preferably 0.10 ⁇ m or more. This makes it possible to uniformly form the inorganic film layer 30 on the surface of the metal plate 10 and to stably exhibit various effects of providing the chemical conversion film layer as described above. Further, the average thickness d2 of the inorganic film layer 30 is preferably 5.00 ⁇ m or less, more preferably 1.00 ⁇ m or less, even more preferably less than 1.00 ⁇ m, and 0.80 ⁇ m or less. , 0.60 ⁇ m or less, or even more preferably 0.50 ⁇ m or less. This makes it possible to uniformly form the inorganic film layer 30 on the surface of the metal plate 10 and to stably exhibit various effects of providing the chemical conversion film layer as described above.
  • the inorganic film layer 30 according to the present embodiment further contains at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag, similarly to the photocatalyst layer 20. .
  • the total content of at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag in the inorganic film layer 30 is preferably 0.2% by mass or more in terms of metal elements. .
  • the total content of the metal elements is more preferably 0.6% by mass or more, and still more preferably 1.0% by mass or more.
  • the total content of at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag in the inorganic film layer 30 is 10.0% by mass or less in terms of metal elements. is preferred.
  • the total content of the above-mentioned metal elements is more preferably 7.5% by mass or less, still more preferably 5.0% by mass or less.
  • the painted metal plate 1 according to the present embodiment further includes various known layers between the photocatalyst layer 20 and the inorganic film layer 30, as schematically shown in FIG. 2B. It's okay.
  • the painted metal plate 1 according to the present embodiment has a third film layer further below the inorganic film layer 30 as an example of a third film layer. It may have a resin film layer 40 of. Below, the resin film layer 40 will be explained in detail with reference to FIGS. 3A and 3B. 3A and 3B are explanatory diagrams schematically showing other examples of the structure of the coated metal plate according to the present embodiment.
  • FIGS. 3A and 3B are schematic diagrams schematically showing the layer structure of the coated metal plate 1 in the case where a resin film layer 40 as an example of the third film layer is provided.
  • the painted metal plate 1 according to the present embodiment has a resin film layer 40 as an example of a third film layer below the inorganic film layer 30 as described above.
  • the resin film layer 40 is formed by a chemical conversion treatment after impurities such as oil and surface oxides adhering to the surface of the metal plate 10 are removed by a known degreasing process and cleaning process.
  • the resin film layer 40 contains, for example, a resin, and further contains a silane coupling agent, a zirconium compound, silica, phosphoric acid and its salt, a fluoride, a vanadium compound, and tannin or tannic acid. It may contain one or more selected from the group consisting of: Containing these substances further improves film formability after application of a chemical conversion treatment solution, barrier properties (denseness) of the film against corrosion factors such as moisture and corrosive ions, and adhesion of the film to the surface of the metal plate. etc., contributing to raising the level of corrosion resistance of the film.
  • the resin film layer 40 contains one or more of a silane coupling agent or a zirconium compound
  • a crosslinked structure is formed within the resin film layer 40 and the bond with the metal plate surface is also strengthened. , it becomes possible to further improve the adhesion and barrier properties of the film.
  • the resin film layer 40 contains one or more of silica, phosphoric acid and its salts, fluoride, or a vanadium compound, it functions as an inhibitor and forms a precipitated film or a passive film on the metal plate surface. By doing so, it becomes possible to further improve corrosion resistance.
  • the resin for example, known organic resins such as polyester resin, polyurethane resin, epoxy resin, phenol resin, acrylic resin, polyolefin resin, etc. can be used. In order to further improve the adhesion with the metal plate, it is preferable to use at least one resin having a forced moiety or polar functional group in its molecular chain (polyester resin, urethane resin, epoxy resin, acrylic resin, etc.). .
  • the resins may be used alone or in combination of two or more.
  • the content of the resin in the resin film layer 40 is preferably 0% by mass or more, and more preferably 1% by mass or more, based on the solid content of the film, for example. Thereby, corrosion resistance can be improved. Further, the resin content in the resin film layer 40 is preferably 85% by mass or less, more preferably 60% by mass or less, and 40% by mass or less, based on the solid content of the film, for example. is even more preferable. By setting the resin content to 85% by mass or less, the corrosion resistance of the film can be improved while ensuring the performance required for the film other than corrosion resistance.
  • silane coupling agent examples include ⁇ -(2-aminoethyl)aminopropyltrimethoxysilane, ⁇ -(2-aminoethyl)aminopropylmethyldimethoxysilane, and ⁇ -(2-aminoethyl)aminopropyltriethoxysilane.
  • the amount of the silane coupling agent added in the chemical conversion treatment agent for forming the resin film layer 40 can be, for example, 2 to 80 g/L.
  • the silane coupling agent in an amount of 2 g/L or more, it is possible to improve the adhesion to the metal plate surface and improve the processing adhesion of the coating film.
  • the amount of the silane coupling agent added to 80 g/L or less it is possible to maintain the cohesive force of the coating and improve the processing adhesion of the coating.
  • the silane coupling agents as exemplified above may be used alone or in combination of two or more.
  • zirconium compound examples include zirconium normal propylate, zirconium normal butyrate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium bisacetylacetonate, zirconium monoethylacetoacetate, zirconium acetylacetonate bisethylacetoacetate, Examples include zirconium acetate, zirconium monostearate, zirconium carbonate, ammonium zirconium carbonate, potassium zirconium carbonate, and sodium zirconium carbonate.
  • the amount of the zirconium compound added in the chemical conversion treatment agent for forming the resin film layer 40 can be, for example, 2 to 80 g/L.
  • the zirconium compound in an amount of 2 g/L or more it is possible to improve the adhesion to the metal plate surface and improve the processing adhesion of the coating film.
  • the amount of the zirconium compound may be used alone or in combination of two or more.
  • silica examples include “Snowtex N”, “Snowtex C”, “Snowtex UP”, and “Snowtex PS” manufactured by Nissan Chemical Co., Ltd., and “Adelite AT-20Q” manufactured by ADEKA Co., Ltd. or powdered silica such as Aerosil #300 manufactured by Nippon Aerosil Co., Ltd. can be used. Silica can be selected as appropriate depending on the required performance of the coated metal plate.
  • the amount of silica added in the chemical conversion treatment agent for forming the resin film layer 40 is preferably 1 to 40 g/L. By adding silica in an amount of 1 g/L or more, it is possible to improve the processing adhesion of the coating film. Further, by controlling the amount of silica added to 40 g/L or less, it is possible to achieve both effects of processing adhesion and corrosion resistance while suppressing an increase in cost.
  • phosphoric acid and its salts examples include phosphoric acids and their salts such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, and tetraphosphoric acid; ammonium salts such as triammonium phosphate and diammonium hydrogen phosphate; Phosphonic acids such as aminotri(methylenephosphonic acid), 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra(methylenephosphonic acid), diethylenetriaminepenta(methylenephosphonic acid) and their salts, organic phosphoric acids such as phytic acid and salts thereof.
  • phosphoric acids and their salts such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, and tetraphosphoric acid
  • ammonium salts such as triammonium phosphate and diammonium hydrogen phosphate
  • Phosphonic acids such as aminotri(methylenephosphonic acid), 1-hydroxyethylidene-1,
  • salts of phosphoric acid other than ammonium salts include metal salts with Na, Mg, Al, K, Ca, Mn, Ni, Zn, Fe, and the like.
  • Phosphoric acid and its salts may be used alone or in combination of two or more.
  • the content of phosphoric acid and its salts is preferably 0% by mass or more, more preferably 1% by mass or more, based on the solid content of the film. Further, the content of phosphoric acid and its salt is preferably 20% by mass or less, more preferably 10% by mass or less, based on the solid content of the film. When the content of phosphoric acid and its salts is 20% by mass or less, it is possible to prevent the film from becoming brittle, and it is possible to prevent a decrease in processing adhesion of the film when forming the coated metal plate. .
  • fluoride examples include zircon ammonium fluoride, ammonium silicofluoride, titanium ammonium fluoride, sodium fluoride, potassium fluoride, calcium fluoride, lithium fluoride, titanium hydrofluoride, zircon hydrofluoride, and the like. . Such fluorides may be used alone or in combination of two or more.
  • the content of fluoride is preferably 0% by mass or more, more preferably 1% by mass or more, based on the solid content of the film. Further, the content of fluoride is preferably 20% by mass or less, more preferably 10% by mass or less, based on the solid content of the film. When the fluoride content is 20% by mass or less, it is possible to prevent the coating from becoming brittle, and it is possible to prevent a decrease in processing adhesion of the coating when forming a coated metal plate.
  • vanadium compound examples include vanadium compounds obtained by reducing pentavalent vanadium compounds such as vanadium pentoxide, metavanadate, ammonium metavanadate, sodium metavanadate, and vanadium oxytrichloride to divalent to tetravalent vanadium compounds with a reducing agent, and vanadium trioxide. , vanadium dioxide, vanadium oxysulfate, vanadium oxyoxalate, vanadium oxyacetylacetonate, vanadium acetylacetonate, vanadium trichloride, phosphovanadomolybdic acid, vanadium sulfate, vanadium dichloride, vanadium oxide, etc. with an oxidation number of 4 to 2.
  • Examples include vanadium compounds. Such vanadium compounds may be used alone or in combination of two or more.
  • the content of the vanadium compound is preferably 0% by mass or more, and more preferably 1% by mass or more, based on the solid content of the film. Further, the content of the vanadium compound is preferably 20% by mass or less, more preferably 10% by mass or less, based on the solid content of the film. When the content of the vanadium compound is 20% by mass or less, it is possible to prevent the film from becoming brittle, and it is possible to prevent a decrease in processing adhesion of the film when forming a coated metal plate.
  • tannin or tannic acid either a hydrolyzable tannin or a condensed tannin can be used.
  • tannins and tannic acids include hameta tannin, pentad tannin, gallic tannin, myrobalan tannin, zibijibi tannin, algarobilla tannin, valonia tannin, catechin, and the like.
  • the amount of tannin or tannic acid added in the chemical conversion treatment agent for forming the resin film layer 40 can be 2 to 80 g/L.
  • tannin or tannic acid in an amount of 2 g/L or more, it is possible to improve the adhesion to the metal plate surface and improve the processing adhesion of the coating film. Further, by controlling the amount of tannin or tannic acid added to 80 g/L or less, the cohesive force of the coating can be maintained and the processing adhesion of the coating can be improved.
  • the resin film layer 40 may further contain a colorant in addition to the above components. Thereby, it becomes possible to make the appearance of the painted metal plate 1 according to this embodiment a desired color tone, and it becomes possible to further improve the design of the painted metal plate 1.
  • the type and content of the colorant contained in the resin film layer 40 are not particularly defined and may be adjusted as appropriate.
  • acid, alkali, etc. may be added to the chemical conversion treatment agent for forming the resin film layer 40 for pH adjustment within a range that does not impair performance.
  • the average thickness d3 of the resin film layer 40 is preferably 0.20 ⁇ m or more, more preferably 0.50 ⁇ m or more, and even more preferably 2.50 ⁇ m or more. Thereby, while forming the resin film layer 40 uniformly on the surface of the metal plate 10, it becomes possible to stably exhibit various effects caused by providing the film layer as described above. Further, the average thickness d3 of the resin film layer 40 is preferably 60.00 ⁇ m or less, more preferably 30.00 ⁇ m or less, 15.00 ⁇ m or less, 1.00 ⁇ m or less, less than 1.00 ⁇ m, or , more preferably 0.80 ⁇ m or less. Thereby, while forming the resin film layer 40 uniformly on the surface of the metal plate 10, it becomes possible to stably exhibit various effects caused by providing the film layer as described above.
  • the painted metal plate 1 according to the present embodiment further includes various known layers between the inorganic film layer 30 and the resin film layer 40, as schematically shown in FIG. 3B. You can leave it there.
  • the concentration of zinc ions eluted into the virus-containing liquid is within the range of 0.60 to 5.00% by mass.
  • FIGS. 2A to 3B illustrate the case where each layer is provided on one side of the metal plate 10, each layer may be provided on both sides of the metal plate 10.
  • the total thickness d T from the surface of the metal plate 10 to the surface of the photocatalyst layer 20 is set to be 60.00 ⁇ m or less on each surface of the coated metal plate 1 .
  • the average thickness of each layer including the photocatalyst layer can be measured by observing the layer of interest from a cross-sectional direction using a microscope.
  • a method for preparing a sample to be observed from the cross-sectional direction known methods such as embedding in resin and polishing the observation surface, FIB processing, microtome method, etc. can be used.
  • FIB processing FIB processing
  • microtome method etc.
  • the type of microscope known devices such as SEM and TEM can be used.
  • the surface of the metal plate 10 serving as the base material is subjected to various pretreatments such as cleaning as necessary, and then the photocatalyst layer 20 is formed.
  • a photocatalytic treatment agent for forming the inorganic coating layer 30, an organic chemical conversion treatment agent for forming the resin coating layer 40, etc. are used in a desired layer configuration. It can be manufactured by coating, drying, and baking.
  • the various paints can be applied by generally known coating methods, such as roll coating, curtain flow coating, air spray, airless spray, dipping, bar coating, and brush coating.
  • roll coating which allows stable coating with a thin film, which is a feature of this product.
  • conditions for drying and baking are not particularly limited, and may be set as appropriate depending on the paint used.
  • a second embodiment of the present invention provides a coated metal plate having a metal plate and a coating layer located on at least one surface of the metal plate.
  • the present invention relates to an embodiment having a first coating layer containing an active compound and 0.2 to 20.0% by mass of zinc element in terms of metallic Zn.
  • FIG. 4 is an explanatory diagram schematically showing an example of the structure of the painted metal plate according to the present embodiment.
  • the coated metal plate 3 according to the second embodiment of the present invention has a film layer on at least one surface of the metal plate, and the coated metal plate 3 has a film layer on at least one surface of the metal plate. It has at least a photocatalyst layer 25 as an example of a first film layer.
  • the metal plate 10 is constructed using various base metals 11 as the base material of the metal plate 10.
  • various metal plates can be used as the base metal 11.
  • Examples of such metal plates include various steel plates, aluminum plates, stainless steel plates, etc., and may be selected depending on the strength, characteristics, etc. required of the base metal 11.
  • various plating layers may be provided on the surface of the base metal 11 that constitutes the metal plate 10.
  • a plating layer not containing zinc may be provided as the various plating layers.
  • the thickness of the metal plate 10 as described above is not particularly limited, and depends on the mechanical strength (for example, tensile strength, etc.), workability, etc. required of the coated metal plate 3 according to the present embodiment. It may be set as appropriate depending on the situation.
  • various patterns such as a hairline pattern or a spangle pattern along the rolling direction of the base metal 11 may be present on the surface of the metal plate 10. By providing such a pattern, it becomes possible to further improve the design of the painted metal plate 3.
  • the photocatalyst layer 25 as an example of the first film layer is formed on the outermost surface of the film layer on at least one surface of the metal plate 10, as schematically shown in FIG. This is the layer located in The photocatalytic layer 25 is a layer containing at least a compound having photocatalytic activity (hereinafter sometimes abbreviated as "photocatalytic compound") and element Zn.
  • photocatalytic compound a compound having photocatalytic activity
  • the photocatalytic layer 25 according to the present embodiment contains a compound having photocatalytic activity
  • the compound having photocatalytic activity can undergo a photocatalytic reaction by light (particularly light in the ultraviolet to visible light range) that is incident on the photocatalytic layer 25. cause
  • the photocatalytic layer 25 according to this embodiment exhibits various photocatalytic effects including antiviral effects and sterilizing effects.
  • the coated metal plate 3 according to the present embodiment can realize various properties including an antiviral effect and a sterilizing effect.
  • the photocatalyst layer 25 according to the present embodiment contains the element Zn
  • the element Zn contained in the photocatalyst layer 25 is different from the Zn contained in the zinc-containing metal layer 13 as described in the first embodiment. serves a similar function.
  • the coated metal plate 3 according to the present embodiment can achieve the same effect as the coated metal plate 1 according to the first embodiment described above, and the antivirus function of the coated metal plate 3 can be achieved more easily. This method makes it possible to improve performance over a longer period of time.
  • the photocatalytic compound contained in the photocatalytic layer 25 according to the present embodiment is the same as the photocatalytic compound contained in the photocatalytic layer 20 according to the first embodiment, and the photocatalytic compound according to the first embodiment It has the same effect as the photocatalytic compound contained in the layer 20. Therefore, detailed description of the photocatalytic compound will be omitted below.
  • the content of the element Zn contained in the photocatalyst layer 25 is 0.2% by mass or more in terms of metal Zn.
  • the Zn content is less than 0.2% by mass, the amount of zinc eluted from the photocatalyst layer 25 is too small, and as a result, the antibacterial effect as described above cannot be expressed.
  • the Zn content is 0.2% by mass or more, it becomes possible to exhibit the antibacterial effect as described above.
  • the content of the element Zn is more preferably 0.6% by mass or more, still more preferably 1.0% by mass or more.
  • the Zn content in the photocatalyst layer 25 is 20.0% by mass or less in terms of metal Zn.
  • the content of Zn is more than 20.0% by mass, the amount of zinc eluted from the photocatalytic layer 25 becomes too large, the density of the photocatalytic layer 25 decreases, and corrosion factors easily enter from the outside. As a result, the corrosion resistance of the painted metal plate 3 deteriorates.
  • the total content of the element Zn to 20.0% by mass or less, it is possible to ensure the content of the photocatalytic compound and to express the above-mentioned effects without saturating the effects. It is also possible to ensure the corrosion resistance of the painted metal plate 3.
  • the total content of the element Zn is preferably 18.0% by mass or less, more preferably 16.0% by mass or less, still more preferably 5.0% by mass or less, and even more preferably 3% by mass or less. .5% by mass or less, or 2.5% by mass or less.
  • the photocatalytic layer 25 further contains at least one element of Si or Zr, and the total concentration of these elements is 5% by mass or more in terms of silica for Si and zirconia for Zr. It is preferable.
  • the photocatalytic layer 25 is an inorganic film having a skeleton of an inorganic component having a three-dimensional network structure containing at least one element of Si or Zr, and possibly impurities.
  • the total concentration of at least one element of Zr is preferably 5% by mass or more in terms of silica for Si and zirconia for Zr.
  • the total content of at least one element of Si or Zr is more preferably 10% by mass or more.
  • the inorganic component means a component that does not contain an organic resin.
  • the photocatalytic layer 25 further contains at least one element of Si or Zr, and the total concentration of these elements is 50% by mass or less in terms of silica for Si and zirconia for Zr. It is preferable. By containing at least one element of Si or Zr at the above concentration, it becomes possible to realize the photocatalyst layer 25 with even better corrosion resistance.
  • the total content of at least one element of Si or Zr is more preferably 40% by mass or less.
  • the Si or Zr contained preferably has excellent light transmittance, and is preferably an inorganic component that is less susceptible to decomposition by photocatalysts. Examples of such inorganic components containing Si and Zr include silica and zirconia.
  • the photocatalytic layer 25 further contains at least one element selected from the group consisting of Cu, Fe, Ni, and Ag, in addition to the photocatalytic compound and at least one element of Si or Zr. It is preferable to do so.
  • the elements Cu, Fe, Ni, and Ag are elements that promote the elution of zinc from the photocatalyst layer 25, so when the photocatalyst layer 25 further contains these elements, more zinc is absorbed into the photocatalyst layer. This is preferable because it elutes from No. 25.
  • the elements Cu and Ag are particularly preferable because they are also elements that exhibit antibacterial effects.
  • the total content of at least one element selected from the group consisting of Cu, Fe, Ni, and Ag in the photocatalyst layer 25 is preferably 0.2% by mass or more in terms of metal elements. When the total content of the metal elements is 0.2% by mass or more, the above effects can be expressed in a more preferable state.
  • the total content of the metal elements is more preferably 0.6% by mass or more, and still more preferably 1.0% by mass or more.
  • the total content of at least one element selected from the group consisting of Cu, Fe, Ni, and Ag in the photocatalyst layer 25 is preferably 5.0% by mass or less in terms of metal elements.
  • the total content of the above-mentioned metal elements is more preferably 3.5% by mass or less, still more preferably 2.5% by mass or less.
  • the photocatalyst layer 25 containing the photocatalytic compound described above may contain an antibacterial agent and an adsorbent such as activated carbon or zeolite, as necessary, within a range that does not impair the effects of the present invention.
  • the average thickness d1 ' of the photocatalyst layer 25 (in the case of the layer structure shown in FIG. 4, the total thickness from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 25 (which can also be considered as the outermost surface of the film layer) d T ) is 0.05 ⁇ m or more. If the average thickness d 1 ' of the photocatalytic layer 25 is less than 0.05 ⁇ m, it will be difficult to uniformly form the photocatalytic layer 25 as described above, and the obtained photocatalytic effect will be uneven. Undesirable.
  • the elution route for zinc from the photocatalyst layer 25 is secured and zinc is sufficiently eluted, and the desired photocatalytic effect is uniformly distributed over the entire photocatalyst layer 25. It becomes possible to express it.
  • the average thickness d1 ' of the photocatalyst layer 25 (in the case of the layer structure shown in FIG. 4, it is also the total thickness dT from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 25) is 5.00 ⁇ m. It is as follows. If the average thickness d 1 ' of the photocatalyst layer 25 exceeds 5.00 ⁇ m, the resulting photocatalytic effect will be saturated while the manufacturing cost will increase, which is not preferable. Furthermore, it becomes difficult to ensure a sufficient amount of zinc eluted from the photocatalyst layer 25, which is also unfavorable from this point of view.
  • the photocatalyst layer is an inorganic film, processability is reduced.
  • the average thickness d 1 ′ is 5.00 ⁇ m or less, a decrease in ease of manufacture and a decrease in workability is suppressed, and a route for zinc elution from the photocatalyst layer 25 is secured to ensure sufficient zinc elution.
  • the total thickness dT from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 25 is naturally less than 5.00 ⁇ m, and as a result, the incident light is transmitted to the surface of the metal plate 10.
  • the reflected light at the interface between the metal plate 10 and the photocatalyst layer 25 can be used for the photocatalytic reaction by the photocatalytic compound, thereby further improving the photocatalytic effect while suppressing costs. be able to.
  • the average thickness d 1 ' of the photocatalyst layer 25 is preferably 0.10 ⁇ m or more, more preferably 0.15 ⁇ m or more. Further, the average thickness d 1 ' of the photocatalyst layer 20 is preferably 2.00 ⁇ m or less, more preferably 1.00 ⁇ m or less, still more preferably less than 1.00 ⁇ m, and even more preferably 0.80 ⁇ m. Below, it is 0.60 ⁇ m or less, or 0.50 ⁇ m or less.
  • FIG. 4 shows a configuration in which the photocatalyst layer 25 is formed on one surface of the metal plate 10, the photocatalyst layer 25 may be formed on both surfaces of the metal plate 10.
  • the structure of the painted metal plate 3 as described above has a zinc ion concentration of 0.60 to 5.0% when an antiviral test specified in JIS R1756:2020 is conducted for 4 hours. This is one of the conditions for the content to be within the range of 0.00% by mass.
  • the photocatalyst layer 25 is provided in an appropriate state, and furthermore, the outermost surface of the photocatalyst layer 25 from the surface of the metal plate 10 is Since the total thickness d T and the Zn content in the photocatalyst layer 25 are each within specific ranges, an appropriate amount of zinc can be eluted from the photocatalyst layer 25 .
  • the amount of zinc eluted from the photocatalyst layer 25 can be controlled to a desired state by adjusting the Zn content in the photocatalyst layer 25 and the total thickness dT .
  • the zinc ion concentration in the virus-containing liquid is less than 0.60% by mass, it means that the amount of zinc eluted from the photocatalyst layer 25 is insufficient, and the anti-virus exhibited by the coated metal plate 3 Functionality cannot be further improved.
  • the zinc ion concentration in the virus-containing liquid is preferably 0.90% by mass or more, more preferably 1.20% by mass or more.
  • the zinc ion concentration in the virus-containing liquid is preferably 4.50% by mass or less, more preferably 3.50% by mass or less.
  • the total content of elements (more specifically, ions) having a nobler potential than zinc that is present in the coating layer is 20.0 in terms of metal elements. It is preferably less than % by mass.
  • elements having a nobler potential than zinc include Cu, Ag, and the like.
  • the total content of elements with a nobler potential than zinc in the coating layer is more preferably 15.0% by mass or less, still more preferably 11.0% by mass or less, and even more preferably 7.5% by mass. mass% or less. Note that the lower limit of the total content of elements having a nobler potential than zinc in the coating layer is not particularly specified, and may be 0% by mass.
  • the above antiviral test is conducted for 4 hours in accordance with the method specified in JIS R1756:2020. Further, the concentration of zinc ions eluted into the virus-containing liquid may be measured by inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • the coated metal plate 3 according to this embodiment which has the layer structure shown in FIG. 4, has an additional film layer that functions as a chemical conversion film layer between the metal plate 10 and the photocatalyst layer 25. It's okay.
  • a chemical conversion coating layer between the metal plate 10 and the photocatalyst layer 25 it is possible to further improve the adhesion between the metal plate 10 and the photocatalyst layer 25.
  • FIGS. 5A and 5B are explanatory diagrams schematically showing other examples of the structure of the coated metal plate according to the present embodiment.
  • 5A and 5B are schematic diagrams schematically showing the layer structure of the coated metal plate 3 when an inorganic film layer 30 functioning as a chemical conversion film layer is provided as an example of the second film layer.
  • the painted metal plate 3 according to this embodiment has an inorganic film layer 30 as an example of a second film layer between the metal plate 10 and the photocatalyst layer 25 as described above.
  • the painted metal plate 3 further includes various known layers between the photocatalyst layer 25 and the inorganic film layer 30, as schematically shown in FIG. 5B. It's okay.
  • the inorganic film layer 30 of the painted metal plate 3 according to the present embodiment has the same configuration as the inorganic film layer 30 of the painted metal plate 1 according to the first embodiment of the present invention, Further, since similar effects are achieved, detailed explanation will be omitted below.
  • the average thickness d2 of the inorganic film layer 30 is preferably 0.05 ⁇ m or more, more preferably 0.10 ⁇ m or more. This makes it possible to uniformly form the inorganic film layer 30 on the surface of the metal plate 10 and to stably exhibit various effects of providing the chemical conversion film layer as described above. Further, the average thickness d2 of the inorganic film layer 30 is preferably 5.00 ⁇ m or less, more preferably 1.00 ⁇ m or less, even more preferably less than 1.00 ⁇ m, and 0.80 ⁇ m or less. , 0.60 ⁇ m or less, or even more preferably 0.50 ⁇ m or less. This makes it possible to uniformly form the inorganic film layer 30 on the surface of the metal plate 10 and to stably exhibit various effects of providing the chemical conversion film layer as described above.
  • the painted metal plate 3 according to the present embodiment has a third film layer further below the inorganic film layer 30 as an example of a third film layer. It may have a resin film layer 40 of. Below, the resin film layer 40 will be explained in detail with reference to FIGS. 6A and 6B. 6A and 6B are explanatory diagrams schematically showing other examples of the structure of the coated metal plate according to the present embodiment.
  • FIGS. 6A and 6B are schematic diagrams schematically showing the layer structure of the coated metal plate 3 when a resin film layer 40 as an example of the third film layer is provided.
  • the painted metal plate 3 according to the present embodiment has a resin film layer 40 as an example of a third film layer below the inorganic film layer 30 as described above.
  • the painted metal plate 3 according to the present embodiment further includes various known layers between the inorganic film layer 30 and the resin film layer 40, as schematically shown in FIG. 6B. You can leave it there.
  • the resin film layer 40 that the painted metal plate 3 according to the present embodiment has has the same configuration as the resin film layer 40 that the painted metal plate 1 according to the first embodiment of the present invention has, and Since similar effects are achieved, detailed explanation will be omitted below.
  • the average thickness d3 of the resin film layer 40 is preferably 0.20 ⁇ m or more, more preferably 0.50 ⁇ m or more, and even more preferably 2.50 ⁇ m or more. Thereby, while forming the resin film layer 40 uniformly on the surface of the metal plate 10, it becomes possible to stably exhibit various effects caused by providing the film layer as described above. Further, the average thickness d3 of the resin film layer 40 is preferably 60.00 ⁇ m or less, more preferably 30.00 ⁇ m or less, even more preferably 12.00 ⁇ m or less, 1.00 ⁇ m or less, It is even more preferable that it is less than 1.00 ⁇ m or 0.90 ⁇ m or less. Thereby, while forming the resin film layer 40 uniformly on the surface of the metal plate 10, it becomes possible to stably exhibit various effects caused by providing the film layer as described above.
  • the concentration of zinc ions eluted into the virus-containing liquid is within the range of 0.60 to 5.00% by mass.
  • FIGS. 5A to 6B illustrate the case where each layer is provided on one side of the metal plate 10, each layer may be provided on both sides of the metal plate 10.
  • the total thickness d T from the surface of the metal plate 10 to the surface of the photocatalyst layer 25 is set to be 60.00 ⁇ m or less on each surface of the coated metal plate 3 .
  • the average thickness of each layer including the photocatalyst layer can be measured by observing the layer of interest from a cross-sectional direction using a microscope.
  • a method for preparing a sample to be observed from the cross-sectional direction known methods such as embedding in resin and polishing the observation surface, FIB processing, microtome method, etc. can be used.
  • FIB processing FIB processing
  • microtome method etc.
  • the type of microscope known devices such as SEM and TEM can be used.
  • the surface of the metal plate 10 serving as the base material is subjected to various pretreatments such as cleaning as necessary, and then the photocatalyst layer 25 is formed.
  • a photocatalytic treatment agent for forming the inorganic coating layer 30, an organic chemical conversion treatment agent for forming the resin coating layer 40, etc. are used in a desired layer configuration. It can be manufactured by coating, drying, and baking.
  • the various paints can be applied by generally known coating methods, such as roll coating, curtain flow coating, air spray, airless spray, dipping, bar coating, and brush coating.
  • roll coating which allows stable coating with a thin film, which is a feature of this product.
  • conditions for drying and baking are not particularly limited, and may be set as appropriate depending on the paint used.
  • Example shown below is only an example of the painted metal plate based on this invention, and the painted metal plate based on this invention is not limited to the following example.
  • Table 1 Nine types of metal plates shown in Table 1 below were prepared as metal plates to serve as base materials for coated metal plates.
  • the six types of metal plates represented as SD, ZL, GI, GL, AL, and GA are various plated steel plates using steel plates as a base material.
  • the thickness of each metal plate, and the plating composition and coating weight/standard of each plated steel plate are as shown in Table 1 below.
  • a zinc-containing film layer using zinc was separately formed on the stainless steel plate by vapor deposition at a coating weight of 20 g/m 2 to obtain Stainless Steel-2.
  • ⁇ Organic chemical conversion treatment agent> The raw materials of the water-based paint (chemical conversion treatment agent) for forming the organic chemical conversion treatment film used to form the resin film layer and the concentrations in the dried film are shown in Table 3 below. The amount of each component added was adjusted so that the concentration of each component would be a predetermined concentration in the dry film. Ion-exchanged water was added to adjust the solid content concentration of the treatment agent to 20% by mass. Each treatment agent was applied to give the dry film thickness shown in Tables 4-1, 4-2, and 6 below. Thereafter, the metal plate was dried in an induction heating furnace to reach a temperature of 150° C., and then water-cooled by spraying.
  • the photocatalyst treatment agent used and the method for producing the inorganic chemical conversion treatment agent will be explained.
  • the inorganic chemical conversion treatment agent for forming the inorganic film layer was adjusted to have a solid content concentration of 8% by mass in consideration of storage stability. Concentrations were adjusted by diluting with n-butanol. Further, in some examples, ammonium dihydrogen phosphate was contained as a P source and sodium metavanadate was contained as a V source in the following inorganic chemical conversion treatment agent.
  • the photocatalyst treatment agent was prepared by adding a predetermined amount of the compound shown in Table 2 to the following inorganic chemical conversion treatment agent.
  • the solid content concentration of the photocatalytic compound is as shown in Table 4-1, Table 4-2, and Table 6 below.
  • Inorganic chemical conversion treatment agent Si-based: tetraethoxysilane (22.5 parts by mass), methacryloxypropyltrimethoxysilane (2.8 parts by mass), n-butanol (26 parts by mass), were mixed and stirred at 60°C for 2 hours. While stirring this mixture, a mixed solution of 26% by mass hydrochloric acid (3 parts by mass) and n-butanol (26 parts by mass) was added dropwise at a rate of 1 drop/second. Thereafter, the mixture was kept at 60° C. for 2 hours while stirring to obtain a processing agent. A series of operations were performed in a nitrogen atmosphere.
  • Inorganic conversion treatment agent Zr type: zirconium n-butoxide (34.5 parts by mass), n-butanol (11.6 parts by mass), 1,5-diaminopentane (0.5 parts by mass) ) and yttrium nitrate (2.8 parts by mass) were mixed and stirred for 1 hour. Then, glacial acetic acid (4.8 parts by mass) was added and stirred for 40 hours. Thereafter, concentrated nitric acid (0.6 parts by mass) was added dropwise at a rate of 1 drop/second, and the mixture was stirred for 2 hours to obtain a processing agent. A series of operations were performed in a nitrogen atmosphere.
  • ultrafine particle zinc oxide (trade name: FZO) manufactured by Ishihara Sangyo Co., Ltd. is used as a Zn source, and as a Cu source.
  • FZO nanoparticle cuprous oxide
  • Fe source is Fe 2 O 3 nanopowder (product name: 544884) manufactured by Sigma-Aldrich Co., Ltd.
  • Ni source is Iwatani Co., Ltd.
  • a 50 nm nickel nanopowder manufactured by Sangyo Co., Ltd. was used as an Ag source, and Ag nanopowder (trade name: 576832) manufactured by Sigma-Aldrich Co., Ltd. was included.
  • the average film thickness of each layer in the above-mentioned painted metal plate was measured by embedding the obtained painted metal plate in resin, polishing the cross section, and observing the observed surface using a microscope.
  • the concentration of zinc ions eluted into the virus-containing liquid was determined according to the method explained earlier. was measured.
  • a test piece was prepared using the other side of the obtained coated metal plate, and evaluated from the viewpoints of antiviral properties, processing adhesion, and corrosion resistance.
  • the detailed evaluation method is as follows.
  • the antiviral properties were verified by measuring the viral infectivity through the following antiviral test in accordance with the antiviral standards stipulated by the Photocatalyst Industry Association. More specifically, a test piece (dimensions: 50 x 50 mm 2 ) prepared from each painted metal plate was placed in a petri dish with the evaluation side facing up, and a virus suspension containing bacteriophage Q ⁇ was dropped onto the evaluation surface. . Thereafter, a film was placed over the test piece to bring the virus suspension into close contact with the entire evaluation surface, and then a petri dish lid was placed on the test piece. The petri dish was left standing for 4 hours in a room at 25° C.
  • the virus on the film surface and the surface of the evaluation surface was washed, and the virus infectivity titer (unit: PFU, PFU: Plaque Forming Units) in the obtained washing solution was measured by the plaque measurement method, and inductively coupled plasma (ICP) )
  • the concentration of eluted zinc ions in the cleaning solution was measured using an emission spectrometer (7700X manufactured by Agilent).
  • anti-virus tests were also conducted on each metal plate without a photocatalyst layer, and the virus infection value of the painted metal plate was compared with that of the metal plate without a photocatalyst layer.
  • the extent to which the infectious titer decreased was evaluated as an activity value. If the virus has decreased by 10 2 or more (in other words, if the activity value is 1 x 10 2 or more), the use of the certification seal stipulated by the Photocatalyst Industry Association is permitted, so the obtained activity Those with a value of 1 ⁇ 10 2 or more were judged to have passed. Note that in Tables 5-1, 5-2, and 7 below, the obtained activity values are expressed in logarithms.
  • ⁇ Corrosion resistance of processed parts> For each test piece, a test material was obtained by processing (7 mm extrusion) according to the Erichsen test (JIS Z2247:2006). The test material was subjected to a salt spray test (SST) in accordance with JIS Z 2371 for 72 hours with the end face sealed with tape. The state of rust occurrence in the processed parts was observed after the test, and the corrosion resistance was evaluated using the following evaluation criteria. The passing level was 3 or above.
  • White rust occurrence area is less than 5% of the total area of the processed part of the test piece 4: White rust occurrence area is 5% or more and less than 10% of the total area of the processed part of the test piece 3: White rust The area where white rust occurs is 10% or more and less than 30% of the total area of the processed part of the test piece 2: The area where white rust occurs is 30% or more and less than 50% of the total area of the processed part of the test piece 1: White rust The generated area is 50% or more of the total area of the processed part of the test piece.
  • the coated metal sheets corresponding to the examples of the present invention exhibit excellent antiviral properties, processing adhesion, and corrosion resistance, while The coated metal plate corresponding to the comparative example of the invention failed in the evaluation results of antiviral properties or processing adhesion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

[Problem] To provide a coated metal sheet which can be produced in a simpler manner, can further improve an anti-viral function, and has durability. [Solution] The present invention relates to a coated metal sheet having a metal sheet and a coating layer located on at least one surface of the metal sheet, in which the metal sheet has a zinc-containing metal layer containing at least zinc on at least one surface thereof, and also has, as the coating layer, a first coating layer located on the outermost surface of the coated metal sheet and containing at least a compound having a photocatalytic activity, the average thickness of the first coating layer is 0.05 to 5.00 μm, the total thickness from the surface of the zinc-containing metal layer to the outermost surface of the first coating layer is 15.00 μm or less, and the concentration of zinc ions eluted into a virus-containing solution is 0.60 to 5.00% by mass when the anti-virus test prescribed in JIS R1756:2020 is performed for 4 hours.

Description

塗装金属板painted metal plate
 本発明は、塗装金属板に関する。 The present invention relates to a painted metal plate.
 数年来の新型コロナウイルス(COVID-19)の影響により、各種の物品への抗ウイルス特性の付与についてのニーズが高まっている現状にあり、抗ウイルス効果を有する薬剤を各種の物品の表面に塗布する事業が盛況となっている。抗ウイルス効果を有する薬剤の塗布は、既存の建造物への適用が可能となる。しかしながら、抗ウイルス効果を有する薬剤の塗布は、塗布に要する人的コストが高く、また、薬剤の耐久性が十分ではないことから定期的な施工が必要となって、ランニングコストも高いという問題がある。 Due to the effects of the novel coronavirus (COVID-19) that has been occurring for several years, there is a growing need for various products to have antiviral properties, and we are applying drugs that have antiviral effects to the surfaces of various products. The business is thriving. Application of drugs with antiviral effects can be applied to existing buildings. However, applying drugs with antiviral effects has the problem of high labor costs and high running costs, as the drugs are not durable enough and require periodic application. be.
 他方、例えば以下の特許文献1のように、従来、鋼材に対して予め抗ウイルス機能を付与する技術が知られている。かかる技術は、塗装鋼材をベースとして、かかる塗装鋼材の上層に、保護層及び光触媒層を順に形成する技術である。 On the other hand, as in Patent Document 1 below, for example, a technique for imparting an antiviral function to steel materials in advance is known. This technique is based on coated steel and sequentially forms a protective layer and a photocatalyst layer on the coated steel.
特開2009-131960号公報Japanese Patent Application Publication No. 2009-131960
 しかしながら、本発明者による検討の結果、上記特許文献1に開示されているような光触媒を用いた技術において、抗ウイルス機能の向上に関して更なる改良の余地があることが判明した。 However, as a result of studies by the present inventors, it has been found that there is room for further improvement in terms of improving the antiviral function in the technology using a photocatalyst as disclosed in Patent Document 1 mentioned above.
 かかる知見に基づき、本発明の目的とするところは、より簡便に製造可能であると共に、抗ウイルス機能をより向上させることが可能であり、かつ耐久性を有する塗装金属板を提供することにある。 Based on this knowledge, an object of the present invention is to provide a coated metal plate that can be manufactured more easily, can further improve the antiviral function, and has durability. .
 上記課題を解決するために、本発明者らが鋭意検討した結果、亜鉛を含有する金属層を有する金属板に対し更に光触媒層を形成したものを、JIS R1756:2020に規定された抗ウイルス試験に供すると、亜鉛がウイルス含有液中に溶出しやすい金属板であるほど、抗ウイルス性に優れることを、実験的に見出した。かかる知見に基づき、本発明者らが更なる検討を行った結果、亜鉛が溶出しやすい条件を実現することで、塗装金属板の抗ウイルス機能をより向上可能であることを見出し、本発明を完成するに至った。
 かかる知見に基づき完成された本発明の要旨は、以下の通りである。
In order to solve the above problems, the inventors of the present invention made extensive studies and found that a metal plate having a zinc-containing metal layer further formed with a photocatalyst layer was subjected to an antiviral test specified in JIS R1756:2020. It has been experimentally found that the more easily a metal plate dissolves zinc into a virus-containing solution, the better its antiviral properties will be. Based on this knowledge, the present inventors conducted further studies and found that it is possible to further improve the antiviral function of a painted metal plate by creating conditions in which zinc is easily eluted. It was completed.
The gist of the present invention, which was completed based on this knowledge, is as follows.
(1)金属板と、前記金属板の少なくとも一方の表面に位置する皮膜層と、を有する塗装金属板であって、前記金属板は、少なくとも一方の表面に、亜鉛を少なくとも含有する亜鉛含有金属層を有する金属板であり、前記皮膜層として、前記塗装金属板の最表面に位置し、光触媒活性を有する化合物を少なくとも含有する第1皮膜層を有しており、前記第1皮膜層の平均厚みは、0.05~5.00μmであり、前記亜鉛含有金属層の表面から前記第1皮膜層の最表面までの合計厚みは、15.0μm以下であり、JIS R1756:2020に規定された抗ウイルス試験を4時間行った際に、ウイルス含有液中に溶出する亜鉛イオン濃度が、0.60~5.00質量%である、塗装金属板。
(2)前記第1皮膜層の厚みは、0.05~0.95μmであり、前記亜鉛含有金属層の表面から前記第1皮膜層の最表面までの合計厚みは、1.0μmm未満である、(1)に記載の塗装金属板。
(3)前記皮膜層における、亜鉛よりも電位が貴な元素の合計含有量は、0~20.0質量%である、(1)又は(2)に記載の塗装金属板。
(4)前記第1皮膜層は、Zn、Cu、Fe、Ni、Agからなる群より選択される少なくとも何れかの元素を更に含有する、(1)に記載の塗装金属板。
(5)前記第1皮膜層は、Si又はZrの少なくとも何れかの元素を更に含有し、前記元素の合計含有量は、Siについてはシリカ換算、Zrについてはジルコニア換算で、5~50質量%である、(1)に記載の塗装金属板。
(6)金属板と、前記金属板の少なくとも一方の表面に位置する皮膜層と、を有する塗装金属板であって、前記皮膜層として、前記塗装金属板の最表面に位置し、光触媒活性を有する化合物と、金属Zn換算で0.2~20.0質量%の亜鉛元素と、を含有する第1皮膜層を有しており、前記第1皮膜層の平均厚みは、0.05~5.00μmであり、前記金属板の表面から前記第1皮膜層の最表面までの合計厚みは、60.0μm以下であり、JIS R1756:2020に規定された抗ウイルス試験を4時間行った際に、ウイルス含有液中に溶出する亜鉛イオン濃度が、0.60~5.00質量%である、塗装金属板。
(7)前記皮膜層における、亜鉛よりも電位が貴な元素の合計含有量は、0~20.0質量%である、(6)に記載の塗装金属板。
(8)前記第1皮膜層は、Cu、Fe、Ni、Agからなる群より選択される少なくとも何れかの元素を更に含有する、(6)又は(7)に記載の塗装金属板。
(9)前記第1皮膜層は、Si又はZrの少なくとも何れかの元素を更に含有し、前記元素の合計含有量は、Siについてはシリカ換算、Zrについてはジルコニア換算で、5~50質量%である、(6)に記載の塗装金属板。
(10)前記皮膜層として、前記第1皮膜層の下層に位置し、無機系成分からなる第2皮膜層を更に有しており、前記第2皮膜層は、前記無機系成分として、Si又はZrの少なくとも何れかの元素を含有しており、前記第2皮膜層の平均厚みは、0.05~5.00μmである、(1)又は(6)に記載の塗装金属板。
(11)前記第2皮膜層は、前記無機系成分として、P又はVの少なくとも何れかの元素を更に含有する、(10)に記載の塗装金属板。
(12)前記第2皮膜層は、Zn、Cu、Fe、Ni、Agからなる群より選択される少なくとも何れかの元素を更に含有する、(10)に記載の塗装金属板。
(13)前記皮膜層として、前記第2皮膜層の下層に位置し、樹脂成分を含有する第3皮膜層を更に有しており、前記第3皮膜層の平均厚みは、0.50~14.00μmである、(10)に記載の塗装金属板。
(14)前記第3皮膜層は、着色剤を更に含有する、(13)に記載の塗装金属板。
(15)前記光触媒活性を有する化合物は、アナターゼ型酸化チタンである、(1)又は(6)に記載の塗装金属板。
(16)前記光触媒活性を有する化合物は、酸化チタンにCu又はFeの少なくとも何れか一方の金属が担持された、金属担持型の酸化チタンである、(15)に記載の塗装金属板。
(17)前記金属板は、前記亜鉛含有金属層として亜鉛系めっき層を有する亜鉛系めっき鋼板である、(1)に記載の塗装金属板。
(18)前記亜鉛系めっき層は、Znを、金属Zn換算で30質量%以上含有するめっき層である、(17)に記載の塗装金属板。
(19)前記亜鉛系めっき層は、亜鉛めっき層、亜鉛-アルミニウム合金めっき層、亜鉛-アルミニウム-マグネシウム合金めっき層、亜鉛-ニッケル合金めっき層、又は、亜鉛-鉄合金めっき層の何れかである、(17)に記載の塗装金属板。
(20)前記金属板の表面には、前記金属板の圧延方向に沿ったヘアラインが存在する、(1)又は(6)に記載の塗装金属板。
(21)前記亜鉛含有金属層の表面には、スパングル模様が存在する、(1)に記載の塗装金属板。
(1) A painted metal plate comprising a metal plate and a film layer located on at least one surface of the metal plate, wherein the metal plate has a zinc-containing metal containing at least zinc on at least one surface. The metal plate has a layer, and the film layer includes a first film layer located on the outermost surface of the coated metal plate and containing at least a compound having photocatalytic activity, and the average of the first film layer is The thickness is 0.05 to 5.00 μm, and the total thickness from the surface of the zinc-containing metal layer to the outermost surface of the first coating layer is 15.0 μm or less, as specified in JIS R1756:2020. A coated metal plate having a zinc ion concentration of 0.60 to 5.00% by mass eluted into a virus-containing liquid when an antivirus test is conducted for 4 hours.
(2) The thickness of the first coating layer is 0.05 to 0.95 μm, and the total thickness from the surface of the zinc-containing metal layer to the outermost surface of the first coating layer is less than 1.0 μmm. , the painted metal plate according to (1).
(3) The coated metal plate according to (1) or (2), wherein the total content of elements with a nobler potential than zinc in the coating layer is 0 to 20.0% by mass.
(4) The coated metal plate according to (1), wherein the first film layer further contains at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag.
(5) The first coating layer further contains at least one of Si or Zr, and the total content of the elements is 5 to 50% by mass in terms of silica for Si and zirconia for Zr. The painted metal plate according to (1).
(6) A painted metal plate comprising a metal plate and a film layer located on at least one surface of the metal plate, the film layer being located on the outermost surface of the painted metal plate and having photocatalytic activity. and a first film layer containing a zinc element of 0.2 to 20.0% by mass in terms of metallic Zn, and the average thickness of the first film layer is 0.05 to 5% by mass. .00 μm, and the total thickness from the surface of the metal plate to the outermost surface of the first film layer was 60.0 μm or less, and when an antiviral test specified in JIS R1756:2020 was conducted for 4 hours. , a coated metal plate in which the concentration of zinc ions eluted into the virus-containing liquid is 0.60 to 5.00% by mass.
(7) The coated metal plate according to (6), wherein the total content of elements with a nobler potential than zinc in the coating layer is 0 to 20.0% by mass.
(8) The coated metal plate according to (6) or (7), wherein the first film layer further contains at least one element selected from the group consisting of Cu, Fe, Ni, and Ag.
(9) The first coating layer further contains at least one of Si or Zr, and the total content of the elements is 5 to 50% by mass in terms of silica for Si and zirconia for Zr. The painted metal plate according to (6).
(10) The film layer further includes a second film layer located below the first film layer and made of an inorganic component, and the second film layer contains Si or The coated metal plate according to (1) or (6), which contains at least one element of Zr, and wherein the second coating layer has an average thickness of 0.05 to 5.00 μm.
(11) The coated metal plate according to (10), wherein the second film layer further contains at least one of P or V as the inorganic component.
(12) The coated metal plate according to (10), wherein the second coating layer further contains at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag.
(13) The film layer further includes a third film layer located below the second film layer and containing a resin component, and the third film layer has an average thickness of 0.50 to 14 The coated metal plate according to (10), which has a diameter of .00 μm.
(14) The painted metal plate according to (13), wherein the third film layer further contains a colorant.
(15) The coated metal plate according to (1) or (6), wherein the compound having photocatalytic activity is anatase titanium oxide.
(16) The coated metal plate according to (15), wherein the compound having photocatalytic activity is a metal-supported titanium oxide in which at least one of Cu and Fe is supported on titanium oxide.
(17) The painted metal plate according to (1), wherein the metal plate is a zinc-based plated steel plate having a zinc-based plating layer as the zinc-containing metal layer.
(18) The coated metal sheet according to (17), wherein the zinc-based plating layer is a plating layer containing 30% by mass or more of Zn in terms of metallic Zn.
(19) The zinc-based plating layer is any one of a zinc plating layer, a zinc-aluminum alloy plating layer, a zinc-aluminum-magnesium alloy plating layer, a zinc-nickel alloy plating layer, or a zinc-iron alloy plating layer. , the painted metal plate according to (17).
(20) The coated metal plate according to (1) or (6), wherein a hairline along the rolling direction of the metal plate is present on the surface of the metal plate.
(21) The coated metal plate according to (1), wherein a spangle pattern is present on the surface of the zinc-containing metal layer.
 以上説明したように本発明によれば、より簡便に製造可能であるとともに、耐久性を有し、かつ、抗ウイルス機能がより向上した塗装金属板を提供することが可能である。 As explained above, according to the present invention, it is possible to provide a coated metal plate that is more easily manufactured, has durability, and has improved antiviral function.
本発明の第1の実施形態に係る塗装金属板の構造の一例を模式的に示した説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram schematically showing an example of the structure of a coated metal plate according to a first embodiment of the present invention. 本発明の第1の実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。FIG. 3 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the first embodiment of the present invention. 本発明の第1の実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。FIG. 3 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the first embodiment of the present invention. 本発明の第1の実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。FIG. 3 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the first embodiment of the present invention. 本発明の第1の実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。FIG. 3 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the first embodiment of the present invention. 本発明の第2の実施形態に係る塗装金属板の構造の一例を模式的に示した説明図である。FIG. 2 is an explanatory diagram schematically showing an example of the structure of a painted metal plate according to a second embodiment of the present invention. 本発明の第2の実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。FIG. 7 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the second embodiment of the present invention. 本発明の第2の実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。FIG. 7 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the second embodiment of the present invention. 本発明の第2の実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。FIG. 7 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the second embodiment of the present invention. 本発明の第2の実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。FIG. 7 is an explanatory diagram schematically showing another example of the structure of the coated metal plate according to the second embodiment of the present invention.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Note that, in this specification and the drawings, components having substantially the same functional configurations are designated by the same reference numerals and redundant explanation will be omitted.
≪第1の実施形態≫
 以下では、まず、本発明の第1の実施形態に係る塗装金属板について、詳細に説明する。
 本発明の第1の実施形態は、金属板と、金属板の少なくとも一方の表面に位置する皮膜層と、を有する塗装金属板において、かかる金属板が、少なくとも一方の表面に、亜鉛を少なくとも含有する亜鉛含有金属層を有する金属板である態様に関する。
<<First embodiment>>
Below, first, the painted metal plate according to the first embodiment of the present invention will be described in detail.
A first embodiment of the present invention is a painted metal plate having a metal plate and a film layer located on at least one surface of the metal plate, wherein the metal plate contains at least zinc on at least one surface. The present invention relates to a metal plate having a zinc-containing metal layer.
(塗装金属板について)
<塗装金属板の構造>
 以下では、まず、図1を参照しながら、本発明の第1の実施形態に係る塗装金属板の構造について説明する。図1は、本実施形態に係る塗装金属板の構造の一例を模式的に示した説明図である。
(About painted metal plates)
<Structure of painted metal plate>
Below, first, the structure of the coated metal plate according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is an explanatory diagram schematically showing an example of the structure of a painted metal plate according to the present embodiment.
 図1に模式的に示したように、本発明の第1の実施形態に係る塗装金属板1は、金属板の少なくとも一方の面に皮膜層を有しており、金属板10と、皮膜層として、第1皮膜層の一例としての光触媒層20と、を少なくとも有している。 As schematically shown in FIG. 1, a coated metal plate 1 according to a first embodiment of the present invention has a coating layer on at least one surface of the metal plate, and has a coating layer on at least one surface of the metal plate 10, and a coating layer on at least one surface of the metal plate. It has at least a photocatalyst layer 20 as an example of a first film layer.
[金属板10について]
 本実施形態に係る塗装金属板1において、金属板10は、金属板10の母材としての母材金属11と、亜鉛を少なくとも含有する金属層である亜鉛含有金属層13と、を有している。
[About the metal plate 10]
In the painted metal plate 1 according to the present embodiment, the metal plate 10 includes a base metal 11 as a base material of the metal plate 10 and a zinc-containing metal layer 13 that is a metal layer containing at least zinc. There is.
 ここで、母材金属11としては、各種の金属板を用いることが可能である。このような金属板として、例えば、各種の鋼板、アルミニウム板、ステンレス板等を挙げることができ、母材金属11に求められる強度や特性等に応じて選択すればよい。 Here, various metal plates can be used as the base metal 11. Examples of such metal plates include various steel plates, aluminum plates, stainless steel plates, etc., and may be selected depending on the strength, characteristics, etc. required of the base metal 11.
 また、亜鉛含有金属層13は、母材金属11の表面に設けられる金属層であり、亜鉛を少なくとも含有している。母材金属11の表面に、このような亜鉛含有金属層13が存在していることで、本発明者らが見出した、JIS R1756:2020に規定された抗ウイルス試験における、ウイルス含有液中への亜鉛の溶出が生じるようになる。その結果、塗装金属板1における抗ウイルス機能を、より簡便な手法により、より長期的な期間、より向上させることが可能となる。 Further, the zinc-containing metal layer 13 is a metal layer provided on the surface of the base metal 11, and contains at least zinc. The presence of such a zinc-containing metal layer 13 on the surface of the base metal 11 prevents the virus from entering the virus-containing liquid in the antiviral test specified in JIS R1756:2020, which the inventors discovered. leaching of zinc begins to occur. As a result, the antiviral function of the coated metal plate 1 can be further improved over a longer period of time using a simpler method.
 より詳細には、かかる亜鉛含有金属層13は、亜鉛を、金属Zn換算で30質量%以上含有していることが好ましい。また、かかる亜鉛含有金属層13は、不純物を含有していてもよい。亜鉛含有金属層13における亜鉛含有量が30質量%以上となることで、母材金属11の耐食性を担保しながら、上記のようなウイルス含有液中への亜鉛の溶出量を、より増加させることが可能となる。これにより、塗装金属板1における抗ウイルス機能を、更に一層向上させることが可能となる。亜鉛含有金属層13における亜鉛含有量は、40質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。なお、亜鉛含有金属層13における亜鉛の含有量は、高ければ高いほど良く、亜鉛含有金属層13における亜鉛含有量は、100質量%であってもよい。 More specifically, the zinc-containing metal layer 13 preferably contains zinc in an amount of 30% by mass or more in terms of metal Zn. Further, the zinc-containing metal layer 13 may contain impurities. By setting the zinc content in the zinc-containing metal layer 13 to 30% by mass or more, the amount of zinc eluted into the virus-containing liquid as described above can be further increased while ensuring the corrosion resistance of the base metal 11. becomes possible. This makes it possible to further improve the antiviral function of the coated metal plate 1. The zinc content in the zinc-containing metal layer 13 is more preferably 40% by mass or more, and even more preferably 70% by mass or more. Note that the higher the zinc content in the zinc-containing metal layer 13, the better, and the zinc content in the zinc-containing metal layer 13 may be 100% by mass.
 このような亜鉛含有金属層13として、例えば、金属亜鉛等が蒸着された亜鉛蒸着層や、亜鉛を含有するめっき層である亜鉛系めっき層を挙げることができる。ここで、既設の各種の亜鉛系めっき層製造ライン等を用いることで、亜鉛系めっき層を優れた製造コストで製造することが容易であるという観点から、亜鉛含有金属層13として、亜鉛系めっき層を設けることが好ましい。 Examples of such a zinc-containing metal layer 13 include a zinc vapor-deposited layer in which metallic zinc or the like is vapor-deposited, and a zinc-based plating layer that is a plating layer containing zinc. Here, from the viewpoint that it is easy to manufacture a zinc-based plating layer at an excellent manufacturing cost by using various existing zinc-based plating layer manufacturing lines, etc., zinc-based plating is used as the zinc-containing metal layer 13. Preferably, a layer is provided.
 亜鉛含有金属層13として好ましい亜鉛系めっき層は、亜鉛を金属Zn換算で30質量%以上含有する亜鉛系めっき層である。また、かかる亜鉛系めっき層は、不純物を含有していてもよい。亜鉛系めっき層における亜鉛含有量が30質量%以上となることで、母材金属11の耐食性を担保しながら、上記のようなウイルス含有液中への亜鉛の溶出量を、より増加させることが可能となり、塗装金属板1における抗ウイルス機能を、更に一層向上させることが可能となる。亜鉛系めっき層における亜鉛含有量は、40質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。なお、亜鉛系めっき層における亜鉛の含有量は、100質量%であってもよい。 A preferred zinc-based plating layer as the zinc-containing metal layer 13 is a zinc-based plating layer containing 30% by mass or more of zinc in terms of metal Zn. Moreover, such a zinc-based plating layer may contain impurities. By setting the zinc content in the zinc-based plating layer to 30% by mass or more, it is possible to further increase the amount of zinc eluted into the virus-containing liquid as described above while ensuring the corrosion resistance of the base metal 11. This makes it possible to further improve the antiviral function of the coated metal plate 1. The zinc content in the zinc-based plating layer is more preferably 40% by mass or more, and even more preferably 70% by mass or more. Note that the zinc content in the zinc-based plating layer may be 100% by mass.
 このような亜鉛系めっき層として、例えば、亜鉛めっき層、亜鉛-アルミニウム合金めっき層、亜鉛-アルミニウム-マグネシウム合金めっき層、亜鉛-ニッケル合金めっき層、亜鉛-鉄合金めっき層等といった、各種のめっき層を挙げることができる。また、亜鉛の溶出量の更なる増加という観点からは、亜鉛系めっき層として、亜鉛-ニッケル合金めっき層、又は、亜鉛-鉄合金めっき層を設けることが、より好ましい。 As such a zinc-based plating layer, various types of plating can be used, such as a zinc plating layer, a zinc-aluminum alloy plating layer, a zinc-aluminum-magnesium alloy plating layer, a zinc-nickel alloy plating layer, a zinc-iron alloy plating layer, etc. layers can be mentioned. Further, from the viewpoint of further increasing the amount of zinc eluted, it is more preferable to provide a zinc-nickel alloy plating layer or a zinc-iron alloy plating layer as the zinc-based plating layer.
 特に元素Feは、イオン化傾向の観点から亜鉛の溶出を促進する元素であり、金属Feと亜鉛とが共存することによって、亜鉛の溶出という観点で電位的に有利となるため、好ましい。 In particular, the element Fe is an element that promotes the elution of zinc from the viewpoint of ionization tendency, and the coexistence of metal Fe and zinc is advantageous in terms of potential from the viewpoint of zinc elution, so it is preferable.
 なお、上記のような亜鉛含有金属層13の付着量は、母材金属11の片面あたり、金属Zn換算で、8g/m以上であることが好ましく、17g/m以上であることがより好ましい。付着量を8g/m以上、より好ましくは17g/m以上とすることで、母材金属11の耐食性を担保しながら、十分な量の亜鉛を溶出させることが可能となる。一方、上記のような亜鉛含有金属層13の付着量は、母材金属11の片面あたり、金属Zn換算で、250g/m以下であることが好ましく、170g/m以下であることがより好ましい。付着量を250g/m以下、より好ましくは170g/m以下とすることで、母材金属11の耐食性を担保しながら、十分な量の亜鉛を溶出させることが可能となる。 The amount of adhesion of the zinc-containing metal layer 13 as described above is preferably 8 g/m 2 or more, more preferably 17 g/m 2 or more in terms of metal Zn per one side of the base metal 11. preferable. By setting the adhesion amount to 8 g/m 2 or more, more preferably 17 g/m 2 or more, it becomes possible to elute a sufficient amount of zinc while ensuring the corrosion resistance of the base metal 11. On the other hand, the adhesion amount of the zinc-containing metal layer 13 as described above is preferably 250 g/m 2 or less, more preferably 170 g/m 2 or less, in terms of metal Zn per one side of the base metal 11. preferable. By setting the adhesion amount to 250 g/m 2 or less, more preferably 170 g/m 2 or less, a sufficient amount of zinc can be eluted while ensuring the corrosion resistance of the base metal 11.
 上記を踏まえ、亜鉛含有金属層13を有する金属板10として、上記のような各種の亜鉛系めっき層を有する各種の亜鉛系めっき鋼板を用いることが、より簡便である。 Based on the above, it is more convenient to use various zinc-based plated steel sheets having various zinc-based plating layers as described above as the metal plate 10 having the zinc-containing metal layer 13.
 ここで、上記のような金属板10の厚みについては、特に限定されるものではなく、本実施形態に係る塗装金属板1に求められる機械的な強度(例えば、引張強度等)や加工性等に応じて、適宜設定すればよい。 Here, the thickness of the metal plate 10 as described above is not particularly limited, and depends on the mechanical strength (for example, tensile strength, etc.), workability, etc. required for the coated metal plate 1 according to the present embodiment. It may be set as appropriate depending on the situation.
 また、かかる亜鉛含有金属層13の表面には、母材金属11の圧延方向に沿ったヘアライン模様や、スパングル模様等の各種の模様が存在していてもよい。このような模様が設けられていることで、塗装金属板1の意匠性をより向上させることが可能となる。 Furthermore, various patterns such as a hairline pattern or a spangle pattern along the rolling direction of the base metal 11 may be present on the surface of the zinc-containing metal layer 13. By providing such a pattern, it becomes possible to further improve the design of the painted metal plate 1.
 また、特にヘアライン模様は、亜鉛含有金属層13の表面に微細な凹凸を形成することで実現される模様であることから、亜鉛含有金属層13の表面積を増加させる。その結果、亜鉛含有金属層13からの亜鉛溶出量を更に増加させることが可能となり、意匠性のみならず、抗ウイルス性という観点からも、より好ましい。 Moreover, since the hairline pattern in particular is a pattern realized by forming fine irregularities on the surface of the zinc-containing metal layer 13, the surface area of the zinc-containing metal layer 13 is increased. As a result, it becomes possible to further increase the amount of zinc eluted from the zinc-containing metal layer 13, which is more preferable not only from the viewpoint of design but also from the viewpoint of antiviral properties.
 なお、図1では、母材金属11の一方の表面に亜鉛含有金属層13が形成されている形態について図示しているが、亜鉛含有金属層13は、母材金属11の双方の表面に形成されていてもよい。 Although FIG. 1 shows a form in which the zinc-containing metal layer 13 is formed on one surface of the base metal 11, the zinc-containing metal layer 13 may be formed on both surfaces of the base metal 11. may have been done.
[光触媒層20について]
 本実施形態に係る塗装金属板1において、第1皮膜層の一例としての光触媒層20は、図1に模式的に示したように、金属板10の少なくとも一方の面において、皮膜層の最表面に位置している層であり、光触媒活性を有する化合物(以下、「光触媒化合物」と略記することがある。)を少なくとも含有する。光触媒層20が光触媒活性を有する化合物を含有することで、かかる光触媒活性を有する化合物は、光触媒層20に入射した光(特に、紫外~可視光帯域の光)によって、光触媒反応を生じさせる。その結果、本実施形態に係る光触媒層20において、抗ウイルス効果や殺菌効果をはじめとする、各種の光触媒効果が発現する。これにより、本実施形態に係る塗装金属板1は、抗ウイルス効果や殺菌効果をはじめとする各種の特性を実現することができる。
[About the photocatalyst layer 20]
In the coated metal plate 1 according to the present embodiment, the photocatalyst layer 20 as an example of the first film layer is formed on the outermost surface of the film layer on at least one surface of the metal plate 10, as schematically shown in FIG. It is a layer located in the photocatalyst and contains at least a compound having photocatalytic activity (hereinafter sometimes abbreviated as "photocatalytic compound"). Since the photocatalytic layer 20 contains a compound having photocatalytic activity, the compound having photocatalytic activity causes a photocatalytic reaction by light (particularly light in the ultraviolet to visible light band) incident on the photocatalytic layer 20. As a result, the photocatalytic layer 20 according to the present embodiment exhibits various photocatalytic effects including antiviral effects and sterilizing effects. Thereby, the coated metal plate 1 according to the present embodiment can realize various properties including an antiviral effect and a sterilizing effect.
 このような光触媒活性を有する化合物には、主に紫外光帯域の光と反応して(より詳細には、紫外光帯域の光によって励起されて)、光触媒活性を発現する化合物と、主に可視光帯域の光と反応して(より詳細には、可視光帯域の光によって励起されて)、光触媒活性を発現する化合物と、が存在する。 Compounds with such photocatalytic activity include those that react with light in the ultraviolet band (more specifically, when excited by light in the ultraviolet band) to exhibit photocatalytic activity, and compounds that exhibit photocatalytic activity mainly in the visible range. There exists a compound that reacts with light in the optical band (more specifically, is excited by light in the visible light band) and exhibits photocatalytic activity.
 紫外光帯域の光と反応して光触媒活性を発現させる化合物としては、例えば、酸化チタン(より詳細には、アナターゼ型酸化チタン)、酸化亜鉛、酸化セリウム、酸化スズ、酸化ビスマス、酸化ジルコニウム、酸化タングステン、酸化クロム、酸化モリブデン、酸化鉄、酸化ニッケル、酸化ルテニウム、酸化コバルト、酸化銅、酸化マンガン、酸化ゲルマニウム、酸化鉛、酸化カドミウム、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化ロジウム、酸化レニウム等の金属酸化物や、硫化カドミウム、硫化亜鉛等の金属硫化物や、チタン酸ストロンチウム、チタン酸バリウム等のチタン化合物が挙げられる。なかでも、紫外光帯域の光と反応して光触媒活性を発現させる化合物として、アナターゼ型酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化タングステン、酸化鉄、酸化ニオブ、チタン酸ストロンチウム等は、特に好適に用いられ、アナターゼ型酸化チタンは、更に好適に用いられる。 Examples of compounds that exhibit photocatalytic activity by reacting with light in the ultraviolet light range include titanium oxide (more specifically, anatase titanium oxide), zinc oxide, cerium oxide, tin oxide, bismuth oxide, zirconium oxide, and Tungsten, chromium oxide, molybdenum oxide, iron oxide, nickel oxide, ruthenium oxide, cobalt oxide, copper oxide, manganese oxide, germanium oxide, lead oxide, cadmium oxide, vanadium oxide, niobium oxide, tantalum oxide, rhodium oxide, rhenium oxide, etc. metal oxides, metal sulfides such as cadmium sulfide and zinc sulfide, and titanium compounds such as strontium titanate and barium titanate. Among them, anatase-type titanium oxide, zinc oxide, tin oxide, zirconium oxide, tungsten oxide, iron oxide, niobium oxide, strontium titanate, etc. are particularly effective as compounds that react with light in the ultraviolet light band to exhibit photocatalytic activity. Anatase titanium oxide is preferably used, and anatase titanium oxide is more preferably used.
 また、可視光帯域の光と反応して光触媒活性を発現する化合物としては、例えば、酸化チタンに対しCu又はFeの少なくとも何れか一方の金属が担持された金属担持型の酸化チタン(より詳細には、アナターゼ型酸化チタン)、アナターゼ型酸化チタンに対しCr、V、Mn、Ni、Ptが担持されたアナターゼ型酸化チタン、アナターゼ型酸化チタンに対し窒素や硫黄等の陰イオンがドーピングされたアナターゼ型酸化チタン、AgNbOとSrTiOの固溶体、等が挙げられる。なかでも、アナターゼ型酸化チタンに対しCu又はFeの少なくとも何れか一方の金属が担持されたアナターゼ型酸化チタンは、更に好適に用いられる。 In addition, as a compound that reacts with light in the visible light band to exhibit photocatalytic activity, for example, metal-supported titanium oxide, in which at least one of Cu or Fe is supported on titanium oxide (more specifically is anatase-type titanium oxide), anatase-type titanium oxide in which Cr, V, Mn, Ni, and Pt are supported on anatase-type titanium oxide, and anatase-type titanium oxide in which anatase-type titanium oxide is doped with anions such as nitrogen and sulfur. type titanium oxide, a solid solution of AgNbO 3 and SrTiO 3 , and the like. Among these, anatase-type titanium oxide in which at least one of Cu and Fe is supported on anatase-type titanium oxide is more preferably used.
 特に、Cuが担持されたアナターゼ型酸化チタンは、付着しているCuが上記のような亜鉛含有金属層13からの亜鉛の溶出を促進する効果を発現するため、特に好適に用いられる。 In particular, anatase-type titanium oxide on which Cu is supported is particularly preferably used because the attached Cu exhibits the effect of promoting the elution of zinc from the zinc-containing metal layer 13 as described above.
 かかる光触媒化合物のうち、アナターゼ型酸化チタン(金属担持された状態のものも含む。)の平均粒径(一次粒子径)は、5nm以上であることが好ましい。アナターゼ型酸化チタンの平均粒径(一次粒子径)が5nm以上となることで、光触媒層20中により均一にアナターゼ型酸化チタンを分散させることが可能となる。アナターゼ型酸化チタンの平均粒径(一次粒子径)は、より好ましくは20nm以上である。また、アナターゼ型酸化チタン(金属担持された状態のものも含む。)の平均粒径(一次粒子径)は、200nm以下であることが好ましい。アナターゼ型酸化チタンの平均粒径(一次粒子径)が200nm以下となることで、光触媒層20中におけるアナターゼ型酸化チタンの過度な凝集を抑制しながら、光触媒層20中により均一にアナターゼ型酸化チタンを分散させることが可能となる。アナターゼ型酸化チタンの平均粒径(一次粒子径)は、より好ましくは100nm以下である。 Among such photocatalytic compounds, the average particle size (primary particle size) of anatase-type titanium oxide (including those in a metal-supported state) is preferably 5 nm or more. When the average particle size (primary particle size) of the anatase-type titanium oxide is 5 nm or more, it becomes possible to disperse the anatase-type titanium oxide more uniformly in the photocatalyst layer 20. The average particle size (primary particle size) of the anatase titanium oxide is more preferably 20 nm or more. Further, the average particle size (primary particle size) of anatase-type titanium oxide (including those in a metal-supported state) is preferably 200 nm or less. Since the average particle size (primary particle size) of the anatase-type titanium oxide is 200 nm or less, the anatase-type titanium oxide is more uniformly distributed in the photocatalyst layer 20 while suppressing excessive aggregation of the anatase-type titanium oxide in the photocatalyst layer 20. It becomes possible to disperse the The average particle size (primary particle size) of the anatase titanium oxide is more preferably 100 nm or less.
 ここで、上記のアナターゼ型酸化チタンの平均粒径は、例えば、レーザ光を使用した動的光散乱法により測定することが可能である。かかる方法は、精度の高い測定値を簡便に得ることが可能である。ただし、アナターゼ型酸化チタンの粒子がある程度凝集している場合には、凝集体の大きさ(凝集粒子径)を測定する可能性があるため、併せて透過型電子顕微鏡(TEM)により、直接、一次粒子径を確認することが好ましい。TEM観察の結果、凝集粒子の存在が確認された場合には、分散条件を変えて、動的光散乱法により再度測定を行うことが好ましい。また、完全に一次粒子のレベルまで分散させることが困難である場合には、TEMで観察・測定した一次粒子の大きさを、一次粒子径とすることも可能である。この場合、本発明者の経験では、任意に選択したおおよそ100個以上の粒子を測定対象とすることで、粒子の全体を代表する値が得られることが分かっている。 Here, the average particle size of the above-mentioned anatase-type titanium oxide can be measured, for example, by a dynamic light scattering method using a laser beam. Such a method can easily obtain highly accurate measurement values. However, if the particles of anatase-type titanium oxide are aggregated to some extent, the size of the aggregates (agglomerated particle diameter) may be measured, so it is also possible to directly measure the size of the aggregates using a transmission electron microscope (TEM). It is preferable to check the primary particle size. If the presence of aggregated particles is confirmed as a result of TEM observation, it is preferable to change the dispersion conditions and perform the measurement again using a dynamic light scattering method. Furthermore, if it is difficult to completely disperse the particles to the level of primary particles, the size of the primary particles observed and measured by TEM can be used as the primary particle diameter. In this case, the inventor's experience has shown that by measuring approximately 100 or more arbitrarily selected particles, a value representative of all the particles can be obtained.
 また、既に光触媒層20が形成されている塗装金属板1について、光触媒層20に含まれるアナターゼ型酸化チタンの平均粒径を事後的に測定する際には、以下のようにすればよい。すなわち、光触媒層20を厚み方向に沿って切断した際の断面を、透過型電子顕微鏡(TEM)を用いて観察または分析することができる。TEMを用いることで、光触媒化合物の一次粒子径を測定することができる。また、TEMと合わせてEDS分析を行うことで、光触媒化合物に含まれる元素を測定できる。更には、電子線回折により、光触媒化合物の結晶構造(例えば、酸化チタンの場合アナターゼ型かルチル型か)を知ることができる。本発明者の経験では、任意に選択したおおよそ100個以上の粒子を測定対象とすることで、粒子の全体を代表する値が得られることが分かっている。 Furthermore, when measuring the average particle size of the anatase-type titanium oxide contained in the photocatalyst layer 20 on the coated metal plate 1 on which the photocatalyst layer 20 has already been formed, the following may be performed. That is, a cross section of the photocatalyst layer 20 cut along the thickness direction can be observed or analyzed using a transmission electron microscope (TEM). By using TEM, the primary particle diameter of the photocatalytic compound can be measured. Furthermore, by performing EDS analysis in conjunction with TEM, elements contained in the photocatalytic compound can be measured. Furthermore, the crystal structure of a photocatalytic compound (for example, in the case of titanium oxide, whether it is anatase type or rutile type) can be determined by electron diffraction. In the experience of the present inventor, it has been found that by measuring approximately 100 or more arbitrarily selected particles, a value representative of all particles can be obtained.
 ここで、光触媒層20におけるアナターゼ型酸化チタン(金属担持された状態のものも含む。)の濃度は、チタニア換算で、50質量%以上であることが好ましい。光触媒層20におけるアナターゼ型酸化チタンの濃度が50質量%以上となることで、抗ウイルス効果等をはじめとする各種の光触媒効果を確実に発現させることが可能となる。光触媒層20におけるアナターゼ型酸化チタンの濃度は、より好ましくは、チタニア換算で、60質量%以上である。また、光触媒層20におけるアナターゼ型酸化チタン(金属担持された状態のものも含む。)の濃度は、チタニア換算で、95質量%以下であることが好ましい。光触媒層20におけるアナターゼ型酸化チタンの濃度が95質量%以下となることで、製造コストの増加を抑制しつつ、抗ウイルス効果等をはじめとする各種の光触媒効果を発現させることが可能となる。光触媒層20におけるアナターゼ型酸化チタンの濃度は、より好ましくは、チタニア換算で、80質量%以下である。 Here, the concentration of anatase-type titanium oxide (including metal-supported titanium oxide) in the photocatalyst layer 20 is preferably 50% by mass or more in terms of titania. When the concentration of anatase titanium oxide in the photocatalyst layer 20 is 50% by mass or more, it is possible to reliably exhibit various photocatalytic effects including antiviral effects. The concentration of anatase titanium oxide in the photocatalyst layer 20 is more preferably 60% by mass or more in terms of titania. Further, the concentration of anatase-type titanium oxide (including metal-supported titanium oxide) in the photocatalyst layer 20 is preferably 95% by mass or less in terms of titania. By setting the concentration of anatase titanium oxide in the photocatalytic layer 20 to 95% by mass or less, it is possible to suppress an increase in manufacturing costs and to exhibit various photocatalytic effects including antiviral effects. The concentration of anatase titanium oxide in the photocatalyst layer 20 is more preferably 80% by mass or less in terms of titania.
 また、アナターゼ型酸化チタン以外の光触媒化合物についても、上記と同様に、5~200nmの平均粒径を有していることが好ましく、その濃度は、50~95質量%であることが好ましい。 Similarly to the above, photocatalytic compounds other than anatase titanium oxide preferably have an average particle size of 5 to 200 nm, and the concentration thereof is preferably 50 to 95% by mass.
 なお、上記のようなアナターゼ型酸化チタン等に代表される光触媒化合物は、粒子状態の物質はもちろんのこと、粒子状とはいえないようなゾル状物質、金属錯体を加熱して生成した物質等も、必要に応じて用いることが可能である。 Note that photocatalytic compounds, such as the anatase-type titanium oxide mentioned above, include not only particles, but also sol-like substances that cannot be called particles, substances produced by heating metal complexes, etc. can also be used as necessary.
 また、光触媒層20は、更に、Si又はZrの少なくとも何れか1種の元素を含有し、かかる元素の合計濃度は、Siについてはシリカ換算、Zrについてはジルコニア換算で、5質量%以上であることが好ましい。換言すれば、光触媒層20は、Si又はZrの少なくとも何れか1種の元素を含む三次元網目構造状の無機系成分の骨格と、場合によっては不純物と、を有する無機系皮膜であり、Si又はZrの少なくとも何れか1種の元素の合計濃度が、Siについてはシリカ換算、Zrについてはジルコニア換算で、5質量%以上であることが好ましい。Si又はZrの少なくとも何れか1種の元素を上記の濃度で含有することで、より耐食性に優れた光触媒層20を実現することが可能となる。Si又はZrの少なくとも何れか1種の元素の合計含有量は、より好ましくは10質量%以上である。ここで、無機系成分とは、有機樹脂を含まない成分を意味する。 The photocatalyst layer 20 further contains at least one element of Si or Zr, and the total concentration of these elements is 5% by mass or more in terms of silica for Si and zirconia for Zr. It is preferable. In other words, the photocatalytic layer 20 is an inorganic film having a skeleton of an inorganic component having a three-dimensional network structure containing at least one element of Si or Zr, and possibly impurities. Alternatively, the total concentration of at least one element of Zr is preferably 5% by mass or more in terms of silica for Si and zirconia for Zr. By containing at least one element of Si or Zr at the above concentration, it is possible to realize a photocatalyst layer 20 with even better corrosion resistance. The total content of at least one element of Si or Zr is more preferably 10% by mass or more. Here, the inorganic component means a component that does not contain an organic resin.
 また、光触媒層20は、更に、Si又はZrの少なくとも何れか1種の元素を含有し、かかる元素の合計濃度は、Siについてはシリカ換算、Zrについてはジルコニア換算で、50質量%以下であることが好ましい。Si又はZrの少なくとも何れか1種の元素を上記の濃度で含有することで、より耐食性に優れた光触媒層20を実現することが可能となる。Si又はZrの少なくとも何れか1種の元素の合計含有量は、より好ましくは40質量%以下である。ここで、含有するSi又はZrは、光透過性に優れることが好ましく、また、光触媒による分解等の影響を受けにくい無機系成分であることが好ましい。このようなSi、Zrを含有する無機系成分としては、例えば、シリカ、ジルコニアを挙げることができる。 The photocatalytic layer 20 further contains at least one element of Si or Zr, and the total concentration of these elements is 50% by mass or less in terms of silica for Si and zirconia for Zr. It is preferable. By containing at least one element of Si or Zr at the above concentration, it is possible to realize a photocatalyst layer 20 with even better corrosion resistance. The total content of at least one element of Si or Zr is more preferably 40% by mass or less. Here, the Si or Zr contained preferably has excellent light transmittance, and is preferably an inorganic component that is less susceptible to decomposition by photocatalysts. Examples of such inorganic components containing Si and Zr include silica and zirconia.
 また、光触媒層20は、上記の光触媒化合物や、Si又はZrの少なくとも何れか1種の元素以外に、更に、Zn、Cu、Fe、Ni、Agからなる群より選択される少なくとも何れかの元素を含有することが好ましい。ここで、元素Cu、Fe、Ni、Agは、上記のような亜鉛含有金属層13からの亜鉛の溶出を促進する元素であるため、光触媒層20がこれらの元素を更に含有することで、より多くの亜鉛が亜鉛含有金属層13から溶出するようになるため、好ましい。更に、元素Cu、Zn、Agは、抗菌効果を発現する元素でもあるため、特に好ましい。また、光触媒層20が元素Znを更に含有することで、塗装金属板1から溶出する亜鉛量の更なる増加を図ることが可能となるため、より好ましい。 In addition to the photocatalytic compound and at least one element of Si or Zr, the photocatalytic layer 20 further contains at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag. It is preferable to contain. Here, the elements Cu, Fe, Ni, and Ag are elements that promote the elution of zinc from the zinc-containing metal layer 13 as described above, so that the photocatalyst layer 20 further contains these elements, thereby making it more effective. This is preferable because a large amount of zinc is eluted from the zinc-containing metal layer 13. Furthermore, the elements Cu, Zn, and Ag are particularly preferable because they are also elements that exhibit antibacterial effects. Moreover, it is more preferable that the photocatalyst layer 20 further contains the element Zn, since it is possible to further increase the amount of zinc eluted from the coated metal plate 1.
 光触媒層20における、Zn、Cu、Fe、Ni、Agからなる群より選択される少なくとも何れかの元素の合計含有量は、金属元素換算で、0.2質量%以上であることが好ましい。上記金属元素の合計含有量が0.2質量%以上となることで、上記のような効果をより好ましい状態で発現させることが可能となる。上記金属元素の合計含有量は、より好ましくは0.6質量%以上であり、更に好ましくは1.0質量%以上である。一方、光触媒層20における、Zn、Cu、Fe、Ni、Agからなる群より選択される少なくとも何れかの元素の合計含有量は、金属元素換算で、5.0質量%以下であることが好ましい。上記金属元素の合計含有量が5.0質量%以下となることで、光触媒化合物の含有量を確保しながら、上記のような効果を、その効果が飽和することなく発現させることが可能となる。上記金属元素の合計含有量は、より好ましくは3.5質量%以下であり、更に好ましくは2.5質量%以下である。 The total content of at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag in the photocatalyst layer 20 is preferably 0.2% by mass or more in terms of metal elements. When the total content of the metal elements is 0.2% by mass or more, the above effects can be expressed in a more preferable state. The total content of the metal elements is more preferably 0.6% by mass or more, and still more preferably 1.0% by mass or more. On the other hand, the total content of at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag in the photocatalyst layer 20 is preferably 5.0% by mass or less in terms of metal elements. . By setting the total content of the above-mentioned metal elements to 5.0% by mass or less, it is possible to maintain the content of the photocatalytic compound while producing the above-mentioned effects without saturating them. . The total content of the metal elements is more preferably 3.5% by mass or less, still more preferably 2.5% by mass or less.
 なお、上記の光触媒化合物を含有する光触媒層20は、本発明の効果を損なわない範囲内で、必要に応じて、抗菌剤や、活性炭又はゼオライト等の吸着材を含有していてもよい。 Note that the photocatalyst layer 20 containing the above photocatalytic compound may contain an antibacterial agent and an adsorbent such as activated carbon or zeolite, as necessary, within a range that does not impair the effects of the present invention.
 かかる光触媒層20の平均厚みd(図1に示した層構成の場合、金属板10の表面から光触媒層20の最表面まで(皮膜層の最表面とも捉えることができる。)の合計厚みdでもある。)は、0.05μm以上である。光触媒層20の平均厚みdが0.05μm未満である場合には、上記のような光触媒層20を均一に成膜することが困難となり、得られる光触媒効果にムラが生じてしまうため、好ましくない。平均厚みdを0.05μm以上とすることで、亜鉛含有金属層13からの亜鉛の溶出経路を確保して十分に亜鉛を溶出させるとともに、所望の光触媒効果を、光触媒層20の全体にわたって均一に発現させることが可能となる。 The average thickness d 1 of the photocatalyst layer 20 (in the case of the layer structure shown in FIG. 1 , the total thickness d from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 20 (which can also be considered as the outermost surface of the film layer) T ) is 0.05 μm or more. If the average thickness d1 of the photocatalytic layer 20 is less than 0.05 μm, it will be difficult to uniformly form the photocatalytic layer 20 as described above, and the obtained photocatalytic effect will be uneven, so it is preferable. do not have. By setting the average thickness d1 to 0.05 μm or more, the elution route for zinc from the zinc-containing metal layer 13 is ensured, and the zinc is sufficiently eluted, and the desired photocatalytic effect is uniformly distributed over the entire photocatalytic layer 20. It becomes possible to express it.
 一方、かかる光触媒層20の平均厚みd(図1に示した層構成の場合、金属板10の表面から光触媒層20の最表面までの合計厚みdでもある。)は、5.00μm以下である。光触媒層20の平均厚みdが5.00μmを超える場合には、得られる光触媒効果が飽和する一方で、製造コストが増加するため、好ましくない。また、亜鉛含有金属層13からの亜鉛の溶出量を十分に確保することが困難となるため、かかる観点からも好ましくない。また、光触媒層は無機系皮膜であることから、加工性が低下する。平均厚みdを5.00μm以下とすることで、製造の簡便性の低下及び加工性の低下を抑制するとともに、亜鉛含有金属層13からの亜鉛の溶出経路を確保して十分に亜鉛を溶出させ、更に、所望の光触媒効果を、光触媒層20の全体にわたって均一に発現させることが可能となる。 On the other hand, the average thickness d 1 of the photocatalyst layer 20 (in the case of the layer configuration shown in FIG. 1, this is also the total thickness d T from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 20) is 5.00 μm or less It is. If the average thickness d 1 of the photocatalyst layer 20 exceeds 5.00 μm, the resulting photocatalytic effect will be saturated while the manufacturing cost will increase, which is not preferable. Furthermore, it becomes difficult to ensure a sufficient amount of zinc eluted from the zinc-containing metal layer 13, which is also unfavorable from this point of view. Furthermore, since the photocatalyst layer is an inorganic film, processability is reduced. By setting the average thickness d 1 to 5.00 μm or less, it is possible to suppress deterioration in ease of manufacturing and deterioration in workability, and to secure a route for elution of zinc from the zinc-containing metal layer 13 to sufficiently elute zinc. Furthermore, it becomes possible to uniformly exhibit the desired photocatalytic effect over the entire photocatalytic layer 20.
 通常、光触媒層20を、光触媒化合物に当たらずに通過する光が、ある程度の確率で発生する。このような、光触媒化合物と作用しなかった光は、従来では、光触媒効果が得られない光となってしまう。本実施形態では、このような光を金属板10の表面で反射させることで、光触媒層20に入射した光が光触媒化合物に衝突する確率を増加させることが可能となる。これにより、本実施形態では、光触媒効果を更に向上させることができる。図1に示した層構成の場合、金属板10の表面から光触媒層20の最表面までの合計厚みdが当然ながら5.00μm以下となっている結果、入射した光が金属板10の表面(換言すれば、金属板10と光触媒層20との界面)で反射した反射光を、光触媒化合物による光触媒反応に利用することが可能となるため、光触媒効果をより向上させることができる。 Normally, light that passes through the photocatalyst layer 20 without hitting the photocatalyst compound is generated with a certain probability. Conventionally, such light that does not interact with the photocatalytic compound ends up being light that cannot produce a photocatalytic effect. In this embodiment, by reflecting such light on the surface of the metal plate 10, it is possible to increase the probability that the light incident on the photocatalyst layer 20 will collide with the photocatalyst compound. Thereby, in this embodiment, the photocatalytic effect can be further improved. In the case of the layer structure shown in FIG. (In other words, the reflected light reflected at the interface between the metal plate 10 and the photocatalyst layer 20) can be used for the photocatalytic reaction by the photocatalytic compound, so the photocatalytic effect can be further improved.
 かかる光触媒層20の平均厚みdは、好ましくは0.10μm以上であり、より好ましくは0.15μm以上である。また、かかる光触媒層20の平均厚みdは、好ましくは2.00μm以下であり、より好ましくは1.00μm以下であり、更に好ましくは1.0μm未満であり、より一層好ましくは0.80μm以下、0.60μm以下、又は、0.50μm以下である。 The average thickness d1 of the photocatalyst layer 20 is preferably 0.10 μm or more, more preferably 0.15 μm or more. Further, the average thickness d1 of the photocatalyst layer 20 is preferably 2.00 μm or less, more preferably 1.00 μm or less, still more preferably less than 1.0 μm, even more preferably 0.80 μm or less. , 0.60 μm or less, or 0.50 μm or less.
 なお、図1では、金属板10の一方の表面に光触媒層20が形成されている形態について図示しているが、光触媒層20は、金属板10の双方の表面に形成されていてもよい。 Although FIG. 1 shows a configuration in which the photocatalyst layer 20 is formed on one surface of the metal plate 10, the photocatalyst layer 20 may be formed on both surfaces of the metal plate 10.
<抗ウイルス試験においてウイルス含有液中に溶出する亜鉛イオン濃度>
 以上説明したような塗装金属板1の構造は、JIS R1756:2020に規定された抗ウイルス試験を4時間行った際に、ウイルス含有液中に溶出する亜鉛イオン濃度が、0.60~5.00質量%の範囲内となるための条件の一つとなる。
<Concentration of zinc ions eluted into virus-containing liquid in antiviral test>
The structure of the painted metal plate 1 as described above has a zinc ion concentration of 0.60 to 5.5% when an antiviral test specified in JIS R1756:2020 is conducted for 4 hours. This is one of the conditions for the content to be within the range of 0.00% by mass.
 上記のような構造が条件の一つとなる理由は、本実施形態に係る塗装金属板1において、適切な状態で亜鉛含有金属層13が設けられ、更に、金属板10の表面から光触媒層20の最表面までの合計厚みdが特定の範囲内となっているために、亜鉛含有金属層13から、適切な量の亜鉛が溶出できることによる。このように、本実施形態に係る塗装金属板1では、元来、金属板10の耐食性を担保するために設けられている亜鉛含有金属層13が、塗装金属板1の抗ウイルス性を向上させるためにも機能している。 The reason why the above structure is one of the conditions is that in the coated metal plate 1 according to the present embodiment, the zinc-containing metal layer 13 is provided in an appropriate state, and the photocatalyst layer 20 is further removed from the surface of the metal plate 10. This is because since the total thickness dT to the outermost surface is within a specific range, an appropriate amount of zinc can be eluted from the zinc-containing metal layer 13. In this way, in the coated metal plate 1 according to the present embodiment, the zinc-containing metal layer 13, which is originally provided to ensure the corrosion resistance of the metal plate 10, improves the antiviral properties of the coated metal plate 1. It also works for this purpose.
 なお、亜鉛含有金属層13からの亜鉛溶出量は、亜鉛含有金属層13の付着量や、合計厚みdを調整することで、所望の状態に制御することができる。また、亜鉛含有金属層13から光触媒層20の最表面までの経路上に存在する皮膜層の緻密さ等を更に制御することによっても、亜鉛含有金属層13からの亜鉛溶出量を制御することが可能である。 Note that the amount of zinc eluted from the zinc-containing metal layer 13 can be controlled to a desired state by adjusting the amount of attachment of the zinc-containing metal layer 13 and the total thickness dT . Furthermore, the amount of zinc leached from the zinc-containing metal layer 13 can also be controlled by further controlling the density of the film layer existing on the path from the zinc-containing metal layer 13 to the outermost surface of the photocatalyst layer 20. It is possible.
 ここで、ウイルス含有液における亜鉛イオン濃度が0.60質量%未満である場合には、亜鉛含有金属層13からの亜鉛の溶出量が不十分であることを意味し、塗装金属板1が示す抗ウイルス機能を、より向上させることができない。ウイルス含有液における亜鉛イオン濃度は、好ましくは0.90質量%以上であり、より好ましくは1.20質量%以上である。 Here, when the zinc ion concentration in the virus-containing liquid is less than 0.60% by mass, it means that the amount of zinc eluted from the zinc-containing metal layer 13 is insufficient, and the coated metal plate 1 shows Antiviral function cannot be further improved. The zinc ion concentration in the virus-containing liquid is preferably 0.90% by mass or more, more preferably 1.20% by mass or more.
 一方、ウイルス含有液における亜鉛イオン濃度が5.00質量%超である場合には、亜鉛含有金属層13からの亜鉛の溶出量が多くなりすぎ、金属板10の耐食性を担保することができない。ウイルス含有液における亜鉛イオン濃度は、好ましくは4.50質量%以下であり、より好ましくは3.50質量%以下である。 On the other hand, when the zinc ion concentration in the virus-containing liquid is more than 5.00% by mass, the amount of zinc eluted from the zinc-containing metal layer 13 becomes too large, making it impossible to ensure the corrosion resistance of the metal plate 10. The zinc ion concentration in the virus-containing liquid is preferably 4.50% by mass or less, more preferably 3.50% by mass or less.
 なお、本実施形態に係る塗装金属板1において、皮膜層中に存在する、亜鉛よりも電位が貴な元素(より詳細には、イオン)の合計含有量は、金属元素換算で、20.0質量%以下であることが好ましい。ここで、亜鉛よりも電位が貴な元素としては、例えば、Cu、Ag等が挙げられる。皮膜層中における、亜鉛よりも電位が貴な元素の合計含有量を20.0質量%以下とすることで、上記のようなウイルス含有液における亜鉛イオン濃度を、5.00質量%以下とすることが可能となり、優れた抗ウイルス性と優れた耐食性とのより一層の両立を図ることが可能となる。皮膜層中における、亜鉛よりも電位が貴な元素の合計含有量は、より好ましくは15.0質量%以下であり、更に好ましくは11.0質量%以下であり、更に一層好ましくは7.5質量%以下である。なお、皮膜層中における、亜鉛よりも電位が貴な元素の合計含有量の下限値は、特に規定するものではなく、0質量%であってもよい。 In addition, in the coated metal plate 1 according to the present embodiment, the total content of elements having a nobler potential than zinc (more specifically, ions) present in the coating layer is 20.0 in terms of metal elements. It is preferably less than % by mass. Here, examples of elements having a nobler potential than zinc include Cu, Ag, and the like. By setting the total content of elements with a nobler potential than zinc in the film layer to 20.0% by mass or less, the zinc ion concentration in the virus-containing liquid as described above is 5.00% by mass or less. This makes it possible to further achieve both excellent antiviral properties and excellent corrosion resistance. The total content of elements with a nobler potential than zinc in the coating layer is more preferably 15.0% by mass or less, still more preferably 11.0% by mass or less, and even more preferably 7.5% by mass. % by mass or less. Note that the lower limit of the total content of elements having a nobler potential than zinc in the coating layer is not particularly specified, and may be 0% by mass.
 ここで、上記の抗ウイルス試験については、JIS R1756:2020に規定された方法に即して、4時間実施する。また、ウイルス含有液中に溶出した亜鉛イオン濃度は、誘導結合プラズマ(ICP)発光分光分析法により測定すればよい。 Here, the above antiviral test is conducted for 4 hours in accordance with the method specified in JIS R1756:2020. Further, the concentration of zinc ions eluted into the virus-containing liquid may be measured by inductively coupled plasma (ICP) emission spectrometry.
<変形例-1>
 図1に示したような層構成を有する、本実施形態に係る塗装金属板1は、金属板10と光触媒層20との間に、化成処理皮膜層として機能する更なる皮膜層を有していてもよい。金属板10と光触媒層20との間に化成処理皮膜層を設けることで、金属板10と光触媒層20との間の密着性を更に向上させることが可能となる。更に、本実施形態に係る塗装金属板1の耐食性等を更に向上させることも可能となる。
<Modification example-1>
The coated metal plate 1 according to the present embodiment, which has the layer structure shown in FIG. 1, has an additional film layer that functions as a chemical conversion film layer between the metal plate 10 and the photocatalyst layer 20. It's okay. By providing a chemical conversion coating layer between the metal plate 10 and the photocatalyst layer 20, it becomes possible to further improve the adhesion between the metal plate 10 and the photocatalyst layer 20. Furthermore, it is also possible to further improve the corrosion resistance and the like of the painted metal plate 1 according to this embodiment.
 以下では、図2A及び図2Bを参照しながら、化成処理皮膜層として機能する更なる皮膜層について、詳細に説明する。図2A及び図2Bは、本実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。 Hereinafter, the further film layer that functions as the chemical conversion film layer will be described in detail with reference to FIGS. 2A and 2B. FIGS. 2A and 2B are explanatory diagrams schematically showing other examples of the structure of the coated metal plate according to the present embodiment.
 図2A及び図2Bは、第2皮膜層の一例としての、化成処理皮膜層として機能する無機系皮膜層30を設ける場合の、塗装金属板1の層構成を模式的に示した模式図である。かかる場合、本実施形態に係る塗装金属板1は、上記のような金属板10と光触媒層20との間に、第2皮膜層の一例としての無機系皮膜層30を有する。 2A and 2B are schematic diagrams schematically showing the layer structure of the coated metal plate 1 in the case of providing an inorganic film layer 30 functioning as a chemical conversion film layer as an example of the second film layer. . In such a case, the painted metal plate 1 according to the present embodiment has an inorganic film layer 30 as an example of a second film layer between the metal plate 10 and the photocatalyst layer 20 as described above.
 アナターゼ型酸化チタンに代表される光触媒化合物は、極めて優れた酸化性を有するが故に、光触媒化合物が存在する層よりも下層側に皮膜層を設ける場合には、かかる皮膜層を保護するための保護層を形成することが多い。しかしながら、以下で説明するように、化成処理皮膜層を無機系成分で構成することにより、保護層を設けることなく化成処理皮膜層を配置することが可能となる。ここで、無機系成分とは、有機樹脂を含まない成分を意味する。 Photocatalytic compounds, typified by anatase-type titanium oxide, have extremely excellent oxidizing properties, so when a film layer is provided below the layer where the photocatalytic compound is present, protection is required to protect the film layer. Often forms layers. However, as explained below, by forming the chemical conversion coating layer from an inorganic component, it becomes possible to arrange the chemical conversion coating layer without providing a protective layer. Here, the inorganic component means a component that does not contain an organic resin.
 かかる無機系皮膜層30は、金属板10の表面に付着した油分などの不純物及び表面酸化物を、公知の脱脂工程及び洗浄工程で取り除いた後、化成処理により形成される。この無機系皮膜層30は、Si又はZrの少なくとも何れか1種以上の元素を有する、シラン化合物やジルコニアの化合物等のような無機系成分からなることが好ましい。また、かかる無機系皮膜層30は、更に、P又はVの少なくとも何れか1種の元素を有する無機系成分を含有していてもよい。 Such an inorganic film layer 30 is formed by a chemical conversion treatment after impurities such as oil and surface oxides adhering to the surface of the metal plate 10 are removed by a known degreasing process and cleaning process. This inorganic film layer 30 is preferably made of an inorganic component such as a silane compound or a zirconia compound containing at least one element of Si or Zr. Further, the inorganic film layer 30 may further contain an inorganic component containing at least one element of P or V.
 無機系皮膜層30が、上記のような元素を有する無機系成分を含有することで、化成処理液塗布後の成膜性、水分や腐食性イオン等の腐食因子に対する皮膜のバリア性(緻密性)、金属板表面への皮膜密着性などが向上し、皮膜の耐食性の底上げに寄与する。 Since the inorganic film layer 30 contains an inorganic component having the above-mentioned elements, it improves the film formability after application of the chemical conversion treatment solution and the barrier property (denseness) of the film against corrosion factors such as moisture and corrosive ions. ), it improves the adhesion of the film to the metal plate surface, contributing to raising the corrosion resistance of the film.
 ここで、Siを含有する無機系成分としては、例えば、例えば、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン等を挙げることができる。また、Zrを含有する無機系成分としては、例えば、炭酸ジルコニウム、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムカリウム、炭酸ジルコニウムナトリウム、炭酸ジルコニウムアンモニウム等を挙げることができる。 Here, as the inorganic component containing Si, for example, γ-(2-aminoethyl)aminopropyltrimethoxysilane, γ-(2-aminoethyl)aminopropylmethyldimethoxysilane, γ-(2- Examples include aminoethyl)aminopropyltriethoxysilane and the like. Examples of the inorganic component containing Zr include zirconium carbonate, ammonium zirconium carbonate, potassium zirconium carbonate, sodium zirconium carbonate, and ammonium zirconium carbonate.
 また、Pを含有する無機系成分としては、例えば、リン酸、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸などのリン酸類及びそれらの塩、リン酸二水素アンモニウム等を挙げることができる。Vを含有する無機系成分としては、例えば、メタバナジン酸アンモン(V)、メタバナジン酸カリウム(V)、メタバナジン酸ソーダ(V)、硫酸バナジル(IV)等を挙げることができる。 Examples of inorganic components containing P include phosphoric acids and their salts such as phosphoric acid, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, and tetraphosphoric acid, ammonium dihydrogen phosphate, etc. be able to. Examples of inorganic components containing V include ammonium metavanadate (V), potassium metavanadate (V), sodium metavanadate (V), vanadyl sulfate (IV), and the like.
 本実施形態に係る無機系皮膜層30では、上記のような各種の無機系成分を、単独で、又は、組み合わせて利用することが可能である。また、上記のような各種の無機系成分の含有量についても、適宜調整すればよい。 In the inorganic film layer 30 according to the present embodiment, the various inorganic components described above can be used alone or in combination. Further, the contents of the various inorganic components as described above may be adjusted as appropriate.
 かかる無機系皮膜層30の平均厚みdは、0.05μm以上であることが好ましく、0.10μm以上であることがより好ましい。これにより、無機系皮膜層30を金属板10の表面に均一に形成しつつ、上記のような化成処理皮膜層を設けることによる各種の効果を、安定して発現させることが可能となる。また、無機系皮膜層30の平均厚みdは、5.00μm以下であることが好ましく、1.00μm以下であることがより好ましく、1.00μm未満であることが更に好ましく、0.80μm以下、0.60μm以下、又は、0.50μm以下であることが更に一層好ましい。これにより、無機系皮膜層30を金属板10の表面に均一に形成しつつ、上記のような化成処理皮膜層を設けることによる各種の効果を、安定して発現させることが可能となる。 The average thickness d2 of the inorganic film layer 30 is preferably 0.05 μm or more, more preferably 0.10 μm or more. This makes it possible to uniformly form the inorganic film layer 30 on the surface of the metal plate 10 and to stably exhibit various effects of providing the chemical conversion film layer as described above. Further, the average thickness d2 of the inorganic film layer 30 is preferably 5.00 μm or less, more preferably 1.00 μm or less, even more preferably less than 1.00 μm, and 0.80 μm or less. , 0.60 μm or less, or even more preferably 0.50 μm or less. This makes it possible to uniformly form the inorganic film layer 30 on the surface of the metal plate 10 and to stably exhibit various effects of providing the chemical conversion film layer as described above.
 また、本実施形態に係る無機系皮膜層30は、光触媒層20と同様に、更に、Zn、Cu、Fe、Ni、Agからなる群より選択される少なくとも何れかの元素を含有することが好ましい。 Further, it is preferable that the inorganic film layer 30 according to the present embodiment further contains at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag, similarly to the photocatalyst layer 20. .
 無機系皮膜層30における、Zn、Cu、Fe、Ni、Agからなる群より選択される少なくとも何れかの元素の合計含有量は、金属元素換算で、0.2質量%以上であることが好ましい。上記金属元素の合計含有量が0.2質量%以上となることで、上記のような効果をより好ましい状態で発現させることが可能となる。上記金属元素の合計含有量は、より好ましくは0.6質量%以上であり、更に好ましくは1.0質量%以上である。一方、無機系皮膜層30における、Zn、Cu、Fe、Ni、Agからなる群より選択される少なくとも何れかの元素の合計含有量は、金属元素換算で、10.0質量%以下であることが好ましい。上記金属元素の合計含有量が10.0質量%以下となることで、光触媒化合物の含有量を確保しながら、上記のような効果を、その効果が飽和することなく発現させることが可能となる。上記金属元素の合計含有量は、より好ましくは7.5質量%以下であり、更に好ましくは5.0質量%以下である。 The total content of at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag in the inorganic film layer 30 is preferably 0.2% by mass or more in terms of metal elements. . When the total content of the metal elements is 0.2% by mass or more, the above effects can be expressed in a more preferable state. The total content of the metal elements is more preferably 0.6% by mass or more, and still more preferably 1.0% by mass or more. On the other hand, the total content of at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag in the inorganic film layer 30 is 10.0% by mass or less in terms of metal elements. is preferred. By setting the total content of the above-mentioned metal elements to 10.0% by mass or less, it is possible to maintain the content of the photocatalytic compound while producing the above-mentioned effects without saturating them. . The total content of the metal elements is more preferably 7.5% by mass or less, still more preferably 5.0% by mass or less.
 また、本実施形態に係る塗装金属板1は、図2Bに模式的に示したように、光触媒層20と、無機系皮膜層30と、の間に、公知の各種の層を更に有していてもよい。 Moreover, the painted metal plate 1 according to the present embodiment further includes various known layers between the photocatalyst layer 20 and the inorganic film layer 30, as schematically shown in FIG. 2B. It's okay.
 ここで、図2A及び図2Bに示したような場合においても、金属板10の表面から光触媒層20の最表面までの合計厚みd(=d+d+α)は、15.00μm以下とする。これにより、製造の簡便性の低下及び加工性の低下を抑制するとともに、亜鉛含有金属層13からの亜鉛の溶出経路を確保して十分に亜鉛を溶出させ、更に、所望の光触媒効果を、光触媒層20の全体にわたって均一に発現させることが可能となる。金属板10の表面から光触媒層20の最表面までの合計厚みd(=d+d+α)は、好ましくは10.00μm以下であり、より好ましくは7.00μm以下であり、更に好ましくは、1.00μm以下、1.00μm未満、0.90μm以下、0.80μm以下、又は、0.70μm以下である。 Here, even in the cases shown in FIGS. 2A and 2B, the total thickness d T (=d 1 +d 2 +α) from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 20 is 15.00 μm or less. do. This suppresses a decrease in manufacturing simplicity and processability, secures an elution route for zinc from the zinc-containing metal layer 13, allows sufficient zinc to be eluted, and further improves the desired photocatalytic effect. It becomes possible to achieve uniform expression over the entire layer 20. The total thickness d T (=d 1 + d 2 + α) from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 20 is preferably 10.00 μm or less, more preferably 7.00 μm or less, and even more preferably , 1.00 μm or less, less than 1.00 μm, 0.90 μm or less, 0.80 μm or less, or 0.70 μm or less.
<変形例-2>
 本実施形態に係る塗装金属板1は、金属板10と光触媒層20との間に位置する無機系皮膜層30に加えて、無機系皮膜層30の更に下方に、第3皮膜層の一例としての樹脂皮膜層40を有していてもよい。
 以下では、図3A及び図3Bを参照しながら、樹脂皮膜層40について、詳細に説明する。図3A及び図3Bは、本実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。
<Modification example-2>
In addition to the inorganic film layer 30 located between the metal plate 10 and the photocatalyst layer 20, the painted metal plate 1 according to the present embodiment has a third film layer further below the inorganic film layer 30 as an example of a third film layer. It may have a resin film layer 40 of.
Below, the resin film layer 40 will be explained in detail with reference to FIGS. 3A and 3B. 3A and 3B are explanatory diagrams schematically showing other examples of the structure of the coated metal plate according to the present embodiment.
 図3A及び図3Bは、第3皮膜層の一例としての樹脂皮膜層40を設ける場合の、塗装金属板1の層構成を模式的に示した模式図である。かかる場合、本実施形態に係る塗装金属板1は、上記のような無機系皮膜層30の下方に、第3皮膜層の一例としての樹脂皮膜層40を有する。 FIGS. 3A and 3B are schematic diagrams schematically showing the layer structure of the coated metal plate 1 in the case where a resin film layer 40 as an example of the third film layer is provided. In such a case, the painted metal plate 1 according to the present embodiment has a resin film layer 40 as an example of a third film layer below the inorganic film layer 30 as described above.
 かかる樹脂皮膜層40は、金属板10の表面に付着した油分などの不純物及び表面酸化物を、公知の脱脂工程及び洗浄工程で取り除いた後、化成処理により形成される。 The resin film layer 40 is formed by a chemical conversion treatment after impurities such as oil and surface oxides adhering to the surface of the metal plate 10 are removed by a known degreasing process and cleaning process.
 本実施形態に係る樹脂皮膜層40は、例えば樹脂を含有しており、更に、シランカップリング剤、ジルコニウム化合物、シリカ、リン酸及びその塩、フッ化物、バナジウム化合物、並びに、タンニン又はタンニン酸からなる群より選択される何れか一つ以上を含有させてもよい。これら物質を含有することで、更に、化成処理液塗布後の成膜性、水分や腐食性イオン等の腐食因子に対する皮膜のバリア性(緻密性)、及び、金属板の表面への皮膜密着性などが向上し、皮膜の耐食性の底上げに寄与する。 The resin film layer 40 according to the present embodiment contains, for example, a resin, and further contains a silane coupling agent, a zirconium compound, silica, phosphoric acid and its salt, a fluoride, a vanadium compound, and tannin or tannic acid. It may contain one or more selected from the group consisting of: Containing these substances further improves film formability after application of a chemical conversion treatment solution, barrier properties (denseness) of the film against corrosion factors such as moisture and corrosive ions, and adhesion of the film to the surface of the metal plate. etc., contributing to raising the level of corrosion resistance of the film.
 特に、樹脂皮膜層40が、シランカップリング剤、又は、ジルコニウム化合物の何れか一つ以上を含有すると、樹脂皮膜層40内に架橋構造を形成し、金属板表面との結合についても強化するため、皮膜の密着性やバリア性を更に向上させることが可能となる。 In particular, when the resin film layer 40 contains one or more of a silane coupling agent or a zirconium compound, a crosslinked structure is formed within the resin film layer 40 and the bond with the metal plate surface is also strengthened. , it becomes possible to further improve the adhesion and barrier properties of the film.
 また、樹脂皮膜層40が、シリカ、リン酸及びその塩、フッ化物、又は、バナジウム化合物の何れか一つ以上を含有すると、インヒビターとして機能し、金属板表面に沈殿皮膜や不動態皮膜を形成することで、耐食性を更に向上させることが可能となる。 Furthermore, when the resin film layer 40 contains one or more of silica, phosphoric acid and its salts, fluoride, or a vanadium compound, it functions as an inhibitor and forms a precipitated film or a passive film on the metal plate surface. By doing so, it becomes possible to further improve corrosion resistance.
 以下では、上記のような樹脂皮膜層40が含みうる各構成成分の詳細について、例を挙げながら説明する。 Hereinafter, details of each component that may be included in the resin film layer 40 as described above will be explained while giving examples.
[樹脂]
 樹脂としては、例えば、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、フェノール樹脂、アクリル樹脂、ポリオレフィン樹脂等といった、公知の有機樹脂を使用することができる。金属板との密着性を更に高めるためには、分子鎖中に強制部位や極性官能基をもつ樹脂(ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、アクリル樹脂等)の少なくとも一つを使用することが好ましい。樹脂は、単独で用いてもよく、2種以上を併用してもよい。
[resin]
As the resin, for example, known organic resins such as polyester resin, polyurethane resin, epoxy resin, phenol resin, acrylic resin, polyolefin resin, etc. can be used. In order to further improve the adhesion with the metal plate, it is preferable to use at least one resin having a forced moiety or polar functional group in its molecular chain (polyester resin, urethane resin, epoxy resin, acrylic resin, etc.). . The resins may be used alone or in combination of two or more.
 樹脂皮膜層40における樹脂の含有量は、例えば、皮膜固形分に対して、0質量%以上であることが好ましく、1質量%以上であることがより好ましい。これにより、耐食性を向上させることができる。また、樹脂皮膜層40における樹脂の含有量は、例えば、皮膜固形分に対して、85質量%以下であることが好ましく、60質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。樹脂の含有量を85質量%以下とすることで、耐食性以外の皮膜として求められる性能を担保しつつ、皮膜の耐食性を向上させることができる。 The content of the resin in the resin film layer 40 is preferably 0% by mass or more, and more preferably 1% by mass or more, based on the solid content of the film, for example. Thereby, corrosion resistance can be improved. Further, the resin content in the resin film layer 40 is preferably 85% by mass or less, more preferably 60% by mass or less, and 40% by mass or less, based on the solid content of the film, for example. is even more preferable. By setting the resin content to 85% by mass or less, the corrosion resistance of the film can be improved while ensuring the performance required for the film other than corrosion resistance.
[シランカップリング剤]
 シランカップリング剤としては、例えば、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、ビニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルメチルジエトキシシラン、ヘキサメチルジシラザン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルメチルジメトキシシラン、γ-アニリノプロピルトリエトキシシラン、γ-アニリノプロピルメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、オクタデシルジメチル[3-(トリメトキシシリル)プロピル]アンモニウムクロライド、オクタデシルジメチル[3-(メチルジメトキシシリル)プロピル]アンモニウムクロライド、オクタデシルジメチル[3-(トリエトキシシリル)プロピル]アンモニウムクロライド、オクタデシルジメチル[3-(メチルジエトキシシリル)プロピル]アンモニウムクロライド、γ-クロロプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン等を挙げることができる。樹脂皮膜層40を形成するための化成処理剤中のシランカップリング剤の添加量は、例えば、2~80g/Lとすることができる。シランカップリング剤の添加量を2g/L以上とすることで、金属板表面との密着性を向上させて、塗膜の加工密着性を向上させることが可能となる。また、シランカップリング剤の添加量を80g/L以下とすることで、皮膜の凝集力を保持させて、塗膜の加工密着性を向上させることが可能となる。上記に例示したようなシランカップリング剤は、1種で使用してもよく、2種以上を併用してもよい。
[Silane coupling agent]
Examples of the silane coupling agent include γ-(2-aminoethyl)aminopropyltrimethoxysilane, γ-(2-aminoethyl)aminopropylmethyldimethoxysilane, and γ-(2-aminoethyl)aminopropyltriethoxysilane. , γ-(2-aminoethyl)aminopropylmethyldiethoxysilane, γ-(2-aminoethyl)aminopropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ- Methacryloxypropyltriethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, N-β-(N-vinylbenzylaminoethyl)-γ-aminopropyltrimethoxysilane, N-β-(N-vinylbenzylaminoethyl) -γ-aminopropylmethyldimethoxysilane, N-β-(N-vinylbenzylaminoethyl)-γ-aminopropyltriethoxysilane, N-β-(N-vinylbenzylaminoethyl)-γ-aminopropylmethyldiethoxy Silane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-mercaptopropyltrimethoxysilane , γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldiethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, vinyltriacetoxysilane, γ-Chloropropyltrimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropylmethyldiethoxysilane, hexamethyldisilazane, γ-anilinopropyltrimethoxysilane, γ-aniline Linopropylmethyldimethoxysilane, γ-anilinopropyltriethoxysilane, γ-anilinopropylmethyldiethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, octadecyldimethyl [3 -(trimethoxysilyl)propyl]ammonium chloride, octadecyldimethyl[3-(methyldimethoxysilyl)propyl]ammonium chloride, octadecyldimethyl[3-(triethoxysilyl)propyl]ammonium chloride, octadecyldimethyl[3-(methyldiethoxy) silyl)propyl] ammonium chloride, γ-chloropropylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, and the like. The amount of the silane coupling agent added in the chemical conversion treatment agent for forming the resin film layer 40 can be, for example, 2 to 80 g/L. By adding the silane coupling agent in an amount of 2 g/L or more, it is possible to improve the adhesion to the metal plate surface and improve the processing adhesion of the coating film. Furthermore, by controlling the amount of the silane coupling agent added to 80 g/L or less, it is possible to maintain the cohesive force of the coating and improve the processing adhesion of the coating. The silane coupling agents as exemplified above may be used alone or in combination of two or more.
[ジルコニウム化合物]
 ジルコニウム化合物としては、例えば、ジルコニウムノルマルプロピレート、ジルコニウムノルマルブチレート、ジルコニウムテトラアセチルアセトネート、ジルコニウムモノアセチルアセトネート、ジルコニウムビスアセチルアセトネート、ジルコニウムモノエチルアセトアセテート、ジルコニウムアセチルアセトネートビスエチルアセトアセテート、ジルコニウムアセテート、ジルコニウムモノステアレート、炭酸ジルコニウム、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムカリウム、炭酸ジルコニウムナトリウム等を挙げることができる。樹脂皮膜層40を形成するための化成処理剤中のジルコニウム化合物の添加量は、例えば、2~80g/Lとすることができる。ジルコニウム化合物の添加量を2g/L以上とすることで、金属板表面との密着性を向上させて、塗膜の加工密着性を向上させることが可能となる。また、ジルコニウム化合物の添加量を80g/L以下とすることで、皮膜の凝集力を保持させて、塗膜の加工密着性を向上させることが可能となる。かかるジルコニウム化合物は、単独で用いてもよく、2種以上を併用してもよい。
[Zirconium compound]
Examples of the zirconium compound include zirconium normal propylate, zirconium normal butyrate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium bisacetylacetonate, zirconium monoethylacetoacetate, zirconium acetylacetonate bisethylacetoacetate, Examples include zirconium acetate, zirconium monostearate, zirconium carbonate, ammonium zirconium carbonate, potassium zirconium carbonate, and sodium zirconium carbonate. The amount of the zirconium compound added in the chemical conversion treatment agent for forming the resin film layer 40 can be, for example, 2 to 80 g/L. By adding the zirconium compound in an amount of 2 g/L or more, it is possible to improve the adhesion to the metal plate surface and improve the processing adhesion of the coating film. Furthermore, by controlling the amount of the zirconium compound to be 80 g/L or less, it is possible to maintain the cohesive force of the coating and improve the processing adhesion of the coating. Such zirconium compounds may be used alone or in combination of two or more.
[シリカ]
 シリカとしては、例えば、日産化学株式会社製の「スノーテックスN」、「スノーテックスC」、「スノーテックスUP」、「スノーテックスPS」、株式会社ADEKA製の「アデライトAT-20Q」等の市販のシリカゲル、又は、日本アエロジル株式会社製のアエロジル#300等の粉末シリカを用いることができる。シリカは、必要とされる塗装金属板の性能に応じて、適宜選択することができる。樹脂皮膜層40を形成するための化成処理剤中のシリカの添加量は、1~40g/Lとすることが好ましい。シリカの添加量を1g/L以上とすることで、塗膜の加工密着性を向上させることが可能となる。また、シリカの添加量を40g/L以下とすることで、コストの増加を抑制しつつ、加工密着性及び耐食性の効果の両立を図ることが可能となる。
[silica]
Examples of commercially available silica include "Snowtex N", "Snowtex C", "Snowtex UP", and "Snowtex PS" manufactured by Nissan Chemical Co., Ltd., and "Adelite AT-20Q" manufactured by ADEKA Co., Ltd. or powdered silica such as Aerosil #300 manufactured by Nippon Aerosil Co., Ltd. can be used. Silica can be selected as appropriate depending on the required performance of the coated metal plate. The amount of silica added in the chemical conversion treatment agent for forming the resin film layer 40 is preferably 1 to 40 g/L. By adding silica in an amount of 1 g/L or more, it is possible to improve the processing adhesion of the coating film. Further, by controlling the amount of silica added to 40 g/L or less, it is possible to achieve both effects of processing adhesion and corrosion resistance while suppressing an increase in cost.
[リン酸及びその塩]
 リン酸及びその塩としては、例えば、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等のリン酸類及びそれらの塩、リン酸三アンモニウム、リン酸水素二アンモニウム等のアンモニウム塩、アミノトリ(メチレンホスホン酸)、1-ヒドロキシエチリデン-1,1-ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)等のホスホン酸類及びそれらの塩、フィチン酸等の有機リン酸類及びそれらの塩等が挙げられる。なお、リン酸の塩として、アンモニウム塩以外の塩としては、Na、Mg、Al、K、Ca、Mn、Ni、Zn、Fe等との金属塩が挙げられる。リン酸及びその塩は、単独で用いてもよく、2種以上を併用してもよい。
[Phosphoric acid and its salts]
Examples of phosphoric acid and its salts include phosphoric acids and their salts such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, and tetraphosphoric acid; ammonium salts such as triammonium phosphate and diammonium hydrogen phosphate; Phosphonic acids such as aminotri(methylenephosphonic acid), 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra(methylenephosphonic acid), diethylenetriaminepenta(methylenephosphonic acid) and their salts, organic phosphoric acids such as phytic acid and salts thereof. Note that examples of salts of phosphoric acid other than ammonium salts include metal salts with Na, Mg, Al, K, Ca, Mn, Ni, Zn, Fe, and the like. Phosphoric acid and its salts may be used alone or in combination of two or more.
 なお、リン酸及びその塩の含有量は、皮膜固形分に対して、0質量%以上であることが好ましく、1質量%以上であることがより好ましい。また、リン酸及びその塩の含有量は、皮膜固形分に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。リン酸及びその塩の含有量が20質量%以下となることで、皮膜の脆化を防止でき、塗装金属板を成形加工する際の皮膜の加工密着性の低下を防止することが可能となる。 Note that the content of phosphoric acid and its salts is preferably 0% by mass or more, more preferably 1% by mass or more, based on the solid content of the film. Further, the content of phosphoric acid and its salt is preferably 20% by mass or less, more preferably 10% by mass or less, based on the solid content of the film. When the content of phosphoric acid and its salts is 20% by mass or less, it is possible to prevent the film from becoming brittle, and it is possible to prevent a decrease in processing adhesion of the film when forming the coated metal plate. .
[フッ化物]
 フッ化物としては、例えば、ジルコンフッ化アンモニウム、ケイフッ化アンモニウム、チタンフッ化アンモニウム、フッ化ナトリウム、フッ化カリウム、フッ化カルシウム、フッ化リチウム、チタンフッ化水素酸、ジルコンフッ化水素酸等を挙げることができる。かかるフッ化物は、単独で用いてもよく、2種以上を併用してもよい。
[Fluoride]
Examples of the fluoride include zircon ammonium fluoride, ammonium silicofluoride, titanium ammonium fluoride, sodium fluoride, potassium fluoride, calcium fluoride, lithium fluoride, titanium hydrofluoride, zircon hydrofluoride, and the like. . Such fluorides may be used alone or in combination of two or more.
 なお、フッ化物の含有量は、皮膜固形分に対して、0質量%以上であることが好ましく、1質量%以上であることがより好ましい。また、フッ化物の含有量は、皮膜固形分に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。フッ化物の含有量が20質量%以下となることで、皮膜の脆化を防止でき、塗装金属板を成形加工する際の皮膜の加工密着性の低下を防止することが可能となる。 Note that the content of fluoride is preferably 0% by mass or more, more preferably 1% by mass or more, based on the solid content of the film. Further, the content of fluoride is preferably 20% by mass or less, more preferably 10% by mass or less, based on the solid content of the film. When the fluoride content is 20% by mass or less, it is possible to prevent the coating from becoming brittle, and it is possible to prevent a decrease in processing adhesion of the coating when forming a coated metal plate.
[バナジウム化合物]
 バナジウム化合物としては、例えば、五酸化バナジウム、メタバナジン酸、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、オキシ三塩化バナジウム等の5価のバナジウム化合物を還元剤で2~4価に還元したバナジウム化合物、三酸化バナジウム、二酸化バナジウム、オキシ硫酸バナジウム、オキシ蓚酸バナジウム、バナジウムオキシアセチルアセトネート、バナジウムアセチルアセトネート、三塩化バナジウム、リンバナドモリブデン酸、硫酸バナジウム、二塩化バナジウム、酸化バナジウム等の酸化数4~2価のバナジウム化合物等を挙げることができる。かかるバナジウム化合物は、単独で用いてもよく、2種以上を併用してもよい。
[Vanadium compound]
Examples of vanadium compounds include vanadium compounds obtained by reducing pentavalent vanadium compounds such as vanadium pentoxide, metavanadate, ammonium metavanadate, sodium metavanadate, and vanadium oxytrichloride to divalent to tetravalent vanadium compounds with a reducing agent, and vanadium trioxide. , vanadium dioxide, vanadium oxysulfate, vanadium oxyoxalate, vanadium oxyacetylacetonate, vanadium acetylacetonate, vanadium trichloride, phosphovanadomolybdic acid, vanadium sulfate, vanadium dichloride, vanadium oxide, etc. with an oxidation number of 4 to 2. Examples include vanadium compounds. Such vanadium compounds may be used alone or in combination of two or more.
 なお、バナジウム化合物の含有量は、皮膜固形分に対して、0質量%以上であることが好ましく、1質量%以上であることがより好ましい。また、バナジウム化合物の含有量は、皮膜固形分に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。バナジウム化合物の含有量が20質量%以下となることで、皮膜の脆化を防止でき、塗装金属板を成形加工する際の皮膜の加工密着性の低下を防止することが可能となる。 Note that the content of the vanadium compound is preferably 0% by mass or more, and more preferably 1% by mass or more, based on the solid content of the film. Further, the content of the vanadium compound is preferably 20% by mass or less, more preferably 10% by mass or less, based on the solid content of the film. When the content of the vanadium compound is 20% by mass or less, it is possible to prevent the film from becoming brittle, and it is possible to prevent a decrease in processing adhesion of the film when forming a coated metal plate.
[タンニン又はタンニン酸]
 タンニン又はタンニン酸は、加水分解できるタンニン、縮合タンニンのいずれも用いることができる。タンニン及びタンニン酸の例としては、ハマメタタンニン、五倍子タンニン、没食子タンニン、ミロバランのタンニン、ジビジビのタンニン、アルガロビラのタンニン、バロニアのタンニン、カテキン等を挙げることができる。樹脂皮膜層40を形成するための化成処理剤中のタンニン又はタンニン酸の添加量は、2~80g/Lとすることができる。タンニン又はタンニン酸の添加量を2g/L以上とすることで、金属板表面との密着性を向上させて、塗膜の加工密着性を向上させることができる。また、タンニン又はタンニン酸の添加量の添加量を80g/L以下とすることで、皮膜の凝集力を保持させて、塗膜の加工密着性を向上させることができる。
[Tannin or tannic acid]
As the tannin or tannic acid, either a hydrolyzable tannin or a condensed tannin can be used. Examples of tannins and tannic acids include hameta tannin, pentad tannin, gallic tannin, myrobalan tannin, zibijibi tannin, algarobilla tannin, valonia tannin, catechin, and the like. The amount of tannin or tannic acid added in the chemical conversion treatment agent for forming the resin film layer 40 can be 2 to 80 g/L. By adding tannin or tannic acid in an amount of 2 g/L or more, it is possible to improve the adhesion to the metal plate surface and improve the processing adhesion of the coating film. Further, by controlling the amount of tannin or tannic acid added to 80 g/L or less, the cohesive force of the coating can be maintained and the processing adhesion of the coating can be improved.
 また、樹脂皮膜層40は、上記のような成分に加えて、着色剤を更に含有してもよい。これにより、本実施形態に係る塗装金属板1の外観を、所望の色調とすることが可能となり、塗装金属板1の意匠性を更に向上させることが可能となる。 Furthermore, the resin film layer 40 may further contain a colorant in addition to the above components. Thereby, it becomes possible to make the appearance of the painted metal plate 1 according to this embodiment a desired color tone, and it becomes possible to further improve the design of the painted metal plate 1.
 ここで、樹脂皮膜層40に含有される着色剤の種別や含有量については、特に規定されるものではなく、適宜調整すればよい。 Here, the type and content of the colorant contained in the resin film layer 40 are not particularly defined and may be adjusted as appropriate.
 また、樹脂皮膜層40を形成するための化成処理剤中には、性能が損なわれない範囲内で、pH調整のために酸、アルカリ等を添加してもよい。 Additionally, acid, alkali, etc. may be added to the chemical conversion treatment agent for forming the resin film layer 40 for pH adjustment within a range that does not impair performance.
 かかる樹脂皮膜層40の平均厚みdは、0.20μm以上であることが好ましく、0.50μm以上であることがより好ましく、2.50μm以上であることが更に好ましい。これにより、樹脂皮膜層40を金属板10の表面に均一に形成しつつ、上記のような皮膜層を設けることによる各種の効果を、安定して発現させることが可能となる。また、樹脂皮膜層40の平均厚みdは、60.00μm以下であることが好ましく、30.00μm以下であることがより好ましく、15.00μm以下、1.00μm以下、1.00μm未満、又は、0.80μm以下であることが更に好ましい。これにより、樹脂皮膜層40を金属板10の表面に均一に形成しつつ、上記のような皮膜層を設けることによる各種の効果を、安定して発現させることが可能となる。 The average thickness d3 of the resin film layer 40 is preferably 0.20 μm or more, more preferably 0.50 μm or more, and even more preferably 2.50 μm or more. Thereby, while forming the resin film layer 40 uniformly on the surface of the metal plate 10, it becomes possible to stably exhibit various effects caused by providing the film layer as described above. Further, the average thickness d3 of the resin film layer 40 is preferably 60.00 μm or less, more preferably 30.00 μm or less, 15.00 μm or less, 1.00 μm or less, less than 1.00 μm, or , more preferably 0.80 μm or less. Thereby, while forming the resin film layer 40 uniformly on the surface of the metal plate 10, it becomes possible to stably exhibit various effects caused by providing the film layer as described above.
 また、本実施形態に係る塗装金属板1は、図3Bに模式的に示したように、無機系皮膜層30と、樹脂皮膜層40と、の間に、公知の各種の層を更に有していてもよい。 Moreover, the painted metal plate 1 according to the present embodiment further includes various known layers between the inorganic film layer 30 and the resin film layer 40, as schematically shown in FIG. 3B. You can leave it there.
 ここで、図3A及び図3Bに示したような場合においても、金属板10の表面から光触媒層20の最表面までの合計厚みd(=d+d+d+α)は、60.00μm以下とする。これにより、製造の簡便性の低下及び加工性の低下を抑制するとともに、亜鉛含有金属層13からの亜鉛の溶出経路を確保して十分に亜鉛を溶出させ、更に、所望の光触媒効果を、光触媒層20の全体にわたって均一に発現させることが可能となる。金属板10の表面から光触媒層20の最表面までの合計厚みd(=d+d+d+α)は、好ましくは15.00μm以下であり、より好ましくは10.00μm以下であり、更に好ましくは7.00μm以下であり、更に一層好ましくは、1.00μm以下、1.00μm未満、0.90μm以下、0.80μm以下、又は、0.70μm以下である。 Here, also in the cases shown in FIGS. 3A and 3B, the total thickness d T (=d 1 + d 3 + d 4 +α) from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 20 is 60.00 μm. The following shall apply. This suppresses a decrease in manufacturing simplicity and processability, secures an elution route for zinc from the zinc-containing metal layer 13, allows sufficient zinc to be eluted, and further improves the desired photocatalytic effect. It becomes possible to achieve uniform expression over the entire layer 20. The total thickness d T (=d 1 + d 3 + d 4 + α) from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 20 is preferably 15.00 μm or less, more preferably 10.00 μm or less, and It is preferably 7.00 μm or less, and even more preferably 1.00 μm or less, less than 1.00 μm, 0.90 μm or less, 0.80 μm or less, or 0.70 μm or less.
 ここで、以上説明したような各変形例においても、塗装金属板1に対し、JIS R1756:2020に規定された抗ウイルス試験を4時間行った際に、ウイルス含有液中に溶出する亜鉛イオン濃度は、0.60~5.00質量%の範囲内となる。 Here, in each of the modified examples as explained above, when the antiviral test specified in JIS R1756:2020 is conducted on the coated metal plate 1 for 4 hours, the concentration of zinc ions eluted into the virus-containing liquid is within the range of 0.60 to 5.00% by mass.
 なお、図2A~図3Bでは、金属板10の片側の面上に各層を設ける場合について図示しているが、各層は、金属板10の両面に設けてもよい。この場合、金属板10の表面から光触媒層20の表面までの合計厚みdは、塗装金属板1の各面で、60.00μm以下となるようにする。 Note that although FIGS. 2A to 3B illustrate the case where each layer is provided on one side of the metal plate 10, each layer may be provided on both sides of the metal plate 10. In this case, the total thickness d T from the surface of the metal plate 10 to the surface of the photocatalyst layer 20 is set to be 60.00 μm or less on each surface of the coated metal plate 1 .
 以上、図1~図3Bを参照しながら、本発明の第1の実施形態に係る塗装金属板について、詳細に説明した。 The painted metal plate according to the first embodiment of the present invention has been described in detail above with reference to FIGS. 1 to 3B.
<各層の平均厚みの測定方法について>
 ここで、光触媒層をはじめとする各層の平均厚みは、着目する層を断面方向から顕微鏡で観察することで測定することが可能である。断面方向から観察する試料の作製方法としては、例えば、樹脂に埋め込み、観察面を研磨する方法、FIB加工する方法、ミクロトーム法など公知の方法を用いることができる。また、顕微鏡の種類としては、SEM、TEM等の公知の装置を用いることができる。
<How to measure the average thickness of each layer>
Here, the average thickness of each layer including the photocatalyst layer can be measured by observing the layer of interest from a cross-sectional direction using a microscope. As a method for preparing a sample to be observed from the cross-sectional direction, known methods such as embedding in resin and polishing the observation surface, FIB processing, microtome method, etc. can be used. Furthermore, as the type of microscope, known devices such as SEM and TEM can be used.
(塗装金属板の製造方法について)
 以上説明したような本実施形態に係る塗装金属板は、母材となる金属板10の表面に対して、必要に応じて洗浄等の各種の前処理を施したうえで、光触媒層20を形成するための光触媒処理剤や、無機系皮膜層30を形成するための無機系化成処理剤や、樹脂皮膜層40を形成するための有機系化成処理剤等を、所望の層構成となるように塗布した後、乾燥・焼き付けることで製造することができる。
(About the manufacturing method of painted metal plates)
In the painted metal plate according to the present embodiment as described above, the surface of the metal plate 10 serving as the base material is subjected to various pretreatments such as cleaning as necessary, and then the photocatalyst layer 20 is formed. A photocatalytic treatment agent for forming the inorganic coating layer 30, an organic chemical conversion treatment agent for forming the resin coating layer 40, etc. are used in a desired layer configuration. It can be manufactured by coating, drying, and baking.
 ここで、各種塗料の塗布は、一般に公知の塗布方法、例えば、ロールコート、カーテンフローコート、エアースプレー、エアーレススプレー、浸漬、バーコート、刷毛塗りなどで行うことができる。特に本製品の特徴である薄膜で安定的に塗装可能なロールコートが好ましい。 Here, the various paints can be applied by generally known coating methods, such as roll coating, curtain flow coating, air spray, airless spray, dipping, bar coating, and brush coating. Particularly preferred is roll coating, which allows stable coating with a thin film, which is a feature of this product.
 また、乾燥・焼き付けの条件については、特に限定されるものではなく、用いる塗料等に応じて適宜設定すればよい。 Furthermore, the conditions for drying and baking are not particularly limited, and may be set as appropriate depending on the paint used.
≪第2の実施形態≫
 次に、本発明の第2の実施形態に係る塗装金属板について、詳細に説明する。
 本発明の第2の実施形態は、金属板と、金属板の少なくとも一方の表面に位置する皮膜層と、を有する塗装金属板において、皮膜層として、塗装金属板の最表面に位置し、光触媒活性を有する化合物と、金属Zn換算で0.2~20.0質量%の亜鉛元素と、を含有する第1皮膜層を有する態様に関する。
<<Second embodiment>>
Next, a painted metal plate according to a second embodiment of the present invention will be described in detail.
A second embodiment of the present invention provides a coated metal plate having a metal plate and a coating layer located on at least one surface of the metal plate. The present invention relates to an embodiment having a first coating layer containing an active compound and 0.2 to 20.0% by mass of zinc element in terms of metallic Zn.
(塗装金属板について)
<塗装金属板の構造>
 以下では、まず、図4を参照しながら、本発明の第2の実施形態に係る塗装金属板の構造について説明する。図4は、本実施形態に係る塗装金属板の構造の一例を模式的に示した説明図である。
(About painted metal plates)
<Structure of painted metal plate>
Below, first, the structure of the painted metal plate according to the second embodiment of the present invention will be described with reference to FIG. 4. FIG. 4 is an explanatory diagram schematically showing an example of the structure of the painted metal plate according to the present embodiment.
 図4に模式的に示したように、本発明の第2の実施形態に係る塗装金属板3は、金属板の少なくとも一方の面に皮膜層を有しており、金属板10と、皮膜層として、第1皮膜層の一例としての光触媒層25と、を少なくとも有している。 As schematically shown in FIG. 4, the coated metal plate 3 according to the second embodiment of the present invention has a film layer on at least one surface of the metal plate, and the coated metal plate 3 has a film layer on at least one surface of the metal plate. It has at least a photocatalyst layer 25 as an example of a first film layer.
[金属板10について]
 本実施形態に係る塗装金属板3において、金属板10は、金属板10の母材として、各種の母材金属11が素材として用いられて、構成される。ここで、母材金属11としては、各種の金属板を用いることが可能である。このような金属板として、例えば、各種の鋼板、アルミニウム板、ステンレス板等を挙げることができ、母材金属11に求められる強度や特性等に応じて選択すればよい。
[About the metal plate 10]
In the painted metal plate 3 according to the present embodiment, the metal plate 10 is constructed using various base metals 11 as the base material of the metal plate 10. Here, various metal plates can be used as the base metal 11. Examples of such metal plates include various steel plates, aluminum plates, stainless steel plates, etc., and may be selected depending on the strength, characteristics, etc. required of the base metal 11.
 また、本実施形態に係る塗装金属板3において、金属板10を構成する母材金属11の表面には、各種のめっき層が設けられていてもよい。ここで、各種のめっき層として、亜鉛を含有しないめっき層が設けられていてもよい。 Furthermore, in the painted metal plate 3 according to the present embodiment, various plating layers may be provided on the surface of the base metal 11 that constitutes the metal plate 10. Here, a plating layer not containing zinc may be provided as the various plating layers.
 ここで、上記のような金属板10の厚みについては、特に限定されるものではなく、本実施形態に係る塗装金属板3に求められる機械的な強度(例えば、引張強度等)や加工性等に応じて、適宜設定すればよい。 Here, the thickness of the metal plate 10 as described above is not particularly limited, and depends on the mechanical strength (for example, tensile strength, etc.), workability, etc. required of the coated metal plate 3 according to the present embodiment. It may be set as appropriate depending on the situation.
 また、かかる金属板10の表面には、母材金属11の圧延方向に沿ったヘアライン模様や、スパングル模様等の各種の模様が存在していてもよい。このような模様が設けられていることで、塗装金属板3の意匠性をより向上させることが可能となる。 Furthermore, various patterns such as a hairline pattern or a spangle pattern along the rolling direction of the base metal 11 may be present on the surface of the metal plate 10. By providing such a pattern, it becomes possible to further improve the design of the painted metal plate 3.
[光触媒層25について]
 本実施形態に係る塗装金属板3において、第1皮膜層の一例としての光触媒層25は、図4に模式的に示したように、金属板10の少なくとも一方の面において、皮膜層の最表面に位置している層である。かかる光触媒層25は、光触媒活性を有する化合物(以下、「光触媒化合物」と略記することがある。)と、元素Znと、を少なくとも含有する層である。
[About the photocatalyst layer 25]
In the painted metal plate 3 according to the present embodiment, the photocatalyst layer 25 as an example of the first film layer is formed on the outermost surface of the film layer on at least one surface of the metal plate 10, as schematically shown in FIG. This is the layer located in The photocatalytic layer 25 is a layer containing at least a compound having photocatalytic activity (hereinafter sometimes abbreviated as "photocatalytic compound") and element Zn.
 本実施形態に係る光触媒層25が光触媒活性を有する化合物を含有することで、かかる光触媒活性を有する化合物は、光触媒層25に入射した光(特に、紫外~可視光帯域の光)によって、光触媒反応を生じさせる。その結果、本実施形態に係る光触媒層25において、抗ウイルス効果や殺菌効果をはじめとする、各種の光触媒効果が発現する。これにより、本実施形態に係る塗装金属板3は、抗ウイルス効果や殺菌効果をはじめとする各種の特性を実現することができる。 Since the photocatalytic layer 25 according to the present embodiment contains a compound having photocatalytic activity, the compound having photocatalytic activity can undergo a photocatalytic reaction by light (particularly light in the ultraviolet to visible light range) that is incident on the photocatalytic layer 25. cause As a result, the photocatalytic layer 25 according to this embodiment exhibits various photocatalytic effects including antiviral effects and sterilizing effects. Thereby, the coated metal plate 3 according to the present embodiment can realize various properties including an antiviral effect and a sterilizing effect.
 また、本実施形態に係る光触媒層25が、元素Znを含有することで、光触媒層25に含まれる元素Znが、第1の実施形態において説明したような亜鉛含有金属層13に含まれるZnと同様の機能を果たす。その結果、本発明者らが見出した、JIS R1756:2020に規定された抗ウイルス試験における、ウイルス含有液中への亜鉛の溶出が生じるようになる。これにより、本実施形態に係る塗装金属板3は、上記の第1の実施形態に係る塗装金属板1と同様の効果を奏することが可能となり、塗装金属板3における抗ウイルス機能を、より簡便な手法により、より長期的な期間、より向上させることが可能となる。 Furthermore, since the photocatalyst layer 25 according to the present embodiment contains the element Zn, the element Zn contained in the photocatalyst layer 25 is different from the Zn contained in the zinc-containing metal layer 13 as described in the first embodiment. serves a similar function. As a result, zinc elutes into the virus-containing solution in the antiviral test specified in JIS R1756:2020, which was discovered by the present inventors. As a result, the coated metal plate 3 according to the present embodiment can achieve the same effect as the coated metal plate 1 according to the first embodiment described above, and the antivirus function of the coated metal plate 3 can be achieved more easily. This method makes it possible to improve performance over a longer period of time.
 なお、本実施形態に係る光触媒層25が含有する光触媒化合物については、第1の実施形態に係る光触媒層20が含有する光触媒化合物と同様のものであり、また、第1の実施形態に係る光触媒層20が含有する光触媒化合物と同様の効果を奏するものである。そのため、以下では、光触媒化合物についての詳細な説明は省略する。 The photocatalytic compound contained in the photocatalytic layer 25 according to the present embodiment is the same as the photocatalytic compound contained in the photocatalytic layer 20 according to the first embodiment, and the photocatalytic compound according to the first embodiment It has the same effect as the photocatalytic compound contained in the layer 20. Therefore, detailed description of the photocatalytic compound will be omitted below.
 本実施形態に係る光触媒層25において、かかる光触媒層25に含まれる元素Znの含有量は、金属Zn換算で、0.2質量%以上である。Znの含有量が0.2質量%未満である場合には、光触媒層25からの亜鉛の溶出量が少なすぎる結果、先だって説明したような抗菌作用を発現させることができない。Znの含有量が0.2質量%以上となることで、先だって説明したような抗菌効果を発現させることが可能となる。上記元素Znの含有量は、より好ましくは0.6質量%以上であり、更に好ましくは1.0質量%以上である。 In the photocatalyst layer 25 according to the present embodiment, the content of the element Zn contained in the photocatalyst layer 25 is 0.2% by mass or more in terms of metal Zn. When the Zn content is less than 0.2% by mass, the amount of zinc eluted from the photocatalyst layer 25 is too small, and as a result, the antibacterial effect as described above cannot be expressed. When the Zn content is 0.2% by mass or more, it becomes possible to exhibit the antibacterial effect as described above. The content of the element Zn is more preferably 0.6% by mass or more, still more preferably 1.0% by mass or more.
 一方、光触媒層25における、Znの含有量は、金属Zn換算で、20.0質量%以下である。Znの含有量が20.0質量%超である場合には、光触媒層25からの亜鉛の溶出量が多くなりすぎて光触媒層25の緻密性が低下し、腐食因子が外部から侵入しやすくなる結果、塗装金属板3の耐食性が低下してしまう。上記元素Znの合計含有量が20.0質量%以下となることで、光触媒化合物の含有量を確保しながら、上記のような効果を、その効果が飽和することなく発現させることが可能となり、塗装金属板3の耐食性についても担保することが可能となる。上記元素Znの合計含有量は、好ましくは18.0質量%以下であり、より好ましくは16.0質量%以下であり、更に好ましくは5.0質量%以下であり、更に一層好ましくは、3.5質量%以下、又は、2.5質量%以下である。 On the other hand, the Zn content in the photocatalyst layer 25 is 20.0% by mass or less in terms of metal Zn. When the content of Zn is more than 20.0% by mass, the amount of zinc eluted from the photocatalytic layer 25 becomes too large, the density of the photocatalytic layer 25 decreases, and corrosion factors easily enter from the outside. As a result, the corrosion resistance of the painted metal plate 3 deteriorates. By setting the total content of the element Zn to 20.0% by mass or less, it is possible to ensure the content of the photocatalytic compound and to express the above-mentioned effects without saturating the effects. It is also possible to ensure the corrosion resistance of the painted metal plate 3. The total content of the element Zn is preferably 18.0% by mass or less, more preferably 16.0% by mass or less, still more preferably 5.0% by mass or less, and even more preferably 3% by mass or less. .5% by mass or less, or 2.5% by mass or less.
 また、光触媒層25は、更に、Si又はZrの少なくとも何れか1種の元素を含有し、かかる元素の合計濃度は、Siについてはシリカ換算、Zrについてはジルコニア換算で、5質量%以上であることが好ましい。換言すれば、光触媒層25は、Si又はZrの少なくとも何れか1種の元素を含む三次元網目構造状の無機系成分の骨格と、場合によっては不純物と、を有する無機系皮膜であり、Si又はZrの少なくとも何れか1種の元素の合計濃度が、Siについてはシリカ換算、Zrについてはジルコニア換算で、5質量%以上であることが好ましい。Si又はZrの少なくとも何れか1種の元素を上記の濃度で含有することで、より耐食性に優れた光触媒層25を実現することが可能となる。Si又はZrの少なくとも何れか1種の元素の合計含有量は、より好ましくは10質量%以上である。ここで、無機系成分とは、有機樹脂を含まない成分を意味する。 The photocatalytic layer 25 further contains at least one element of Si or Zr, and the total concentration of these elements is 5% by mass or more in terms of silica for Si and zirconia for Zr. It is preferable. In other words, the photocatalytic layer 25 is an inorganic film having a skeleton of an inorganic component having a three-dimensional network structure containing at least one element of Si or Zr, and possibly impurities. Alternatively, the total concentration of at least one element of Zr is preferably 5% by mass or more in terms of silica for Si and zirconia for Zr. By containing at least one element of Si or Zr at the above concentration, it becomes possible to realize the photocatalyst layer 25 with even better corrosion resistance. The total content of at least one element of Si or Zr is more preferably 10% by mass or more. Here, the inorganic component means a component that does not contain an organic resin.
 また、光触媒層25は、更に、Si又はZrの少なくとも何れか1種の元素を含有し、かかる元素の合計濃度は、Siについてはシリカ換算、Zrについてはジルコニア換算で、50質量%以下であることが好ましい。Si又はZrの少なくとも何れか1種の元素を上記の濃度で含有することで、より耐食性に優れた光触媒層25を実現することが可能となる。Si又はZrの少なくとも何れか1種の元素の合計含有量は、より好ましくは40質量%以下である。ここで、含有するSi又はZrは、光透過性に優れることが好ましく、また、光触媒による分解等の影響を受けにくい無機系成分であることが好ましい。このようなSi、Zrを含有する無機系成分としては、例えば、シリカ、ジルコニアを挙げることができる。 The photocatalytic layer 25 further contains at least one element of Si or Zr, and the total concentration of these elements is 50% by mass or less in terms of silica for Si and zirconia for Zr. It is preferable. By containing at least one element of Si or Zr at the above concentration, it becomes possible to realize the photocatalyst layer 25 with even better corrosion resistance. The total content of at least one element of Si or Zr is more preferably 40% by mass or less. Here, the Si or Zr contained preferably has excellent light transmittance, and is preferably an inorganic component that is less susceptible to decomposition by photocatalysts. Examples of such inorganic components containing Si and Zr include silica and zirconia.
 また、光触媒層25は、上記の光触媒化合物や、Si又はZrの少なくとも何れか1種の元素以外に、更に、Cu、Fe、Ni、Agからなる群より選択される少なくとも何れかの元素を含有することが好ましい。ここで、元素Cu、Fe、Ni、Agは、光触媒層25からの亜鉛の溶出を促進する元素であるため、光触媒層25がこれらの元素を更に含有することで、より多くの亜鉛が光触媒層25から溶出するようになるため、好ましい。更に、元素Cu、Agは、抗菌効果を発現する元素でもあるため、特に好ましい。 Further, the photocatalytic layer 25 further contains at least one element selected from the group consisting of Cu, Fe, Ni, and Ag, in addition to the photocatalytic compound and at least one element of Si or Zr. It is preferable to do so. Here, the elements Cu, Fe, Ni, and Ag are elements that promote the elution of zinc from the photocatalyst layer 25, so when the photocatalyst layer 25 further contains these elements, more zinc is absorbed into the photocatalyst layer. This is preferable because it elutes from No. 25. Further, the elements Cu and Ag are particularly preferable because they are also elements that exhibit antibacterial effects.
 光触媒層25における、Cu、Fe、Ni、Agからなる群より選択される少なくとも何れかの元素の合計含有量は、金属元素換算で、0.2質量%以上であることが好ましい。上記金属元素の合計含有量が0.2質量%以上となることで、上記のような効果をより好ましい状態で発現させることが可能となる。上記金属元素の合計含有量は、より好ましくは0.6質量%以上であり、更に好ましくは1.0質量%以上である。一方、光触媒層25における、Cu、Fe、Ni、Agからなる群より選択される少なくとも何れかの元素の合計含有量は、金属元素換算で、5.0質量%以下であることが好ましい。上記金属元素の合計含有量が5.0質量%以下となることで、光触媒化合物の含有量を確保しながら、上記のような効果を、その効果が飽和することなく発現させることが可能となる。上記金属元素の合計含有量は、より好ましくは3.5質量%以下であり、更に好ましくは2.5質量%以下である。 The total content of at least one element selected from the group consisting of Cu, Fe, Ni, and Ag in the photocatalyst layer 25 is preferably 0.2% by mass or more in terms of metal elements. When the total content of the metal elements is 0.2% by mass or more, the above effects can be expressed in a more preferable state. The total content of the metal elements is more preferably 0.6% by mass or more, and still more preferably 1.0% by mass or more. On the other hand, the total content of at least one element selected from the group consisting of Cu, Fe, Ni, and Ag in the photocatalyst layer 25 is preferably 5.0% by mass or less in terms of metal elements. By setting the total content of the above-mentioned metal elements to 5.0% by mass or less, it is possible to maintain the content of the photocatalytic compound while producing the above-mentioned effects without saturating them. . The total content of the metal elements is more preferably 3.5% by mass or less, still more preferably 2.5% by mass or less.
 なお、上記の光触媒化合物を含有する光触媒層25は、本発明の効果を損なわない範囲内で、必要に応じて、抗菌剤や、活性炭又はゼオライト等の吸着材を含有していてもよい。 Note that the photocatalyst layer 25 containing the photocatalytic compound described above may contain an antibacterial agent and an adsorbent such as activated carbon or zeolite, as necessary, within a range that does not impair the effects of the present invention.
 かかる光触媒層25の平均厚みd’(図4に示した層構成の場合、金属板10の表面から光触媒層25の最表面まで(皮膜層の最表面とも捉えることができる。)の合計厚みdでもある。)は、0.05μm以上である。光触媒層25の平均厚みd’が0.05μm未満である場合には、上記のような光触媒層25を均一に成膜することが困難となり、得られる光触媒効果にムラが生じてしまうため、好ましくない。平均厚みd’を0.05μm以上とすることで、光触媒層25からの亜鉛の溶出経路を確保して十分に亜鉛を溶出させるとともに、所望の光触媒効果を、光触媒層25の全体にわたって均一に発現させることが可能となる。 The average thickness d1 ' of the photocatalyst layer 25 (in the case of the layer structure shown in FIG. 4, the total thickness from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 25 (which can also be considered as the outermost surface of the film layer) d T ) is 0.05 μm or more. If the average thickness d 1 ' of the photocatalytic layer 25 is less than 0.05 μm, it will be difficult to uniformly form the photocatalytic layer 25 as described above, and the obtained photocatalytic effect will be uneven. Undesirable. By setting the average thickness d 1 ′ to 0.05 μm or more, the elution route for zinc from the photocatalyst layer 25 is secured and zinc is sufficiently eluted, and the desired photocatalytic effect is uniformly distributed over the entire photocatalyst layer 25. It becomes possible to express it.
 一方、かかる光触媒層25の平均厚みd’(図4に示した層構成の場合、金属板10の表面から光触媒層25の最表面までの合計厚みdでもある。)は、5.00μm以下である。光触媒層25の平均厚みd’が5.00μmを超える場合には、得られる光触媒効果が飽和する一方で、製造コストが増加するため、好ましくない。また、光触媒層25からの亜鉛の溶出量を十分に確保することが困難となるため、かかる観点からも好ましくない。また、光触媒層は無機系皮膜であることから、加工性が低下する。平均厚みd’を5.00μm以下とすることで、製造の簡便性の低下及び加工性の低下を抑制するとともに、光触媒層25からの亜鉛の溶出経路を確保して十分に亜鉛を溶出させ、更に、所望の光触媒効果を、光触媒層25の全体にわたって均一に発現させることが可能となる。 On the other hand, the average thickness d1 ' of the photocatalyst layer 25 (in the case of the layer structure shown in FIG. 4, it is also the total thickness dT from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 25) is 5.00 μm. It is as follows. If the average thickness d 1 ' of the photocatalyst layer 25 exceeds 5.00 μm, the resulting photocatalytic effect will be saturated while the manufacturing cost will increase, which is not preferable. Furthermore, it becomes difficult to ensure a sufficient amount of zinc eluted from the photocatalyst layer 25, which is also unfavorable from this point of view. Furthermore, since the photocatalyst layer is an inorganic film, processability is reduced. By setting the average thickness d 1 ′ to 5.00 μm or less, a decrease in ease of manufacture and a decrease in workability is suppressed, and a route for zinc elution from the photocatalyst layer 25 is secured to ensure sufficient zinc elution. Furthermore, it becomes possible to uniformly exhibit the desired photocatalytic effect over the entire photocatalytic layer 25.
 通常、光触媒層25を、光触媒化合物に当たらずに通過する光が、ある程度の確率で発生する。このような、光触媒化合物と作用しなかった光は、従来では、光触媒効果が得られない光となってしまう。本実施形態では、このような光を金属板10の表面で反射させることで、光触媒層25に入射した光が光触媒化合物に衝突する確率を増加させることが可能となる。これにより、本実施形態では、光触媒効果を更に向上させることができる。図4に示した層構成の場合、金属板10の表面から光触媒層25の最表面までの合計厚みdが当然ながら5.00μm以下となっている結果、入射した光が金属板10の表面(換言すれば、金属板10と光触媒層25との界面)で反射した反射光を、光触媒化合物による光触媒反応に利用することが可能となるため、コストを抑制しつつ、光触媒効果をより向上させることができる。 Normally, light that passes through the photocatalyst layer 25 without hitting the photocatalyst compound is generated with a certain probability. Conventionally, such light that does not interact with the photocatalytic compound ends up being light that cannot produce a photocatalytic effect. In this embodiment, by reflecting such light on the surface of the metal plate 10, it is possible to increase the probability that the light incident on the photocatalyst layer 25 will collide with the photocatalyst compound. Thereby, in this embodiment, the photocatalytic effect can be further improved. In the case of the layer structure shown in FIG. 4, the total thickness dT from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 25 is naturally less than 5.00 μm, and as a result, the incident light is transmitted to the surface of the metal plate 10. (In other words, the reflected light at the interface between the metal plate 10 and the photocatalyst layer 25) can be used for the photocatalytic reaction by the photocatalytic compound, thereby further improving the photocatalytic effect while suppressing costs. be able to.
 かかる光触媒層25の平均厚みd’は、好ましくは0.10μm以上であり、より好ましくは0.15μm以上である。また、かかる光触媒層20の平均厚みd’は、好ましくは2.00μm以下であり、より好ましくは1.00μm以下であり、更に好ましくは1.00μm未満であり、より一層好ましくは0.80μm以下、0.60μm以下、又は、0.50μm以下である。 The average thickness d 1 ' of the photocatalyst layer 25 is preferably 0.10 μm or more, more preferably 0.15 μm or more. Further, the average thickness d 1 ' of the photocatalyst layer 20 is preferably 2.00 μm or less, more preferably 1.00 μm or less, still more preferably less than 1.00 μm, and even more preferably 0.80 μm. Below, it is 0.60 μm or less, or 0.50 μm or less.
 なお、図4では、金属板10の一方の表面に光触媒層25が形成されている形態について図示しているが、光触媒層25は、金属板10の双方の表面に形成されていてもよい。 Note that although FIG. 4 shows a configuration in which the photocatalyst layer 25 is formed on one surface of the metal plate 10, the photocatalyst layer 25 may be formed on both surfaces of the metal plate 10.
<抗ウイルス試験においてウイルス含有液中に溶出する亜鉛イオン濃度>
 以上説明したような塗装金属板3の構造は、JIS R1756:2020に規定された抗ウイルス試験を4時間行った際に、ウイルス含有液中に溶出する亜鉛イオン濃度が、0.60~5.00質量%の範囲内となるための条件の一つとなる。
<Concentration of zinc ions eluted into virus-containing liquid in antiviral test>
The structure of the painted metal plate 3 as described above has a zinc ion concentration of 0.60 to 5.0% when an antiviral test specified in JIS R1756:2020 is conducted for 4 hours. This is one of the conditions for the content to be within the range of 0.00% by mass.
 上記のような構造が条件の一つとなる理由は、本実施形態に係る塗装金属板3において、適切な状態で光触媒層25が設けられ、更に、金属板10の表面から光触媒層25の最表面までの合計厚みd、及び、光触媒層25におけるZnの含有量のそれぞれが特定の範囲内となっているために、光触媒層25から、適切な量の亜鉛が溶出できることによる。 The reason why the above structure is one of the conditions is that in the coated metal plate 3 according to this embodiment, the photocatalyst layer 25 is provided in an appropriate state, and furthermore, the outermost surface of the photocatalyst layer 25 from the surface of the metal plate 10 is Since the total thickness d T and the Zn content in the photocatalyst layer 25 are each within specific ranges, an appropriate amount of zinc can be eluted from the photocatalyst layer 25 .
 なお、光触媒層25からの亜鉛溶出量は、光触媒層25中のZnの含有量や、合計厚みdを調整することで、所望の状態に制御することができる。 Note that the amount of zinc eluted from the photocatalyst layer 25 can be controlled to a desired state by adjusting the Zn content in the photocatalyst layer 25 and the total thickness dT .
 ここで、ウイルス含有液における亜鉛イオン濃度が0.60質量%未満である場合には、光触媒層25からの亜鉛の溶出量が不十分であることを意味し、塗装金属板3が示す抗ウイルス機能を、より向上させることができない。ウイルス含有液における亜鉛イオン濃度は、好ましくは0.90質量%以上であり、より好ましくは1.20質量%以上である。 Here, when the zinc ion concentration in the virus-containing liquid is less than 0.60% by mass, it means that the amount of zinc eluted from the photocatalyst layer 25 is insufficient, and the anti-virus exhibited by the coated metal plate 3 Functionality cannot be further improved. The zinc ion concentration in the virus-containing liquid is preferably 0.90% by mass or more, more preferably 1.20% by mass or more.
 一方、ウイルス含有液における亜鉛イオン濃度が5.00質量%超である場合には、光触媒層25からの亜鉛の溶出量が多くなりすぎ、金属板10の耐食性を担保することができない。ウイルス含有液における亜鉛イオン濃度は、好ましくは4.50質量%以下であり、より好ましくは3.50質量%以下である。 On the other hand, when the zinc ion concentration in the virus-containing liquid is more than 5.00% by mass, the amount of zinc eluted from the photocatalyst layer 25 becomes too large, making it impossible to ensure the corrosion resistance of the metal plate 10. The zinc ion concentration in the virus-containing liquid is preferably 4.50% by mass or less, more preferably 3.50% by mass or less.
 なお、本実施形態に係る塗装金属板3において、皮膜層中に存在する、亜鉛よりも電位が貴な元素(より詳細には、イオン)の合計含有量は、金属元素換算で、20.0質量%以下であることが好ましい。ここで、亜鉛よりも電位が貴な元素としては、例えば、Cu、Ag等が挙げられる。皮膜層中における、亜鉛よりも電位が貴な元素の合計含有量を20.0質量%以下とすることで、上記のようなウイルス含有液における亜鉛イオン濃度を、5.00質量%以下とすることが可能となり、優れた抗ウイルス性と優れた耐食性とのより一層の両立を図ることが可能となる。皮膜層中における、亜鉛よりも電位が貴な元素の合計含有量は、より好ましくは15.0質量%以下であり、更に好ましくは11.0質量%以下であり、更に一層好ましくは7.5質量%以下である。なお、皮膜層中における、亜鉛よりも電位が貴な元素の合計含有量の下限値は、特に規定するものではなく、0質量%であってもよい。 In addition, in the coated metal plate 3 according to the present embodiment, the total content of elements (more specifically, ions) having a nobler potential than zinc that is present in the coating layer is 20.0 in terms of metal elements. It is preferably less than % by mass. Here, examples of elements having a nobler potential than zinc include Cu, Ag, and the like. By setting the total content of elements with a nobler potential than zinc in the film layer to 20.0% by mass or less, the zinc ion concentration in the virus-containing liquid as described above is 5.00% by mass or less. This makes it possible to further achieve both excellent antiviral properties and excellent corrosion resistance. The total content of elements with a nobler potential than zinc in the coating layer is more preferably 15.0% by mass or less, still more preferably 11.0% by mass or less, and even more preferably 7.5% by mass. mass% or less. Note that the lower limit of the total content of elements having a nobler potential than zinc in the coating layer is not particularly specified, and may be 0% by mass.
 ここで、上記の抗ウイルス試験については、JIS R1756:2020に規定された方法に即して、4時間実施する。また、ウイルス含有液中に溶出した亜鉛イオン濃度は、誘導結合プラズマ(ICP)発光分光分析法により測定すればよい。 Here, the above antiviral test is conducted for 4 hours in accordance with the method specified in JIS R1756:2020. Further, the concentration of zinc ions eluted into the virus-containing liquid may be measured by inductively coupled plasma (ICP) emission spectrometry.
<変形例-3>
 図4に示したような層構成を有する、本実施形態に係る塗装金属板3は、金属板10と光触媒層25との間に、化成処理皮膜層として機能する更なる皮膜層を有していてもよい。金属板10と光触媒層25との間に化成処理皮膜層を設けることで、金属板10と光触媒層25との間の密着性を更に向上させることが可能となる。更に、本実施形態に係る塗装金属板3の耐食性等を更に向上させることも可能となる。
<Modification example-3>
The coated metal plate 3 according to this embodiment, which has the layer structure shown in FIG. 4, has an additional film layer that functions as a chemical conversion film layer between the metal plate 10 and the photocatalyst layer 25. It's okay. By providing a chemical conversion coating layer between the metal plate 10 and the photocatalyst layer 25, it is possible to further improve the adhesion between the metal plate 10 and the photocatalyst layer 25. Furthermore, it is also possible to further improve the corrosion resistance and the like of the painted metal plate 3 according to this embodiment.
 以下では、図5A及び図5Bを参照しながら、化成処理皮膜層として機能する更なる皮膜層について、詳細に説明する。図5A及び図5Bは、本実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。 Hereinafter, the further film layer that functions as the chemical conversion film layer will be described in detail with reference to FIGS. 5A and 5B. FIGS. 5A and 5B are explanatory diagrams schematically showing other examples of the structure of the coated metal plate according to the present embodiment.
 図5A及び図5Bは、第2皮膜層の一例としての、化成処理皮膜層として機能する無機系皮膜層30を設ける場合の、塗装金属板3の層構成を模式的に示した模式図である。かかる場合、本実施形態に係る塗装金属板3は、上記のような金属板10と光触媒層25との間に、第2皮膜層の一例としての無機系皮膜層30を有する。 5A and 5B are schematic diagrams schematically showing the layer structure of the coated metal plate 3 when an inorganic film layer 30 functioning as a chemical conversion film layer is provided as an example of the second film layer. . In such a case, the painted metal plate 3 according to this embodiment has an inorganic film layer 30 as an example of a second film layer between the metal plate 10 and the photocatalyst layer 25 as described above.
 また、本実施形態に係る塗装金属板3は、図5Bに模式的に示したように、光触媒層25と、無機系皮膜層30と、の間に、公知の各種の層を更に有していてもよい。 Moreover, the painted metal plate 3 according to this embodiment further includes various known layers between the photocatalyst layer 25 and the inorganic film layer 30, as schematically shown in FIG. 5B. It's okay.
 ここで、本実施形態に係る塗装金属板3が有する無機系皮膜層30は、本発明の第1の実施形態に係る塗装金属板1が有する無機系皮膜層30と同様の構成を有し、また、同様の効果を奏するものであるため、以下では詳細な説明は省略する。 Here, the inorganic film layer 30 of the painted metal plate 3 according to the present embodiment has the same configuration as the inorganic film layer 30 of the painted metal plate 1 according to the first embodiment of the present invention, Further, since similar effects are achieved, detailed explanation will be omitted below.
 かかる無機系皮膜層30の平均厚みdは、0.05μm以上であることが好ましく、0.10μm以上であることがより好ましい。これにより、無機系皮膜層30を金属板10の表面に均一に形成しつつ、上記のような化成処理皮膜層を設けることによる各種の効果を、安定して発現させることが可能となる。また、無機系皮膜層30の平均厚みdは、5.00μm以下であることが好ましく、1.00μm以下であることがより好ましく、1.00μm未満であることが更に好ましく、0.80μm以下、0.60μm以下、又は、0.50μm以下であることが更に一層好ましい。これにより、無機系皮膜層30を金属板10の表面に均一に形成しつつ、上記のような化成処理皮膜層を設けることによる各種の効果を、安定して発現させることが可能となる。 The average thickness d2 of the inorganic film layer 30 is preferably 0.05 μm or more, more preferably 0.10 μm or more. This makes it possible to uniformly form the inorganic film layer 30 on the surface of the metal plate 10 and to stably exhibit various effects of providing the chemical conversion film layer as described above. Further, the average thickness d2 of the inorganic film layer 30 is preferably 5.00 μm or less, more preferably 1.00 μm or less, even more preferably less than 1.00 μm, and 0.80 μm or less. , 0.60 μm or less, or even more preferably 0.50 μm or less. This makes it possible to uniformly form the inorganic film layer 30 on the surface of the metal plate 10 and to stably exhibit various effects of providing the chemical conversion film layer as described above.
 また、図5A及び図5Bに示したような場合においても、金属板10の表面から光触媒層25の最表面までの合計厚みd(=d’+d+α)は、60.00μm以下とする。これにより、製造の簡便性の低下及び加工性の低下を抑制するとともに、光触媒層25からの亜鉛の溶出経路を確保して十分に亜鉛を溶出させ、更に、所望の光触媒効果を、光触媒層25の全体にわたって均一に発現させることが可能となる。金属板10の表面から光触媒層25の最表面までの合計厚みd(=d’+d+α)は、好ましくは15.00μm以下であり、より好ましくは10.00μm以下であり、更に好ましくは7.00μm以下であり、更に一層好ましくは、1.00μm以下、1.00μm未満、0.90μm以下、0.80μm以下、又は、0.70μm以下である。 Furthermore, even in the cases shown in FIGS. 5A and 5B, the total thickness d T (=d 1 '+d 2 +α) from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 25 is 60.00 μm or less. do. This suppresses deterioration in manufacturing simplicity and processability, secures an elution route for zinc from the photocatalytic layer 25, sufficiently elutes zinc, and further provides the desired photocatalytic effect on the photocatalytic layer 25. can be expressed uniformly throughout the entire area. The total thickness d T (=d 1 '+d 2 +α) from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 25 is preferably 15.00 μm or less, more preferably 10.00 μm or less, and even more preferably is 7.00 μm or less, and even more preferably 1.00 μm or less, less than 1.00 μm, 0.90 μm or less, 0.80 μm or less, or 0.70 μm or less.
<変形例-4>
 本実施形態に係る塗装金属板3は、金属板10と光触媒層25との間に位置する無機系皮膜層30に加えて、無機系皮膜層30の更に下方に、第3皮膜層の一例としての樹脂皮膜層40を有していてもよい。
 以下では、図6A及び図6Bを参照しながら、樹脂皮膜層40について、詳細に説明する。図6A及び図6Bは、本実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。
<Modification example-4>
In addition to the inorganic film layer 30 located between the metal plate 10 and the photocatalyst layer 25, the painted metal plate 3 according to the present embodiment has a third film layer further below the inorganic film layer 30 as an example of a third film layer. It may have a resin film layer 40 of.
Below, the resin film layer 40 will be explained in detail with reference to FIGS. 6A and 6B. 6A and 6B are explanatory diagrams schematically showing other examples of the structure of the coated metal plate according to the present embodiment.
 図6A及び図6Bは、第3皮膜層の一例としての樹脂皮膜層40を設ける場合の、塗装金属板3の層構成を模式的に示した模式図である。かかる場合、本実施形態に係る塗装金属板3は、上記のような無機系皮膜層30の下方に、第3皮膜層の一例としての樹脂皮膜層40を有する。 FIGS. 6A and 6B are schematic diagrams schematically showing the layer structure of the coated metal plate 3 when a resin film layer 40 as an example of the third film layer is provided. In such a case, the painted metal plate 3 according to the present embodiment has a resin film layer 40 as an example of a third film layer below the inorganic film layer 30 as described above.
 また、本実施形態に係る塗装金属板3は、図6Bに模式的に示したように、無機系皮膜層30と、樹脂皮膜層40と、の間に、公知の各種の層を更に有していてもよい。 Moreover, the painted metal plate 3 according to the present embodiment further includes various known layers between the inorganic film layer 30 and the resin film layer 40, as schematically shown in FIG. 6B. You can leave it there.
 ここで、本実施形態に係る塗装金属板3が有する樹脂皮膜層40は、本発明の第1の実施形態に係る塗装金属板1が有する樹脂皮膜層40と同様の構成を有し、また、同様の効果を奏するものであるため、以下では詳細な説明は省略する。 Here, the resin film layer 40 that the painted metal plate 3 according to the present embodiment has has the same configuration as the resin film layer 40 that the painted metal plate 1 according to the first embodiment of the present invention has, and Since similar effects are achieved, detailed explanation will be omitted below.
 かかる樹脂皮膜層40の平均厚みdは、0.20μm以上であることが好ましく、0.50μm以上であることがより好ましく、2.50μm以上であることが更に好ましい。これにより、樹脂皮膜層40を金属板10の表面に均一に形成しつつ、上記のような皮膜層を設けることによる各種の効果を、安定して発現させることが可能となる。また、樹脂皮膜層40の平均厚みdは、60.00μm以下であることが好ましく、30.00μm以下であることがより好ましく、12.00μm以下であることが更に好ましく、1.00μm以下、1.00μm未満、又は、0.90μm以下であることがより一層好ましい。これにより、樹脂皮膜層40を金属板10の表面に均一に形成しつつ、上記のような皮膜層を設けることによる各種の効果を、安定して発現させることが可能となる。 The average thickness d3 of the resin film layer 40 is preferably 0.20 μm or more, more preferably 0.50 μm or more, and even more preferably 2.50 μm or more. Thereby, while forming the resin film layer 40 uniformly on the surface of the metal plate 10, it becomes possible to stably exhibit various effects caused by providing the film layer as described above. Further, the average thickness d3 of the resin film layer 40 is preferably 60.00 μm or less, more preferably 30.00 μm or less, even more preferably 12.00 μm or less, 1.00 μm or less, It is even more preferable that it is less than 1.00 μm or 0.90 μm or less. Thereby, while forming the resin film layer 40 uniformly on the surface of the metal plate 10, it becomes possible to stably exhibit various effects caused by providing the film layer as described above.
 ここで、図6A及び図6Bに示したような場合においても、金属板10の表面から光触媒層25の最表面までの合計厚みd(=d’+d+d+α)は、60.00μm以下とする。これにより、製造の簡便性の低下及び加工性の低下を抑制するとともに、光触媒層25からの亜鉛の溶出経路を確保して十分に亜鉛を溶出させ、更に、所望の光触媒効果を、光触媒層25の全体にわたって均一に発現させることが可能となる。金属板10の表面から光触媒層25の最表面までの合計厚みd(=d’+d+d+α)は、好ましくは15.00μm以下であり、より好ましくは10.00μm以下であり、更に好ましくは7.00μm以下であり、更に一層好ましくは、1.00μm以下、1.00μm未満、0.90μm以下、0.80μm以下、又は、0.60μm以下である。 Here, also in the case shown in FIGS. 6A and 6B, the total thickness d T (=d 1 '+d 3 +d 4 +α) from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 25 is 60. 00 μm or less. This suppresses deterioration in manufacturing simplicity and processability, secures an elution route for zinc from the photocatalytic layer 25, sufficiently elutes zinc, and further provides the desired photocatalytic effect on the photocatalytic layer 25. can be expressed uniformly throughout the entire area. The total thickness d T (=d 1 '+d 3 +d 4 +α) from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 25 is preferably 15.00 μm or less, more preferably 10.00 μm or less, More preferably, it is 7.00 μm or less, and still more preferably 1.00 μm or less, less than 1.00 μm, 0.90 μm or less, 0.80 μm or less, or 0.60 μm or less.
 ここで、以上説明したような各変形例においても、塗装金属板3に対し、JIS R1756:2020に規定された抗ウイルス試験を4時間行った際に、ウイルス含有液中に溶出する亜鉛イオン濃度は、0.60~5.00質量%の範囲内となる。 Here, in each of the modified examples as explained above, when the antiviral test specified in JIS R1756:2020 is conducted on the painted metal plate 3 for 4 hours, the concentration of zinc ions eluted into the virus-containing liquid is within the range of 0.60 to 5.00% by mass.
 なお、図5A~図6Bでは、金属板10の片側の面上に各層を設ける場合について図示しているが、各層は、金属板10の両面に設けてもよい。この場合、金属板10の表面から光触媒層25の表面までの合計厚みdは、塗装金属板3の各面で、60.00μm以下となるようにする。 Note that although FIGS. 5A to 6B illustrate the case where each layer is provided on one side of the metal plate 10, each layer may be provided on both sides of the metal plate 10. In this case, the total thickness d T from the surface of the metal plate 10 to the surface of the photocatalyst layer 25 is set to be 60.00 μm or less on each surface of the coated metal plate 3 .
 以上、図4~図6Bを参照しながら、本発明の第2の実施形態に係る塗装金属板について、詳細に説明した。 The painted metal plate according to the second embodiment of the present invention has been described in detail above with reference to FIGS. 4 to 6B.
<各層の平均厚みの測定方法について>
 ここで、光触媒層をはじめとする各層の平均厚みは、着目する層を断面方向から顕微鏡で観察することで測定することが可能である。断面方向から観察する試料の作製方法としては、例えば、樹脂に埋め込み、観察面を研磨する方法、FIB加工する方法、ミクロトーム法など公知の方法を用いることができる。また、顕微鏡の種類としては、SEM、TEM等の公知の装置を用いることができる。
<How to measure the average thickness of each layer>
Here, the average thickness of each layer including the photocatalyst layer can be measured by observing the layer of interest from a cross-sectional direction using a microscope. As a method for preparing a sample to be observed from the cross-sectional direction, known methods such as embedding in resin and polishing the observation surface, FIB processing, microtome method, etc. can be used. Furthermore, as the type of microscope, known devices such as SEM and TEM can be used.
(塗装金属板の製造方法について)
 以上説明したような本実施形態に係る塗装金属板は、母材となる金属板10の表面に対して、必要に応じて洗浄等の各種の前処理を施したうえで、光触媒層25を形成するための光触媒処理剤や、無機系皮膜層30を形成するための無機系化成処理剤や、樹脂皮膜層40を形成するための有機系化成処理剤等を、所望の層構成となるように塗布した後、乾燥・焼き付けることで製造することができる。
(About the manufacturing method of painted metal plates)
In the painted metal plate according to the present embodiment as described above, the surface of the metal plate 10 serving as the base material is subjected to various pretreatments such as cleaning as necessary, and then the photocatalyst layer 25 is formed. A photocatalytic treatment agent for forming the inorganic coating layer 30, an organic chemical conversion treatment agent for forming the resin coating layer 40, etc. are used in a desired layer configuration. It can be manufactured by coating, drying, and baking.
 ここで、各種塗料の塗布は、一般に公知の塗布方法、例えば、ロールコート、カーテンフローコート、エアースプレー、エアーレススプレー、浸漬、バーコート、刷毛塗りなどで行うことができる。特に本製品の特徴である薄膜で安定的に塗装可能なロールコートが好ましい。 Here, the various paints can be applied by generally known coating methods, such as roll coating, curtain flow coating, air spray, airless spray, dipping, bar coating, and brush coating. Particularly preferred is roll coating, which allows stable coating with a thin film, which is a feature of this product.
 また、乾燥・焼き付けの条件については、特に限定されるものではなく、用いる塗料等に応じて適宜設定すればよい。 Furthermore, the conditions for drying and baking are not particularly limited, and may be set as appropriate depending on the paint used.
 以下では、実施例及び比較例を示しながら、本発明に係る塗装金属板について具体的に説明する。なお、以下に示す実施例は、本発明に係る塗装金属板の一例にすぎず、本発明に係る塗装金属板が下記の例に限定されるものではない。 Hereinafter, the coated metal plate according to the present invention will be specifically explained while showing Examples and Comparative Examples. In addition, the Example shown below is only an example of the painted metal plate based on this invention, and the painted metal plate based on this invention is not limited to the following example.
 塗装金属板の母材となる金属板として、以下の表1に示した9種類の金属板を準備した。なお、表1において、SD、ZL、GI、GL、AL、GAと表した6種類の金属板は、鋼板を基材とする各種のめっき鋼板である。各金属板の板厚、並びに、各めっき鋼板のめっき組成及び付着量/規格は、以下の表1の通りである。また、ステンレス板に対しては、別途、亜鉛を用いた亜鉛含有皮膜層を、蒸着により20g/mの付着量で形成し、ステンレス-2とした。 Nine types of metal plates shown in Table 1 below were prepared as metal plates to serve as base materials for coated metal plates. In Table 1, the six types of metal plates represented as SD, ZL, GI, GL, AL, and GA are various plated steel plates using steel plates as a base material. The thickness of each metal plate, and the plating composition and coating weight/standard of each plated steel plate are as shown in Table 1 below. In addition, a zinc-containing film layer using zinc was separately formed on the stainless steel plate by vapor deposition at a coating weight of 20 g/m 2 to obtain Stainless Steel-2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 光触媒活性を有する化合物(光触媒化合物)として、以下の表2に示した7種類の化合物を準備した。いずれの光触媒化合物も、市販されているものを用いた。担持金属及び平均粒径についても、表2に併記した。 Seven types of compounds shown in Table 2 below were prepared as compounds having photocatalytic activity (photocatalytic compounds). All photocatalyst compounds used were commercially available ones. The supported metal and average particle size are also listed in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<有機系化成処理剤>
 樹脂皮膜層を形成するために使用した有機系化成処理皮膜を形成するための水系塗料(化成処理剤)の原料、及び、乾燥皮膜中の濃度を、以下の表3に示した。各成分濃度が乾燥皮膜中で所定の濃度となるように、添加量を調整した。処理剤の固形分濃度が20質量%となるように、イオン交換水を加えて調整した。各処理剤を、以下の表4-1、表4-2、表6に示す乾燥膜厚となるように、塗布した。その後、金属板到達温度が150℃となるように誘導加熱炉で乾燥させ、その後、スプレーで水冷処理した。
<Organic chemical conversion treatment agent>
The raw materials of the water-based paint (chemical conversion treatment agent) for forming the organic chemical conversion treatment film used to form the resin film layer and the concentrations in the dried film are shown in Table 3 below. The amount of each component added was adjusted so that the concentration of each component would be a predetermined concentration in the dry film. Ion-exchanged water was added to adjust the solid content concentration of the treatment agent to 20% by mass. Each treatment agent was applied to give the dry film thickness shown in Tables 4-1, 4-2, and 6 below. Thereafter, the metal plate was dried in an induction heating furnace to reach a temperature of 150° C., and then water-cooled by spraying.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<光触媒処理剤、無機系化成処理剤>
 使用した光触媒処理剤、及び、無機系化成処理剤の作成方法について説明する。
 無機系皮膜層を形成するための無機系化成処理剤は、貯蔵安定性を考慮して、固形分濃度が8質量%となるように調整した。濃度は、n-ブタノールで希釈することで、調整した。また、一部の例については、下記の無機系化成処理剤に対し、P源としてはリン酸二水素アンモニウム、V源としてはメタバナジン酸ナトリウムを含有させた。光触媒処理剤は、表2に示した化合物を、以下の無機系化成処理剤に所定量加えることで、作製した。光触媒化合物の固形分濃度は、以下の表4-1、表4-2、表6に示した通りである。
<Photocatalyst treatment agent, inorganic chemical conversion treatment agent>
The photocatalyst treatment agent used and the method for producing the inorganic chemical conversion treatment agent will be explained.
The inorganic chemical conversion treatment agent for forming the inorganic film layer was adjusted to have a solid content concentration of 8% by mass in consideration of storage stability. Concentrations were adjusted by diluting with n-butanol. Further, in some examples, ammonium dihydrogen phosphate was contained as a P source and sodium metavanadate was contained as a V source in the following inorganic chemical conversion treatment agent. The photocatalyst treatment agent was prepared by adding a predetermined amount of the compound shown in Table 2 to the following inorganic chemical conversion treatment agent. The solid content concentration of the photocatalytic compound is as shown in Table 4-1, Table 4-2, and Table 6 below.
(1)無機系化成処理剤(Si系):テトラエトキシシラン(22.5質量部)と、メタクリルオキシプロピルトリメトキシシラン(2.8質量部)と、n-ブタノール(26質量部)と、を混合し、60℃で2時間攪拌した。この混合物を攪拌した状態で、26質量%の塩酸(3質量部)とn-ブタノールの混合液(26質量部)を1滴/秒ずつ滴下した。その後、攪拌したまま60℃で2時間保持し、処理剤を得た。一連の操作は、窒素雰囲気中で実施した。 (1) Inorganic chemical conversion treatment agent (Si-based): tetraethoxysilane (22.5 parts by mass), methacryloxypropyltrimethoxysilane (2.8 parts by mass), n-butanol (26 parts by mass), were mixed and stirred at 60°C for 2 hours. While stirring this mixture, a mixed solution of 26% by mass hydrochloric acid (3 parts by mass) and n-butanol (26 parts by mass) was added dropwise at a rate of 1 drop/second. Thereafter, the mixture was kept at 60° C. for 2 hours while stirring to obtain a processing agent. A series of operations were performed in a nitrogen atmosphere.
(2)無機系化成処理剤(Zr系):ジルコニウムn-ブトキシド(34.5質量部)と、n-ブタノール(11.6質量部)と、1,5-ジアミノペンタン(0.5質量部)と、硝酸イットリウム(2.8質量部)と、を混合し、1時間攪拌した。その後、氷酢酸(4.8質量部)を加え、40時間攪拌した。その後、濃硝酸(0.6質量部)を1滴/秒ずつ滴下し、2時間攪拌して処理剤を得た。一連の操作は、窒素雰囲気中で実施した。 (2) Inorganic conversion treatment agent (Zr type): zirconium n-butoxide (34.5 parts by mass), n-butanol (11.6 parts by mass), 1,5-diaminopentane (0.5 parts by mass) ) and yttrium nitrate (2.8 parts by mass) were mixed and stirred for 1 hour. Then, glacial acetic acid (4.8 parts by mass) was added and stirred for 40 hours. Thereafter, concentrated nitric acid (0.6 parts by mass) was added dropwise at a rate of 1 drop/second, and the mixture was stirred for 2 hours to obtain a processing agent. A series of operations were performed in a nitrogen atmosphere.
 また、一部の例においては、上記の光触媒処理剤、及び、無機系化成処理剤に対して、Zn源としては、石原産業株式会社製 超微粒子酸化亜鉛(商品名:FZO)、Cu源としては、古河ケミカルズ株式会社製 ナノ粒子亜酸化銅(商品名:FRC-N10)、Fe源としては、Sigma-Aldrich株式会社製 Fe nanopowder(商品名:544884)、Ni源としては、岩谷産業株式会社製 ニッケルナノパウダー50nm狙い品、Ag源としては、Sigma-Aldrich株式会社製 Ag nanopowder(商品名:576832)を含有させた。 In some cases, for the above-mentioned photocatalytic treatment agent and inorganic chemical conversion treatment agent, ultrafine particle zinc oxide (trade name: FZO) manufactured by Ishihara Sangyo Co., Ltd. is used as a Zn source, and as a Cu source. is nanoparticle cuprous oxide (product name: FRC-N10) manufactured by Furukawa Chemicals Co., Ltd., Fe source is Fe 2 O 3 nanopowder (product name: 544884) manufactured by Sigma-Aldrich Co., Ltd., and Ni source is Iwatani Co., Ltd. A 50 nm nickel nanopowder manufactured by Sangyo Co., Ltd. was used as an Ag source, and Ag nanopowder (trade name: 576832) manufactured by Sigma-Aldrich Co., Ltd. was included.
 以上示したような金属板及び光触媒化合物を用いて、以下の表4-1、表4-2、表6に示したような構成を有する塗装金属板を、ロールコートにより、各水準について2つずつ製造した。なお、各層は、金属板の片面に形成した。また、一部の塗装金属板については、金属板の表面に意匠性加工を施し、ヘアライン模様を形成した。また、一部の塗装金属板については、Sbを0.1質量%、かつ、Alを0.2質量%含有した溶融亜鉛めっき浴を用い、溶融亜鉛めっきの凝固速度を調節することで、スパングル模様を形成しためっき鋼板を基材に用いた。 Using the metal plates and photocatalytic compounds shown above, coat two coated metal plates for each level by roll coating with the configurations shown in Tables 4-1, 4-2, and Table 6 below. Manufactured one by one. Note that each layer was formed on one side of the metal plate. In addition, some of the painted metal plates were subjected to a design process to form a hairline pattern on the surface of the metal plate. In addition, for some painted metal plates, spangles can be produced by adjusting the solidification rate of hot-dip galvanizing using a hot-dip galvanizing bath containing 0.1% by mass of Sb and 0.2% by mass of Al. A plated steel plate with a pattern formed thereon was used as the base material.
 なお、上記のような塗装金属板における各層の平均膜厚は、得られた塗装金属板を樹脂に埋め込み、断面を研磨することで得られた観察面を、顕微鏡により観察することで測定した。 The average film thickness of each layer in the above-mentioned painted metal plate was measured by embedding the obtained painted metal plate in resin, polishing the cross section, and observing the observed surface using a microscope.
 また、得られた塗装金属板のうち一方について、JIS R1756:2020に規定された抗ウイルス試験を4時間実施した後、先だって説明した方法に即して、ウイルス含有液中に溶出した亜鉛イオン濃度を測定した。 In addition, after carrying out an antiviral test specified in JIS R1756:2020 for 4 hours on one of the obtained coated metal plates, the concentration of zinc ions eluted into the virus-containing liquid was determined according to the method explained earlier. was measured.
 得られた塗装金属板のもう一方を用いて試験片を作製し、抗ウイルス性、加工密着性、及び、耐食性の観点から評価を行った。詳細な評価方法は、以下の通りである。 A test piece was prepared using the other side of the obtained coated metal plate, and evaluated from the viewpoints of antiviral properties, processing adhesion, and corrosion resistance. The detailed evaluation method is as follows.
<抗ウイルス性>
 抗ウイルス性については、光触媒工業会が規定する抗ウイルス基準に則り、以下のような抗ウイルス試験により、ウイルス感染価を測定することで検証した。より詳細には、各塗装金属板から作製した試験片(寸法:50x50mm)の評価面を上にしてシャーレに載置し、バクテリオファージQβを含むウイルス懸濁液を、評価面上に滴下した。その後、試験片上にフィルムをかぶせてウイルス懸濁液を評価面全面に密着させた後、シャーレの蓋をかぶせた。かかるシャーレを、一般的な事務所の室内を模擬して、500ルクスの照度を有する25℃の室内で、4時間静置した。その後、フィルム表面と、評価面表面のウイルスを洗浄し、得られた洗浄液中のウイルス感染価(単位:PFU、PFU:Plaque Forming Units)を、プラーク測定法により測定するとともに、誘導結合プラズマ(ICP)発光分光分析装置(アジレント社製7700X)により、洗浄液中の溶出亜鉛イオン濃度を測定した。
<Antiviral properties>
The antiviral properties were verified by measuring the viral infectivity through the following antiviral test in accordance with the antiviral standards stipulated by the Photocatalyst Industry Association. More specifically, a test piece (dimensions: 50 x 50 mm 2 ) prepared from each painted metal plate was placed in a petri dish with the evaluation side facing up, and a virus suspension containing bacteriophage Qβ was dropped onto the evaluation surface. . Thereafter, a film was placed over the test piece to bring the virus suspension into close contact with the entire evaluation surface, and then a petri dish lid was placed on the test piece. The petri dish was left standing for 4 hours in a room at 25° C. with an illuminance of 500 lux, simulating the room of a general office. Thereafter, the virus on the film surface and the surface of the evaluation surface was washed, and the virus infectivity titer (unit: PFU, PFU: Plaque Forming Units) in the obtained washing solution was measured by the plaque measurement method, and inductively coupled plasma (ICP) ) The concentration of eluted zinc ions in the cleaning solution was measured using an emission spectrometer (7700X manufactured by Agilent).
 塗装金属板とは別個に、光触媒層を設けていない各金属板についても、同様に抗ウイルス試験を行い、光触媒層を設けていない金属板のウイルス感染価と比較して、塗装金属板のウイルス感染価がどの程度減少したかを、活性値として評価した。ウイルスが10以上減少していれば(換言すれば、活性値が1×10以上であれば)、光触媒工業会が規定する認定シールの使用が許可されることに鑑み、得られた活性値が1×10以上であったものを、合格と判断した。なお、以下の表5-1、表5-2、表7では、得られた活性値を対数で表した値を示している。 Separately from the painted metal plate, anti-virus tests were also conducted on each metal plate without a photocatalyst layer, and the virus infection value of the painted metal plate was compared with that of the metal plate without a photocatalyst layer. The extent to which the infectious titer decreased was evaluated as an activity value. If the virus has decreased by 10 2 or more (in other words, if the activity value is 1 x 10 2 or more), the use of the certification seal stipulated by the Photocatalyst Industry Association is permitted, so the obtained activity Those with a value of 1×10 2 or more were judged to have passed. Note that in Tables 5-1, 5-2, and 7 below, the obtained activity values are expressed in logarithms.
<加工密着性>
 試験片に0T曲げ(180°折り曲げ)加工を施し、折り曲げ部外側の被膜を粘着テープ(ニチバン社製セロテープ(登録商標)テープ幅15mm)で剥離したのち、テープ側への被膜付着状況を観察した。そして、加工密着性を下記の評価基準で評価した。かかる密着性試験において、合格レベルは3以上とした。具体的には、評点が4以上の場合、密着性に優れ、3以上は許容できる(合格レベルである)と判断した。
<Processing adhesion>
The test piece was subjected to 0T bending (180° bending), and the coating on the outside of the bent portion was peeled off with adhesive tape (Cello Tape (registered trademark) manufactured by Nichiban, tape width 15 mm), and the state of coating adhesion to the tape side was observed. . Processing adhesion was evaluated using the following evaluation criteria. In this adhesion test, the passing level was 3 or higher. Specifically, a score of 4 or higher was determined to be excellent in adhesion, and a score of 3 or higher was determined to be acceptable (passing level).
(評価基準)
 5:テープ側に被膜付着無し
 4:テープ側に数点の被膜剥離ある状態で、鋼板側の剥離長が、試験片の片面の加工部の総長に対して5%未満
 3:テープ側に数点の被膜剥離ある状態で、鋼板側の剥離長が、試験片の片面の加工部の総長に対して5%以上、10%未満
 2:テープ側に被膜剥離あり、鋼板側の剥離長が、試験片の片面の加工部の総長に対して10%以上、20%未満
 1:テープ側に被膜剥離あり、鋼板側の剥離長が、試験片の片面の加工部の総長に対して20%以上
(Evaluation criteria)
5: No film adhering to the tape side 4: There are several film peeling points on the tape side, and the peeling length on the steel plate side is less than 5% of the total length of the processed part on one side of the test piece 3: There are several peeling points on the tape side The peeling length on the steel plate side is 5% or more and less than 10% of the total length of the processed part on one side of the test piece when there is film peeling at a point. 2: There is film peeling on the tape side and the peeling length on the steel plate side is 10% or more and less than 20% of the total length of the processed area on one side of the test piece 1: There is film peeling on the tape side, and the peeling length on the steel plate side is 20% or more of the total length of the processed area on one side of the test piece.
<平板部耐食性>
 試験片の端面をテープシールしてJIS Z 2371:2015に準拠した塩水噴霧試験(SST)を72時間行った。そして、平板部の錆発生状況を試験終了後に観察し、下記の評価基準で耐食性を評価した。合格レベルは3以上とした。
<Corrosion resistance of flat plate part>
The end face of the test piece was sealed with tape, and a salt spray test (SST) in accordance with JIS Z 2371:2015 was conducted for 72 hours. After the test, the rust occurrence on the flat plate portion was observed, and the corrosion resistance was evaluated using the following evaluation criteria. The passing level was 3 or higher.
(評価基準)
 5:白錆発生面積が試験片の片面の総面積に対して1%未満
 4:白錆発生面積が試験片の片面の総面積に対して1%以上、5%未満
 3:白錆発生面積が試験片の片面の総面積に対して5%以上、10%未満
 2:白錆発生面積が試験片の片面の総面積に対して10%以上、30%未満
 1:白錆発生面積が試験片の片面の総面積に対して30%以上
(Evaluation criteria)
5: White rust occurrence area is less than 1% of the total area of one side of the test piece 4: White rust occurrence area is 1% or more and less than 5% of the total area of one side of the test piece 3: White rust occurrence area is 5% or more and less than 10% of the total area of one side of the test piece. 2: The area where white rust occurs is 10% or more and less than 30% of the total area of one side of the test piece. 1: The area where white rust occurs is less than 10% of the total area of one side of the test piece. 30% or more of the total area of one side of the piece
<加工部耐食性>
 各試験片について、エリクセン試験(JIS Z2247:2006)に準ずる加工(7mm押し出し)により供試材を得た。その供試材に対して、端面をテープシールしてJIS Z 2371に準拠した塩水噴霧試験(SST)を72時間行った。そして、加工部の錆発生状況を試験終了後に観察し、下記の評価基準で耐食性を評価した。合格レベルは3以上とした。
<Corrosion resistance of processed parts>
For each test piece, a test material was obtained by processing (7 mm extrusion) according to the Erichsen test (JIS Z2247:2006). The test material was subjected to a salt spray test (SST) in accordance with JIS Z 2371 for 72 hours with the end face sealed with tape. The state of rust occurrence in the processed parts was observed after the test, and the corrosion resistance was evaluated using the following evaluation criteria. The passing level was 3 or above.
(評価基準)
 5:白錆発生面積が試験片の加工部の総面積に対して5%未満
 4:白錆発生面積が試験片の加工部の総面積に対して5%以上、10%未満
 3:白錆発生面積が試験片の加工部の総面積に対して10%以上、30%未満
 2:白錆発生面積が試験片の加工部の総面積に対して30%以上、50%未満
 1:白錆発生面積が試験片の加工部の総面積に対して50%以上
(Evaluation criteria)
5: White rust occurrence area is less than 5% of the total area of the processed part of the test piece 4: White rust occurrence area is 5% or more and less than 10% of the total area of the processed part of the test piece 3: White rust The area where white rust occurs is 10% or more and less than 30% of the total area of the processed part of the test piece 2: The area where white rust occurs is 30% or more and less than 50% of the total area of the processed part of the test piece 1: White rust The generated area is 50% or more of the total area of the processed part of the test piece.
 得られた結果を、以下の表5-1、表5-2、表7にまとめて示した。
 以下の表5-1、表5-2、表7から明らかなように、本発明の実施例に該当する塗装金属板は、優れた抗ウイルス性、加工密着性及び耐食性を示す一方で、本発明の比較例に該当する塗装金属板は、抗ウイルス性又は加工密着性の評価結果が不合格となった。
The obtained results are summarized in Table 5-1, Table 5-2, and Table 7 below.
As is clear from Table 5-1, Table 5-2, and Table 7 below, the coated metal sheets corresponding to the examples of the present invention exhibit excellent antiviral properties, processing adhesion, and corrosion resistance, while The coated metal plate corresponding to the comparative example of the invention failed in the evaluation results of antiviral properties or processing adhesion.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person with ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea stated in the claims. It is understood that these also naturally fall within the technical scope of the present invention.
 今回開示された実施形態は、全ての点で例示であって制限的なものではない。上記の実施形態は、添付の特許請求の範囲、後述するような本発明の技術的範囲に属する構成及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。例えば、上記実施形態の構成要件は、その効果を損なわない範囲内で、任意に組み合わせることが可能である。また、当該任意の組み合せからは、組み合わせにかかるそれぞれの構成要件についての作用及び効果が当然に得られるとともに、本明細書の記載から当業者には明らかな他の作用及び他の効果が得られる。 The embodiments disclosed herein are illustrative in all respects and are not restrictive. The above-described embodiments may be omitted, replaced, or modified in various forms without departing from the scope of the appended claims and the configurations and gist of the present invention as described below. For example, the constituent features of the above embodiments can be combined arbitrarily within a range that does not impair the effects. Further, from the arbitrary combination, the functions and effects of the respective constituent elements related to the combination can be obtained as a matter of course, and other functions and other effects that are obvious to a person skilled in the art from the description of this specification can be obtained. .
 また、本明細書に記載された効果は、あくまで説明的又は例示的なものであって、限定的ではない。つまり、本発明に係る技術は、上記の効果とともに、又は、上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Furthermore, the effects described in this specification are merely explanatory or illustrative, and are not limiting. In other words, the technology according to the present invention can produce other effects that are obvious to those skilled in the art from the description of this specification, in addition to or in place of the above effects.
  1、3  塗装金属板
 10  金属板
 11  母材金属
 13  亜鉛含有金属層
 20、25  光触媒層(第1皮膜層)
 30  無機系皮膜層(第2皮膜層)
 40  樹脂皮膜層(第3皮膜層)
 
 
1, 3 Painted metal plate 10 Metal plate 11 Base metal 13 Zinc-containing metal layer 20, 25 Photocatalyst layer (first film layer)
30 Inorganic film layer (second film layer)
40 Resin film layer (third film layer)

Claims (21)

  1.  金属板と、前記金属板の少なくとも一方の表面に位置する皮膜層と、を有する塗装金属板であって、
     前記金属板は、少なくとも一方の表面に、亜鉛を少なくとも含有する亜鉛含有金属層を有する金属板であり、
     前記皮膜層として、前記塗装金属板の最表面に位置し、光触媒活性を有する化合物を少なくとも含有する第1皮膜層を有しており、
     前記第1皮膜層の平均厚みは、0.05~5.00μmであり、
     前記亜鉛含有金属層の表面から前記第1皮膜層の最表面までの合計厚みは、15.00μm以下であり、
     JIS R1756:2020に規定された抗ウイルス試験を4時間行った際に、ウイルス含有液中に溶出する亜鉛イオン濃度が、0.60~5.00質量%である、塗装金属板。
    A painted metal plate comprising a metal plate and a coating layer located on at least one surface of the metal plate,
    The metal plate is a metal plate having a zinc-containing metal layer containing at least zinc on at least one surface,
    The coating layer includes a first coating layer located on the outermost surface of the coated metal plate and containing at least a compound having photocatalytic activity;
    The average thickness of the first film layer is 0.05 to 5.00 μm,
    The total thickness from the surface of the zinc-containing metal layer to the outermost surface of the first coating layer is 15.00 μm or less,
    A coated metal plate having a concentration of zinc ions eluted into a virus-containing liquid of 0.60 to 5.00% by mass when an antiviral test specified in JIS R1756:2020 is conducted for 4 hours.
  2.  前記第1皮膜層の厚みは、0.05~0.95μmであり、
     前記亜鉛含有金属層の表面から前記第1皮膜層の最表面までの合計厚みは、1.0μmm未満である、請求項1に記載の塗装金属板。
    The thickness of the first film layer is 0.05 to 0.95 μm,
    The coated metal plate according to claim 1, wherein the total thickness from the surface of the zinc-containing metal layer to the outermost surface of the first coating layer is less than 1.0 μmm.
  3.  前記皮膜層における、亜鉛よりも電位が貴な元素の合計含有量は、0~20.0質量%である、請求項1又は2に記載の塗装金属板。 The coated metal sheet according to claim 1 or 2, wherein the total content of elements with a nobler potential than zinc in the coating layer is 0 to 20.0% by mass.
  4.  前記第1皮膜層は、Zn、Cu、Fe、Ni、Agからなる群より選択される少なくとも何れかの元素を更に含有する、請求項1に記載の塗装金属板。 The coated metal plate according to claim 1, wherein the first film layer further contains at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag.
  5.  前記第1皮膜層は、Si又はZrの少なくとも何れかの元素を更に含有し、
     前記元素の合計含有量は、Siについてはシリカ換算、Zrについてはジルコニア換算で、5~50質量%である、請求項1に記載の塗装金属板。
    The first film layer further contains at least one of Si or Zr,
    The coated metal plate according to claim 1, wherein the total content of the elements is 5 to 50% by mass in terms of silica for Si and zirconia for Zr.
  6.  金属板と、前記金属板の少なくとも一方の表面に位置する皮膜層と、を有する塗装金属板であって、
     前記皮膜層として、前記塗装金属板の最表面に位置し、光触媒活性を有する化合物と、金属Zn換算で0.2~20.0質量%の亜鉛元素と、を含有する第1皮膜層を有しており、
     前記第1皮膜層の平均厚みは、0.05~5.00μmであり、
     前記金属板の表面から前記第1皮膜層の最表面までの合計厚みは、60.0μm以下であり、
     JIS R1756:2020に規定された抗ウイルス試験を4時間行った際に、ウイルス含有液中に溶出する亜鉛イオン濃度が、0.60~5.00質量%である、塗装金属板。
    A painted metal plate comprising a metal plate and a coating layer located on at least one surface of the metal plate,
    The coating layer includes a first coating layer located on the outermost surface of the coated metal plate and containing a compound having photocatalytic activity and 0.2 to 20.0% by mass of zinc element in terms of metal Zn. and
    The average thickness of the first film layer is 0.05 to 5.00 μm,
    The total thickness from the surface of the metal plate to the outermost surface of the first coating layer is 60.0 μm or less,
    A coated metal plate having a concentration of zinc ions eluted into a virus-containing liquid of 0.60 to 5.00% by mass when an antiviral test specified in JIS R1756:2020 is conducted for 4 hours.
  7.  前記皮膜層における、亜鉛よりも電位が貴な元素の合計含有量は、0~20.0質量%である、請求項6に記載の塗装金属板。 The coated metal sheet according to claim 6, wherein the total content of elements with a nobler potential than zinc in the coating layer is 0 to 20.0% by mass.
  8.  前記第1皮膜層は、Cu、Fe、Ni、Agからなる群より選択される少なくとも何れかの元素を更に含有する、請求項6又は7に記載の塗装金属板。 The coated metal plate according to claim 6 or 7, wherein the first film layer further contains at least one element selected from the group consisting of Cu, Fe, Ni, and Ag.
  9.  前記第1皮膜層は、Si又はZrの少なくとも何れかの元素を更に含有し、
     前記元素の合計含有量は、Siについてはシリカ換算、Zrについてはジルコニア換算で、5~50質量%である、請求項6に記載の塗装金属板。
    The first film layer further contains at least one of Si or Zr,
    The coated metal plate according to claim 6, wherein the total content of the elements is 5 to 50% by mass in terms of silica for Si and zirconia for Zr.
  10.  前記皮膜層として、前記第1皮膜層の下層に位置し、無機系成分からなる第2皮膜層を更に有しており、
     前記第2皮膜層は、前記無機系成分として、Si又はZrの少なくとも何れかの元素を含有しており、
     前記第2皮膜層の平均厚みは、0.05~5.00μmである、請求項1又は6に記載の塗装金属板。
    The film layer further includes a second film layer located below the first film layer and made of an inorganic component,
    The second film layer contains at least one of Si or Zr as the inorganic component,
    The coated metal plate according to claim 1 or 6, wherein the second coating layer has an average thickness of 0.05 to 5.00 μm.
  11.  前記第2皮膜層は、前記無機系成分として、P又はVの少なくとも何れかの元素を更に含有する、請求項10に記載の塗装金属板。 The coated metal plate according to claim 10, wherein the second coating layer further contains at least one of P or V as the inorganic component.
  12.  前記第2皮膜層は、Zn、Cu、Fe、Ni、Agからなる群より選択される少なくとも何れかの元素を更に含有する、請求項10に記載の塗装金属板。 The coated metal plate according to claim 10, wherein the second coating layer further contains at least one element selected from the group consisting of Zn, Cu, Fe, Ni, and Ag.
  13.  前記皮膜層として、前記第2皮膜層の下層に位置し、樹脂成分を含有する第3皮膜層を更に有しており、
     前記第3皮膜層の平均厚みは、0.50~14.00μmである、請求項10に記載の塗装金属板。
    The film layer further includes a third film layer located below the second film layer and containing a resin component,
    The coated metal plate according to claim 10, wherein the third coating layer has an average thickness of 0.50 to 14.00 μm.
  14.  前記第3皮膜層は、着色剤を更に含有する、請求項13に記載の塗装金属板。 The painted metal plate according to claim 13, wherein the third film layer further contains a colorant.
  15.  前記光触媒活性を有する化合物は、アナターゼ型酸化チタンである、請求項1又は6に記載の塗装金属板。 The coated metal plate according to claim 1 or 6, wherein the compound having photocatalytic activity is anatase titanium oxide.
  16.  前記光触媒活性を有する化合物は、酸化チタンにCu又はFeの少なくとも何れか一方の金属が担持された、金属担持型の酸化チタンである、請求項15に記載の塗装金属板。 The coated metal plate according to claim 15, wherein the compound having photocatalytic activity is a metal-supported titanium oxide in which at least one of Cu and Fe is supported on titanium oxide.
  17.  前記金属板は、前記亜鉛含有金属層として亜鉛系めっき層を有する亜鉛系めっき鋼板である、請求項1に記載の塗装金属板。 The painted metal sheet according to claim 1, wherein the metal sheet is a zinc-based plated steel sheet having a zinc-based plating layer as the zinc-containing metal layer.
  18.  前記亜鉛系めっき層は、Znを、金属Zn換算で30質量%以上含有するめっき層である、請求項17に記載の塗装金属板。 The coated metal plate according to claim 17, wherein the zinc-based plating layer is a plating layer containing 30% by mass or more of Zn in terms of metallic Zn.
  19.  前記亜鉛系めっき層は、亜鉛めっき層、亜鉛-アルミニウム合金めっき層、亜鉛-アルミニウム-マグネシウム合金めっき層、亜鉛-ニッケル合金めっき層、又は、亜鉛-鉄合金めっき層の何れかである、請求項17に記載の塗装金属板。 The zinc-based plating layer is any one of a zinc plating layer, a zinc-aluminum alloy plating layer, a zinc-aluminum-magnesium alloy plating layer, a zinc-nickel alloy plating layer, or a zinc-iron alloy plating layer. 17. The painted metal plate according to 17.
  20.  前記金属板の表面には、前記金属板の圧延方向に沿ったヘアラインが存在する、請求項1又は6に記載の塗装金属板。 The coated metal plate according to claim 1 or 6, wherein a hairline along the rolling direction of the metal plate exists on the surface of the metal plate.
  21.  前記亜鉛含有金属層の表面には、スパングル模様が存在する、請求項1に記載の塗装金属板。
     
    The painted metal plate according to claim 1, wherein a spangle pattern is present on the surface of the zinc-containing metal layer.
PCT/JP2023/028922 2022-08-08 2023-08-08 Coated metal sheet WO2024034607A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-126209 2022-08-08
JP2022126209 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024034607A1 true WO2024034607A1 (en) 2024-02-15

Family

ID=89851805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028922 WO2024034607A1 (en) 2022-08-08 2023-08-08 Coated metal sheet

Country Status (1)

Country Link
WO (1) WO2024034607A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202939A (en) * 1999-01-14 2000-07-25 Kawasaki Steel Corp Antibacterial laminate
JP2001199004A (en) * 2000-01-24 2001-07-24 Nisshin Steel Co Ltd Coated metal panel excellent in antibacterial and antifungal properties
JP2004050689A (en) * 2002-07-22 2004-02-19 Mitsui Mining & Smelting Co Ltd Electromagnetic shielding material and electromagnetic shielding method using the same
JP2005218978A (en) * 2004-02-06 2005-08-18 Nisshin Steel Co Ltd Colored coated plate
JP2010036172A (en) * 2008-08-08 2010-02-18 Sumitomo Electric Ind Ltd Metal material and manufacturing method thereof, and case for electronic equipment using the same
JP2012215347A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2013244613A (en) * 2012-05-23 2013-12-09 Jfe Galvanizing & Coating Co Ltd Precoated steel sheet
JP2014004829A (en) * 2012-05-31 2014-01-16 Nippon Steel & Sumitomo Metal Precoated metal plate superior in resistance to staining
CN103538316A (en) * 2013-09-27 2014-01-29 安徽华印机电股份有限公司 Preparation method of metal-based nano antibacterial coating aluminum plate
KR20190051109A (en) * 2017-11-06 2019-05-15 김승권 Material's surface treatment method using photocatalyst
JP2022060137A (en) * 2020-10-02 2022-04-14 日本ペイントホールディングス株式会社 Clear coating composition
JP2023053557A (en) * 2021-10-01 2023-04-13 日本製鉄株式会社 Coated metal plate

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202939A (en) * 1999-01-14 2000-07-25 Kawasaki Steel Corp Antibacterial laminate
JP2001199004A (en) * 2000-01-24 2001-07-24 Nisshin Steel Co Ltd Coated metal panel excellent in antibacterial and antifungal properties
JP2004050689A (en) * 2002-07-22 2004-02-19 Mitsui Mining & Smelting Co Ltd Electromagnetic shielding material and electromagnetic shielding method using the same
JP2005218978A (en) * 2004-02-06 2005-08-18 Nisshin Steel Co Ltd Colored coated plate
JP2010036172A (en) * 2008-08-08 2010-02-18 Sumitomo Electric Ind Ltd Metal material and manufacturing method thereof, and case for electronic equipment using the same
JP2012215347A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2013244613A (en) * 2012-05-23 2013-12-09 Jfe Galvanizing & Coating Co Ltd Precoated steel sheet
JP2014004829A (en) * 2012-05-31 2014-01-16 Nippon Steel & Sumitomo Metal Precoated metal plate superior in resistance to staining
CN103538316A (en) * 2013-09-27 2014-01-29 安徽华印机电股份有限公司 Preparation method of metal-based nano antibacterial coating aluminum plate
KR20190051109A (en) * 2017-11-06 2019-05-15 김승권 Material's surface treatment method using photocatalyst
JP2022060137A (en) * 2020-10-02 2022-04-14 日本ペイントホールディングス株式会社 Clear coating composition
JP2023053557A (en) * 2021-10-01 2023-04-13 日本製鉄株式会社 Coated metal plate

Similar Documents

Publication Publication Date Title
JP5600417B2 (en) Surface treatment composition and surface treated steel sheet
US9260786B2 (en) Chemical conversion coated plated steel sheet and method for producing same
CN109891000B (en) Surface-treated steel sheet
WO2010070730A1 (en) Surface treating agent for galvanized steel sheet
US7527876B2 (en) Surface-treated steel sheet
CN113631743A (en) Surface-treated metal material
WO2024034607A1 (en) Coated metal sheet
JP7410388B2 (en) Painted plated steel plate
WO2023054624A1 (en) Coated metal sheet
WO2022270283A1 (en) Coated metal sheet
TW202419271A (en) Painted metal plate
WO2017078105A1 (en) Aqueous surface treatment agent for zinc plated steel material or zinc-based alloy plated steel material, coating method, and coated steel material
WO2018123996A1 (en) Surface treatment agent for galvanized steel sheets
JP6296210B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP7001209B1 (en) Painted galvanized steel sheet or painted steel strip
JP4916913B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet
WO2024071189A1 (en) Surface-treated steel sheet
EP4296049A1 (en) Precoated metal sheet
US20240229245A9 (en) Coated and plated steel sheet or coated and plated steel strip
JP2024048206A (en) Painted steel plate
TW202421280A (en) Surface treated steel plate
JP2021127475A (en) Surface-treated steel sheet and method for producing surface-treated steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852569

Country of ref document: EP

Kind code of ref document: A1