WO2018123996A1 - Surface treatment agent for galvanized steel sheets - Google Patents

Surface treatment agent for galvanized steel sheets Download PDF

Info

Publication number
WO2018123996A1
WO2018123996A1 PCT/JP2017/046495 JP2017046495W WO2018123996A1 WO 2018123996 A1 WO2018123996 A1 WO 2018123996A1 JP 2017046495 W JP2017046495 W JP 2017046495W WO 2018123996 A1 WO2018123996 A1 WO 2018123996A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
surface treatment
agent
steel sheet
treatment agent
Prior art date
Application number
PCT/JP2017/046495
Other languages
French (fr)
Japanese (ja)
Inventor
朗 宇都宮
裕佑 三浦
祿代 宮本
Original Assignee
日本ペイント・サーフケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント・サーフケミカルズ株式会社 filed Critical 日本ペイント・サーフケミカルズ株式会社
Priority to CN201780080279.0A priority Critical patent/CN110168139A/en
Publication of WO2018123996A1 publication Critical patent/WO2018123996A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon

Definitions

  • the present invention relates to a surface treatment agent for galvanized steel sheet.
  • chromium-free technology that does not contain chromium is being studied from the viewpoint of reducing the environmental burden and the cost of wastewater treatment.
  • a processing agent is mentioned.
  • Patent Document 1 discloses one or two or more resins having a glass transition temperature of ⁇ 10 ° C. or higher, colloidal silica, zirconium, and the like, selected from the group consisting of acrylic resins, polyester resins, and urethane resins.
  • a chromium-free surface-treated steel sheet containing a compound and a triazole / tetrazole in a specific ratio is described.
  • Patent Document 2 discloses that an aqueous organic resin dispersion containing an anionic urethane resin (CII) contains predetermined amounts of an organic phosphate compound, colloidal silica, a vanadium compound, a zirconium carbonate compound, a silane coupling agent, and a polyolefin wax. An added chromium and fluorine compound free aqueous metal surface treatment composition is described.
  • CII anionic urethane resin
  • Patent Document 3 discloses a water-based resin having a carboxyl group and an acid amide bond, selected from metal compounds of Al, Mg, Ca, Zn, Ni, Co, Fe, Zr, Ti, V, W, Mn, and Ce. There is described a surface treatment agent for a metal plate material which does not contain chromium, characterized by containing a seed or two or more metal compounds and a silicon compound.
  • the present invention has been made in view of the above, and its purpose is to provide a surface treatment agent for galvanized steel sheets that is excellent in film forming properties and excellent in corrosion resistance, chemical resistance, weather resistance, and paint adhesion of the coating film. It is to provide.
  • the present invention is a surface treatment agent for a zinc-based plated steel sheet, comprising a zirconium compound (A), a chelating agent (B) having one or more hydroxyl groups in one molecule, and an organic resin having a carboxyl group (c1). (C), and the zirconium compound (A) is contained in the surface treatment agent for zinc-based plated steel sheet in the range of 200 to 10000 mass ppm in terms of Zr element, and is derived from the zirconium compound (A).
  • the organic resin (C) has a hydroxyl group (c2), and the hydroxyl value of the organic resin (C) is in the range of 10 to 30 mgKOH / g.
  • the organic resin (C) is preferably at least one selected from the group consisting of acrylic resin, urethane resin, polyolefin resin and vinyl resin.
  • the vanadium compound (D) in the range of 20 to 300 ppm by mass in terms of V element.
  • titanium compound (E) in the range of 50 to 1000 ppm by mass in terms of Ti element.
  • the silane coupling agent (F) is contained in the range of 0.5 to 5% by mass with respect to the solid content mass of the organic resin (C).
  • silicon oxide (G) in the range of 2.0 to 4.0% by mass in terms of SiO 2 .
  • a surface treating agent for galvanized steel sheet that is excellent in film forming properties and excellent in corrosion resistance, chemical resistance, weather resistance, and paint adhesion of the coating film.
  • the surface treating agent for galvanized steel sheet according to this embodiment includes a zirconium compound (A), a chelating agent (B), and an organic resin (C). Moreover, the surface treating agent for galvanized steel sheet according to the present embodiment includes a vanadium compound (D), a titanium compound (E), a silane coupling agent (F), silicon oxide (G), or other components (H). It is preferable to include.
  • the surface treatment agent for galvanized steel sheet according to the present embodiment is superior in film-forming properties compared to the conventional surface treatment agent for galvanized steel sheet, and the corrosion resistance, chemical resistance, weather resistance, and coating of the coating film. Since it is excellent in adhesiveness, it is characterized in that it can be preferably used as a temporary rust preventive for galvanized steel sheets.
  • Zirconium compound (A) is a compound containing zirconium element (Zr), and in the surface treatment agent for zinc-based plated steel sheet in terms of Zr element with respect to the mass of the surface treatment agent for zinc-based plated steel sheet In the range of 200 to 10000 mass ppm.
  • a zirconium compound (A) has a function which improves the corrosion resistance of a coating film. More preferably, the zirconium compound (A) is contained in the surface treatment agent for a zinc-based plated steel sheet in terms of Zr element in a range of 335 to 7500 mass ppm, and more preferably in a range of 2000 to 3500 mass ppm.
  • the content of the zirconium compound (A) is less than 200 ppm by mass, sufficient corrosion resistance cannot be imparted, and when it exceeds 10000 ppm by mass, the flexibility of the coating becomes insufficient. May be inferior.
  • zirconium compound (A) is not particularly limited.
  • zirconium carbonate, zirconium carbonate ammonium, zirconium borate, zirconium oxalate, zirconium sulfate, zirconium nitrate, zirconyl nitrate, zirconium fluoride, zircon hydrogen fluoride Acid, ammonium zircon fluoride, ammonium oxycarbonate zirconate, zirconium hydroxide, potassium zircon fluoride, sodium zircon fluoride, dibutyl zirconium dilaurate, dibutyl zirconium dioctate, zirconium naphthenate, zirconium octylate, zirconium acetylacetone, zirconium acetylacetate NART, zirconium butoxide 1-butanol solution, zirconium n-propoxide, etc. are preferably usedIn
  • the chelating agent (B) has one or more hydroxyl groups in one molecule from the viewpoint of the storage stability of the surface treatment agent and the corrosion resistance of the galvanized steel sheet. Thereby, chelating agent (B) can disperse zirconium compound (A) stably in a surface treating agent, and a surface treating agent excellent in storage stability is obtained. Moreover, aggregation of a zirconium compound (A) can be suppressed and the coating film excellent in corrosion resistance can be formed.
  • the chelating agent (B) is not particularly limited as long as it has one or more hydroxyl groups in one molecule.
  • HEDP 1-hydroxyethane-1,1-diphosphonic acid
  • TAA triethanolamine
  • citric acid gluconic acid
  • a salt thereof ammonium citrate, Na gluconate, etc.
  • these chelating agents (B) may be used individually by 1 type, or may use 2 or more types together.
  • Organic resin (C) has a carboxyl group (c1).
  • the acid value of the organic resin (C) is in the range of 10 to 30 mgKOH / g.
  • the acid value is less than 10 mg KOH / g, there are few carboxyl groups contributing to the stabilization of the resin, the stability of the surface treatment agent is lowered, and not only the thickening or gelation is promoted, but also the metal base material as the film performance. The adhesion of the will be reduced.
  • the carboxyl group that functions as a hydrophilic group is excessively present in the film, so that the surface after the film is formed becomes hydrophilic, corrosion resistance, alkali resistance, boiling water resistance, water resistance Sexuality will decrease.
  • the organic resin (C) has a hydroxyl group (c2).
  • the hydroxyl value of the organic resin (C) is 10 to 30 mgKOH / g.
  • the hydroxyl value is less than 10 mgKOH / g, it does not sufficiently function as an adhesion functional group with the top coating material, and the coating adhesion deteriorates.
  • the hydroxyl value exceeds 30 mgKOH / g, the hydroxyl group that functions as a hydrophilic group is excessively present in the film, so that the surface after the film formation becomes hydrophilic, corrosion resistance, alkali resistance, boiling water resistance, water resistance Etc. will fall.
  • the organic resin (C) is not particularly limited as long as it has a carboxyl group (c1).
  • an acrylic resin (CI), a urethane resin (CII), a polyolefin resin (CIII), and a vinyl resin Preferably, at least one selected from the group consisting of CIV).
  • the metal surface treatment composition has a good film-forming property, and a coating film having excellent barrier properties, uniformity, and low-temperature drying properties. Can be formed.
  • the metal surface treatment composition can form a continuous film with a thin film.
  • acrylic resin (CI), urethane resin (CII), olefin resin (CIII), and vinyl resin (CIV) are used as the organic resin (C), and particularly acrylic resin (CI) and urethane resin.
  • (CII) is used in combination will be described in detail.
  • the acrylic resin (CI) is a copolymer mainly composed of one or both of acrylic acid and methacrylic acid, and has an aromatic structure in the structure. It is preferable that it does not have a group structure. Since the acrylic resin (CI) does not have an aromatic structure in the structure, a chemically stable coating film can be formed. For example, since deterioration due to ultraviolet light absorption of the coating film can be suppressed, a coating film having excellent weather resistance can be formed.
  • acrylic resin (CI) copolymer examples include derivatives thereof such as methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate, and copolymers with other acrylic monomers. Since the structure does not have an aromatic structure, for example, a commonly used acrylic-styrene copolymer or the like is not included.
  • the acrylic resin (CI) preferably has a core / shell structure having a multilayer structure instead of a normal uniform structure. This is because by using an acrylic resin (CI) having a structurally hard core portion and a structurally soft shell portion, it becomes easy to achieve both film forming properties and performance such as corrosion resistance of the coating film.
  • the core / shell structure acrylic resin (CI) is manufactured by first emulsion polymerizing a polymerizable unsaturated monomer component containing no or almost no carboxyl group-containing polymerizable unsaturated monomer, and then containing a carboxyl group.
  • the bond between the core part and the shell part is obtained by, for example, adding a polymerizable unsaturated monomer component containing a carboxyl group-containing polymerizable unsaturated monomer to a polymerizable unsaturated bond such as allyl acrylate or allyl methacrylate remaining on the surface of the core part. It can be carried out by copolymerization.
  • Tg of acrylic resin (CI) is 10 ° C. or higher and 100 ° C. or lower.
  • Tg is less than 10 ° C.
  • the formed coating film has insufficient water and chemical barrier properties, so that a coating film excellent in corrosion resistance and chemical resistance cannot be obtained.
  • the temperature exceeds 100 ° C., the resin is not sufficiently fused at the time of forming the coating film, and the film forming property is deteriorated.
  • the urethane resin (CII) is used as the organic resin (C)
  • the urethane resin (CII is preferably a saturated aliphatic urethane resin obtained by a chemical reaction of a cyclic aliphatic polyol compound and an isocyanate.
  • (CII) can form a highly corrosion-resistant coating film and can form a chemically stable coating film because it does not contain multiple bonds, for example, it can suppress deterioration of the coating film due to absorption of ultraviolet light, and thus has excellent weather resistance.
  • a coating film can be formed.
  • the cycloaliphatic polyol compound is not particularly limited, and one or a mixture of two or more commonly used polyols can be used.
  • Specific examples of the cycloaliphatic polyol compound include, for example, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,2-bis (hydroxymethyl) cyclohexane and hydrogenated bisphenol. A etc. are mentioned.
  • the isocyanate compound is not particularly limited as long as the resin skeleton of the produced urethane resin (CII) does not include a double bond, a triple bond and an aromatic ring, and diisocyanate and other polyisocyanates are used. be able to.
  • diisocyanate generally used diisocyanate can be used singly or in combination of two or more.
  • diisocyanate examples include alicyclic diisocyanates such as isophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, trans-1,4-cyclohexyl diisocyanate, norbornene diisocyanate, 1,6-hexamethylene diisocyanate, 2, Examples thereof include aliphatic diisocyanates such as 2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, and methyl 2,6-diisocyanatohexanoate.
  • the other polyisocyanate is preferably a polyisocyanate having three or more isocyanate groups in one molecule.
  • Examples include trifunctional or higher functional isocyanates such as the above-mentioned diisocyanate isocyanurate trimers, burette trimers, trimethylolpropane adducts, etc. These isocyanate compounds are carbodiimide modified, isocyanurate modified, biuret modified, etc. It may be used in the form of a modified product.
  • the glass transition temperature (hereinafter referred to as “Tg”) of the urethane resin (CII) is preferably 90 ° C. or higher. This is because when the Tg is less than 90 ° C., the formed coating film has insufficient water and chemical barrier properties, so that a coating film excellent in corrosion resistance and chemical resistance cannot be obtained.
  • olefin resin of the organic resin (C) for example, a copolymer resin with an unsaturated carboxylic acid such as ethylene-acrylic acid, methacrylic acid or maleic anhydride (for example, ethylene-acrylic acid copolymer) is used as sodium hydroxide. And water-dispersed acrylic resins neutralized with alkali metal hydroxides such as potassium hydroxide, ammonia or organic amines.
  • the ethylene content is preferably in the range of 70 to 90% by mass and the acrylic acid content in the range of 10 to 30% by mass.
  • ⁇ Vinyl resin (CIV)> When a vinyl resin (CIV) is used as the organic resin (C), PVA such as polyvinyl alcohol (PVA) and modified PVA such as carboxyl group-modified PVA; cellulose derivatives such as hydroxyethyl cellulose and carboxymethyl cellulose; isobutylene and A copolymer of an ⁇ -olefin and an unsaturated carboxylic acid such as a copolymer with maleic anhydride or a water-soluble product of a derivative thereof can be used. Moreover, these 1 type (s) or 2 or more types are used suitably.
  • PVA polyvinyl alcohol
  • modified PVA such as carboxyl group-modified PVA
  • cellulose derivatives such as hydroxyethyl cellulose and carboxymethyl cellulose
  • isobutylene and A copolymer of an ⁇ -olefin and an unsaturated carboxylic acid such as a copolymer with maleic anhydride or a water
  • the difference in Tg between the resins used together is preferably in the range of 40 ° C to 120 ° C.
  • the difference between the Tg of the core part in the core / shell structure and the Tg of the urethane resin (CII) is in the range of 0 ° C. to 100 ° C. /
  • the difference between the Tg of the shell part in the shell structure and the Tg of the urethane resin (CII) is more preferably 40 ° C. or higher and 120 ° C. or lower. If the difference in Tg is outside the above range, sufficient film-forming properties cannot be obtained, and the coating film may have poor corrosion resistance and chemical resistance.
  • the coating film may have poor corrosion resistance, chemical resistance, weather resistance, and coating adhesion.
  • the zirconium compound (A) is excessive with respect to the chelating agent (B)
  • the stability of the zirconium compound (A) is lowered and the stability of the treatment agent cannot be obtained, but also has a specific structure.
  • the coating adhesiveness expressed as the effect of using the chelating agent (B) having a sufficient function does not function.
  • the chelating agent (B) is excessive, the chelating agent contributing to the stabilization of the zirconium compound (A) becomes excessive, so that the chelate effect is saturated and the film structure becomes easy to attract water. Due to the decrease, the corrosion resistance, alkali resistance, and boiling water resistance cannot be fully exhibited.
  • ⁇ Vanadium compound (D)> By further adding the vanadium compound (D) according to the present embodiment to the surface treatment agent for a zinc-based plated steel sheet, a film with improved corrosion resistance can be formed.
  • vanadium compound (D) used in this embodiment is not particularly limited, for example, metavanadate and its salt, vanadium oxide, vanadium trichloride, vanadium oxytrichloride, vanadium acetylacetonate, vanadium oxyacetylacetonate, Vanadium sulfate, vanadium sulfate, vanadium nitrate, vanadium phosphate, vanadium acetate, vanadium biphosphate, vanadium alkoxide, vanadium oxyalkoxide, and the like are preferably used.
  • metavanadate and its salt, vanadium oxide, vanadium oxytrichloride, vanadium alkoxide, and vanadium oxyalkoxide are preferable.
  • the surface treatment agent for galvanized steel sheet contains the vanadium compound (D) in the range of 20 to 300 ppm by mass in terms of V element with respect to the mass of the surface treatment agent for galvanized steel sheet. It is preferable.
  • the corrosion resistance can be improved.
  • Tianium compound (E) The performance of the coating film can be further improved by further including the titanium compound (E) according to the present embodiment in the surface treatment agent for galvanized steel sheet.
  • the type of the titanium compound (E) used in this embodiment is not particularly limited, but titanium (IV) (titania), titanium nitrate, zirconyl titanium sulfate (III), titanium sulfate, titanium fluoride (III), fluorine Titanium (IV) fluoride, hexafluorotitanic acid (H 2 TiF 6 ), ammonium hexafluorotitanate, tetraisopropyl titanate, tetra n-butyl titanate, tetraoctyl titanate, titanium acetylacetonate, titanium octylene glycolate, titanium lactate , Titanium lactate ethyl ester, titanium triethanolaminate, titanium tetraisopropoxide, titanium tetranormal butoxide, titanium tetra-2-ethylhexoxide, titanium diisopropoxybis (acetylacetonate), Titanium tetraacetylacetonate,
  • the surface treatment agent for galvanized steel sheet contains the titanium compound (E) in a range of 50 to 1000 ppm by mass in terms of Ti with respect to the mass of the surface treatment agent for galvanized steel sheet. It is preferable. If the titanium compound (E) is less than 50 mass ppm, the amount of titanium contained in the film is not sufficient, and it is difficult to form a barrier film due to the bond of Ti—O—Ti, so the alkali resistance and corrosion resistance are reduced. If the titanium compound (E) exceeds 1000 ppm by mass, the corrosion resistance can be sufficiently exhibited, but the stability of the treatment liquid is lowered.
  • the silane coupling agent (F) plays a role as a crosslinking agent between the organic resins (C) and exhibits a binder effect between the galvanized steel sheet and the coating film, thereby improving the adhesion of the coating film. It has the function of improving and improving the corrosion resistance.
  • the type of the silane coupling agent (F) used in the present embodiment is not particularly limited.
  • these silane coupling agents (F) may be used individually by 1 type, or may use 2 or more types together. Moreover, you may use the hydrolysis condensate of these silane coupling agents, or the mixture of a silane coupling agent and its hydrolysis condensate.
  • the surface treating agent for galvanized steel sheet is based on the solid content mass of the organic resin (C) and the silane coupling agent (F) is based on the solid content mass of the organic resin particles (C). It is preferably contained in the range of 0.5 to 5% by mass.
  • the surface treatment agent contains the silane coupling agent (F) in the range of 0.5 to 5% by mass, a sufficient film-forming property can be obtained, and a coating film excellent in corrosion resistance and chemical resistance can be formed.
  • ⁇ Silicon oxide (G)> By further including the silicon oxide (G) according to the present embodiment in the surface treatment agent for galvanized steel sheet, the performance of the coating film can be further improved.
  • the shape of the silicon oxide (G) used in the present invention is not particularly limited, but is preferably in the form of particles, the primary particles have a number average particle diameter of 5 to 50 nm, more preferably 5 to 20 nm.
  • Such silicon oxide (G) can be appropriately selected from colloidal silica, fumed silica, and the like.
  • Specific examples of silicon oxide (G) include Snowtex N, Snowtex C (Nissan Chemical Industries), Adelite AT-20N, AT-20A (ADEKA), Cataloid S-20L, Cataloid SA (JGC Catalyst) Kasei Co., Ltd.). These may be used alone or in combination of two or more.
  • the number average particle diameter of the primary particles of silicon oxide (G) can be obtained by observation with an electron microscope.
  • the surface treatment agent for galvanized steel sheet preferably contains silicon oxide (G) in the range of 2.0 to 4.0 mass% in terms of SiO 2 . If silicon oxide (G) is less than 2.0 mass%, sufficient coating film performance, especially corrosion resistance and substrate adhesion cannot be obtained. Moreover, silicon oxide (G) is 4.0 mass% or less from a viewpoint of adjusting the balance with content of another component and exhibiting the effect of this invention satisfactorily.
  • the surface treatment agent of the present embodiment may further contain other components (H) in a range that does not inhibit the above-described function, depending on the function to be added.
  • tannic acid or a salt thereof, phytic acid or a salt thereof, or other aqueous resin such as an epoxy resin, an ethylene acrylic copolymer, a polyester resin, a polyolefin resin, an alkyd resin, or a polycarbonate resin may be used. it can.
  • aqueous resins may be used alone or in combination of two or more, or may be used after copolymerization.
  • an organic solvent may be used in order to improve the film forming property and form a more uniform and smooth coating film.
  • a leveling agent, a wettability improver, or an antifoaming agent may be used.
  • Zinc-based plated steel sheets using the surface treatment agent according to this embodiment as a temporary rust preventive are widely used as steel sheets with high corrosion resistance.
  • zinc plating and zinc alloy plating are collectively referred to as “zinc-based plating”.
  • the zinc-based plated steel sheet that can use the surface treatment agent of the present embodiment is not particularly limited, and examples thereof include galvanized steel sheet, zinc-nickel plated steel sheet, zinc-iron plated steel sheet, zinc-chromium plated steel sheet, zinc-aluminum.
  • Examples thereof include zinc-based electroplating such as a plated steel plate, zinc-titanium-plated steel plate, zinc-magnesium-plated steel plate, and zinc-manganese-plated steel plate, and zinc or zinc-based alloy-plated steel plate such as hot dipped and vapor-deposited steel plate.
  • zinc-based electroplating such as a plated steel plate, zinc-titanium-plated steel plate, zinc-magnesium-plated steel plate, and zinc-manganese-plated steel plate
  • zinc or zinc-based alloy-plated steel plate such as hot dipped and vapor-deposited steel plate.
  • a zinc-55 wt% aluminum alloy plated steel plate (Galbarium steel plate (registered trademark)) is preferably used because it has high corrosion resistance.
  • the manufacturing method of the surface treating agent which concerns on this embodiment is not specifically limited, For example, a zirconium compound (A) and a chelating agent (B) are mixed and stirred previously, the zirconium compound (A) is stabilized, and organic resin Zirconium compound (A) and chelating agent (B) are added to (C) while stirring, and can be obtained by diluting and preparing.
  • the method for applying the surface treatment agent according to the present embodiment to the zinc-based plated steel sheet is not particularly limited.
  • the method of applying the surface treatment agent to the zinc-based plated steel sheet and drying the object to be coated by heating after the application is performed. It may be.
  • a method may be used in which a galvanized steel sheet is heated in advance, and then the surface treatment agent is applied and dried using residual heat.
  • the method for applying the surface treatment agent is not particularly limited, and can be applied by roll coating, shower coating, spraying, dipping, brush coating, or the like.
  • the coating method by roll coating is preferably used in a normal coil coating line
  • the surface treatment agent according to the present embodiment is excellent in film forming property even when coil coating is considered.
  • the conditions for heating and drying the surface treatment agent are such that the highest material temperature (hereinafter referred to as PMT) is preferably 20 to 250 ° C., more preferably 50 to 220 ° C. When the heating temperature is 50 ° C. or higher, the moisture evaporation rate is high and sufficient film forming properties can be secured, so that the corrosion resistance and alkali resistance are improved.
  • the amount of the surface treatment agent applied is preferably such that the thickness of the coating film is about 0.5 to 3.0 ⁇ m. If the film thickness is too thin relative to the above range, the corrosion resistance will be insufficient. On the other hand, if the film thickness is too thick, the workability and adhesion are lowered and it is uneconomical.
  • the surface treatment agent for a zinc-based plated steel sheet includes a zirconium compound (A), a chelating agent (B) having one or more hydroxyl groups in one molecule, and a carboxyl group (c1).
  • Zirconium compound (A) is contained in the surface treatment agent for zinc-based plated steel sheet in the range of 200 to 10000 mass ppm in terms of Zr element, and is derived from zirconium compound (A).
  • compatibility with a chelating agent, an organic resin, and a top coat film can also be improved by using the organic resin (C) which has a hydroxyl group.
  • the organic resin (C) is at least one selected from the group consisting of an acrylic resin, a urethane resin, a polyolefin resin, and a vinyl resin.
  • the metal surface treatment composition is excellent in film forming property, and can form a coating film excellent in barrier properties, uniformity, and low temperature drying properties.
  • a continuous film can be formed with a thin film.
  • the surface treatment agent for galvanized steel sheet contains the vanadium compound (D) in the range of 20 to 300 ppm by mass in terms of V element.
  • the surface treating agent for galvanized steel sheet contains the titanium compound (E) in the range of 50 to 1000 ppm by mass in terms of Ti element.
  • the surface treatment agent for galvanized steel sheet contains the silane coupling agent (F) in the range of 0.5 to 5% by mass with respect to the solid content mass of the organic resin (C).
  • the surface treating agent for galvanized steel sheet contains silicon oxide (G) in the range of 2.0 to 4.0% by mass in terms of SiO 2 . Thereby, especially the metal surface treatment composition can form the coating film excellent in corrosion resistance.
  • Example 1 to 26 The zirconium compound (A) and the chelating agent (B) are mixed and stirred in advance to stabilize the zirconium compound (A), and the zirconium compound (A) and the chelating agent (B) are added to the organic resin (C). The mixture was added with stirring, diluted and prepared to obtain the surface treating agent shown in Table 1. Regarding the resin (C), in Examples 1 to 20, a single resin was used. On the other hand, in Examples 21 to 26, those obtained by mixing a plurality of resins in combinations and ratios of types shown in Table 1 were used.
  • Example 27 to 54 The zirconium compound (A) and the chelating agent (B) were mixed and stirred in advance to stabilize the zirconium compound (A).
  • the organic resin (C) was stirred, and in Examples 27 to 31, 47 to 50, 53, and 54, the vanadium compound (D) was added to the organic resin (C) and stirred.
  • the titanium compound (E) was further added and stirred.
  • the silane coupling agent (F) was further added and stirred.
  • silicon oxide (G) was further added and stirred.
  • a zirconium compound (A) and a chelating agent (B) were further added to the organic resin (C), and the mixture was stirred, diluted and prepared to obtain the surface treating agent described in Table 2.
  • E1 Titanium ammonium fluoride (Morita Chemical Industries, Ltd.)
  • E2 TC400 (Matsumoto Fine Chemical Co., Ltd.)
  • E3 T-50 (Nippon Soda Co., Ltd.)
  • [Silane coupling agent (F)] F1: 3-Glycidoxyuropyrtrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • F2 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (manufactured by Shinsei Chemical Industry Co., Ltd.)
  • F3 N-2- (aminoethyl) -3-aminopropyltrimethylsilane (manufactured by Shinsei Chemical Industry Co., Ltd.)
  • F4 3-aminopropyltrimethylsilane (manufactured by Shinsei Chemical Industry Co., Ltd.)
  • Comparative Examples 1 to 16 In Comparative Example 1, the zirconium compound (A) was added to the organic resin (C), stirred, diluted and prepared to obtain the surface treating agent described in Table 3. In Comparative Examples 2, 3, 5 to 7, and 9 to 12, the zirconium compound (A) and the chelating agent (B) were mixed and stirred in advance to stabilize the zirconium compound (A). Zirconium compound (A) and chelating agent (B) were added to organic resin (C), stirred, diluted and prepared to obtain the surface treating agent described in Table 3. In Comparative Examples 4 and 13 to 16, the chelating agent (B) was added to the organic resin (C), stirred, diluted and prepared to obtain the surface treating agent described in Table 3. In Comparative Example 8, the zirconium compound (A) and the chelating agent (B) were stirred, diluted and prepared to obtain the surface treating agent described in Table 3.
  • B5 EDTA Note that B5 (EDTA) does not have one or more hydroxyl groups in one molecule.
  • test plates for each evaluation test were prepared by the following method.
  • Each steel material listed in Tables 1 to 3 was degreased by spray treatment at 60 ° C. for 2 minutes using a commercially available alkaline degreasing agent (manufactured by Nippon Paint Co., Ltd., “Surf Cleaner 53S”).
  • the surface treatment agent of the comparative example was applied with a bar coater so that the film thickness after drying was 1 to 2 ⁇ m. Then, it dried at the raw material highest achieved temperature 80 degreeC, and obtained the test plate.
  • the steel materials listed in Tables 1 to 3 were as follows.
  • GL 55% molten aluminum / galvanized steel sheet (Galbarium steel sheet (registered trademark))
  • GI Galvanized steel sheet
  • EG Electrogalvanized steel sheet
  • GF Molten 5% aluminum / zinc alloy plated steel sheet
  • ZL Electrical Zn-10% Ni alloy plated steel sheet
  • ⁇ Flat surface corrosion resistance> The edge and back surface of the test plate were tape-sealed, and a salt spray test SST (JIS-Z-2371) was performed. The occurrence of white rust after 240 hours was observed and evaluated according to the following criteria. The results are shown in Table 4. 1: No white rust generation 2: White rust generation area is less than 10% 3: White rust generation area is 10% or more and less than 30% 4: White rust generation area is 30% or more All implementation as shown in Table 4 In the example test plate, high planar portion corrosion resistance satisfying an evaluation criterion (1 or 2) higher than 2 was confirmed.
  • test plate was immersed in a 2% aqueous solution (pH 12.5) at 60 ° C. with an alkaline degreasing agent (Surf Cleaner 155, Nippon Paint Co., Ltd.) for 2 minutes with stirring, and then the edges and back of the test plate were tape sealed and sprayed with salt water A test (JIS-Z-2371) was conducted. The occurrence of white rust after 96 hours was observed and evaluated according to the following criteria. The results are shown in Table 4.
  • the test plate was processed by extruding 7 mm with an elixir tester, the edges and back of the test plate were tape-sealed, and a salt spray test SST (JIS-Z-2371) was performed. After 120 hours, the occurrence of white rust was observed and evaluated according to the following criteria. The results are shown in Table 4. 1: No white rust generation 2: White rust generation area is less than 10% 3: White rust generation area is 10% or more and less than 30% 4: White rust generation area is 30% or more All implementation as shown in Table 4 In the test plate of the example, high processed part corrosion resistance satisfying an evaluation criterion (1 or 2) higher than 2 was confirmed.
  • a melamine alkyd paint (Organeo White, manufactured by Nippon Paint Co., Ltd.) was applied to the test plate surface with a bar coater so as to have a dry film thickness of 20 ⁇ m, and baked at 130 ° C. for 15 minutes to prepare a coated plate. Next, immerse the coating plate in boiling water for 30 minutes, leave it for 24 hours, extrude the coating plate 7 mm with an elixir tester, apply cellophane tape (manufactured by Nichiban Co., Ltd.) to the extruded part, and forcibly peel it off The film state was evaluated according to the following evaluation criteria. The results are shown in Table 4.
  • the surface treatment agents of Examples 1 to 3 differ in the amount of the zirconium compound (A) in the surface treatment agent in the range of 200 to 10000 mass ppm. It was confirmed that
  • the surface treatment agents of Examples 4 to 6 differ in the molar ratio (Zr) / (B) between the zirconium element (Zr) and the chelating agent (B) in the surface treatment agent in the range of 4 to 100. Within this range, it was confirmed that high evaluation criteria were satisfied in any evaluation.
  • the surface treating agents of Examples 7 to 9 differ in the molar ratio (c1) / (B) of the carboxyl group (c1) to the chelating agent (B) in the range of 30 to 1000. In any evaluation, it was confirmed that the high evaluation criteria were satisfied.
  • the surface treatment agents of Examples 10 to 26 have different acid values of the organic resin (C) in the range of 10 to 30 mgKOH / g, but within this range, the high evaluation criteria are satisfied in any evaluation. Was confirmed.
  • the surface treating agents of Examples 27 to 54 contain a predetermined amount of at least one of the vanadium compound (D), the titanium compound (E), the silane coupling agent (F), and the silicon oxide (G). As for the surface treatment agent, it was confirmed that high evaluation criteria were satisfied in any evaluation.
  • the surface treatment agent for galvanized steel sheet according to this embodiment includes the content, ratio, organic resin (C) of the zirconium compound (A), the chelating agent (B) and the organic resin (C). It was shown that adjusting the acid value and the like not only improved the storage stability but also improved the adhesion of the top coat and the boiling water blackening.

Abstract

Provided is a surface treatment agent for galvanized steel sheets, the surface treatment agent having excellent film formability and being capable of providing a coating film having excellent corrosion resistance, chemical resistance, and weather resistance. The surface treatment agent for galvanized steel sheets contains a zirconium compound (A), a chelating agent (B) having at least one hydroxyl group in one molecule, and an organic resin (C) having a carboxyl group (c1), wherein the content of the zirconium compound (A) in the surface treatment agent for galvanized steel sheets is in the range of 200-1000 mass ppm, the molar ratio of elemental zirconium (Zr) derived from the zirconium compound (A) to the chelating agent (B), i.e., (Zr)/(B), is in the range of 4-100, the acid value of the organic resin (C) is in the range of 10-30 mgKOH/g, and the molar ratio of the carboxyl group (c1) to the chelating agent (B), i.e., (c1)/(B), is in the range of 30-1000.

Description

亜鉛系メッキ鋼板用表面処理剤Surface treatment agent for galvanized steel sheet
 本発明は、亜鉛系メッキ鋼板用表面処理剤に関する。 The present invention relates to a surface treatment agent for galvanized steel sheet.
 従来、耐食性に優れた鋼板として亜鉛メッキ、亜鉛合金メッキ等を施した亜鉛系メッキ鋼板が使用されている。このような亜鉛系メッキ鋼板は、メッキ層が空気と接触することによって酸化されて白錆が発生する。このため、表面処理を施すことによって耐食性を付与し酸化を防止することが必要である。また、例えば建材として屋外で使用する場合等、用途によっては表面処理層の耐候性や耐薬品性も要求される。このような表面処理剤としては、クロメート処理やリン酸クロメート処理等のクロム系表面処理剤が従来適用されていた。 Conventionally, zinc-based plated steel sheets that have been galvanized or zinc alloy plated have been used as steel sheets with excellent corrosion resistance. Such a zinc-based plated steel sheet is oxidized by the plating layer coming into contact with air and white rust is generated. For this reason, it is necessary to impart corrosion resistance and prevent oxidation by applying a surface treatment. Moreover, the weatherability and chemical resistance of a surface treatment layer are also requested | required depending on a use, for example, when using it outdoors as a building material. As such a surface treatment agent, a chromium-based surface treatment agent such as chromate treatment or phosphoric acid chromate treatment has been conventionally applied.
 しかし、クロムは毒性を有するため、環境負荷の低減や排水処理に要するコスト低減の観点から、クロムを含まないクロムフリー技術が検討されている。具体的には、水性樹脂等を水中にエマルジョンとして分散し、ロールコーティング等により被塗物上に塗布を行い、焼付け乾燥して融着させることで亜鉛系メッキ鋼板上に塗膜を形成する表面処理剤が挙げられる。 However, since chromium is toxic, chromium-free technology that does not contain chromium is being studied from the viewpoint of reducing the environmental burden and the cost of wastewater treatment. Specifically, a surface on which a coating film is formed on a zinc-based plated steel sheet by dispersing an aqueous resin or the like as an emulsion in water, applying it on an object by roll coating, etc., baking and drying, and fusing. A processing agent is mentioned.
 例えば、特許文献1にはアクリル系樹脂、ポリエステル系樹脂及びウレタン系樹脂からなる群から選ばれる、ガラス転移温度が-10℃以上の1種又は2種以上の樹脂と、コロイド状シリカと、ジルコニウム化合物とトリアゾール/テトラゾール類とを特定の比率で含有するクロムフリー表面処理鋼板が記載されている。 For example, Patent Document 1 discloses one or two or more resins having a glass transition temperature of −10 ° C. or higher, colloidal silica, zirconium, and the like, selected from the group consisting of acrylic resins, polyester resins, and urethane resins. A chromium-free surface-treated steel sheet containing a compound and a triazole / tetrazole in a specific ratio is described.
 また、特許文献2にはアニオン性ウレタン樹脂(CII)を含有する水性有機樹脂分散液に、有機リン酸化合物、コロイダルシリカ、バナジウム化合物、炭酸ジルコニウム化合物、シランカップリング剤及びポリオレフィンワックスをそれぞれ所定量添加したクロム及びフッ素化合物フリーの水性金属表面処理組成物が記載されている。 Patent Document 2 discloses that an aqueous organic resin dispersion containing an anionic urethane resin (CII) contains predetermined amounts of an organic phosphate compound, colloidal silica, a vanadium compound, a zirconium carbonate compound, a silane coupling agent, and a polyolefin wax. An added chromium and fluorine compound free aqueous metal surface treatment composition is described.
 また、特許文献3にはカルボキシル基と酸アミド結合を有する水系樹脂、Al、Mg、Ca、Zn、Ni、Co、Fe、Zr、Ti、V、W、Mn及びCeの金属化合物から選ばれる1種又は2種以上の金属化合物、珪素化合物、を含有することを特徴とするクロムを含有しない金属板材用表面処理剤が記載されている。 Patent Document 3 discloses a water-based resin having a carboxyl group and an acid amide bond, selected from metal compounds of Al, Mg, Ca, Zn, Ni, Co, Fe, Zr, Ti, V, W, Mn, and Ce. There is described a surface treatment agent for a metal plate material which does not contain chromium, characterized by containing a seed or two or more metal compounds and a silicon compound.
特開2013-237874号公報JP 2013-237874 A 特開2014-055319号公報JP 2014-055319 A 特開2003-201579号公報JP 2003-201579 A
 しかし、これら従来のクロムフリー処理剤では、特に低温・短時間で焼付け乾燥を行う場合、造膜性が不十分であるため塗膜の耐食性が十分ではなく、また、耐薬品性、耐候性や塗装密着性が要求される種々の用途に適用する際、性能が不十分なものであった。 However, with these conventional chromium-free treatment agents, particularly when baking and drying at low temperatures and in a short time, the film forming property is insufficient, so the corrosion resistance of the coating film is not sufficient, and chemical resistance, weather resistance, When applied to various applications requiring paint adhesion, the performance was insufficient.
 本発明は上記に鑑みてなされたものであり、その目的は、造膜性に優れ、塗膜の耐食性、耐薬品性、耐候性、塗装密着性に優れた亜鉛系メッキ鋼板用表面処理剤を提供することにある。 The present invention has been made in view of the above, and its purpose is to provide a surface treatment agent for galvanized steel sheets that is excellent in film forming properties and excellent in corrosion resistance, chemical resistance, weather resistance, and paint adhesion of the coating film. It is to provide.
 本発明は、亜鉛系メッキ鋼板用表面処理剤であって、ジルコニウム化合物(A)と、1分子中に1つ以上の水酸基を有するキレート剤(B)と、カルボキシル基(c1)を有する有機樹脂(C)とを含み、前記ジルコニウム化合物(A)は、Zr元素換算で亜鉛系メッキ鋼板用表面処理剤中に200~10000質量ppmの範囲で含有し、前記ジルコニウム化合物(A)に由来するジルコニウム元素(Zr)と前記キレート剤(B)とのモル比が(Zr)/(B)=4~100の範囲であり、前記有機樹脂(C)の酸価は、10~30mgKOH/gの範囲であり、カルボキシル基(c1)と前記キレート剤(B)とのモル比が(c1)/(B)=30~1000の範囲である亜鉛系メッキ鋼板用表面処理剤に関する。 The present invention is a surface treatment agent for a zinc-based plated steel sheet, comprising a zirconium compound (A), a chelating agent (B) having one or more hydroxyl groups in one molecule, and an organic resin having a carboxyl group (c1). (C), and the zirconium compound (A) is contained in the surface treatment agent for zinc-based plated steel sheet in the range of 200 to 10000 mass ppm in terms of Zr element, and is derived from the zirconium compound (A). The molar ratio of the element (Zr) to the chelating agent (B) is in the range of (Zr) / (B) = 4 to 100, and the acid value of the organic resin (C) is in the range of 10 to 30 mgKOH / g. Further, the present invention relates to a surface treatment agent for galvanized steel sheets in which the molar ratio of the carboxyl group (c1) to the chelating agent (B) is in the range of (c1) / (B) = 30 to 1000.
 また、前記有機樹脂(C)は、水酸基(c2)を有し、前記有機樹脂(C)の水酸基価は、10~30mgKOH/の範囲gであり、前記水酸基(c2)と前記キレート剤(B)とのモル比が、(c2)/(B)=30~1000の範囲であることが好ましい。 The organic resin (C) has a hydroxyl group (c2), and the hydroxyl value of the organic resin (C) is in the range of 10 to 30 mgKOH / g. The hydroxyl group (c2) and the chelating agent (B ) Is preferably in the range of (c2) / (B) = 30 to 1000.
 また、前記有機樹脂(C)は、アクリル樹脂、ウレタン樹脂、ポリオレフィン樹脂およびビニル系樹脂からなる群より選択される少なくとも1種以上であることが好ましい。 The organic resin (C) is preferably at least one selected from the group consisting of acrylic resin, urethane resin, polyolefin resin and vinyl resin.
 また、バナジウム化合物(D)をV元素換算で20~300質量ppmの範囲で含有することが好ましい。 Further, it is preferable to contain the vanadium compound (D) in the range of 20 to 300 ppm by mass in terms of V element.
 また、チタン化合物(E)をTi元素換算で50~1000質量ppmの範囲で含有することが好ましい。 Further, it is preferable to contain the titanium compound (E) in the range of 50 to 1000 ppm by mass in terms of Ti element.
 また、前記有機樹脂(C)の固形分質量に対して、シランカップリング剤(F)を0.5~5質量%の範囲で含有することが好ましい。 Further, it is preferable that the silane coupling agent (F) is contained in the range of 0.5 to 5% by mass with respect to the solid content mass of the organic resin (C).
 また、酸化ケイ素(G)をSiO換算で2.0~4.0質量%の範囲で含有することが好ましい。 Further, it is preferable to contain silicon oxide (G) in the range of 2.0 to 4.0% by mass in terms of SiO 2 .
 本発明によれば、造膜性に優れ、塗膜の耐食性、耐薬品性、耐候性、塗装密着性に優れた亜鉛系メッキ鋼板用表面処理剤を提供できる。 According to the present invention, it is possible to provide a surface treating agent for galvanized steel sheet that is excellent in film forming properties and excellent in corrosion resistance, chemical resistance, weather resistance, and paint adhesion of the coating film.
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.
<亜鉛系メッキ鋼板用の表面処理剤>
 本実施形態に係る亜鉛系メッキ鋼板用表面処理剤は、ジルコニウム化合物(A)と、キレート剤(B)と、有機樹脂(C)とを含む。また、本実施形態に係る亜鉛系メッキ鋼板用表面処理剤は、バナジウム化合物(D)、チタン化合物(E)、シランカップリング剤(F)、酸化ケイ素(G)又はその他の成分(H)を含むことが好ましい。本実施形態の亜鉛系メッキ鋼板用表面処理剤は、従来の亜鉛系メッキ鋼板用表面処理剤と比較して、造膜性に優れており、塗膜の耐食性、耐薬品性、耐候性、塗装密着性に優れるため、亜鉛系メッキ鋼板の一時防錆剤として好ましく使用できる点に特徴がある。
<Surface treatment agent for galvanized steel sheet>
The surface treating agent for galvanized steel sheet according to this embodiment includes a zirconium compound (A), a chelating agent (B), and an organic resin (C). Moreover, the surface treating agent for galvanized steel sheet according to the present embodiment includes a vanadium compound (D), a titanium compound (E), a silane coupling agent (F), silicon oxide (G), or other components (H). It is preferable to include. The surface treatment agent for galvanized steel sheet according to the present embodiment is superior in film-forming properties compared to the conventional surface treatment agent for galvanized steel sheet, and the corrosion resistance, chemical resistance, weather resistance, and coating of the coating film. Since it is excellent in adhesiveness, it is characterized in that it can be preferably used as a temporary rust preventive for galvanized steel sheets.
<ジルコニウム化合物(A)>
 本実施形態に係るジルコニウム化合物(A)は、ジルコニウム元素(Zr)を含む化合物であり、亜鉛系メッキ鋼板用表面処理剤の質量に対して、Zr元素換算で亜鉛系メッキ鋼板用表面処理剤中に200~10000質量ppmの範囲で含有する。これにより、ジルコニウム化合物(A)は、塗膜の耐食性を向上させる機能を有する。より好ましくは、ジルコニウム化合物(A)は、Zr元素換算で亜鉛系メッキ鋼板用表面処理剤中に335~7500質量ppmの範囲で、更に好ましくは、2000~3500質量ppmの範囲で含有する。ジルコニウム化合物(A)の含有量が200質量ppm未満であると、耐食性を十分に付与できず、10000質量ppmを超えると、皮膜の柔軟性が不十分となるため、塗膜の加工密着性に劣るおそれがある。
<Zirconium compound (A)>
Zirconium compound (A) according to this embodiment is a compound containing zirconium element (Zr), and in the surface treatment agent for zinc-based plated steel sheet in terms of Zr element with respect to the mass of the surface treatment agent for zinc-based plated steel sheet In the range of 200 to 10000 mass ppm. Thereby, a zirconium compound (A) has a function which improves the corrosion resistance of a coating film. More preferably, the zirconium compound (A) is contained in the surface treatment agent for a zinc-based plated steel sheet in terms of Zr element in a range of 335 to 7500 mass ppm, and more preferably in a range of 2000 to 3500 mass ppm. When the content of the zirconium compound (A) is less than 200 ppm by mass, sufficient corrosion resistance cannot be imparted, and when it exceeds 10000 ppm by mass, the flexibility of the coating becomes insufficient. May be inferior.
 本実施形態に係るジルコニウム化合物(A)の種類は特に限定されないが、例えば、炭酸ジルコニウム、炭酸ジルコニルアンモニウム、ホウ酸ジルコニウム、蓚酸ジルコニウム、硫酸ジルコニウム、硝酸ジルコニウム、硝酸ジルコニル、フッ化ジルコニウム、ジルコンフッ化水素酸、ジルコンフッ化アンモニウム、オキシ炭酸ジルコニウム酸アンモニウム、水酸化ジルコニウム、ジルコンフッ化カリウム、ジルコンフッ化ナトリウム、ジブチルジルコニウムジラウリレート、ジブチルジルコニウムジオクテート、ナフテン酸ジルコニウム、オクチル酸ジルコニウム、アセチルアセトンジルコニウム、ジルコニウムアセチルアセトナート、ジルコニウムブトキシド1-ブタノール溶液、ジルコニウムn-プロポキシド等が好ましく用いられる。なお、これらジルコニウム化合物(A)は、1種類を単独で使用してもよく、又は2種類以上を併用してもよい。 The type of the zirconium compound (A) according to the present embodiment is not particularly limited. For example, zirconium carbonate, zirconium carbonate ammonium, zirconium borate, zirconium oxalate, zirconium sulfate, zirconium nitrate, zirconyl nitrate, zirconium fluoride, zircon hydrogen fluoride Acid, ammonium zircon fluoride, ammonium oxycarbonate zirconate, zirconium hydroxide, potassium zircon fluoride, sodium zircon fluoride, dibutyl zirconium dilaurate, dibutyl zirconium dioctate, zirconium naphthenate, zirconium octylate, zirconium acetylacetone, zirconium acetylacetate NART, zirconium butoxide 1-butanol solution, zirconium n-propoxide, etc. are preferably usedIn addition, these zirconium compounds (A) may be used individually by 1 type, or may use 2 or more types together.
<キレート剤(B)>
 本実施形態に係るキレート剤(B)は、表面処理剤の貯蔵安定性及び亜鉛系メッキ鋼板の耐食性の観点から、1分子中に1つ以上の水酸基を有する。これにより、キレート剤(B)は、ジルコニウム化合物(A)を表面処理剤中で安定して分散させることができ、貯蔵安定性に優れた表面処理剤が得られる。また、ジルコニウム化合物(A)の凝集を抑制でき、耐食性に優れた塗膜を形成できる。
<Chelating agent (B)>
The chelating agent (B) according to the present embodiment has one or more hydroxyl groups in one molecule from the viewpoint of the storage stability of the surface treatment agent and the corrosion resistance of the galvanized steel sheet. Thereby, chelating agent (B) can disperse zirconium compound (A) stably in a surface treating agent, and a surface treating agent excellent in storage stability is obtained. Moreover, aggregation of a zirconium compound (A) can be suppressed and the coating film excellent in corrosion resistance can be formed.
 キレート剤(B)は、1分子中に1つ以上の水酸基を有するものであれば、特に種類は限定されないが、例えば、1-ヒドロキシエタン-1,1-ジホスホン酸(HEDP)、トリエタノールアミン(TEA)、クエン酸、グルコン酸、またはこれらの塩(クエン酸アンモン、グルコン酸Na等)等が好ましく用いられる。なお、これらキレート剤(B)は、1種類を単独で使用してもよく、又は2種類以上を併用してもよい。 The chelating agent (B) is not particularly limited as long as it has one or more hydroxyl groups in one molecule. For example, 1-hydroxyethane-1,1-diphosphonic acid (HEDP), triethanolamine (TEA), citric acid, gluconic acid, or a salt thereof (ammonium citrate, Na gluconate, etc.) is preferably used. In addition, these chelating agents (B) may be used individually by 1 type, or may use 2 or more types together.
<有機樹脂(C)>
 本実施形態に係る有機樹脂(C)は、カルボキシル基(c1)を有する。また、有機樹脂(C)の酸価は、10~30mgKOH/gの範囲である。酸価が10mgKOH/g未満となると樹脂の安定化に寄与するカルボキシル基が少なく、表面処理剤の安定性が低下し、増粘又はゲル化を促進させるだけでなく、皮膜性能として金属基材との密着性が低下してしまう。また、酸価が30mgKOH/gを超えると親水基としても機能するカルボキシル基が過剰に皮膜中に存在するため、皮膜形成後の表面が親水性になり、耐食性、耐アルカリ性、耐沸騰水性、耐水性などが低下してしまう。
<Organic resin (C)>
The organic resin (C) according to the present embodiment has a carboxyl group (c1). The acid value of the organic resin (C) is in the range of 10 to 30 mgKOH / g. When the acid value is less than 10 mg KOH / g, there are few carboxyl groups contributing to the stabilization of the resin, the stability of the surface treatment agent is lowered, and not only the thickening or gelation is promoted, but also the metal base material as the film performance. The adhesion of the will be reduced. In addition, when the acid value exceeds 30 mgKOH / g, the carboxyl group that functions as a hydrophilic group is excessively present in the film, so that the surface after the film is formed becomes hydrophilic, corrosion resistance, alkali resistance, boiling water resistance, water resistance Sexuality will decrease.
 また、本実施形態においては、有機樹脂(C)は、水酸基(c2)を有する。また、有機樹脂(C)の水酸基価は、10~30mgKOH/gである。水酸基価が10mgKOH/g未満となると上塗り塗料との密着官能基として十分に機能しなくなり、塗装密着性が低下してしまう。また、水酸基価が30mgKOH/gを超えると親水基としても機能する水酸基が過剰に皮膜中に存在するため、皮膜形成後の表面が親水性になり、耐食性、耐アルカリ性、耐沸騰水性、耐水性などが低下してしまう。 In the present embodiment, the organic resin (C) has a hydroxyl group (c2). The hydroxyl value of the organic resin (C) is 10 to 30 mgKOH / g. When the hydroxyl value is less than 10 mgKOH / g, it does not sufficiently function as an adhesion functional group with the top coating material, and the coating adhesion deteriorates. In addition, when the hydroxyl value exceeds 30 mgKOH / g, the hydroxyl group that functions as a hydrophilic group is excessively present in the film, so that the surface after the film formation becomes hydrophilic, corrosion resistance, alkali resistance, boiling water resistance, water resistance Etc. will fall.
 有機樹脂(C)は、カルボキシル基(c1)を有するものであれば、特に種類は限定されないが、例えば、アクリル樹脂(CI)、ウレタン樹脂(CII)、ポリオレフィン樹脂(CIII)およびビニル系樹脂(CIV)からなる群より選択される少なくとも1種以上であることが好ましい。有機樹脂(C)が、これらの樹脂からなる群より選択されることにより、金属表面処理組成物は、造膜性が良好であり、遮断性、均一性、低温乾燥性が優れた塗膜を形成できる。また、金属表面処理組成物は、薄膜で連続皮膜を形成することができる。これらの樹脂は、金属表面との密着性を担保させるために必要な成分でもある。
 以下、有機樹脂(C)として、アクリル樹脂(CI)、ウレタン樹脂(CII)、オレフィン樹脂(CIII)、ビニル系樹脂(CIV)のそれぞれが用いられる場合と、特にアクリル樹脂(CI)及びウレタン樹脂(CII)が併用される場合のそれぞれについて詳述する。
The organic resin (C) is not particularly limited as long as it has a carboxyl group (c1). For example, an acrylic resin (CI), a urethane resin (CII), a polyolefin resin (CIII), and a vinyl resin ( Preferably, at least one selected from the group consisting of CIV). When the organic resin (C) is selected from the group consisting of these resins, the metal surface treatment composition has a good film-forming property, and a coating film having excellent barrier properties, uniformity, and low-temperature drying properties. Can be formed. Moreover, the metal surface treatment composition can form a continuous film with a thin film. These resins are also components necessary for ensuring adhesion to the metal surface.
Hereinafter, acrylic resin (CI), urethane resin (CII), olefin resin (CIII), and vinyl resin (CIV) are used as the organic resin (C), and particularly acrylic resin (CI) and urethane resin. Each case where (CII) is used in combination will be described in detail.
<アクリル樹脂(CI)>
 有機樹脂(C)として、アクリル樹脂(CI)が用いられる場合、アクリル樹脂(CI)は、アクリル酸及びメタクリル酸のいずれか一方又は両方を主成分とした共重合体であり、構造中に芳香族構造を有しないものであることが好ましい。アクリル樹脂(CI)は構造中に芳香族構造を有しないため、化学的に安定な塗膜を形成できる。例えば塗膜の紫外光吸収による劣化を抑制できるため、耐候性に優れた塗膜を形成できる。
<Acrylic resin (CI)>
When an acrylic resin (CI) is used as the organic resin (C), the acrylic resin (CI) is a copolymer mainly composed of one or both of acrylic acid and methacrylic acid, and has an aromatic structure in the structure. It is preferable that it does not have a group structure. Since the acrylic resin (CI) does not have an aromatic structure in the structure, a chemically stable coating film can be formed. For example, since deterioration due to ultraviolet light absorption of the coating film can be suppressed, a coating film having excellent weather resistance can be formed.
 アクリル樹脂(CI)の共重合体としては、例えばアクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル等それらの誘導体や、その他のアクリル系のモノマーとの共重合体等が挙げられる。構造中に芳香族構造を有しないため、例えば一般的に用いられるアクリル-スチレン共重合体等は含まれない。 Examples of the acrylic resin (CI) copolymer include derivatives thereof such as methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate, and copolymers with other acrylic monomers. Since the structure does not have an aromatic structure, for example, a commonly used acrylic-styrene copolymer or the like is not included.
 また、アクリル樹脂(CI)は、通常の均一構造ではなく多層構造を有するコア/シェル構造を有することが好ましい。構造的に硬いコア部と、構造的に柔らかいシェル部を有するアクリル樹脂(CI)を用いることで、造膜性と塗膜の耐食性等の性能を両立させることが容易となるためである。
 コア/シェル構造のアクリル樹脂(CI)の製造方法は、例えば、最初にカルボキシル基含有重合性不飽和モノマーを全く、又はほとんど含有しない重合性不飽和モノマー成分を乳化重合し、その後、カルボキシル基含有重合性不飽和モノマーを多量に含んだ重合性不飽和モノマー成分を加えて乳化重合することによって得ることができる。
 コア部とシェル部との結合は、例えば、コア部の表面に残存するアリルアクリレート、アリルメタクリレート等による重合性不飽和結合に、カルボキシル基含有重合性不飽和モノマーを含む重合性不飽和モノマー成分を共重合して行うことができる。
Further, the acrylic resin (CI) preferably has a core / shell structure having a multilayer structure instead of a normal uniform structure. This is because by using an acrylic resin (CI) having a structurally hard core portion and a structurally soft shell portion, it becomes easy to achieve both film forming properties and performance such as corrosion resistance of the coating film.
For example, the core / shell structure acrylic resin (CI) is manufactured by first emulsion polymerizing a polymerizable unsaturated monomer component containing no or almost no carboxyl group-containing polymerizable unsaturated monomer, and then containing a carboxyl group. It can be obtained by emulsion polymerization by adding a polymerizable unsaturated monomer component containing a large amount of a polymerizable unsaturated monomer.
The bond between the core part and the shell part is obtained by, for example, adding a polymerizable unsaturated monomer component containing a carboxyl group-containing polymerizable unsaturated monomer to a polymerizable unsaturated bond such as allyl acrylate or allyl methacrylate remaining on the surface of the core part. It can be carried out by copolymerization.
 また、アクリル樹脂(CI)のTgは、10℃以上100℃以下である。Tgが10℃に満たない場合、形成される塗膜の水や薬品に対する遮断性が不十分なものとなるため、耐食性、耐薬品性に優れた塗膜を得ることができず、一方Tgが100℃を超える場合、塗膜の形成時に樹脂が十分に融着せず、造膜性が悪化するためである。 Moreover, Tg of acrylic resin (CI) is 10 ° C. or higher and 100 ° C. or lower. When Tg is less than 10 ° C., the formed coating film has insufficient water and chemical barrier properties, so that a coating film excellent in corrosion resistance and chemical resistance cannot be obtained. When the temperature exceeds 100 ° C., the resin is not sufficiently fused at the time of forming the coating film, and the film forming property is deteriorated.
 有機樹脂(C)として、ウレタン樹脂(CII)が用いられる場合、ウレタン樹脂(CIIは、環式脂肪族ポリオール化合物及びイソシアネートの化学反応により得られる飽和脂肪族ウレタン樹脂であることが好ましい。ウレタン樹脂(CII)は、耐食性の高い塗膜を形成できると共に、多重結合を含まないため化学的に安定な塗膜を形成できる。例えば塗膜の紫外光吸収による劣化を抑制できるため、耐候性に優れた塗膜を形成できる。 When the urethane resin (CII) is used as the organic resin (C), the urethane resin (CII is preferably a saturated aliphatic urethane resin obtained by a chemical reaction of a cyclic aliphatic polyol compound and an isocyanate. (CII) can form a highly corrosion-resistant coating film and can form a chemically stable coating film because it does not contain multiple bonds, for example, it can suppress deterioration of the coating film due to absorption of ultraviolet light, and thus has excellent weather resistance. A coating film can be formed.
 環式脂肪族ポリオール化合物としては、特に制限されず、一般的に使用されるポリオールを一種類又は二種類以上混合して用いることができる。環式脂肪族ポリオール化合物の具体例としては、例えば、1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,2-ビス(ヒドロキシメチル)シクロヘキサン及び水素化ビスフェノールA等が挙げられる。 The cycloaliphatic polyol compound is not particularly limited, and one or a mixture of two or more commonly used polyols can be used. Specific examples of the cycloaliphatic polyol compound include, for example, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,2-bis (hydroxymethyl) cyclohexane and hydrogenated bisphenol. A etc. are mentioned.
 イソシアネート化合物としては、製造されたウレタン樹脂(CII)の樹脂骨格中に二重結合、三重結合及び芳香環が含まれないようなものであれば特に制限されず、ジイソシアネート、その他のポリイソシアネートを用いることができる。
 ジイソシアネートとしては、一般的に使用されるジイソシアネートを一種類又は二種類以上混合して用いることができる。当該ジイソシアネートの具体例としては、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、トランス-1,4-シクロヘキシルジイソシアネート、ノルボルネンジイソシアネート等の脂環式ジイソシアネートや、1,6-ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、2,6-ジイソシアナトヘキサン酸メチル等の脂肪族ジイソシアネート等が挙げられる。
 その他のポリイソシアネートとは、1分子中にイソシアネート基を3つ以上有するポリイソシアネートであることが好ましい。例えば、上記のジイソシアネートのイソシアヌレート三量化物、ビューレット三量化物、トリメチロールプロパンアダクト化物等の三官能以上のイソシアネート等が挙げられ、これらのイソシアネート化合物はカルボジイミド変性、イソシアヌレート変性、ビウレット変性等の変性物の形で用いてもよい。
The isocyanate compound is not particularly limited as long as the resin skeleton of the produced urethane resin (CII) does not include a double bond, a triple bond and an aromatic ring, and diisocyanate and other polyisocyanates are used. be able to.
As diisocyanate, generally used diisocyanate can be used singly or in combination of two or more. Specific examples of the diisocyanate include alicyclic diisocyanates such as isophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, trans-1,4-cyclohexyl diisocyanate, norbornene diisocyanate, 1,6-hexamethylene diisocyanate, 2, Examples thereof include aliphatic diisocyanates such as 2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, and methyl 2,6-diisocyanatohexanoate.
The other polyisocyanate is preferably a polyisocyanate having three or more isocyanate groups in one molecule. Examples include trifunctional or higher functional isocyanates such as the above-mentioned diisocyanate isocyanurate trimers, burette trimers, trimethylolpropane adducts, etc. These isocyanate compounds are carbodiimide modified, isocyanurate modified, biuret modified, etc. It may be used in the form of a modified product.
 また、ウレタン樹脂(CII)のガラス転移温度(以下、「Tg」という。)は、90℃以上であることが好ましい。Tgが90℃に満たない場合、形成される塗膜の水や薬品に対する遮断性が不十分なものとなるため、耐食性、耐薬品性に優れた塗膜を得ることができないためである。 The glass transition temperature (hereinafter referred to as “Tg”) of the urethane resin (CII) is preferably 90 ° C. or higher. This is because when the Tg is less than 90 ° C., the formed coating film has insufficient water and chemical barrier properties, so that a coating film excellent in corrosion resistance and chemical resistance cannot be obtained.
<オレフィン樹脂(CIII)>
 有機樹脂(C)のオレフィン樹脂としては、例えば、エチレン-アクリル酸、メタクリル酸又は無水マレイン酸等の不飽和カルボン酸との共重合樹脂(例えば、エチレン-アクリル酸共重合体)を水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物、アンモニア又は有機アミン類で中和した水分散させた水分散アクリル樹脂が挙げられる。上記エチレン-アクリル酸共重合体樹脂を用いる場合、エチレン含有量が70~90質量%、アクリル酸の含有量が10~30質量%の範囲となることが好ましい。
<Olefin resin (CIII)>
As the olefin resin of the organic resin (C), for example, a copolymer resin with an unsaturated carboxylic acid such as ethylene-acrylic acid, methacrylic acid or maleic anhydride (for example, ethylene-acrylic acid copolymer) is used as sodium hydroxide. And water-dispersed acrylic resins neutralized with alkali metal hydroxides such as potassium hydroxide, ammonia or organic amines. When the ethylene-acrylic acid copolymer resin is used, the ethylene content is preferably in the range of 70 to 90% by mass and the acrylic acid content in the range of 10 to 30% by mass.
<ビニル系樹脂(CIV)>
 有機樹脂(C)として、ビニル系樹脂(CIV)が用いられる場合、ポリビニルアルコール(PVA)、カルボキシル基変性PVAのような変性PVA等のPVA類;ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体;イソブチレンと無水マレイン酸との共重合体のようなα-オレフィンと不飽和カルボン酸との共重合体もしくはその誘導体の水溶化物等を用いることができる。また、これらの1種もしくは2種以上が好適に用いられる。
<Vinyl resin (CIV)>
When a vinyl resin (CIV) is used as the organic resin (C), PVA such as polyvinyl alcohol (PVA) and modified PVA such as carboxyl group-modified PVA; cellulose derivatives such as hydroxyethyl cellulose and carboxymethyl cellulose; isobutylene and A copolymer of an α-olefin and an unsaturated carboxylic acid such as a copolymer with maleic anhydride or a water-soluble product of a derivative thereof can be used. Moreover, these 1 type (s) or 2 or more types are used suitably.
<アクリル樹脂(CI)及びウレタン樹脂(CII)>
 アクリル樹脂(CI)及びウレタン樹脂(CII)が併用される場合、アクリル樹脂(CI)とウレタン樹脂(CII)との固形分質量比が、(CI)/(CII)=5/95~50/50の範囲であることが好ましい。アクリル樹脂(CI)とウレタン樹脂(CII)との固形分質量比が、5/95未満となると、塗膜の耐候性を十分に得ることができない場合がある。一方、アクリル樹脂(CI)とウレタン樹脂(CII)との固形分質量比が、50/50を超えると、樹脂同士の凝集力が不十分であり塗膜の形成時に樹脂が十分に融着しないため、十分な造膜性を得ることができない場合がある。
<Acrylic resin (CI) and urethane resin (CII)>
When the acrylic resin (CI) and the urethane resin (CII) are used in combination, the solid mass ratio of the acrylic resin (CI) and the urethane resin (CII) is (CI) / (CII) = 5/95 to 50 / A range of 50 is preferred. When the solid content mass ratio between the acrylic resin (CI) and the urethane resin (CII) is less than 5/95, the weather resistance of the coating film may not be sufficiently obtained. On the other hand, when the solid content mass ratio between the acrylic resin (CI) and the urethane resin (CII) exceeds 50/50, the cohesive force between the resins is insufficient, and the resin is not sufficiently fused when the coating film is formed. Therefore, there are cases where sufficient film forming properties cannot be obtained.
 また、併用される樹脂同士のTgの差(例えば、ウレタン樹脂(CII)のTgとアクリル樹脂(CI)のTgとの差)は、40℃~120℃の範囲であることが好ましい。更に、アクリル樹脂(CI)がコア/シェル構造を有する場合、コア/シェル構造中のコア部のTgと、ウレタン樹脂(CII)のTgとの差が0℃~100℃の範囲であり、コア/シェル構造中のシェル部のTgと、ウレタン樹脂(CII)のTgとの差が40℃以上120℃以下であることがより好ましい。Tgの差がそれぞれ上記範囲外となると、十分な造膜性が得られず、塗膜の耐食性、耐薬品性が優れない場合がある。 Also, the difference in Tg between the resins used together (for example, the difference between the Tg of the urethane resin (CII) and the Tg of the acrylic resin (CI)) is preferably in the range of 40 ° C to 120 ° C. Further, when the acrylic resin (CI) has a core / shell structure, the difference between the Tg of the core part in the core / shell structure and the Tg of the urethane resin (CII) is in the range of 0 ° C. to 100 ° C. / The difference between the Tg of the shell part in the shell structure and the Tg of the urethane resin (CII) is more preferably 40 ° C. or higher and 120 ° C. or lower. If the difference in Tg is outside the above range, sufficient film-forming properties cannot be obtained, and the coating film may have poor corrosion resistance and chemical resistance.
[ジルコニウム化合物(A)/キレート剤(B)/有機樹脂(C)の比率]
 本実施形態に係る亜鉛系メッキ鋼板用表面処理剤に含まれるジルコニウム化合物(A)に由来するジルコニウム元素(Zr)と前記キレート剤(B)とのモル比(mol÷mol)は、(Zr)/(B)=4~100の範囲であることが好ましい。
 また、本実施形態に係る亜鉛系メッキ鋼板用表面処理剤に含まれる有機樹脂(C)のカルボキシル基(c1)と前記キレート剤(B)とのモル比は、(c1)/(B)=30~1000の範囲であることが好ましい。
 また、本実施形態に係る亜鉛系メッキ鋼板用表面処理剤に含まれる有機樹脂(C)の水酸基(c2)とキレート剤(B)とのモル比は、(c2)/(B)=30~1000の範囲であることが好ましい。
[Ratio of zirconium compound (A) / chelating agent (B) / organic resin (C)]
The molar ratio (mol ÷ mol) between the zirconium element (Zr) derived from the zirconium compound (A) contained in the surface treatment agent for galvanized steel sheet according to the present embodiment and the chelating agent (B) is (Zr) It is preferable that / (B) = 4 to 100.
Moreover, the molar ratio of the carboxyl group (c1) of the organic resin (C) and the chelating agent (B) contained in the surface treatment agent for galvanized steel sheet according to the present embodiment is (c1) / (B) = A range of 30 to 1000 is preferred.
In addition, the molar ratio of the hydroxyl group (c2) to the chelating agent (B) of the organic resin (C) contained in the surface treatment agent for galvanized steel sheet according to the present embodiment is (c2) / (B) = 30 to A range of 1000 is preferable.
 これらの比率が上記の範囲から外れると、十分な造膜性が得られず、塗膜の耐食性、耐薬品性、耐候性、塗装密着性が優れない場合がある。
 例えば、ジルコニウム化合物(A)がキレート剤(B)に対して過剰であると、ジルコニウム化合物(A)の安定化性が低下し、処理剤の安定性が得られないだけでなく、特定の構造を有するキレート剤(B)を用いる効果として発現している塗装密着性が十分に機能しなくなる。反対にキレート剤(B)が過剰であると、ジルコニウム化合物(A)の安定化に寄与するキレート剤が過剰となり、キレート効果の飽和や水を呼び込みやすくなる皮膜構造に変化してしまい、耐水性低下により耐食性、耐アルカリ性、耐沸騰水性が十分に発揮できなくなる。
If these ratios are out of the above ranges, sufficient film-forming properties cannot be obtained, and the coating film may have poor corrosion resistance, chemical resistance, weather resistance, and coating adhesion.
For example, when the zirconium compound (A) is excessive with respect to the chelating agent (B), the stability of the zirconium compound (A) is lowered and the stability of the treatment agent cannot be obtained, but also has a specific structure. The coating adhesiveness expressed as the effect of using the chelating agent (B) having a sufficient function does not function. On the contrary, if the chelating agent (B) is excessive, the chelating agent contributing to the stabilization of the zirconium compound (A) becomes excessive, so that the chelate effect is saturated and the film structure becomes easy to attract water. Due to the decrease, the corrosion resistance, alkali resistance, and boiling water resistance cannot be fully exhibited.
<バナジウム化合物(D)>
 本実施形態に係るバナジウム化合物(D)を更に亜鉛系メッキ鋼板用表面処理剤に含有させることで、耐食性が向上した皮膜を形成できる。
<Vanadium compound (D)>
By further adding the vanadium compound (D) according to the present embodiment to the surface treatment agent for a zinc-based plated steel sheet, a film with improved corrosion resistance can be formed.
 本実施形態において用いられるバナジウム化合物(D)の種類は特に限定されないが、例えば、メタバナジン酸及びその塩、酸化バナジウム、三塩化バナジウム、オキシ三塩化バナジウム、バナジウムアセチルアセトネート、バナジウムオキシアセチルアセトネート、硫酸バナジル、硫酸バナジウム、硝酸バナジウム、リン酸バナジウム、酢酸バナジウム、重リン酸バナジウム、バナジウムアルコキシド、バナジウムオキシアルコキシド等が好ましく用いられる。
 これらの中でも、バナジウムの酸化数が5価の化合物を用いるのが好ましく、具体的には、メタバナジン酸及びその塩、酸化バナジウム、オキシ三塩化バナジウム、バナジウムアルコキシド、バナジウムオキシアルコキシドが好ましい。
Although the kind of vanadium compound (D) used in this embodiment is not particularly limited, for example, metavanadate and its salt, vanadium oxide, vanadium trichloride, vanadium oxytrichloride, vanadium acetylacetonate, vanadium oxyacetylacetonate, Vanadium sulfate, vanadium sulfate, vanadium nitrate, vanadium phosphate, vanadium acetate, vanadium biphosphate, vanadium alkoxide, vanadium oxyalkoxide, and the like are preferably used.
Among these, it is preferable to use a compound in which the oxidation number of vanadium is pentavalent. Specifically, metavanadate and its salt, vanadium oxide, vanadium oxytrichloride, vanadium alkoxide, and vanadium oxyalkoxide are preferable.
 本実施形態においては、亜鉛系メッキ鋼板用表面処理剤は、亜鉛系メッキ鋼板用表面処理剤の質量に対して、バナジウム化合物(D)をV元素換算で20~300質量ppmの範囲で含有することが好ましい。表面処理剤がバナジウム化合物(D)を20~300質量ppmの範囲で含有することで、耐食性を向上させることができる。 In this embodiment, the surface treatment agent for galvanized steel sheet contains the vanadium compound (D) in the range of 20 to 300 ppm by mass in terms of V element with respect to the mass of the surface treatment agent for galvanized steel sheet. It is preferable. When the surface treatment agent contains the vanadium compound (D) in the range of 20 to 300 ppm by mass, the corrosion resistance can be improved.
<チタン化合物(E)>
 本実施形態に係るチタン化合物(E)を更に亜鉛系メッキ鋼板用表面処理剤に含有させることで、塗膜の性能をより向上させることができる。
<Titanium compound (E)>
The performance of the coating film can be further improved by further including the titanium compound (E) according to the present embodiment in the surface treatment agent for galvanized steel sheet.
 本実施形態において用いられるチタン化合物(E)の種類は特に限定されないが、酸化チタン(IV)(チタニア)、硝酸チタン、酢酸ジルコニル硫酸チタン(III)、硫酸チタン、フッ化チタン(III)、フッ化チタン(IV)、ヘキサフルオロチタン酸(HTiF)、ヘキサフルオロチタン酸アンモニウム、テトライソプロピルチタネート、テトラn-ブチルチタネート、テトラオクチルチタネート、チタンアセチルアセトネート、チタンオクチレングリコレート、チタンラクテート、チタンラクテートエチルエステル、チタントリエタノールアミネート、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンテトラ-2-エチルヘキソキシド、チタンジイソプロポキシビス(アセチルアセトナート)、チタンテトラアセチルアセトナート、チタンジオクチロキシビス(オクチレングリコレート)、チタンジイソプロポキシ(エチルアセトアセテート)、チタンジイソプロポキシビス(トリエタノールアミネート)、チタンラウレート、チタンラクテートアンモニウム塩、ジイソプロポキシチタニウムビスアセトン、チタニウムアセチルアセトネート、等が挙げられる。これらは無水物であってもよいし水和物であってもよい。これらの化合物は単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The type of the titanium compound (E) used in this embodiment is not particularly limited, but titanium (IV) (titania), titanium nitrate, zirconyl titanium sulfate (III), titanium sulfate, titanium fluoride (III), fluorine Titanium (IV) fluoride, hexafluorotitanic acid (H 2 TiF 6 ), ammonium hexafluorotitanate, tetraisopropyl titanate, tetra n-butyl titanate, tetraoctyl titanate, titanium acetylacetonate, titanium octylene glycolate, titanium lactate , Titanium lactate ethyl ester, titanium triethanolaminate, titanium tetraisopropoxide, titanium tetranormal butoxide, titanium tetra-2-ethylhexoxide, titanium diisopropoxybis (acetylacetonate), Titanium tetraacetylacetonate, titanium dioctyloxybis (octylene glycolate), titanium diisopropoxy (ethyl acetoacetate), titanium diisopropoxybis (triethanolaminate), titanium laurate, titanium lactate ammonium salt, di Examples thereof include isopropoxytitanium bisacetone and titanium acetylacetonate. These may be anhydrides or hydrates. These compounds may be used alone or in combination of two or more.
 本実施形態においては、亜鉛系メッキ鋼板用表面処理剤は、亜鉛系メッキ鋼板用表面処理剤の質量に対して、チタン化合物(E)をTi元素換算で50~1000質量ppmの範囲で含有することが好ましい。チタン化合物(E)が50質量ppm未満であると、皮膜中に含まれるチタン量が十分ではなく、Ti-O-Tiの結合による遮断性皮膜を形成しにくいため、耐アルカリ性、耐食性が低下し、チタン化合物(E)1000質量ppmを超えると耐食性は十分に発揮できるものの、処理液の安定性が低下する。 In the present embodiment, the surface treatment agent for galvanized steel sheet contains the titanium compound (E) in a range of 50 to 1000 ppm by mass in terms of Ti with respect to the mass of the surface treatment agent for galvanized steel sheet. It is preferable. If the titanium compound (E) is less than 50 mass ppm, the amount of titanium contained in the film is not sufficient, and it is difficult to form a barrier film due to the bond of Ti—O—Ti, so the alkali resistance and corrosion resistance are reduced. If the titanium compound (E) exceeds 1000 ppm by mass, the corrosion resistance can be sufficiently exhibited, but the stability of the treatment liquid is lowered.
<シランカップリング剤(F)>
 本実施形態に係るシランカップリング剤(F)は、有機樹脂(C)同士の架橋剤としての役割を果たすと共に、亜鉛系メッキ鋼板と塗膜とのバインダー効果を示し、塗膜の密着性を向上させ、耐食性を向上させる機能を有する。
<Silane coupling agent (F)>
The silane coupling agent (F) according to the present embodiment plays a role as a crosslinking agent between the organic resins (C) and exhibits a binder effect between the galvanized steel sheet and the coating film, thereby improving the adhesion of the coating film. It has the function of improving and improving the corrosion resistance.
 本実施形態において用いられるシランカップリング剤(F)の種類は特に限定されないが、例えば、ビニルメトキシシラン、ビニルトリメトキシシラン、ビニルエトキシシラン、ビニルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N,N’-ビス〔3-(トリメトキシシリル)プロピル〕エチレンジアミン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、N-〔2-(ビニルベンジルアミノ)エチル〕-3-アミノプロピルトリメトキシシラン等が好ましく用いられる。 The type of the silane coupling agent (F) used in the present embodiment is not particularly limited. For example, vinyl methoxy silane, vinyl trimethoxy silane, vinyl ethoxy silane, vinyl triethoxy silane, 3-aminopropyl trimethoxy silane, 3 -Aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, N- (1,3-dimethylbutylidene) -3- (tri Ethoxysilyl) -1-propanamine, N, N′-bis [3- (trimethoxysilyl) propyl] ethylenediamine, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, N- (β-amino Ethyl) -γ-aminopropyltrime Xysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, N- [ 2- (Vinylbenzylamino) ethyl] -3-aminopropyltrimethoxysilane and the like are preferably used.
 なお、これらシランカップリング剤(F)は1種類を単独で使用してもよく、又は2種類以上を併用してもよい。また、これらシランカップリング剤の加水分解縮合物、あるいはシランカップリング剤とその加水分解縮合物との混合物を用いてもよい。 In addition, these silane coupling agents (F) may be used individually by 1 type, or may use 2 or more types together. Moreover, you may use the hydrolysis condensate of these silane coupling agents, or the mixture of a silane coupling agent and its hydrolysis condensate.
 本実施形態においては、亜鉛系メッキ鋼板用表面処理剤は、有機樹脂(C)の固形分質量に対して、シランカップリング剤(F)を有機樹脂粒子(C)の固形分質量に対して0.5~5質量%の範囲で含有することが好ましい。表面処理剤がシランカップリング剤(F)を0.5~5質量%の範囲で含有することで、十分な造膜性が得られ、耐食性、耐薬品性に優れた塗膜を形成できる。 In this embodiment, the surface treating agent for galvanized steel sheet is based on the solid content mass of the organic resin (C) and the silane coupling agent (F) is based on the solid content mass of the organic resin particles (C). It is preferably contained in the range of 0.5 to 5% by mass. When the surface treatment agent contains the silane coupling agent (F) in the range of 0.5 to 5% by mass, a sufficient film-forming property can be obtained, and a coating film excellent in corrosion resistance and chemical resistance can be formed.
<酸化ケイ素(G)>
 本実施形態に係る酸化ケイ素(G)を更に亜鉛系メッキ鋼板用表面処理剤に含有させることで、塗膜の性能をより向上させることができる。
<Silicon oxide (G)>
By further including the silicon oxide (G) according to the present embodiment in the surface treatment agent for galvanized steel sheet, the performance of the coating film can be further improved.
 本発明で用いる酸化ケイ素(G)の形状は特に限定されないが、粒状のものが好ましく、一次粒子の数平均粒子径が5~50nmのものがより好ましく、5~20nmのものが更に好ましい。このような酸化ケイ素(G)は、コロイダルシリカやヒュームドシリカ等から適宜選択して用いることができる。酸化ケイ素(G)の具体例としては、スノーテックスN、スノーテックスC(日産化学工業社製)やアデライトAT-20N、AT-20A(ADEKA社製)やカタロイドS-20L、カタロイドSA(日揮触媒化成社製)などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
 なお、酸化ケイ素(G)の一次粒子の数平均粒子径は電子顕微鏡観察により求めることができる。
 本実施形態においては、亜鉛系メッキ鋼板用表面処理剤は、酸化ケイ素(G)をSiO換算で2.0~4.0質量%の範囲で含有することが好ましい。酸化ケイ素(G)が2.0質量%未満であれば、十分な塗膜性能、特に耐食性、基材密着性を得ることができない。また、他の成分の含有量とのバランスを調整して、本発明の効果を良好に発揮させる観点から、酸化ケイ素(G)は4.0質量%以下である。
The shape of the silicon oxide (G) used in the present invention is not particularly limited, but is preferably in the form of particles, the primary particles have a number average particle diameter of 5 to 50 nm, more preferably 5 to 20 nm. Such silicon oxide (G) can be appropriately selected from colloidal silica, fumed silica, and the like. Specific examples of silicon oxide (G) include Snowtex N, Snowtex C (Nissan Chemical Industries), Adelite AT-20N, AT-20A (ADEKA), Cataloid S-20L, Cataloid SA (JGC Catalyst) Kasei Co., Ltd.). These may be used alone or in combination of two or more.
In addition, the number average particle diameter of the primary particles of silicon oxide (G) can be obtained by observation with an electron microscope.
In the present embodiment, the surface treatment agent for galvanized steel sheet preferably contains silicon oxide (G) in the range of 2.0 to 4.0 mass% in terms of SiO 2 . If silicon oxide (G) is less than 2.0 mass%, sufficient coating film performance, especially corrosion resistance and substrate adhesion cannot be obtained. Moreover, silicon oxide (G) is 4.0 mass% or less from a viewpoint of adjusting the balance with content of another component and exhibiting the effect of this invention satisfactorily.
<その他の成分(H)>
 また、本実施形態の表面処理剤には、付加される機能に応じて、上述の機能を阻害しない範囲で、更にその他の成分(H)が含まれていてもよい。例えば、タンニン酸又はその塩、フィチン酸又はその塩、その他の水性樹脂、例えばエポキシ系樹脂、エチレンアクリル共重合体、ポリエステル系樹脂、ポリオレフィン系樹脂、アルキド系樹脂、ポリカーボネート系樹脂等を用いることができる。これらの水性樹脂は単独で使用してもよく、2種以上を併用してもよく、また、共重合して使用してもよい。また、造膜性を向上させ、より均一で平滑な塗膜を形成するために有機溶剤を用いてもよい。また、レベリング剤、濡れ性向上剤、消泡剤を用いてもよい。
<Other components (H)>
In addition, the surface treatment agent of the present embodiment may further contain other components (H) in a range that does not inhibit the above-described function, depending on the function to be added. For example, tannic acid or a salt thereof, phytic acid or a salt thereof, or other aqueous resin such as an epoxy resin, an ethylene acrylic copolymer, a polyester resin, a polyolefin resin, an alkyd resin, or a polycarbonate resin may be used. it can. These aqueous resins may be used alone or in combination of two or more, or may be used after copolymerization. Further, an organic solvent may be used in order to improve the film forming property and form a more uniform and smooth coating film. Further, a leveling agent, a wettability improver, or an antifoaming agent may be used.
<亜鉛系メッキ鋼板>
 本実施形態に係る表面処理剤を一時防錆剤として用いる亜鉛系メッキ鋼板は、耐食性の高い鋼板として広く使用されている。なお、ここでは、亜鉛メッキと亜鉛合金メッキを総称して「亜鉛系メッキ」と称する。
 本実施形態の表面処理剤を用いることができる亜鉛系メッキ鋼板としては特に限定されず、例えば、亜鉛メッキ鋼板、亜鉛-ニッケルメッキ鋼板、亜鉛-鉄メッキ鋼板、亜鉛-クロムメッキ鋼板、亜鉛-アルミニウムメッキ鋼板、亜鉛-チタンメッキ鋼板、亜鉛-マグネシウムメッキ鋼板、亜鉛-マンガンメッキ鋼板等の亜鉛系の電気メッキ、溶融メッキ、蒸着メッキ鋼板等の亜鉛又は亜鉛系合金メッキ鋼板等が挙げられる。中でも亜鉛-55wt%アルミニウム合金メッキ鋼板(ガルバリウム鋼板(登録商標))は高い耐食性を有するため好ましく用いられる。
<Zinc-based plated steel plate>
Zinc-based plated steel sheets using the surface treatment agent according to this embodiment as a temporary rust preventive are widely used as steel sheets with high corrosion resistance. Here, zinc plating and zinc alloy plating are collectively referred to as “zinc-based plating”.
The zinc-based plated steel sheet that can use the surface treatment agent of the present embodiment is not particularly limited, and examples thereof include galvanized steel sheet, zinc-nickel plated steel sheet, zinc-iron plated steel sheet, zinc-chromium plated steel sheet, zinc-aluminum. Examples thereof include zinc-based electroplating such as a plated steel plate, zinc-titanium-plated steel plate, zinc-magnesium-plated steel plate, and zinc-manganese-plated steel plate, and zinc or zinc-based alloy-plated steel plate such as hot dipped and vapor-deposited steel plate. Among them, a zinc-55 wt% aluminum alloy plated steel plate (Galbarium steel plate (registered trademark)) is preferably used because it has high corrosion resistance.
 本実施形態に係る表面処理剤の製造方法は特に限定されないが、例えば、あらかじめジルコニウム化合物(A)及びキレート剤(B)を混合撹拌し、ジルコニウム化合物(A)を安定化させておき、有機樹脂(C)に対して、ジルコニウム化合物(A)及びキレート剤(B)を撹拌しながら投入し、希釈、調製することにより得ることができる。 Although the manufacturing method of the surface treating agent which concerns on this embodiment is not specifically limited, For example, a zirconium compound (A) and a chelating agent (B) are mixed and stirred previously, the zirconium compound (A) is stabilized, and organic resin Zirconium compound (A) and chelating agent (B) are added to (C) while stirring, and can be obtained by diluting and preparing.
 本実施形態に係る表面処理剤を亜鉛系メッキ鋼板に塗工する方法は、特に限定されないが、例えば、表面処理剤を亜鉛系メッキ鋼板に塗布し、塗布後に被塗物を加熱により乾燥させる方法であってもよい。あるいは、あらかじめ亜鉛系メッキ鋼板を加熱しその後上記表面処理剤を塗布し余熱を利用し乾燥させる方法であってもよい。 The method for applying the surface treatment agent according to the present embodiment to the zinc-based plated steel sheet is not particularly limited. For example, the method of applying the surface treatment agent to the zinc-based plated steel sheet and drying the object to be coated by heating after the application is performed. It may be. Alternatively, a method may be used in which a galvanized steel sheet is heated in advance, and then the surface treatment agent is applied and dried using residual heat.
 上記表面処理剤の塗布方法は、特に限定されず、ロールコート、シャワーコート、スプレー、浸漬、刷毛塗り等によって塗布することができる。なお、通常のコイルコーティングラインではロールコートによる塗布方法が好ましく用いられるが、本実施形態に係る表面処理剤は、コイルコーティングを考慮した場合にも造膜性に優れている。
 上記表面処理剤の加熱乾燥条件は、素材最高到達温度(以下、PMTという。)が好ましくは20~250℃、より好ましくは50~220℃である。加熱温度が50℃以上では、水分の蒸発速度が速く十分な成膜性が確保できるため、耐食性や耐アルカリ性が向上する。一方で、PMTが250℃を超えると高温によって形成された塗膜中の成分が分解する場合があり、密着性や耐食性が不良となる。また、PMTが20℃付近での低温条件下であっても、水分が蒸発して乾燥することで、十分に優れた性能を有する皮膜を形成することが出来る。
 上記表面処理剤の塗布量は、塗膜の膜厚が0.5~3.0μm程度となるようにすることが好ましい。膜厚が上記範囲に対して薄すぎると耐食性が不足する。一方膜厚が厚すぎると加工性・密着性が低下すると共に不経済である。
The method for applying the surface treatment agent is not particularly limited, and can be applied by roll coating, shower coating, spraying, dipping, brush coating, or the like. In addition, although the coating method by roll coating is preferably used in a normal coil coating line, the surface treatment agent according to the present embodiment is excellent in film forming property even when coil coating is considered.
The conditions for heating and drying the surface treatment agent are such that the highest material temperature (hereinafter referred to as PMT) is preferably 20 to 250 ° C., more preferably 50 to 220 ° C. When the heating temperature is 50 ° C. or higher, the moisture evaporation rate is high and sufficient film forming properties can be secured, so that the corrosion resistance and alkali resistance are improved. On the other hand, when PMT exceeds 250 ° C., components in the coating film formed by high temperature may be decomposed, resulting in poor adhesion and corrosion resistance. Moreover, even if the PMT is under low temperature conditions around 20 ° C., a film having sufficiently excellent performance can be formed by evaporating and drying the moisture.
The amount of the surface treatment agent applied is preferably such that the thickness of the coating film is about 0.5 to 3.0 μm. If the film thickness is too thin relative to the above range, the corrosion resistance will be insufficient. On the other hand, if the film thickness is too thick, the workability and adhesion are lowered and it is uneconomical.
 以上説明したように、本実施形態における亜鉛系メッキ鋼板用表面処理剤は、ジルコニウム化合物(A)と、1分子中に1つ以上の水酸基を有するキレート剤(B)と、カルボキシル基(c1)を有する有機樹脂(C)とを含み、ジルコニウム化合物(A)は、Zr元素換算で亜鉛系メッキ鋼板用表面処理剤中に200~10000質量ppmの範囲で含有し、ジルコニウム化合物(A)に由来するジルコニウム元素(Zr)とキレート剤(B)とのモル比が(Zr)/(B)=4~100の範囲であり、有機樹脂(C)の酸価は、10~30mgKOH/gの範囲であり、カルボキシル基(c1)とキレート剤(B)とのモル比が(c1)/(B)=30~1000の範囲である。これにより、金属表面処理組成物は造膜性に優れ、亜鉛系メッキ鋼板に耐食性、耐薬品性、耐候性、塗装性が優れた塗膜を形成できる。 As described above, the surface treatment agent for a zinc-based plated steel sheet according to this embodiment includes a zirconium compound (A), a chelating agent (B) having one or more hydroxyl groups in one molecule, and a carboxyl group (c1). Zirconium compound (A) is contained in the surface treatment agent for zinc-based plated steel sheet in the range of 200 to 10000 mass ppm in terms of Zr element, and is derived from zirconium compound (A). The molar ratio of the elemental zirconium (Zr) to the chelating agent (B) is in the range of (Zr) / (B) = 4 to 100, and the acid value of the organic resin (C) is in the range of 10 to 30 mgKOH / g The molar ratio of carboxyl group (c1) to chelating agent (B) is in the range of (c1) / (B) = 30 to 1000. Thereby, a metal surface treatment composition is excellent in film forming property, and can form the coating film excellent in corrosion resistance, chemical resistance, weather resistance, and paintability on the zinc-based plated steel sheet.
 また、有機樹脂(C)は、水酸基(c2)を有し、有機樹脂(C)の水酸基価は、10~30mgKOH/gの範囲であり、水酸基(c2)とキレート剤(B)とのモル比が、(c2)/(B)=30~1000の範囲である。ジルコニウム化合物(A)は水酸基を含有する有機樹脂やキレート剤等によって安定化するため、キレート剤(B)により塗装密着性を発揮させた上で、更に水酸基を有した有機樹脂(C)を使用することで塗装密着性がより向上する。また、水酸基を有する有機樹脂(C)を使用することでキレート剤、有機樹脂、上塗り塗膜との相溶性を向上させることもできる。このような水酸基を有する有機樹脂(C)の効果は、水酸基(c2)とキレート剤(B)とのモル比が、(c2)/(B)=30~1000の範囲であれば十分に発揮できる。これにより、金属表面処理組成物は特に塗装密着性が優れた塗膜を形成できる。 The organic resin (C) has a hydroxyl group (c2), the hydroxyl value of the organic resin (C) is in the range of 10 to 30 mgKOH / g, and the molar ratio between the hydroxyl group (c2) and the chelating agent (B). The ratio is in the range of (c2) / (B) = 30 to 1000. Since the zirconium compound (A) is stabilized by an organic resin containing a hydroxyl group or a chelating agent, the coating adhesiveness is exhibited by the chelating agent (B), and further an organic resin (C) having a hydroxyl group is used. This will improve the paint adhesion. Moreover, compatibility with a chelating agent, an organic resin, and a top coat film can also be improved by using the organic resin (C) which has a hydroxyl group. The effect of the organic resin (C) having a hydroxyl group is sufficiently exhibited when the molar ratio of the hydroxyl group (c2) to the chelating agent (B) is in the range of (c2) / (B) = 30 to 1000. it can. Thereby, especially the metal surface treatment composition can form the coating film excellent in coating adhesiveness.
 また、有機樹脂(C)は、アクリル樹脂、ウレタン樹脂、ポリオレフィン樹脂およびビニル系樹脂からなる群より選択される少なくとも1種以上である。これにより、金属表面処理組成物は造膜性に優れ、特に遮断性、均一性、低温乾燥性が優れた塗膜を形成できる。また、薄膜で連続皮膜を形成させることができる。 Further, the organic resin (C) is at least one selected from the group consisting of an acrylic resin, a urethane resin, a polyolefin resin, and a vinyl resin. Thereby, the metal surface treatment composition is excellent in film forming property, and can form a coating film excellent in barrier properties, uniformity, and low temperature drying properties. Moreover, a continuous film can be formed with a thin film.
 また、亜鉛系メッキ鋼板用表面処理剤は、バナジウム化合物(D)をV元素換算で20~300質量ppmの範囲で含有する。また、亜鉛系メッキ鋼板用表面処理剤は、チタン化合物(E)をTi元素換算で50~1000質量ppmの範囲で含有する。また、亜鉛系メッキ鋼板用表面処理剤は、有機樹脂(C)の固形分質量に対して、シランカップリング剤(F)を0.5~5質量%の範囲で含有する。また、亜鉛系メッキ鋼板用表面処理剤は、酸化ケイ素(G)をSiO換算で2.0~4.0質量%の範囲で含有する。これにより、金属表面処理組成物は特に耐食性が優れた塗膜を形成できる。 The surface treatment agent for galvanized steel sheet contains the vanadium compound (D) in the range of 20 to 300 ppm by mass in terms of V element. The surface treating agent for galvanized steel sheet contains the titanium compound (E) in the range of 50 to 1000 ppm by mass in terms of Ti element. The surface treatment agent for galvanized steel sheet contains the silane coupling agent (F) in the range of 0.5 to 5% by mass with respect to the solid content mass of the organic resin (C). The surface treating agent for galvanized steel sheet contains silicon oxide (G) in the range of 2.0 to 4.0% by mass in terms of SiO 2 . Thereby, especially the metal surface treatment composition can form the coating film excellent in corrosion resistance.
 以下、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
<表面処理剤の製造例、塗工例>
[実施例1~26]
 あらかじめジルコニウム化合物(A)及びキレート剤(B)を混合撹拌し、ジルコニウム化合物(A)を安定化させておき、有機樹脂(C)に対して、ジルコニウム化合物(A)及びキレート剤(B)を撹拌しながら投入し、希釈、調製して表1に記載した表面処理剤を得た。
 なお、樹脂(C)に関して、実施例1~20においては、単独の樹脂を用いた。一方で、実施例21~26においては、表1に示す、種類の組み合わせ及び比率で複数の樹脂を混合したものを用いた。
<Surface treatment agent production example, coating example>
[Examples 1 to 26]
The zirconium compound (A) and the chelating agent (B) are mixed and stirred in advance to stabilize the zirconium compound (A), and the zirconium compound (A) and the chelating agent (B) are added to the organic resin (C). The mixture was added with stirring, diluted and prepared to obtain the surface treating agent shown in Table 1.
Regarding the resin (C), in Examples 1 to 20, a single resin was used. On the other hand, in Examples 21 to 26, those obtained by mixing a plurality of resins in combinations and ratios of types shown in Table 1 were used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中の各材料は以下の材料であった。
[ジルコニウム化合物(A)]
 A1:ジルコゾールAC-7
 A2:硝酸Zr
 A3:ジルコン弗化アンモン
Each material in Table 1 was the following material.
[Zirconium compound (A)]
A1: Zircosol AC-7
A2: Zr nitrate
A3: Zircon ammon fluoride
[キレート剤(B)]
 B1:HEDP
 B2:TEA
 B3:クエン酸アンモン
 B4:グルコン酸Na
[Chelating agent (B)]
B1: HEDP
B2: TEA
B3: Ammon citrate B4: Na gluconate
[有機樹脂(C)]
 C1:酸価が20mgKOH/gであり、水酸基価が20mgKOH/gであるアクリル
 C2:酸価が10mgKOH/gであり、水酸基価が20mgKOH/gであるアクリル
 C3:酸価が30mgKOH/gであり、水酸基価が20mgKOH/gであるアクリル
 C4:酸価が20mgKOH/gであり、水酸基(c2)を有しないアクリル
 C5:酸価が20mgKOH/gであり、水酸基価が30mgKOH/gであるアクリル
 C6:酸価が20mgKOH/gであり、水酸基価が10mgKOH/gであるアクリル
 C7:酸価が10mgKOH/gであり、水酸基価が5mgKOH/gであるアクリル
 C8:酸価が20mgKOH/gであり、水酸基(c2)を有しないウレタン
 C9:酸価が25mgKOH/gであり、水酸基(c2)を有しないオレフィン
 C10:酸価が20mgKOH/gであり、水酸基(c2)を有しない酢酸ビニル
[Organic resin (C)]
C1: An acrylic acid having an acid value of 20 mgKOH / g and a hydroxyl value of 20 mgKOH / g C2: An acrylic having an acid value of 10 mgKOH / g and a hydroxyl value of 20 mgKOH / g C3: An acid value of 30 mgKOH / g Acrylic having a hydroxyl value of 20 mgKOH / g C4: An acrylic acid having an acid value of 20 mgKOH / g and no hydroxyl group (c2) C5: An acrylic having an acid value of 20 mgKOH / g and a hydroxyl value of 30 mgKOH / g C6 : An acrylic acid having an acid value of 20 mgKOH / g and a hydroxyl value of 10 mgKOH / g C7: An acrylic having an acid value of 10 mgKOH / g and a hydroxyl value of 5 mgKOH / g C8: An acid value of 20 mgKOH / g Urethane having no hydroxyl group (c2) C9: Acid value is 25 mgKOH / g, Hydroxide (C2) an olefin having no C10: an acid value of 20 mgKOH / g, the vinyl acetate having no hydroxyl group (c2)
[実施例27~54]
 あらかじめジルコニウム化合物(A)及びキレート剤(B)を混合撹拌し、ジルコニウム化合物(A)を安定化させた。
 有機樹脂(C)を撹拌し、実施例27~31、47~50、53、54においては有機樹脂(C)にバナジウム化合物(D)を加えて撹拌した。
 実施例32~36、48~50においては、チタン化合物(E)を更に加えて撹拌した。
 実施例38~41、49、50においては、シランカップリング剤(F)を更に加えて撹拌した。
 実施例42~46、50~52においては、酸化ケイ素(G)を更に加えて撹拌した。
 有機樹脂(C)にジルコニウム化合物(A)及びキレート剤(B)を更に加えて撹拌し、希釈、調製して表2に記載した表面処理剤を得た。
[Examples 27 to 54]
The zirconium compound (A) and the chelating agent (B) were mixed and stirred in advance to stabilize the zirconium compound (A).
The organic resin (C) was stirred, and in Examples 27 to 31, 47 to 50, 53, and 54, the vanadium compound (D) was added to the organic resin (C) and stirred.
In Examples 32-36 and 48-50, the titanium compound (E) was further added and stirred.
In Examples 38 to 41, 49, and 50, the silane coupling agent (F) was further added and stirred.
In Examples 42 to 46 and 50 to 52, silicon oxide (G) was further added and stirred.
A zirconium compound (A) and a chelating agent (B) were further added to the organic resin (C), and the mixture was stirred, diluted and prepared to obtain the surface treating agent described in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2中に新たに示された各材料は以下の材料であった。
[バナジウム化合物(D)]
 D1:メタバナジン酸アンモン(新興化学工業株式会社製)
 D2:メタバナジン酸ソーダ(新興化学工業株式会社製)
 D3:硫酸バナジル(新興化学工業株式会社製)
 D4:バナジルアセチルアセトネート(新興化学工業株式会社製)
Each material newly shown in Table 2 was the following material.
[Vanadium compound (D)]
D1: Ammon metavanadate (manufactured by Shinsei Chemical Industry Co., Ltd.)
D2: Sodium metavanadate (manufactured by Shinsei Chemical Industry Co., Ltd.)
D3: Vanadyl sulfate (manufactured by Shinsei Chemical Industry Co., Ltd.)
D4: vanadyl acetylacetonate (manufactured by Shinsei Chemical Industry Co., Ltd.)
[チタン化合物(E)]
 E1:チタン弗化アンモニウム(森田化学工業株式会社製)
 E2:TC400(マツモトファインケミカル株式会社製)
 E3:T-50(日本曹達株式会社製)
[Titanium compound (E)]
E1: Titanium ammonium fluoride (Morita Chemical Industries, Ltd.)
E2: TC400 (Matsumoto Fine Chemical Co., Ltd.)
E3: T-50 (Nippon Soda Co., Ltd.)
[シランカップリング剤(F)]
 F1:3-グリシドキシオウロピルトリメトキシシラン(信越化学工業株式会社製)
 F2:2-(3,4-エポキシシクロヘキシル)エチルトエリメトキシシラン(新興化学工業株式会社製)
 F3:N-2-(アミノエチル)-3-アミノプロピルトリメチルシラン(新興化学工業株式会社製)
 F4:3-アミノプロピルトリメチルシラン(新興化学工業株式会社製)
[Silane coupling agent (F)]
F1: 3-Glycidoxyuropyrtrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
F2: 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (manufactured by Shinsei Chemical Industry Co., Ltd.)
F3: N-2- (aminoethyl) -3-aminopropyltrimethylsilane (manufactured by Shinsei Chemical Industry Co., Ltd.)
F4: 3-aminopropyltrimethylsilane (manufactured by Shinsei Chemical Industry Co., Ltd.)
[酸化ケイ素(G)]
 G1:ST-N(日産化学株式会社製)
 G2:AT-20A(株式会社ADEKA製)
 G3:ST-C(日産化学株式会社製)
[Silicon oxide (G)]
G1: ST-N (Nissan Chemical Co., Ltd.)
G2: AT-20A (made by ADEKA Corporation)
G3: ST-C (manufactured by Nissan Chemical Co., Ltd.)
[比較例1~16]
 比較例1においては、有機樹脂(C)にジルコニウム化合物(A)を加えて撹拌し、希釈、調製して表3に記載した表面処理剤を得た。
 比較例2、3、5~7、9~12においては、あらかじめジルコニウム化合物(A)及びキレート剤(B)を混合撹拌し、ジルコニウム化合物(A)を安定化させた。有機樹脂(C)にジルコニウム化合物(A)及びキレート剤(B)を加えて撹拌し、希釈、調製して表3に記載した表面処理剤を得た。
 比較例4、13~16においては、有機樹脂(C)にキレート剤(B)を加えて撹拌し、希釈、調製して表3に記載した表面処理剤を得た。
 比較例8においては、ジルコニウム化合物(A)及びキレート剤(B)を、撹拌、希釈、調製して表3に記載した表面処理剤を得た。
[Comparative Examples 1 to 16]
In Comparative Example 1, the zirconium compound (A) was added to the organic resin (C), stirred, diluted and prepared to obtain the surface treating agent described in Table 3.
In Comparative Examples 2, 3, 5 to 7, and 9 to 12, the zirconium compound (A) and the chelating agent (B) were mixed and stirred in advance to stabilize the zirconium compound (A). Zirconium compound (A) and chelating agent (B) were added to organic resin (C), stirred, diluted and prepared to obtain the surface treating agent described in Table 3.
In Comparative Examples 4 and 13 to 16, the chelating agent (B) was added to the organic resin (C), stirred, diluted and prepared to obtain the surface treating agent described in Table 3.
In Comparative Example 8, the zirconium compound (A) and the chelating agent (B) were stirred, diluted and prepared to obtain the surface treating agent described in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3中に新たに示された各材料は以下の材料であった。 Each material newly shown in Table 3 was the following material.
[キレート剤(B)]
 B5:EDTA
 なお、上記B5(EDTA)は、1分子中に1つ以上の水酸基を有しない。
[Chelating agent (B)]
B5: EDTA
Note that B5 (EDTA) does not have one or more hydroxyl groups in one molecule.
[有機樹脂(C)]
 C11:酸価が5mgKOH/gであり、水酸基価が20mgKOH/gであるアクリル
 C12:酸価が40mgKOH/gであり、水酸基価が20mgKOH/gであるアクリル
[Organic resin (C)]
C11: an acrylic acid having an acid value of 5 mgKOH / g and a hydroxyl value of 20 mgKOH / g C12: an acrylic having an acid value of 40 mgKOH / g and a hydroxyl value of 20 mgKOH / g
<貯蔵安定性>
 各実施例及び比較例の各亜鉛系メッキ鋼板用表面処理剤を40℃の恒温槽にて静置させ、最大で3ヶ月まで保管した際の液状態を下記基準により評価した。結果を表4に示した。
 1:40℃、3ヶ月後の処理剤に沈降物、増粘などが発生していない
 2:40℃、1ヶ月後の処理剤に沈降物、増粘などが発生していない
 3:40℃、1週間の処理剤に沈降物、増粘などが発生
 4:40℃、1週間以内の処理剤でゲル化発生
 表4に示したように、全ての実施例の表面処理剤において2よりも高い評価基準(1又は2)を満たす高い貯蔵安定性が確認された。
<Storage stability>
The surface treatment agent for each zinc-based plated steel sheet of each Example and Comparative Example was allowed to stand in a constant temperature bath at 40 ° C., and the liquid state when stored for up to 3 months was evaluated according to the following criteria. The results are shown in Table 4.
1: No precipitate or thickening occurs in the treatment agent after 3 months at 40 ° C 2: 40 ° C No precipitation or thickening occurs in the treatment agent after 1 month 3: 40 ° C Sedimentation, thickening, etc. occur in the treatment agent for 1 week 4: Gelation occurs in the treatment agent within 40 minutes at 40 ° C. As shown in Table 4, in all the surface treatment agents of all examples, more than 2. High storage stability satisfying high evaluation criteria (1 or 2) was confirmed.
 表1~3に記載した表面処理剤を用い、以下の方法で各評価試験用の試験板を作成した。
 表1~3に記載した各鋼材を市販のアルカリ脱脂剤(日本ペイント株式会社製、「サーフクリーナー53S」)を用いて60℃で2分間スプレー処理して脱脂し、水洗乾燥後に各実施例および比較例の表面処理剤をバーコーターで乾燥後の膜厚が1~2μmとなるように塗布した。その後、素材最高到達温度80℃で乾燥させて試験板を得た。
 なお、表1~3に記載した鋼材はそれぞれ以下の通りであった。
 GL:溶融55%アルミ・亜鉛メッキ鋼板(ガルバリウム鋼板(登録商標))
 GI:溶融亜鉛メッキ鋼板
 EG:電気亜鉛メッキ鋼板
 GF:溶融5%アルミ・亜鉛合金メッキ鋼板
 ZL:電気Zn-10%Ni合金メッキ鋼板
Using the surface treating agents described in Tables 1 to 3, test plates for each evaluation test were prepared by the following method.
Each steel material listed in Tables 1 to 3 was degreased by spray treatment at 60 ° C. for 2 minutes using a commercially available alkaline degreasing agent (manufactured by Nippon Paint Co., Ltd., “Surf Cleaner 53S”). The surface treatment agent of the comparative example was applied with a bar coater so that the film thickness after drying was 1 to 2 μm. Then, it dried at the raw material highest achieved temperature 80 degreeC, and obtained the test plate.
The steel materials listed in Tables 1 to 3 were as follows.
GL: 55% molten aluminum / galvanized steel sheet (Galbarium steel sheet (registered trademark))
GI: Galvanized steel sheet EG: Electrogalvanized steel sheet GF: Molten 5% aluminum / zinc alloy plated steel sheet ZL: Electrical Zn-10% Ni alloy plated steel sheet
<平面部耐食性>
 試験板のエッジと裏面をテープシールし、塩水噴霧試験SST(JIS-Z-2371)を行った。240時間後の白錆発生状況を観察し下記基準で評価した。結果を表4に示した。
 1:白錆発生なし
 2:白錆発生面積が10%未満
 3:白錆発生面積が10%以上30%未満
 4:白錆発生面積が30%以上
 表4に示したように、全ての実施例の試験板において2よりも高い評価基準(1又は2)を満たす高い平面部耐食性が確認された。
<Flat surface corrosion resistance>
The edge and back surface of the test plate were tape-sealed, and a salt spray test SST (JIS-Z-2371) was performed. The occurrence of white rust after 240 hours was observed and evaluated according to the following criteria. The results are shown in Table 4.
1: No white rust generation 2: White rust generation area is less than 10% 3: White rust generation area is 10% or more and less than 30% 4: White rust generation area is 30% or more All implementation as shown in Table 4 In the example test plate, high planar portion corrosion resistance satisfying an evaluation criterion (1 or 2) higher than 2 was confirmed.
<アルカリ脱脂後耐食性>
 試験板を60℃のアルカリ脱脂剤(サーフクリーナー155、日本ペイント社製)2%水溶液(pH12.5)に攪拌しながら2分間浸漬した後、試験板のエッジと裏面をテープシールし、塩水噴霧試験(JIS-Z-2371)を行った。96時間後の白錆発生状況を観察し下記基準で評価した。結果を表4に示した。
 1:白錆発生なし
 2:白錆発生面積が10%未満
 3:白錆発生面積が10%以上30%未満
 4:白錆発生面積が30%以上
 表4に示したように、全ての実施例の試験板において2よりも高い評価基準(1又は2)を満たす高いアルカリ脱脂後耐食性が確認された。
<Corrosion resistance after alkaline degreasing>
The test plate was immersed in a 2% aqueous solution (pH 12.5) at 60 ° C. with an alkaline degreasing agent (Surf Cleaner 155, Nippon Paint Co., Ltd.) for 2 minutes with stirring, and then the edges and back of the test plate were tape sealed and sprayed with salt water A test (JIS-Z-2371) was conducted. The occurrence of white rust after 96 hours was observed and evaluated according to the following criteria. The results are shown in Table 4.
1: No white rust generation 2: White rust generation area is less than 10% 3: White rust generation area is 10% or more and less than 30% 4: White rust generation area is 30% or more All implementation as shown in Table 4 High corrosion resistance after alkaline degreasing satisfying an evaluation standard (1 or 2) higher than 2 was confirmed in the test plate of the example.
<加工部耐食性>
 試験板をエリクセンテスターにて7mm押し出した加工し、試験板のエッジと裏面をテープシールし、塩水噴霧試験SST(JIS-Z-2371)を行った。120時間経過後、白錆の発生状況を観察し下記基準で評価した。結果を表4に示した。
 1:白錆発生なし
 2:白錆発生面積が10%未満
 3:白錆発生面積が10%以上30%未満
 4:白錆発生面積が30%以上
 表4に示したように、全ての実施例の試験板において2よりも高い評価基準(1又は2)を満たす高い加工部耐食性が確認された。
<Corrosion resistance of processed parts>
The test plate was processed by extruding 7 mm with an elixir tester, the edges and back of the test plate were tape-sealed, and a salt spray test SST (JIS-Z-2371) was performed. After 120 hours, the occurrence of white rust was observed and evaluated according to the following criteria. The results are shown in Table 4.
1: No white rust generation 2: White rust generation area is less than 10% 3: White rust generation area is 10% or more and less than 30% 4: White rust generation area is 30% or more All implementation as shown in Table 4 In the test plate of the example, high processed part corrosion resistance satisfying an evaluation criterion (1 or 2) higher than 2 was confirmed.
<耐アルカリ性>
試験板のエッジと裏面をテープシールし、室温、20%NaOH溶液に2分間浸漬した後の外観変色面積と試験前後の色差変化を観察し下記基準で評価した。結果を表4に示した。
 1:変色なし(ΔE(色差)<2.0)
 2:変色面積が25%未満(ΔE<2.0)
 3:変色面積が同25%以上50%未満(2.0≦ΔE<3.0)
 4:全面変色(ΔE≧3.0)
 表4に示したように、全ての実施例の試験板において2よりも高い評価基準(1又は2)を満たす高い耐アルカリ性が確認された。
<Alkali resistance>
The edge and back surface of the test plate were tape-sealed, and the appearance discoloration area and the color difference change before and after the test were immersed in a 20% NaOH solution at room temperature for 2 minutes were observed and evaluated according to the following criteria. The results are shown in Table 4.
1: No discoloration (ΔE (color difference) <2.0)
2: Discolored area is less than 25% (ΔE <2.0)
3: Discolored area of 25% or more and less than 50% (2.0 ≦ ΔE <3.0)
4: Full color change (ΔE ≧ 3.0)
As shown in Table 4, high alkali resistance satisfying the evaluation criteria (1 or 2) higher than 2 was confirmed in the test plates of all Examples.
<基材密着性>
 試験板をエリクセンテスターにて8mm押し出し加工したのち、押し出し部にセロハンテープ(ニチバン社製)を貼り、強制剥離した。試験板をメチルバイオレット染色液に浸漬し、皮膜状態を観察し下記基準で評価した。結果を表4に示した。
 1:剥離ほとんどなし
 2:剥離面積が10%未満
 3:剥離面積が10%以上25%未満
 4:剥離面積が25%以上
 表4に示したように、全ての実施例の試験板において2よりも高い評価基準(1又は2)を満たす高い基材密着性が確認された。
<Base material adhesion>
The test plate was extruded 8 mm with an elixir tester, and then a cellophane tape (manufactured by Nichiban Co., Ltd.) was applied to the extruded portion and forcedly peeled off. The test plate was immersed in a methyl violet staining solution, the state of the film was observed and evaluated according to the following criteria. The results are shown in Table 4.
1: Almost no peeling 2: Peeling area is less than 10% 3: Peeling area is 10% or more and less than 25% 4: Peeling area is 25% or more As shown in Table 4, in all the test plates of Example 2, Also, high substrate adhesion satisfying the high evaluation criteria (1 or 2) was confirmed.
<耐沸騰水性>
 試験板のエッジと裏面をテープシールし、沸騰水に1時間浸漬した後の外観変色面積と試験前後の色差変化を観察し下記基準で評価した。結果を表4に示した。
 1:全面が変色なし(ΔE<1.0)
 2:変色面積が25%未満(ΔE<1.0)
 3:変色面積が同25%以上50%未満(1.0≦ΔE<3.0)
 4:全面が変色(ΔE≧3.0)
 表4に示したように、全ての実施例の試験板において2よりも高い評価基準(1又は2)を満たす高い耐沸騰水性が確認された。
<Boiling water resistance>
The edge and back surface of the test plate were tape-sealed and the appearance discoloration area after immersion for 1 hour in boiling water and the color difference change before and after the test were observed and evaluated according to the following criteria. The results are shown in Table 4.
1: No color change on the entire surface (ΔE <1.0)
2: Discolored area is less than 25% (ΔE <1.0)
3: Discolored area of 25% or more and less than 50% (1.0 ≦ ΔE <3.0)
4: The entire surface is discolored (ΔE ≧ 3.0)
As shown in Table 4, high boiling water resistance satisfying the evaluation criteria (1 or 2) higher than 2 was confirmed in the test plates of all Examples.
<塗装密着性>
 試験板表面にメラミンアルキッド塗料(オルガネオホワイト、日本ペイント社製)をバーコーターで乾燥膜厚20μmとなるように塗布し、130℃で15分間焼き付けて塗膜板を作製した。次に塗膜板を沸騰水中に30分間浸漬し、24時間放置後、エリクセンテスターにて塗膜板を7mm押し出し、その押し出し部にセロハンテープ(ニチバン社製)を貼り、強制剥離した後の塗膜状態を下記の評価基準で評価した。結果を表4に示した。
 1:ほとんど剥離なし
 2:剥離面積が10%未満
 3:剥離面積が10%以上25%未満
 4:剥離面積が25%以上
 表4に示したように、全ての実施例の試験板において2よりも高い評価基準(1又は2)を満たす高い塗装密着性が確認された。
<Coating adhesion>
A melamine alkyd paint (Organeo White, manufactured by Nippon Paint Co., Ltd.) was applied to the test plate surface with a bar coater so as to have a dry film thickness of 20 μm, and baked at 130 ° C. for 15 minutes to prepare a coated plate. Next, immerse the coating plate in boiling water for 30 minutes, leave it for 24 hours, extrude the coating plate 7 mm with an elixir tester, apply cellophane tape (manufactured by Nichiban Co., Ltd.) to the extruded part, and forcibly peel it off The film state was evaluated according to the following evaluation criteria. The results are shown in Table 4.
1: Almost no peeling 2: Peeling area is less than 10% 3: Peeling area is 10% or more and less than 25% 4: Peeling area is 25% or more As shown in Table 4, in all the test plates of Examples, In addition, high paint adhesion satisfying a high evaluation standard (1 or 2) was confirmed.
<耐水性>
 表面処理剤を塗布、乾燥した処理鋼板に水道水を滴下し、15分後に水滴を除去した後、処理鋼板表面の水滴跡を試験前後の色差変化および目視にて観察し下記基準で評価した。結果を表4に示した。
 1:水滴の跡が全く確認できず、ΔE<1.0
 2:水滴の跡が若干確認できるが、ΔE<1.0
 3:水滴の跡が若干確認でき、ΔE>1.0
 4:水滴の跡がはっきりと確認でき、ΔE>3.0
 表4に示したように、全ての実施例の試験板において2よりも高い評価基準(1又は2)を満たす高い耐水性が確認された。
<Water resistance>
Tap water was dropped on the treated steel plate coated with the surface treatment agent and dried, and after 15 minutes, the water droplets were removed. Then, the water droplet traces on the treated steel plate surface were visually observed before and after the test and evaluated according to the following criteria. The results are shown in Table 4.
1: Traces of water droplets could not be confirmed at all, and ΔE <1.0
2: Some traces of water droplets can be confirmed, but ΔE <1.0
3: Some traces of water droplets can be confirmed, ΔE> 1.0
4: Traces of water droplets can be clearly confirmed, ΔE> 3.0
As shown in Table 4, high water resistance satisfying the evaluation criteria (1 or 2) higher than 2 was confirmed in the test plates of all Examples.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~3の表面処理剤は、表面処理剤中のジルコニウム化合物(A)の配合量が200~10000質量ppmの範囲で異なるが、この範囲であれば、いずれの評価においても高い評価基準を満たすことが確認された。 The surface treatment agents of Examples 1 to 3 differ in the amount of the zirconium compound (A) in the surface treatment agent in the range of 200 to 10000 mass ppm. It was confirmed that
 また、実施例4~6の表面処理剤は、表面処理剤中のジルコニウム元素(Zr)とキレート剤(B)とのモル比(Zr)/(B)が4~100の範囲で異なるが、この範囲であれば、いずれの評価においても高い評価基準を満たすことが確認された。 Further, the surface treatment agents of Examples 4 to 6 differ in the molar ratio (Zr) / (B) between the zirconium element (Zr) and the chelating agent (B) in the surface treatment agent in the range of 4 to 100. Within this range, it was confirmed that high evaluation criteria were satisfied in any evaluation.
 また、実施例7~9の表面処理剤は、カルボキシル基(c1)とキレート剤(B)とのモル比(c1)/(B)が30~1000の範囲で異なるが、この範囲であれば、いずれの評価においても高い評価基準を満たすことが確認された。 Further, the surface treating agents of Examples 7 to 9 differ in the molar ratio (c1) / (B) of the carboxyl group (c1) to the chelating agent (B) in the range of 30 to 1000. In any evaluation, it was confirmed that the high evaluation criteria were satisfied.
 また、実施例10~26の表面処理剤は、有機樹脂(C)の酸価が10~30mgKOH/gの範囲で異なるが、この範囲であれば、いずれの評価においても高い評価基準を満たすことが確認された。 Further, the surface treatment agents of Examples 10 to 26 have different acid values of the organic resin (C) in the range of 10 to 30 mgKOH / g, but within this range, the high evaluation criteria are satisfied in any evaluation. Was confirmed.
 また、実施例27~54の表面処理剤は、バナジウム化合物(D)、チタン化合物(E)、シランカップリング剤(F)および酸化ケイ素(G)の少なくともいずれかを所定量含むものであるが、これらの表面処理剤に関しても、いずれの評価においても高い評価基準を満たすことが確認された。 The surface treating agents of Examples 27 to 54 contain a predetermined amount of at least one of the vanadium compound (D), the titanium compound (E), the silane coupling agent (F), and the silicon oxide (G). As for the surface treatment agent, it was confirmed that high evaluation criteria were satisfied in any evaluation.
 なお、詳細は省略するが、各実施例の試験板において、比較例の試験板と比べ高い評価基準を満たすことが確認された。上述の結果も踏まえると、本実施形態に係る亜鉛系メッキ鋼板用表面処理剤は、ジルコニウム化合物(A)、キレート剤(B)および有機樹脂(C)の含有量、比率、有機樹脂(C)の酸価等を調整することで、単に貯蔵安定性が向上するだけでなく、上塗り密着性や沸騰水黒変性が向上することが示された。 Although details are omitted, it was confirmed that the test plates of each example satisfied higher evaluation standards than the test plates of the comparative examples. Based on the above results, the surface treatment agent for galvanized steel sheet according to this embodiment includes the content, ratio, organic resin (C) of the zirconium compound (A), the chelating agent (B) and the organic resin (C). It was shown that adjusting the acid value and the like not only improved the storage stability but also improved the adhesion of the top coat and the boiling water blackening.

Claims (7)

  1.  亜鉛系メッキ鋼板用表面処理剤であって、
     ジルコニウム化合物(A)と、1分子中に1つ以上の水酸基を有するキレート剤(B)と、カルボキシル基(c1)を有する有機樹脂(C)とを含み、
     前記ジルコニウム化合物(A)は、Zr元素換算で亜鉛系メッキ鋼板用表面処理剤中に200~10000質量ppmの範囲で含有し、
     前記ジルコニウム化合物(A)に由来するジルコニウム元素(Zr)と前記キレート剤(B)とのモル比が(Zr)/(B)=4~100の範囲であり、
     前記有機樹脂(C)の酸価は、10~30mgKOH/gの範囲であり、
     カルボキシル基(c1)と前記キレート剤(B)とのモル比が(c1)/(B)=30~1000の範囲である亜鉛系メッキ鋼板用表面処理剤。
    A surface treatment agent for galvanized steel sheet,
    A zirconium compound (A), a chelating agent (B) having one or more hydroxyl groups in one molecule, and an organic resin (C) having a carboxyl group (c1),
    The zirconium compound (A) is contained in the range of 200 to 10000 mass ppm in the surface treatment agent for galvanized steel sheet in terms of Zr element,
    The molar ratio of the zirconium element (Zr) derived from the zirconium compound (A) and the chelating agent (B) is in the range of (Zr) / (B) = 4 to 100,
    The acid value of the organic resin (C) is in the range of 10 to 30 mgKOH / g,
    A surface treating agent for a zinc-based plated steel sheet, wherein the molar ratio of the carboxyl group (c1) to the chelating agent (B) is in the range of (c1) / (B) = 30 to 1000.
  2.  前記有機樹脂(C)は、水酸基(c2)を有し、
     前記有機樹脂(C)の水酸基価は、10~30mgKOH/gの範囲であり、
     前記水酸基(c2)と前記キレート剤(B)とのモル比が、(c2)/(B)=30~1000の範囲である請求項1に記載の亜鉛系メッキ鋼板用表面処理剤。
    The organic resin (C) has a hydroxyl group (c2),
    The hydroxyl value of the organic resin (C) is in the range of 10 to 30 mgKOH / g,
    The surface treating agent for galvanized steel sheet according to claim 1, wherein the molar ratio of the hydroxyl group (c2) to the chelating agent (B) is in the range of (c2) / (B) = 30 to 1000.
  3.  前記有機樹脂(C)は、アクリル樹脂、ウレタン樹脂、ポリオレフィン樹脂およびビニル系樹脂からなる群より選択される少なくとも1種以上である請求項1又は2に記載の亜鉛系メッキ鋼板用表面処理剤。 The surface treatment agent for galvanized steel sheets according to claim 1 or 2, wherein the organic resin (C) is at least one selected from the group consisting of acrylic resins, urethane resins, polyolefin resins and vinyl resins.
  4.  バナジウム化合物(D)をV元素換算で20~300質量ppmの範囲で含有する請求項1~3のいずれかに記載の亜鉛系メッキ鋼板用表面処理剤。 The surface treating agent for galvanized steel sheet according to any one of claims 1 to 3, comprising a vanadium compound (D) in a range of 20 to 300 ppm by mass in terms of V element.
  5.  チタン化合物(E)をTi元素換算で50~1000質量ppmの範囲で含有する請求項1~4のいずれかに記載の亜鉛系メッキ鋼板用表面処理剤。 The surface treating agent for galvanized steel sheets according to any one of claims 1 to 4, comprising a titanium compound (E) in a range of 50 to 1000 ppm by mass in terms of Ti element.
  6.  前記有機樹脂(C)の固形分質量に対して、シランカップリング剤(F)を0.5~5質量%の範囲で含有する請求項1~5のいずれかに記載の亜鉛系メッキ鋼板用表面処理剤。 The galvanized steel sheet according to any one of claims 1 to 5, wherein the silane coupling agent (F) is contained in a range of 0.5 to 5 mass% with respect to the solid mass of the organic resin (C). Surface treatment agent.
  7.  酸化ケイ素(G)をSiO換算で2.0~4.0質量%の範囲で含有する請求項1~6のいずれかに記載の亜鉛系メッキ鋼板用表面処理剤。 Zinc-plated steel sheet for surface treatment agent according to any one of claims 1 to 6 containing silicon oxide (G) in the range of 2.0 to 4.0 mass% in terms of SiO 2.
PCT/JP2017/046495 2016-12-27 2017-12-25 Surface treatment agent for galvanized steel sheets WO2018123996A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780080279.0A CN110168139A (en) 2016-12-27 2017-12-25 Galvanized steel plate surface treating agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-254389 2016-12-27
JP2016254389A JP6870983B2 (en) 2016-12-27 2016-12-27 Surface treatment agent for galvanized steel sheets

Publications (1)

Publication Number Publication Date
WO2018123996A1 true WO2018123996A1 (en) 2018-07-05

Family

ID=62709432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046495 WO2018123996A1 (en) 2016-12-27 2017-12-25 Surface treatment agent for galvanized steel sheets

Country Status (4)

Country Link
JP (1) JP6870983B2 (en)
CN (1) CN110168139A (en)
TW (1) TWI743280B (en)
WO (1) WO2018123996A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6574973B1 (en) * 2018-10-09 2019-09-18 サイデン化学株式会社 RESIN EMULSION FOR METAL SURFACE TREATMENT, METAL SURFACE TREATING AGENT, SURFACE TREATED METAL MATERIAL AND ITS MANUFACTURING METHOD, AND RESIN EMULSION MANUFACTURING METHOD
CN112391105B (en) * 2020-10-29 2022-07-29 立邦(上海)化工有限公司 Steel plate surface treating agent for high-aluminum zinc aluminum magnesium coating and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510058A (en) * 2003-10-23 2007-04-19 ビーエーエスエフ アクチェンゲゼルシャフト Essentially chromium-free method for passivating metal surfaces made of Zn, Zn alloys, Al or Al alloys
JP2008133502A (en) * 2006-11-28 2008-06-12 Yuken Industry Co Ltd Chromium-free liquid for chemical conversion treatment, and treatment method
JP2009161840A (en) * 2008-01-10 2009-07-23 Nagoya City Water-based zirconium corrosion prevention agent, corrosion prevention method for metal using the same, and method for producing water-based zirconium corrosion prevention agent
JP2010090409A (en) * 2008-10-03 2010-04-22 Nippon Parkerizing Co Ltd Surface-treated metallic material, liquid for treating metallic surface, coated metallic material, and method of manufacturing them
JP2011517727A (en) * 2008-03-11 2011-06-16 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for coating metal surface with passivating agent, passivating agent and use thereof
JP2012531527A (en) * 2009-07-03 2012-12-10 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Anticorrosion treatment for zinc and zinc alloy surfaces
JP2013542318A (en) * 2010-09-10 2013-11-21 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for coating metal surface with polymer-containing coating, coating and use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073180A (en) * 1998-08-31 2000-03-07 Nippon Parkerizing Co Ltd Water-based surface treating agent for metal material and surface treated metal material
JP4393660B2 (en) * 2000-02-29 2010-01-06 日本ペイント株式会社 Non-chromate metal surface treatment agent for PCM, PCM surface treatment method, and treated PCM steel sheet
CN100494494C (en) * 2006-12-21 2009-06-03 中国海洋石油总公司 Metal surface treating composition and its preparing method and use
CN102337532B (en) * 2011-07-11 2013-03-20 武汉迪赛高科技研究发展有限公司 Chromium-free passivation liquid applied to surface of zinc-coated layer
JP2014055319A (en) * 2012-09-12 2014-03-27 Kansai Paint Co Ltd Aqueous metal surface treatment
KR101789951B1 (en) * 2013-10-18 2017-10-25 니혼 파커라이징 가부시키가이샤 Surface treatment agent for metal material and production method for surface-treated metal material
CN104178757B (en) * 2014-08-08 2017-01-18 东北大学 Chromium-free composite passivator for hot-dip galvanized steel sheet and preparation and application methods of composite passivator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510058A (en) * 2003-10-23 2007-04-19 ビーエーエスエフ アクチェンゲゼルシャフト Essentially chromium-free method for passivating metal surfaces made of Zn, Zn alloys, Al or Al alloys
JP2008133502A (en) * 2006-11-28 2008-06-12 Yuken Industry Co Ltd Chromium-free liquid for chemical conversion treatment, and treatment method
JP2009161840A (en) * 2008-01-10 2009-07-23 Nagoya City Water-based zirconium corrosion prevention agent, corrosion prevention method for metal using the same, and method for producing water-based zirconium corrosion prevention agent
JP2011517727A (en) * 2008-03-11 2011-06-16 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for coating metal surface with passivating agent, passivating agent and use thereof
JP2010090409A (en) * 2008-10-03 2010-04-22 Nippon Parkerizing Co Ltd Surface-treated metallic material, liquid for treating metallic surface, coated metallic material, and method of manufacturing them
JP2012531527A (en) * 2009-07-03 2012-12-10 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Anticorrosion treatment for zinc and zinc alloy surfaces
JP2013542318A (en) * 2010-09-10 2013-11-21 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for coating metal surface with polymer-containing coating, coating and use thereof

Also Published As

Publication number Publication date
JP6870983B2 (en) 2021-05-12
TW201839170A (en) 2018-11-01
JP2018104783A (en) 2018-07-05
CN110168139A (en) 2019-08-23
TWI743280B (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP5555179B2 (en) Surface treatment agent for galvanized steel sheet, surface treatment method for galvanized steel sheet, and galvanized steel sheet
US9200165B2 (en) Surface treatment liquid for zinc or zinc alloy coated steel sheet, zinc or zinc alloy-coated steel sheet, and method for manufacturing the same
JP3952197B2 (en) Metal surface treatment method and galvanized steel sheet
TWI534216B (en) Water - based metal surface treatment agent
US8349446B2 (en) Coated steel sheet
JP5075321B2 (en) Aqueous treatment agent for metal surface
JP2005120469A (en) Composition for treating surface of metallic material, and surface treatment method
JP2792324B2 (en) Multi-layer galvanized steel sheet
JPWO2006082951A1 (en) Water-based metal material surface treatment agent, surface treatment method and surface treatment metal material
JP2006213958A (en) Composition for surface treatment of metallic material, and treatment method
JP5509078B2 (en) Water-based metal surface treatment agent and surface-treated metal material
TW200837220A (en) Aqueous surface-treating agent for environmentally acceptable pre-coated metallic materials, and surface-treated metallic material and environmentally acceptable pre-coated metallic material
JPWO2015152187A1 (en) Metal surface treatment agent for galvanized steel, coating method and coated steel
TW201638387A (en) Aqueous metal surface treatment agent
JP5661238B2 (en) Surface-treated galvanized steel sheet
TWI682011B (en) Metal surface treatment agent
JP5638191B2 (en) Chemical conversion treated metal plate and manufacturing method thereof
JP3952198B2 (en) Metal surface treatment method and galvanized steel sheet
WO2018123996A1 (en) Surface treatment agent for galvanized steel sheets
JPWO2017078105A1 (en) Aqueous surface treatment agent for galvanized steel or zinc-base alloy-plated steel, coating method and coated steel
JP5097311B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet
JP4916913B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet
JP5101271B2 (en) Surface-treated steel sheet
JP7099424B2 (en) Zinc-based plated steel sheet with surface treatment film and its manufacturing method
US20230348732A1 (en) Surface treatment composition for ternary hot-dip galvannealed steel sheet, surface-treated ternary hot-dip galvannealed steel sheet using same, and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887777

Country of ref document: EP

Kind code of ref document: A1