WO2017078105A1 - Aqueous surface treatment agent for zinc plated steel material or zinc-based alloy plated steel material, coating method, and coated steel material - Google Patents

Aqueous surface treatment agent for zinc plated steel material or zinc-based alloy plated steel material, coating method, and coated steel material Download PDF

Info

Publication number
WO2017078105A1
WO2017078105A1 PCT/JP2016/082690 JP2016082690W WO2017078105A1 WO 2017078105 A1 WO2017078105 A1 WO 2017078105A1 JP 2016082690 W JP2016082690 W JP 2016082690W WO 2017078105 A1 WO2017078105 A1 WO 2017078105A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
mass
plated steel
treatment agent
steel material
Prior art date
Application number
PCT/JP2016/082690
Other languages
French (fr)
Japanese (ja)
Inventor
邦彦 東新
浩雅 莊司
圭一 上野
山本 茂樹
圭一 中島
Original Assignee
新日鐵住金株式会社
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, 日本パーカライジング株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020187015268A priority Critical patent/KR102115686B1/en
Priority to CN201680062542.9A priority patent/CN108350578B/en
Priority to JP2017548833A priority patent/JP6510670B2/en
Publication of WO2017078105A1 publication Critical patent/WO2017078105A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09D161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/42Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also phosphates

Definitions

  • the present invention relates to an aqueous surface treating agent for galvanized steel or zinc-based alloy plated steel, a coating method using this treating agent, and a coated steel obtained using this method.
  • rust preventive coatings are required to have performance such as corrosion resistance, corrosion resistance after degreasing, coating adhesion, coating adhesion after degreasing, blackening resistance, anti-condensation whitening, treatment agent stability, and actual machine operability.
  • Patent Document 1 contains a raw material of a olefinic wax surface-modified with a cationic resin, a siloxane compound, a titanium compound, a vanadium compound, and preferably a silicon compound in a zinc-based plated steel sheet base material in a specific ratio.
  • a technique for forming a poorly water-soluble film in which the total content of strong electrolyte components remaining in the film is less than 0.3 mg ⁇ m ⁇ 2 by application of an aqueous treatment liquid and baking drying.
  • the stability of the treatment agent is not sufficiently considered. It has been found. As a result of studies to improve the stability of the treatment agent, it has been found that when acetic acid is added to the surface treatment agent described in Patent Document 1, the treatment agent stability of the surface treatment agent is improved.
  • Stack whitening resistance means the resistance to whitening of the surface-treated film in a state simulating the storage conditions during coil storage of the surface-treated steel sheet, and its performance evaluation is consistent with the surface-treated steel sheet under high temperature and high humidity conditions. Pressure is applied (stack), and the appearance after a certain period of time is evaluated.
  • the filament tape resistance means using the filament tape to temporarily fix the end of the coil of the surface-treated steel sheet, but means the resistance of the surface-treated film to the filament tape, and its performance evaluation is After applying the filament tape to the surface-treated steel sheet, the appearance after peeling the filament tape after a certain period of time under high temperature and high humidity conditions is evaluated.
  • the cause of the deterioration of stack whitening resistance is that acetic acid remaining in the surface treatment film becomes water-containing due to high humidity, and the zinc galvanized layer of the galvanized steel sheet, which is the base material, is attacked. This is thought to be due to the tendency to occur.
  • the cause of the deterioration of the resistance to filament tape is that acetic acid remaining in the surface-treated film becomes water-containing due to high humidity, and the adhesive layer of the filament tape is damaged, thereby reducing the adhesion of the filament tape. This is thought to be due to film damage to the attachment part of the ment tape.
  • the present invention has been made in view of the above circumstances, and is corrosion resistance, corrosion resistance after degreasing, coating adhesion, coating adhesion after degreasing, blackening resistance, condensation whitening resistance, processing agent stability, actual machine operability.
  • Water-based surface treatment agent for galvanized steel or zinc-base alloy-plated steel material that can form a film with excellent resistance to stack whitening and filament tape, and a coating method using this treatment agent, and An object is to provide a coated steel material obtained by using this method.
  • the present inventor has obtained a cationic polyurethane resin, a cationic phenol resin, a silane coupling agent, an acetylacetone complex of titanium, a vanadium compound, and an olefin wax.
  • An aqueous surface treatment agent for galvanized steel or zinc-based alloy-plated steel that can form a film with excellent stack whitening resistance and filament tape resistance by adding an acetic acid component and a phosphoric acid component to water. Based on this finding, the present invention has been completed.
  • the present invention includes a cationic polyurethane resin (A), a cationic phenol resin (B), a silane coupling agent (C), an acetylacetone complex of titanium (D), a vanadium compound (E), and acetic acid.
  • A cationic polyurethane resin
  • B cationic phenol resin
  • C silane coupling agent
  • D acetylacetone complex of titanium
  • E vanadium compound
  • acetic acid acetic acid
  • a water-based surface treatment agent for galvanized steel or zinc-based alloy-plated steel material comprising a component (G) and a phosphoric acid component (H) mixed in water, wherein the solid content (V) of the water-based surface treatment agent
  • the ratio (ND) / (NV) to the mass (ND) in terms of Ti of the acetylacetone complex (D) is 0.0170 to 0.0240, and the vanadium compound (E) with respect to the mass of the solid content (V).
  • Ratio (NE) / (NV) to mass (NE) in terms of V is 0.0070 to 0.0090
  • ratio of mass of acetic acid component (G) to mass of solid content (V) (NG) / (NV) is 0.040 to 0.140
  • the ratio (NH) / (NV) of the phosphoric acid component (H) to the mass of the solid content (V) is 0.025 to 0.075.
  • the ratio (ND) / (NE) of the acetylacetone complex (D) of titanium to the mass of Ti of the vanadium compound (E) in terms of V is 2.10 to 2.90, the acetic acid component ( The ratio (NH) / (NG) of the phosphoric acid component (H) to the mass of G) is 0.25 to 1.10, and the mass (ND) in terms of Ti of the acetylacetone complex (D) of titanium. To the mass of the phosphoric acid component (H) ( H) / (ND) is 1.11 to 3.19, which is for galvanized steel or zinc base alloy plated steel product for aqueous surface-treating agent.
  • the water-based surface treatment agent for galvanized steel or zinc-based alloy-plated steel further includes a ratio of the olefin wax (F) to the mass of the olefin wax (F) with respect to the mass of the solid content (V). It may contain 0.035 to 0.060 as (NF) / (NV).
  • the olefin wax (F) is surface-modified with a silane coupling agent (I), and the ratio of the mass of the silane coupling agent (I) to the mass of the olefin wax (F) (NI / NF). ) May be 0.025 to 0.035.
  • the olefin wax (F) may have an average particle size of 0.05 to 0.15 ⁇ m.
  • the vanadium compound (E) may be an acetylacetone complex of vanadium.
  • the olefin wax (F) may be surface-modified with an epoxy group-containing silane coupling agent.
  • the cationic polyurethane resin (A) is a polycarbonate-based water-dispersible cationic polyurethane resin containing a structural unit represented by the general formula (1) There may be.
  • R is an aliphatic alkylene group having 4 to 9 carbon atoms
  • n is an integer corresponding to a number average molecular weight in the range of 500 to 5000.
  • the cationic phenol resin (B) may be a polymer molecule having an average polymerization degree of 2 to 50 having a repeating unit represented by the general formula (2).
  • Y1 and Y2 each independently represent hydrogen or a Z group represented by the general formula (3) or (4), and the average number of substitutions of Z groups per benzene ring is 0.2. ⁇ 1.0.
  • R1, R2, R3, R4 and R5 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or a hydroxyalkyl group having 1 to 10 carbon atoms, - represents a hydroxide ion or an oxo acid ions.
  • the present invention is a coating method in which a coating is formed by applying the above-described aqueous surface treatment agent for galvanized steel or zinc-base alloy-plated steel to galvanized steel or zinc-base alloy-plated steel.
  • the present invention is a coated steel material obtained by the above coating method.
  • an aqueous surface treatment agent for galvanized steel or zinc-based alloy-plated steel material capable of forming a film excellent in stack whitening resistance and filament tape resistance, a coating method using this treatment agent, and this It becomes possible to provide the coated steel material obtained by using the method.
  • the present invention is excellent in the anti-condensation whitening property, which is one of the important required properties regarding the surface appearance quality of the surface-treated steel sheet used without coating, and further contains an olefin wax (F) as an optional component.
  • F olefin wax
  • Aqueous surface treatment agent for galvanized steel or zinc-based alloy-plated steel (component) ⁇ Cationic polyurethane resin (A)> ⁇ Cationic phenol resin (B)> ⁇ Silane coupling agent (C)> ⁇ Titanium acetylacetone complex (D)> ⁇ Vanadium compound (E)> ⁇ Olefin wax (F)> ⁇ Acetic acid component (G)> ⁇ Phosphoric acid component (H)> ⁇ Unsuitable component> (Mixing ratio) ⁇ (NC) / (NV)> ⁇ (ND) / (NV)> ⁇ (NE) / (NV)> ⁇ (NF) / (NV)> ⁇ (NG) / (NV)> ⁇ (Mixing ratio) ⁇ (NC) / (NV)> ⁇ (ND) / (NV)> ⁇ (NE) / (NV)> ⁇ (NF) / (NV)> ⁇ (NG) / (NV)>
  • the aqueous surface treating agent for galvanized steel or zinc-based alloy-plated steel includes at least a cationic polyurethane resin (A), a cationic phenol resin (B), a silane coupling agent (C), This is an aqueous surface treatment agent comprising titanium acetylacetone complex (D), vanadium compound (E), acetic acid component (G), and phosphoric acid component (H) in water. Moreover, the compounding ratio of each component in this aqueous surface treating agent is as follows.
  • the ratio (NC) / (NV) of the silane coupling agent (C) to the mass in terms of SiO 2 with respect to the mass of the solid content (V) of the aqueous surface treating agent of the present invention is 0.16 to 0.00.
  • the ratio (ND) / (NV) of the mass of acetylacetone complex (D) of titanium to the mass (ND) in terms of Ti with respect to the mass of solid content (V) is 0.0170 to 0.0240.
  • the ratio (NE) / (NV) of the vanadium compound (E) to the mass (NE) in terms of V with respect to the mass of the solid content (V) is 0.0070 to 0.0090.
  • the ratio (NG) / (NV) of the mass of the acetic acid component (G) to the mass of the solid content (V) is 0.040 to 0.140.
  • the ratio (NH) / (NV) of the mass of the phosphoric acid component (H) to the mass of the solid content (V) is 0.025 to 0.075.
  • the ratio (ND) / (NE) of the acetylacetone complex of titanium (D) to the mass in terms of Ti with respect to the mass in terms of V of the vanadium compound (E) is 2.10 to 2.90.
  • the ratio (NH) / (NG) of the mass of the phosphoric acid component (H) to the mass of the acetic acid component (G) is 0.25 to 1.10.
  • the ratio (NH) / (ND) of the phosphoric acid component (H) to the mass (ND) in terms of Ti of the acetylacetone complex (D) of titanium is 1.11 to 3.19.
  • composition component, compounding ratio
  • physical properties of the aqueous surface treatment agent for galvanized steel or zinc-based alloy plated steel according to the present invention will be described in detail.
  • the cationic polyurethane resin (A) is blended as an essential component in the aqueous surface treatment agent of the present invention, and is formed using the aqueous surface treatment agent of the present invention (that is, formed by application and drying of the aqueous surface treatment agent). It is a resin that forms the main component of a poorly water-soluble film (hereinafter also simply referred to as “slightly water-soluble film”). Since the treating agent to be used is aqueous, an aqueous resin is used as the cationic polyurethane resin (A) to be contained in the treating agent. Water-based resins are roughly classified into water dispersibility, emulsion, and water solubility.
  • a water dispersible resin in order to obtain a film having condensation whitening resistance and water resistance.
  • the water-soluble resin is an equilibrium dissolution system
  • a strong electrolyte component fluorine, lithium, sodium, potassium, chlorine, bromine, sulfuric acid, sulfurous acid, nitric acid, nitrous acid, acetic acid, formic acid, propionic acid, Ions such as sulfonic acids, etc.
  • condensation whitening is likely to occur when the strong electrolyte component substantially remains in the film
  • the surfactant remains in the film, This is because the water resistance may deteriorate.
  • the water-dispersible resin is preferably a type in which the resin particle surface is amine-modified and cation-dispersed, that is, a cationic water-dispersible resin.
  • cation dispersion coexistence with a silane coupling agent (C) described later becomes possible.
  • the treatment agent becomes alkaline and the silane coupling agent becomes unstable.
  • the silane coupling agent can be added to the alkaline treatment agent by dissolving the silane coupling agent using lithium hydroxide, sodium hydroxide or the like as a counter cation, but the addition of strong electrolyte ions such as lithium and sodium This is not preferable because the condensation whitening resistance deteriorates.
  • the particle size of the water dispersible resin is preferably in the range of 9 nm to 200 nm. The larger the particle size of the water-dispersible resin, the more the adverse effect of hydrophilization due to amine modification can be reduced.
  • a cationic polyurethane resin (A) is blended in the treating agent. Since the film mainly composed of the cationic polyurethane resin (A) has an excellent balance between tensile strength and elongation, processability and adhesion are improved.
  • the cationic polyurethane resin (A) is preferably a polycarbonate-based water-dispersible cationic polyurethane resin containing a structural unit represented by the following general formula (1).
  • a structural unit represented by the following general formula (1) When the cationic polyurethane resin (A) contains a structural unit represented by the following general formula (1), more excellent barrier properties are imparted, and condensation whitening resistance is improved.
  • R is an aliphatic alkylene group having 4 to 9 carbon atoms
  • n is a number average molecular weight of a carbonate-based polyol that is a raw material of the polycarbonate-based cationic polyurethane resin (A) of 500 to An integer corresponding to the range of 5000.
  • ⁇ Cationic phenol resin (B)> In addition to the cationic polyurethane resin (A), a cationic phenol resin (B) is further blended as an essential component in the aqueous surface treating agent of the present invention.
  • the aqueous surface treating agent of the present invention contains the cationic phenol resin (B)
  • the stability of the treating agent is improved.
  • membrane of this invention contains a cationic phenol resin (B)
  • topcoat water-resistant secondary adhesiveness will improve.
  • the cationic phenol resin (B) preferably has a repeating unit represented by the following general formula (2), and more preferably a polymer molecule having an average degree of polymerization of 2 to 50 of the repeating unit. When the average degree of polymerization is within this range, the water resistance of the film is improved.
  • the average degree of polymerization of the repeating unit of formula (2) can be determined from the integration ratio by 1 H-NMR.
  • Y1 and Y2 each independently represent hydrogen or a Z group represented by the general formula (3) or (4), and the average number of substitutions of Z groups per benzene ring is 0.00. 2 to 1.0.
  • the average number of substitutions of the Z group can be determined from the integration ratio by 1 H-NMR.
  • R1, R2, R3, R4 and R5 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or a hydroxyalkyl group having 1 to 10 carbon atoms
  • a ⁇ represents a hydroxide ion or an oxo acid (eg, nitric acid, sulfuric acid, phosphoric acid, carbonic acid, carboxylic acid, etc.) ion.
  • the counter anion of the cationic resin (cationic polyurethane resin (A) and cationic phenol resin (B)) used in the present invention is an anion that volatilizes under dry film formation, specifically formic acid or Acetate ions are preferred.
  • the counter anion of the cationic resin is a hydroxide ion, the treatment agent is inclined to alkalinity, and as described above, the silane coupling agent is easily gelled and the liquid becomes unstable.
  • the counter anion of the cationic resin is formic acid or acetate ion
  • formic acid or acetic acid volatilizes during dry film formation.
  • the amine loses its charge, and irreversible aggregation as a film-forming reaction occurs due to the hydrophobicity of the resin particles.
  • volatilization of the counter anion increases the pH, and the silane coupling agent silanolized by hydrolysis advances irreversible gelation and condensation as a film-forming reaction.
  • a network of resin, siloxane, metalloxane bond is formed by reaction between the side chain of the cationic polyurethane resin (A) and the cationic phenol resin (B) and the silane coupling agent, and reaction between the silanol and the plating substrate. Therefore, a strong film excellent in adhesion, corrosion resistance, and solvent resistance can be formed.
  • a silane coupling agent (C) is blended as an essential component.
  • the silane coupling agent (C) undergoes hydrolysis and condensation in the film formation (baking) process to form a siloxane-type film that is three-dimensionally crosslinked by a siloxane bond. That is, the poorly water-soluble film of the present invention contains a siloxane compound (C ′).
  • the corrosion resistance, adhesion, and solvent resistance of the formed film are improved. Performance is significantly improved.
  • silane coupling agent (C) used as a raw material for the siloxane compound (C ′) it is preferable to use an alkoxysilane having 2 or more, preferably 3 or more alkoxy groups.
  • the partial hydrolyzate can also be used.
  • silane coupling agent (C) The alkoxy group of the silane coupling agent (C) is hydrolyzed by addition to an aqueous system to form silanol (—Si—OH). Silanol dispersion stability is obtained at pH 6.5 or less. If the pH of the treatment agent exceeds 6.5, pot life cannot be obtained due to gelation.
  • silane coupling agent Commercial products can also be used as the silane coupling agent (C).
  • Examples of commercially available products include N- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane and the like.
  • Preferred silane coupling agents (C) are those having a functional group reactive with the cationic polyurethane resin (A) and the cationic phenol resin (B) to be used (for example, 3-aminopropyltriethoxysilane, 3-glycol Sidoxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane and the like are preferable, and 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane and the like are particularly preferable.
  • the kind of reaction with these cationic resins may be polymerization reaction, condensation reaction, addition reaction or the like, and is not particularly limited.
  • ⁇ Titanium acetylacetone complex (D)> In the aqueous surface treatment agent of the present invention, an acetylacetone complex (D) of titanium is also blended as an essential component.
  • the titanium acetylacetone complex (D) is blended with the treating agent of the present invention, and the hardly water-soluble film formed contains a titanium compound (D ′) that is a reaction precipitate of the titanium acetylacetone complex (D). Corrosion resistance is greatly improved.
  • titanium acetylacetone complex When a titanium acetylacetone complex is added to the treatment agent, the corrosion resistance of the poorly water-soluble film formed is further improved, and acetylacetonate and acetylacetone remaining in the dry film-forming film are weakly ionic and dew condensation occurs. Does not adversely affect whitening. Titanium acetylacetone complex reacts with the plating substrate under dry film formation to form a hardly water-soluble film. Of the titanium chelate compounds, the triethanolamine complex having a cationic property is preferable in that it does not adversely affect condensation whitening, but the triethanolamine remaining in the film after dry film formation exhibits water absorption, so that it has corrosion resistance. The improvement effect is greater with the acetylacetone complex. Titanium hydrofluoric acid and ammonium titanium fluoride are not suitable because fluorine is liberated and the resistance to condensation whitening deteriorates.
  • the vanadium compound (E) is also blended as an essential component.
  • the vanadium compound (E) is blended with the treatment agent of the present invention, and the formed hardly water-soluble film contains the vanadium compound (E ′) which is a reaction precipitate of the vanadium compound (E), so that the corrosion resistance is very high. improves.
  • vanadium compound (E) examples include vanadium pentoxide not containing a strong electrolyte, metavanadate and its salt (for example, ammonium metavanadate), vanadium trioxide, vanadium dioxide, vanadium oxyacetylacetonate, vanadium acetylacetonate, and the like. And vanadium acetate which is a salt with a volatile acid. Considering the effect of improving corrosion resistance, vanadium acetylacetone complexes such as vanadium acetylacetonate and vanadium oxyacetylacetonate are preferable. As will be described later, the vanadium compound (E ′) is immobilized in the film as an oxide or an acetylacetone complex.
  • the olefin wax (F) is preferably blended as an optional component.
  • the olefin wax (F) is more preferably surface-modified with a silane coupling agent (I).
  • a silane coupling agent (I) When the poorly water-soluble film of the present invention contains the olefin wax (F) surface-modified with the silane coupling agent (I), it is dispersed in the film without being exposed to the surface, so that it is oil-free lubrication And handleability, that is, coil deformation resistance and cut plate pile load collapse resistance can both be achieved.
  • the reason why the olefinic wax (F) is dispersed in the film is thought to be because the surface tension of the silane coupling agent (I) increases the surface tension of the wax and the wettability to the treatment agent increases.
  • the wax is concentrated on the film surface by liquid convection under dry film formation, and it is not easy to uniformly disperse the wax in the film.
  • the wax particles can be uniformly dispersed in the film by surface modification with a silane coupling agent.
  • silane coupling agent (I) a silane coupling agent having a reactive functional group is preferably used.
  • the surface modification with the silane coupling agent (I) can be carried out by directly mixing the silane coupling agent (I) into the olefin wax emulsion.
  • a surface-modified olefin wax that is stable in an acidic treatment solution having a pH of 6.5 or less containing a cationic polyurethane resin, a cationic phenol resin, and a silane coupling agent is obtained.
  • the olefin wax (F) examples include polyethylene wax, oxidized polyethylene wax, oxidized polypropylene wax, and the like.
  • olefin wax (F) surface-modified with the silane coupling agent (I) of the present invention a silane coupling agent containing an epoxy group in a polyethylene wax emulsion having a carboxyl group that is stable in an acidic treatment solution (for example, The surface-modified olefin wax obtained by directly mixing glycidylpropyltrimethoxysilane) is preferable.
  • the ratio (NI / NF) of the mass of the silane coupling agent (I) to the mass of the olefin wax (F) is preferably 0.025 to 0.035.
  • NI / NF 0.025 or more handleability can be improved.
  • workability can be improved by making NI / NF 0.035 or less.
  • the addition amount of the silane coupling agent (I) is preferably equimolar or more with the acid value of the wax dispersion.
  • the average particle diameter of the olefin wax (F) is preferably 0.05 to 0.15 ⁇ m. If the wax particle size is 0.15 ⁇ m or less, the volume of the wax present on the surface of the film is reduced and the handleability is improved, and if it is 0.05 ⁇ m or more, the processability is improved and the treatment agent is stabilized by wax aggregation. There is little adverse effect on sex.
  • the average particle diameter of the olefin wax (F) is a value measured by a laser diffraction / scattering method.
  • blending an acetic acid component (G) the liquid stability (processing agent stability) of a processing agent improves. This is presumed to be because the pH buffering action of the acetic acid component (G) stabilizes the pH of the treatment agent in the vicinity of 3.5 to 4.0, and the condensation reaction of the silane coupling agent (C) becomes slow. .
  • the pH at which the condensation reaction of the silane coupling agent (C) is slowest is around 3.5 to 4.0.
  • Acetic acid has a boiling point of 118 ° C., but the organic acid having a buffering action has a low boiling point and is relatively difficult to remain in the film. For this reason, it is suitable as an organic acid to be contained in the surface treatment agent.
  • acetic acid component (G) examples include acetic acid, ammonium acetate, potassium acetate, and sodium acetate. Considering the effect of improving the treatment agent stability, acetic acid is particularly preferable.
  • the phosphoric acid component (H) is blended as an essential component.
  • the poorly water-soluble film formed contains the phosphoric acid component (H)
  • it reacts with the galvanized layer of the galvanized steel or zinc-base alloy-plated steel material. Since zinc phosphate film is generated, elution of zinc from the galvanized layer can be suppressed. As a result, the occurrence of white rust of zinc is suppressed, and the stack whitening resistance is improved.
  • the amount of acetic acid remaining in the film can be reduced by adding the phosphoric acid component (H) to the treatment agent. As a result, the adhesive layer of the filament tape is not attacked and the filament tape is closely attached. Deterioration can be suppressed.
  • Examples of the phosphoric acid component (H) include inorganic phosphoric acid such as phosphoric acid and inorganic phosphoric acid compounds such as ammonium phosphate, potassium phosphate, sodium phosphate, and monosodium dihydrogen phosphate.
  • inorganic phosphoric acid compounds and inorganic phosphoric acid are preferable, and phosphoric acid is particularly preferable.
  • the aqueous surface treatment agent of the present invention preferably contains no colloidal silica.
  • the silane coupling agent (C) reacts with the colloidal silica and the treatment agent stability decreases, which is not preferable.
  • the aqueous surface treatment agent of the present invention preferably contains no basic alkali silicate.
  • the aqueous surface treatment agent of the present invention is acidic, and if an alkaline basic silicate that is alkaline is blended, the treatment agent stability is lowered, which is not preferable.
  • the ratio (NC) / (NV) of the silane coupling agent (C) to the mass in terms of SiO 2 with respect to the mass of the solid content (V) of the aqueous surface treating agent of the present invention is 0.16 to 0.19. Yes, preferably from 0.16 to 0.18.
  • (NC) / (NV) exceeds 0.19, the primary adhesion is lowered, and when it is less than 0.16, sufficient planar portion corrosion resistance cannot be obtained.
  • the ratio (ND) / (NV) of the mass of acetylacetone complex (D) of titanium to the mass (ND) of Ti with respect to the mass of the solid content (V) is 0.0170 to 0.0240, preferably 0. 0190-0.0230.
  • (ND) / (NV) is less than 0.0170, the corrosion resistance after degreasing deteriorates, and when it exceeds 0.0240, the effect of improving the corrosion resistance after degreasing is saturated and the adhesion after degreasing is reduced. To do.
  • ⁇ (NE) / (NV)> The ratio (NE) / (NV) of the vanadium compound (E) to the mass (NE) in terms of V with respect to the mass of the solid content (V) is 0.0070 to 0.0090, preferably 0.0075. ⁇ 0.0090.
  • (NE) / (NV) is less than 0.0070, a sufficient effect of improving the corrosion resistance of the cut portion cannot be obtained, and when it is more than 0.0090, the effect of improving the corrosion resistance of the cut portion is saturated and the secondary adhesion is achieved. Decreases.
  • the ratio (NF) / (NV) of the mass of the olefin wax (F) to the mass of the solid content (V) is preferably 0.035 to 0.060, more preferably 0.040 to 0. .055.
  • (NF) / (NV) is 0.035 or more, sufficient oil-free lubricity is obtained, so that workability is improved.
  • (NF) / (NV) is 0.060 or less, the coil deformation resistance and the cut plate pile load collapse resistance are improved, and the handleability is improved.
  • the ratio (NG) / (NV) of the mass of the acetic acid component (G) to the mass of the solid content (V) is 0.040 to 0.140, preferably 0.050 to 0.130. More preferably, it is 0.060 to 0.120.
  • (NG) / (NV) is less than 0.040, a sufficient effect of improving the stability of the processing agent cannot be obtained, and when it exceeds 0.140, the effect of improving the stability of the processing agent is saturated and the condensation resistance is increased. Whitening property decreases.
  • the ratio (NH) / (NV) of the mass of the phosphoric acid component (H) to the mass of the solid content (V) is 0.025 to 0.075, preferably 0.030 to 0.070. More preferably, it is 0.035 to 0.065.
  • (NH) / (NV) is less than 0.025, a sufficient zinc elution suppression effect from the plating layer cannot be obtained, and when it exceeds 0.075, the zinc elution suppression effect is saturated and black resistance Denaturation is reduced.
  • the ratio (ND) / (NE) of the acetylacetone complex (D) of titanium to the mass of Ti in terms of V to the mass of vanadium compound (E) in terms of V is 2.10 to 2.90, preferably 2.20 to 2.80, more preferably 2.30 to 2.70.
  • (ND) / (NE) is less than 2.10, the fixing rate of the vanadium compound (E) to the film is lowered, and the corrosion resistance of the processed part is lowered.
  • (ND) / (NE) is more than 2.90, the fixing ratio of titanium to the acetylacetone complex (D) is lowered, and the processed portion corrosion resistance is lowered.
  • ⁇ (NH) / (NG)> The ratio (NH) / (NG) of the mass of the phosphoric acid component (H) to the mass of the acetic acid component (G) is 0.25 to 1.10.
  • (NH) / (NG) is less than 0.25 and more than 1.10, stack whitening resistance is deteriorated.
  • (NH) / (NG) is preferably 0.30 to 1.00, more preferably 0.35 to 0.90.
  • ⁇ (NH) / (ND)> The ratio (NH) / (ND) of the mass of the phosphoric acid component (H) to the mass (ND) in terms of Ti of the acetylacetone complex (D) of titanium is 1.11 to 3.19.
  • (NH) / (ND) is less than 1.11 and more than 3.19, the resistance to filament tape deteriorates.
  • (NH) / (ND) is preferably 1.40 to 3.00, and more preferably 1.80 to 2.81.
  • a surface treatment agent used for film formation in the present invention can be prepared.
  • Each component is adjusted so as to have a predetermined ratio in the film, and accordingly, adjusted to have a predetermined ratio with respect to the total amount of the non-volatile content (solid content) excluding the solvent and the volatile component.
  • the solvent may be only water, but for the purpose of improving the drying property of the film, the water-soluble organic solvent (for example, alcohols) that does not contain the above-mentioned strong electrolyte. May be contained in a small amount (for example, within 30% by mass of the entire solvent).
  • additives commonly used in coating treatment liquids such as leveling agents and antifoaming agents can be added to the treatment agents.
  • the aqueous surface treatment agent of the present invention contains the cationic polyurethane resin (A) and the cationic phenol resin (B) as essential components, and also for the dispersion stabilization of the silane coupling agent (C).
  • the pH is in an acidic region of 6.5 or less.
  • the preferred pH range of the aqueous surface treatment agent is 2.0 to 6.5. If necessary, volatile acids such as acetic acid and formic acid can be added to adjust the acidity (pH) of the treatment agent.
  • the above-described aqueous surface treatment agent for galvanized steel or zinc-base alloy-plated steel is applied to the galvanized steel or zinc-base alloy-plated steel (more specifically, galvanized steel or This is a surface treatment method for forming a film on the surface of a galvanized steel material or a zinc-based alloy-plated steel material by bringing it into contact with a zinc-based alloy-plated steel material and then drying it.
  • Examples of the galvanized steel material or zinc base alloy plated steel material used in the present invention include zinc-nickel plated steel material, zinc-iron plated steel material, zinc-chromium plated steel material, zinc-aluminum plated steel material, zinc-titanium plated steel material, zinc -Zinc-coated steel materials such as magnesium-plated steel materials, zinc-manganese-plated steel materials, zinc-aluminum-magnesium-plated steel materials, zinc-aluminum-magnesium-silicon-plated steel materials, and small amounts of different metal elements or impurities in these plated layers
  • an inorganic substance such as cobalt, molybdenum, tungsten, nickel, titanium, chromium, aluminum, manganese, iron, magnesium, lead, bismuth, antimony, tin, copper, cadmium, arsenic, etc., silica, alumina, titania, etc. Is distributed
  • the present invention can also be applied to multilayer plating in which the above plating layer and other types of plating layers such as iron plating, iron-phosphorus plating, nickel plating, cobalt plating, etc. are combined.
  • the formation of the plating layer is not particularly limited, and can be performed using any known method such as electroplating, hot dipping, vapor deposition, dispersion plating, and vacuum plating.
  • the amount of plating adhesion is not particularly limited, and may be within the conventional general range.
  • the plating may be either single-sided plating or double-sided plating.
  • a film can be formed on one side or both sides of the plated steel plate.
  • the contact method of the treatment agent of the present invention to the galvanized steel material or zinc-base alloy-plated steel material can be carried out by any conventional contact method such as dipping, spraying, roll coating or the like.
  • Bake drying after contact The heating temperature at that time is selected so that volatile components in the treatment agent (for example, acetic acid or formic acid derived from the counter anion of the cationic resin) are volatilized. It is preferable to perform the drying so that the maximum plate temperature (PMT) is in the range of 60 to 150 ° C. Baking and drying can be performed by hot air drying or oven drying.
  • the amount of the poorly water-soluble film attached may be 100 mg / m 2 or more for the purpose of primary rust prevention (measures against rust during delivery to users), but bare use (omitting painting of final product) Is intended to be 300 mg / m 2 or more.
  • the upper limit of the coating amount is 3000 mg / m 2 . If the adhesion amount is larger than that, the top coatability is lowered, and the handleability is also deteriorated even if the film does not contain wax. When spot welding is performed, it is preferable that the coating amount be 1500 mg / m 2 or less.
  • the coated steel material of the present invention comprises at least a cationic polyurethane resin (A), a cationic phenol resin (B), a siloxane compound (C ′), a titanium compound (D ′), a vanadium compound (E ′), and an acetic acid component (G ) And a phosphoric acid component (H), a poorly water-soluble film is formed on the surface of the galvanized steel material or the zinc-base alloy plated steel material. Therefore, not only is it excellent in resistance to condensation whitening and corrosion, but it is also excellent in resistance to stack whitening and resistance to filament tape.
  • the coating when the coating contains an olefinic wax and further contains an olefinic wax (F) surface-modified with a silane coupling agent (I), the coating has no oil-coated lubricity. Moreover, since the wax is dispersed in the film without being exposed to the surface, the coil deformation resistance and the cut plate pile load collapse resistance are excellent.
  • Electro-galvanized steel sheet “NS Zincoat (registered trademark)” (hereinafter referred to as “EG”) and hot-dip galvanized steel sheet “NS Silver Zinc (registered trademark)” (hereinafter referred to as “GI”) manufactured by Nippon Steel & Sumitomo Metal Corporation.
  • EG Electro-galvanized steel sheet “NS Zincoat (registered trademark)”
  • GI hot-dip galvanized steel sheet “NS Silver Zinc (registered trademark)”
  • Galvannealed steel sheet “NS Silver Alloy (registered trademark)” (hereinafter referred to as “GA”), zinc-aluminum-magnesium-silicon alloy plated steel sheet “Superdimer (registered trademark)” ( Hereinafter referred to as “SD”), zinc-nickel alloy plated steel sheet “NS Zinclite (registered trademark)” (hereinafter referred to as “ZL”), and zinc-aluminum alloy plating manufactured by Nippon Steel & Sumikin Steel Sheet Co., Ltd.
  • GA Silver Alloy
  • SD zinc-aluminum-magnesium-silicon alloy plated steel sheet
  • ZL zinc-nickel alloy plated steel sheet
  • ZL zinc-aluminum alloy plating manufactured by Nippon Steel & Sumikin Steel Sheet Co., Ltd.
  • A1 Polycarbonate-based cationic polyurethane resin Superflex 650 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • A2 Polyester-based cationic polyurethane resin Adekabon titer HUX-680 manufactured by ADEKA Corporation
  • A3 Polyether-based cationic polyurethane resin Superflex 600 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • A4 Polyether-based anionic polyurethane resin Adekabon titer HUX-350 manufactured by ADEKA Corporation
  • Olefin wax (F) The olefin wax whose surface was modified with a silane coupling agent (3-glycidoxypropyltrimethoxysilane) shown in Table 1 below was used.
  • G1 Acetic acid
  • G2 Ammonium acetate
  • the processing agents used in the following Examples and Comparative Examples were prepared by mixing the components listed above in the composition shown in Table 2 below. In addition, solid content in a processing agent was adjusted so that it might become 11 mass%.
  • the content of component (C) is the content in terms of SiO 2
  • the content of component (D) is the content in terms of Ti
  • the content of component (E) is in terms of V Content.
  • Test plate preparation process Using the silicate alkaline degreasing agent Fine Cleaner E6406 (manufactured by Nihon Parkerizing Co., Ltd.) dissolved in water to a concentration of 20 g / L, the above-mentioned test was conducted for 10 seconds at a temperature of 60 ° C. What was applied to the material, further washed with pure water for 30 seconds and then dried was used in the following test. Each treatment agent was applied by a bar coater and dried in a hot air drying furnace so as to have a predetermined ultimate plate temperature (PMT). The details such as the amount of adhesion are shown in Table 3 below.
  • PMT ultimate plate temperature
  • Corrosion resistance tests were performed on unprocessed ones (planar part), cross-cut with a NT cutter until the substrate was reached (cross-cut part), and Erichsen 7 mm extruded (worked part). .
  • the evaluation method is as follows. 1-1 (corrosion resistance of flat surface): Based on the salt spray test method JIS-Z-2371, the white rust generation area ratio 72 hours after the salt spray was determined and evaluated. The evaluation criteria are shown below.
  • White rust generation area ratio is less than 10% ⁇ : White rust generation area ratio is 10% or more and less than 30% ⁇ : White rust generation area ratio is 30% or more and less than 60% ⁇ : White rust generation area ratio is 60 % Or more ( ⁇ or more is practical performance) 1-2 (corrosion resistance of the cross cut part): Based on the salt spray test method JIS-Z-2371, the occurrence of white rust 72 hours after the salt spray was evaluated with the naked eye. The evaluation criteria are shown below.
  • Fine cleaner E6406 manufactured by Nihon Parkerizing Co., Ltd. was bathed at 20 g / L, the test plate was immersed in a degreasing aqueous solution adjusted to 65 ° C. for 2 minutes, washed with water, and dried at 80 ° C. About this board, corrosion resistance was evaluated by the conditions and evaluation method of planar part corrosion resistance described in said (1).
  • Coating adhesion The coating was applied to the test plate under the following conditions, and a coating film adhesion test was conducted. Paint condition paint: Amirac # 1000 (registered trademark) (white paint) manufactured by Kansai Paint Co., Ltd. Coating method: Bar coating method Baking and drying conditions: 140 ° C., 20 minutes Coating thickness: 25 ⁇ m
  • the evaluation method is as follows. 3-1 (cross-cut primary adhesion): With respect to the test plate, 100 mm grids of 1 mm square were cut with an NT cutter, a peel test with an adhesive tape was performed, and the number of coating films peeled was evaluated. The evaluation criteria are shown below.
  • the “number of peeled coating films” referred to here means the number of pieces from which more than half of each grid has been peeled (the “number of peeled coating films” described below has the same meaning).
  • Number of peeled less than 1 ⁇ : Number of peeled 1 or more and less than 10 ⁇ : Number of peeled 10 or more, less than 50 x: Number of peeled 50 or more 3-2 (secondary cross-cut adhesion): The test plate was immersed in boiling water for 2 hours, left standing for a whole day and night, 1 mm square, 100 grids were cut with an NT cutter, a peel test with an adhesive tape was performed, and the number of peeled films was evaluated. The evaluation criteria are shown below. ⁇ : Number of peeled less than 1 ⁇ : Number of peeled 1 or more and less than 10 ⁇ : Number of peeled 10 or more, less than 50 ⁇ : Number of peeled 50 or more ( ⁇ or more is practical performance)
  • the evaluation method is as follows. (Crosscut primary adhesion after degreasing) With respect to the test plate, 100 mm grids of 1 mm square were cut with an NT cutter, a peel test with an adhesive tape was performed, and the number of coating films peeled was evaluated. The evaluation criteria are shown below. ⁇ : Number of peeled less than 1 ⁇ : Number of peeled 1 or more and less than 10 ⁇ : Number of peeled 10 or more, less than 50 ⁇ : Number of peeled 50 or more ( ⁇ or more is practical performance)
  • Dynamic friction coefficient is less than 0.16, and seizure occurrence sliding frequency is 25 times or more.
  • Dynamic friction coefficient is less than 0.16, seizure occurrence sliding frequency is 20 times or more and less than 25 times, or dynamic friction coefficient. Is 0.16 or more and less than 0.18, and seizure occurrence sliding frequency is 25 times or more.
  • ⁇ - Dynamic friction coefficient is 0.16 or more and less than 0.18, seizure occurrence sliding frequency is 20 times or more and less than 25 times.
  • Dynamic friction coefficient is 0.18 or more, seizure occurrence sliding number is 20 times or more, or dynamic friction coefficient is 0.16 or more and less than 0.18, seizure occurrence number is less than 20 times
  • Dynamic friction coefficient is 0 .18 or more and seizure occurrence sliding frequency is less than 20 times ( ⁇ or more is practical performance).
  • Sliding friction coefficient ⁇ : ⁇ m3 ⁇ h / (m1 + m2) ⁇ L (Equation 1)
  • m1 weight of steel plate 1 + weight 1 (g)
  • m2 weight of steel plate 2 + cart
  • m3 weight of weight 2 (g)
  • h fall distance of weight 2 (mm)
  • L sliding distance (mm)
  • Sliding friction coefficient is 0.85 or more
  • O Sliding friction coefficient is 0.84 or more and less than 0.85
  • Sliding friction coefficient is 0.83 or more and less than 0.84
  • Sliding friction coefficient is less than 0.83 (The above is the practical performance.)
  • Area ratio of whitened area is less than 1% (no whitening)
  • Area ratio of whitened portion is 1% or more and less than 5%
  • ⁇ - Area ratio of whitened portion is 5% or more and less than 25%
  • Area ratio of whitened portion is 25% or more
  • 50 Less than% ⁇ Area ratio of whitened portion is 50% or more ( ⁇ or more is practical performance)
  • Examples 1 to 78 using the treating agent containing the essential components of the present invention and containing these essential components in a blending ratio within the scope of the present invention are all corrosion resistance, alkali resistance, Excellent or practically satisfied with all evaluations of coating adhesion, coating adhesion after degreasing, blackening resistance, stack whitening resistance, filament tape resistance, condensation whitening resistance, processing agent stability and actual machine operability It became performance.
  • Examples 1-27 and 29-78 blended with the olefin wax (F) were excellent in workability and handleability, or had practically satisfactory performance.
  • Comparative Examples 1 to 14 and 17 to 22 which do not contain the essential component of the present invention or whose blending ratio of the essential component is outside the range of the present invention are corrosion resistance, alkali resistance, Performance that at least one of coating adhesion, coating adhesion after degreasing, blackening resistance, stack whitening resistance, filament tape resistance, condensation whitening resistance, treatment agent stability and actual machine operability is not satisfied in practice. It became.
  • Comparative Examples 15 and 16 using the anionic polyurethane resin A4 since the treatment agent could not be prepared, the evaluations (1) to (12) were not performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

[Problem] To provide: an aqueous surface treatment agent that is for a zinc plated steel material or a zinc-based alloy plated steel material, that has satisfactory properties such as corrosion resistance, post-degreasing corrosion resistance, coating adhesion, post-degreasing coating adhesion, blackening resistance, condensation whitening resistance, treatment agent stability, actual device operability, and the like, and that can form a coating having excellent stack whitening resistance and filament tape resistance; a coating method using the treatment agent; and a coated steel material obtained using the method. [Solution] This aqueous surface treatment agent for a zinc plated steel material or a zinc-based alloy plated steel material is obtained by blending a cationic polyurethane resin (A), a cationic phenolic resin (B), a silane coupling agent (C), an acetylacetone complex of titanium (D), an olefin wax (F), a vanadium compound (E), an acetic acid component (G), a phosphoric acid component (H), and water.

Description

亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤、被覆方法及び被覆鋼材Aqueous surface treatment agent for galvanized steel or zinc-base alloy-plated steel, coating method and coated steel
 本発明は、亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤、この処理剤を用いた被覆方法、及びこの方法を用いて得られる被覆鋼材に関する。 The present invention relates to an aqueous surface treating agent for galvanized steel or zinc-based alloy plated steel, a coating method using this treating agent, and a coated steel obtained using this method.
 亜鉛系めっき鋼板などの鋼板の表面に、樹脂を主成分とし、必要により他の有機もしくは無機成分を添加したクロムフリー防錆皮膜を形成した表面処理鋼板について、これまでに多くの技術が提案されている。これらの防錆皮膜では、耐食性、脱脂後耐食性、塗装密着性、脱脂後塗装密着性、耐黒変性、耐結露白化性、処理剤安定性、実機操業性等の性能が求められている。 Many technologies have been proposed so far for surface-treated steel sheets that have a chromium-free rust-preventing film with resin as the main component and, if necessary, other organic or inorganic components added to the surface of steel sheets such as galvanized steel sheets. ing. These rust preventive coatings are required to have performance such as corrosion resistance, corrosion resistance after degreasing, coating adhesion, coating adhesion after degreasing, blackening resistance, anti-condensation whitening, treatment agent stability, and actual machine operability.
 例えば、特許文献1には、亜鉛系めっき鋼板基材に、カチオン性樹脂、シロキサン化合物、チタン化合物、バナジウム化合物、及び好ましくはケイ素化合物で表面修飾されたオレフィン系ワックスの原料を特定の比率で含有する水系処理液の塗布と焼付け乾燥により、皮膜中に残留する強電解質成分の合計含有量が0.3mg・m-2未満である難水溶性皮膜を形成する技術が提案されている。 For example, Patent Document 1 contains a raw material of a olefinic wax surface-modified with a cationic resin, a siloxane compound, a titanium compound, a vanadium compound, and preferably a silicon compound in a zinc-based plated steel sheet base material in a specific ratio. There has been proposed a technique for forming a poorly water-soluble film in which the total content of strong electrolyte components remaining in the film is less than 0.3 mg · m −2 by application of an aqueous treatment liquid and baking drying.
特許5220050号公報Japanese Patent No. 522050
 ここで、上記特許文献1に記載された表面処理鋼板における表面処理皮膜を形成するための表面処理剤について、本発明者らが評価したところ、その処理剤安定性については十分に考慮されていないことが判明した。この処理剤安定性を向上させるため、検討したところ、上記特許文献1に記載の表面処理剤に酢酸を配合すると、この表面処理剤の処理剤安定性が向上することが分かってきた。 Here, when the present inventors evaluated the surface treatment agent for forming the surface treatment film in the surface-treated steel sheet described in Patent Document 1, the stability of the treatment agent is not sufficiently considered. It has been found. As a result of studies to improve the stability of the treatment agent, it has been found that when acetic acid is added to the surface treatment agent described in Patent Document 1, the treatment agent stability of the surface treatment agent is improved.
 しかしながら、本発明者らがさらに検討したところ、上記特許文献1に記載の表面処理剤に酢酸を配合すると耐スタック白化性及び耐フィラメントテープ性が悪化する、という本発明者らが新たに知見した問題が生ずることが分かった。耐スタック白化性とは、表面処理鋼板のコイル保管時の保管条件を模擬した状態における、表面処理皮膜の白化に対する耐性を意味し、その性能評価は、高温高湿条件において表面処理鋼板に一定の圧力を与え(スタック)、一定期間経過後における外観を評価して行うものである。また、耐フィラメントテープ性とは、表面処理鋼板のコイルの端部を仮止めするためにフィラメントテープを使用するのであるが、表面処理皮膜のフィラメントテープへの耐性を意味し、その性能評価は、表面処理鋼板にフィラメントテープを貼付後、高温高湿条件において一定期間経過後にフィラメントテープを剥離した後の外観を評価することにより行う。耐スタック白化性が悪化する原因としては、表面処理皮膜中に残存した酢酸が、高湿により含水状態となり、基材である亜鉛系めっき鋼板の亜鉛めっき層を侵すことで、Znの白錆が発生しやすくなることによるものと考えられる。また、耐フィラメントテープ性が悪化する原因としては、表面処理皮膜中に残存した酢酸が、高湿により含水状態となり、フィラメントテープの粘着層を侵すことで、フィラメントテープの密着性が低下し、フィランメントテープ添付部が皮膜損傷することによるものと考えられる。 However, as a result of further studies by the present inventors, the present inventors have newly found that when the surface treatment agent described in Patent Document 1 is mixed with acetic acid, the stack whitening resistance and the filament tape resistance deteriorate. It turns out that a problem arises. Stack whitening resistance means the resistance to whitening of the surface-treated film in a state simulating the storage conditions during coil storage of the surface-treated steel sheet, and its performance evaluation is consistent with the surface-treated steel sheet under high temperature and high humidity conditions. Pressure is applied (stack), and the appearance after a certain period of time is evaluated. In addition, the filament tape resistance means using the filament tape to temporarily fix the end of the coil of the surface-treated steel sheet, but means the resistance of the surface-treated film to the filament tape, and its performance evaluation is After applying the filament tape to the surface-treated steel sheet, the appearance after peeling the filament tape after a certain period of time under high temperature and high humidity conditions is evaluated. The cause of the deterioration of stack whitening resistance is that acetic acid remaining in the surface treatment film becomes water-containing due to high humidity, and the zinc galvanized layer of the galvanized steel sheet, which is the base material, is attacked. This is thought to be due to the tendency to occur. Moreover, the cause of the deterioration of the resistance to filament tape is that acetic acid remaining in the surface-treated film becomes water-containing due to high humidity, and the adhesive layer of the filament tape is damaged, thereby reducing the adhesion of the filament tape. This is thought to be due to film damage to the attachment part of the ment tape.
 そこで、本発明は、上記事情に鑑みてなされたものであり、耐食性、脱脂後耐食性、塗装密着性、脱脂後塗装密着性、耐黒変性、耐結露白化性、処理剤安定性、実機操業性等の性能を満足するとともに、耐スタック白化性及び耐フィラメントテープ性に優れる皮膜を形成可能な亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤、この処理剤を用いた被覆方法、及びこの方法を用いて得られる被覆鋼材を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and is corrosion resistance, corrosion resistance after degreasing, coating adhesion, coating adhesion after degreasing, blackening resistance, condensation whitening resistance, processing agent stability, actual machine operability. Water-based surface treatment agent for galvanized steel or zinc-base alloy-plated steel material that can form a film with excellent resistance to stack whitening and filament tape, and a coating method using this treatment agent, and An object is to provide a coated steel material obtained by using this method.
 本発明者は、上記課題を解決するために鋭意研究を重ねた結果、カチオン性ポリウレタン樹脂と、カチオン性フェノール樹脂と、シランカップリング剤と、チタンのアセチルアセトン錯体と、バナジウム化合物と、オレフィン系ワックスと、酢酸成分と、りん酸成分とを水に配合することにより、耐スタック白化性及び耐フィラメントテープ性に優れる皮膜を形成可能な亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤が得られることを見出し、この知見に基づいて本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventor has obtained a cationic polyurethane resin, a cationic phenol resin, a silane coupling agent, an acetylacetone complex of titanium, a vanadium compound, and an olefin wax. An aqueous surface treatment agent for galvanized steel or zinc-based alloy-plated steel that can form a film with excellent stack whitening resistance and filament tape resistance by adding an acetic acid component and a phosphoric acid component to water. Based on this finding, the present invention has been completed.
 すなわち、本発明は、カチオン性ポリウレタン樹脂(A)と、カチオン性フェノール樹脂(B)と、シランカップリング剤(C)と、チタンのアセチルアセトン錯体(D)と、バナジウム化合物(E)と、酢酸成分(G)と、りん酸成分(H)とを水に配合してなる亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤であって、前記水系表面処理剤の固形分(V)の質量に対する、前記シランカップリング剤(C)のSiO換算による質量との比(NC)/(NV)が0.16~0.19、前記固形分(V)の質量に対する、前記チタンのアセチルアセトン錯体(D)のTi換算による質量(ND)との比(ND)/(NV)が0.0170~0.0240、前記固形分(V)の質量に対する、前記バナジウム化合物(E)のV換算による質量(NE)との比(NE)/(NV)が0.0070~0.0090、前記固形分(V)の質量に対する、前記酢酸成分(G)の質量との比(NG)/(NV)が0.040~0.140、前記固形分(V)の質量に対する、前記りん酸成分(H)の質量との比(NH)/(NV)が0.025~0.075、前記バナジウム化合物(E)のV換算による質量に対する、前記チタンのアセチルアセトン錯体(D)のTi換算による質量との比(ND)/(NE)が2.10~2.90、前記酢酸成分(G)の質量に対する、前記りん酸成分(H)の質量との比(NH)/(NG)が0.25~1.10、前記チタンのアセチルアセトン錯体(D)のTi換算による質量(ND)に対する、前記りん酸成分(H)の質量との比(NH)/(ND)が1.11~3.19である、亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤である。 That is, the present invention includes a cationic polyurethane resin (A), a cationic phenol resin (B), a silane coupling agent (C), an acetylacetone complex of titanium (D), a vanadium compound (E), and acetic acid. A water-based surface treatment agent for galvanized steel or zinc-based alloy-plated steel material comprising a component (G) and a phosphoric acid component (H) mixed in water, wherein the solid content (V) of the water-based surface treatment agent The ratio (NC) / (NV) of the silane coupling agent (C) to the mass in terms of SiO 2 with respect to the mass of 0.16 to 0.19 and the mass of the solid content (V) The ratio (ND) / (NV) to the mass (ND) in terms of Ti of the acetylacetone complex (D) is 0.0170 to 0.0240, and the vanadium compound (E) with respect to the mass of the solid content (V). Ratio (NE) / (NV) to mass (NE) in terms of V is 0.0070 to 0.0090, ratio of mass of acetic acid component (G) to mass of solid content (V) (NG) / (NV) is 0.040 to 0.140, and the ratio (NH) / (NV) of the phosphoric acid component (H) to the mass of the solid content (V) is 0.025 to 0.075. The ratio (ND) / (NE) of the acetylacetone complex (D) of titanium to the mass of Ti of the vanadium compound (E) in terms of V is 2.10 to 2.90, the acetic acid component ( The ratio (NH) / (NG) of the phosphoric acid component (H) to the mass of G) is 0.25 to 1.10, and the mass (ND) in terms of Ti of the acetylacetone complex (D) of titanium. To the mass of the phosphoric acid component (H) ( H) / (ND) is 1.11 to 3.19, which is for galvanized steel or zinc base alloy plated steel product for aqueous surface-treating agent.
 前記亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤が、更に、オレフィン系ワックス(F)を、前記固形分(V)の質量に対する、前記オレフィン系ワックス(F)の質量との比(NF)/(NV)として0.035~0.060含有していてもよい。また、前記オレフィン系ワックス(F)がシランカップリング剤(I)により表面修飾され、前記オレフィン系ワックス(F)の質量に対する、前記シランカップリング剤(I)の質量との比(NI/NF)が0.025~0.035であってもよい。さらに、前記オレフィン系ワックス(F)の平均粒径が0.05~0.15μmであってもよい。 The water-based surface treatment agent for galvanized steel or zinc-based alloy-plated steel further includes a ratio of the olefin wax (F) to the mass of the olefin wax (F) with respect to the mass of the solid content (V). It may contain 0.035 to 0.060 as (NF) / (NV). The olefin wax (F) is surface-modified with a silane coupling agent (I), and the ratio of the mass of the silane coupling agent (I) to the mass of the olefin wax (F) (NI / NF). ) May be 0.025 to 0.035. Further, the olefin wax (F) may have an average particle size of 0.05 to 0.15 μm.
 前記バナジウム化合物(E)がバナジウムのアセチルアセトン錯体であってもよい。また、前記オレフィン系ワックス(F)がエポキシ基含有シランカップリング剤により表面修飾されているものであってもよい。 The vanadium compound (E) may be an acetylacetone complex of vanadium. The olefin wax (F) may be surface-modified with an epoxy group-containing silane coupling agent.
 前記亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤において、前記カチオン性ポリウレタン樹脂(A)が一般式(1)で示される構造単位を含むポリカーボネート系の水分散性カチオン性ポリウレタン樹脂であってもよい。 In the water-based surface treating agent for galvanized steel or zinc-based alloy-plated steel, the cationic polyurethane resin (A) is a polycarbonate-based water-dispersible cationic polyurethane resin containing a structural unit represented by the general formula (1) There may be.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1)中、Rは炭素数4~9の脂肪族アルキレン基であり、nは数平均分子量が500~5000の範囲となるのに相当する整数である。 In the formula (1), R is an aliphatic alkylene group having 4 to 9 carbon atoms, and n is an integer corresponding to a number average molecular weight in the range of 500 to 5000.
 また、前記カチオン性フェノール樹脂(B)が一般式(2)で示される反復単位を有する平均重合度2~50の重合体分子であってもよい。 Further, the cationic phenol resin (B) may be a polymer molecule having an average polymerization degree of 2 to 50 having a repeating unit represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(2)中、Y1、及びY2は、それぞれ独立して水素または一般式(3)もしくは(4)で示されるZ基を表し、各ベンゼン環当たりのZ基の平均置換数は0.2~1.0である。 In the formula (2), Y1 and Y2 each independently represent hydrogen or a Z group represented by the general formula (3) or (4), and the average number of substitutions of Z groups per benzene ring is 0.2. ~ 1.0.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(3)及び(4)における、R1、R2、R3、R4及びR5は、それぞれ独立して水素原子、炭素数1~10のアルキル基又は炭素数1~10のヒドロキシアルキル基を表し、Aは水酸化物イオン又はオキソ酸イオンを表す。 In formulas (3) and (4), R1, R2, R3, R4 and R5 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or a hydroxyalkyl group having 1 to 10 carbon atoms, - represents a hydroxide ion or an oxo acid ions.
 また、本発明は、前述した亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤を亜鉛めっき鋼材または亜鉛基合金めっき鋼材に塗布して皮膜を形成する、被覆方法である。 Further, the present invention is a coating method in which a coating is formed by applying the above-described aqueous surface treatment agent for galvanized steel or zinc-base alloy-plated steel to galvanized steel or zinc-base alloy-plated steel.
 また、本発明は、前記の被覆方法によって得られる、被覆鋼材である。 Further, the present invention is a coated steel material obtained by the above coating method.
 本発明によれば、耐スタック白化性及び耐フィラメントテープ性に優れた皮膜を形成可能な亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤、この処理剤を用いた被覆方法、及びこの方法を用いて得られる被覆鋼材を提供することが可能となる。 According to the present invention, an aqueous surface treatment agent for galvanized steel or zinc-based alloy-plated steel material capable of forming a film excellent in stack whitening resistance and filament tape resistance, a coating method using this treatment agent, and this It becomes possible to provide the coated steel material obtained by using the method.
 さらに、本発明は、無塗装で使用される表面処理鋼板の表面外観品位に関する重要な要求特性の一つである耐結露白化性等に優れるほか、オレフィン系ワックス(F)を任意成分として更に配合することにより、無塗油潤滑性と取り扱い性(すなわち、耐コイル変形性や耐切板パイル荷崩れ性)を向上させることができる。 Furthermore, the present invention is excellent in the anti-condensation whitening property, which is one of the important required properties regarding the surface appearance quality of the surface-treated steel sheet used without coating, and further contains an olefin wax (F) as an optional component. By doing so, it is possible to improve the oil-free lubricity and handleability (that is, the coil deformation resistance and the cut plate pile load collapse resistance).
 以下、本発明の好適な実施の形態について詳細に述べる。なお、本発明に係る亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤、被覆方法及び被覆鋼材に関しては、以下の順序で述べる。
[亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤]
 (成分)
  <カチオン性ポリウレタン樹脂(A)>
  <カチオン性フェノール樹脂(B)>
  <シランカップリング剤(C)>
  <チタンのアセチルアセトン錯体(D)>
  <バナジウム化合物(E)>
  <オレフィン系ワックス(F)>
  <酢酸成分(G)>
  <りん酸成分(H)>
  <好適でない成分>
 (配合比)
  <(NC)/(NV)>
  <(ND)/(NV)>
  <(NE)/(NV)>
  <(NF)/(NV)>
  <(NG)/(NV)>
  <(NH)/(NV)>
  <(ND)/(NE)>
  <(NH)/(NG)>
  <(NH)/(ND)>
 (物性)
  <pH>
[被覆方法]
 (基材:亜鉛めっき鋼材または亜鉛基合金めっき鋼材)
 (処理工程)
[被覆鋼材]
 (皮膜付着量)
Hereinafter, preferred embodiments of the present invention will be described in detail. The aqueous surface treatment agent, coating method, and coated steel material for galvanized steel or zinc-based alloy plated steel according to the present invention will be described in the following order.
[Aqueous surface treatment agent for galvanized steel or zinc-based alloy-plated steel]
(component)
<Cationic polyurethane resin (A)>
<Cationic phenol resin (B)>
<Silane coupling agent (C)>
<Titanium acetylacetone complex (D)>
<Vanadium compound (E)>
<Olefin wax (F)>
<Acetic acid component (G)>
<Phosphoric acid component (H)>
<Unsuitable component>
(Mixing ratio)
<(NC) / (NV)>
<(ND) / (NV)>
<(NE) / (NV)>
<(NF) / (NV)>
<(NG) / (NV)>
<(NH) / (NV)>
<(ND) / (NE)>
<(NH) / (NG)>
<(NH) / (ND)>
(Physical properties)
<PH>
[Coating method]
(Base material: Galvanized steel or zinc-base alloy plated steel)
(Processing process)
[Coated steel]
(Amount of coating)
[亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤]
 本発明に係る亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤は、少なくとも、カチオン性ポリウレタン樹脂(A)と、カチオン性フェノール樹脂(B)と、シランカップリング剤(C)と、チタンのアセチルアセトン錯体(D)と、バナジウム化合物(E)と、酢酸成分(G)と、りん酸成分(H)とを水に配合してなる水系表面処理剤である。また、この水系表面処理剤における各成分の配合比は、以下の通りである。
(1)本発明の水系表面処理剤の固形分(V)の質量に対する、シランカップリング剤(C)のSiO換算による質量との比(NC)/(NV)が0.16~0.19
(2)固形分(V)の質量に対する、チタンのアセチルアセトン錯体(D)のTi換算による質量(ND)との比(ND)/(NV)が0.0170~0.0240
(3)固形分(V)の質量に対する、バナジウム化合物(E)のV換算による質量(NE)との比(NE)/(NV)が0.0070~0.0090
(4)固形分(V)の質量に対する、酢酸成分(G)の質量との比(NG)/(NV)が0.040~0.140
(5)固形分(V)の質量に対する、りん酸成分(H)の質量との比(NH)/(NV)が0.025~0.075
(6)バナジウム化合物(E)のV換算による質量に対する、チタンのアセチルアセトン錯体(D)のTi換算による質量との比(ND)/(NE)が2.10~2.90
(7)酢酸成分(G)の質量に対する、りん酸成分(H)の質量との比(NH)/(NG)が0.25~1.10
(8)チタンのアセチルアセトン錯体(D)のTi換算による質量(ND)に対する、りん酸成分(H)の質量との比(NH)/(ND)が1.11~3.19
[Aqueous surface treatment agent for galvanized steel or zinc-based alloy-plated steel]
The aqueous surface treating agent for galvanized steel or zinc-based alloy plated steel according to the present invention includes at least a cationic polyurethane resin (A), a cationic phenol resin (B), a silane coupling agent (C), This is an aqueous surface treatment agent comprising titanium acetylacetone complex (D), vanadium compound (E), acetic acid component (G), and phosphoric acid component (H) in water. Moreover, the compounding ratio of each component in this aqueous surface treating agent is as follows.
(1) The ratio (NC) / (NV) of the silane coupling agent (C) to the mass in terms of SiO 2 with respect to the mass of the solid content (V) of the aqueous surface treating agent of the present invention is 0.16 to 0.00. 19
(2) The ratio (ND) / (NV) of the mass of acetylacetone complex (D) of titanium to the mass (ND) in terms of Ti with respect to the mass of solid content (V) is 0.0170 to 0.0240.
(3) The ratio (NE) / (NV) of the vanadium compound (E) to the mass (NE) in terms of V with respect to the mass of the solid content (V) is 0.0070 to 0.0090.
(4) The ratio (NG) / (NV) of the mass of the acetic acid component (G) to the mass of the solid content (V) is 0.040 to 0.140.
(5) The ratio (NH) / (NV) of the mass of the phosphoric acid component (H) to the mass of the solid content (V) is 0.025 to 0.075.
(6) The ratio (ND) / (NE) of the acetylacetone complex of titanium (D) to the mass in terms of Ti with respect to the mass in terms of V of the vanadium compound (E) is 2.10 to 2.90.
(7) The ratio (NH) / (NG) of the mass of the phosphoric acid component (H) to the mass of the acetic acid component (G) is 0.25 to 1.10.
(8) The ratio (NH) / (ND) of the phosphoric acid component (H) to the mass (ND) in terms of Ti of the acetylacetone complex (D) of titanium is 1.11 to 3.19.
 以下、本発明に係る亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤の組成(成分、配合比)及び物性について詳述する。 Hereinafter, the composition (component, compounding ratio) and physical properties of the aqueous surface treatment agent for galvanized steel or zinc-based alloy plated steel according to the present invention will be described in detail.
(成分)
 まず、本発明の水系表面処理剤に配合される成分について述べる。
(component)
First, the component mix | blended with the aqueous surface treating agent of this invention is described.
<カチオン性ポリウレタン樹脂(A)>
 カチオン性ポリウレタン樹脂(A)は、本発明の水系表面処理剤に必須成分として配合され、本発明の水系表面処理剤を用いて形成される(すなわち、この水系表面処理剤の塗布と乾燥により形成される)難水溶性の皮膜(以下、単に「難水溶性皮膜」ともいう)の主体をなす樹脂である。使用する処理剤が水系であることから、処理剤に含有させるカチオン性ポリウレタン樹脂(A)としては水系樹脂を用いる。水系樹脂は、水分散性、エマルジョン、及び水溶性に大別されるが、本発明では、耐結露白化性、耐水性を備えた皮膜を得るために、水分散性樹脂を使用することが好ましい。水溶性樹脂は、平衡溶解系であるため、カウンターカチオン又はカウンターアニオンとして強電解質成分(フッ素、リチウム、ナトリウム、カリウム、塩素、臭素、硫酸、亜硫酸、硝酸、亜硝酸、酢酸、ギ酸、プロピオン酸、スルホン酸類等のイオン等)が必要となり(強電解質成分が皮膜中に実質的に残留していると、結露白化が発生しやすい)、また、エマルジョンは、界面活性剤が皮膜中に残留し、耐水性が劣化する可能性があるためである。
<Cationic polyurethane resin (A)>
The cationic polyurethane resin (A) is blended as an essential component in the aqueous surface treatment agent of the present invention, and is formed using the aqueous surface treatment agent of the present invention (that is, formed by application and drying of the aqueous surface treatment agent). It is a resin that forms the main component of a poorly water-soluble film (hereinafter also simply referred to as “slightly water-soluble film”). Since the treating agent to be used is aqueous, an aqueous resin is used as the cationic polyurethane resin (A) to be contained in the treating agent. Water-based resins are roughly classified into water dispersibility, emulsion, and water solubility. In the present invention, it is preferable to use a water dispersible resin in order to obtain a film having condensation whitening resistance and water resistance. . Since the water-soluble resin is an equilibrium dissolution system, a strong electrolyte component (fluorine, lithium, sodium, potassium, chlorine, bromine, sulfuric acid, sulfurous acid, nitric acid, nitrous acid, acetic acid, formic acid, propionic acid, Ions such as sulfonic acids, etc.) are required (condensation whitening is likely to occur when the strong electrolyte component substantially remains in the film), and in the emulsion, the surfactant remains in the film, This is because the water resistance may deteriorate.
 水分散性樹脂としては、樹脂粒表面をアミン変性してカチオン分散させたタイプ、すなわち、カチオン性水分散性樹脂が好ましい。カチオン分散させることで、後述するシランカップリング剤(C)との共存が可能となる。アニオン分散は、処理剤がアルカリ性となり、シランカップリング剤が不安定となる。その場合、カウンターカチオンとして水酸化リチウム、水酸化ナトリウム等を用いてシランカップリング剤を溶解することで、アルカリ性処理剤にシランカップリング剤を添加できるが、リチウムやナトリウムといった強電解質イオンの添加は、耐結露白化性が劣化するため好ましくない。 The water-dispersible resin is preferably a type in which the resin particle surface is amine-modified and cation-dispersed, that is, a cationic water-dispersible resin. By cation dispersion, coexistence with a silane coupling agent (C) described later becomes possible. In the anion dispersion, the treatment agent becomes alkaline and the silane coupling agent becomes unstable. In that case, the silane coupling agent can be added to the alkaline treatment agent by dissolving the silane coupling agent using lithium hydroxide, sodium hydroxide or the like as a counter cation, but the addition of strong electrolyte ions such as lithium and sodium This is not preferable because the condensation whitening resistance deteriorates.
 水分散性樹脂の粒径は9nm以上、200nm以下の範囲であるのが好ましい。水分散性樹脂の粒径が大きいほど、アミン変性による親水化の悪影響を低減できるが、大きすぎると焼付け乾燥過程における皮膜形成を阻害する。 The particle size of the water dispersible resin is preferably in the range of 9 nm to 200 nm. The larger the particle size of the water-dispersible resin, the more the adverse effect of hydrophilization due to amine modification can be reduced.
 以上のようなカチオン性水分散性樹脂として、本発明では、カチオン性ポリウレタン樹脂(A)を処理剤に配合する。カチオン性ポリウレタン樹脂(A)を主成分とする皮膜は、抗張力と伸びのバランスに優れるため、加工性と密着性が良好となる。 As the cationic water-dispersible resin as described above, in the present invention, a cationic polyurethane resin (A) is blended in the treating agent. Since the film mainly composed of the cationic polyurethane resin (A) has an excellent balance between tensile strength and elongation, processability and adhesion are improved.
 カチオン性ポリウレタン樹脂(A)は、下記一般式(1)で示される構造単位を含むポリカーボネート系の水分散性カチオン性ポリウレタン樹脂であることが好ましい。カチオン性ポリウレタン樹脂(A)が下記一般式(1)で示される構造単位を含むと、より優れたバリア性が付与され、耐結露白化性が向上する。 The cationic polyurethane resin (A) is preferably a polycarbonate-based water-dispersible cationic polyurethane resin containing a structural unit represented by the following general formula (1). When the cationic polyurethane resin (A) contains a structural unit represented by the following general formula (1), more excellent barrier properties are imparted, and condensation whitening resistance is improved.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(1)中、Rは炭素数4~9の脂肪族アルキレン基であり、nは、上記ポリカーボネート系のカチオン性ポリウレタン樹脂(A)の原料であるカーボネート系ポリオールの数平均分子量が500~5000の範囲となるのに相当する整数である。 In the above formula (1), R is an aliphatic alkylene group having 4 to 9 carbon atoms, and n is a number average molecular weight of a carbonate-based polyol that is a raw material of the polycarbonate-based cationic polyurethane resin (A) of 500 to An integer corresponding to the range of 5000.
<カチオン性フェノール樹脂(B)>
 本発明の水系表面処理剤には、上記のカチオン性ポリウレタン樹脂(A)に加えて、さらにカチオン性フェノール樹脂(B)が必須成分として配合される。本発明の水系表面処理剤がカチオン性フェノール樹脂(B)を含有すると、処理剤の安定性が向上する。また、本発明の難水溶性皮膜がカチオン性フェノール樹脂(B)を含有すると、上塗り耐水二次密着性が向上する。
<Cationic phenol resin (B)>
In addition to the cationic polyurethane resin (A), a cationic phenol resin (B) is further blended as an essential component in the aqueous surface treating agent of the present invention. When the aqueous surface treating agent of the present invention contains the cationic phenol resin (B), the stability of the treating agent is improved. Moreover, when the poorly water-soluble film | membrane of this invention contains a cationic phenol resin (B), topcoat water-resistant secondary adhesiveness will improve.
 カチオン性フェノール樹脂(B)は、下記一般式(2)で示される反復単位を有することが好ましく、この反復単位の平均重合度2~50の重合体分子であることがより好ましい。平均重合度がこの範囲内であると、皮膜の耐水性が向上する。なお、式(2)の反復単位の平均重合度は、H-NMRにより積分比から求めることができる。 The cationic phenol resin (B) preferably has a repeating unit represented by the following general formula (2), and more preferably a polymer molecule having an average degree of polymerization of 2 to 50 of the repeating unit. When the average degree of polymerization is within this range, the water resistance of the film is improved. The average degree of polymerization of the repeating unit of formula (2) can be determined from the integration ratio by 1 H-NMR.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(2)中、Y1、及びY2は、それぞれ独立して水素または一般式(3)もしくは(4)で示されるZ基を表し、各ベンゼン環当たりのZ基の平均置換数は0.2~1.0である。なお、Z基の平均置換数は、H-NMRにより積分比から求めることができる。 In the above formula (2), Y1 and Y2 each independently represent hydrogen or a Z group represented by the general formula (3) or (4), and the average number of substitutions of Z groups per benzene ring is 0.00. 2 to 1.0. The average number of substitutions of the Z group can be determined from the integration ratio by 1 H-NMR.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(3)及び(4)における、R1、R2、R3、R4及びR5は、それぞれ独立して水素原子、炭素数1~10のアルキル基又は炭素数1~10のヒドロキシアルキル基を表し、Aは水酸化物イオン又はオキソ酸(例えば、硝酸、硫酸、リン酸、炭酸、カルボン酸等)イオンを表す。 In the above formulas (3) and (4), R1, R2, R3, R4 and R5 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or a hydroxyalkyl group having 1 to 10 carbon atoms, A represents a hydroxide ion or an oxo acid (eg, nitric acid, sulfuric acid, phosphoric acid, carbonic acid, carboxylic acid, etc.) ion.
 前述したように、本発明で使用するカチオン性樹脂(カチオン性ポリウレタン樹脂(A)及びカチオン性フェノール樹脂(B))のカウンターアニオンは、乾燥造膜下で揮発するアニオン、具体的にはギ酸又は酢酸イオンが好ましい。カチオン性樹脂のカウンターアニオンが水酸化物イオンであると、処理剤がアルカリ性に傾き、上記したようにシランカップリング剤がゲル化しやすく、液が不安定となる。 As described above, the counter anion of the cationic resin (cationic polyurethane resin (A) and cationic phenol resin (B)) used in the present invention is an anion that volatilizes under dry film formation, specifically formic acid or Acetate ions are preferred. When the counter anion of the cationic resin is a hydroxide ion, the treatment agent is inclined to alkalinity, and as described above, the silane coupling agent is easily gelled and the liquid becomes unstable.
 カチオン性樹脂のカウンターアニオンがギ酸又は酢酸イオンである場合、乾燥造膜中にギ酸又は酢酸が揮発する。これによりカチオン性樹脂においては、アミンが電荷を失い、樹脂粒の疎水化により造膜反応としての不可逆な凝集が起こる。同時にカウンターアニオンの揮発はpHを上昇させ、加水分解によりシラノール化したシランカップリング剤は、造膜反応としての不可逆なゲル化・縮合を進行させる。このときさらに、カチオン性ポリウレタン樹脂(A)及びカチオン性フェノール樹脂(B)の側鎖とシランカップリング剤との反応、並びにシラノールとめっき基材との反応によって、樹脂・シロキサン・メタロキサン結合によるネットワークを形成するため、密着性、耐食性、耐溶剤性に優れた強固な皮膜を形成できる。 When the counter anion of the cationic resin is formic acid or acetate ion, formic acid or acetic acid volatilizes during dry film formation. As a result, in the cationic resin, the amine loses its charge, and irreversible aggregation as a film-forming reaction occurs due to the hydrophobicity of the resin particles. At the same time, volatilization of the counter anion increases the pH, and the silane coupling agent silanolized by hydrolysis advances irreversible gelation and condensation as a film-forming reaction. At this time, a network of resin, siloxane, metalloxane bond is formed by reaction between the side chain of the cationic polyurethane resin (A) and the cationic phenol resin (B) and the silane coupling agent, and reaction between the silanol and the plating substrate. Therefore, a strong film excellent in adhesion, corrosion resistance, and solvent resistance can be formed.
<シランカップリング剤(C)>
 本発明の水系表面処理剤には、シランカップリング剤(C)が必須成分として配合される。シランカップリング剤(C)は、皮膜形成(焼付け)過程で加水分解と縮合を経てシロキサン結合により三次元架橋したシロキサン型の皮膜を形成する。すなわち、本発明の難水溶性皮膜は、シロキサン化合物(C’)を含む。造膜成分として、カチオン性ポリウレタン樹脂(A)及びカチオン性フェノール樹脂(B)だけでなく、シロキサン化合物(C’)も併用することで、形成された皮膜の耐食性、密着性、耐溶剤性の性能が著しく向上する。
<Silane coupling agent (C)>
In the aqueous surface treating agent of the present invention, a silane coupling agent (C) is blended as an essential component. The silane coupling agent (C) undergoes hydrolysis and condensation in the film formation (baking) process to form a siloxane-type film that is three-dimensionally crosslinked by a siloxane bond. That is, the poorly water-soluble film of the present invention contains a siloxane compound (C ′). By using not only the cationic polyurethane resin (A) and the cationic phenol resin (B) but also the siloxane compound (C ′) as a film-forming component, the corrosion resistance, adhesion, and solvent resistance of the formed film are improved. Performance is significantly improved.
 シロキサン化合物(C’)の原料となるシランカップリング剤(C)としては、2以上、好ましくは3以上のアルコキシ基を有するアルコキシシランを使用することが好ましい。その部分加水分解物を使用することもできる。 As the silane coupling agent (C) used as a raw material for the siloxane compound (C ′), it is preferable to use an alkoxysilane having 2 or more, preferably 3 or more alkoxy groups. The partial hydrolyzate can also be used.
 シランカップリング剤(C)のアルコキシ基は、水系への添加によって加水分解し、シラノール(-Si-OH)となる。シラノールの分散安定性はpH6.5以下で得られる。処理剤のpHが6.5を超えると、ゲル化によりポットライフが得られない。 The alkoxy group of the silane coupling agent (C) is hydrolyzed by addition to an aqueous system to form silanol (—Si—OH). Silanol dispersion stability is obtained at pH 6.5 or less. If the pH of the treatment agent exceeds 6.5, pot life cannot be obtained due to gelation.
 シランカップリング剤(C)としては、市販品を利用することもできる。市販品としては、例えば、N-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等が挙げられる。好ましいシランカップリング剤(C)は、使用するカチオン性ポリウレタン樹脂(A)及びカチオン性フェノール樹脂(B)と反応性の官能基を有するもの(例えば、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン等が好ましく、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン等が特に好ましい。)である。これらのカチオン性樹脂との反応の種類は、重合反応、縮合反応、付加反応等でよく、特に制限されない。 Commercial products can also be used as the silane coupling agent (C). Examples of commercially available products include N- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane and the like. Preferred silane coupling agents (C) are those having a functional group reactive with the cationic polyurethane resin (A) and the cationic phenol resin (B) to be used (for example, 3-aminopropyltriethoxysilane, 3-glycol Sidoxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane and the like are preferable, and 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane and the like are particularly preferable. The kind of reaction with these cationic resins may be polymerization reaction, condensation reaction, addition reaction or the like, and is not particularly limited.
<チタンのアセチルアセトン錯体(D)>
 本発明の水系表面処理剤には、チタンのアセチルアセトン錯体(D)も必須成分として配合される。本発明の処理剤にチタンのアセチルアセトン錯体(D)が配合され、形成される難水溶性皮膜がチタンのアセチルアセトン錯体(D)の反応析出物であるチタン化合物(D’)を含有することにより、耐食性が非常に向上する。
<Titanium acetylacetone complex (D)>
In the aqueous surface treatment agent of the present invention, an acetylacetone complex (D) of titanium is also blended as an essential component. The titanium acetylacetone complex (D) is blended with the treating agent of the present invention, and the hardly water-soluble film formed contains a titanium compound (D ′) that is a reaction precipitate of the titanium acetylacetone complex (D). Corrosion resistance is greatly improved.
 処理剤に、チタンのアセチルアセトン錯体が配合されると、形成される難水溶性皮膜の耐食性が一段と向上し、また、乾燥造膜皮膜中に残存するアセチルアセトナトおよびアセチルアセトンはイオン性が弱く、結露白化に悪影響を与えない。チタンのアセチルアセトン錯体は、乾燥造膜下でめっき基材と反応して析出し、難水溶性皮膜を形成する。チタンのキレート化合物のうち、カチオン性を有するトリエタノールアミン錯体は、結露白化に悪影響を与えない点では好ましいが、乾燥造膜後も皮膜中に残存するトリエタノールアミンが吸水性を示すため、耐食性向上効果はアセチルアセトン錯体の方が大きい。チタンフッ化水素酸やチタンフッ化アンモニウムは、フッ素が遊離して耐結露白化性が劣化するので、不適である。 When a titanium acetylacetone complex is added to the treatment agent, the corrosion resistance of the poorly water-soluble film formed is further improved, and acetylacetonate and acetylacetone remaining in the dry film-forming film are weakly ionic and dew condensation occurs. Does not adversely affect whitening. Titanium acetylacetone complex reacts with the plating substrate under dry film formation to form a hardly water-soluble film. Of the titanium chelate compounds, the triethanolamine complex having a cationic property is preferable in that it does not adversely affect condensation whitening, but the triethanolamine remaining in the film after dry film formation exhibits water absorption, so that it has corrosion resistance. The improvement effect is greater with the acetylacetone complex. Titanium hydrofluoric acid and ammonium titanium fluoride are not suitable because fluorine is liberated and the resistance to condensation whitening deteriorates.
<バナジウム化合物(E)>
 本発明の水系表面処理剤には、バナジウム化合物(E)も必須成分として配合される。本発明の処理剤にバナジウム化合物(E)が配合され、形成される難水溶性皮膜がバナジウム化合物(E)の反応析出物であるバナジウム化合物(E’)を含有することにより、耐食性が非常に向上する。
<Vanadium compound (E)>
In the aqueous surface treatment agent of the present invention, the vanadium compound (E) is also blended as an essential component. The vanadium compound (E) is blended with the treatment agent of the present invention, and the formed hardly water-soluble film contains the vanadium compound (E ′) which is a reaction precipitate of the vanadium compound (E), so that the corrosion resistance is very high. improves.
 バナジウム化合物(E)としては、強電解質が含まれない五酸化バナジウム、メタバナジン酸及びその塩(例えば、メタバナジン酸アンモニウム)、三酸化バナジウム、二酸化バナジウム、バナジウムオキシアセチルアセトナト、バナジウムアセチルアセトナト等、並びに揮発性酸との塩である酢酸バナジウム等が挙げられる。耐食性向上効果を考慮すると、この中でバナジウムアセチルアセトナト、バナジウムオキシアセチルアセトナト等のバナジウムのアセチルアセトン錯体が好ましい。後述するように、バナジウム化合物(E’)は皮膜中に酸化物又はアセチルアセトン錯体として固定化される。 Examples of the vanadium compound (E) include vanadium pentoxide not containing a strong electrolyte, metavanadate and its salt (for example, ammonium metavanadate), vanadium trioxide, vanadium dioxide, vanadium oxyacetylacetonate, vanadium acetylacetonate, and the like. And vanadium acetate which is a salt with a volatile acid. Considering the effect of improving corrosion resistance, vanadium acetylacetone complexes such as vanadium acetylacetonate and vanadium oxyacetylacetonate are preferable. As will be described later, the vanadium compound (E ′) is immobilized in the film as an oxide or an acetylacetone complex.
<オレフィン系ワックス(F)>
 本発明の水系表面処理剤は、オレフィン系ワックス(F)も任意成分として配合されることが好ましい。このオレフィン系ワックス(F)は、シランカップリング剤(I)により表面修飾されていることが更に好ましい。本発明の難水溶性皮膜がシランカップリング剤(I)により表面修飾されたオレフィン系ワックス(F)を含有すると、それが表面に露出せずに皮膜中に分散するため、無塗油潤滑性と取り扱い性、すなわち耐コイル変形性、耐切板パイル荷崩れ性とを両立させることが可能となる。オレフィン系ワックス(F)が皮膜中に分散するのは、シランカップリング剤(I)による表面修飾によってワックスの表面張力が増加し、処理剤への濡れ性が増すためと考えられる。
<Olefin wax (F)>
In the aqueous surface treating agent of the present invention, the olefin wax (F) is preferably blended as an optional component. The olefin wax (F) is more preferably surface-modified with a silane coupling agent (I). When the poorly water-soluble film of the present invention contains the olefin wax (F) surface-modified with the silane coupling agent (I), it is dispersed in the film without being exposed to the surface, so that it is oil-free lubrication And handleability, that is, coil deformation resistance and cut plate pile load collapse resistance can both be achieved. The reason why the olefinic wax (F) is dispersed in the film is thought to be because the surface tension of the silane coupling agent (I) increases the surface tension of the wax and the wettability to the treatment agent increases.
 一般に、ワックスなどの固体潤滑剤を添加した潤滑性皮膜は、乾燥造膜下では液対流によるワックスの皮膜表面への濃化が発生し、ワックスを皮膜中に均一分散させるのは容易ではない。しかし、ワックス粒をシランカップリング剤で表面修飾することで皮膜中に均一分散させることができる。 Generally, in a lubricious film to which a solid lubricant such as wax is added, the wax is concentrated on the film surface by liquid convection under dry film formation, and it is not easy to uniformly disperse the wax in the film. However, the wax particles can be uniformly dispersed in the film by surface modification with a silane coupling agent.
 シランカップリング剤(I)としては、反応性官能基を有するシランカップリング剤を用いることが好ましい。シランカップリング剤(I)による表面修飾は、オレフィン系ワックスエマルジョンにシランカップリング剤(I)を直接混合することにより実施することができる。それにより、カチオン性ポリウレタン樹脂、カチオン性フェノール樹脂及びシランカップリング剤を含有するpH6.5以下の酸性処理液中で安定な表面修飾オレフィン系ワックスが得られる。使用できるオレフィン系ワックス(F)としては、ポリエチレンワックス、酸化ポリエチレンワックス、酸化ポリプロピレンワックス等が挙げられる。本発明のシランカップリング剤(I)により表面修飾されたオレフィン系ワックス(F)としては、酸性処理液中で安定なカルボキシル基を有するポリエチレンワックスエマルジョンにエポキシ基を含有するシランカップリング剤(例えば、グリシジルプロピルトリメトキシシラン)を直接混合して得られる表面修飾オレフィン系ワックスが好ましい。 As the silane coupling agent (I), a silane coupling agent having a reactive functional group is preferably used. The surface modification with the silane coupling agent (I) can be carried out by directly mixing the silane coupling agent (I) into the olefin wax emulsion. As a result, a surface-modified olefin wax that is stable in an acidic treatment solution having a pH of 6.5 or less containing a cationic polyurethane resin, a cationic phenol resin, and a silane coupling agent is obtained. Examples of the olefin wax (F) that can be used include polyethylene wax, oxidized polyethylene wax, oxidized polypropylene wax, and the like. As the olefin wax (F) surface-modified with the silane coupling agent (I) of the present invention, a silane coupling agent containing an epoxy group in a polyethylene wax emulsion having a carboxyl group that is stable in an acidic treatment solution (for example, The surface-modified olefin wax obtained by directly mixing glycidylpropyltrimethoxysilane) is preferable.
 また、オレフィン系ワックス(F)の質量に対する、シランカップリング剤(I)の質量との比(NI/NF)は0.025~0.035であることが好ましい。NI/NFを0.025以上とすることにより、取り扱い性を向上させることができる。また、NI/NFを0.035以下とすることにより、加工性を向上させることができる。シランカップリング剤(I)の添加量はワックスディスパージョンの酸価と等モル以上であることが好ましい。 Further, the ratio (NI / NF) of the mass of the silane coupling agent (I) to the mass of the olefin wax (F) is preferably 0.025 to 0.035. By making NI / NF 0.025 or more, handleability can be improved. Moreover, workability can be improved by making NI / NF 0.035 or less. The addition amount of the silane coupling agent (I) is preferably equimolar or more with the acid value of the wax dispersion.
 さらに、オレフィン系ワックス(F)の平均粒径は、0.05~0.15μmであることが好ましい。ワックス粒径が0.15μm以下であれば、皮膜表面に存在するワックスの体積が減少し取り扱い性が向上し、0.05μm以上であれば、加工性が向上するとともにワックス凝集による処理剤の安定性への悪影響も小さい。なお、オレフィン系ワックス(F)の平均粒径としては、レーザー回折・散乱法により測定した値を用いることとする。 Furthermore, the average particle diameter of the olefin wax (F) is preferably 0.05 to 0.15 μm. If the wax particle size is 0.15 μm or less, the volume of the wax present on the surface of the film is reduced and the handleability is improved, and if it is 0.05 μm or more, the processability is improved and the treatment agent is stabilized by wax aggregation. There is little adverse effect on sex. The average particle diameter of the olefin wax (F) is a value measured by a laser diffraction / scattering method.
<酢酸成分(G)>
 本発明の水系表面処理剤には、酢酸成分(G)が必須成分として配合される。酢酸成分(G)を配合することで、処理剤の液安定性(処理剤安定性)が向上する。これは、酢酸成分(G)のpH緩衝作用により、処理剤のpHが3.5~4.0付近に安定し、シランカップリング剤(C)の縮合反応が遅くなるためと推測している。なお、本発明者らの検討により、シランカップリング剤(C)の縮合反応が最も遅くなるpHは3.5~4.0付近であることがわかっている。また、酢酸は沸点が118℃であるが、緩衝作用を有する有機酸の中では沸点が低く、皮膜への残存は比較的しにくい。この為、表面処理剤に含有させる有機酸としては好適である。
<Acetic acid component (G)>
An acetic acid component (G) is blended as an essential component in the aqueous surface treating agent of the present invention. By mix | blending an acetic acid component (G), the liquid stability (processing agent stability) of a processing agent improves. This is presumed to be because the pH buffering action of the acetic acid component (G) stabilizes the pH of the treatment agent in the vicinity of 3.5 to 4.0, and the condensation reaction of the silane coupling agent (C) becomes slow. . According to the study by the present inventors, it is known that the pH at which the condensation reaction of the silane coupling agent (C) is slowest is around 3.5 to 4.0. Acetic acid has a boiling point of 118 ° C., but the organic acid having a buffering action has a low boiling point and is relatively difficult to remain in the film. For this reason, it is suitable as an organic acid to be contained in the surface treatment agent.
 酢酸成分(G)としては、例えば、酢酸、酢酸アンモニウム、酢酸カリウム、酢酸ナトリウム等が挙げられる。処理剤安定性の向上効果を考慮すると、酢酸が特に好ましい。 Examples of the acetic acid component (G) include acetic acid, ammonium acetate, potassium acetate, and sodium acetate. Considering the effect of improving the treatment agent stability, acetic acid is particularly preferable.
<りん酸成分(H)>
 本発明の水系表面処理剤には、りん酸成分(H)が必須成分として配合される。りん酸成分(H)を配合し、形成される難水溶性皮膜がりん酸成分(H)を含有することで、基材である亜鉛めっき鋼材または亜鉛基合金めっき鋼材の亜鉛めっき層と反応し、りん酸亜鉛皮膜を生成することから、亜鉛めっき層からの亜鉛の溶出を抑制することができる。その結果、亜鉛の白錆の発生が抑制され、耐スタック白化性が向上する。また、処理剤にりん酸成分(H)が配合されることで、皮膜中に残存する酢酸の量を低減させることができ、その結果、フィラメントテープの粘着層が侵されず、フィラメントテープの密着性低下を抑制することができる。
<Phosphoric acid component (H)>
In the aqueous surface treating agent of the present invention, the phosphoric acid component (H) is blended as an essential component. When the phosphoric acid component (H) is blended and the poorly water-soluble film formed contains the phosphoric acid component (H), it reacts with the galvanized layer of the galvanized steel or zinc-base alloy-plated steel material. Since zinc phosphate film is generated, elution of zinc from the galvanized layer can be suppressed. As a result, the occurrence of white rust of zinc is suppressed, and the stack whitening resistance is improved. In addition, the amount of acetic acid remaining in the film can be reduced by adding the phosphoric acid component (H) to the treatment agent. As a result, the adhesive layer of the filament tape is not attacked and the filament tape is closely attached. Deterioration can be suppressed.
 りん酸成分(H)としては、例えば、りん酸等の無機りん酸、及び、りん酸アンモニウム、りん酸カリウム、りん酸ナトリウム、りん酸二水素一ナトリウム等の無機りん酸化合物が挙げられる。耐スタック白化性及び耐フィラメントテープ性の向上効果を考慮すると、無機りん酸化合物及び無機りん酸が好ましく、りん酸が特に好ましい。 Examples of the phosphoric acid component (H) include inorganic phosphoric acid such as phosphoric acid and inorganic phosphoric acid compounds such as ammonium phosphate, potassium phosphate, sodium phosphate, and monosodium dihydrogen phosphate. In view of the effect of improving stack whitening resistance and filament tape resistance, inorganic phosphoric acid compounds and inorganic phosphoric acid are preferable, and phosphoric acid is particularly preferable.
<好適でない成分>
 本発明の水系表面処理剤には、コロイダルシリカが配合されていないことが好ましい。本発明の水系表面処理剤にコロイダルシリカが配合されていると、シランカップリング剤(C)がコロイダルシリカと反応し、処理剤安定性が低下するため、好ましくない。また、本発明の水系表面処理剤には、塩基性アルカリ珪酸塩が配合されていないことが好ましい。本発明の水系表面処理剤は酸性であり、アルカリ性である塩基性アルカリ珪酸塩が配合されていると、処理剤安定性が低下するため、好ましくない。
<Unsuitable component>
The aqueous surface treatment agent of the present invention preferably contains no colloidal silica. When colloidal silica is blended in the aqueous surface treatment agent of the present invention, the silane coupling agent (C) reacts with the colloidal silica and the treatment agent stability decreases, which is not preferable. The aqueous surface treatment agent of the present invention preferably contains no basic alkali silicate. The aqueous surface treatment agent of the present invention is acidic, and if an alkaline basic silicate that is alkaline is blended, the treatment agent stability is lowered, which is not preferable.
(配合比)
 次に、本発明の水系表面処理剤に配合される成分の配合比について述べる。
(Mixing ratio)
Next, the blending ratio of the components blended in the aqueous surface treatment agent of the present invention will be described.
<(NC)/(NV)>
 本発明の水系表面処理剤の固形分(V)の質量に対する、シランカップリング剤(C)のSiO換算による質量との比(NC)/(NV)は、0.16~0.19であり、好ましくは0.16~0.18である。(NC)/(NV)が0.19を超えると、一次密着性が低下し、0.16に満たないと、十分な平面部耐食性が得られない。
<(NC) / (NV)>
The ratio (NC) / (NV) of the silane coupling agent (C) to the mass in terms of SiO 2 with respect to the mass of the solid content (V) of the aqueous surface treating agent of the present invention is 0.16 to 0.19. Yes, preferably from 0.16 to 0.18. When (NC) / (NV) exceeds 0.19, the primary adhesion is lowered, and when it is less than 0.16, sufficient planar portion corrosion resistance cannot be obtained.
<(ND)/(NV)>
 上記固形分(V)の質量に対する、チタンのアセチルアセトン錯体(D)のTi換算による質量(ND)との比(ND)/(NV)は、0.0170~0.0240であり、好ましくは0.0190~0.0230である。(ND)/(NV)が0.0170未満であると、脱脂後の耐食性が劣化し、0.0240超であると、脱脂後耐食性の向上効果が飽和するとともに、脱脂後の密着性が低下する。
<(ND) / (NV)>
The ratio (ND) / (NV) of the mass of acetylacetone complex (D) of titanium to the mass (ND) of Ti with respect to the mass of the solid content (V) is 0.0170 to 0.0240, preferably 0. 0190-0.0230. When (ND) / (NV) is less than 0.0170, the corrosion resistance after degreasing deteriorates, and when it exceeds 0.0240, the effect of improving the corrosion resistance after degreasing is saturated and the adhesion after degreasing is reduced. To do.
<(NE)/(NV)>
 上記固形分(V)の質量に対する、バナジウム化合物(E)のV換算による質量(NE)との比(NE)/(NV)は、0.0070~0.0090であり、好ましくは0.0075~0.0090である。(NE)/(NV)が0.0070未満であると、十分なカット部耐食性向上効果が得られず、0.0090超であると、カット部耐食性向上効果が飽和するとともに、二次密着性が低下する。
<(NE) / (NV)>
The ratio (NE) / (NV) of the vanadium compound (E) to the mass (NE) in terms of V with respect to the mass of the solid content (V) is 0.0070 to 0.0090, preferably 0.0075. ~ 0.0090. When (NE) / (NV) is less than 0.0070, a sufficient effect of improving the corrosion resistance of the cut portion cannot be obtained, and when it is more than 0.0090, the effect of improving the corrosion resistance of the cut portion is saturated and the secondary adhesion is achieved. Decreases.
<(NF)/(NV)>
 上記固形分(V)の質量に対する、オレフィン系ワックス(F)の質量との比(NF)/(NV)は、好ましくは0.035~0.060であり、より好ましくは0.040~0.055である。(NF)/(NV)が0.035以上であると、十分な無塗油潤滑性が得られるため、加工性が向上する。一方、(NF)/(NV)が0.060以下であると、耐コイル変形性及び耐切板パイル荷崩れ性が良好となるため、取り扱い性が向上する。
<(NF) / (NV)>
The ratio (NF) / (NV) of the mass of the olefin wax (F) to the mass of the solid content (V) is preferably 0.035 to 0.060, more preferably 0.040 to 0. .055. When (NF) / (NV) is 0.035 or more, sufficient oil-free lubricity is obtained, so that workability is improved. On the other hand, when (NF) / (NV) is 0.060 or less, the coil deformation resistance and the cut plate pile load collapse resistance are improved, and the handleability is improved.
<(NG)/(NV)>
 上記固形分(V)の質量に対する、酢酸成分(G)の質量との比(NG)/(NV)は、0.040~0.140であり、好ましくは0.050~0.130であり、より好ましくは0.060~0.120である。(NG)/(NV)が0.040未満であると、十分な処理剤安定性向上効果が得られず、0.140超であると、処理剤安定性向上効果が飽和するとともに、耐結露白化性が低下する。
<(NG) / (NV)>
The ratio (NG) / (NV) of the mass of the acetic acid component (G) to the mass of the solid content (V) is 0.040 to 0.140, preferably 0.050 to 0.130. More preferably, it is 0.060 to 0.120. When (NG) / (NV) is less than 0.040, a sufficient effect of improving the stability of the processing agent cannot be obtained, and when it exceeds 0.140, the effect of improving the stability of the processing agent is saturated and the condensation resistance is increased. Whitening property decreases.
<(NH)/(NV)>
 上記固形分(V)の質量に対する、りん酸成分(H)の質量との比(NH)/(NV)は、0.025~0.075であり、好ましくは0.030~0.070であり、より好ましくは0.035~0.065である。(NH)/(NV)が0.025未満であると、十分なめっき層からの亜鉛溶出抑制効果が得られず、0.075超であると、亜鉛溶出抑制効果が飽和するとともに、耐黒変性が低下する。
<(NH) / (NV)>
The ratio (NH) / (NV) of the mass of the phosphoric acid component (H) to the mass of the solid content (V) is 0.025 to 0.075, preferably 0.030 to 0.070. More preferably, it is 0.035 to 0.065. When (NH) / (NV) is less than 0.025, a sufficient zinc elution suppression effect from the plating layer cannot be obtained, and when it exceeds 0.075, the zinc elution suppression effect is saturated and black resistance Denaturation is reduced.
<(ND)/(NE)>
 また、バナジウム化合物(E)のV換算による質量に対する、チタンのアセチルアセトン錯体(D)のTi換算による質量との比(ND)/(NE)は、2.10~2.90であり、好ましくは2.20~2.80であり、より好ましくは2.30~2.70である。(ND)/(NE)が2.10未満であると、バナジウム化合物(E)の皮膜への固定率が低下し、加工部耐食性が低下する。一方、(ND)/(NE)が2.90超であると、チタンのアセチルアセトン錯体(D)の皮膜への固定率が低下し、加工部耐食性が低下する。
<(ND) / (NE)>
In addition, the ratio (ND) / (NE) of the acetylacetone complex (D) of titanium to the mass of Ti in terms of V to the mass of vanadium compound (E) in terms of V is 2.10 to 2.90, preferably 2.20 to 2.80, more preferably 2.30 to 2.70. When (ND) / (NE) is less than 2.10, the fixing rate of the vanadium compound (E) to the film is lowered, and the corrosion resistance of the processed part is lowered. On the other hand, when (ND) / (NE) is more than 2.90, the fixing ratio of titanium to the acetylacetone complex (D) is lowered, and the processed portion corrosion resistance is lowered.
<(NH)/(NG)>
 また、酢酸成分(G)の質量に対する、りん酸成分(H)の質量との比(NH)/(NG)は、0.25~1.10である。(NH)/(NG)が0.25未満及び1.10超であると、耐スタック白化性が低下する。耐スタック白化性の向上効果を高めるためには、(NH)/(NG)が0.30~1.00であることが好ましく、0.35~0.90であることがより好ましい。
<(NH) / (NG)>
The ratio (NH) / (NG) of the mass of the phosphoric acid component (H) to the mass of the acetic acid component (G) is 0.25 to 1.10. When (NH) / (NG) is less than 0.25 and more than 1.10, stack whitening resistance is deteriorated. In order to enhance the effect of improving stack whitening resistance, (NH) / (NG) is preferably 0.30 to 1.00, more preferably 0.35 to 0.90.
<(NH)/(ND)>
 また、チタンのアセチルアセトン錯体(D)のTi換算による質量(ND)に対する、りん酸成分(H)の質量との比(NH)/(ND)は、1.11~3.19である。(NH)/(ND)が1.11未満及び3.19超であると、耐フィラメントテープ性が低下する。耐フィラメントテープ性の向上効果を高めるためには、(NH)/(ND)が1.40~3.00であることが好ましく、1.80~2.81であることがより好ましい。
<(NH) / (ND)>
The ratio (NH) / (ND) of the mass of the phosphoric acid component (H) to the mass (ND) in terms of Ti of the acetylacetone complex (D) of titanium is 1.11 to 3.19. When (NH) / (ND) is less than 1.11 and more than 3.19, the resistance to filament tape deteriorates. In order to enhance the effect of improving the filament tape resistance, (NH) / (ND) is preferably 1.40 to 3.00, and more preferably 1.80 to 2.81.
 以上の成分を水系溶媒に溶解又は分散させることにより、本発明で皮膜形成に使用する表面処理剤を調製することができる。各成分は皮膜中で所定の割合となるように、従って、溶媒及び揮発性成分を除外した不揮発分(固形分)の合計量に対して所定の割合となるように調整する。本発明で使用する処理剤は水系であるので、溶媒は水のみでよいが、皮膜の乾燥性の改善などの目的で、前述した強電解質が含まれない水溶性有機溶媒(例えば、アルコール類)を少量(例えば、溶媒全体の30質量%以内)含有させてもよい。また、レベリング剤、消泡剤等の塗布用処理液に慣用されている添加剤を処理剤に添加することができる。 By dissolving or dispersing the above components in an aqueous solvent, a surface treatment agent used for film formation in the present invention can be prepared. Each component is adjusted so as to have a predetermined ratio in the film, and accordingly, adjusted to have a predetermined ratio with respect to the total amount of the non-volatile content (solid content) excluding the solvent and the volatile component. Since the treatment agent used in the present invention is aqueous, the solvent may be only water, but for the purpose of improving the drying property of the film, the water-soluble organic solvent (for example, alcohols) that does not contain the above-mentioned strong electrolyte. May be contained in a small amount (for example, within 30% by mass of the entire solvent). Further, additives commonly used in coating treatment liquids such as leveling agents and antifoaming agents can be added to the treatment agents.
(物性)
 次に、本発明の水系表面処理剤に配合される成分の物性について述べる。
(Physical properties)
Next, the physical property of the component mix | blended with the aqueous surface treating agent of this invention is described.
<pH>
 前述したように本発明の水系表面処理剤は、カチオン性ポリウレタン樹脂(A)及びカチオン性フェノール樹脂(B)を必須成分としているため、また、シランカップリング剤(C)の分散安定化のために6.5以下の酸性領域のpHとすることが好ましい。水系表面処理剤の好ましいpH範囲は2.0~6.5である。必要に応じて、酢酸、ギ酸等の揮発性の酸を添加して処理剤の酸性度(pH)を調整することができる。
<PH>
As described above, the aqueous surface treatment agent of the present invention contains the cationic polyurethane resin (A) and the cationic phenol resin (B) as essential components, and also for the dispersion stabilization of the silane coupling agent (C). Preferably, the pH is in an acidic region of 6.5 or less. The preferred pH range of the aqueous surface treatment agent is 2.0 to 6.5. If necessary, volatile acids such as acetic acid and formic acid can be added to adjust the acidity (pH) of the treatment agent.
[被覆方法]
 以上、本発明に係る亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤について詳述したが、続いて、前述した亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤を用いた、本発明に係る被覆方法について述べる。本発明に係る被覆方法は、前述した亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤を亜鉛めっき鋼材または亜鉛基合金めっき鋼材に塗布して(より具体的には、亜鉛めっき鋼材または亜鉛基合金めっき鋼材に接触させた後に、乾燥することによって)、亜鉛めっき鋼材または亜鉛基合金めっき鋼材の表面に皮膜を形成する表面処理方法である。
[Coating method]
As described above, the water-based surface treatment agent for galvanized steel or zinc-based alloy-plated steel according to the present invention has been described in detail. Subsequently, the above-described water-based surface treatment agent for galvanized steel or zinc-based alloy-plated steel was used. The coating method according to the present invention will be described. In the coating method according to the present invention, the above-described aqueous surface treatment agent for galvanized steel or zinc-base alloy-plated steel is applied to the galvanized steel or zinc-base alloy-plated steel (more specifically, galvanized steel or This is a surface treatment method for forming a film on the surface of a galvanized steel material or a zinc-based alloy-plated steel material by bringing it into contact with a zinc-based alloy-plated steel material and then drying it.
(基材:亜鉛めっき鋼材または亜鉛基合金めっき鋼材)
 本発明に用いられる亜鉛めっき鋼材または亜鉛基合金めっき鋼材としては、例えば、亜鉛-ニッケルめっき鋼材、亜鉛-鉄めっき鋼材、亜鉛-クロムめっき鋼材、亜鉛-アルミニウムめっき鋼材、亜鉛-チタンめっき鋼材、亜鉛-マグネシウムめっき鋼材、亜鉛-マンガンめっき鋼材、亜鉛-アルミニウム-マグネシウムめっき鋼材、亜鉛-アルミニウム-マグネシウム-シリコンめっき鋼材等の亜鉛系めっき鋼材、さらにはこれらのめっき層に、少量の異種金属元素又は不純物として、コバルト、モリブデン、タングステン、ニッケル、チタン、クロム、アルミニウム、マンガン、鉄、マグネシウム、鉛、ビスマス、アンチモン、錫、銅、カドミウム、ヒ素等が含有されたもの、シリカ、アルミナ、チタニア等の無機物が分散されたものが含まれる。
(Base material: Galvanized steel or zinc-base alloy plated steel)
Examples of the galvanized steel material or zinc base alloy plated steel material used in the present invention include zinc-nickel plated steel material, zinc-iron plated steel material, zinc-chromium plated steel material, zinc-aluminum plated steel material, zinc-titanium plated steel material, zinc -Zinc-coated steel materials such as magnesium-plated steel materials, zinc-manganese-plated steel materials, zinc-aluminum-magnesium-plated steel materials, zinc-aluminum-magnesium-silicon-plated steel materials, and small amounts of different metal elements or impurities in these plated layers As an inorganic substance such as cobalt, molybdenum, tungsten, nickel, titanium, chromium, aluminum, manganese, iron, magnesium, lead, bismuth, antimony, tin, copper, cadmium, arsenic, etc., silica, alumina, titania, etc. Is distributed Murrell.
 更には、上記めっき層と、他の種類のめっき層、例えば鉄めっき、鉄-りんめっき、ニッケルめっき、コバルトめっき等のめっき層と、組み合わせた複層めっきにも適用可能である。めっき層の形成は特に限定されるものではなく、公知の電気めっき法、溶融めっき法、蒸着めっき法、分散めっき法、真空めっき法等のいずれの方法を用いても行うことができる。めっき付着量は特に制限されず、従来の一般的な範囲内でよい。めっきは、片面めっきと両面めっきのいずれでもよい。本発明に係る表面処理方法では、基材が両面めっき鋼板の場合、当該めっき鋼板の片面又は両面に皮膜を形成することができる。 Furthermore, the present invention can also be applied to multilayer plating in which the above plating layer and other types of plating layers such as iron plating, iron-phosphorus plating, nickel plating, cobalt plating, etc. are combined. The formation of the plating layer is not particularly limited, and can be performed using any known method such as electroplating, hot dipping, vapor deposition, dispersion plating, and vacuum plating. The amount of plating adhesion is not particularly limited, and may be within the conventional general range. The plating may be either single-sided plating or double-sided plating. In the surface treatment method according to the present invention, when the substrate is a double-sided plated steel plate, a film can be formed on one side or both sides of the plated steel plate.
(処理工程)
 前記の亜鉛めっき鋼材または亜鉛基合金めっき鋼材に、前述した水系表面処理剤を接触させた後に、乾燥することによって亜鉛めっき鋼材または亜鉛基合金めっき鋼材の表面に皮膜(難水溶性皮膜)を形成させる。この皮膜は、本発明の処理剤に配合される、カチオン性ポリウレタン樹脂(A)、カチオン性フェノール樹脂(B)、シランカップリング剤(C)、チタンのアセチルアセトン錯体(D)、バナジウム化合物(E)、酢酸成分(G)及びりん酸成分(H)に由来する、カチオン性ポリウレタン樹脂(A)、カチオン性フェノール樹脂(B)、シロキサン化合物(C’)、チタン化合物(D’)、バナジウム化合物(E’)、酢酸成分(G)及びりん酸成分(H)を少なくとも含む。
(Processing process)
Forming a film (poorly water-soluble film) on the surface of galvanized steel or zinc-based alloy-plated steel by bringing the above-mentioned aqueous surface treatment agent into contact with the above-mentioned galvanized steel or zinc-based alloy-plated steel, and then drying. Let This film is blended with the treatment agent of the present invention, the cationic polyurethane resin (A), the cationic phenol resin (B), the silane coupling agent (C), the acetylacetone complex of titanium (D), the vanadium compound (E ), Cationic polyurethane resin (A), cationic phenol resin (B), siloxane compound (C ′), titanium compound (D ′), vanadium compound derived from acetic acid component (G) and phosphoric acid component (H) (E '), an acetic acid component (G), and a phosphoric acid component (H) are included at least.
 本発明の処理剤の基材である亜鉛めっき鋼材または亜鉛基合金めっき鋼材への接触方法は、浸漬、噴霧、ロール塗布等、任意の慣用の接触方法により実施できる。接触後に焼付け乾燥を行う。その際の加熱温度は、処理剤中の揮発性成分(例えば、カチオン性樹脂のカウンターアニオンに由来する酢酸もしくはギ酸)が揮発するように選択する。最高到達板温(PMT)が60~150℃の範囲内となるように乾燥を行うことが好ましい。焼付け乾燥は、熱風乾燥または炉内乾燥により行うことができる。 The contact method of the treatment agent of the present invention to the galvanized steel material or zinc-base alloy-plated steel material can be carried out by any conventional contact method such as dipping, spraying, roll coating or the like. Bake drying after contact. The heating temperature at that time is selected so that volatile components in the treatment agent (for example, acetic acid or formic acid derived from the counter anion of the cationic resin) are volatilized. It is preferable to perform the drying so that the maximum plate temperature (PMT) is in the range of 60 to 150 ° C. Baking and drying can be performed by hot air drying or oven drying.
 焼付け乾燥過程においては、処理剤の液膜から酢酸等の揮発性酸成分が揮発し、pHが上昇する。これにより、めっき基材とチタンのアセチルアセトン錯体、シランカップリング剤、カチオン性ポリウレタン樹脂ディスパージョン、カチオン性フェノール樹脂が加水分解と縮合反応を起こし、めっき基材表面、樹脂、有機シラン化合物、チタン化合物、及びバナジウム化合物がアイオノマ結合、メタロキサン結合又はシロキサン結合による強固なネットワークを形成し、そこにバナジウム化合物とオレフィン系ワックスとが固定された構造を持つ、難水溶性の皮膜が形成される。 In the baking and drying process, volatile acid components such as acetic acid are volatilized from the liquid film of the treatment agent, and the pH rises. As a result, the plating base and titanium acetylacetone complex, silane coupling agent, cationic polyurethane resin dispersion, and cationic phenol resin undergo hydrolysis and condensation reactions, and the plating base surface, resin, organosilane compound, titanium compound , And a vanadium compound forms a strong network by an ionomer bond, a metalloxane bond, or a siloxane bond, and a poorly water-soluble film having a structure in which the vanadium compound and the olefinic wax are fixed is formed.
[被覆鋼材]
 次に、前述した被覆方法を用いて形成された皮膜(難水溶性皮膜)を有する、本発明に係る被覆鋼材について述べる。
[Coated steel]
Next, the coated steel material according to the present invention having a film (poorly water-soluble film) formed by using the above-described coating method will be described.
(皮膜付着量)
 上記難水溶性皮膜の付着量は、一次防錆(ユーザーへのデリバリー期間中の錆対策)を目的とする場合は100mg/m以上であればよいが、裸使用(最終製品の塗装省略)を目的とする場合には、300mg/m以上とすることが好ましい。皮膜付着量の上限は3000mg/mである。それより付着量が大きくなると、上塗り塗装性が低下し、皮膜がワックスを含有していなくても、取り扱い性も悪くなる。スポット溶接を行う場合には、皮膜付着量を1500mg/m以下とすることが好ましい。
(Amount of coating)
The amount of the poorly water-soluble film attached may be 100 mg / m 2 or more for the purpose of primary rust prevention (measures against rust during delivery to users), but bare use (omitting painting of final product) Is intended to be 300 mg / m 2 or more. The upper limit of the coating amount is 3000 mg / m 2 . If the adhesion amount is larger than that, the top coatability is lowered, and the handleability is also deteriorated even if the film does not contain wax. When spot welding is performed, it is preferable that the coating amount be 1500 mg / m 2 or less.
 本発明の被覆鋼材は、少なくとも、カチオン性ポリウレタン樹脂(A)、カチオン性フェノール樹脂(B)、シロキサン化合物(C’)、チタン化合物(D’)、バナジウム化合物(E’)、酢酸成分(G)及びりん酸成分(H)から形成される難水溶性皮膜を亜鉛めっき鋼材または亜鉛基合金めっき鋼材の表面に有する。そのため、耐結露白化性と耐食性に優れるだけでなく、耐スタック白化性及び耐フィラメントテープ性に優れている。また、好適態様において、皮膜が、オレフィン系ワックスを含み、更に、シランカップリング剤(I)で表面修飾されたオレフィン系ワックス(F)を含有していると、皮膜に無塗油潤滑性が付与され、しかもワックスが表面に露出せずに皮膜中に分散するため、耐コイル変形性、耐切板パイル荷崩れ性にも優れる。 The coated steel material of the present invention comprises at least a cationic polyurethane resin (A), a cationic phenol resin (B), a siloxane compound (C ′), a titanium compound (D ′), a vanadium compound (E ′), and an acetic acid component (G ) And a phosphoric acid component (H), a poorly water-soluble film is formed on the surface of the galvanized steel material or the zinc-base alloy plated steel material. Therefore, not only is it excellent in resistance to condensation whitening and corrosion, but it is also excellent in resistance to stack whitening and resistance to filament tape. In a preferred embodiment, when the coating contains an olefinic wax and further contains an olefinic wax (F) surface-modified with a silane coupling agent (I), the coating has no oil-coated lubricity. Moreover, since the wax is dispersed in the film without being exposed to the surface, the coil deformation resistance and the cut plate pile load collapse resistance are excellent.
 以下に本発明の実施例および比較例を挙げて、本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples of the present invention, but the present invention is not limited to these examples.
1.試験材
 実施例および比較例で使用した亜鉛めっき鋼材または亜鉛基合金めっき鋼材を以下に示す。
 新日鐵住金株式会社製の、電気亜鉛めっき鋼板「NSジンコート(登録商標)」(以降、「EG」と称する。)、溶融亜鉛めっき鋼板「NSシルバージンク(登録商標)」(以降、「GI」と称する。)、合金化溶融亜鉛めっき鋼板「NSシルバーアロイ(登録商標)」(以降、「GA」と称する。)、亜鉛-アルミニウム-マグネシウム-シリコン合金めっき鋼板「スーパーダイマ(登録商標)」(以降、「SD」と称する。)、及び亜鉛-ニッケル合金めっき鋼板「NSジンクライト(登録商標)」(以降、「ZL」と称する。)、並びに日鉄住金鋼板社製の亜鉛-アルミニウム合金めっき鋼板「ガルバリウム鋼板(登録商標)」(以降、「GL」と称する。)、並びに日鉄住金鋼板社製の亜鉛-アルミニウム-マグネシウム合金めっき鋼板「エスジーエル鋼板(登録商標)」(以降、「SGL」と称する。)を原板として使用した。
 原板としては、板厚が0.8mmのものを使用した。EGとしては、めっき付着量が片面20g/mのものを用いた。また、GI、GA、SD、GLおよびSGLとしては、めっき付着量が片面60g/mのものを用いた。ZLとしては、めっき付着量が片面20g/mであり、めっき層中のニッケル量が12質量%のものを用いた。
1. Test materials The galvanized steel materials or zinc base alloy plated steel materials used in Examples and Comparative Examples are shown below.
Electro-galvanized steel sheet “NS Zincoat (registered trademark)” (hereinafter referred to as “EG”) and hot-dip galvanized steel sheet “NS Silver Zinc (registered trademark)” (hereinafter referred to as “GI”) manufactured by Nippon Steel & Sumitomo Metal Corporation. ), Galvannealed steel sheet “NS Silver Alloy (registered trademark)” (hereinafter referred to as “GA”), zinc-aluminum-magnesium-silicon alloy plated steel sheet “Superdimer (registered trademark)” ( Hereinafter referred to as “SD”), zinc-nickel alloy plated steel sheet “NS Zinclite (registered trademark)” (hereinafter referred to as “ZL”), and zinc-aluminum alloy plating manufactured by Nippon Steel & Sumikin Steel Sheet Co., Ltd. Steel plate “Galbarium Steel Plate (registered trademark)” (hereinafter referred to as “GL”), and zinc-aluminum-magnesium alloy plating manufactured by Nippon Steel & Sumikin Steel Co., Ltd. Plate "Esujieru steel plate (registered trademark)" (hereinafter, referred to as "SGL".) Was used as the original plate.
As the original plate, a plate having a thickness of 0.8 mm was used. As the EG, one having a plating adhesion amount of 20 g / m 2 on one side was used. Moreover, as GI, GA, SD, GL, and SGL, those with a plating adhesion amount of 60 g / m 2 on one side were used. As ZL, one having a plating adhesion amount of 20 g / m 2 on one side and a nickel amount in the plating layer of 12% by mass was used.
2.水系表面処理剤
 用いた各原料を以下に記載する。
2. Water-based surface treatment agent Each raw material used is described below.
[カチオン性ウレタン樹脂(A)]
A1:ポリカーボネート系カチオン性ポリウレタン樹脂
   第一工業製薬株式会社製スーパーフレックス650
A2:ポリエステル系カチオン性ポリウレタン樹脂
   株式会社ADEKA製アデカボンタイターHUX-680
A3:ポリエーテル系カチオン性ポリウレタン樹脂
   第一工業製薬株式会社製スーパーフレックス600
A4:ポリエーテル系アニオン性ポリウレタン樹脂
   株式会社ADEKA製アデカボンタイターHUX-350
[Cationic urethane resin (A)]
A1: Polycarbonate-based cationic polyurethane resin Superflex 650 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
A2: Polyester-based cationic polyurethane resin Adekabon titer HUX-680 manufactured by ADEKA Corporation
A3: Polyether-based cationic polyurethane resin Superflex 600 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
A4: Polyether-based anionic polyurethane resin Adekabon titer HUX-350 manufactured by ADEKA Corporation
[カチオン性フェノール樹脂(B)]
B1:カチオン性フェノール樹脂
   式(2)の反復単位の平均重合度n=5、式(2)のY1=-CHN(CH、式(2)のY2=H、式(2)のZ置換度=0.5
B2:カチオン性フェノール樹脂
   式(2)の反復単位の平均重合度n=10、式(2)のY1=-CHN(CH)(COH)、式(2)のY2=H、式(2)のZ置換度=1.0
[Cationic phenol resin (B)]
B1: Cationic phenol resin The average degree of polymerization n of the repeating unit of formula (2) n = 5, Y1 = —CH 2 N (CH 3 ) 2 of formula (2), Y2 = H of formula (2), formula (2) ) Z substitution degree = 0.5
B2: Cationic phenol resin Average polymerization degree n of repeating unit of formula (2) = 10, Y1 of formula (2) = — CH 2 N (CH 3 ) (C 2 H 4 OH), Y2 of formula (2) = H, Z substitution degree of formula (2) = 1.0
[シランカップリング剤(C)]
C1:3-アミノプロピルトリエトキシシラン
C2:3-グリシドキシプロピルトリメトキシシラン
C3:3-メルカプトプロピルトリメトキシシラン
[Silane coupling agent (C)]
C1: 3-aminopropyltriethoxysilane C2: 3-glycidoxypropyltrimethoxysilane C3: 3-mercaptopropyltrimethoxysilane
[チタンのアセチルアセトン錯体(D)]
D1:チタンジイソプロポキシビスアセチルアセトナト
D2:チタンテトラキスアセチルアセトナト
D3:チタンジイソプロポキシビストリエタノールアミネート
[Acetylacetone complex of titanium (D)]
D1: Titanium diisopropoxybisacetylacetonate D2: Titanium tetrakisacetylacetonato D3: Titanium diisopropoxybistriethanolamate
[バナジウム化合物(E)]
E1:バナジウムアセチルアセトナト
E2:メタバナジン酸アンモニウム
[Vanadium compound (E)]
E1: Vanadium acetylacetonate E2: Ammonium metavanadate
[オレフィン系ワックス(F)]
 下記表1に示す、シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)で表面修飾したオレフィン系ワックスを用いた。
[Olefin wax (F)]
The olefin wax whose surface was modified with a silane coupling agent (3-glycidoxypropyltrimethoxysilane) shown in Table 1 below was used.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[酢酸成分(G)]
G1:酢酸
G2:酢酸アンモニウム
[Acetic acid component (G)]
G1: Acetic acid G2: Ammonium acetate
[りん酸成分(H)]
H1:りん酸
H2:りん酸アンモニウム
[Phosphoric acid component (H)]
H1: Phosphate H2: Ammonium phosphate
 以上に挙げた各成分を下記表2に示す組成にて混合することにより、以下の実施例及び比較例に用いる処理剤を調整した。なお、処理剤中の固形分は11質量%になるように調整した。なお、表2において、成分(C)の含有量はSiO換算による含有量であり、成分(D)の含有量はTi換算による含有量であり、成分(E)の含有量はV換算による含有量である。 The processing agents used in the following Examples and Comparative Examples were prepared by mixing the components listed above in the composition shown in Table 2 below. In addition, solid content in a processing agent was adjusted so that it might become 11 mass%. In Table 2, the content of component (C) is the content in terms of SiO 2 , the content of component (D) is the content in terms of Ti, and the content of component (E) is in terms of V Content.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
3.試験板作成工程
 濃度20g/Lとなるように水に溶解したシリケート系アルカリ脱脂剤のファインクリーナーE6406(日本パーカライジング(株)製)を用いて、温度60℃の条件で10秒間スプレー処理を上記試験材に施し、さらに、純水で30秒間水洗したのちに乾燥したものを以下の試験で使用した。各処理剤をバーコーターにより塗布し、熱風乾燥炉にて所定の到達板温度(PMT)となるように乾燥した。付着量等の詳細は下記表3に示す。
3. Test plate preparation process Using the silicate alkaline degreasing agent Fine Cleaner E6406 (manufactured by Nihon Parkerizing Co., Ltd.) dissolved in water to a concentration of 20 g / L, the above-mentioned test was conducted for 10 seconds at a temperature of 60 ° C. What was applied to the material, further washed with pure water for 30 seconds and then dried was used in the following test. Each treatment agent was applied by a bar coater and dried in a hot air drying furnace so as to have a predetermined ultimate plate temperature (PMT). The details such as the amount of adhesion are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
[評価方法]
(1)耐食性
 試験板に、無加工のもの(平面部)、NTカッターで素地到達までクロスカットしたもの(クロスカット部)、エリクセン7mm押し出し加工したもの(加工部)について、耐食性試験を行った。評価方法は次の通りである。
1-1(平面部耐食性):
 塩水噴霧試験法JIS-Z-2371に基づき、塩水噴霧から72時間後の白錆発生面積率を求め評価した。評価基準を以下に示す。
  ◎:白錆発生面積率が10%未満
  ○:白錆発生面積率が10%以上、30%未満
  △:白錆発生面積率が30%以上、60%未満
  ×:白錆発生面積率が60%以上
(△以上が実用性能である。)
1-2(クロスカット部耐食性):
 塩水噴霧試験法JIS-Z-2371に基づき、塩水噴霧から72時間後の白錆発生状況を肉眼で評価した。評価基準を以下に示す。
  ◎:錆発生がほとんどなし
  ○:錆発生が僅かに認められる
  △:錆発生が認められる
  ×:錆発生が著しい
(△以上が実用性能である。)
1-3(加工部耐食性):
 塩水噴霧試験法JIS-Z-2371に基づき、塩水噴霧から72時間後の白錆発生状況を肉眼で評価した。評価基準を以下に示す。
  ◎:錆発生がほとんどなし
  ○:錆発生が僅かに認められる
  △:錆発生が認められる
  ×:錆発生が著しい
(△以上が実用性能である。)
[Evaluation methods]
(1) Corrosion resistance Corrosion resistance tests were performed on unprocessed ones (planar part), cross-cut with a NT cutter until the substrate was reached (cross-cut part), and Erichsen 7 mm extruded (worked part). . The evaluation method is as follows.
1-1 (corrosion resistance of flat surface):
Based on the salt spray test method JIS-Z-2371, the white rust generation area ratio 72 hours after the salt spray was determined and evaluated. The evaluation criteria are shown below.
◎: White rust generation area ratio is less than 10% ○: White rust generation area ratio is 10% or more and less than 30% △: White rust generation area ratio is 30% or more and less than 60% ×: White rust generation area ratio is 60 % Or more (△ or more is practical performance)
1-2 (corrosion resistance of the cross cut part):
Based on the salt spray test method JIS-Z-2371, the occurrence of white rust 72 hours after the salt spray was evaluated with the naked eye. The evaluation criteria are shown below.
◎: Almost no rust generation ○: Slight rust generation is observed △: Rust generation is observed ×: Rust generation is remarkable (△ or more is practical performance)
1-3 (corrosion resistance of processed parts):
Based on the salt spray test method JIS-Z-2371, the occurrence of white rust 72 hours after the salt spray was evaluated with the naked eye. The evaluation criteria are shown below.
◎: Almost no rust generation ○: Slight rust generation is observed △: Rust generation is observed ×: Rust generation is remarkable (△ or more is practical performance)
(2)耐アルカリ性(脱脂後耐食性)
 ファインクリーナーE6406(日本パーカライジング(株)製)を20g/Lに建浴し、65℃に調整した脱脂剤水溶液に試験板を2分間浸漬し、水洗した後、80℃で乾燥した。この板について、上記(1)に記載した平面部耐食性の条件及び評価法で耐食性を評価した。
(2) Alkali resistance (corrosion resistance after degreasing)
Fine cleaner E6406 (manufactured by Nihon Parkerizing Co., Ltd.) was bathed at 20 g / L, the test plate was immersed in a degreasing aqueous solution adjusted to 65 ° C. for 2 minutes, washed with water, and dried at 80 ° C. About this board, corrosion resistance was evaluated by the conditions and evaluation method of planar part corrosion resistance described in said (1).
(3)塗装密着性
 試験板に対し下記条件で塗装を施し、塗膜密着性試験を行った。
 塗装条件塗料:関西ペイント(株)社製アミラック#1000(登録商標)(白塗料)
 塗装法:バーコート法
 焼付け乾燥条件:140℃、20分間
 塗膜厚:25μm
(3) Coating adhesion The coating was applied to the test plate under the following conditions, and a coating film adhesion test was conducted.
Paint condition paint: Amirac # 1000 (registered trademark) (white paint) manufactured by Kansai Paint Co., Ltd.
Coating method: Bar coating method Baking and drying conditions: 140 ° C., 20 minutes Coating thickness: 25 μm
 評価方法は、以下の通りである。
3-1(碁盤目一次密着性):
 試験板に対し、1mm角、100個の碁盤目をNTカッターで切り入れ、粘着テープによる剥離テストを行い、塗膜剥離個数にて評価した。評価基準を以下に示す。なお、ここでいう「塗膜剥離個数」とは、各碁盤目の半分以上が剥離したものの個数を意味する(以下に記載する「塗膜剥離個数」も同様の意味である)。
  ◎:剥離個数が1個未満
  ○:剥離個数が1個以上、10個未満
  △:剥離個数が10個以上、50個未満
  ×:剥離個数が50個以上
(△以上が実用性能である。)
3-2(碁盤目二次密着性):
 試験板を沸騰水に2時間浸漬し、一昼夜放置後、1mm角、100個の碁盤目をNTカッターで切り入れ、粘着テープによる剥離テストを行い、塗膜剥離個数にて評価した。評価基準を以下に示す。
  ◎:剥離個数が1個未満
  ○:剥離個数が1個以上、10個未満
  △:剥離個数が10個以上、50個未満
  ×:剥離個数が50個以上
(△以上が実用性能である。)
The evaluation method is as follows.
3-1 (cross-cut primary adhesion):
With respect to the test plate, 100 mm grids of 1 mm square were cut with an NT cutter, a peel test with an adhesive tape was performed, and the number of coating films peeled was evaluated. The evaluation criteria are shown below. The “number of peeled coating films” referred to here means the number of pieces from which more than half of each grid has been peeled (the “number of peeled coating films” described below has the same meaning).
◎: Number of peeled less than 1 ○: Number of peeled 1 or more and less than 10 △: Number of peeled 10 or more, less than 50 x: Number of peeled 50 or more
3-2 (secondary cross-cut adhesion):
The test plate was immersed in boiling water for 2 hours, left standing for a whole day and night, 1 mm square, 100 grids were cut with an NT cutter, a peel test with an adhesive tape was performed, and the number of peeled films was evaluated. The evaluation criteria are shown below.
◎: Number of peeled less than 1 ○: Number of peeled 1 or more and less than 10 △: Number of peeled 10 or more, less than 50 ×: Number of peeled 50 or more (△ or more is practical performance)
(4)脱脂後塗装密着性
 ファインクリーナーE6406(日本パーカライジング(株)製)を20g/Lに建浴し、65℃に調整した脱脂剤水溶液に試験板を2分間浸漬し、水洗した後、80℃で乾燥した。この板について試験板に対し下記条件で塗装を施し、塗膜密着性試験を行った。
(塗装条件)
 塗料:関西ペイント(株)社製アミラック#1000(登録商標)(白塗料)
 塗装法:バーコート法
 焼付け乾燥条件:140℃、20分間
 塗膜厚:25μm
(4) Paint adhesion after degreasing Fine cleaner E6406 (manufactured by Nihon Parkerizing Co., Ltd.) was constructed at 20 g / L, immersed in a degreasing aqueous solution adjusted to 65 ° C. for 2 minutes, washed with water, and then 80 Dried at ℃. About this board, the coating was given with respect to the test board on the following conditions, and the coating-film adhesiveness test was done.
(Painting conditions)
Paint: Amirac # 1000 (registered trademark) (white paint) manufactured by Kansai Paint Co., Ltd.
Coating method: Bar coating method Baking and drying conditions: 140 ° C., 20 minutes Coating thickness: 25 μm
 評価方法は、以下の通りである。
(脱脂後碁盤目一次密着性)
 試験板に対し、1mm角、100個の碁盤目をNTカッターで切り入れ、粘着テープによる剥離テストを行い、塗膜剥離個数にて評価した。評価基準を以下に示す。
  ◎:剥離個数が1個未満
  ○:剥離個数が1個以上、10個未満
  △:剥離個数が10個以上、50個未満
  ×:剥離個数が50個以上
(△以上が実用性能である。)
The evaluation method is as follows.
(Crosscut primary adhesion after degreasing)
With respect to the test plate, 100 mm grids of 1 mm square were cut with an NT cutter, a peel test with an adhesive tape was performed, and the number of coating films peeled was evaluated. The evaluation criteria are shown below.
◎: Number of peeled less than 1 ○: Number of peeled 1 or more and less than 10 △: Number of peeled 10 or more, less than 50 ×: Number of peeled 50 or more (△ or more is practical performance)
(5)加工性
 回転台上に試験板を固定し、回転台を回転速度100mm/sで回転させ、試験片にピンオンディスクスライダ(f5工具鋼)を押付け荷重30Nで押し付け、発生する摩擦を測定するピンオンディスク試験を行った。この試験に従って、無塗油の試験片の摩擦係数(0.1秒毎に測定した摩擦係数6個の測定平均)の極小値(動摩擦係数)及び摩擦係数が0.20を初めて超える周回数(焼付き発生摺動回数)にて評価した。なお、本評価は表3に示すオレフィン系ワックス(F)を含有する処理剤のみで実施した。評価基準を以下に示す。
  ◎ :動摩擦係数が0.16未満、かつ焼付き発生摺動回数が25回以上
  ○ :動摩擦係数が0.16未満、かつ焼付き発生摺動回数が20回以上25回未満、または、動摩擦係数が0.16以上0.18未満、かつ焼付発生摺動回数が25回以上
  ○-:動摩擦係数が0.16以上0.18未満、かつ焼付き発生摺動回数が20回以上25回未満
  △ :動摩擦係数が0.18以上、かつ焼付き発生摺動回数が20回以上、または、動摩擦係数が0.16以上0.18未満、かつ焼付き発生回数が20回未満
  × :動摩擦係数が0.18以上、かつ焼付き発生摺動回数が20回未満
(△以上が実用性能である。)
(5) Workability A test plate is fixed on a turntable, the turntable is rotated at a rotational speed of 100 mm / s, a pin-on-disk slider (f5 tool steel) is pressed against the test piece with a pressing load of 30 N, and the generated friction is applied. A pin-on-disk test to measure was performed. According to this test, the minimum value (dynamic friction coefficient) of the coefficient of friction of the uncoated oil test piece (measured average of 6 friction coefficients measured every 0.1 seconds) and the number of turns in which the friction coefficient exceeds 0.20 for the first time ( The number of seizure occurrence sliding was evaluated. In addition, this evaluation was implemented only with the processing agent containing the olefin wax (F) shown in Table 3. The evaluation criteria are shown below.
◎: Dynamic friction coefficient is less than 0.16, and seizure occurrence sliding frequency is 25 times or more. ○: Dynamic friction coefficient is less than 0.16, seizure occurrence sliding frequency is 20 times or more and less than 25 times, or dynamic friction coefficient. Is 0.16 or more and less than 0.18, and seizure occurrence sliding frequency is 25 times or more. ○-: Dynamic friction coefficient is 0.16 or more and less than 0.18, seizure occurrence sliding frequency is 20 times or more and less than 25 times. : Dynamic friction coefficient is 0.18 or more, seizure occurrence sliding number is 20 times or more, or dynamic friction coefficient is 0.16 or more and less than 0.18, seizure occurrence number is less than 20 times ×: Dynamic friction coefficient is 0 .18 or more and seizure occurrence sliding frequency is less than 20 times (Δ or more is practical performance).
(6)取り扱い性
 パイル崩れを模擬するために、錘(錘1)を両面テープで固定した小鋼板(鋼板1)と台車上にボルトで固定した鋼板(鋼板2)との慣性系の模型を作成した。ワイヤー・滑車を介して台車と接続した錘(錘2)を落下することにより、台車の衝突板への衝突による一定の力積を慣性系に印加し、摺動を発生させた。このときの鋼板1の摺動距離を測定し、以下の式1により摺動摩擦係数を計算し、取り扱い性として評価した。なお、本評価は表3に示すオレフィン系ワックス(F)を含有する処理剤のみで実施した。
 試験条件:下記表4に示す通りである。
 摺動摩擦係数μ:μ=m3×h/(m1+m2)×L  ・・・  [式1]
 式1中、m1=(鋼板1+錘1)の重量(g),m2=(鋼板2+台車)の重量(g),m3=錘2の重量(g),h=錘2の落下距離(mm),L=摺動距離(mm)
 評価基準を以下に示す。
  ◎:摺動摩擦係数が0.85以上
  〇:摺動摩擦係数が0.84以上、0.85未満
  △:摺動摩擦係数が0.83以上、0.84未満
  ×:摺動摩擦係数が0.83未満
(△以上が実用性能である。)
(6) Handling characteristics In order to simulate pile collapse, a model of inertia system consisting of a small steel plate (steel 1) with a weight (weight 1) fixed with double-sided tape and a steel plate (steel 2) fixed with a bolt on a carriage is used. Created. By dropping the weight (weight 2) connected to the carriage via a wire / pulley, a constant impulse due to the collision of the carriage against the collision plate was applied to the inertial system to cause sliding. The sliding distance of the steel plate 1 at this time was measured, the sliding friction coefficient was calculated by the following formula 1, and evaluated as handleability. In addition, this evaluation was implemented only with the processing agent containing the olefin wax (F) shown in Table 3.
Test conditions: as shown in Table 4 below.
Sliding friction coefficient μ: μ = m3 × h / (m1 + m2) × L (Equation 1)
In Equation 1, m1 = weight of steel plate 1 + weight 1 (g), m2 = weight of steel plate 2 + cart, m3 = weight of weight 2 (g), h = fall distance of weight 2 (mm) ), L = sliding distance (mm)
The evaluation criteria are shown below.
A: Sliding friction coefficient is 0.85 or more O: Sliding friction coefficient is 0.84 or more and less than 0.85 Δ: Sliding friction coefficient is 0.83 or more and less than 0.84 ×: Sliding friction coefficient is less than 0.83 (The above is the practical performance.)
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
(7)耐黒変性
 試験板を、70℃の温度で、かつ80%の相対湿度の湿潤箱内に6日間保持した後、取り出して、試験板の黒変状況を目視にて判定した。なお、評価基準は次の通りである。
  ◎ :黒変した箇所の面積率が1%未満(黒変なし)
  ○ :黒変した箇所の面積率が1%以上、5%未満
  ○-:黒変した箇所の面積率が5%以上、25%未満
  △ :黒変した箇所の面積率が25%以上、50%未満
  × :黒変した箇所の面積率が50%以上
(△以上が実用性能である。)
(7) Blackening resistance After holding the test plate in a wet box at a temperature of 70 ° C. and a relative humidity of 80% for 6 days, the test plate was taken out and the blackening state of the test plate was visually determined. The evaluation criteria are as follows.
◎: Area ratio of blackened area is less than 1% (no blackened)
○: Area ratio of blackened portion is 1% or more and less than 5% ○-: Area ratio of blackened portion is 5% or more and less than 25% Δ: Area ratio of blackened portion is 25% or more, 50 Less than% ×: Area ratio of blackened portion is 50% or more (Δ or more is practical performance)
(8)耐スタック白化性
 2つの試験板の塗装面が向き合うように対面させ1対としたものを、5~10対重ねて、角の4箇所をボルト締めにして、トルクレンチで、5.7N・mの目盛りまで荷重をかけた。そして、70℃の温度で、かつ80%の相対湿度の湿潤箱内に6日間保持した後、取り出して、重ね合わせ部の白変状況を目視にて判定した。なお、評価基準は次の通りである。
  ◎ :白変した箇所の面積率が1%未満(白変なし)
  ○ :白変した箇所の面積率が1%以上、5%未満
  ○-:白変した箇所の面積率が5%以上、25%未満
  △ :白変した箇所の面積率が25%以上、50%未満
  × :白変した箇所の面積率が50%以上
(△以上が実用性能である。)
(8) Stack whitening resistance 5-10 pairs of two test plates facing each other so that the painted surfaces face each other are overlapped, bolted at four corners, and torque wrench. The load was applied to a scale of 7 N · m. And after hold | maintaining for 6 days in the humidity box of the temperature of 70 degreeC and 80% of relative humidity, it took out and determined the whitening condition of the overlapping part visually. The evaluation criteria are as follows.
◎: Area ratio of whitened area is less than 1% (no whitening)
○: Area ratio of whitened portion is 1% or more and less than 5% ○-: Area ratio of whitened portion is 5% or more and less than 25% Δ: Area ratio of whitened portion is 25% or more, 50 Less than% ×: Area ratio of whitened portion is 50% or more (Δ or more is practical performance)
(9)耐フィラメントテープ性
 試験板に、日立マクセル製フィラメンテープ(登録商標)No.9514を貼り付け後、40℃の温度で、かつ80%の相対湿度の湿潤箱内に7日間保持した後に剥離し、外観評価を実施した。評価基準は次の通りである。
  ◎ :剥離箇所が、斜めから見ても全くわからない
  ○ :剥離箇所が、斜めから見て僅かにわかる
  ○-:剥離箇所が、斜めから見て明確にわかる
  △ :剥離箇所が、正面から見て僅かにわかる
  × :剥離箇所が、正面から見て明確にわかる
(△以上が実用性能である。)
(9) Filament tape resistance Filament tape (registered trademark) no. After attaching 9514, it was peeled off after being held in a wet box at a temperature of 40 ° C. and a relative humidity of 80% for 7 days, and the appearance was evaluated. The evaluation criteria are as follows.
◎: The peeled part is not seen at all from an angle. ○: The peeled part is slightly seen from the oblique side. ○-: The peeled part is clearly seen from the oblique side. △: The peeled part is seen from the front. Slightly understood ×: The peeled portion can be clearly seen from the front (Δ or more is practical performance).
(10)耐結露白化性
 試験板の表面にイオン交換水を1滴滴下し、滴下面側に別の試験片を皮膜同士が対向するように重ね合せて2枚の試験片で水を挟んだ状態とした。次いで、試験片をラッピングし、四隅をクリップで留め、50℃の乾燥機に72時間保管した後の水滴滴下部分の白化有無を目視評価した。評価基準は次の通りである。
  ◎:目視にて白化なし、つやびけ(光沢低下)もなし
  ○:目視にて白化ないが、つやびけ(光沢低下)あり
  ×:目視にて白化あり、つやびけ(光沢低下)もあり
(○以上が実用性能である。)
(10) Condensation whitening resistance One drop of ion-exchanged water is dropped on the surface of the test plate, and another test piece is stacked on the dropping surface side so that the films face each other, and water is sandwiched between the two test pieces. It was in a state. Subsequently, the test piece was wrapped, the four corners were clipped, and the presence or absence of whitening of the water droplet dropping portion after storage in a dryer at 50 ° C. for 72 hours was visually evaluated. The evaluation criteria are as follows.
◎: No whitening visually, no glossiness (loss of gloss) ○: No whitening visually, but glossiness (loss of gloss) ×: Visually whitening, glossiness (loss of gloss) Yes (○ or higher is practical performance)
(11)処理剤安定性
 調製直後の処理剤200mlを密閉容器に入れて40℃に保持し、固化(ゲル化)状況を一定時間毎に観察し、固化までの期間を評価した。評価基準は以下の通りである。
  ◎:60日以上固化せず
  ○:30日以上、60日未満で固化
  △:14日以上、30日未満で固化
  ×:14日未満で固化
(△以上が実用性能である。)
(11) Stability of treatment agent 200 ml of the treatment agent immediately after preparation was put in an airtight container and kept at 40 ° C., and the solidification (gelation) state was observed at regular intervals to evaluate the period until solidification. The evaluation criteria are as follows.
◎: not solidified for 60 days or more ○: solidified for 30 days or more and less than 60 days Δ: solidified for 14 days or more and less than 30 days ×: solidified in less than 14 days (Δ or more is practical performance)
(12)実機操業性(Zn溶出量)
 25℃の処理剤300ml中に、溶融亜鉛めっき板(75×40mm)10枚を浸漬し、6時間後の処理剤中のZn量を評価した。評価基準は以下の通りである。
  ◎:Zn量が700mg/L未満
  ○:Zn量が700mg/L以上、850mg/L未満
  △:Zn量が850mg/L以上、1000mg/L未満
  ×:Zn量が1000mg/L以上
(△以上が実用性能である。)
(12) Actual machine operability (Zn elution amount)
Ten hot-dip galvanized plates (75 × 40 mm) were immersed in 300 ml of a treatment agent at 25 ° C., and the amount of Zn in the treatment agent after 6 hours was evaluated. The evaluation criteria are as follows.
◎: Zn amount less than 700 mg / L ○: Zn amount is 700 mg / L or more and less than 850 mg / L Δ: Zn amount is 850 mg / L or more and less than 1000 mg / L ×: Zn amount is 1000 mg / L or more (△ or more is Practical performance.)
 以上の(1)~(12)の評価結果を表5(実施例)及び表6(比較例)に示す。 The evaluation results of (1) to (12) above are shown in Table 5 (Example) and Table 6 (Comparative Example).
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
[評価結果]
 表5からわかるように、本発明の必須成分を含み、これらの必須成分を本発明の範囲内の配合比で含む処理剤を用いた実施例1~78は、いずれも、耐食性、耐アルカリ性、塗装密着性、脱脂後塗装密着性、耐黒変性、耐スタック白化性、耐フィラメントテープ性、耐結露白化性、処理剤安定性及び実機操業性の全ての評価に優れているか、実用上満足する性能となった。また、オレフィン系ワックス(F)を配合した実施例1~27、29~78は、加工性、取り扱い性にも優れているか、実用上満足する性能となった。
[Evaluation results]
As can be seen from Table 5, Examples 1 to 78 using the treating agent containing the essential components of the present invention and containing these essential components in a blending ratio within the scope of the present invention are all corrosion resistance, alkali resistance, Excellent or practically satisfied with all evaluations of coating adhesion, coating adhesion after degreasing, blackening resistance, stack whitening resistance, filament tape resistance, condensation whitening resistance, processing agent stability and actual machine operability It became performance. In addition, Examples 1-27 and 29-78 blended with the olefin wax (F) were excellent in workability and handleability, or had practically satisfactory performance.
 一方、表6からわかるように、本発明の必須成分を含まないか、又は、必須成分の配合比が本発明の範囲外である比較例1~14及び17~22は、耐食性、耐アルカリ性、塗装密着性、脱脂後塗装密着性、耐黒変性、耐スタック白化性、耐フィラメントテープ性、耐結露白化性、処理剤安定性及び実機操業性の少なくともいずれか一つの性能が実用上満足しない性能となった。なお、アニオン性ポリウレタン樹脂A4を用いた比較例15,16では、処理剤を調製することができなかったため、上記(1)~(12)の評価を実施していない。 On the other hand, as can be seen from Table 6, Comparative Examples 1 to 14 and 17 to 22 which do not contain the essential component of the present invention or whose blending ratio of the essential component is outside the range of the present invention are corrosion resistance, alkali resistance, Performance that at least one of coating adhesion, coating adhesion after degreasing, blackening resistance, stack whitening resistance, filament tape resistance, condensation whitening resistance, treatment agent stability and actual machine operability is not satisfied in practice. It became. In Comparative Examples 15 and 16 using the anionic polyurethane resin A4, since the treatment agent could not be prepared, the evaluations (1) to (12) were not performed.
 以上、本発明の好適な実施の形態について説明したが、本発明は上述した形態に限定されない。すなわち、特許請求の範囲に記載された発明の範囲内で当業者が想到し得る他の形態または各種の変更例についても本発明の技術的範囲に属するものと理解される。
 

 
The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above-described embodiment. That is, it is understood that other forms or various modifications that can be conceived by those skilled in the art within the scope of the invention described in the claims belong to the technical scope of the present invention.


Claims (10)

  1.  カチオン性ポリウレタン樹脂(A)と、カチオン性フェノール樹脂(B)と、シランカップリング剤(C)と、チタンのアセチルアセトン錯体(D)と、バナジウム化合物(E)と、酢酸成分(G)と、りん酸成分(H)とを水に配合してなる亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤であって、
     前記水系表面処理剤の固形分(V)の質量に対する、前記シランカップリング剤(C)のSiO換算による質量との比(NC)/(NV)が0.16~0.19、
     前記固形分(V)の質量に対する、前記チタンのアセチルアセトン錯体(D)のTi換算による質量(ND)との比(ND)/(NV)が0.0170~0.0240、
     前記固形分(V)の質量に対する、前記バナジウム化合物(E)のV換算による質量(NE)との比(NE)/(NV)が0.0070~0.0090、
     前記固形分(V)の質量に対する、前記酢酸成分(G)の質量との比(NG)/(NV)が0.040~0.140、
     前記固形分(V)の質量に対する、前記りん酸成分(H)の質量との比(NH)/(NV)が0.025~0.075、
     前記バナジウム化合物(E)のV換算による質量に対する、前記チタンのアセチルアセトン錯体(D)のTi換算による質量との比(ND)/(NE)が2.10~2.90、
     前記酢酸成分(G)の質量に対する、前記りん酸成分(H)の質量との比(NH)/(NG)が0.25~1.10、
     前記チタンのアセチルアセトン錯体(D)のTi換算による質量(ND)に対する、前記りん酸成分(H)の質量との比(NH)/(ND)が1.11~3.19である、亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤。
    A cationic polyurethane resin (A), a cationic phenol resin (B), a silane coupling agent (C), an acetylacetone complex of titanium (D), a vanadium compound (E), an acetic acid component (G), An aqueous surface treatment agent for galvanized steel or zinc-based alloy-plated steel comprising a phosphoric acid component (H) in water,
    The ratio (NC) / (NV) of the silane coupling agent (C) to the mass in terms of SiO 2 with respect to the mass of the solid content (V) of the aqueous surface treatment agent is 0.16 to 0.19,
    The ratio (ND) / (NV) of the mass of the acetylacetone complex (D) of titanium with respect to the mass of the solid content (V) (ND) / (NV) is 0.0170 to 0.0240,
    The ratio (NE) / (NV) of the vanadium compound (E) to the mass (NE) in terms of V with respect to the mass of the solid content (V) is 0.0070 to 0.0090,
    The ratio (NG) / (NV) of the mass of the acetic acid component (G) to the mass of the solid content (V) is 0.040 to 0.140,
    The ratio (NH) / (NV) of the mass of the phosphoric acid component (H) to the mass of the solid content (V) is 0.025 to 0.075,
    The ratio (ND) / (NE) of the mass of the acetylacetone complex (D) of titanium to the mass of Ti of the vanadium compound (E) in terms of V is 2.10 to 2.90,
    The ratio (NH) / (NG) of the mass of the phosphoric acid component (H) to the mass of the acetic acid component (G) is 0.25 to 1.10,
    Zinc plating in which the ratio (NH) / (ND) of the phosphoric acid component (H) to the mass (ND) in terms of Ti of the titanium acetylacetone complex (D) is 1.11 to 3.19 Aqueous surface treatment agent for steel or zinc-base alloy plated steel.
  2.  更に、オレフィン系ワックス(F)を、前記固形分(V)の質量に対する、前記オレフィン系ワックス(F)の質量との比(NF)/(NV)として0.035~0.060含有する、請求項1に記載の亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤。 Furthermore, the olefinic wax (F) is contained in an amount of 0.035 to 0.060 as a ratio (NF) / (NV) of the olefinic wax (F) to the mass of the solid content (V). The aqueous surface treating agent for galvanized steel or zinc-based alloy-plated steel according to claim 1.
  3.  前記オレフィン系ワックス(F)がシランカップリング剤(I)により表面修飾され、前記オレフィン系ワックス(F)の質量に対する、前記シランカップリング剤(I)の質量との比(NI/NF)が0.025~0.035である、請求項2に記載の亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤。 The olefin wax (F) is surface-modified with a silane coupling agent (I), and the ratio (NI / NF) of the mass of the silane coupling agent (I) to the mass of the olefin wax (F) is The aqueous surface treating agent for galvanized steel or zinc-based alloy plated steel according to claim 2, which is 0.025 to 0.035.
  4.  前記オレフィン系ワックス(F)の平均粒径が0.05~0.15μmである、請求項2又は3に記載の亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤。 The water-based surface treating agent for galvanized steel or zinc-based alloy-plated steel according to claim 2 or 3, wherein the olefin wax (F) has an average particle size of 0.05 to 0.15 µm.
  5.  前記バナジウム化合物(E)がバナジウムのアセチルアセトン錯体である、請求項1~4のいずれか一項に記載の亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤。 The aqueous surface treating agent for galvanized steel or zinc-based alloy plated steel according to any one of claims 1 to 4, wherein the vanadium compound (E) is an acetylacetone complex of vanadium.
  6.  前記オレフィン系ワックス(F)がエポキシ基含有シランカップリング剤により表面修飾されているものである、請求項2~5のいずれか一項に記載の亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤。 The aqueous system for galvanized steel or zinc-based alloy plated steel according to any one of claims 2 to 5, wherein the olefin wax (F) is surface-modified with an epoxy group-containing silane coupling agent. Surface treatment agent.
  7.  前記カチオン性ポリウレタン樹脂(A)が一般式(1)で示される構造単位を含むポリカーボネート系の水分散性カチオン性ポリウレタン樹脂である、請求項1~6のいずれか一項に記載の亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Rは炭素数4~9の脂肪族アルキレン基であり、nは数平均分子量が500~5000の範囲となるのに相当する整数である。〕
    The galvanized steel material according to any one of claims 1 to 6, wherein the cationic polyurethane resin (A) is a polycarbonate-based water-dispersible cationic polyurethane resin containing a structural unit represented by the general formula (1). Water-based surface treatment agent for use in zinc-based alloy-plated steel.
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R is an aliphatic alkylene group having 4 to 9 carbon atoms, and n is an integer corresponding to a number average molecular weight in the range of 500 to 5000. ]
  8.  前記カチオン性フェノール樹脂(B)が一般式(2)で示される反復単位を有する平均重合度2~50の重合体分子である、請求項1~7のいずれか一項に記載の亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤。
    Figure JPOXMLDOC01-appb-C000002
    〔式中、Y1、及びY2は、それぞれ独立して水素または一般式(3)もしくは(4)で示されるZ基を表し、各ベンゼン環当たりのZ基の平均置換数は0.2~1.0である。〕
    Figure JPOXMLDOC01-appb-C000003
    〔式(3)及び(4)における、R1、R2、R3、R4及びR5は、それぞれ独立して水素原子、炭素数1~10のアルキル基又は炭素数1~10のヒドロキシアルキル基を表し、Aは水酸化物イオン又はオキソ酸イオンを表す。〕
    The galvanized steel material according to any one of claims 1 to 7, wherein the cationic phenol resin (B) is a polymer molecule having an average polymerization degree of 2 to 50 and having a repeating unit represented by the general formula (2). Water-based surface treatment agent for use in zinc-based alloy-plated steel.
    Figure JPOXMLDOC01-appb-C000002
    [Wherein Y1 and Y2 each independently represent hydrogen or a Z group represented by the general formula (3) or (4), and the average number of substitutions of Z groups per benzene ring is 0.2 to 1 .0. ]
    Figure JPOXMLDOC01-appb-C000003
    [In the formulas (3) and (4), R1, R2, R3, R4 and R5 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or a hydroxyalkyl group having 1 to 10 carbon atoms, A represents a hydroxide ion or an oxoacid ion. ]
  9.  請求項1~8のいずれか一項に記載の亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤を亜鉛めっき鋼材または亜鉛基合金めっき鋼材に塗布して皮膜を形成する、被覆方法。 A coating method for forming a film by applying the aqueous surface treating agent for galvanized steel or zinc-based alloy plated steel according to any one of claims 1 to 8 to a galvanized steel or zinc-based alloy plated steel.
  10.  請求項9に記載の被覆方法によって得られる、被覆鋼材。
     

     
    A coated steel material obtained by the coating method according to claim 9.


PCT/JP2016/082690 2015-11-06 2016-11-02 Aqueous surface treatment agent for zinc plated steel material or zinc-based alloy plated steel material, coating method, and coated steel material WO2017078105A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187015268A KR102115686B1 (en) 2015-11-06 2016-11-02 Water-based surface treatment agent for zinc-plated steel or zinc-based alloy-plated steel, coating method and coated steel
CN201680062542.9A CN108350578B (en) 2015-11-06 2016-11-02 Aqueous surface treatment agent for galvanized steel material or zinc-based alloy-plated steel material, coating method, and coated steel material
JP2017548833A JP6510670B2 (en) 2015-11-06 2016-11-02 Water-based surface treatment agent for galvanized steel or zinc-based alloy plated steel, coating method and coated steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015218199 2015-11-06
JP2015-218199 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017078105A1 true WO2017078105A1 (en) 2017-05-11

Family

ID=58662456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082690 WO2017078105A1 (en) 2015-11-06 2016-11-02 Aqueous surface treatment agent for zinc plated steel material or zinc-based alloy plated steel material, coating method, and coated steel material

Country Status (4)

Country Link
JP (1) JP6510670B2 (en)
KR (1) KR102115686B1 (en)
CN (1) CN108350578B (en)
WO (1) WO2017078105A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4136174A4 (en) * 2020-04-15 2023-12-20 Henkel AG & Co. KGaA Anti-blackening coating composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110670010B (en) * 2019-11-20 2021-06-01 安徽汇源镀锌有限公司 Method for reducing black spot defect of hot-dip galvanized plate
CN113817391A (en) * 2020-09-07 2021-12-21 帕珂表面处理技术(上海)有限公司 Surface treatment agent for stainless steel material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291246A (en) * 2005-04-06 2006-10-26 Sumitomo Metal Ind Ltd Surface-treated plated steel sheet suitable for fuel container
JP2011183307A (en) * 2010-03-09 2011-09-22 Sumitomo Metal Ind Ltd Surface-treated steel plate having excellent resistance to dew condensation blushing and corrosion
JP2012067369A (en) * 2010-09-24 2012-04-05 Jfe Steel Corp Surface treatment fluid for zinc-plated steel sheet, zinc-plated steel sheet, and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220050B2 (en) 1973-11-16 1977-06-01
JP4470874B2 (en) * 2005-11-30 2010-06-02 Jfeスチール株式会社 Surface-treated galvanized steel sheet
JP4998707B2 (en) * 2007-01-29 2012-08-15 Jfeスチール株式会社 Surface-treated metal plate and manufacturing method thereof, resin-coated metal plate, metal can and can lid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291246A (en) * 2005-04-06 2006-10-26 Sumitomo Metal Ind Ltd Surface-treated plated steel sheet suitable for fuel container
JP2011183307A (en) * 2010-03-09 2011-09-22 Sumitomo Metal Ind Ltd Surface-treated steel plate having excellent resistance to dew condensation blushing and corrosion
JP2012067369A (en) * 2010-09-24 2012-04-05 Jfe Steel Corp Surface treatment fluid for zinc-plated steel sheet, zinc-plated steel sheet, and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4136174A4 (en) * 2020-04-15 2023-12-20 Henkel AG & Co. KGaA Anti-blackening coating composition

Also Published As

Publication number Publication date
JP6510670B2 (en) 2019-05-08
CN108350578B (en) 2020-05-08
KR20180069912A (en) 2018-06-25
JPWO2017078105A1 (en) 2018-08-30
CN108350578A (en) 2018-07-31
KR102115686B1 (en) 2020-05-26

Similar Documents

Publication Publication Date Title
JP4683582B2 (en) Water-based metal material surface treatment agent, surface treatment method and surface treatment metal material
US8648135B2 (en) Surface-treatment agent, method for producing coated steel sheet using the surface-treatment agent, and coated steel sheet
JP5555179B2 (en) Surface treatment agent for galvanized steel sheet, surface treatment method for galvanized steel sheet, and galvanized steel sheet
US8936836B2 (en) Method for coating metal surfaces using an aqueous compound having polymers, the aqueous compound, and use of the coated substrates
US9512331B2 (en) Surface treatment agent for zinc or zinc alloy coated steel sheet, zinc or zinc alloy coated steel sheet, and method of producing the steel sheet
CN109804102B (en) Surface treatment solution composition, galvanized steel sheet surface-treated with the composition, and method for producing the same
KR101146156B1 (en) Aqueous fluid for surface treatment of zinc-plated steel sheets and zinc-plated steel sheets
US20070125451A1 (en) Stable, thin-film organic passivates
JP6604445B2 (en) Surface-treated steel sheet
JP6523253B2 (en) Metal surface treatment agent for galvanized steel, coating method and coated steel
JP7447245B2 (en) A surface treatment composition for a ternary hot-dip zinc alloy coated steel sheet that imparts excellent blackening resistance and alkali resistance, a ternary hot-dip zinc alloy coated steel sheet surface-treated using the composition, and a method for producing the same.
KR20190076099A (en) Coating composition for hot dip galvanized steel sheet having excellent corrosion-resistance and blackening-resistance the surface treated hot dip galvanized steel sheet prepared by using the coating composition and method for preparing the surface treated hot dip galvanized steel sheet
JP4970773B2 (en) Metal surface treatment agent, metal material surface treatment method and surface treatment metal material
JP6510670B2 (en) Water-based surface treatment agent for galvanized steel or zinc-based alloy plated steel, coating method and coated steel
JP6569194B2 (en) Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance
JP6056792B2 (en) Surface treatment liquid for galvanized steel sheet, surface-treated galvanized steel sheet and method for producing the same
JP5220050B2 (en) Surface-treated steel sheet with excellent resistance to condensation whitening and corrosion
JP2017087501A (en) Surface-treated steel plate
JP6098579B2 (en) Regular spangled galvanized steel sheet with surface treatment film
JP7060178B1 (en) Surface-treated steel sheet for organic resin coating and its manufacturing method, and organic resin coated steel sheet and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548833

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187015268

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16862165

Country of ref document: EP

Kind code of ref document: A1