JP2006291246A - Surface-treated plated steel sheet suitable for fuel container - Google Patents

Surface-treated plated steel sheet suitable for fuel container Download PDF

Info

Publication number
JP2006291246A
JP2006291246A JP2005110105A JP2005110105A JP2006291246A JP 2006291246 A JP2006291246 A JP 2006291246A JP 2005110105 A JP2005110105 A JP 2005110105A JP 2005110105 A JP2005110105 A JP 2005110105A JP 2006291246 A JP2006291246 A JP 2006291246A
Authority
JP
Japan
Prior art keywords
steel sheet
plated steel
parts
mass
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005110105A
Other languages
Japanese (ja)
Other versions
JP4831991B2 (en
Inventor
Katsuji Kawanishi
勝次 川西
Yoshiyuki Hosono
義行 細野
Atsushi Yasui
淳 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005110105A priority Critical patent/JP4831991B2/en
Publication of JP2006291246A publication Critical patent/JP2006291246A/en
Application granted granted Critical
Publication of JP4831991B2 publication Critical patent/JP4831991B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-treated plated steel sheet having one layer of a coating thereon free from chromium and lead, which retains superior corrosion resistance and resistance to deteriorated gasoline even after having been alkaline-degreased, has adequate solderability (brazing property), post-coating property, weldability, adhesiveness with an adhesive and formability, and is suitable for surface treatment for inner and outer surfaces of a fuel tank. <P>SOLUTION: This surface-treated plated steel sheet has a film on at least one surface of the zinc-nickel alloy plated steel sheet formed by the steps of: preparing a water-based surface treatment agent containing a cationic urethane resin (A), a particular cationic phenol resin (B), phosphoric acid (C), a titanium compound (D), a vanadium compound (E) and a wax-based lubricant (F) as components; applying the agent on the surface; and drying it. Ratios of the components in the surface treatment agent are, by pts.mass, 40 to 55 for (A), 15 to 25 for (B), 3 to 10 in P terms for (C), 0.5 to 3 in Ti terms for (D), 0.5 to 3 in V terms for (E) and 3 to 10 for (F). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料容器、特にガソリンを燃料とする自動車の燃料タンク、の素材として使用するのに適した、クロムを一切使用しない表面処理めっき鋼板に関する。   The present invention relates to a surface-treated plated steel sheet that does not use chromium at all, which is suitable for use as a material for fuel containers, particularly automobile fuel tanks that use gasoline as fuel.

ガソリンを燃料とする一般的な自動車用の燃料タンクの素材としては、ターンめっきと呼ばれるPb−Sn合金めっき鋼板が従来より広く使用されてきたが、環境問題からPbを含有しない材料が求められてきている。また、燃料に対する耐食性についても、有機酸を含む劣化ガソリンに対する耐食性(以下、これを単に「耐ガソリン性」と呼ぶことがある)が求められるなど、より高度なレベルが要求されている。   Pb-Sn alloy-plated steel sheet called turn plating has been widely used as a material for a general fuel tank for automobiles that uses gasoline as fuel. However, a material that does not contain Pb has been required due to environmental problems. ing. Further, with respect to the corrosion resistance to fuel, a higher level is required, for example, corrosion resistance to deteriorated gasoline containing an organic acid (hereinafter, sometimes simply referred to as “gasoline resistance”) is required.

この要請に対し、Alめっき鋼板(例えば、特許文献1)、Sn−Zn合金めっき鋼板(例えば、特許文献2)などが代替品として開発されている。このうち、Alめっき鋼板は、溶接やはんだ付け等の接合性に問題があり、加工メーカー等では、容易に接合できるより使い勝手のよい材料を望んでいる。一方、Sn−約8%Zn合金めっき鋼板は,性能的なバランスがよいとされているが、この合金めっきの用途がほぼ燃料タンクだけに限定されるため、生産性の面からコスト高になり,経済的な問題がある。   In response to this demand, Al-plated steel sheets (for example, Patent Document 1), Sn—Zn alloy-plated steel sheets (for example, Patent Document 2), and the like have been developed as alternatives. Among these, the Al-plated steel sheet has a problem in joining properties such as welding and soldering, and a processing manufacturer or the like desires a material that is easier to use than can be easily joined. On the other hand, Sn-approx. 8% Zn alloy-plated steel sheet is said to have a good balance of performance, but the use of this alloy plating is limited to only fuel tanks, which increases the cost in terms of productivity. , There is an economic problem.

この点、一般に広く用いられているZn系めっき(ZnめっきおよびZn合金めっき)を自動車燃料タンク用途に適用することができれば経済的に有利であり、そのような動きがある。   In this respect, it is economically advantageous if such Zn plating (Zn plating and Zn alloy plating), which is widely used, can be applied to automobile fuel tank applications, and there is such a movement.

Zn系めっき鋼板を自動車用燃料タンク用途に適用した従来技術として、特許文献3に、Zn系めっき鋼板のタンク内面側にNiおよびAl金属粉を含有する樹脂を、外面側にはワックスを含有する樹脂を塗布した表面処理鋼板が提案されている。   As a conventional technique in which a Zn-based plated steel sheet is applied to an automotive fuel tank, Patent Document 3 discloses a resin containing Ni and Al metal powder on the tank inner surface side of the Zn-based plated steel sheet and wax on the outer surface side. A surface-treated steel sheet coated with a resin has been proposed.

この表面処理鋼板は、Zn系めっき鋼板をクロメート処理した上で上記の樹脂を塗布するものである。クロメート処理で形成されたクロメート皮膜は、この公報に記載されているように6価クロムを含有する。Zn系めっき鋼板を母材とした表面処理鋼板の場合、6価クロムを含有するクロメート処理は、耐食性の確保に極めて有効であるため、燃料タンクのように自動車の重要保安部品であって、高度の耐食性が要求される用途には、クロメート処理を行うのが普通であった。しかし、最近になって、やはり環境問題から、6価クロムを含有しない材料の要望が強くなってきている。そのため、6価クロムを含まない自動車燃料タンク用表面処理めっき鋼板の開発が急務となっている。   This surface-treated steel sheet is obtained by applying the above resin after chromate-treating a Zn-based plated steel sheet. The chromate film formed by the chromate treatment contains hexavalent chromium as described in this publication. In the case of surface-treated steel sheets that use Zn-based plated steel sheets as the base material, chromate treatment containing hexavalent chromium is extremely effective in ensuring corrosion resistance, so it is an important safety part for automobiles such as fuel tanks. For applications that require high corrosion resistance, it was common to perform chromate treatment. However, recently, due to environmental problems, there is an increasing demand for materials that do not contain hexavalent chromium. Therefore, there is an urgent need to develop a surface-treated plated steel sheet for automobile fuel tanks that does not contain hexavalent chromium.

6価クロムを含有しない燃料容器用表面処理めっき鋼板として、例えば、特許文献4には、亜鉛系めっき鋼板の両面に珪酸化合物と樹脂を主成分とする層を形成させ、内面側には上層としてNi、Alまたはこれらの合金からなる金属紛を含有する樹脂皮膜を、外面側には必要に応じて上層として熱可塑性樹脂を形成する技術が提案されている。しかしながら、この技術は2層のコーティングが必要であり、コスト的には不利である。   As a surface-treated plated steel sheet for a fuel container that does not contain hexavalent chromium, for example, in Patent Document 4, a layer mainly composed of a silicate compound and a resin is formed on both surfaces of a zinc-based plated steel sheet, and an upper layer is formed on the inner surface side. A technique has been proposed in which a thermoplastic resin is formed as an upper layer on the outer surface side of a resin film containing metal powder made of Ni, Al, or an alloy thereof, if necessary. However, this technique requires two layers of coating and is disadvantageous in terms of cost.

近年、燃料容器用の表面処理鋼板に対して、さらに別の性能が要求されるようになってきている。例えば、めっき鋼板をプレスして燃料タンクの形状に成形加工した後に、次に述べる理由により、アルカリ性脱脂剤により洗浄することが多くなっている。成形加工時にめっき鋼板に塗布された潤滑油は、成形加工を補助する役割を果たす。しかし、その後に燃料タンクとして使用する際には、潤滑油は不要である上、燃料を汚したり、はんだ付け、接着、溶接といった後工程の作業を妨害する可能性があるので、洗浄を行って、表面に付着している汚れと一緒に潤滑油を除去する。従来は、トリクレンなどの塩素系有機溶剤を用いて短時間で容易に洗浄が実施できたが、周知のとおり、環境保全という観点から塩素系有機溶剤は法的規制物質となり、代替が急がれている。そこで、代替洗浄剤としてアルカリ脱脂剤が使用されるようになってきている。そのため、アルカリ脱脂剤による洗浄後も表面処理鋼板がなお所定の性能を維持していること、即ち、耐アルカリ性に優れていることが求められるようになってきた。   In recent years, further performance has been required for surface-treated steel sheets for fuel containers. For example, after a plated steel sheet is pressed and formed into a fuel tank shape, it is often washed with an alkaline degreasing agent for the following reason. The lubricating oil applied to the plated steel sheet during the forming process serves to assist the forming process. However, when it is used as a fuel tank after that, it does not require lubricating oil, and it may contaminate the fuel or interfere with the subsequent work such as soldering, bonding and welding. Remove the lubricant along with dirt adhering to the surface. Previously, cleaning could be easily performed in a short time using a chlorinated organic solvent such as trichlene, but as is well known, chlorinated organic solvents are legally regulated substances from the viewpoint of environmental protection, and replacement is urgent. ing. Therefore, an alkaline degreasing agent has been used as an alternative cleaning agent. For this reason, it has been demanded that the surface-treated steel sheet still maintains a predetermined performance even after washing with an alkaline degreasing agent, that is, has excellent alkali resistance.

クロムを含有しない1層の処理として、特許文献5、6には、イオン性の有機樹脂と特定のフェノール系樹脂とさらに金属化合物を含有する水系の表面処理剤による処理が提案されている。しかし、そこに開示されている表面処理剤では、特に耐アルカリ性、劣化ガソリンに対する耐ガソリン性、耐食性に関して、十分な性能が必ずしも得られないことが判明した。
特開平10−46358号公報 特開平8−269733号公報 特開平10−137681号公報 特開2000−129461号公報 特開2001−181860号公報 特開2003−13252号公報
As a one-layer treatment not containing chromium, Patent Documents 5 and 6 propose a treatment with an ionic organic resin, a specific phenol-based resin, and a water-based surface treatment agent containing a metal compound. However, it has been found that the surface treatment agent disclosed therein does not always provide sufficient performance with respect to alkali resistance, gasoline resistance against deteriorated gasoline, and corrosion resistance.
Japanese Patent Laid-Open No. 10-46358 JP-A-8-269733 Japanese Patent Application Laid-Open No. 10-137681 JP 2000-129461 A JP 2001-181860 A JP 2003-13252 A

自動車燃料タンク用の表面処理鋼板に求められる性能は、タンクの内面側と外面側とで異なる。
タンク内面側は、ガソリン、特にギ酸等の有機酸を含有する劣化ガソリンに対する耐食性が最も重要である。また、アルカリ脱脂剤で洗浄した後に性能が劣化しないという耐アルカリ性も重要である。
The performance required for the surface-treated steel sheet for automobile fuel tanks differs between the inner surface side and the outer surface side of the tank.
On the inner surface side of the tank, corrosion resistance to gasoline, particularly deteriorated gasoline containing an organic acid such as formic acid is most important. Moreover, the alkali resistance that performance does not deteriorate after washing with an alkaline degreasing agent is also important.

一方、外面側に求められる特性としては、はんだ付け性、加工メーカーでの後塗装性、および溶接性や接着剤との密着性等が挙げられる。このような外面側に求められる性能を満たすことができれば、同じ表面処理を内外両面に施すことができ、表面処理めっき鋼板の生産性が高まるので、さらに好ましい。   On the other hand, the characteristics required on the outer surface side include solderability, post-paintability at a processing manufacturer, weldability, adhesiveness with an adhesive, and the like. If the performance required on the outer surface side can be satisfied, the same surface treatment can be performed on both the inner and outer surfaces, and the productivity of the surface-treated plated steel sheet is increased, which is further preferable.

本発明は、環境面で問題のある鉛と6価クロムを含有しない、自動車燃料タンク用に適した1層コーティング型の表面処理めっき鋼板において、前述した内面側と外面側に求められる性能を全て満たすことができる鋼板を提供することを課題とする。   The present invention is a single layer coating type surface-treated plated steel sheet suitable for automobile fuel tanks that does not contain environmentally problematic lead and hexavalent chromium. It aims at providing the steel plate which can be satisfy | filled.

本発明者らは、亜鉛−ニッケル合金めっき鋼板の表面に特定の水系表面処理剤の塗布と乾燥により皮膜を形成することにより、上記課題を解決することが可能であることを見出し、本発明に到達した。   The present inventors have found that the above-mentioned problems can be solved by forming a film on the surface of a zinc-nickel alloy-plated steel sheet by applying and drying a specific aqueous surface treatment agent. Reached.

ここに、本発明は、亜鉛−ニッケル合金めっき鋼板の少なくとも片面に、カチオン性ウレタン樹脂(A)と、下記一般式(1)で示される反復単位を有する平均重合度2〜50の重合体分子からなるカチオン性フェノール樹脂(B)と、リン酸(C)と、チタン化合物(D)と、バナジウム化合物(E)と、潤滑剤(F)とを成分として含有する水系表面処理剤の塗布と乾燥により形成された皮膜を有する表面処理めっき鋼板であって、前記表面処理剤中の成分比が、(A)40〜55質量部、(B)15〜25質量部、(C)P換算として3〜10質量部、(D)Ti換算として0.5〜3質量部、(E)V換算として0.5〜3質量部、(F)3〜10質量部であることを特徴とする表面処理めっき鋼板である。   Here, the present invention provides a polymer molecule having an average degree of polymerization of 2 to 50 having a cationic urethane resin (A) and a repeating unit represented by the following general formula (1) on at least one surface of a zinc-nickel alloy plated steel sheet. Application of a water-based surface treatment agent containing, as components, a cationic phenol resin (B) comprising: phosphoric acid (C); a titanium compound (D); a vanadium compound (E); and a lubricant (F). A surface-treated plated steel sheet having a film formed by drying, wherein the component ratio in the surface treatment agent is (A) 40 to 55 parts by mass, (B) 15 to 25 parts by mass, and (C) P conversion 3-10 parts by mass, (D) 0.5-3 parts by mass in terms of Ti, (E) 0.5-3 parts by mass in terms of V, (F) 3-10 parts by mass It is a treated plated steel sheet.

Figure 2006291246
Figure 2006291246

式中、Y1およびY2は、それぞれ独立して、水素原子または下記式(2)もしくは式(3)で表されるZ基を意味し In the formula, Y 1 and Y 2 each independently represent a hydrogen atom or a Z group represented by the following formula (2) or formula (3).

Figure 2006291246
Figure 2006291246

式(2)および式(3)中のR1、R2、R3、R4およびR5は、それぞれ独立して、水素原子、C1〜C10アルキル基またはC1〜C10ヒドロキシアルキル基を表し、前記重合体分子中のベンゼン環当たりの前記Z基の平均置換数は0.2〜1.0である。 R 1 , R 2 , R 3 , R 4 and R 5 in formula (2) and formula (3) are each independently a hydrogen atom, a C 1 -C 10 alkyl group or a C 1 -C 10 hydroxyalkyl. The average substitution number of the Z group per benzene ring in the polymer molecule is 0.2 to 1.0.

好ましくは、前記皮膜の付着量は500〜2000mg/m2の範囲内である。本発明はまた、上記表面処理めっき鋼板から製造された、前記皮膜を内面のみ、または内面と外面の両面、に有する燃料容器にも関する。 Preferably the coating weight of the coating is in the range of 500 to 2000 / m 2. The present invention also relates to a fuel container manufactured from the above-mentioned surface-treated plated steel sheet and having the coating only on the inner surface or both the inner surface and the outer surface.

本発明の表面処理めっき鋼板は、燃料タンクの内面側に要求される、ガソリン、特に劣化ガソリンに対する耐食性と、耐アルカリ性に優れ、アルカリ脱脂剤で洗浄した後も耐ガソリン性の性能を保持している。また、この表面処理めっき鋼板は、燃料タンクの外面側に求められる、はんだ(ろう)付け性、後塗装性、溶接性、接着剤との密着性、成形性にも優れている。

従って、本発明の表面処理めっき鋼板は、ガソリン用燃料容器の素材として好適であって、自動車、バイク、トラクター等の燃料タンク、携帯用燃料タンク等に好適である。また1層コーティング型のためコスト的にも有利である。さらに、内外面の両面に同じ表面処理を施すことが可能となり、その場合には生産性も向上する。
The surface-treated plated steel sheet of the present invention is required for the inner surface of the fuel tank, has excellent corrosion resistance against gasoline, particularly deteriorated gasoline, and has excellent alkali resistance, and retains gasoline resistance performance even after washing with an alkaline degreasing agent. Yes. This surface-treated plated steel sheet is also excellent in solderability, post-coating properties, weldability, adhesiveness with adhesives, and formability required on the outer surface side of the fuel tank.

Therefore, the surface-treated plated steel sheet of the present invention is suitable as a material for gasoline fuel containers, and is suitable for fuel tanks for automobiles, motorcycles, tractors, etc., portable fuel tanks, and the like. In addition, the single-layer coating type is advantageous in terms of cost. Furthermore, the same surface treatment can be performed on both the inner and outer surfaces, and in this case, productivity is improved.

以下に本発明を具体的に説明する。以下の説明において、%および部は、特に指定しない限り、質量%および質量部である。
本発明の表面処理めっき鋼板におけるめっき母材となる鋼板は、通常用いられている一般的な冷延鋼板でよい。ただし、燃料タンク用途では、一般に厳しい成形加工が行われるため、例えば極低炭素鋼で、かつTi、Nb、Bの1種または2種以上が添加された成分系といった、プレス成形性に優れた鋼板であることが好ましい。
The present invention will be specifically described below. In the following description, “%” and “parts” are “% by mass” and “parts by mass” unless otherwise specified.
The steel sheet used as the plating base material in the surface-treated plated steel sheet according to the present invention may be a commonly used cold-rolled steel sheet. However, in fuel tank applications, since generally severe forming is performed, it is excellent in press formability such as a component system in which one or more of Ti, Nb, and B are added, for example, extremely low carbon steel. A steel plate is preferred.

鋼板に施すめっきは、本発明の用途から、耐食性が重要であるので、耐食性に優れている亜鉛−ニッケル合金めっきとする。亜鉛−ニッケル合金めっき皮膜中のニッケルの含有率は5〜17%の範囲が好ましい。   The plating applied to the steel sheet is made of zinc-nickel alloy plating that is excellent in corrosion resistance because corrosion resistance is important for the purpose of the present invention. The nickel content in the zinc-nickel alloy plating film is preferably in the range of 5 to 17%.

めっき方法は電気めっき法が好適であり、使用するめっき浴は、亜鉛化合物とニッケル化合物に加えて、少量の有機インヒビター、デキストリン、デキストランなどの有機化合物を含有していてもよい。めっき付着量は、耐食性の観点から、片面あたり10g/m2以上が好ましい。付着量が多すぎると、コストおよび加工性の面で問題となるので、より好ましい付着量は、片面当たり15〜50g/m2である。 The plating method is preferably an electroplating method, and the plating bath used may contain a small amount of an organic compound such as an organic inhibitor, dextrin or dextran in addition to the zinc compound and the nickel compound. The plating adhesion amount is preferably 10 g / m 2 or more per side from the viewpoint of corrosion resistance. If the amount of adhesion is too large, there will be a problem in terms of cost and workability, so a more preferable amount of adhesion is 15 to 50 g / m 2 per side.

この亜鉛−ニッケル合金めっき鋼板の少なくとも片面に、上記成分(A)〜(F)を含有する水系表面処理剤の塗布と乾燥により、皮膜を形成する。この皮膜は、前述したように、耐食性、特に耐ガソリン性と、耐アルカリ性に優れ、さらにはんだ(ろう)付け性、後塗装性、溶接性、接着剤との密着性も良好である。従って、燃料タンクの内面と外面の両面がこの皮膜を有するように、上記水系表面処理剤はめっき鋼板の両面に塗布してもよく、あるいは燃料タンクの内面側だけがこの皮膜を有するように、上記水系表面処理剤をめっき鋼板の片面だけに塗布してもよい。   A film is formed on at least one surface of the zinc-nickel alloy plated steel sheet by applying and drying an aqueous surface treating agent containing the components (A) to (F). As described above, this film is excellent in corrosion resistance, particularly gasoline resistance, and alkali resistance, and also has good solder (brazing) property, post-coating property, weldability, and adhesiveness. Accordingly, the aqueous surface treatment agent may be applied to both surfaces of the plated steel sheet so that both the inner surface and the outer surface of the fuel tank have this film, or so that only the inner surface side of the fuel tank has this film. The aqueous surface treatment agent may be applied only to one side of the plated steel sheet.

カチオン性ウレタン樹脂(A)は、緻密な皮膜を形成するうえで重要な役割を担い、優れた耐ガソリン性や耐アルカリ性を得る上で重要である。カチオン性ウレタン樹脂(A)は、ポリオールと脂肪族、脂環式もしくは芳香族ポリイソシアネートとの重縮合物であり、水溶性樹脂もしくは水系エマルジョン樹脂の形態のものを使用する。   The cationic urethane resin (A) plays an important role in forming a dense film, and is important in obtaining excellent gasoline resistance and alkali resistance. The cationic urethane resin (A) is a polycondensate of a polyol and an aliphatic, alicyclic or aromatic polyisocyanate, and is used in the form of a water-soluble resin or an aqueous emulsion resin.

ポリオールとしてはジエチレングリコール、トリエチレングリコール等のポリエチレングリコール、ポリエチレン/プロピレングリコールなどのポリエーテルグリコールが例示される。他に、ポリエステルポリオール、ポリカーボネートポリオールなども使用できる。樹脂をカチオン性にして、水溶性または水乳化性を付与するために、ポリオール成分の一部は(置換)アンモニウム基を有するポリオールとする。   Examples of the polyol include polyethylene glycols such as diethylene glycol and triethylene glycol, and polyether glycols such as polyethylene / propylene glycol. In addition, polyester polyol, polycarbonate polyol, and the like can be used. In order to make the resin cationic and to impart water solubility or water emulsification, a part of the polyol component is a polyol having a (substituted) ammonium group.

脂肪族、脂環式もしくは芳香族ポリイソシアネートとしては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、シクロヘキシレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネートなどが例示される。   Examples of the aliphatic, alicyclic or aromatic polyisocyanate include tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, cyclohexylene diisocyanate, hexamethylene diisocyanate, and lysine diisocyanate.

カチオン性ウレタン樹脂(A)の重量平均分子量は1,000〜1,000,000であるのが好ましく、2,000〜500,000であるのがより好ましい。平均分子量が小さすぎると皮膜形成性が不十分となり、大きすぎると処理剤の安定性が低下する傾向となる。   The weight average molecular weight of the cationic urethane resin (A) is preferably 1,000 to 1,000,000, and more preferably 2,000 to 500,000. When the average molecular weight is too small, the film forming property is insufficient, and when it is too large, the stability of the treatment agent tends to be lowered.

カチオン性ウレタン樹脂(A)は、40〜55部の範囲の量で含有させる。この成分比は好ましくは44〜51部の範囲である。少なすぎると耐アルカリ性や耐ガソリン性が低下し、多すぎると前記性能のほか接着性が低下する傾向にある。   The cationic urethane resin (A) is contained in an amount in the range of 40 to 55 parts. This component ratio is preferably in the range of 44 to 51 parts. If the amount is too small, the alkali resistance and gasoline resistance are lowered. If the amount is too large, the adhesiveness tends to be lowered in addition to the above performance.

カチオン性フェノール樹脂(B)は、カチオン性ウレタン樹脂(A)とともに、皮膜を構成する基本的成分となる。さらに、接着剤との接着性を高めるうえで重要な役割を担う。カチオン性フェノール樹脂(B)は、一般式(1)で示される反復単位を有する重合体分子からなり、平均重合度(n)が2〜50のオリゴマーまたはポリマーである。   The cationic phenol resin (B) is a basic component constituting the film together with the cationic urethane resin (A). Furthermore, it plays an important role in enhancing the adhesiveness with the adhesive. The cationic phenol resin (B) is an oligomer or polymer having a polymer molecule having a repeating unit represented by the general formula (1) and having an average degree of polymerization (n) of 2 to 50.

Figure 2006291246
Figure 2006291246

式中、ベンゼン環の任意の位置に結合しうるY1およびY2は、それぞれ独立して、水素原子または下記式(2)もしくは式(3)により表されるZ基を意味する。 In the formula, Y 1 and Y 2 which can be bonded to any position of the benzene ring each independently represent a hydrogen atom or a Z group represented by the following formula (2) or formula (3).

Figure 2006291246
Figure 2006291246

式(2)および式(3)中のR1、R2、R3、R4およびR5は、それぞれ独立して、水素原子、C1〜C10アルキル基またはC1〜C10ヒドロキシアルキル基を表し、前記重合体分子中のベンゼン環当たりの前記Z基の平均置換数は0.2〜1.0である。 R 1 , R 2 , R 3 , R 4 and R 5 in formula (2) and formula (3) are each independently a hydrogen atom, a C 1 -C 10 alkyl group or a C 1 -C 10 hydroxyalkyl. The average substitution number of the Z group per benzene ring in the polymer molecule is 0.2 to 1.0.

Z基中に存在する置換基R1〜R5の炭素数が大きくなりすぎると、処理液の成膜性が低下するため、表面処理めっき鋼板の耐ガソリン性や、上塗り塗装性等が不十分になる。この置換基の炭素数は、好ましくは1〜6、より好ましくは1〜4、特に好ましくは1〜2である。 If the number of carbon atoms of the substituents R 1 to R 5 present in the Z group becomes too large, the film-forming property of the treatment liquid will decrease, so the surface-treated plated steel sheet will not have sufficient gasoline resistance, top coatability, etc. become. The number of carbon atoms of this substituent is preferably 1 to 6, more preferably 1 to 4, and particularly preferably 1 to 2.

カチオン性フェノール樹脂(B)の平均重合度(n)が2未満になると、成膜性が低下するため、耐ガソリン性や、耐アルカリ性が劣り、一方50を超えると、処理剤の安定性が低下する。この平均重合度(n)は好ましくは4〜40、より好ましくは8〜20である。   When the average degree of polymerization (n) of the cationic phenol resin (B) is less than 2, the film formability deteriorates, so the gasoline resistance and the alkali resistance are inferior. descend. This average degree of polymerization (n) is preferably 4 to 40, more preferably 8 to 20.

カチオン性フェノール樹脂(B)のベンゼン環当たりのZ基の平均置換数が0.2未満であると、樹脂の基体表面への密着性が不十分となり、塗装性が悪くなる。また、この平均置換数が1.0を越える(即ち、平均して各ベンゼン環に1個より多いZ基が置換する)と、樹脂の親水性が大きくなりすぎ、処理した亜鉛系めっき鋼板の耐食性が不十分となる。平均置換数は、好ましくは0.3〜0.7である。置換基が式(3)で示されるイオン性のアンモニウム基である場合には、その平均置換数は0.5未満とすることが好ましい。   When the average number of substitutions of Z groups per benzene ring of the cationic phenol resin (B) is less than 0.2, the adhesion of the resin to the substrate surface becomes insufficient and the paintability is deteriorated. Further, if this average number of substitution exceeds 1.0 (that is, on average, more than one Z group is substituted on each benzene ring), the hydrophilicity of the resin becomes too large, and the treated zinc-based plated steel sheet Corrosion resistance is insufficient. The average number of substitutions is preferably 0.3 to 0.7. When the substituent is an ionic ammonium group represented by the formula (3), the average number of substitution is preferably less than 0.5.

カチオン性フェノール樹脂(B)は、15〜25部の範囲の量で存在させる。この成分比は、好ましくは18〜22部の範囲である。15部未満では接着性が低下し、25部を超えると耐アルカリ性や耐ガソリン性が低下する。   The cationic phenol resin (B) is present in an amount ranging from 15 to 25 parts. This component ratio is preferably in the range of 18-22 parts. If it is less than 15 parts, the adhesiveness is lowered, and if it exceeds 25 parts, alkali resistance and gasoline resistance are lowered.

リン酸(C)は、皮膜の耐食性を向上させるために効果的である。種類としては、オルトリン酸、亜リン酸、次亜リン酸、ポリリン酸が好適である。リン酸(C)の量は、P換算で3〜10部の範囲とし、好ましくは5〜8部の範囲である。少なすぎると耐食性が低下する傾向にある。多すぎると接着性が低下する。   Phosphoric acid (C) is effective for improving the corrosion resistance of the film. As the type, orthophosphoric acid, phosphorous acid, hypophosphorous acid, and polyphosphoric acid are preferable. The amount of phosphoric acid (C) is in the range of 3 to 10 parts, preferably 5 to 8 parts in terms of P. If the amount is too small, the corrosion resistance tends to decrease. If it is too much, the adhesiveness is lowered.

チタン化合物(D)も、皮膜の耐食性を向上させるのに効果的である。水系表面処理液中に可溶性であれば種類は特に問わない。適当なチタン化合物の例としては、硫酸チタニル(TiOSO4)、チタンフッ化水素酸、ジイソプロポキシチタニウムビスアセチルアセトン{(C572)2Ti[OCH(CH3)2]2}、乳酸とチタニウムアルコキシドとの反応生成物、チタンラクテート、チタンアセチルアセトネートなどが挙げられる。チタン化合物(D)の量はTi換算で0.5〜3部の範囲とし、好ましくは1〜2.5部の範囲である。少なすぎる場合または多すぎる場合のいずれも耐食性 (耐ガソリン性、耐アルカリ性)の低下を招く。 The titanium compound (D) is also effective in improving the corrosion resistance of the film. The type is not particularly limited as long as it is soluble in the aqueous surface treatment solution. Examples of suitable titanium compounds include titanyl sulfate (TiOSO 4 ), titanium hydrofluoric acid, diisopropoxytitanium bisacetylacetone {(C 5 H 7 O 2 ) 2 Ti [OCH (CH 3 ) 2 ] 2 }, lactic acid And a reaction product of titanium alkoxide, titanium lactate, titanium acetylacetonate and the like. The amount of the titanium compound (D) is in the range of 0.5 to 3 parts, preferably in the range of 1 to 2.5 parts in terms of Ti. Either too little or too much leads to a decrease in corrosion resistance (gasoline resistance, alkali resistance).

バナジウム化合物(E)も、皮膜の耐食性を向上させるのに効果的である。やはり、水系表面処理液中に可溶性であれば種類は特に問わない。適当なバナジウム化合物の例としては、五酸化バナジウム(V25)、メタバナジン酸(HVO3)、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、オキシ三塩化バナジウム(VOCl3)、三酸化バナジウム(V23)、二酸化バナジウム(VO2)、オキシ硫酸バナジウム(VOSO4)、バナジウムオキシアセチルアセトネート[VO(OC(=CH2)CH2COCH3)2]、バナジウムアセチルアセトネート[V(OC(=CH2)CH2COCH3)3]、三塩化バナジウム(VCl3)などが挙げられる。バナジウム化合物(E)の量は、V換算で0.5〜3部の範囲とし、好ましくは1〜2.5部の範囲である。少なすぎる場合または多すぎる場合のいずれも耐食性の低下を招く。 The vanadium compound (E) is also effective in improving the corrosion resistance of the film. As long as it is soluble in the aqueous surface treatment solution, the type is not particularly limited. Examples of suitable vanadium compounds include vanadium pentoxide (V 2 O 5 ), metavanadate (HVO 3 ), ammonium metavanadate, sodium metavanadate, vanadium oxytrichloride (VOCl 3 ), vanadium trioxide (V 2 O 3 ), vanadium dioxide (VO 2 ), vanadium oxysulfate (VOSO 4 ), vanadium oxyacetylacetonate [VO (OC (═CH 2 ) CH 2 COCH 3 ) 2 ], vanadium acetylacetonate [V (OC (= CH 2 ) CH 2 COCH 3 ) 3 ], vanadium trichloride (VCl 3 ) and the like. The amount of the vanadium compound (E) is in the range of 0.5 to 3 parts in terms of V, preferably in the range of 1 to 2.5 parts. Either too little or too much leads to a decrease in corrosion resistance.

金属化合物として、チタン化合物(D)とバナジウム化合物(E)の2種類を併用することが、耐ガソリン性および耐アルカリ性の両方を確保するのに重要である。どちらか1種類だけを使用するか、あるいはどちらか1種類を他の金属化合物で置換すると、耐ガソリン性と耐アルカリ性のいずれも不十分となる。   It is important to use both a titanium compound (D) and a vanadium compound (E) as the metal compound in order to ensure both gasoline resistance and alkali resistance. If only one of them is used or if one of them is replaced with another metal compound, both gasoline resistance and alkali resistance become insufficient.

潤滑剤(F)は、燃料タンクを成形加工するうえで複合皮膜の潤滑性を向上し、めっき磨耗などを防止するために効果的である。さらに、複雑な形状でなければ、成形加工時に使用する潤滑油がいらない無潤滑成形が可能となる。従って、潤滑剤(F)を表面処理剤に含有させる。   Lubricant (F) is effective for improving the lubricity of the composite film and for preventing plating wear and the like when molding the fuel tank. Furthermore, if the shape is not complicated, non-lubricated molding that does not require the lubricating oil used in the molding process is possible. Accordingly, the lubricant (F) is contained in the surface treatment agent.

潤滑剤(F)は、水系表面処理液中で分散可能なものを使用する。適当な潤滑剤の例としては、ポリオレフィン系ワックス、エステル系ワックス、炭化水素系ワックス等の水系エマルション型のワックスである。潤滑剤(F)の量は、3〜10部の範囲とし、好ましくは5〜8部の範囲である。   As the lubricant (F), a lubricant that can be dispersed in an aqueous surface treatment solution is used. Examples of suitable lubricants are water-based emulsion type waxes such as polyolefin waxes, ester waxes and hydrocarbon waxes. The amount of lubricant (F) is in the range of 3 to 10 parts, preferably in the range of 5 to 8 parts.

以上のいずれの成分についても、1種または2種以上の材料を使用することができ、2種以上を使用した場合は、合計量が上記成分比の範囲内となるようにすればよい。
また、(A)〜(F)の上記成分比の値は、どれかの成分を基準にしているわけでも、合計を100質量部にしているわけでもない。これらの成分の比が、上記成分比の範囲内で表現できればよい。
For any of the above components, one or more materials can be used, and when two or more materials are used, the total amount may be within the range of the above component ratio.
Moreover, the values of the above component ratios (A) to (F) are not based on any component, nor are the totals being 100 parts by mass. It is sufficient that the ratio of these components can be expressed within the range of the above component ratio.

本発明で用いる水系表面処理剤のpHは2.0〜5.0の範囲であることが好ましい。それにより、亜鉛−ニッケル合金めっき鋼板のめっき表面が表面処理剤によりエッチングされるため、形成される皮膜のめっき表面への密着性を高めることができる。   The pH of the aqueous surface treatment agent used in the present invention is preferably in the range of 2.0 to 5.0. Thereby, since the plating surface of a zinc-nickel alloy plating steel plate is etched by a surface treating agent, the adhesiveness to the plating surface of the membrane | film | coat formed can be improved.

水系表面処理剤は、皮膜の性能に著しい悪影響を及ぼさない限り、上記以外の成分をさらに含有していてもよい。そのような成分の例としては、他の水系樹脂、シランカップリング剤、界面活性剤、pH調整剤(酸もしくは塩基)、消泡剤、などが考えられる。また、特に皮膜を片面のみに形成する場合に、皮膜形成面の識別を容易にするために、表面処理剤に着色成分を含有させて、皮膜を着色してもよい。   The aqueous surface treatment agent may further contain components other than those described above as long as the film performance is not significantly adversely affected. Examples of such components include other aqueous resins, silane coupling agents, surfactants, pH adjusters (acid or base), antifoaming agents, and the like. In particular, when the film is formed on only one surface, the film may be colored by adding a coloring component to the surface treatment agent in order to easily identify the film forming surface.

本発明の水系表面処理剤を、亜鉛−ニッケル合金めっき鋼板の片面または両面に塗布し、次いで乾燥させて、該表面に皮膜を形成する。この皮膜は、皮膜形成成分である2種類の樹脂と金属化合物とを含有する複合皮膜を形成する。塗布方法は特に限定されず、付着量を制御できる任意の塗布方法を採用することができる。例えば、処理剤をロールに転写させて塗布するロールコート法、シャワーリンガー等によって流し掛けた後でロールで絞るか、エアーナイフで液切りをする方法、処理剤に浸漬する浸漬塗布法、処理剤をスプレーするスプレー法等が一般に用いられる。   The aqueous surface treating agent of the present invention is applied to one side or both sides of a zinc-nickel alloy plated steel sheet and then dried to form a film on the surface. This film forms a composite film containing two kinds of resins and metal compounds as film forming components. The coating method is not particularly limited, and any coating method that can control the adhesion amount can be employed. For example, a roll coat method in which a treatment agent is transferred to a roll and applied, a method of squeezing with a roll after pouring by a shower ringer or the like, a method of draining with an air knife, a dip coating method of immersing in a treatment agent, a treatment agent A spraying method for spraying is generally used.

乾燥は、鋼板最高到達温度が50〜250℃となる温度で行うことが好ましい。乾燥のための加熱手段は特に制限されず、加熱炉を使用しても、熱風加熱により加熱してもよい。加熱時間は、加熱温度や処理剤の付着量に依存し、乾燥皮膜が得られるように選択すればよい。   Drying is preferably performed at a temperature at which the maximum steel sheet temperature is 50 to 250 ° C. The heating means for drying is not particularly limited, and a heating furnace may be used or heating may be performed by hot air heating. The heating time depends on the heating temperature and the amount of treatment agent attached, and may be selected so that a dry film can be obtained.

こうして、基材の亜鉛−ニッケル合金めっき鋼板の少なくとも片面に、クロムフリーの耐食性に優れた皮膜が形成される。この皮膜を内面に有する燃料容器は、耐ガソリン性と耐アルカリ性に優れ、アルカリ脱脂した後も劣化ガソリン環境で優れた耐食性を示す。一方、燃料容器の外面側に要求される、溶接性、はんだ付け性、ろう付け性、接着性等の性能は、皮膜がない方が通常は良好である。しかし、外面側にも耐食性が必要な場合、本発明による皮膜が、内面側と外面側の両面に形成されていてもよい。本発明による皮膜は、外面側に要求される溶接性、はんだ付け(ろう付け)性、接着性も良好であり、皮膜があっても、これらの性能が著しく損なわれることはない。   Thus, a chromium-free coating with excellent corrosion resistance is formed on at least one surface of the base zinc-nickel alloy plated steel sheet. The fuel container having this coating on the inner surface is excellent in gasoline resistance and alkali resistance, and exhibits excellent corrosion resistance in a deteriorated gasoline environment even after alkali degreasing. On the other hand, the performance required for the outer surface side of the fuel container, such as weldability, solderability, brazing property, and adhesion, is usually better when there is no film. However, when corrosion resistance is required also on the outer surface side, the coating according to the present invention may be formed on both the inner surface side and the outer surface side. The coating according to the present invention has good weldability, soldering (brazing) properties and adhesion required on the outer surface side, and even if there is a coating, these performances are not significantly impaired.

皮膜の好ましい付着量(片面あたり)は、500〜2000mg/m2の範囲であり、より好ましくは800〜1500mg/m2の範囲である。付着量が少ないと、耐食性 (耐アルカリ性、耐ガソリン性)が劣る傾向にある。多すぎると、コストアップになるほか、溶接性、ろう付け性、はんだ付け性、接着性が劣化する傾向にある。 The preferable adhesion amount (per one side) of the film is in the range of 500 to 2000 mg / m 2 , more preferably in the range of 800 to 1500 mg / m 2 . If the amount of adhesion is small, the corrosion resistance (alkali resistance, gasoline resistance) tends to be inferior. If the amount is too large, the cost increases, and weldability, brazeability, solderability, and adhesion tend to deteriorate.

本発明に係る表面処理めっき鋼板の内外の表面に防錆油を塗布したり、成形加工時に潤滑油を塗布することは、必ずしも必要ではないが、保管時の防錆や成形時の潤滑性の点からは望ましい。   It is not always necessary to apply rust-preventive oil to the inner and outer surfaces of the surface-treated plated steel sheet according to the present invention, or to apply lubricating oil at the time of forming, but it is necessary to prevent rust during storage and lubricity during forming. Desirable in terms.

本発明の表面処理めっき鋼板に関する作用効果を実施例で具体的に例証する。実施例は本発明の例示のために記載するものであり、本発明を何ら限定するものではない。

(実施例1)
表面処理剤
本発明例および比較例に用いる水系表面処理剤の成分構成を表1に示す。表1において、表面処理剤14〜19は、成分(A)〜(E)のいずれかを含有しない、比較用の表面処理剤であり、表面処理剤20および21は、ウレタン樹脂(A)の成分比が本発明の範囲外となる比較用の表面処理剤である。各水系表面処理剤は、固形分濃度が10%となるように調製した。
The effect regarding the surface-treated plated steel sheet of the present invention will be specifically illustrated with Examples. The examples are given for illustration of the invention and are not intended to limit the invention in any way.

(Example 1)
Surface treatment agent The composition of the components of the aqueous surface treatment agent used in the present invention examples and comparative examples is shown in Table 1. In Table 1, the surface treatment agents 14 to 19 are comparative surface treatment agents that do not contain any of the components (A) to (E), and the surface treatment agents 20 and 21 are made of the urethane resin (A). It is a comparative surface treating agent whose component ratio is outside the scope of the present invention. Each aqueous surface treatment agent was prepared such that the solid content concentration was 10%.

使用した(A)〜(F)の各成分は次の通りである。
カチオン性ウレタン樹脂(A)
A1:カチオン性ポリウレタン樹脂(旭電化製アデカボンタイターHUX−670)、
A2:カチオン性ポリウレタン樹脂(第一工業製薬製スーパーフレックス600)。
The components (A) to (F) used are as follows.
Cationic urethane resin (A)
A1: Cationic polyurethane resin (Adekabon titer HUX-670 manufactured by Asahi Denka),
A2: Cationic polyurethane resin (Daiichi Kogyo Seiyaku Superflex 600).

カチオン性フェノール樹脂(B)
B1:n=5、Y1=−CH2N(CH3)2、Y2=H、Z置換度=0.5、
B2:n=10、Y1=−CH2N(CH3)(C24OH)、Y2=H、Z置換度=1.0。
Cationic phenolic resin (B)
B1: n = 5, Y 1 = −CH 2 N (CH 3 ) 2 , Y 2 = H, Z substitution degree = 0.5,
B2: n = 10, Y 1 = -CH 2 N (CH 3) (C 2 H 4 OH), Y 2 = H, Z substitution degree = 1.0.

リン酸(C)
C1:オルトリン酸、
C2:次亜リン酸。
Phosphoric acid (C)
C1: orthophosphoric acid
C2: hypophosphorous acid.

チタン化合物(D)
D1:硫酸チタン、
D2:チタンフッ化水素酸、
D3:チタンラクテート、
D4:チタンアセチルアセトネート。
Titanium compound (D)
D1: titanium sulfate,
D2: titanium hydrofluoric acid,
D3: Titanium lactate
D4: Titanium acetylacetonate.

バナジウム化合物(E)
E1:五酸化バナジウム、
E2:オキシ硫酸バナジウム、
E3:バナジルオキシアセチルアセトネート、
E4:メタバナジン酸アンモニウム。
Vanadium compound (E)
E1: Vanadium pentoxide,
E2: vanadium oxysulfate,
E3: vanadyloxyacetylacetonate,
E4: ammonium metavanadate.

潤滑剤(F)
F1:ポリエチレンワックス(粒径1μm、分子量3000)、
F2:ポリプロピレンワックス(粒径1μm、分子量2000)。
Lubricant (F)
F1: Polyethylene wax (particle size 1 μm, molecular weight 3000),
F2: Polypropylene wax (particle size 1 μm, molecular weight 2000).

Figure 2006291246
Figure 2006291246

供試材
0.8mm厚の電気Zn−13%Ni合金めっき鋼板(両面めっき、めっき付着量:片面当たり30g/m)を250mm×310mmに切断したものを基材めっき鋼板として用いた。このめっき鋼板の両面に、ロールコーターを用いて、表1に示した水系表面処理剤を表2に示すような皮膜付着量(片面当たりの付着量)となるように塗布し、表2に示す最高到達板温となるようにドライヤーで乾燥して、供試用の表面処理めっき鋼板を得た。
A 0.8-mm-thick electric Zn-13% Ni alloy-plated steel sheet (double-sided plating, plating adhesion amount: 30 g / m 2 per side) cut to 250 mm × 310 mm was used as a base-plated steel sheet. Using a roll coater, the aqueous surface treatment agent shown in Table 1 was applied to both surfaces of this plated steel sheet so as to have a film adhesion amount (adhesion amount per one surface) as shown in Table 2, and shown in Table 2 It dried with the drier so that it might become the highest plate | board temperature, and obtained the surface treatment plating steel plate for a test.

得られた表面処理めっき鋼板の諸性能を下記試験方法により評価した。試験結果も表2にまとめて示す。
耐ガソリン性
後述する絞り条件で、表面処理した側が内面となるようにカップ絞り成形を行い、得られたカップに3000ppm濃度のギ酸水溶液10ccをガソリン20ccに加えた模擬劣化ガソリンを入れて密閉し、50℃に保持した。評価は、300日後の腐食生成物(液のにごり)状況で以下の通り判断した(○までが合格)。
Various performances of the obtained surface-treated plated steel sheet were evaluated by the following test methods. The test results are also summarized in Table 2.
Gasoline resistance Under the drawing conditions described later, cup drawing was performed so that the surface-treated side became the inner surface, and the resulting cup was sealed with simulated deteriorated gasoline obtained by adding 10 cc of a formic acid aqueous solution with a concentration of 3000 ppm to 20 cc of gasoline, Maintained at 50 ° C. Evaluation was judged as follows in the state of the corrosion product (liquid mist) after 300 days (up to ◯ passed).

◎:ほとんど変化なし;
○:上から見て10〜40%程度のにごり発生;
△:上から見て40〜70%程度のにごり発生(底面の観察がかなり困難);
×:ほぼ液全体に赤錆が浮遊している(底面、側面の観察がかなり困難)またはカット部、その他から内面樹脂の剥離、ふくれが認められる。
◎: Almost no change;
○: Generation of dust of about 10 to 40% when viewed from above;
Δ: Dust generation of about 40 to 70% when viewed from above (observation of the bottom surface is quite difficult);
X: Red rust floats almost throughout the liquid (observation of the bottom and sides is quite difficult), or peeling of the inner surface resin and blistering are observed from the cut part and others.

(絞り条件)
ブランク 100mm径、
パンチ 50mm径−5R、
ダイス 52.5径−5R、
絞り高さ 25mm、
潤滑油使用、絞り成形後にアルカリ脱脂。
(Aperture condition)
Blank 100mm diameter,
Punch 50mm diameter -5R,
Dice 52.5 diameter-5R,
Aperture height 25mm,
Lubricant used, alkali degreasing after drawing.

耐食性1
裏面及び端面をポリエステルテープでマスキングし、塩水噴霧試験(JIS−Z−2371)を施し、240時間経過後の白錆面積率で判定した(○までが合格)。
Corrosion resistance 1
The back surface and the end surface were masked with a polyester tape, subjected to a salt spray test (JIS-Z-2371), and judged by the white rust area ratio after 240 hours (up to ◯ passed).

◎ :白錆面積率5%未満;
○ :白錆面積率5%以上、10%未満;
○△:白錆面積率10%以上、25%未満;
△ :白錆面積率25%以上、50%未満;
× :白錆面積率50%以上。
◎: White rust area ratio less than 5%;
○: White rust area ratio 5% or more and less than 10%;
○: White rust area ratio of 10% or more and less than 25%;
Δ: White rust area ratio of 25% or more and less than 50%;
X: White rust area ratio of 50% or more.

耐食性2
万能引張り試験機にて140%に引き伸ばした後、裏面及び端面をポリエステルテープでマスキングし、塩水噴霧試験(JIS−Z−2371)を施した。240時間まで途中経過の赤錆発生を確認し判定した(○までが合格)。
Corrosion resistance 2
After stretching to 140% with a universal tensile tester, the back and end surfaces were masked with polyester tape, and a salt spray test (JIS-Z-2371) was performed. The occurrence of red rust during the course of the course up to 240 hours was confirmed and judged (up to ○ passed).

◎:240時間まで赤錆発生なし;
○:120時間まで赤錆発生なし、240時間では僅かに赤錆発生あり;
△:120時間で僅かに赤錆発生あり;
×:120時間で赤錆発生多い。
A: No red rust occurs up to 240 hours;
○: No red rust generated until 120 hours, slightly red rust generated after 240 hours;
Δ: Slight red rust occurred in 120 hours;
X: Red rust is often generated in 120 hours.

耐アルカリ性
裏面及び端面をポリエステルテープでマスキングし、日本パーカライジング社製アルカリ脱脂剤CL−N364S(20g/L)に60℃で120秒間浸漬し、水道水で水洗した。続いて、塩水噴霧試験(JIS−Z−2371)を施した。240時間経過後の白錆面積率で判定した(○までが合格)。
The alkali-resistant back and end surfaces were masked with a polyester tape, immersed in an alkaline degreasing agent CL-N364S (20 g / L) manufactured by Nippon Parkerizing Co., Ltd. for 120 seconds, and washed with tap water. Subsequently, a salt spray test (JIS-Z-2371) was performed. Judgment was made based on the white rust area ratio after 240 hours (passed up to ○).

◎ :白錆面積率5%未満;
○ :白錆面積率5%以上、10%未満;
○△:白錆面積率10%以上、25%未満;
△ :白錆面積率25%以上、50%未満;
× :白錆面積率50%以上。
◎: White rust area ratio less than 5%;
○: White rust area ratio 5% or more and less than 10%;
○: White rust area ratio of 10% or more and less than 25%;
Δ: White rust area ratio of 25% or more and less than 50%;
X: White rust area ratio of 50% or more.

接着性
25mm×200mmのサイズに切断した2枚のサンプルに接着剤(#2403アサヒゴム製)をバーコータにて塗布し、0.18mmのスペーサーをサンプルの200mm側の両端に挟み、接着剤の厚さが180μmになるよう調整した。30分間静置後、180℃で30分間加熱して接着剤を硬化させ、さらに24時間自然冷却した。得られた接着試験片を前記万能引張り試験により、200mm/分の速度でTピール剥離試験を実施した。そのときの剥離強度および剥離外観により判定した(○までが合格)。なお、剥離強度の単位はkgf/25mmである。
Adhesive (# 2403 Asahi rubber) was applied to two samples cut to a size of 25 mm × 200 mm with a bar coater, and a 0.18 mm spacer was sandwiched between both ends on the 200 mm side of the sample. Was adjusted to 180 μm. After leaving still for 30 minutes, it heated at 180 degreeC for 30 minutes, the adhesive agent was hardened, and also naturally cooled for 24 hours. The obtained adhesion test piece was subjected to a T peel peel test at a speed of 200 mm / min by the universal tensile test. Judgment was made based on the peel strength and peel appearance at that time (up to ◯ passed). The unit of peel strength is kgf / 25 mm.

◎;接着剤層の凝集破壊面積率100%、剥離強度17以上;
○;接着剤層の凝集破壊面積率100%、剥離強度16以上、7未満;
△;接着剤層の凝集破壊率50%以上、100%未満、剥離強度13以上、6未満;
×;接着剤層の凝集破壊率50%未満、剥離強度13未満。
A: Cohesive fracture area ratio of adhesive layer 100%, peel strength 17 or more;
○: Cohesive fracture area ratio of adhesive layer 100%, peel strength 16 or more, less than 7;
Δ: Cohesive failure rate of adhesive layer 50% or more, less than 100%, peel strength 13 or more, less than 6;
X: The cohesive failure rate of the adhesive layer is less than 50%, and the peel strength is less than 13.

後塗装性
サンプルの表面を前記条件でアルカリ脱脂した後、片面に外面塗料として日本ペイント製オーデラック9200TSブラックを約20μm厚に塗布した。その後、40℃の温水中に10日浸漬してから、直ちに塗装面にクロスカットをいれ、さらにエリクセンで7mm張り出し、張り出し部のテープ剥離状況を調査した(○までが合格)。
After alkali degreasing the surface of the post-coating sample under the above conditions, Nippon Paint Odelac 9200TS Black was applied on one side as an outer coating to a thickness of about 20 μm. Then, after being immersed in warm water of 40 ° C. for 10 days, a crosscut was immediately put on the painted surface, and further, 7 mm was overhanged with Eriksen, and the tape peeling state of the overhanging portion was investigated (up to ○ passed).

○:剥離なし;
△:微小ブリスター部で剥離;
×:大きく剥離。
○: No peeling;
Δ: Peeling at fine blister part;
X: Exfoliated greatly.

はんだ付け/ろう付け性
はんだおよびろう材として、それぞれタルチン製Sn−Ag系合金および黄銅を用いてはんだ付け性およびろう付け性を調査した。フラックスは、それぞれタルチン製L305(塩素系)およびホウ酸であった。評価は、サンプル外面にはんだまたはろう材0.5gとフラックス0.5ccを乗せ、Sn−Ag系合金はんだは350℃、黄銅ろう材の場合は800℃に加熱して、2分後の濡れ広がり面積で評価した(○までが合格)。
Soldering / Brazing Properties Solderability and brazing properties were investigated using Sn-Ag alloy made of tartin and brass as solder and brazing material, respectively. The fluxes were tartin L305 (chlorine) and boric acid, respectively. Evaluation is carried out by placing 0.5 g of solder or brazing material and 0.5 cc of flux on the outer surface of the sample, heating to 350 ° C. for Sn—Ag alloy solder, and 800 ° C. for brass brazing material, and spreading after 2 minutes. The area was evaluated (passed up to ○).

○:はんだ及びろうの濡れ面積が両方とも100mm2以上;
×:はんだ及びろうの少なくとも一方の濡れ面積が100mm2未満か、濡れない。
抵抗溶接性
2枚のサンプルを重ねた後、加圧300kgf、通電12サイクル、電流8kAの条件でスポット溶接を行い、1サイクル目の電極間抵抗を測定して、次のように判定した(○までが合格)。
○: Solder and solder wetted areas are both 100 mm 2 or more;
X: The wetted area of at least one of the solder and the solder is less than 100 mm 2 or does not wet.
After two samples of resistance weldability were stacked, spot welding was performed under the conditions of pressure 300 kgf, energization 12 cycles, and current 8 kA, and the resistance between the electrodes in the first cycle was measured and determined as follows (○ Until pass).

◎:電極間抵抗が300μΩ以下;
○:電極間抵抗が300μΩ以上、もしくは軽度のチリ発生;
△:かなり大きなチリ発生;
×:通電しない(溶接不能)。
A: Interelectrode resistance is 300 μΩ or less;
○: Interelectrode resistance is 300 μΩ or more, or slight dust is generated;
△: Generation of considerably large dust;
X: Not energized (not weldable).

成形性
サンプルを耐ガソリン性の絞り成形加工と同じ条件で絞り成形した後、絞り外面の側壁の粘着テープによる剥離状況を目視で判定した(○までが合格)。
After the moldable sample was drawn under the same conditions as the gasoline-resistant drawing process, the state of peeling with the adhesive tape on the outer side wall of the drawing was judged visually (up to ○ passed).

◎:剥離なし;
○:テープでややキラキラ感あり;
△:テープで明らかに剥離が認められる;
×:ほぼ全面にわたって剥離が認められる。
A: No peeling;
○: The tape is slightly glittering;
Δ: Peeling is clearly observed on the tape;
X: Peeling is recognized over almost the entire surface.

Figure 2006291246
Figure 2006291246

表2に示すように、本発明に従った水系表面処理剤を用いて皮膜を形成した実施例1〜17では、絞り成形後にアルカリ脱脂した容器に劣化ガソリンを模したガソリンを入れて試験した場合の耐ガソリン性に優れ、アルカリ脱脂を受けても、劣化ガソリンに耐える十分な耐ガソリン性を示す。   As shown in Table 2, in Examples 1 to 17 in which a film was formed using an aqueous surface treating agent according to the present invention, when a test was performed by putting gasoline imitating deteriorated gasoline in a container degreased after alkali molding. It has excellent gasoline resistance, and even with alkaline degreasing, it has sufficient gasoline resistance to withstand deteriorated gasoline.

また、アルカリ脱脂後の耐食性(耐アルカリ性)も脱脂前の耐食性(耐食性1)と同様に良好であり、加工後の耐食性(耐食性2)も良好であった。
これに対し、比較例1〜5は成分(A)〜(E)のいずれかを含有しないもの、また、比較例7、8は、成分(A)と(B)の比率が本発明の範囲外のものであり、いずれも耐ガソリン性その他の性能が著しく劣った。ワックス(F)を含有しない比較例6は、成形性がやや劣った。


(実施例2)
素地鋼板として、実施例1のZn−13%Ni合金めっき鋼板と、電気亜鉛めっき鋼板とを用い、これに実施例1と同様の条件で表面処理剤(表1の処理剤1)を塗布し、供試用の表面処理めっき鋼板を得た。
得られた表面処理めっき鋼板の諸性能を実施例1と同様の試験方法により評価した。試験結果を表3に示す。
Moreover, the corrosion resistance after alkali degreasing (alkali resistance) was as good as the corrosion resistance before degreasing (corrosion resistance 1), and the corrosion resistance after processing (corrosion resistance 2) was also good.
On the other hand, Comparative Examples 1 to 5 do not contain any of components (A) to (E), and Comparative Examples 7 and 8 have a ratio of components (A) and (B) within the scope of the present invention. All of them were extremely poor in gasoline resistance and other performances. Comparative Example 6 containing no wax (F) was slightly inferior in moldability.


(Example 2)
As the base steel plate, the Zn-13% Ni alloy-plated steel plate of Example 1 and the electrogalvanized steel plate were used, and a surface treatment agent (treatment agent 1 in Table 1) was applied to the same conditions as in Example 1. A surface-treated plated steel sheet for a test was obtained.
Various performances of the obtained surface-treated plated steel sheet were evaluated by the same test methods as in Example 1. The test results are shown in Table 3.

Figure 2006291246
Figure 2006291246

表3に示されるように、素地鋼板が亜鉛−ニッケル合金めっき鋼板である場合、電気亜鉛めっき鋼板である場合と比較して、性能が格段に良好であった。
As shown in Table 3, when the base steel plate was a zinc-nickel alloy plated steel plate, the performance was markedly better than when it was an electrogalvanized steel plate.

Claims (3)

亜鉛−ニッケル合金めっき鋼板の少なくとも片面に、カチオン性ウレタン樹脂(A)と、下記一般式(1)で示される反復単位を有する平均重合度2〜50の重合体分子からなるカチオン性フェノール樹脂(B)と、リン酸(C)と、チタン化合物(D)と、バナジウム化合物(E)と、潤滑剤(F)とを成分として含有する水系表面処理剤の塗布と乾燥により形成された皮膜を有する表面処理めっき鋼板であって、前記処理剤中の成分比が、(A)40〜55質量部、(B)15〜25質量部、(C)P換算として3〜10質量部、(D)Ti換算として0.5〜3質量部、(E)V換算として0.5〜3質量部、(F)3〜10質量部であることを特徴とする表面処理めっき鋼板。
Figure 2006291246
式中、Y1およびY2は、それぞれ独立して、水素原子または下記式(2)もしくは式(3)で表されるZ基を意味し
Figure 2006291246
式(2)および式(3)中のR1、R2、R3、R4およびR5は、それぞれ独立して、水素原子、C1〜C10アルキル基またはC1〜C10ヒドロキシアルキル基を表し、前記重合体分子中のベンゼン環当たりの前記Z基の平均置換数は0.2〜1.0である。
Cationic phenolic resin comprising a cationic urethane resin (A) on at least one surface of a zinc-nickel alloy plated steel sheet and polymer molecules having an average degree of polymerization of 2 to 50 having a repeating unit represented by the following general formula (1) B), a coating formed by applying and drying an aqueous surface treatment agent containing phosphoric acid (C), titanium compound (D), vanadium compound (E), and lubricant (F) as components. The surface-treated plated steel sheet has a component ratio in the treatment agent of (A) 40 to 55 parts by mass, (B) 15 to 25 parts by mass, (C) 3 to 10 parts by mass in terms of P, (D The surface-treated plated steel sheet is 0.5 to 3 parts by mass in terms of Ti, 0.5 to 3 parts by mass in terms of (E) V, and 3 to 10 parts by mass of (F).
Figure 2006291246
In the formula, Y 1 and Y 2 each independently represent a hydrogen atom or a Z group represented by the following formula (2) or formula (3).
Figure 2006291246
R 1 , R 2 , R 3 , R 4 and R 5 in formula (2) and formula (3) are each independently a hydrogen atom, a C 1 -C 10 alkyl group or a C 1 -C 10 hydroxyalkyl. The average substitution number of the Z group per benzene ring in the polymer molecule is 0.2 to 1.0.
前記皮膜の付着量が500〜2000mg/m2の範囲内である、請求項1または2に記載の表面処理めっき鋼板。 Deposition amount of the coating is in the range of 500 to 2000 / m 2, the surface treatment plated steel sheet according to claim 1 or 2. 請求項1〜3のいずれかに記載の表面処理めっき鋼板から製造された、前記皮膜を少なくとも内面に有する燃料容器。
A fuel container manufactured from the surface-treated plated steel sheet according to any one of claims 1 to 3 and having the coating on at least an inner surface.
JP2005110105A 2005-04-06 2005-04-06 Surface-treated plated steel sheet for gasoline fuel containers Expired - Fee Related JP4831991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005110105A JP4831991B2 (en) 2005-04-06 2005-04-06 Surface-treated plated steel sheet for gasoline fuel containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110105A JP4831991B2 (en) 2005-04-06 2005-04-06 Surface-treated plated steel sheet for gasoline fuel containers

Publications (2)

Publication Number Publication Date
JP2006291246A true JP2006291246A (en) 2006-10-26
JP4831991B2 JP4831991B2 (en) 2011-12-07

Family

ID=37412136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110105A Expired - Fee Related JP4831991B2 (en) 2005-04-06 2005-04-06 Surface-treated plated steel sheet for gasoline fuel containers

Country Status (1)

Country Link
JP (1) JP4831991B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194839A (en) * 2007-02-08 2008-08-28 Sumitomo Metal Ind Ltd Chromium-free surface-treated steel sheet excellent in performance balance
JP2014095121A (en) * 2012-11-09 2014-05-22 Jfe Steel Corp Process liquid, steel sheet for container, and method of producing steel sheet for container
JP2015063713A (en) * 2013-09-24 2015-04-09 新日鐵住金株式会社 Surface-treated steel sheet for fuel tank
WO2017078105A1 (en) * 2015-11-06 2017-05-11 新日鐵住金株式会社 Aqueous surface treatment agent for zinc plated steel material or zinc-based alloy plated steel material, coating method, and coated steel material
JP2017160499A (en) * 2016-03-10 2017-09-14 新日鐵住金株式会社 Surface treated steel sheet for fuel tank
KR20180030185A (en) 2015-08-28 2018-03-21 신닛테츠스미킨 카부시키카이샤 Surface treatment steel plate for fuel tank

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110167A (en) * 1979-02-20 1980-08-25 Dainippon Toryo Co Ltd Water-based dispersion paint composition containing powdered resin
JPH03265621A (en) * 1990-03-15 1991-11-26 Dainippon Ink & Chem Inc Polyurethane resin composition
JPH1072036A (en) * 1996-08-28 1998-03-17 Nisshin Steel Co Ltd Material for gasoline fuel tank
JP2003013252A (en) * 2001-06-26 2003-01-15 Nippon Parkerizing Co Ltd Metal surface-treatment agent, surface treatment method for metal material and surface-treated metal material
JP2003105562A (en) * 2001-09-27 2003-04-09 Nkk Corp Surface treated steel sheet having excellent white rust resistance
JP2004183015A (en) * 2002-11-29 2004-07-02 Nippon Parkerizing Co Ltd Metal surface treating agent, metal surface treating method and surface treated metallic material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110167A (en) * 1979-02-20 1980-08-25 Dainippon Toryo Co Ltd Water-based dispersion paint composition containing powdered resin
JPH03265621A (en) * 1990-03-15 1991-11-26 Dainippon Ink & Chem Inc Polyurethane resin composition
JPH1072036A (en) * 1996-08-28 1998-03-17 Nisshin Steel Co Ltd Material for gasoline fuel tank
JP2003013252A (en) * 2001-06-26 2003-01-15 Nippon Parkerizing Co Ltd Metal surface-treatment agent, surface treatment method for metal material and surface-treated metal material
JP2003105562A (en) * 2001-09-27 2003-04-09 Nkk Corp Surface treated steel sheet having excellent white rust resistance
JP2004183015A (en) * 2002-11-29 2004-07-02 Nippon Parkerizing Co Ltd Metal surface treating agent, metal surface treating method and surface treated metallic material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194839A (en) * 2007-02-08 2008-08-28 Sumitomo Metal Ind Ltd Chromium-free surface-treated steel sheet excellent in performance balance
JP2014095121A (en) * 2012-11-09 2014-05-22 Jfe Steel Corp Process liquid, steel sheet for container, and method of producing steel sheet for container
JP2015063713A (en) * 2013-09-24 2015-04-09 新日鐵住金株式会社 Surface-treated steel sheet for fuel tank
KR20180030185A (en) 2015-08-28 2018-03-21 신닛테츠스미킨 카부시키카이샤 Surface treatment steel plate for fuel tank
US10738384B2 (en) 2015-08-28 2020-08-11 Nippon Steel Corporation Surface-treated steel sheet for fuel tanks
WO2017078105A1 (en) * 2015-11-06 2017-05-11 新日鐵住金株式会社 Aqueous surface treatment agent for zinc plated steel material or zinc-based alloy plated steel material, coating method, and coated steel material
CN108350578A (en) * 2015-11-06 2018-07-31 新日铁住金株式会社 Galvanized steel is used or plate golding zincio alloy steel water system surface conditioning agent, method for coating and cladding steel
JPWO2017078105A1 (en) * 2015-11-06 2018-08-30 新日鐵住金株式会社 Aqueous surface treatment agent for galvanized steel or zinc-base alloy-plated steel, coating method and coated steel
CN108350578B (en) * 2015-11-06 2020-05-08 日本制铁株式会社 Aqueous surface treatment agent for galvanized steel material or zinc-based alloy-plated steel material, coating method, and coated steel material
JP2017160499A (en) * 2016-03-10 2017-09-14 新日鐵住金株式会社 Surface treated steel sheet for fuel tank

Also Published As

Publication number Publication date
JP4831991B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4688715B2 (en) Surface-treated metal plate with excellent corrosion resistance and surface properties
US20040167266A1 (en) Surface treatment for metal, process for surface treatment of metallic substances, and surface-treated metallic substances
JP4831991B2 (en) Surface-treated plated steel sheet for gasoline fuel containers
JP5701268B2 (en) Surface treatment agent for galvanized steel sheet excellent in corrosion resistance and the like, and galvanized steel sheet coated with the surface treatment agent
JP4646966B2 (en) Metal surface treatment agent, surface treatment method of metal material, and surface treatment metal material
CN110121570B (en) Zinc-based plated steel material having excellent sealing agent adhesion and composition for forming post-treatment film
JP3143046B2 (en) Organic composite coated steel sheet with excellent press formability and perforated corrosion resistance
KR20020068533A (en) Organic composite coated zinc-based metal plated steel sheet
JP3835017B2 (en) Zn-plated surface-treated steel sheet for fuel containers
JP6323424B2 (en) Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance
JPH0243040A (en) Lubricating resin treated steel plate excellent in corrosion resistance
KR100643355B1 (en) Steel Sheet for Automobile Fuel Tank with Excellent Corrosion Resistance and Adhesive and Manufacturing Process Thereof
JPH08218193A (en) Organic film compositely coated steel sheet
JP3389884B2 (en) Surface treated steel sheet for fuel container and paint composition therefor
JP3849398B2 (en) Surface-treated steel sheet for fuel containers with excellent corrosion resistance of deteriorated gasoline
JPH0586916B2 (en)
JP2005288783A (en) Weldable organic coated steel sheet for automobile
JP5293050B2 (en) Automotive parts
JPH01301332A (en) Lubricating resin treated steel plate excellent in moldability
EP3601632B1 (en) Aqueous acidic composition for treating metal surfaces, treating method using this composition and use of treated metal surface
JPH0418541B2 (en)
TWI597387B (en) Fuel tank with surface treatment of steel
KR101171588B1 (en) Coating Composition for Forming Film on a Coating Steel Sheet and a Steel Sheet Having the Film
JP4344219B2 (en) Inorganic organic composite-treated zinc-coated steel sheet with excellent corrosion resistance after electrodeposition coating
JPH01110140A (en) Composite coated steel sheet excellent in corrosion resistance and lubrication property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110920

R150 Certificate of patent or registration of utility model

Ref document number: 4831991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees