WO2022270283A1 - Coated metal sheet - Google Patents

Coated metal sheet Download PDF

Info

Publication number
WO2022270283A1
WO2022270283A1 PCT/JP2022/022754 JP2022022754W WO2022270283A1 WO 2022270283 A1 WO2022270283 A1 WO 2022270283A1 JP 2022022754 W JP2022022754 W JP 2022022754W WO 2022270283 A1 WO2022270283 A1 WO 2022270283A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
metal plate
coated metal
layer
average thickness
Prior art date
Application number
PCT/JP2022/022754
Other languages
French (fr)
Japanese (ja)
Inventor
史生 柴尾
恵利 春田
三鶴 西畑
隆雄 金井
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202280032233.2A priority Critical patent/CN117255744A/en
Priority to KR1020237031983A priority patent/KR20230148209A/en
Priority to JP2023529787A priority patent/JPWO2022270283A1/ja
Publication of WO2022270283A1 publication Critical patent/WO2022270283A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to a painted metal plate.
  • Patent Document 1 conventionally, there is a known technique for imparting an antiviral function to steel materials in advance.
  • This technique is a technique in which a protective layer and a photocatalyst layer are sequentially formed on the coated steel material on the base of the coated steel material.
  • the object of the present invention is to provide a coated metal plate that can further improve the photocatalytic effect while suppressing the cost.
  • the present inventors have conducted extensive studies and found that, in the conventional technology disclosed in Patent Document 1, the light incident on the surface of the steel material contributes to the expression of the photocatalytic effect. It has been found that only the incident light to the steel material is doing. Based on this knowledge, as a result of further studies, if it is possible to reflect the incident light on the surface of the metal plate with higher efficiency and contribute to the expression of the photocatalytic effect for the reflected light, the photocatalytic effect can be achieved.
  • the present invention has been completed based on the idea that it is possible to further improve it.
  • the gist of the present invention completed based on such knowledge is as follows.
  • a coated metal plate having a coating layer on at least one surface of the metal plate, wherein the coating layer is located on the outermost surface of the coating layer on at least one surface of the metal plate and has photocatalytic activity. It has a first coating layer containing at least a compound, and the average thickness of the first coating layer is 0.05 to 5.00 ⁇ m, and the total thickness from the surface of the metal plate to the outermost surface of the coating layer
  • a coated metal sheet having a thickness of 15.00 ⁇ m or less and having a 60° specular gloss of 80% or more as defined in JIS Z8741:1997.
  • the first coating layer further contains at least one element of Si or Zr, and the total concentration of the elements is 5 to 50 in terms of silica for Si and zirconia for Zr. % by mass, the coated metal sheet according to (1).
  • the coating layer further includes a second coating layer located below the first coating layer and made of an inorganic component containing at least one element selected from Si and Zr.
  • the coated metal sheet according to (1) or (2), wherein the second coating layer has an average thickness of 0.10 to 5.00 ⁇ m.
  • the ratio of the average thickness of the third coating layer to the average thickness of the first coating layer is 0.5 to 20.0, and the fourth coating layer to the average thickness of the first coating layer
  • the coated metal plate according to (6), wherein the ratio of the average thickness of is 0.3 to 20.0.
  • the coated metal sheet according to any one of (1) to (8), wherein the compound having photocatalytic activity is anatase type titanium oxide.
  • the coated metal sheet according to (9), wherein the anatase-type titanium oxide is metal-supported titanium oxide supported on at least one of Cu and Fe.
  • the metal plate is a galvanized steel plate, a zinc-aluminum alloy plated steel plate, a zinc-aluminum-magnesium alloy plated steel plate, an aluminum plated steel plate, a zinc-nickel alloy plated steel plate, a zinc-iron alloy plated steel plate, an aluminum plate, or , a stainless steel plate, the coated metal plate according to any one of (1) to (12).
  • FIG. 1A is an explanatory view schematically showing an example of the structure of a coated metal plate according to this embodiment.
  • 1B to 2B are explanatory diagrams schematically showing another example of the structure of the coated metal plate according to this embodiment.
  • a coated metal plate 1 has a coating layer on at least one surface of the metal plate.
  • a layer it has at least a photocatalyst layer 20 as an example of a first coating layer.
  • a hard resin base material such as melamine resin
  • a metal plate is used as the substrate.
  • various metal plates can be used as the metal plate 10 that is the base material.
  • metal sheets include galvanized steel sheets, zinc-aluminum alloy plated steel sheets, zinc-aluminum-magnesium alloy plated steel sheets, aluminum plated steel sheets, zinc-nickel alloy plated steel sheets, zinc-iron alloy plated steel sheets, aluminum plates, A stainless steel plate etc. can be mentioned.
  • the metal plate By using the metal plate as described above, it is possible to efficiently reflect the light incident on the coated metal plate 1 (in particular, the light in the ultraviolet to visible light band) on the surface of the metal plate 10 . As a result, in the coated metal plate 1 according to the present embodiment, it is possible to use the reflected light reflected by the surface of the metal plate 10 for photocatalytic reaction, as will be described later.
  • the above metal plates zinc-aluminum-magnesium alloy plated steel plate, stainless steel plate, aluminum plated steel plate, zinc plated steel plate, zinc-aluminum alloy plated steel plate, etc. can efficiently reflect incident light, so they are particularly preferred.
  • a plated surface having a design such as a hairline or spangle pattern is suitable because it can also be used as an exterior component.
  • the thickness of the metal plate 10 as described above is not particularly limited. can be set as appropriate.
  • the surface of the metal plate 10 (when using a metal plate to which various types of plating are applied as the metal plate 10, the plated surface) has a hairline pattern along the rolling direction of the metal plate, a spangle Various patterns such as patterns may be present. By providing such a pattern, it is possible to further improve the design of the coated metal plate 1 . Further, the design processing itself for providing such a pattern on the surface of the metal plate 10 contributes to further improvement of the 60° specular gloss as described below.
  • the plated metal plate 10 focus on the plated metal plate 10 .
  • an electroplating method or a hot-dip plating method can be employed.
  • fine particles are generated on the plated surface, and as a result, the glossiness of the surface of the plated metal plate 10 (that is, the glossiness of the plated surface) may decrease.
  • the surface of the plating is scraped, and as a result, the reflectance of light on the surface of the plating is improved, making it possible to improve the glossiness of the surface.
  • the crystal orientation of the plating that reflects light more easily appears on the surface improving the reflectance of light on the plating surface and increasing the surface gloss can be improved.
  • the thickness of the photocatalyst layer 20 as the first coating layer, and the thickness of the photocatalyst layer 20 as the first coating layer from the surface of the metal plate 10 in the coated metal plate 1 The total thickness up to the outermost surface is controlled to be in a specific state.
  • design processing such as the hairline pattern and spangle pattern as described above is further applied, and such design processing also acts to further improve the 60° specular glossiness as described below. do.
  • various known processing methods can be appropriately used.
  • the photocatalyst layer 20 as an example of the first coating layer is the outermost surface of the coating layer on at least one surface of the metal plate 10, as schematically shown in FIG. 1A and contains at least a compound having photocatalytic activity (hereinafter sometimes abbreviated as "photocatalytic compound"). Since the photocatalyst layer 20 contains a compound having photocatalytic activity, the compound having such photocatalytic activity causes a photocatalytic reaction by light (in particular, light in the ultraviolet to visible light band) incident on the photocatalyst layer 20.
  • light in particular, light in the ultraviolet to visible light band
  • the coated metal plate 1 according to this embodiment can achieve various properties including antiviral effects and bactericidal effects.
  • Photocatalytic activity mainly react with light in the ultraviolet light band (more specifically, by being excited by light in the ultraviolet light band) and exhibit photocatalytic activity, and compounds that mainly exhibit visible light. and a compound that reacts with light in the optical band (more specifically, is excited by light in the visible band) and exhibits photocatalytic activity.
  • Examples of the compound that reacts with light in the ultraviolet band to exhibit photocatalytic activity include titanium oxide (more specifically, anatase-type titanium oxide), zinc oxide, cerium oxide, tin oxide, bismuth oxide, zirconium oxide, oxide Tungsten, chromium oxide, molybdenum oxide, iron oxide, nickel oxide, ruthenium oxide, cobalt oxide, copper oxide, manganese oxide, germanium oxide, lead oxide, cadmium oxide, vanadium oxide, niobium oxide, tantalum oxide, rhodium oxide, rhenium oxide, etc. , metal sulfides such as cadmium sulfide and zinc sulfide, and titanium compounds such as strontium titanate and barium titanate.
  • titanium oxide more specifically, anatase-type titanium oxide
  • zinc oxide cerium oxide, tin oxide, bismuth oxide, zirconium oxide, oxide Tungsten
  • chromium oxide molybdenum oxide
  • anatase titanium oxide, zinc oxide, tin oxide, zirconium oxide, tungsten oxide, iron oxide, niobium oxide, strontium titanate, etc. are particularly preferred as compounds that react with light in the ultraviolet light band to exhibit photocatalytic activity. It is preferably used, and anatase titanium oxide is more preferably used.
  • the compound that reacts with light in the visible light band to exhibit photocatalytic activity includes, for example, metal-supported titanium oxide supported on at least one of Cu and Fe (more specifically, anatase type titanium oxide), anatase-type titanium oxide supported on Cr, V, Mn, Ni, Pt, anatase-type titanium oxide doped with anions such as nitrogen and sulfur, solid solutions of AgNbO3 and SrTiO3 , and the like. .
  • anatase-type titanium oxide supported on at least one of Cu and Fe is particularly preferably used.
  • the average particle size (primary particle size) of anatase-type titanium oxide is preferably 5 nm or more.
  • the average particle size (primary particle size) of the anatase-type titanium oxide is 5 nm or more, the anatase-type titanium oxide can be dispersed more uniformly in the photocatalyst layer 20 .
  • the average particle size (primary particle size) of anatase-type titanium oxide is more preferably 20 nm or more.
  • the average particle size (primary particle size) of the anatase-type titanium oxide (including those in a metal-supported state) is preferably 200 nm or less.
  • the anatase titanium oxide By setting the average particle diameter (primary particle diameter) of the anatase titanium oxide to 200 nm or less, the anatase titanium oxide is more uniformly distributed in the photocatalyst layer 20 while suppressing excessive aggregation of the anatase titanium oxide in the photocatalyst layer 20. can be distributed.
  • the average particle size (primary particle size) of anatase-type titanium oxide is more preferably 100 nm or less.
  • the average particle size of the anatase-type titanium oxide can be measured, for example, by a dynamic light scattering method using laser light. Such a method can easily obtain highly accurate measurement values.
  • the size of the aggregates may be measured. It is preferable to check the primary particle size. When the presence of aggregated particles is confirmed as a result of TEM observation, it is preferable to change the dispersion conditions and perform measurement again by the dynamic light scattering method. If it is difficult to completely disperse the particles to the level of the primary particles, the size of the primary particles observed and measured with a TEM can be used as the primary particle size. In this case, the experience of the present inventor has shown that a representative value of all particles can be obtained by measuring approximately 100 or more arbitrarily selected particles.
  • the following when measuring the average particle size of the anatase-type titanium oxide contained in the photocatalyst layer 20 after the fact, the following may be performed. That is, a cross section obtained by cutting the photocatalyst layer 20 along the thickness direction can be observed or analyzed using a transmission electron microscope (TEM). By using TEM, the primary particle size of the photocatalyst compound can be measured. Also, by performing EDS analysis together with TEM, the elements contained in the photocatalyst compound can be measured.
  • TEM transmission electron microscope
  • the crystal structure of the photocatalyst compound (for example, in the case of titanium oxide, whether it is anatase type or rutile type) can be known by electron beam diffraction. Based on the experience of the present inventor, it has been found that a representative value of all particles can be obtained by measuring approximately 100 or more arbitrarily selected particles.
  • the concentration of anatase-type titanium oxide (including metal-supported titanium oxide) in the photocatalyst layer 20 is preferably 50% by mass or more in terms of titania.
  • concentration of anatase-type titanium oxide in the photocatalyst layer 20 is 50% by mass or more, various photocatalytic effects including antiviral effects can be reliably exhibited.
  • concentration of anatase-type titanium oxide in the photocatalyst layer 20 is more preferably 60% by mass or more in terms of titania.
  • the concentration of anatase-type titanium oxide (including metal-supported titanium oxide) in the photocatalyst layer 20 is preferably 95% by mass or less in terms of titania.
  • concentration of anatase-type titanium oxide in the photocatalyst layer 20 By setting the concentration of anatase-type titanium oxide in the photocatalyst layer 20 to 95% by mass or less, it is possible to exhibit various photocatalytic effects such as an antiviral effect while suppressing an increase in manufacturing costs.
  • concentration of anatase-type titanium oxide in the photocatalyst layer 20 is more preferably 80% by mass or less in terms of titania.
  • photocatalyst compounds other than anatase-type titanium oxide preferably have an average particle size of 5 to 200 nm, and the concentration thereof is preferably 50 to 95% by mass.
  • Photocatalyst compounds represented by anatase-type titanium oxide and the like as described above include not only particulate substances, but also sol substances that cannot be said to be particulate, substances produced by heating metal complexes, and the like. can also be used as needed.
  • the photocatalyst layer 20 further contains at least one element of Si or Zr, and the total concentration of such elements is 5% by mass or more in terms of silica for Si and zirconia for Zr. is preferred.
  • the photocatalyst layer 20 is an inorganic film having a three-dimensional network structure inorganic component skeleton containing at least one element of Si or Zr and, in some cases, impurities.
  • the total concentration of at least one element of Zr is preferably 5% by mass or more in terms of silica for Si and zirconia for Zr.
  • the total content of at least one element selected from Si and Zr is more preferably 10% by mass or more.
  • the photocatalyst layer 20 further contains at least one element of Si or Zr, and the total concentration of such elements is 50% by mass or less in terms of silica for Si and zirconia for Zr. is preferred.
  • the total content of at least one element selected from Si and Zr is more preferably 40% by mass or less.
  • Si or Zr to be contained preferably has excellent light transmittance, and is preferably an inorganic component that is less susceptible to decomposition by photocatalyst. Examples of such inorganic components containing Si and Zr include silica and zirconia.
  • the photocatalyst layer 20 containing the above photocatalyst compound may contain an antibacterial agent, an adsorbent such as activated carbon or zeolite, if necessary, as long as the effects of the present invention are not impaired.
  • the average thickness d 1 of the photocatalyst layer 20 (in the case of the layer structure shown in FIG. 1A, the total thickness d from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 20 (can also be regarded as the outermost surface of the coating layer). T ) is 0.05 ⁇ m or more.
  • T is 0.05 ⁇ m or more.
  • the average thickness d 1 of the photocatalyst layer 20 (in the case of the layer structure shown in FIG. 1A, it is also the total thickness d T from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 20) is 5.00 ⁇ m or less. is. If the average thickness d1 of the photocatalyst layer 20 exceeds 5.00 ⁇ m, the resulting photocatalytic effect is saturated, but the manufacturing cost increases, which is not preferable.
  • the photocatalyst layer is an inorganic coating, workability is lowered.
  • the average thickness d1 to 5.00 ⁇ m or less, it is possible to uniformly exhibit a desired photocatalytic effect over the entire photocatalytic layer 20 while suppressing an increase in manufacturing cost and a decrease in workability.
  • the photocatalyst layer 20 Normally, light that passes through the photocatalyst layer 20 without impinging on the photocatalyst compound occurs with a certain probability. Conventionally, such light that does not act on the photocatalyst compound becomes light that does not have a photocatalytic effect. In the present embodiment, by reflecting such light on the surface of the metal plate 10, it is possible to increase the probability that the light incident on the photocatalyst layer 20 collides with the photocatalyst compound. Thereby, in this embodiment, the photocatalyst effect can be further improved. In the case of the layer structure shown in FIG. 1A, the total thickness dT from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 20 is naturally 15.00 ⁇ m or less.
  • the reflected light reflected at the interface between the metal plate 10 and the photocatalyst layer 20 can be used for the photocatalytic reaction by the photocatalytic compound, so the photocatalytic effect is further improved while suppressing the cost. be able to.
  • the average thickness d1 of the photocatalyst layer 20 is preferably 0.10 ⁇ m or more, more preferably 0.15 ⁇ m or more. Also, the average thickness d1 of the photocatalyst layer 20 is preferably 2.00 ⁇ m or less, more preferably 1.00 ⁇ m or less.
  • the coated metal plate 1 having the layer structure as shown in FIG. The 60° specular gloss defined by JIS Z8741:1997 measured from the side provided with is 80% or more.
  • the coated metal plate 1 according to the present embodiment has a 60° specular glossiness of 80% or more as described above, so that the reflected light generated at the interface between the metal plate 10 and the photocatalyst layer 20 can be effectively It can be used for , and exhibits excellent antiviral performance.
  • the light colliding with the photocatalyst is not detected as reflected light, such light is a very small part of the whole in the coating structure of the present invention.
  • the antiviral property is excellent if the 60° specular glossiness specified in the present invention is 80% or more.
  • the 60° specular glossiness is preferably 90% or more, more preferably 130% or more.
  • the upper limit of the 60° specular glossiness is not particularly specified, it is difficult to exceed 200%, and such a value is considered to be the substantial upper limit.
  • the 60° specular gloss can be measured using a gloss meter conforming to the JIS standard.
  • the coated metal plate 1 according to the present embodiment which has a layer structure as shown in FIG. 1A, has a further coating layer that functions as a chemical conversion coating layer between the metal plate 10 and the photocatalyst layer 20.
  • a chemical conversion coating layer between the metal plate 10 and the photocatalyst layer 20 may be provided.
  • the adhesion between the metal plate 10 and the photocatalyst layer 20 can be further improved.
  • the coated metal plate 1 when a chemical conversion coating layer is further provided, the following two types of layer configurations are realized according to the type of compound component constituting the chemical conversion coating layer. is preferred.
  • FIGS. 1B to 3 the layer structure of a coated metal sheet having a chemical conversion film layer will be described in detail.
  • 1B to 2 are explanatory diagrams schematically showing another example of the structure of the coated metal plate according to this embodiment.
  • FIG. 3 is an explanatory diagram for explaining the coated metal plate according to this embodiment.
  • FIGS. 1B and 1C are schematic views schematically showing the layer structure of the coated metal plate 1 when an inorganic chemical conversion coating layer made of inorganic components is provided as the chemical conversion coating layer.
  • the coated metal plate 1 according to the present embodiment has an inorganic chemical conversion coating layer 30 as an example of the second coating layer between the metal plate 10 and the photocatalyst layer 20 as described above.
  • Photocatalyst compounds typified by anatase-type titanium oxide have extremely excellent oxidizing properties, so when a coating layer is provided on the lower layer side than the layer in which the photocatalyst compound is present, protection for protecting such coating layer It often forms layers.
  • the chemical conversion coating layer from an inorganic component, it becomes possible to dispose the chemical conversion coating layer without providing a protective layer.
  • the inorganic chemical conversion treatment film layer 30 is formed by chemical conversion treatment after removing impurities such as oil and surface oxides adhering to the surface of the metal plate 10 by a known degreasing process and washing process.
  • the inorganic chemical conversion coating layer 30 is made of an inorganic component containing at least one element of Si and Zr.
  • the inorganic chemical conversion treatment film layer 30 may further contain an inorganic component containing at least one of P and V elements.
  • the film-forming properties after application of the chemical conversion treatment liquid and the barrier properties of the coating against corrosive factors such as moisture and corrosive ions ( Denseness) and adhesion of the film to the surface of the metal plate are improved, contributing to raising the corrosion resistance of the film.
  • Examples of inorganic components containing Si include ⁇ -(2-aminoethyl)aminopropyltrimethoxysilane, ⁇ -(2-aminoethyl)aminopropylmethyldimethoxysilane, ⁇ -(2- aminoethyl)aminopropyltriethoxysilane and the like.
  • Examples of inorganic components containing Zr include zirconium carbonate, ammonium zirconium carbonate, potassium zirconium carbonate, sodium zirconium carbonate, and ammonium zirconium carbonate.
  • inorganic components containing P include phosphoric acids such as phosphoric acid, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid and tetraphosphoric acid, salts thereof, ammonium dihydrogen phosphate, and the like. be able to.
  • inorganic components containing V include ammonium metavanadate (V), potassium metavanadate (V), sodium metavanadate (V), and vanadyl sulfate (IV).
  • inorganic chemical conversion treatment film layer 30 it is possible to use the various inorganic components described above either singly or in combination.
  • the content of various inorganic components as described above may also be adjusted as appropriate.
  • the average thickness d2 of the inorganic chemical conversion coating layer 30 is preferably 0.10 ⁇ m or more , more preferably 0.20 ⁇ m or more. As a result, while uniformly forming the inorganic chemical conversion coating layer 30 on the surface of the metal plate 10, it is possible to stably exhibit the various effects of providing the chemical conversion coating layer as described above. . Also, the average thickness d2 of the inorganic chemical conversion coating layer 30 is preferably 5.00 ⁇ m or less, more preferably 1.00 ⁇ m or less. As a result, while uniformly forming the inorganic chemical conversion coating layer 30 on the surface of the metal plate 10, it is possible to stably exhibit the various effects of providing the chemical conversion coating layer as described above. .
  • the ratio (d 2 /d 1 ) of the average thickness d 2 of the inorganic chemical conversion coating layer 30 to the average thickness d 1 of the photocatalyst layer 20 is preferably 0.3 or more, and is 0.5 or more. It is more preferable to have This makes it possible to further improve the working adhesion.
  • the ratio (d 2 /d 1 ) of the average thickness d 2 of the inorganic chemical conversion coating layer 30 to the average thickness d 1 of the photocatalyst layer 20 is preferably 12.0 or less, and 5.0 or less. It is more preferable to have This makes it possible to further improve the working adhesion.
  • coated metal plate 1 according to the present embodiment may further have various known layers, including layers and the like.
  • the reflected light reflected by the surface of the metal plate 10 (in other words, the interface between the metal plate 10 and the photocatalyst layer 20) is converted into a photocatalyst by the photocatalyst compound. Since it can be used for the reaction, it is possible to further improve the photocatalytic effect while suppressing an increase in cost.
  • the 60° specular gloss defined by JIS Z8741:1997, which is measured from the side on which the photocatalyst layer 20 is provided, of the coated metal plate 1 is 80% or more. becomes.
  • the total thickness dT is 15.00 ⁇ m or less and the 60° specular glossiness is 80% or more, the incident light reflected on the surface of the metal plate 10 is treated as a photocatalyst by the photocatalyst compound. It can be considered that it is used for the reaction.
  • the coated metal plate 1 when an organic chemical conversion coating layer containing an organic component is provided as the chemical conversion coating layer.
  • the coated metal plate 1 according to the present embodiment includes an organic chemical conversion treatment film layer 40 as an example of a third film layer and a fourth film between the metal plate 10 and the photocatalyst layer 20 as described above. and a protective layer 50 as an example of a layer.
  • Organic chemical conversion coating layer 40 is a layer located below the photocatalyst layer 20 (more specifically, the surface of the metal plate 10), and removes impurities such as oil adhering to the surface of the metal plate 10 and surface oxides. , is formed by chemical conversion treatment after removal by known degreasing and washing processes.
  • the organic chemical conversion treatment film layer 40 includes, for example, resins, silane coupling agents, zirconium compounds, silica, phosphoric acid and salts thereof, fluorides, vanadium compounds, and a group consisting of tannin or tannic acid. Any one or more selected from may be contained. By containing these substances, it is possible to further improve the film-forming property after applying the chemical conversion treatment solution, the barrier property (denseness) of the film against corrosion factors such as moisture and corrosive ions, and the film adhesion to the surface of the metal plate. etc., and contributes to raising the corrosion resistance of the film.
  • the organic chemical conversion treatment film layer 40 contains one or more of a silane coupling agent or a zirconium compound, a crosslinked structure is formed in the organic chemical conversion treatment film layer 40, and the surface of the metal plate is formed. Since bonding is also strengthened, it is possible to further improve the adhesion and barrier properties of the film.
  • the organic chemical conversion treatment film layer 40 contains at least one of silica, phosphoric acid and its salts, fluoride, or vanadium compound, it functions as an inhibitor, and a precipitated film or passivation film is formed on the surface of the metal plate. By forming a film, it becomes possible to further improve the corrosion resistance.
  • resins examples include known organic resins such as polyester resins, polyurethane resins, epoxy resins, phenol resins, acrylic resins, and polyolefin resins.
  • organic resins such as polyester resins, polyurethane resins, epoxy resins, phenol resins, acrylic resins, and polyolefin resins.
  • the resin may be used alone or in combination of two or more.
  • the content of the resin in the organic chemical conversion coating layer 40 is, for example, preferably 0% by mass or more, more preferably 1% by mass or more, relative to the solid content of the coating. Thereby, corrosion resistance can be improved.
  • the content of the resin in the organic chemical conversion coating layer 40 is, for example, preferably 85% by mass or less, more preferably 60% by mass or less, and 40% by mass or less relative to the solid content of the coating. is more preferable. By setting the resin content to 85% by mass or less, it is possible to improve the corrosion resistance of the coating while ensuring the performance required of the coating other than the corrosion resistance.
  • Silane coupling agents include, for example, ⁇ -(2-aminoethyl)aminopropyltrimethoxysilane, ⁇ -(2-aminoethyl)aminopropylmethyldimethoxysilane, ⁇ -(2-aminoethyl)aminopropyltriethoxysilane.
  • the addition amount of the silane coupling agent in the chemical conversion treatment agent for forming the organic chemical conversion treatment film layer 40 can be, for example, 2 to 80 g/L.
  • the addition amount of the silane coupling agent By setting the addition amount of the silane coupling agent to 2 g/L or more, it is possible to improve the adhesion to the surface of the metal plate and improve the processing adhesion of the coating film. Further, by setting the amount of the silane coupling agent added to 80 g/L or less, it is possible to maintain the cohesive force of the chemical conversion film and improve the processing adhesion of the coating film.
  • the silane coupling agents as exemplified above may be used alone or in combination of two or more.
  • zirconium compound examples include zirconium normal propylate, zirconium normal butyrate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium bisacetylacetonate, zirconium monoethylacetoacetate, zirconium acetylacetonate bisethylacetoacetate, Zirconium acetate, zirconium monostearate, zirconium carbonate, ammonium zirconium carbonate, potassium zirconium carbonate, sodium zirconium carbonate and the like can be mentioned.
  • the amount of the zirconium compound added in the chemical conversion treatment agent for forming the organic chemical conversion treatment film layer 40 can be, for example, 2 to 80 g/L.
  • the addition amount of the zirconium compound By setting the addition amount of the zirconium compound to 2 g/L or more, it is possible to improve the adhesion to the surface of the metal plate and to improve the processing adhesion of the coating film. Further, by setting the amount of the zirconium compound to be added to 80 g/L or less, it is possible to maintain the cohesive force of the chemical conversion film and improve the processing adhesion of the coating film.
  • Such zirconium compounds may be used alone or in combination of two or more.
  • silica examples include commercially available products such as “Snowtex N”, “Snowtex C”, “Snowtex UP”, and “Snowtex PS” manufactured by Nissan Chemical Industries, Ltd., and “Adelite AT-20Q” manufactured by ADEKA Corporation. or powdered silica such as Aerosil #300 manufactured by Nippon Aerosil Co., Ltd. can be used. Silica can be appropriately selected according to the required performance of the coated metal sheet.
  • the amount of silica added to the chemical conversion agent for forming the organic chemical conversion coating layer 40 is preferably 1 to 40 g/L. By setting the amount of silica to be added to 1 g/L or more, it is possible to improve the processing adhesion of the coating film. Further, by setting the amount of silica to be added to 40 g/L or less, it is possible to achieve both effects of working adhesion and corrosion resistance while suppressing an increase in cost.
  • phosphoric acid and salts thereof examples include phosphoric acids such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid and tetraphosphoric acid and salts thereof, ammonium salts such as triammonium phosphate and diammonium hydrogen phosphate, Phosphonic acids such as aminotri(methylenephosphonic acid), 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra(methylenephosphonic acid), diethylenetriaminepenta(methylenephosphonic acid) and their salts, organic phosphoric acids such as phytic acid and salts thereof.
  • phosphoric acids such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid and tetraphosphoric acid and salts thereof
  • ammonium salts such as triammonium phosphate and diammonium hydrogen phosphate
  • Phosphonic acids such as aminotri(methylenephosphonic acid), 1-hydroxyethylidene-1,1-
  • salts of phosphoric acid other than ammonium salts include metal salts with Na, Mg, Al, K, Ca, Mn, Ni, Zn, Fe, and the like.
  • Phosphoric acid and its salt may be used alone or in combination of two or more.
  • the content of phosphoric acid and its salt is preferably 0% by mass or more, more preferably 1% by mass or more, relative to the solid content of the film. Also, the content of phosphoric acid and its salt is preferably 20% by mass or less, more preferably 10% by mass or less, relative to the coating solid content. When the content of phosphoric acid and its salts is 20% by mass or less, embrittlement of the film can be prevented, and deterioration of the working adhesion of the film during molding of the coated metal sheet can be prevented. .
  • fluorides include ammonium zircon fluoride, ammonium silicofluoride, ammonium titanium fluoride, sodium fluoride, potassium fluoride, calcium fluoride, lithium fluoride, titanium hydrofluoric acid, and zircon hydrofluoric acid. . Such fluorides may be used alone or in combination of two or more.
  • the content of fluoride is preferably 0% by mass or more, more preferably 1% by mass or more, relative to the solid content of the film.
  • the content of fluoride is preferably 20% by mass or less, more preferably 10% by mass or less, relative to the solid content of the film.
  • vanadium compound examples include vanadium pentoxide, metavanadic acid, ammonium metavanadate, sodium metavanadate, vanadium oxytrichloride, and other vanadium compounds obtained by reducing pentavalent vanadium compounds to divalent to tetravalent vanadium trioxide. , vanadium dioxide, vanadium oxysulfate, vanadium oxyoxalate, vanadium oxyacetylacetonate, vanadium acetylacetonate, vanadium trichloride, phosphovanadomolybdic acid, vanadium sulfate, vanadium dichloride, vanadium oxide, etc.
  • a vanadium compound etc. can be mentioned.
  • Such vanadium compounds may be used alone or in combination of two or more.
  • the content of the vanadium compound is preferably 0% by mass or more, more preferably 1% by mass or more, relative to the solid content of the film. Moreover, the content of the vanadium compound is preferably 20% by mass or less, more preferably 10% by mass or less, relative to the solid content of the film. When the content of the vanadium compound is 20% by mass or less, embrittlement of the film can be prevented, and deterioration of working adhesion of the film during molding of the coated metal sheet can be prevented.
  • tannin or tannic acid Both hydrolyzable tannin and condensed tannin can be used as tannin or tannic acid.
  • tannins and tannic acids include hamameta tannins, quintuple tannins, gallic tannins, myrobalan tannins, divisibi tannins, algarovira tannins, valonia tannins, catechins, and the like.
  • the amount of tannin or tannic acid added to the chemical conversion agent for forming the organic chemical conversion coating layer 40 can be 2 to 80 g/L. By setting the amount of tannin or tannic acid added to 2 g/L or more, the adhesion to the metal plate surface can be improved, and the processing adhesion of the coating film can be improved. Further, by setting the amount of tannin or tannic acid to be added to 80 g/L or less, the cohesive force of the chemical conversion film can be maintained, and the processing adhesion of the coating film can be improved.
  • an acid, an alkali, or the like may be added to the chemical conversion treatment agent for forming the organic chemical conversion treatment film layer 40 for pH adjustment within a range that does not impair the performance.
  • the average thickness d3 of the organic chemical conversion coating layer 40 is preferably 0.10 ⁇ m or more, more preferably 0.20 ⁇ m or more, and even more preferably 0.30 ⁇ m or more. As a result, while the organic chemical conversion coating layer 40 is formed uniformly on the surface of the metal plate 10, various effects of providing the chemical conversion coating layer as described above can be stably exhibited. . Also, the average thickness d3 of the organic chemical conversion coating layer 40 is preferably 5.00 ⁇ m or less, more preferably 4.00 ⁇ m or less, and even more preferably 3.00 ⁇ m or less. As a result, while the organic chemical conversion coating layer 40 is formed uniformly on the surface of the metal plate 10, various effects of providing the chemical conversion coating layer as described above can be stably exhibited. .
  • the ratio ( d3/d1) of the average thickness d3 of the organic chemical conversion coating layer 40 to the average thickness d1 of the photocatalyst layer 20 is preferably 0.5 or more, and 2.0 or more. It is more preferable to have This makes it possible to further improve the adhesion of the processed portion.
  • the ratio ( d3/d1) of the average thickness d3 of the organic chemical conversion coating layer 40 to the average thickness d1 of the photocatalyst layer 20 is preferably 20.0 or less, and 10.0 or less. It is more preferable to have This makes it possible to further improve the adhesion of the processed portion.
  • the protective layer 50 is a layer provided between the photocatalyst layer 20 and the organic chemical conversion treatment film layer 40 (more preferably directly under the photocatalyst layer 20), and is protected from the oxidizing power of the photocatalyst compound contained in the photocatalyst layer 20. , are provided to protect layers located below the photocatalyst layer 20 .
  • the specific components of the protective layer 50 can contain various known components. Examples of such components include inorganic oxides such as silica and zirconia. Moreover, the specific contents of these components may also be adjusted as appropriate.
  • the protective layer 50 also preferably has excellent light transmittance, like the photocatalyst layer 20 .
  • the protective layer 50 having excellent light transmittance, it is possible to use, for example, the same components as the components other than the photocatalyst compound in the photocatalyst layer 20 .
  • the average thickness d4 of the protective layer 50 is preferably 0.05 ⁇ m or more, more preferably 0.20 ⁇ m or more. This makes it possible to reliably protect the layers located below the protective layer 50 from the oxidizing power of the photocatalyst compound while suppressing deterioration in workability. Also, the average thickness d4 of the protective layer 50 is preferably 5.00 ⁇ m or less, more preferably 0.60 ⁇ m or less. This makes it possible to reliably protect the layers located below the protective layer 50 from the oxidizing power of the photocatalyst compound while suppressing deterioration in workability.
  • the ratio (d 4 /d 1 ) of the average thickness d 4 of the protective layer 50 to the average thickness d 1 of the photocatalyst layer 20 is preferably 0.3 or more, more preferably 1.0 or more. preferable. This makes it possible to reliably suppress the decomposition of the organic chemical conversion coating layer 40 by the photocatalyst layer 20 .
  • the ratio (d 4 /d 1 ) of the average thickness d 4 of the protective layer 50 to the average thickness d 1 of the photocatalyst layer 20 is preferably 20.0 or less, more preferably 3.0 or less. preferable. This makes it possible to reliably suppress the decomposition of the organic chemical conversion coating layer 40 by the photocatalyst layer 20 .
  • the coated metal plate 1 has various colors, for example, between the photocatalyst layer 20 and the protective layer 50 and the organic chemical conversion coating layer 40. It may further have various known layers including a colored layer containing a pigment.
  • the reflected light reflected by the surface of the metal plate 10 (in other words, the interface between the metal plate 10 and the photocatalyst layer 20) is converted into a photocatalyst by the photocatalyst compound. Since it can be used for reactions, it is possible to further improve the photocatalytic effect while suppressing costs.
  • the 60° specular glossiness defined by JIS Z8741:1997 measured from the side where the photocatalyst layer 20 is provided is 80% or more.
  • the total thickness dT is 15.00 ⁇ m or less and the 60° specular glossiness is 80% or more, the incident light reflected on the surface of the metal plate 10 is treated as a photocatalyst by the photocatalyst compound. It can be considered that it is used for the reaction.
  • each layer including the photocatalyst layer 20 is provided on one side surface of the metal plate 10, but each layer including the photocatalyst layer 20 is the metal plate 10. may be provided on both sides of the In this case, the total thickness dT from the surface of the metal plate 10 to the surface of the photocatalyst layer 20 on each surface of the coated metal plate 1 is set to 15.00 ⁇ m or less. Also, the 60° specular glossiness is 80% or more on each side of the coated metal plate 1 . Moreover, when the inorganic chemical conversion coating layer 30 described above is provided, the protective layer 50 as described above may be formed.
  • coated metal plate according to the present embodiment has been described in detail above with reference to FIGS. 1A to 3.
  • the average thickness of each layer including the photocatalyst layer can be measured by observing the layer of interest with a microscope from the cross-sectional direction.
  • a method for preparing a sample to be observed from the cross-sectional direction known methods such as embedding in resin and polishing the observation surface, FIB processing, and microtome method can be used.
  • the type of microscope known devices such as SEM and TEM can be used.
  • the surface of the metal plate serving as the base material is subjected to various pretreatments such as cleaning as necessary, and then the photocatalyst layer is formed.
  • the photocatalyst treatment agent, the chemical conversion treatment agent for forming the chemical conversion coating layer, and the protective treatment agent for forming the protective layer are applied to form the desired layer structure, and then dried and baked. can do.
  • various coating materials can be applied by generally known coating methods such as roll coating, curtain flow coating, air spray, airless spray, immersion, bar coating, and brush coating.
  • roll coating is a feature of this product and enables stable coating with a thin film.
  • conditions for drying and baking are not particularly limited, and may be set appropriately according to the paint used.
  • coated metal sheet according to the present invention will be specifically described below while showing examples and comparative examples.
  • the examples shown below are merely examples of the coated metal sheet according to the present invention, and the coated metal sheet according to the present invention is not limited to the following examples.
  • Table 1 Eight types of metal plates shown in Table 1 below were prepared as base metal plates.
  • the six types of metal sheets represented by SD, ZL, GI, GL, AL, and GA are various plated steel sheets using steel sheets as base materials.
  • the plate thickness of each metal plate, and the plating composition and coating amount/standard of each plated steel plate are shown in Table 1 below.
  • photocatalytic compounds As compounds having photocatalytic activity (photocatalytic compounds), seven types of compounds shown in Table 2 below were prepared. Any photocatalyst compound used what is marketed. The supported metals and average particle diameters are also shown in Table 2.
  • Table 3 shows the raw materials of the water-based paint (chemical conversion treatment agent) for forming the inorganic chemical conversion treatment film and the organic chemical conversion treatment film used, and the concentration in the dry film. The amount added was adjusted so that the concentration of each component in the dry film would be a predetermined concentration. The solid concentration of the treatment agent was adjusted by adding ion-exchanged water so that the inorganic chemical conversion treatment film had a solid content concentration of 10 mass % and the organic chemical conversion treatment film had a solid content concentration of 20 mass %. Each treatment agent was applied so as to have a dry film thickness shown in Tables 4-1 and 4-2 below. After that, the metal plate was dried in an induction heating furnace so that the reaching temperature of the metal plate was 150° C., and then water-cooled by spraying.
  • the photocatalyst treatment agent used and the method for preparing the protective treatment agent will be described.
  • the protective treatment agent was adjusted to have a solid concentration of 8% by mass in consideration of storage stability. The concentration was adjusted by diluting with n-butanol.
  • the photocatalyst treatment agent was prepared by adding a predetermined amount of the compound shown in Table 2 to the following protective treatment agent.
  • the solid content concentration of the photocatalyst compound is as shown in Tables 4-1 and 4-2 below.
  • Protective film treatment agent Si-based: tetraethoxysilane (22.5 parts by mass), methacryloxypropyltrimethoxysilane (2.8 parts by mass), n-butanol (26 parts by mass), were mixed and stirred at 60° C. for 2 hours. While this mixture was stirred, a mixture of 26% by mass hydrochloric acid (3 parts by mass) and n-butanol (26 parts by mass) was added dropwise at a rate of 1 drop/second. After that, the mixture was kept at 60° C. for 2 hours with stirring to obtain a treating agent. A series of operations were performed in a nitrogen atmosphere.
  • Protective film treatment agent Zr-based: zirconium n-butoxide (34.5 parts by mass), n-butanol (11.6 parts by mass), and 1,5-diaminopentane (0.5 parts by mass) ) and yttrium nitrate (2.8 parts by mass) were mixed and stirred for 1 hour. After that, glacial acetic acid (4.8 parts by mass) was added, and the mixture was stirred for 40 hours. After that, concentrated nitric acid (0.6 parts by mass) was added dropwise at a rate of 1 drop/second and stirred for 2 hours to obtain a treating agent. A series of operations were performed in a nitrogen atmosphere.
  • coated metal plates having the configurations shown in Tables 4-1 and 4-2 below were produced by roll coating. Each layer was formed on one side of the metal plate. Also, for some of the coated metal plates, the surface of the metal plate was subjected to design processing to form a hairline pattern. In addition, for some painted metal sheets, a hot-dip galvanizing bath containing 0.1% by mass of Sb and 0.2% by mass of Al is used, and by adjusting the solidification speed of the hot-dip galvanizing, spangle A patterned plated steel sheet was used as the substrate.
  • the average film thickness of each layer in the coated metal plate as described above was measured by embedding the obtained coated metal plate in resin and observing the observation surface obtained by polishing the cross section with a microscope.
  • the 60° specular gloss was measured with a gloss meter (UGV-6P manufactured by Suga Test Instruments Co., Ltd.) conforming to JIS Z8741:1997.
  • the obtained coated metal plate was evaluated from the viewpoint of antiviral properties, processing adhesion, and corrosion resistance. Detailed evaluation methods are as follows.
  • the antiviral properties were verified by measuring the virus infectivity titer through the following antiviral test in accordance with the antiviral standards stipulated by the Antimicrobial Product Technology Council. More specifically, each coated metal plate was placed on a petri dish with the evaluation surface facing up, and a virus suspension containing influenza A virus was dropped onto the evaluation surface. After that, the coated metal plate was covered with a film to bring the virus suspension into close contact with the entire surface to be evaluated, and then the petri dish was covered with a lid. The petri dish was allowed to stand for 24 hours in a room at 25° C. with an illumination of 1000 lux, simulating a room in a general office. After that, the film surface and the evaluation surface were washed to remove viruses, and the virus infectivity titer (unit: PFU/cm 2 , PFU: Plaque Forming Units) in the obtained washing solution was measured by the plaque measurement method.
  • the virus infectivity titer unit: PFU/cm 2 , PFU: Plaque
  • each metal plate without a photocatalyst layer was also subjected to the same antiviral test.
  • the extent to which the infectious titer decreased was evaluated as the activity value. If the virus is reduced by 10 2 or more (in other words, if the activity value is 1 ⁇ 10 2 or more), the use of the certified seal stipulated by the Antimicrobial Product Technology Council is permitted. Those with an activity value of 1 ⁇ 10 2 or more were judged to be acceptable. Table 5 below shows the logarithmic values of the obtained activity values.
  • a salt spray test (SST) in accordance with JIS Z 2371 was performed for 72 hours with the end face of the test material tape-sealed. After the end of the test, the state of rust generation on the flat portion was observed, and the corrosion resistance was evaluated according to the following evaluation criteria. The pass level was 3 or higher.
  • White rust generated area is less than 1% of the total area of one side of the test material 4: White rust generated area is 1% or more and less than 5% of the total area of one side of the test material 3: White rust The generated area is 5% or more and less than 10% of the total area of one side of the test material 2: The white rust generation area is 10% or more and less than 30% of the total area of one side of the test material 1: White rust The generated area is 30% or more of the total area of one side of the test material
  • coated metal plate 10 metal plate 20 photocatalyst layer (first coating layer) 30 Inorganic chemical conversion coating layer (second coating layer) 40 Organic chemical conversion coating layer (third coating layer) 50 protective layer (fourth coating layer)

Abstract

[Problem] To further improve the photocatalytic effect while reducing costs. [Solution] A coated metal sheet according to the present invention has a coating layer on at least one surface of the metal sheet and has a first coating layer that is positioned on the outermost surface of the coating layer on the at least one surface of the metal sheet and that contains at least a compound having photocatalytic activity. The average thickness of the first coating layer is 0.05-5.00 µm. The total thickness from the surface of the metal plate to the outermost surface of the coating layer is 15.00 µm or less. The 60° specular glossiness of the coated metal sheet as defined by JIS Z8741:1997 is 80% or more.

Description

塗装金属板painted metal plate
 本発明は、塗装金属板に関する。 The present invention relates to a painted metal plate.
 数年来の新型コロナウイルス(COVID-19)の影響により、各種の物品への抗ウイルス特性の付与についてのニーズが高まっている現状にあり、抗ウイルス効果を有する薬剤を各種の物品の表面に塗布する事業が盛況となっている。抗ウイルス効果を有する薬剤の塗布は、既存の建造物への適用が可能となるが、塗布に要する人的コストが高く、また、薬剤の耐久性が十分ではないことから定期的な施工が必要となって、ランニングコストも高いという問題がある。 Due to the impact of the new coronavirus (COVID-19) that has been around for several years, there is a growing need to impart antiviral properties to various items. business is booming. Although it is possible to apply agents with antiviral effects to existing buildings, the labor cost required for application is high, and the durability of the agents is not sufficient, so regular application is required. As a result, there is a problem that the running cost is high.
 他方、例えば以下の特許文献1のように、従来、鋼材に対して予め抗ウイルス機能を付与する技術が知られている。かかる技術は、塗装鋼材をベースとして、かかる塗装鋼材の上層に、保護層及び光触媒層を順に形成する技術である。 On the other hand, for example, as in Patent Document 1 below, conventionally, there is a known technique for imparting an antiviral function to steel materials in advance. This technique is a technique in which a protective layer and a photocatalyst layer are sequentially formed on the coated steel material on the base of the coated steel material.
特開2009-131960号公報Japanese Patent Application Laid-Open No. 2009-131960
 しかしながら、本発明者による検討の結果、上記特許文献1に開示されているような光触媒を用いた技術において、光触媒層により実現される光触媒効果には、更なる改良の余地があることが判明した。 However, as a result of studies by the present inventors, it was found that there is room for further improvement in the photocatalyst effect realized by the photocatalyst layer in the technology using the photocatalyst disclosed in Patent Document 1 above. .
 かかる知見に基づき、本発明の目的とするところは、コストを抑制しつつ、光触媒効果をより向上させることが可能な、塗装金属板を提供することにある。 Based on such knowledge, the object of the present invention is to provide a coated metal plate that can further improve the photocatalytic effect while suppressing the cost.
 上記課題を解決するために、本発明者が鋭意検討を行った結果、特許文献1に開示されているような従来の技術において、鋼材の表面に入射した光のうち、光触媒効果の発現に寄与しているのは、鋼材への入射光のみであることを知見した。かかる知見に基づき、更なる検討を行った結果、金属板の表面において入射光をより高効率に反射させて、反射光についても光触媒効果の発現に寄与させることが可能となれば、光触媒効果をより向上させることが可能であることに想到し、本発明を完成させるに至った。
 かかる知見に基づき完成された本発明の要旨は、以下の通りである。
In order to solve the above problems, the present inventors have conducted extensive studies and found that, in the conventional technology disclosed in Patent Document 1, the light incident on the surface of the steel material contributes to the expression of the photocatalytic effect. It has been found that only the incident light to the steel material is doing. Based on this knowledge, as a result of further studies, if it is possible to reflect the incident light on the surface of the metal plate with higher efficiency and contribute to the expression of the photocatalytic effect for the reflected light, the photocatalytic effect can be achieved. The present invention has been completed based on the idea that it is possible to further improve it.
The gist of the present invention completed based on such knowledge is as follows.
(1)金属板の少なくとも一方の面に皮膜層を有する塗装金属板であって、前記皮膜層として、前記金属板の少なくとも一方の面において前記皮膜層の最表面に位置し、光触媒活性を有する化合物を少なくとも含有する第1皮膜層を有しており、前記第1皮膜層の平均厚みは、0.05~5.00μmであり、前記金属板の表面から前記皮膜層の最表面までの合計厚みは、15.00μm以下であり、前記塗装金属板について、JIS Z8741:1997で規定される60°鏡面光沢度が、80%以上である、塗装金属板。
(2)前記第1皮膜層は、更に、Si又はZrの少なくとも何れか1種の元素を含有し、前記元素の合計濃度は、Siについてはシリカ換算、Zrについてはジルコニア換算で、5~50質量%である、(1)に記載の塗装金属板。
(3)前記皮膜層として、前記第1皮膜層の下層に位置し、Si又はZrの少なくとも何れか1種以上の元素を有する無機系成分からなる第2皮膜層を更に有しており、前記第2皮膜層の平均厚みは、0.10~5.00μmである、(1)又は(2)に記載の塗装金属板。
(4)前記第2皮膜層は、更に、P又はVの少なくとも何れか1種の元素を有する無機系成分を含有する、(3)に記載の塗装金属板。
(5)前記第1皮膜層の平均厚みに対する、前記第2皮膜層の平均厚みの比率は、0.3~12.0である、(3)又は(4)に記載の塗装金属板。
(6)前記皮膜層として、前記第1皮膜層の下層に位置する、有機系成分を含む第3皮膜層と、前記第1皮膜層と前記第3皮膜層との間に位置する第4皮膜層と、を更に有しており、前記第3皮膜層の平均厚みは、0.10~5.00μmであり、前記第4皮膜層の平均厚みは、0.05~5.00μmである、(1)又は(2)に記載の塗装金属板。
(7)前記第1皮膜層の平均厚みに対する、前記第3皮膜層の平均厚みの比率は、0.5~20.0であり、前記第1皮膜層の平均厚みに対する、前記第4皮膜層の平均厚みの比率は、0.3~20.0である、(6)に記載の塗装金属板。
(8)前記金属板の表面から前記第1皮膜層の最表面までの合計厚みは、10.00μm以下である、(1)~(7)の何れか1つに記載の塗装金属板。
(9)前記光触媒活性を有する化合物は、アナターゼ型酸化チタンである、(1)~(8)の何れか1つに記載の塗装金属板。
(10)前記アナターゼ型酸化チタンは、Cu又はFeの少なくとも何れか一方の金属に担持された、金属担持型の酸化チタンである、(9)に記載の塗装金属板。
(11)前記第1皮膜層における前記アナターゼ型酸化チタンの濃度は、チタニア換算で、50~95質量%である、(9)又は(10)に記載の塗装金属板。
(12)前記アナターゼ型酸化チタンの平均粒径は、5~200nmである、(9)~(11)の何れか1つに記載の塗装金属板。
(13)前記金属板は、亜鉛めっき鋼板、亜鉛-アルミニウム合金めっき鋼板、亜鉛-アルミニウム-マグネシウム合金めっき鋼板、アルミニウムめっき鋼板、亜鉛-ニッケル合金めっき鋼板、亜鉛-鉄合金めっき鋼板、アルミニウム板、又は、ステンレス板である、(1)~(12)の何れか1つに記載の塗装金属板。
(14)前記金属板の表面には、当該金属板の圧延方向に沿ったヘアラインが存在する、(1)~(13)の何れか1つに記載の塗装金属板。
(15)前記金属板の表面には、スパングル模様が存在する、(1)~(13)の何れか1つに記載の塗装金属板。
(1) A coated metal plate having a coating layer on at least one surface of the metal plate, wherein the coating layer is located on the outermost surface of the coating layer on at least one surface of the metal plate and has photocatalytic activity. It has a first coating layer containing at least a compound, and the average thickness of the first coating layer is 0.05 to 5.00 μm, and the total thickness from the surface of the metal plate to the outermost surface of the coating layer A coated metal sheet having a thickness of 15.00 µm or less and having a 60° specular gloss of 80% or more as defined in JIS Z8741:1997.
(2) The first coating layer further contains at least one element of Si or Zr, and the total concentration of the elements is 5 to 50 in terms of silica for Si and zirconia for Zr. % by mass, the coated metal sheet according to (1).
(3) The coating layer further includes a second coating layer located below the first coating layer and made of an inorganic component containing at least one element selected from Si and Zr. The coated metal sheet according to (1) or (2), wherein the second coating layer has an average thickness of 0.10 to 5.00 μm.
(4) The coated metal sheet according to (3), wherein the second coating layer further contains an inorganic component having at least one element of P or V.
(5) The coated metal sheet according to (3) or (4), wherein the ratio of the average thickness of the second coating layer to the average thickness of the first coating layer is 0.3 to 12.0.
(6) As the coating layers, a third coating layer containing an organic component positioned below the first coating layer, and a fourth coating positioned between the first coating layer and the third coating layer. and a layer, wherein the average thickness of the third coating layer is 0.10 to 5.00 μm, and the average thickness of the fourth coating layer is 0.05 to 5.00 μm. The coated metal plate according to (1) or (2).
(7) The ratio of the average thickness of the third coating layer to the average thickness of the first coating layer is 0.5 to 20.0, and the fourth coating layer to the average thickness of the first coating layer The coated metal plate according to (6), wherein the ratio of the average thickness of is 0.3 to 20.0.
(8) The coated metal sheet according to any one of (1) to (7), wherein the total thickness from the surface of the metal sheet to the outermost surface of the first coating layer is 10.00 μm or less.
(9) The coated metal sheet according to any one of (1) to (8), wherein the compound having photocatalytic activity is anatase type titanium oxide.
(10) The coated metal sheet according to (9), wherein the anatase-type titanium oxide is metal-supported titanium oxide supported on at least one of Cu and Fe.
(11) The coated metal plate according to (9) or (10), wherein the concentration of the anatase-type titanium oxide in the first coating layer is 50 to 95% by mass in terms of titania.
(12) The coated metal sheet according to any one of (9) to (11), wherein the anatase-type titanium oxide has an average particle size of 5 to 200 nm.
(13) The metal plate is a galvanized steel plate, a zinc-aluminum alloy plated steel plate, a zinc-aluminum-magnesium alloy plated steel plate, an aluminum plated steel plate, a zinc-nickel alloy plated steel plate, a zinc-iron alloy plated steel plate, an aluminum plate, or , a stainless steel plate, the coated metal plate according to any one of (1) to (12).
(14) The coated metal plate according to any one of (1) to (13), wherein the surface of the metal plate has a hairline along the rolling direction of the metal plate.
(15) The coated metal plate according to any one of (1) to (13), wherein the surface of the metal plate has a spangle pattern.
 以上説明したように本発明によれば、コストを抑制しつつ、光触媒効果をより向上させることが可能となる。 As described above, according to the present invention, it is possible to further improve the photocatalytic effect while suppressing costs.
本発明の実施形態に係る塗装金属板の構造の一例を模式的に示した説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which showed typically an example of the structure of the coated metal plate which concerns on embodiment of this invention. 同実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。It is explanatory drawing which showed typically another example of the structure of the coated metal plate which concerns on the same embodiment. 同実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。It is explanatory drawing which showed typically another example of the structure of the coated metal plate which concerns on the same embodiment. 同実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。It is explanatory drawing which showed typically another example of the structure of the coated metal plate which concerns on the same embodiment. 同実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。It is explanatory drawing which showed typically another example of the structure of the coated metal plate which concerns on the same embodiment. 同実施形態に係る塗装金属板について説明するための説明図である。It is an explanatory view for explaining a coating metal plate concerning the embodiment.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.
(塗装金属板について)
<塗装金属板の構造>
 以下では、まず、図1A~図2Bを参照しながら、本発明の実施形態に係る塗装金属板の構造について説明する。図1Aは、本実施形態に係る塗装金属板の構造の一例を模式的に示した説明図である。図1B~図2Bは、本実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。
(About painted metal plate)
<Structure of coated metal plate>
First, the structure of a coated metal plate according to an embodiment of the present invention will be described below with reference to FIGS. 1A to 2B. FIG. 1A is an explanatory view schematically showing an example of the structure of a coated metal plate according to this embodiment. 1B to 2B are explanatory diagrams schematically showing another example of the structure of the coated metal plate according to this embodiment.
 図1Aに模式的に示したように、本発明の実施形態に係る塗装金属板1は、金属板の少なくとも一方の面に皮膜層を有しており、母材である金属板10と、皮膜層として、第1皮膜層の一例としての光触媒層20と、を少なくとも有している。なお、基材として金属板ではなく、メラミン樹脂等のような硬質な樹脂基材を用いることも一見考えられる。しかしながら、基材として、各種の加工を施すことが可能なものを用いることが重要であり、本実施形態では、金属板が基材として用いられる。 As schematically shown in FIG. 1A, a coated metal plate 1 according to an embodiment of the present invention has a coating layer on at least one surface of the metal plate. As a layer, it has at least a photocatalyst layer 20 as an example of a first coating layer. At first glance, it may be possible to use a hard resin base material such as melamine resin instead of the metal plate as the base material. However, it is important to use a substrate that can be processed in various ways, and in this embodiment, a metal plate is used as the substrate.
[金属板10について]
 本実施形態に係る塗装金属板1において、母材である金属板10としては、各種の金属板を用いることが可能である。このような金属板として、例えば、亜鉛めっき鋼板、亜鉛-アルミニウム合金めっき鋼板、亜鉛-アルミニウム-マグネシウム合金めっき鋼板、アルミニウムめっき鋼板、亜鉛-ニッケル合金めっき鋼板、亜鉛-鉄合金めっき鋼板、アルミニウム板、ステンレス板等を挙げることができる。
[Regarding the metal plate 10]
In the coated metal plate 1 according to this embodiment, various metal plates can be used as the metal plate 10 that is the base material. Examples of such metal sheets include galvanized steel sheets, zinc-aluminum alloy plated steel sheets, zinc-aluminum-magnesium alloy plated steel sheets, aluminum plated steel sheets, zinc-nickel alloy plated steel sheets, zinc-iron alloy plated steel sheets, aluminum plates, A stainless steel plate etc. can be mentioned.
 上記のような金属板を用いることで、塗装金属板1に入射した光(特に、紫外~可視光帯域の光)を、金属板10の表面で効率良く反射させることが可能となる。これにより、本実施形態に係る塗装金属板1では、後述するように、金属板10の表面で反射した反射光を、光触媒反応に利用することが可能となる。上記金属板の中では、亜鉛-アルミニウム-マグネシウム合金めっき鋼板、ステンレス板、アルミニウムめっき鋼板、亜鉛めっき鋼板、亜鉛-アルミニウム合金めっき鋼板などが、入射した光を効率よく反射することができるため、特に好適である。また、めっき表面にヘアラインやスパングル模様などの意匠を有するものは、外装部品としても使用することができるため、好適である。 By using the metal plate as described above, it is possible to efficiently reflect the light incident on the coated metal plate 1 (in particular, the light in the ultraviolet to visible light band) on the surface of the metal plate 10 . As a result, in the coated metal plate 1 according to the present embodiment, it is possible to use the reflected light reflected by the surface of the metal plate 10 for photocatalytic reaction, as will be described later. Among the above metal plates, zinc-aluminum-magnesium alloy plated steel plate, stainless steel plate, aluminum plated steel plate, zinc plated steel plate, zinc-aluminum alloy plated steel plate, etc. can efficiently reflect incident light, so they are particularly preferred. In addition, a plated surface having a design such as a hairline or spangle pattern is suitable because it can also be used as an exterior component.
 ここで、上記のような金属板10の厚みについては、特に限定されるものではなく、本実施形態に係る塗装金属板1に求められる機械的な強度(例えば、引張強度等)や加工性等に応じて、適宜設定すればよい。 Here, the thickness of the metal plate 10 as described above is not particularly limited. can be set as appropriate.
 また、かかる金属板10の表面(金属板10として、各種のめっきが施された金属板を用いる場合には、めっきの表面)には、かかる金属板の圧延方向に沿ったヘアライン模様や、スパングル模様等の各種の模様が存在していてもよい。このような模様が設けられていることで、塗装金属板1の意匠性をより向上させることが可能となる。また、金属板10の表面に対するこのような模様を設けるための意匠加工自体が、以下で説明するような60°鏡面光沢度の更なる向上にも寄与することとなる。 In addition, the surface of the metal plate 10 (when using a metal plate to which various types of plating are applied as the metal plate 10, the plated surface) has a hairline pattern along the rolling direction of the metal plate, a spangle Various patterns such as patterns may be present. By providing such a pattern, it is possible to further improve the design of the coated metal plate 1 . Further, the design processing itself for providing such a pattern on the surface of the metal plate 10 contributes to further improvement of the 60° specular gloss as described below.
 例えば、めっきの施された金属板10に着目する。一般的に、金属基材の表面にめっきを施す場合、電気めっき法や溶融めっき法を採用することができる。採用するめっき法によっては、めっき表面に微細粒子が生成される結果、めっきの施された金属板10の表面の光沢度(すなわち、めっき表面の光沢度)が低下することがある。しかしながら、このようなめっきの表面にヘアライン加工を施すことでめっき表面が削られる結果、めっき表面での光の反射率が向上して、表面の光沢度を向上させることが可能となる。また、スパングル模様を形成させるようにめっきを行う結果、光がより反射しやすいめっきの結晶方位が表面に現れるようになり、めっき表面での光の反射率が向上して、表面の光沢度を向上させることが可能となる。 For example, focus on the plated metal plate 10 . In general, when plating the surface of a metal substrate, an electroplating method or a hot-dip plating method can be employed. Depending on the plating method employed, fine particles are generated on the plated surface, and as a result, the glossiness of the surface of the plated metal plate 10 (that is, the glossiness of the plated surface) may decrease. However, by subjecting the surface of such plating to hairline processing, the surface of the plating is scraped, and as a result, the reflectance of light on the surface of the plating is improved, making it possible to improve the glossiness of the surface. In addition, as a result of plating so as to form a spangle pattern, the crystal orientation of the plating that reflects light more easily appears on the surface, improving the reflectance of light on the plating surface and increasing the surface gloss can be improved.
 以下で詳述するように、塗装金属板1においては、第1皮膜層としての光触媒層20の厚み、及び、塗装金属板1における金属板10の表面から第1皮膜層としての光触媒層20の最表面までの合計厚みが特定の状態となるように制御される。その上で、更に上記のようなヘアライン模様やスパングル模様をはじめとする意匠加工が施されることで、かかる意匠加工が、以下で説明するような60°鏡面光沢度の更なる向上にも作用する。このような模様を形成するための方法については、公知の各種の加工法を適宜利用することが可能である。 As described in detail below, in the coated metal plate 1, the thickness of the photocatalyst layer 20 as the first coating layer, and the thickness of the photocatalyst layer 20 as the first coating layer from the surface of the metal plate 10 in the coated metal plate 1 The total thickness up to the outermost surface is controlled to be in a specific state. On top of that, design processing such as the hairline pattern and spangle pattern as described above is further applied, and such design processing also acts to further improve the 60° specular glossiness as described below. do. As for the method for forming such a pattern, various known processing methods can be appropriately used.
[光触媒層20について]
 本実施形態に係る塗装金属板1において、第1皮膜層の一例としての光触媒層20は、図1Aに模式的に示したように、金属板10の少なくとも一方の面において、皮膜層の最表面に位置している層であり、光触媒活性を有する化合物(以下、「光触媒化合物」と略記することがある。)を少なくとも含有する。光触媒層20が光触媒活性を有する化合物を含有することで、かかる光触媒活性を有する化合物は、光触媒層20に入射した光(特に、紫外~可視光帯域の光)によって、光触媒反応を生じさせる。その結果、本実施形態に係る光触媒層20において、抗ウイルス効果や殺菌効果をはじめとする、各種の光触媒効果が発現する。これにより、本実施形態に係る塗装金属板1は、抗ウイルス効果や殺菌効果をはじめとする各種の特性を実現することができる。
[About the photocatalyst layer 20]
In the coated metal plate 1 according to the present embodiment, the photocatalyst layer 20 as an example of the first coating layer is the outermost surface of the coating layer on at least one surface of the metal plate 10, as schematically shown in FIG. 1A and contains at least a compound having photocatalytic activity (hereinafter sometimes abbreviated as "photocatalytic compound"). Since the photocatalyst layer 20 contains a compound having photocatalytic activity, the compound having such photocatalytic activity causes a photocatalytic reaction by light (in particular, light in the ultraviolet to visible light band) incident on the photocatalyst layer 20. As a result, in the photocatalyst layer 20 according to the present embodiment, various photocatalyst effects including antiviral effects and bactericidal effects are exhibited. As a result, the coated metal plate 1 according to this embodiment can achieve various properties including antiviral effects and bactericidal effects.
 このような光触媒活性を有する化合物には、主に紫外光帯域の光と反応して(より詳細には、紫外光帯域の光によって励起されて)、光触媒活性を発現する化合物と、主に可視光帯域の光と反応して(より詳細には、可視光帯域の光によって励起されて)、光触媒活性を発現する化合物と、が存在する。 Compounds having such photocatalytic activity mainly react with light in the ultraviolet light band (more specifically, by being excited by light in the ultraviolet light band) and exhibit photocatalytic activity, and compounds that mainly exhibit visible light. and a compound that reacts with light in the optical band (more specifically, is excited by light in the visible band) and exhibits photocatalytic activity.
 紫外光帯域の光と反応して光触媒活性を発現させる化合物としては、例えば、酸化チタン(より詳細には、アナターゼ型酸化チタン)、酸化亜鉛、酸化セリウム、酸化スズ、酸化ビスマス、酸化ジルコニウム、酸化タングステン、酸化クロム、酸化モリブデン、酸化鉄、酸化ニッケル、酸化ルテニウム、酸化コバルト、酸化銅、酸化マンガン、酸化ゲルマニウム、酸化鉛、酸化カドミウム、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化ロジウム、酸化レニウム等の金属酸化物や、硫化カドミウム、硫化亜鉛等の金属硫化物や、チタン酸ストロンチウム、チタン酸バリウム等のチタン化合物が挙げられる。なかでも、紫外光帯域の光と反応して光触媒活性を発現させる化合物として、アナターゼ型酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化タングステン、酸化鉄、酸化ニオブ、チタン酸ストロンチウム等は、特に好適に用いられ、アナターゼ型酸化チタンは、更に好適に用いられる。 Examples of the compound that reacts with light in the ultraviolet band to exhibit photocatalytic activity include titanium oxide (more specifically, anatase-type titanium oxide), zinc oxide, cerium oxide, tin oxide, bismuth oxide, zirconium oxide, oxide Tungsten, chromium oxide, molybdenum oxide, iron oxide, nickel oxide, ruthenium oxide, cobalt oxide, copper oxide, manganese oxide, germanium oxide, lead oxide, cadmium oxide, vanadium oxide, niobium oxide, tantalum oxide, rhodium oxide, rhenium oxide, etc. , metal sulfides such as cadmium sulfide and zinc sulfide, and titanium compounds such as strontium titanate and barium titanate. Among them, anatase titanium oxide, zinc oxide, tin oxide, zirconium oxide, tungsten oxide, iron oxide, niobium oxide, strontium titanate, etc. are particularly preferred as compounds that react with light in the ultraviolet light band to exhibit photocatalytic activity. It is preferably used, and anatase titanium oxide is more preferably used.
 また、可視光帯域の光と反応して光触媒活性を発現する化合物としては、例えば、Cu又はFeの少なくとも何れか一方の金属に担持された金属担持型の酸化チタン(より詳細には、アナターゼ型酸化チタン)、Cr、V、Mn、Ni、Ptに担持されたアナターゼ型酸化チタン、窒素や硫黄等の陰イオンがドーピングされたアナターゼ型酸化チタン、AgNbOとSrTiOの固溶体、等が挙げられる。なかでも、Cu又はFeの少なくとも何れか一方の金属に担持されたアナターゼ型酸化チタンは、特に好適に用いられる。 Further, the compound that reacts with light in the visible light band to exhibit photocatalytic activity includes, for example, metal-supported titanium oxide supported on at least one of Cu and Fe (more specifically, anatase type titanium oxide), anatase-type titanium oxide supported on Cr, V, Mn, Ni, Pt, anatase-type titanium oxide doped with anions such as nitrogen and sulfur, solid solutions of AgNbO3 and SrTiO3 , and the like. . Among them, anatase-type titanium oxide supported on at least one of Cu and Fe is particularly preferably used.
 かかる光触媒化合物のうち、アナターゼ型酸化チタン(金属担持された状態のものも含む。)の平均粒径(一次粒子径)は、5nm以上であることが好ましい。アナターゼ型酸化チタンの平均粒径(一次粒子径)が5nm以上となることで、光触媒層20中により均一にアナターゼ型酸化チタンを分散させることが可能となる。アナターゼ型酸化チタンの平均粒径(一次粒子径)は、より好ましくは20nm以上である。また、アナターゼ型酸化チタン(金属担持された状態のものも含む。)の平均粒径(一次粒子径)は、200nm以下であることが好ましい。アナターゼ型酸化チタンの平均粒径(一次粒子径)が200nm以下となることで、光触媒層20中におけるアナターゼ型酸化チタンの過度な凝集を抑制しながら、光触媒層20中により均一にアナターゼ型酸化チタンを分散させることが可能となる。アナターゼ型酸化チタンの平均粒径(一次粒子径)は、より好ましくは100nm以下である。 Among such photocatalyst compounds, the average particle size (primary particle size) of anatase-type titanium oxide (including those in a metal-supported state) is preferably 5 nm or more. When the average particle size (primary particle size) of the anatase-type titanium oxide is 5 nm or more, the anatase-type titanium oxide can be dispersed more uniformly in the photocatalyst layer 20 . The average particle size (primary particle size) of anatase-type titanium oxide is more preferably 20 nm or more. The average particle size (primary particle size) of the anatase-type titanium oxide (including those in a metal-supported state) is preferably 200 nm or less. By setting the average particle diameter (primary particle diameter) of the anatase titanium oxide to 200 nm or less, the anatase titanium oxide is more uniformly distributed in the photocatalyst layer 20 while suppressing excessive aggregation of the anatase titanium oxide in the photocatalyst layer 20. can be distributed. The average particle size (primary particle size) of anatase-type titanium oxide is more preferably 100 nm or less.
 ここで、上記のアナターゼ型酸化チタンの平均粒径は、例えば、レーザ光を使用した動的光散乱法により測定することが可能である。かかる方法は、精度の高い測定値を簡便に得ることが可能である。ただし、アナターゼ型酸化チタンの粒子がある程度凝集している場合には、凝集体の大きさ(凝集粒子径)を測定する可能性があるため、併せて透過型電子顕微鏡(TEM)により、直接、一次粒子径を確認することが好ましい。TEM観察の結果、凝集粒子の存在が確認された場合には、分散条件を変えて、動的光散乱法により再度測定を行うことが好ましい。また、完全に一次粒子のレベルまで分散させることが困難である場合には、TEMで観察・測定した一次粒子の大きさを、一次粒子径とすることも可能である。この場合、本発明者の経験では、任意に選択したおおよそ100個以上の粒子を測定対象とすることで、粒子の全体を代表する値が得られることが分かっている。 Here, the average particle size of the anatase-type titanium oxide can be measured, for example, by a dynamic light scattering method using laser light. Such a method can easily obtain highly accurate measurement values. However, if the particles of anatase-type titanium oxide are aggregated to some extent, the size of the aggregates (aggregate particle size) may be measured. It is preferable to check the primary particle size. When the presence of aggregated particles is confirmed as a result of TEM observation, it is preferable to change the dispersion conditions and perform measurement again by the dynamic light scattering method. If it is difficult to completely disperse the particles to the level of the primary particles, the size of the primary particles observed and measured with a TEM can be used as the primary particle size. In this case, the experience of the present inventor has shown that a representative value of all particles can be obtained by measuring approximately 100 or more arbitrarily selected particles.
 また、既に光触媒層20が形成されている塗装金属板1について、光触媒層20に含まれるアナターゼ型酸化チタンの平均粒径を事後的に測定する際には、以下のようにすればよい。すなわち、光触媒層20を厚み方向に沿って切断した際の断面を、透過型電子顕微鏡(TEM)を用いて観察または分析することができる。TEMを用いることで、光触媒化合物の一次粒子径を測定することができる。また、TEMと合わせてEDS分析を行うことで、光触媒化合物に含まれる元素を測定できる。更には、電子線回折により、光触媒化合物の結晶構造(例えば、酸化チタンの場合アナターゼ型かルチル型か)を知ることができる。本発明者の経験では、任意に選択したおおよそ100個以上の粒子を測定対象とすることで、粒子の全体を代表する値が得られることが分かっている。 In addition, for the coated metal plate 1 on which the photocatalyst layer 20 has already been formed, when measuring the average particle size of the anatase-type titanium oxide contained in the photocatalyst layer 20 after the fact, the following may be performed. That is, a cross section obtained by cutting the photocatalyst layer 20 along the thickness direction can be observed or analyzed using a transmission electron microscope (TEM). By using TEM, the primary particle size of the photocatalyst compound can be measured. Also, by performing EDS analysis together with TEM, the elements contained in the photocatalyst compound can be measured. Furthermore, the crystal structure of the photocatalyst compound (for example, in the case of titanium oxide, whether it is anatase type or rutile type) can be known by electron beam diffraction. Based on the experience of the present inventor, it has been found that a representative value of all particles can be obtained by measuring approximately 100 or more arbitrarily selected particles.
 ここで、光触媒層20におけるアナターゼ型酸化チタン(金属担持された状態のものも含む。)の濃度は、チタニア換算で、50質量%以上であることが好ましい。光触媒層20におけるアナターゼ型酸化チタンの濃度が50質量%以上となることで、抗ウイルス効果等をはじめとする各種の光触媒効果を確実に発現させることが可能となる。光触媒層20におけるアナターゼ型酸化チタンの濃度は、より好ましくは、チタニア換算で、60質量%以上である。また、光触媒層20におけるアナターゼ型酸化チタン(金属担持された状態のものも含む。)の濃度は、チタニア換算で、95質量%以下であることが好ましい。光触媒層20におけるアナターゼ型酸化チタンの濃度が95質量%以下となることで、製造コストの増加を抑制しつつ、抗ウイルス効果等をはじめとする各種の光触媒効果を発現させることが可能となる。光触媒層20におけるアナターゼ型酸化チタンの濃度は、より好ましくは、チタニア換算で、80質量%以下である。 Here, the concentration of anatase-type titanium oxide (including metal-supported titanium oxide) in the photocatalyst layer 20 is preferably 50% by mass or more in terms of titania. When the concentration of anatase-type titanium oxide in the photocatalyst layer 20 is 50% by mass or more, various photocatalytic effects including antiviral effects can be reliably exhibited. The concentration of anatase-type titanium oxide in the photocatalyst layer 20 is more preferably 60% by mass or more in terms of titania. The concentration of anatase-type titanium oxide (including metal-supported titanium oxide) in the photocatalyst layer 20 is preferably 95% by mass or less in terms of titania. By setting the concentration of anatase-type titanium oxide in the photocatalyst layer 20 to 95% by mass or less, it is possible to exhibit various photocatalytic effects such as an antiviral effect while suppressing an increase in manufacturing costs. The concentration of anatase-type titanium oxide in the photocatalyst layer 20 is more preferably 80% by mass or less in terms of titania.
 また、アナターゼ型酸化チタン以外の光触媒化合物についても、上記と同様に、5~200nmの平均粒径を有していることが好ましく、その濃度は、50~95質量%であることが好ましい。 Also, photocatalyst compounds other than anatase-type titanium oxide preferably have an average particle size of 5 to 200 nm, and the concentration thereof is preferably 50 to 95% by mass.
 なお、上記のようなアナターゼ型酸化チタン等に代表される光触媒化合物は、粒子状態の物質はもちろんのこと、粒子状とはいえないようなゾル状物質、金属錯体を加熱して生成した物質等も、必要に応じて用いることが可能である。 Photocatalyst compounds represented by anatase-type titanium oxide and the like as described above include not only particulate substances, but also sol substances that cannot be said to be particulate, substances produced by heating metal complexes, and the like. can also be used as needed.
 また、光触媒層20は、更に、Si又はZrの少なくとも何れか1種の元素を含有し、かかる元素の合計濃度は、Siについてはシリカ換算、Zrについてはジルコニア換算で、5質量%以上であることが好ましい。換言すれば、光触媒層20は、Si又はZrの少なくとも何れか1種の元素を含む三次元網目構造状の無機系成分の骨格と、場合によっては不純物と、を有する無機系皮膜であり、Si又はZrの少なくとも何れか1種の元素の合計濃度が、Siについてはシリカ換算、Zrについてはジルコニア換算で、5質量%以上であることが好ましい。Si又はZrの少なくとも何れか1種の元素を上記の濃度で含有することで、より耐食性に優れた光触媒層20を実現することが可能となる。Si又はZrの少なくとも何れか1種の元素の合計含有量は、より好ましくは10質量%以上である。また、光触媒層20は、更に、Si又はZrの少なくとも何れか1種の元素を含有し、かかる元素の合計濃度は、Siについてはシリカ換算、Zrについてはジルコニア換算で、50質量%以下であることが好ましい。Si又はZrの少なくとも何れか1種の元素を上記の濃度で含有することで、より耐食性に優れた光触媒層20を実現することが可能となる。Si又はZrの少なくとも何れか1種の元素の合計含有量は、より好ましくは40質量%以下である。ここで、含有するSi又はZrは、光透過性に優れることが好ましく、また、光触媒による分解等の影響を受けにくい無機系成分であることが好ましい。このようなSi、Zrを含有する無機系成分としては、例えば、シリカ、ジルコニアを挙げることができる。 In addition, the photocatalyst layer 20 further contains at least one element of Si or Zr, and the total concentration of such elements is 5% by mass or more in terms of silica for Si and zirconia for Zr. is preferred. In other words, the photocatalyst layer 20 is an inorganic film having a three-dimensional network structure inorganic component skeleton containing at least one element of Si or Zr and, in some cases, impurities. Alternatively, the total concentration of at least one element of Zr is preferably 5% by mass or more in terms of silica for Si and zirconia for Zr. By containing at least one element of Si or Zr at the above concentration, it is possible to realize the photocatalyst layer 20 having more excellent corrosion resistance. The total content of at least one element selected from Si and Zr is more preferably 10% by mass or more. In addition, the photocatalyst layer 20 further contains at least one element of Si or Zr, and the total concentration of such elements is 50% by mass or less in terms of silica for Si and zirconia for Zr. is preferred. By containing at least one element of Si or Zr at the above concentration, it is possible to realize the photocatalyst layer 20 having more excellent corrosion resistance. The total content of at least one element selected from Si and Zr is more preferably 40% by mass or less. Here, Si or Zr to be contained preferably has excellent light transmittance, and is preferably an inorganic component that is less susceptible to decomposition by photocatalyst. Examples of such inorganic components containing Si and Zr include silica and zirconia.
 なお、上記の光触媒化合物を含有する光触媒層20は、本発明の効果を損なわない範囲内で、必要に応じて、抗菌剤や、活性炭又はゼオライト等の吸着材を含有していてもよい。 The photocatalyst layer 20 containing the above photocatalyst compound may contain an antibacterial agent, an adsorbent such as activated carbon or zeolite, if necessary, as long as the effects of the present invention are not impaired.
 かかる光触媒層20の平均厚みd(図1Aに示した層構成の場合、金属板10の表面から光触媒層20の最表面まで(皮膜層の最表面とも捉えることができる。)の合計厚みdでもある。)は、0.05μm以上である。光触媒層20の平均厚みdが0.05μm未満である場合には、上記のような光触媒層20を均一に成膜することが困難となり、得られる光触媒効果にムラが生じてしまうため、好ましくない。平均厚みdを0.05μm以上とすることで、所望の光触媒効果を、光触媒層20の全体にわたって均一に発現させることが可能となる。一方、かかる光触媒層20の平均厚みd(図1Aに示した層構成の場合、金属板10の表面から光触媒層20の最表面までの合計厚みdでもある。)は、5.00μm以下である。光触媒層20の平均厚みdが5.00μmを超える場合には、得られる光触媒効果が飽和する一方で、製造コストが増加するため、好ましくない。また、光触媒層は無機系皮膜であることから、加工性が低下する。平均厚みdを5.00μm以下とすることで、製造コストの増加及び加工性の低下を抑制しつつ、所望の光触媒効果を、光触媒層20の全体にわたって均一に発現させることが可能となる。 The average thickness d 1 of the photocatalyst layer 20 (in the case of the layer structure shown in FIG. 1A, the total thickness d from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 20 (can also be regarded as the outermost surface of the coating layer). T ) is 0.05 μm or more. When the average thickness d1 of the photocatalyst layer 20 is less than 0.05 μm, it becomes difficult to uniformly form the photocatalyst layer 20 as described above, and the resulting photocatalytic effect is uneven, which is preferable. No. By setting the average thickness d 1 to 0.05 μm or more, it is possible to uniformly develop a desired photocatalytic effect over the entire photocatalytic layer 20 . On the other hand, the average thickness d 1 of the photocatalyst layer 20 (in the case of the layer structure shown in FIG. 1A, it is also the total thickness d T from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 20) is 5.00 μm or less. is. If the average thickness d1 of the photocatalyst layer 20 exceeds 5.00 μm, the resulting photocatalytic effect is saturated, but the manufacturing cost increases, which is not preferable. In addition, since the photocatalyst layer is an inorganic coating, workability is lowered. By setting the average thickness d1 to 5.00 μm or less, it is possible to uniformly exhibit a desired photocatalytic effect over the entire photocatalytic layer 20 while suppressing an increase in manufacturing cost and a decrease in workability.
 通常、光触媒層20を、光触媒化合物に当たらずに通過する光が、一定の確率で発生する。このような、光触媒化合物と作用しなかった光は、従来では、光触媒効果が得られない光となってしまう。本実施形態では、このような光を金属板10の表面で反射させることで、光触媒層20に入射した光が光触媒化合物に衝突する確率を増加させることが可能となる。これにより、本実施形態では、光触媒効果を更に向上させることができる。図1Aに示した層構成の場合、金属板10の表面から光触媒層20の最表面までの合計厚みdが当然ながら15.00μm以下となっている結果、入射した光が金属板10の表面(換言すれば、金属板10と光触媒層20との界面)で反射した反射光を、光触媒化合物による光触媒反応に利用することが可能となるため、コストを抑制しつつ、光触媒効果をより向上させることができる。 Normally, light that passes through the photocatalyst layer 20 without impinging on the photocatalyst compound occurs with a certain probability. Conventionally, such light that does not act on the photocatalyst compound becomes light that does not have a photocatalytic effect. In the present embodiment, by reflecting such light on the surface of the metal plate 10, it is possible to increase the probability that the light incident on the photocatalyst layer 20 collides with the photocatalyst compound. Thereby, in this embodiment, the photocatalyst effect can be further improved. In the case of the layer structure shown in FIG. 1A, the total thickness dT from the surface of the metal plate 10 to the outermost surface of the photocatalyst layer 20 is naturally 15.00 μm or less. (In other words, the reflected light reflected at the interface between the metal plate 10 and the photocatalyst layer 20) can be used for the photocatalytic reaction by the photocatalytic compound, so the photocatalytic effect is further improved while suppressing the cost. be able to.
 かかる光触媒層20の平均厚みdは、好ましくは0.10μm以上であり、より好ましくは0.15μm以上である。また、かかる光触媒層20の平均厚みdは、好ましくは2.00μm以下であり、より好ましくは1.00μm以下である。 The average thickness d1 of the photocatalyst layer 20 is preferably 0.10 μm or more, more preferably 0.15 μm or more. Also, the average thickness d1 of the photocatalyst layer 20 is preferably 2.00 μm or less, more preferably 1.00 μm or less.
[60°鏡面光沢度]
 図1Aに示したような層構成を有する塗装金属板1では、金属板10による光の反射と、上記のような平均厚みdを有する光触媒層20とにより、塗装金属板1を光触媒層20が設けられた側から測定したJIS Z8741:1997で規定される60°鏡面光沢度が、80%以上となる。換言すれば、本実施形態に係る塗装金属板1は、上記のように60°鏡面光沢度が80%以上となることで、金属板10と光触媒層20との界面で生じる反射光を効果的に利用することが可能となり、優れた抗ウイルス性能を発現する。なお、光触媒と衝突した光は反射光として検出されないが、本発明の皮膜構成においては、このような光は全体のごく一部である。そのため、光触媒による減少を考慮しても、本発明で規定する60°鏡面光沢度が80%以上である旨を満足することで、優れた抗ウイルス性を有すると判断できる。本実施形態に係る塗装金属板1において、60°鏡面光沢度は、好ましくは90%以上であり、より好ましくは130%以上である。また、かかる60°鏡面光沢度の上限値は、特に規定するものではないが、200%を超えることは難しく、かかる値が実質的な上限と考えられる。なお、かかる60°鏡面光沢度は、上記JIS規格に則した光沢度計を用いて測定することが可能である。
[60° specular gloss]
In the coated metal plate 1 having the layer structure as shown in FIG. The 60° specular gloss defined by JIS Z8741:1997 measured from the side provided with is 80% or more. In other words, the coated metal plate 1 according to the present embodiment has a 60° specular glossiness of 80% or more as described above, so that the reflected light generated at the interface between the metal plate 10 and the photocatalyst layer 20 can be effectively It can be used for , and exhibits excellent antiviral performance. Although the light colliding with the photocatalyst is not detected as reflected light, such light is a very small part of the whole in the coating structure of the present invention. Therefore, even considering the decrease due to the photocatalyst, it can be determined that the antiviral property is excellent if the 60° specular glossiness specified in the present invention is 80% or more. In the coated metal plate 1 according to this embodiment, the 60° specular glossiness is preferably 90% or more, more preferably 130% or more. Although the upper limit of the 60° specular glossiness is not particularly specified, it is difficult to exceed 200%, and such a value is considered to be the substantial upper limit. The 60° specular gloss can be measured using a gloss meter conforming to the JIS standard.
<変形例>
 図1Aに示したような層構成を有する、本実施形態に係る塗装金属板1は、金属板10と光触媒層20との間に、化成処理皮膜層として機能する更なる皮膜層を有していてもよい。金属板10と光触媒層20との間に化成処理皮膜層を設けることで、金属板10と光触媒層20との間の密着性を更に向上させることが可能となる。更に、本実施形態に係る塗装金属板1の耐食性等を更に向上させることも可能となる。
<Modification>
The coated metal plate 1 according to the present embodiment, which has a layer structure as shown in FIG. 1A, has a further coating layer that functions as a chemical conversion coating layer between the metal plate 10 and the photocatalyst layer 20. may By providing a chemical conversion coating layer between the metal plate 10 and the photocatalyst layer 20, the adhesion between the metal plate 10 and the photocatalyst layer 20 can be further improved. Furthermore, it is also possible to further improve the corrosion resistance and the like of the coated metal plate 1 according to the present embodiment.
 本実施形態に係る塗装金属板1において、化成処理皮膜層を更に設ける場合には、化成処理皮膜層を構成する化合物成分の種類に応じて、以下に示すような2種類の層構成を実現することが好ましい。以下、図1B~図3を参照しながら、化成処理皮膜層を有する場合の塗装金属板の層構成について、詳細に説明する。
 図1B~図2は、本実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。図3は、本実施形態に係る塗装金属板について説明するための説明図である。
In the coated metal plate 1 according to the present embodiment, when a chemical conversion coating layer is further provided, the following two types of layer configurations are realized according to the type of compound component constituting the chemical conversion coating layer. is preferred. Hereinafter, with reference to FIGS. 1B to 3, the layer structure of a coated metal sheet having a chemical conversion film layer will be described in detail.
1B to 2 are explanatory diagrams schematically showing another example of the structure of the coated metal plate according to this embodiment. FIG. 3 is an explanatory diagram for explaining the coated metal plate according to this embodiment.
[無機系化成処理皮膜層を設ける場合]
 図1B及び図1Cは、化成処理皮膜層として無機系成分からなる無機系化成処理皮膜層を設ける場合の、塗装金属板1の層構成を模式的に示した模式図である。
 かかる場合、本実施形態に係る塗装金属板1は、上記のような金属板10と光触媒層20との間に、第2皮膜層の一例としての無機系化成処理皮膜層30を有する。
[When providing an inorganic chemical conversion coating layer]
FIGS. 1B and 1C are schematic views schematically showing the layer structure of the coated metal plate 1 when an inorganic chemical conversion coating layer made of inorganic components is provided as the chemical conversion coating layer.
In this case, the coated metal plate 1 according to the present embodiment has an inorganic chemical conversion coating layer 30 as an example of the second coating layer between the metal plate 10 and the photocatalyst layer 20 as described above.
 アナターゼ型酸化チタンに代表される光触媒化合物は、極めて優れた酸化性を有するが故に、光触媒化合物が存在する層よりも下層側に皮膜層を設ける場合には、かかる皮膜層を保護するための保護層を形成することが多い。しかしながら、以下で説明するように、化成処理皮膜層を無機系成分で構成することにより、保護層を設けることなく化成処理皮膜層を配置することが可能となる。 Photocatalyst compounds typified by anatase-type titanium oxide have extremely excellent oxidizing properties, so when a coating layer is provided on the lower layer side than the layer in which the photocatalyst compound is present, protection for protecting such coating layer It often forms layers. However, as described below, by forming the chemical conversion coating layer from an inorganic component, it becomes possible to dispose the chemical conversion coating layer without providing a protective layer.
 かかる無機系化成処理皮膜層30は、金属板10の表面に付着した油分などの不純物及び表面酸化物を、公知の脱脂工程及び洗浄工程で取り除いた後、化成処理により形成される。この無機系化成処理皮膜層30は、Si又はZrの少なくとも何れか1種以上の元素を有する無機系成分からなることが好ましい。また、かかる無機系化成処理皮膜層30は、更に、P又はVの少なくとも何れか1種の元素を有する無機系成分を含有していてもよい。 The inorganic chemical conversion treatment film layer 30 is formed by chemical conversion treatment after removing impurities such as oil and surface oxides adhering to the surface of the metal plate 10 by a known degreasing process and washing process. Preferably, the inorganic chemical conversion coating layer 30 is made of an inorganic component containing at least one element of Si and Zr. In addition, the inorganic chemical conversion treatment film layer 30 may further contain an inorganic component containing at least one of P and V elements.
 無機系化成処理皮膜層30が、上記のような元素を有する無機系成分を含有することで、化成処理液塗布後の成膜性、水分や腐食性イオン等の腐食因子に対する皮膜のバリア性(緻密性)、金属板表面への皮膜密着性などが向上し、皮膜の耐食性の底上げに寄与する。 When the inorganic chemical conversion coating layer 30 contains the inorganic components having the above elements, the film-forming properties after application of the chemical conversion treatment liquid and the barrier properties of the coating against corrosive factors such as moisture and corrosive ions ( Denseness) and adhesion of the film to the surface of the metal plate are improved, contributing to raising the corrosion resistance of the film.
 ここで、Siを含有する無機系成分としては、例えば、例えば、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン等を挙げることができる。また、Zrを含有する無機系成分としては、例えば、炭酸ジルコニウム、炭酸ジルコニウムアンモ二ウム、炭酸ジルコニウムカリウム、炭酸ジルコニウムナトリウム、炭酸ジルコニウムアンモニウム等を挙げることができる。 Examples of inorganic components containing Si include γ-(2-aminoethyl)aminopropyltrimethoxysilane, γ-(2-aminoethyl)aminopropylmethyldimethoxysilane, γ-(2- aminoethyl)aminopropyltriethoxysilane and the like. Examples of inorganic components containing Zr include zirconium carbonate, ammonium zirconium carbonate, potassium zirconium carbonate, sodium zirconium carbonate, and ammonium zirconium carbonate.
 また、Pを含有する無機系成分としては、例えば、リン酸、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸などのリン酸類及びそれらの塩、リン酸二水素アンモニウム等を挙げることができる。Vを含有する無機系成分としては、例えば、メタバナジン酸アンモン(V)、メタバナジン酸カリウム(V)、メタバナジン酸ソーダ(V)、硫酸バナジル(IV)等を挙げることができる。 Examples of inorganic components containing P include phosphoric acids such as phosphoric acid, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid and tetraphosphoric acid, salts thereof, ammonium dihydrogen phosphate, and the like. be able to. Examples of inorganic components containing V include ammonium metavanadate (V), potassium metavanadate (V), sodium metavanadate (V), and vanadyl sulfate (IV).
 本実施形態に係る無機系化成処理皮膜層30では、上記のような各種の無機系成分を、単独で、又は、組み合わせて利用することが可能である。また、上記のような各種の無機系成分の含有量についても、適宜調整すればよい。 In the inorganic chemical conversion treatment film layer 30 according to the present embodiment, it is possible to use the various inorganic components described above either singly or in combination. In addition, the content of various inorganic components as described above may also be adjusted as appropriate.
 かかる無機系化成処理皮膜層30の平均厚みdは、0.10μm以上であることが好ましく、0.20μm以上であることがより好ましい。これにより、無機系化成処理皮膜層30を金属板10の表面に均一に形成しつつ、上記のような化成処理皮膜層を設けることによる各種の効果を、安定して発現させることが可能となる。また、無機系化成処理皮膜層30の平均厚みdは、5.00μm以下であることが好ましく、1.00μm以下であることがより好ましい。これにより、無機系化成処理皮膜層30を金属板10の表面に均一に形成しつつ、上記のような化成処理皮膜層を設けることによる各種の効果を、安定して発現させることが可能となる。 The average thickness d2 of the inorganic chemical conversion coating layer 30 is preferably 0.10 μm or more , more preferably 0.20 μm or more. As a result, while uniformly forming the inorganic chemical conversion coating layer 30 on the surface of the metal plate 10, it is possible to stably exhibit the various effects of providing the chemical conversion coating layer as described above. . Also, the average thickness d2 of the inorganic chemical conversion coating layer 30 is preferably 5.00 μm or less, more preferably 1.00 μm or less. As a result, while uniformly forming the inorganic chemical conversion coating layer 30 on the surface of the metal plate 10, it is possible to stably exhibit the various effects of providing the chemical conversion coating layer as described above. .
 また、光触媒層20の平均厚みdに対する、無機系化成処理皮膜層30の平均厚みdの比率(d/d)は、0.3以上であることが好ましく、0.5以上であることがより好ましい。これにより、加工密着性を更に向上させることが可能となる。また、光触媒層20の平均厚みdに対する、無機系化成処理皮膜層30の平均厚みdの比率(d/d)は、12.0以下であることが好ましく、5.0以下であることがより好ましい。これにより、加工密着性を更に向上させることが可能となる。 In addition, the ratio (d 2 /d 1 ) of the average thickness d 2 of the inorganic chemical conversion coating layer 30 to the average thickness d 1 of the photocatalyst layer 20 is preferably 0.3 or more, and is 0.5 or more. It is more preferable to have This makes it possible to further improve the working adhesion. In addition, the ratio (d 2 /d 1 ) of the average thickness d 2 of the inorganic chemical conversion coating layer 30 to the average thickness d 1 of the photocatalyst layer 20 is preferably 12.0 or less, and 5.0 or less. It is more preferable to have This makes it possible to further improve the working adhesion.
 また、本実施形態に係る塗装金属板1は、図1Cに模式的に示したように、光触媒層20と、無機系化成処理皮膜層30と、の間に、例えば各種の着色顔料を含む着色層などをはじめとする、公知の各種の層を更に有していてもよい。 Further, the coated metal plate 1 according to the present embodiment, as schematically shown in FIG. It may further have various known layers, including layers and the like.
 ここで、図1B及び図1Cに示したような場合においても、金属板10の表面から皮膜層の最表面(光触媒層20の最表面でもある。)までの合計厚みd(=d+d+α)は、15.00μm以下とする。これにより、図3に模式的に示したように、入射した光が金属板10の表面(換言すれば、金属板10と光触媒層20との界面)で反射した反射光を、光触媒化合物による光触媒反応に利用することが可能となるため、コストの増加を抑制しつつ、光触媒効果をより向上させることができる。金属板10の表面から皮膜層の最表面までの合計厚みd(=d+d+α)は、好ましくは10.00μm以下であり、より好ましくは7.00μm以下である。 Here, even in the case shown in FIGS. 1B and 1C, the total thickness d T (=d 1 +d 2 +α) shall be 15.00 μm or less. As a result, as schematically shown in FIG. 3, the reflected light reflected by the surface of the metal plate 10 (in other words, the interface between the metal plate 10 and the photocatalyst layer 20) is converted into a photocatalyst by the photocatalyst compound. Since it can be used for the reaction, it is possible to further improve the photocatalytic effect while suppressing an increase in cost. A total thickness d T (=d 1 +d 2 +α) from the surface of the metal plate 10 to the outermost surface of the coating layer is preferably 10.00 μm or less, more preferably 7.00 μm or less.
 また、図1B及び図1Cに示したような場合においても、塗装金属板1を光触媒層20が設けられた側から測定したJIS Z8741:1997で規定される60°鏡面光沢度は、80%以上となる。ここで、合計厚みdが15.00μm以下であり、かつ、60°鏡面光沢度が80%以上であれば、入射した光が金属板10の表面で反射した反射光を、光触媒化合物による光触媒反応に利用しているとみなすことができる。 1B and 1C, the 60° specular gloss defined by JIS Z8741:1997, which is measured from the side on which the photocatalyst layer 20 is provided, of the coated metal plate 1 is 80% or more. becomes. Here, if the total thickness dT is 15.00 μm or less and the 60° specular glossiness is 80% or more, the incident light reflected on the surface of the metal plate 10 is treated as a photocatalyst by the photocatalyst compound. It can be considered that it is used for the reaction.
[有機系化成処理皮膜層を設ける場合]
 図2A及び図2Bは、化成処理皮膜層として有機系成分を含む有機系化成処理皮膜層を設ける場合の、塗装金属板1の層構成を模式的に示した模式図である。
 かかる場合、本実施形態に係る塗装金属板1は、上記のような金属板10と光触媒層20との間に、第3皮膜層の一例としての有機系化成処理皮膜層40と、第4皮膜層の一例としての保護層50と、を有する。
[When providing an organic chemical conversion coating layer]
2A and 2B are schematic views schematically showing the layer structure of the coated metal plate 1 when an organic chemical conversion coating layer containing an organic component is provided as the chemical conversion coating layer.
In this case, the coated metal plate 1 according to the present embodiment includes an organic chemical conversion treatment film layer 40 as an example of a third film layer and a fourth film between the metal plate 10 and the photocatalyst layer 20 as described above. and a protective layer 50 as an example of a layer.
≪有機系化成処理皮膜層40≫
 有機系化成処理皮膜層40は、光触媒層20の下層(より詳細には、金属板10の表面)に位置する層であり、金属板10の表面に付着した油分などの不純物及び表面酸化物を、公知の脱脂工程及び洗浄工程で取り除いた後、化成処理により形成される。
<<Organic chemical conversion treatment film layer 40>>
The organic chemical conversion coating layer 40 is a layer located below the photocatalyst layer 20 (more specifically, the surface of the metal plate 10), and removes impurities such as oil adhering to the surface of the metal plate 10 and surface oxides. , is formed by chemical conversion treatment after removal by known degreasing and washing processes.
 本実施形態に係る有機系化成処理皮膜層40には、例えば、樹脂、シランカップリング剤、ジルコニウム化合物、シリカ、リン酸及びその塩、フッ化物、バナジウム化合物、並びに、タンニン又はタンニン酸からなる群より選択される何れか一つ以上を含有させてもよい。これら物質を含有することで、更に、化成処理液塗布後の成膜性、水分や腐食性イオン等の腐食因子に対する皮膜のバリア性(緻密性)、及び、金属板の表面への皮膜密着性などが向上し、皮膜の耐食性の底上げに寄与する。 The organic chemical conversion treatment film layer 40 according to the present embodiment includes, for example, resins, silane coupling agents, zirconium compounds, silica, phosphoric acid and salts thereof, fluorides, vanadium compounds, and a group consisting of tannin or tannic acid. Any one or more selected from may be contained. By containing these substances, it is possible to further improve the film-forming property after applying the chemical conversion treatment solution, the barrier property (denseness) of the film against corrosion factors such as moisture and corrosive ions, and the film adhesion to the surface of the metal plate. etc., and contributes to raising the corrosion resistance of the film.
 特に、有機系化成処理皮膜層40が、シランカップリング剤、又は、ジルコニウム化合物の何れか一つ以上を含有すると、有機系化成処理皮膜層40内に架橋構造を形成し、金属板表面との結合についても強化するため、皮膜の密着性やバリア性を更に向上させることが可能となる。 In particular, when the organic chemical conversion treatment film layer 40 contains one or more of a silane coupling agent or a zirconium compound, a crosslinked structure is formed in the organic chemical conversion treatment film layer 40, and the surface of the metal plate is formed. Since bonding is also strengthened, it is possible to further improve the adhesion and barrier properties of the film.
 また、有機系化成処理皮膜層40が、シリカ、リン酸及びその塩、フッ化物、又は、バナジウム化合物の何れか一つ以上を含有すると、インヒビターとして機能し、金属板表面に沈殿皮膜や不動態皮膜を形成することで、耐食性を更に向上させることが可能となる。 In addition, when the organic chemical conversion treatment film layer 40 contains at least one of silica, phosphoric acid and its salts, fluoride, or vanadium compound, it functions as an inhibitor, and a precipitated film or passivation film is formed on the surface of the metal plate. By forming a film, it becomes possible to further improve the corrosion resistance.
 以下では、上記のような有機系化成処理皮膜層40が含みうる各構成成分の詳細について、例を挙げながら説明する。 Below, the details of each constituent component that the organic chemical conversion treatment film layer 40 as described above may contain will be described with examples.
[樹脂]
 樹脂としては、例えば、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、フェノール樹脂、アクリル樹脂、ポリオレフィン樹脂等といった、公知の有機樹脂を使用することができる。金属板との密着性を更に高めるためには、分子鎖中に強制部位や極性官能基をもつ樹脂(ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、アクリル樹脂等)の少なくとも一つを使用することが好ましい。樹脂は、単独で用いてもよく、2種以上を併用してもよい。
[resin]
Examples of resins that can be used include known organic resins such as polyester resins, polyurethane resins, epoxy resins, phenol resins, acrylic resins, and polyolefin resins. In order to further improve the adhesion to the metal plate, it is preferable to use at least one resin (polyester resin, urethane resin, epoxy resin, acrylic resin, etc.) having a forced site or a polar functional group in the molecular chain. . The resin may be used alone or in combination of two or more.
 有機系化成処理皮膜層40における樹脂の含有量は、例えば、皮膜固形分に対して、0質量%以上であることが好ましく、1質量%以上であることがより好ましい。これにより、耐食性を向上させることができる。また、有機系化成処理皮膜層40における樹脂の含有量は、例えば、皮膜固形分に対して、85質量%以下であることが好ましく、60質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。樹脂の含有量を85質量%以下とすることで、耐食性以外の皮膜として求められる性能を担保しつつ、皮膜の耐食性を向上させることができる。 The content of the resin in the organic chemical conversion coating layer 40 is, for example, preferably 0% by mass or more, more preferably 1% by mass or more, relative to the solid content of the coating. Thereby, corrosion resistance can be improved. In addition, the content of the resin in the organic chemical conversion coating layer 40 is, for example, preferably 85% by mass or less, more preferably 60% by mass or less, and 40% by mass or less relative to the solid content of the coating. is more preferable. By setting the resin content to 85% by mass or less, it is possible to improve the corrosion resistance of the coating while ensuring the performance required of the coating other than the corrosion resistance.
[シランカップリング剤]
 シランカップリング剤としては、例えば、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、ビニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルメチルジエトキシシラン、ヘキサメチルジシラザン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルメチルジメトキシシラン、γ-アニリノプロピルトリエトキシシラン、γ-アニリノプロピルメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、オクタデシルジメチル[3-(トリメトキシシリル)プロピル]アンモニウムクロライド、オクタデシルジメチル[3-(メチルジメトキシシリル)プロピル]アンモニウムクロライド、オクタデシルジメチル[3-(トリエトキシシリル)プロピル]アンモニウムクロライド、オクタデシルジメチル[3-(メチルジエトキシシリル)プロピル]アンモニウムクロライド、γ-クロロプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン等を挙げることができる。有機系化成処理皮膜層40を形成するための化成処理剤中のシランカップリング剤の添加量は、例えば、2~80g/Lとすることができる。シランカップリング剤の添加量を2g/L以上とすることで、金属板表面との密着性を向上させて、塗膜の加工密着性を向上させることが可能となる。また、シランカップリング剤の添加量を80g/L以下とすることで、化成処理皮膜の凝集力を保持させて、塗膜の加工密着性を向上させることが可能となる。上記に例示したようなシランカップリング剤は、1種で使用してもよく、2種以上を併用してもよい。
[Silane coupling agent]
Silane coupling agents include, for example, γ-(2-aminoethyl)aminopropyltrimethoxysilane, γ-(2-aminoethyl)aminopropylmethyldimethoxysilane, γ-(2-aminoethyl)aminopropyltriethoxysilane. , γ-(2-aminoethyl)aminopropylmethyldiethoxysilane, γ-(2-aminoethyl)aminopropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ- methacryloxypropyltriethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, N-β-(N-vinylbenzylaminoethyl)-γ-aminopropyltrimethoxysilane, N-β-(N-vinylbenzylaminoethyl) -γ-aminopropylmethyldimethoxysilane, N-β-(N-vinylbenzylaminoethyl)-γ-aminopropyltriethoxysilane, N-β-(N-vinylbenzylaminoethyl)-γ-aminopropylmethyldiethoxy Silane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-mercaptopropyltrimethoxysilane , γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldiethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, vinyltriacetoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropylmethyldiethoxysilane, hexamethyldisilazane, γ-anilinopropyltrimethoxysilane, γ-ani linopropylmethyldimethoxysilane, γ-anilinopropyltriethoxysilane, γ-anilinopropylmethyldiethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, octadecyldimethyl [3 -(trimethoxysilyl)propyl]ammonium chloride, octadecyldimethyl[3-(methyldimethoxysilyl)propyl]ammonium chloride, octade sildimethyl[3-(triethoxysilyl)propyl]ammonium chloride, octadecyldimethyl[3-(methyldiethoxysilyl)propyl]ammonium chloride, γ-chloropropylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, methyltrichlorosilane, Examples include dimethyldichlorosilane and trimethylchlorosilane. The addition amount of the silane coupling agent in the chemical conversion treatment agent for forming the organic chemical conversion treatment film layer 40 can be, for example, 2 to 80 g/L. By setting the addition amount of the silane coupling agent to 2 g/L or more, it is possible to improve the adhesion to the surface of the metal plate and improve the processing adhesion of the coating film. Further, by setting the amount of the silane coupling agent added to 80 g/L or less, it is possible to maintain the cohesive force of the chemical conversion film and improve the processing adhesion of the coating film. The silane coupling agents as exemplified above may be used alone or in combination of two or more.
[ジルコニウム化合物]
 ジルコニウム化合物としては、例えば、ジルコニウムノルマルプロピレート、ジルコニウムノルマルブチレート、ジルコニウムテトラアセチルアセトネート、ジルコニウムモノアセチルアセトネート、ジルコニウムビスアセチルアセトネート、ジルコニウムモノエチルアセトアセテート、ジルコニウムアセチルアセトネートビスエチルアセトアセテート、ジルコニウムアセテート、ジルコニウムモノステアレート、炭酸ジルコニウム、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムカリウム、炭酸ジルコニウムナトリウム等を挙げることができる。有機系化成処理皮膜層40を形成するための化成処理剤中のジルコニウム化合物の添加量は、例えば、2~80g/Lとすることができる。ジルコニウム化合物の添加量を2g/L以上とすることで、金属板表面との密着性を向上させて、塗膜の加工密着性を向上させることが可能となる。また、ジルコニウム化合物の添加量を80g/L以下とすることで、化成処理皮膜の凝集力を保持させて、塗膜の加工密着性を向上させることが可能となる。かかるジルコニウム化合物は、単独で用いてもよく、2種以上を併用してもよい。
[Zirconium compound]
Examples of zirconium compounds include zirconium normal propylate, zirconium normal butyrate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium bisacetylacetonate, zirconium monoethylacetoacetate, zirconium acetylacetonate bisethylacetoacetate, Zirconium acetate, zirconium monostearate, zirconium carbonate, ammonium zirconium carbonate, potassium zirconium carbonate, sodium zirconium carbonate and the like can be mentioned. The amount of the zirconium compound added in the chemical conversion treatment agent for forming the organic chemical conversion treatment film layer 40 can be, for example, 2 to 80 g/L. By setting the addition amount of the zirconium compound to 2 g/L or more, it is possible to improve the adhesion to the surface of the metal plate and to improve the processing adhesion of the coating film. Further, by setting the amount of the zirconium compound to be added to 80 g/L or less, it is possible to maintain the cohesive force of the chemical conversion film and improve the processing adhesion of the coating film. Such zirconium compounds may be used alone or in combination of two or more.
[シリカ]
 シリカとしては、例えば、日産化学株式会社製の「スノーテックスN」、「スノーテックスC」、「スノーテックスUP」、「スノーテックスPS」、株式会社ADEKA製の「アデライトAT-20Q」等の市販のシリカゲル、又は、日本アエロジル株式会社製のアエロジル#300等の粉末シリカを用いることができる。シリカは、必要とされる塗装金属板の性能に応じて、適宜選択することができる。有機系化成処理皮膜層40を形成するための化成処理剤中のシリカの添加量は、1~40g/Lとすることが好ましい。シリカの添加量を1g/L以上とすることで、塗膜の加工密着性を向上させることが可能となる。また、シリカの添加量を40g/L以下とすることで、コストの増加を抑制しつつ、加工密着性及び耐食性の効果の両立を図ることが可能となる。
[silica]
Examples of silica include commercially available products such as "Snowtex N", "Snowtex C", "Snowtex UP", and "Snowtex PS" manufactured by Nissan Chemical Industries, Ltd., and "Adelite AT-20Q" manufactured by ADEKA Corporation. or powdered silica such as Aerosil #300 manufactured by Nippon Aerosil Co., Ltd. can be used. Silica can be appropriately selected according to the required performance of the coated metal sheet. The amount of silica added to the chemical conversion agent for forming the organic chemical conversion coating layer 40 is preferably 1 to 40 g/L. By setting the amount of silica to be added to 1 g/L or more, it is possible to improve the processing adhesion of the coating film. Further, by setting the amount of silica to be added to 40 g/L or less, it is possible to achieve both effects of working adhesion and corrosion resistance while suppressing an increase in cost.
[リン酸及びその塩]
 リン酸及びその塩としては、例えば、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等のリン酸類及びそれらの塩、リン酸三アンモニウム、リン酸水素二アンモニウム等のアンモニウム塩、アミノトリ(メチレンホスホン酸)、1-ヒドロキシエチリデン-1,1-ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)等のホスホン酸類及びそれらの塩、フィチン酸等の有機リン酸類及びそれらの塩等が挙げられる。なお、リン酸の塩として、アンモニウム塩以外の塩としては、Na、Mg、Al、K、Ca、Mn、Ni、Zn、Fe等との金属塩が挙げられる。リン酸及びその塩は、単独で用いてもよく、2種以上を併用してもよい。
[Phosphoric acid and its salts]
Examples of phosphoric acid and salts thereof include phosphoric acids such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid and tetraphosphoric acid and salts thereof, ammonium salts such as triammonium phosphate and diammonium hydrogen phosphate, Phosphonic acids such as aminotri(methylenephosphonic acid), 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra(methylenephosphonic acid), diethylenetriaminepenta(methylenephosphonic acid) and their salts, organic phosphoric acids such as phytic acid and salts thereof. Examples of salts of phosphoric acid other than ammonium salts include metal salts with Na, Mg, Al, K, Ca, Mn, Ni, Zn, Fe, and the like. Phosphoric acid and its salt may be used alone or in combination of two or more.
 なお、リン酸及びその塩の含有量は、皮膜固形分に対して、0質量%以上であることが好ましく、1質量%以上であることがより好ましい。また、リン酸及びその塩の含有量は、皮膜固形分に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。リン酸及びその塩の含有量が20質量%以下となることで、皮膜の脆化を防止でき、塗装金属板を成形加工する際の皮膜の加工密着性の低下を防止することが可能となる。 The content of phosphoric acid and its salt is preferably 0% by mass or more, more preferably 1% by mass or more, relative to the solid content of the film. Also, the content of phosphoric acid and its salt is preferably 20% by mass or less, more preferably 10% by mass or less, relative to the coating solid content. When the content of phosphoric acid and its salts is 20% by mass or less, embrittlement of the film can be prevented, and deterioration of the working adhesion of the film during molding of the coated metal sheet can be prevented. .
[フッ化物]
 フッ化物としては、例えば、ジルコンフッ化アンモニウム、ケイフッ化アンモニウム、チタンフッ化アンモニウム、フッ化ナトリウム、フッ化カリウム、フッ化カルシウム、フッ化リチウム、チタンフッ化水素酸、ジルコンフッ化水素酸等を挙げることができる。かかるフッ化物は、単独で用いてもよく、2種以上を併用してもよい。
[Fluoride]
Examples of fluorides include ammonium zircon fluoride, ammonium silicofluoride, ammonium titanium fluoride, sodium fluoride, potassium fluoride, calcium fluoride, lithium fluoride, titanium hydrofluoric acid, and zircon hydrofluoric acid. . Such fluorides may be used alone or in combination of two or more.
 なお、フッ化物の含有量は、皮膜固形分に対して、0質量%以上であることが好ましく、1質量%以上であることがより好ましい。また、フッ化物の含有量は、皮膜固形分に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。フッ化物の含有量が20質量%以下となることで、皮膜の脆化を防止でき、塗装金属板を成形加工する際の皮膜の加工密着性の低下を防止することが可能となる。 The content of fluoride is preferably 0% by mass or more, more preferably 1% by mass or more, relative to the solid content of the film. The content of fluoride is preferably 20% by mass or less, more preferably 10% by mass or less, relative to the solid content of the film. When the content of fluoride is 20% by mass or less, embrittlement of the film can be prevented, and deterioration of working adhesion of the film during molding of the coated metal sheet can be prevented.
[バナジウム化合物]
 バナジウム化合物としては、例えば、五酸化バナジウム、メタバナジン酸、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、オキシ三塩化バナジウム等の5価のバナジウム化合物を還元剤で2~4価に還元したバナジウム化合物、三酸化バナジウム、二酸化バナジウム、オキシ硫酸バナジウム、オキシ蓚酸バナジウム、バナジウムオキシアセチルアセトネート、バナジウムアセチルアセトネート、三塩化バナジウム、リンバナドモリブデン酸、硫酸バナジウム、二塩化バナジウム、酸化バナジウム等の酸化数4~2価のバナジウム化合物等を挙げることができる。かかるバナジウム化合物は、単独で用いてもよく、2種以上を併用してもよい。
[Vanadium compound]
Examples of vanadium compounds include vanadium pentoxide, metavanadic acid, ammonium metavanadate, sodium metavanadate, vanadium oxytrichloride, and other vanadium compounds obtained by reducing pentavalent vanadium compounds to divalent to tetravalent vanadium trioxide. , vanadium dioxide, vanadium oxysulfate, vanadium oxyoxalate, vanadium oxyacetylacetonate, vanadium acetylacetonate, vanadium trichloride, phosphovanadomolybdic acid, vanadium sulfate, vanadium dichloride, vanadium oxide, etc. A vanadium compound etc. can be mentioned. Such vanadium compounds may be used alone or in combination of two or more.
 なお、バナジウム化合物の含有量は、皮膜固形分に対して、0質量%以上であることが好ましく、1質量%以上であることがより好ましい。また、バナジウム化合物の含有量は、皮膜固形分に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。バナジウム化合物の含有量が20質量%以下となることで、皮膜の脆化を防止でき、塗装金属板を成形加工する際の皮膜の加工密着性の低下を防止することが可能となる。 The content of the vanadium compound is preferably 0% by mass or more, more preferably 1% by mass or more, relative to the solid content of the film. Moreover, the content of the vanadium compound is preferably 20% by mass or less, more preferably 10% by mass or less, relative to the solid content of the film. When the content of the vanadium compound is 20% by mass or less, embrittlement of the film can be prevented, and deterioration of working adhesion of the film during molding of the coated metal sheet can be prevented.
[タンニン又はタンニン酸]
 タンニン又はタンニン酸は、加水分解できるタンニン、縮合タンニンのいずれも用いることができる。タンニン及びタンニン酸の例としては、ハマメタタンニン、五倍子タンニン、没食子タンニン、ミロバランのタンニン、ジビジビのタンニン、アルガロビラのタンニン、バロニアのタンニン、カテキン等を挙げることができる。有機系化成処理皮膜層40を形成するための化成処理剤中のタンニン又はタンニン酸の添加量は、2~80g/Lとすることができる。タンニン又はタンニン酸の添加量を2g/L以上とすることで、金属板表面との密着性を向上させて、塗膜の加工密着性を向上させることができる。また、タンニン又はタンニン酸の添加量の添加量を80g/L以下とすることで、化成処理皮膜の凝集力を保持させて、塗膜の加工密着性を向上させることができる。
[Tannin or tannic acid]
Both hydrolyzable tannin and condensed tannin can be used as tannin or tannic acid. Examples of tannins and tannic acids include hamameta tannins, quintuple tannins, gallic tannins, myrobalan tannins, divisibi tannins, algarovira tannins, valonia tannins, catechins, and the like. The amount of tannin or tannic acid added to the chemical conversion agent for forming the organic chemical conversion coating layer 40 can be 2 to 80 g/L. By setting the amount of tannin or tannic acid added to 2 g/L or more, the adhesion to the metal plate surface can be improved, and the processing adhesion of the coating film can be improved. Further, by setting the amount of tannin or tannic acid to be added to 80 g/L or less, the cohesive force of the chemical conversion film can be maintained, and the processing adhesion of the coating film can be improved.
 また、有機系化成処理皮膜層40を形成するための化成処理剤中には、性能が損なわれない範囲内で、pH調整のために酸、アルカリ等を添加してもよい。 Also, an acid, an alkali, or the like may be added to the chemical conversion treatment agent for forming the organic chemical conversion treatment film layer 40 for pH adjustment within a range that does not impair the performance.
 かかる有機系化成処理皮膜層40の平均厚みdは、0.10μm以上であることが好ましく、0.20μm以上であることがより好ましく、0.30μm以上であることが更に好ましい。これにより、有機系化成処理皮膜層40を金属板10の表面に均一に形成しつつ、上記のような化成処理皮膜層を設けることによる各種の効果を、安定して発現させることが可能となる。また、有機系化成処理皮膜層40の平均厚みdは、5.00μm以下であることが好ましく、4.00μm以下であることがより好ましく、3.00μm以下であることが更に好ましい。これにより、有機系化成処理皮膜層40を金属板10の表面に均一に形成しつつ、上記のような化成処理皮膜層を設けることによる各種の効果を、安定して発現させることが可能となる。 The average thickness d3 of the organic chemical conversion coating layer 40 is preferably 0.10 μm or more, more preferably 0.20 μm or more, and even more preferably 0.30 μm or more. As a result, while the organic chemical conversion coating layer 40 is formed uniformly on the surface of the metal plate 10, various effects of providing the chemical conversion coating layer as described above can be stably exhibited. . Also, the average thickness d3 of the organic chemical conversion coating layer 40 is preferably 5.00 μm or less, more preferably 4.00 μm or less, and even more preferably 3.00 μm or less. As a result, while the organic chemical conversion coating layer 40 is formed uniformly on the surface of the metal plate 10, various effects of providing the chemical conversion coating layer as described above can be stably exhibited. .
 また、光触媒層20の平均厚みdに対する、有機系化成処理皮膜層40の平均厚みdの比率(d/d)は、0.5以上であることが好ましく、2.0以上であることがより好ましい。これにより、加工部密着性を更に向上させることが可能となる。また、光触媒層20の平均厚みdに対する、有機系化成処理皮膜層40の平均厚みdの比率(d/d)は、20.0以下であることが好ましく、10.0以下であることがより好ましい。これにより、加工部密着性を更に向上させることが可能となる。 In addition , the ratio ( d3/d1) of the average thickness d3 of the organic chemical conversion coating layer 40 to the average thickness d1 of the photocatalyst layer 20 is preferably 0.5 or more, and 2.0 or more. It is more preferable to have This makes it possible to further improve the adhesion of the processed portion. In addition , the ratio ( d3/d1) of the average thickness d3 of the organic chemical conversion coating layer 40 to the average thickness d1 of the photocatalyst layer 20 is preferably 20.0 or less, and 10.0 or less. It is more preferable to have This makes it possible to further improve the adhesion of the processed portion.
≪保護層50≫
 保護層50は、光触媒層20と有機系化成処理皮膜層40との間(より好ましくは、光触媒層20の直下)に設けられる層であり、光触媒層20に含有される光触媒化合物の酸化力から、光触媒層20よりも下方に位置する層を保護するために設けられる。
<<Protective layer 50>>
The protective layer 50 is a layer provided between the photocatalyst layer 20 and the organic chemical conversion treatment film layer 40 (more preferably directly under the photocatalyst layer 20), and is protected from the oxidizing power of the photocatalyst compound contained in the photocatalyst layer 20. , are provided to protect layers located below the photocatalyst layer 20 .
 ここで、保護層50の具体的な成分については、公知の各種の成分を含有することが可能である。このような成分として、例えば、シリカ、ジルコニア等の無機系酸化物を挙げることができる。また、かかる成分の具体的な含有量についても、適宜調整すればよい。 Here, the specific components of the protective layer 50 can contain various known components. Examples of such components include inorganic oxides such as silica and zirconia. Moreover, the specific contents of these components may also be adjusted as appropriate.
 なお、保護層50についても、光触媒層20と同様に、光透過性に優れるものであることが好ましい。光透過性に優れる保護層50を実現するために、例えば、光触媒層20における光触媒化合物以外の成分と同一の成分を用いることが可能である。 It should be noted that the protective layer 50 also preferably has excellent light transmittance, like the photocatalyst layer 20 . In order to realize the protective layer 50 having excellent light transmittance, it is possible to use, for example, the same components as the components other than the photocatalyst compound in the photocatalyst layer 20 .
 かかる保護層50の平均厚みdは、0.05μm以上であることが好ましく、0.20μm以上であることがより好ましい。これにより、加工性の低下を抑制しつつ、光触媒化合物の酸化力から、保護層50よりも下方に位置する層を確実に保護することが可能となる。また、保護層50の平均厚みdは、5.00μm以下であることが好ましく、0.60μm以下であることがより好ましい。これにより、加工性の低下を抑制しつつ、光触媒化合物の酸化力から、保護層50よりも下方に位置する層を確実に保護することが可能となる。 The average thickness d4 of the protective layer 50 is preferably 0.05 μm or more, more preferably 0.20 μm or more. This makes it possible to reliably protect the layers located below the protective layer 50 from the oxidizing power of the photocatalyst compound while suppressing deterioration in workability. Also, the average thickness d4 of the protective layer 50 is preferably 5.00 μm or less, more preferably 0.60 μm or less. This makes it possible to reliably protect the layers located below the protective layer 50 from the oxidizing power of the photocatalyst compound while suppressing deterioration in workability.
 また、光触媒層20の平均厚みdに対する、保護層50の平均厚みdの比率(d/d)は、0.3以上であることが好ましく、1.0以上であることがより好ましい。これにより、光触媒層20による有機系化成処理皮膜層40の分解を確実に抑制することが可能となる。また、光触媒層20の平均厚みdに対する、保護層50の平均厚みdの比率(d/d)は、20.0以下であることが好ましく、3.0以下であることがより好ましい。これにより、光触媒層20による有機系化成処理皮膜層40の分解を確実に抑制することが可能となる。 In addition, the ratio (d 4 /d 1 ) of the average thickness d 4 of the protective layer 50 to the average thickness d 1 of the photocatalyst layer 20 is preferably 0.3 or more, more preferably 1.0 or more. preferable. This makes it possible to reliably suppress the decomposition of the organic chemical conversion coating layer 40 by the photocatalyst layer 20 . In addition, the ratio (d 4 /d 1 ) of the average thickness d 4 of the protective layer 50 to the average thickness d 1 of the photocatalyst layer 20 is preferably 20.0 or less, more preferably 3.0 or less. preferable. This makes it possible to reliably suppress the decomposition of the organic chemical conversion coating layer 40 by the photocatalyst layer 20 .
 また、本実施形態に係る塗装金属板1は、図2Bに模式的に示したように、光触媒層20及び保護層50と、有機系化成処理皮膜層40と、の間に、例えば各種の着色顔料を含む着色層などをはじめとする、公知の各種の層を更に有していてもよい。 In addition, as schematically shown in FIG. 2B, the coated metal plate 1 according to the present embodiment has various colors, for example, between the photocatalyst layer 20 and the protective layer 50 and the organic chemical conversion coating layer 40. It may further have various known layers including a colored layer containing a pigment.
 ここで、図2A及び図2Bに示したような場合においても、金属板10の表面から皮膜層の最表面(光触媒層20の最表面でもある。)までの合計厚みd(=d+d+d+α)は、15.00μm以下とする。これにより、図3に模式的に示したように、入射した光が金属板10の表面(換言すれば、金属板10と光触媒層20との界面)で反射した反射光を、光触媒化合物による光触媒反応に利用することが可能となるため、コストを抑制しつつ、光触媒効果をより向上させることができる。金属板10の表面から皮膜層の最表面までの合計厚みd(=d+d+d+α)は、好ましくは10.00μm以下であり、より好ましくは7.00μm以下である。 Here, even in the case shown in FIGS. 2A and 2B, the total thickness d T (=d 1 +d 3 +d 4 +α) is 15.00 μm or less. As a result, as schematically shown in FIG. 3, the reflected light reflected by the surface of the metal plate 10 (in other words, the interface between the metal plate 10 and the photocatalyst layer 20) is converted into a photocatalyst by the photocatalyst compound. Since it can be used for reactions, it is possible to further improve the photocatalytic effect while suppressing costs. A total thickness d T (=d 1 +d 3 +d 4 +α) from the surface of the metal plate 10 to the outermost surface of the coating layer is preferably 10.00 μm or less, more preferably 7.00 μm or less.
 また、図2A及び図2Bに示したような場合においても、光触媒層20が設けられた側から測定したJIS Z8741:1997で規定される60°鏡面光沢度は、80%以上となる。ここで、合計厚みdが15.00μm以下であり、かつ、60°鏡面光沢度が80%以上であれば、入射した光が金属板10の表面で反射した反射光を、光触媒化合物による光触媒反応に利用しているとみなすことができる。 2A and 2B, the 60° specular glossiness defined by JIS Z8741:1997 measured from the side where the photocatalyst layer 20 is provided is 80% or more. Here, if the total thickness dT is 15.00 μm or less and the 60° specular glossiness is 80% or more, the incident light reflected on the surface of the metal plate 10 is treated as a photocatalyst by the photocatalyst compound. It can be considered that it is used for the reaction.
 なお、図1A~図3では、金属板10の片側の面上に、光触媒層20をはじめとする各層を設ける場合について図示しているが、光触媒層20をはじめとする各層は、金属板10の両面に設けてもよい。この場合、金属板10の表面から光触媒層20の表面までの合計厚みdは、塗装金属板1の各面で、15.00μm以下となるようにする。また、60°鏡面光沢度についても、塗装金属板1の各面で、80%以上となる。また、先だって説明した無機系化成処理皮膜層30を設けた際に、上記のような保護層50を形成してもよい。 1A to 3 illustrate the case where each layer including the photocatalyst layer 20 is provided on one side surface of the metal plate 10, but each layer including the photocatalyst layer 20 is the metal plate 10. may be provided on both sides of the In this case, the total thickness dT from the surface of the metal plate 10 to the surface of the photocatalyst layer 20 on each surface of the coated metal plate 1 is set to 15.00 μm or less. Also, the 60° specular glossiness is 80% or more on each side of the coated metal plate 1 . Moreover, when the inorganic chemical conversion coating layer 30 described above is provided, the protective layer 50 as described above may be formed.
 以上、図1A~図3を参照しながら、本実施形態に係る塗装金属板について、詳細に説明した。 The coated metal plate according to the present embodiment has been described in detail above with reference to FIGS. 1A to 3.
<各層の平均厚みの測定方法について>
 ここで、光触媒層をはじめとする各層の平均厚みは、着目する層を断面方向から顕微鏡で観察することで測定することが可能である。断面方向から観察する試料の作製方法としては、例えば、樹脂に埋め込み、観察面を研磨する方法、FIB加工する方法、ミクロトーム法など公知の方法を用いることができる。また、顕微鏡の種類としては、SEM、TEM等の公知の装置を用いることができる。
<Method for measuring the average thickness of each layer>
Here, the average thickness of each layer including the photocatalyst layer can be measured by observing the layer of interest with a microscope from the cross-sectional direction. As a method for preparing a sample to be observed from the cross-sectional direction, known methods such as embedding in resin and polishing the observation surface, FIB processing, and microtome method can be used. Further, as the type of microscope, known devices such as SEM and TEM can be used.
(塗装金属板の製造方法について)
 以上説明したような本実施形態に係る塗装金属板は、母材となる金属板の表面に対して、必要に応じて洗浄等の各種の前処理を施したうえで、光触媒層を形成するための光触媒処理剤や、化成処理皮膜層を形成するための化成処理剤や、保護層を形成するための保護処理剤を、所望の層構成となるように塗布した後、乾燥・焼き付けることで製造することができる。
(About manufacturing method of coated metal plate)
In the coated metal plate according to the present embodiment as described above, the surface of the metal plate serving as the base material is subjected to various pretreatments such as cleaning as necessary, and then the photocatalyst layer is formed. The photocatalyst treatment agent, the chemical conversion treatment agent for forming the chemical conversion coating layer, and the protective treatment agent for forming the protective layer are applied to form the desired layer structure, and then dried and baked. can do.
 ここで、各種塗料の塗布は、一般に公知の塗布方法、例えば、ロールコート、カーテンフローコート、エアースプレー、エアーレススプレー、浸漬、バーコート、刷毛塗りなどで行うことができる。特に本製品の特徴である薄膜で安定的に塗装可能なロールコートが好ましい。 Here, various coating materials can be applied by generally known coating methods such as roll coating, curtain flow coating, air spray, airless spray, immersion, bar coating, and brush coating. Particularly preferred is roll coating, which is a feature of this product and enables stable coating with a thin film.
 また、乾燥・焼き付けの条件については、特に限定されるものではなく、用いる塗料等に応じて適宜設定すればよい。 In addition, the conditions for drying and baking are not particularly limited, and may be set appropriately according to the paint used.
 以下では、実施例及び比較例を示しながら、本発明に係る塗装金属板について具体的に説明する。なお、以下に示す実施例は、本発明に係る塗装金属板の一例にすぎず、本発明に係る塗装金属板が下記の例に限定されるものではない。 The coated metal sheet according to the present invention will be specifically described below while showing examples and comparative examples. The examples shown below are merely examples of the coated metal sheet according to the present invention, and the coated metal sheet according to the present invention is not limited to the following examples.
 母材となる金属板として、以下の表1に示した8種類の金属板を準備した。なお、表1において、SD、ZL、GI、GL、AL、GAと表した6種類の金属板は、鋼板を基材とする各種のめっき鋼板である。各金属板の板厚、並びに、各めっき鋼板のめっき組成及び付着量/規格は、以下の表1の通りである。  Eight types of metal plates shown in Table 1 below were prepared as base metal plates. In Table 1, the six types of metal sheets represented by SD, ZL, GI, GL, AL, and GA are various plated steel sheets using steel sheets as base materials. The plate thickness of each metal plate, and the plating composition and coating amount/standard of each plated steel plate are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 光触媒活性を有する化合物(光触媒化合物)として、以下の表2に示した7種類の化合物を準備した。いずれの光触媒化合物も、市販されているものを用いた。担持金属及び平均粒径についても、表2に併記した。 As compounds having photocatalytic activity (photocatalytic compounds), seven types of compounds shown in Table 2 below were prepared. Any photocatalyst compound used what is marketed. The supported metals and average particle diameters are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<無機系/有機系化成処理剤>
 使用した無機系化成処理皮膜、有機系化成処理皮膜を形成するための水系塗料(化成処理剤)の原料、及び、乾燥皮膜中の濃度を、以下の表3に示した。各成分濃度が乾燥皮膜中で所定の濃度となるように、添加量を調整した。処理剤の固形分濃度は、無機系化成処理皮膜では10質量%となり、有機系化成処理皮膜では20質量%となるように、イオン交換水を加えて調整した。各処理剤を、以下の表4-1、表4-2に示す乾燥膜厚となるように、塗布した。その後、金属板到達温度が150℃となるように誘導加熱炉で乾燥させ、その後、スプレーで水冷処理した。
<Inorganic/organic chemical conversion treatment agent>
Table 3 below shows the raw materials of the water-based paint (chemical conversion treatment agent) for forming the inorganic chemical conversion treatment film and the organic chemical conversion treatment film used, and the concentration in the dry film. The amount added was adjusted so that the concentration of each component in the dry film would be a predetermined concentration. The solid concentration of the treatment agent was adjusted by adding ion-exchanged water so that the inorganic chemical conversion treatment film had a solid content concentration of 10 mass % and the organic chemical conversion treatment film had a solid content concentration of 20 mass %. Each treatment agent was applied so as to have a dry film thickness shown in Tables 4-1 and 4-2 below. After that, the metal plate was dried in an induction heating furnace so that the reaching temperature of the metal plate was 150° C., and then water-cooled by spraying.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<光触媒処理剤、保護処理剤>
 使用した光触媒処理剤、及び、保護処理剤の作成方法について説明する。
 保護処理剤は、貯蔵安定性を考慮して、固形分濃度が8質量%となるように調整した。濃度は、n-ブタノールで希釈することで、調整した。光触媒処理剤は、表2に示した化合物を、以下の保護処理剤に所定量加えることで、作製した。光触媒化合物の固形分濃度は、以下の表4-1、表4-2に示した通りである。
<Photocatalytic agent, protective agent>
The photocatalyst treatment agent used and the method for preparing the protective treatment agent will be described.
The protective treatment agent was adjusted to have a solid concentration of 8% by mass in consideration of storage stability. The concentration was adjusted by diluting with n-butanol. The photocatalyst treatment agent was prepared by adding a predetermined amount of the compound shown in Table 2 to the following protective treatment agent. The solid content concentration of the photocatalyst compound is as shown in Tables 4-1 and 4-2 below.
(1)保護皮膜用処理剤(Si系):テトラエトキシシラン(22.5質量部)と、メタクリルオキシプロピルトリメトキシシラン(2.8質量部)と、n-ブタノール(26質量部)と、を混合し、60℃で2時間攪拌した。この混合物を攪拌した状態で、26質量%の塩酸(3質量部)とn-ブタノールの混合液(26質量部)を1滴/秒ずつ滴下した。その後、攪拌したまま60℃で2時間保持し、処理剤を得た。一連の操作は、窒素雰囲気中で実施した。 (1) Protective film treatment agent (Si-based): tetraethoxysilane (22.5 parts by mass), methacryloxypropyltrimethoxysilane (2.8 parts by mass), n-butanol (26 parts by mass), were mixed and stirred at 60° C. for 2 hours. While this mixture was stirred, a mixture of 26% by mass hydrochloric acid (3 parts by mass) and n-butanol (26 parts by mass) was added dropwise at a rate of 1 drop/second. After that, the mixture was kept at 60° C. for 2 hours with stirring to obtain a treating agent. A series of operations were performed in a nitrogen atmosphere.
(2)保護皮膜用処理剤(Zr系):ジルコニウムn-ブトキシド(34.5質量部)と、n-ブタノール(11.6質量部)と、1,5-ジアミノペンタン(0.5質量部)と、硝酸イットリウム(2.8質量部)と、を混合し、1時間攪拌した。その後、氷酢酸(4.8質量部)を加え、40時間攪拌した。その後、濃硝酸(0.6質量部)を1滴/秒ずつ滴下し、2時間攪拌して処理剤を得た。一連の操作は、窒素雰囲気中で実施した。 (2) Protective film treatment agent (Zr-based): zirconium n-butoxide (34.5 parts by mass), n-butanol (11.6 parts by mass), and 1,5-diaminopentane (0.5 parts by mass) ) and yttrium nitrate (2.8 parts by mass) were mixed and stirred for 1 hour. After that, glacial acetic acid (4.8 parts by mass) was added, and the mixture was stirred for 40 hours. After that, concentrated nitric acid (0.6 parts by mass) was added dropwise at a rate of 1 drop/second and stirred for 2 hours to obtain a treating agent. A series of operations were performed in a nitrogen atmosphere.
 以上示したような金属板及び光触媒化合物を用いて、以下の表4-1、表4-2に示したような構成を有する塗装金属板を、ロールコートにより製造した。なお、各層は、金属板の片面に形成した。また、一部の塗装金属板については、金属板の表面に意匠性加工を施し、ヘアライン模様を形成した。また、一部の塗装金属板については、Sbを0.1質量%、かつ、Alを0.2質量%含有した溶融亜鉛めっき浴を用い、溶融亜鉛めっきの凝固速度を調節することで、スパングル模様を形成しためっき鋼板を基材に用いた。 Using the metal plate and the photocatalyst compound shown above, coated metal plates having the configurations shown in Tables 4-1 and 4-2 below were produced by roll coating. Each layer was formed on one side of the metal plate. Also, for some of the coated metal plates, the surface of the metal plate was subjected to design processing to form a hairline pattern. In addition, for some painted metal sheets, a hot-dip galvanizing bath containing 0.1% by mass of Sb and 0.2% by mass of Al is used, and by adjusting the solidification speed of the hot-dip galvanizing, spangle A patterned plated steel sheet was used as the substrate.
 なお、上記のような塗装金属板における各層の平均膜厚は、得られた塗装金属板を樹脂に埋め込み、断面を研磨することで得られた観察面を、顕微鏡により観察することで測定した。また、60°鏡面光沢度は、JIS Z8741:1997準拠した光沢度計(スガ試験機社製UGV-6P)により測定した。 The average film thickness of each layer in the coated metal plate as described above was measured by embedding the obtained coated metal plate in resin and observing the observation surface obtained by polishing the cross section with a microscope. In addition, the 60° specular gloss was measured with a gloss meter (UGV-6P manufactured by Suga Test Instruments Co., Ltd.) conforming to JIS Z8741:1997.
 得られた塗装金属板について、抗ウイルス性、加工密着性、及び、耐食性の観点から評価を行った。詳細な評価方法は、以下の通りである。 The obtained coated metal plate was evaluated from the viewpoint of antiviral properties, processing adhesion, and corrosion resistance. Detailed evaluation methods are as follows.
<抗ウイルス性>
 抗ウイルス性については、抗菌製品技術協議会が規定する抗ウイルス基準に則り、以下のような抗ウイルス試験により、ウイルス感染価を測定することで検証した。より詳細には、各塗装金属板の評価面を上にしてシャーレに載置し、A型インフルエンザウイルスを含むウイルス懸濁液を、評価面上に滴下した。その後、塗装金属板上にフィルムをかぶせてウイルス懸濁液を評価面全面に密着させた後、シャーレの蓋をかぶせた。かかるシャーレを、一般的な事務所の室内を模擬して、1000ルクスの照度を有する25℃の室内で、24時間静置した。その後、フィルム表面と、評価面表面のウイルスを洗浄し、得られた洗浄液中のウイルス感染価(単位:PFU/cm、PFU:Plaque Forming Units)を、プラーク測定法により測定した。
<Antiviral properties>
The antiviral properties were verified by measuring the virus infectivity titer through the following antiviral test in accordance with the antiviral standards stipulated by the Antimicrobial Product Technology Council. More specifically, each coated metal plate was placed on a petri dish with the evaluation surface facing up, and a virus suspension containing influenza A virus was dropped onto the evaluation surface. After that, the coated metal plate was covered with a film to bring the virus suspension into close contact with the entire surface to be evaluated, and then the petri dish was covered with a lid. The petri dish was allowed to stand for 24 hours in a room at 25° C. with an illumination of 1000 lux, simulating a room in a general office. After that, the film surface and the evaluation surface were washed to remove viruses, and the virus infectivity titer (unit: PFU/cm 2 , PFU: Plaque Forming Units) in the obtained washing solution was measured by the plaque measurement method.
 塗装金属板とは別個に、光触媒層を設けていない各金属板についても、同様に抗ウイルス試験を行い、光触媒層を設けていない金属板のウイルス感染価と比較して、塗装金属板のウイルス感染価がどの程度減少したかを、活性値として評価した。ウイルスが10以上減少していれば(換言すれば、活性値が1×10以上であれば)、抗菌製品技術協議会が規定する認定シールの使用が許可されることに鑑み、得られた活性値が1×10以上であったものを、合格と判断した。なお、以下の表5では、得られた活性値を対数で表した値を示している。 Separately from the painted metal plate, each metal plate without a photocatalyst layer was also subjected to the same antiviral test. The extent to which the infectious titer decreased was evaluated as the activity value. If the virus is reduced by 10 2 or more (in other words, if the activity value is 1 × 10 2 or more), the use of the certified seal stipulated by the Antimicrobial Product Technology Council is permitted. Those with an activity value of 1×10 2 or more were judged to be acceptable. Table 5 below shows the logarithmic values of the obtained activity values.
<加工密着性>
 供試材に0T曲げ(180°折り曲げ)加工を施し、折り曲げ部外側の被膜を粘着テープ(ニチバン社製セロテープ(登録商標)テープ幅15mm)で剥離したのち、テープ側への被膜付着状況を観察した。そして、加工密着性を下記の評価基準で評価した。かかる密着性試験において、合格レベルは3以上とした。具体的には、評点が4以上の場合、密着性に優れ、3以上は許容できる(合格レベルである)と判断した。
<Processing Adhesion>
After applying 0T bending (180° bending) processing to the test material and peeling off the film on the outside of the bent part with adhesive tape (Nichiban Co., Ltd. Sellotape (registered trademark) tape width 15 mm), observe the state of film adhesion to the tape side. did. Then, the processing adhesion was evaluated according to the following evaluation criteria. In this adhesion test, the passing level was 3 or higher. Specifically, when the score was 4 or more, it was judged that the adhesiveness was excellent, and 3 or more was judged to be acceptable (acceptable level).
(評価基準)
 5:テープ側に被膜付着無し
 4:テープ側に数点の被膜剥離ある状態で、鋼板側の剥離長が、供試材の片面の加工部の総長に対して5%未満
 3:テープ側に数点の被膜剥離ある状態で、鋼板側の剥離長が、供試材の片面の加工部の総長に対して5%以上、10%未満
 2:テープ側に被膜剥離あり、鋼板側の剥離長が、供試材の片面の加工部の総長に対して10%以上、20%未満
 1:テープ側に被膜剥離あり、鋼板側の剥離長が、供試材の片面の加工部の総長に対して20%以上
(Evaluation criteria)
5: No coating adhered to the tape side 4: The peeled length on the steel plate side is less than 5% of the total length of the processed part on one side of the test material in a state where several points of the coating are peeled off on the tape side 3: On the tape side The peeled length on the steel plate side is 5% or more and less than 10% with respect to the total length of the processed part on one side of the test material with several peeled coatings 2: There is peeled coating on the tape side, and the peeled length on the steel plate side is 10% or more and less than 20% of the total length of the processed part on one side of the test material. 20% or more
<耐食性>
 供試材の端面をテープシールしてJIS Z 2371に準拠した塩水噴霧試験(SST)を72時間行った。そして、平面部分の錆発生状況を試験終了後に観察し、下記の評価基準で耐食性を評価した。合格レベルは3以上とした。
<Corrosion resistance>
A salt spray test (SST) in accordance with JIS Z 2371 was performed for 72 hours with the end face of the test material tape-sealed. After the end of the test, the state of rust generation on the flat portion was observed, and the corrosion resistance was evaluated according to the following evaluation criteria. The pass level was 3 or higher.
(評価基準)
 5:白錆発生面積が供試材の片面の総面積に対して1%未満
 4:白錆発生面積が供試材の片面の総面積に対して1%以上、5%未満
 3:白錆発生面積が供試材の片面の総面積に対して5%以上、10%未満
 2:白錆発生面積が供試材の片面の総面積に対して10%以上、30%未満
 1:白錆発生面積が供試材の片面の総面積に対して30%以上
(Evaluation criteria)
5: White rust generated area is less than 1% of the total area of one side of the test material 4: White rust generated area is 1% or more and less than 5% of the total area of one side of the test material 3: White rust The generated area is 5% or more and less than 10% of the total area of one side of the test material 2: The white rust generation area is 10% or more and less than 30% of the total area of one side of the test material 1: White rust The generated area is 30% or more of the total area of one side of the test material
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 得られた結果を、以下の表5にまとめて示した。
 以下の表5から明らかなように、本発明の実施例に該当する塗装金属板は、優れた抗ウイルス性、加工密着性及び耐食性を示す一方で、本発明の比較例に該当する塗装金属板は、抗ウイルス性又は加工密着性の評価結果が不合格となった。
The results obtained are summarized in Table 5 below.
As is clear from Table 5 below, the coated metal plates corresponding to the examples of the present invention exhibit excellent antiviral properties, processing adhesion and corrosion resistance, while the coated metal plates corresponding to the comparative examples of the present invention. was unsuccessful in the evaluation results of antiviral properties or processing adhesion.
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also naturally belong to the technical scope of the present invention.
  1  塗装金属板
 10  金属板
 20  光触媒層(第1皮膜層)
 30  無機系化成処理皮膜層(第2皮膜層)
 40  有機系化成処理皮膜層(第3皮膜層)
 50  保護層(第4皮膜層)
 
1 coated metal plate 10 metal plate 20 photocatalyst layer (first coating layer)
30 Inorganic chemical conversion coating layer (second coating layer)
40 Organic chemical conversion coating layer (third coating layer)
50 protective layer (fourth coating layer)

Claims (15)

  1.  金属板の少なくとも一方の面に皮膜層を有する塗装金属板であって、
     前記皮膜層として、前記金属板の少なくとも一方の面において前記皮膜層の最表面に位置し、光触媒活性を有する化合物を少なくとも含有する第1皮膜層を有しており、
     前記第1皮膜層の平均厚みは、0.05~5.00μmであり、
     前記金属板の表面から前記皮膜層の最表面までの合計厚みは、15.00μm以下であり、
     前記塗装金属板について、JIS Z8741:1997で規定される60°鏡面光沢度が、80%以上である、塗装金属板。
    A coated metal plate having a coating layer on at least one surface of the metal plate,
    The coating layer has a first coating layer located on the outermost surface of the coating layer on at least one surface of the metal plate and containing at least a compound having photocatalytic activity,
    The average thickness of the first coating layer is 0.05 to 5.00 μm,
    The total thickness from the surface of the metal plate to the outermost surface of the coating layer is 15.00 μm or less,
    The coated metal sheet has a 60° specular gloss of 80% or more as defined in JIS Z8741:1997.
  2.  前記第1皮膜層は、更に、Si又はZrの少なくとも何れか1種の元素を含有し、
     前記元素の合計濃度は、Siについてはシリカ換算、Zrについてはジルコニア換算で、5~50質量%である、請求項1に記載の塗装金属板。
    The first coating layer further contains at least one element of Si or Zr,
    2. The coated metal sheet according to claim 1, wherein the total concentration of the elements is 5 to 50% by mass in terms of silica for Si and zirconia for Zr.
  3.  前記皮膜層として、前記第1皮膜層の下層に位置し、Si又はZrの少なくとも何れか1種以上の元素を有する無機系成分からなる第2皮膜層を更に有しており、
     前記第2皮膜層の平均厚みは、0.10~5.00μmである、請求項1又は2に記載の塗装金属板。
    The coating layer further comprises a second coating layer located below the first coating layer and made of an inorganic component containing at least one element of Si or Zr,
    3. The coated metal sheet according to claim 1, wherein the average thickness of said second coating layer is 0.10 to 5.00 μm.
  4.  前記第2皮膜層は、更に、P又はVの少なくとも何れか1種の元素を有する無機系成分を含有する、請求項3に記載の塗装金属板。 The coated metal sheet according to claim 3, wherein the second coating layer further contains an inorganic component containing at least one element of P and V.
  5.  前記第1皮膜層の平均厚みに対する、前記第2皮膜層の平均厚みの比率は、0.3~12.0である、請求項3又は4に記載の塗装金属板。 The coated metal sheet according to claim 3 or 4, wherein the ratio of the average thickness of the second coating layer to the average thickness of the first coating layer is 0.3 to 12.0.
  6.  前記皮膜層として、
     前記第1皮膜層の下層に位置する、有機系成分を含む第3皮膜層と、
     前記第1皮膜層と前記第3皮膜層との間に位置する第4皮膜層と、
    を更に有しており、
     前記第3皮膜層の平均厚みは、0.10~5.00μmであり、
     前記第4皮膜層の平均厚みは、0.05~5.00μmである、請求項1又は2に記載の塗装金属板。
    As the coating layer,
    a third coating layer containing an organic component located below the first coating layer;
    a fourth coating layer located between the first coating layer and the third coating layer;
    and
    The average thickness of the third coating layer is 0.10 to 5.00 μm,
    3. The coated metal sheet according to claim 1, wherein the fourth coating layer has an average thickness of 0.05 to 5.00 μm.
  7.  前記第1皮膜層の平均厚みに対する、前記第3皮膜層の平均厚みの比率は、0.5~20.0であり、
     前記第1皮膜層の平均厚みに対する、前記第4皮膜層の平均厚みの比率は、0.3~20.0である、請求項6に記載の塗装金属板。
    The ratio of the average thickness of the third coating layer to the average thickness of the first coating layer is 0.5 to 20.0,
    7. The coated metal sheet according to claim 6, wherein the ratio of the average thickness of said fourth coating layer to the average thickness of said first coating layer is 0.3 to 20.0.
  8.  前記金属板の表面から前記第1皮膜層の最表面までの合計厚みは、10.00μm以下である、請求項1~7の何れか1項に記載の塗装金属板。 The coated metal sheet according to any one of claims 1 to 7, wherein the total thickness from the surface of the metal sheet to the outermost surface of the first coating layer is 10.00 µm or less.
  9.  前記光触媒活性を有する化合物は、アナターゼ型酸化チタンである、請求項1~8の何れか1項に記載の塗装金属板。 The coated metal plate according to any one of claims 1 to 8, wherein the compound having photocatalytic activity is anatase-type titanium oxide.
  10.  前記アナターゼ型酸化チタンは、Cu又はFeの少なくとも何れか一方の金属に担持された、金属担持型の酸化チタンである、請求項9に記載の塗装金属板。 The coated metal plate according to claim 9, wherein the anatase-type titanium oxide is metal-supported titanium oxide supported on at least one of Cu and Fe.
  11.  前記第1皮膜層における前記アナターゼ型酸化チタンの濃度は、チタニア換算で、50~95質量%である、請求項9又は10に記載の塗装金属板。 The coated metal sheet according to claim 9 or 10, wherein the concentration of said anatase-type titanium oxide in said first coating layer is 50 to 95% by mass in terms of titania.
  12.  前記アナターゼ型酸化チタンの平均粒径は、5~200nmである、請求項9~11の何れか1項に記載の塗装金属板。 The coated metal sheet according to any one of claims 9 to 11, wherein the anatase-type titanium oxide has an average particle size of 5 to 200 nm.
  13.  前記金属板は、亜鉛めっき鋼板、亜鉛-アルミニウム合金めっき鋼板、亜鉛-アルミニウム-マグネシウム合金めっき鋼板、アルミニウムめっき鋼板、亜鉛-ニッケル合金めっき鋼板、亜鉛-鉄合金めっき鋼板、アルミニウム板、又は、ステンレス板である、請求項1~12の何れか1項に記載の塗装金属板。 The metal plate is a galvanized steel plate, a zinc-aluminum alloy plated steel plate, a zinc-aluminum-magnesium alloy plated steel plate, an aluminum plated steel plate, a zinc-nickel alloy plated steel plate, a zinc-iron alloy plated steel plate, an aluminum plate, or a stainless steel plate. The coated metal plate according to any one of claims 1 to 12, wherein
  14.  前記金属板の表面には、当該金属板の圧延方向に沿ったヘアラインが存在する、請求項1~13の何れか1項に記載の塗装金属板。 The coated metal plate according to any one of claims 1 to 13, wherein hairlines along the rolling direction of the metal plate are present on the surface of the metal plate.
  15.  前記金属板の表面には、スパングル模様が存在する、請求項1~13の何れか1項に記載の塗装金属板。
     
    The coated metal plate according to any one of claims 1 to 13, wherein a surface of said metal plate has a spangle pattern.
PCT/JP2022/022754 2021-06-25 2022-06-06 Coated metal sheet WO2022270283A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280032233.2A CN117255744A (en) 2021-06-25 2022-06-06 Coated metal plate
KR1020237031983A KR20230148209A (en) 2021-06-25 2022-06-06 painted metal plate
JP2023529787A JPWO2022270283A1 (en) 2021-06-25 2022-06-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021105504 2021-06-25
JP2021-105504 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022270283A1 true WO2022270283A1 (en) 2022-12-29

Family

ID=84543912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022754 WO2022270283A1 (en) 2021-06-25 2022-06-06 Coated metal sheet

Country Status (5)

Country Link
JP (1) JPWO2022270283A1 (en)
KR (1) KR20230148209A (en)
CN (1) CN117255744A (en)
TW (1) TW202304705A (en)
WO (1) WO2022270283A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264299A (en) * 1997-03-26 1998-10-06 Nisshin Steel Co Ltd Coated metal plate with excellent stain resistance and its manufacture
WO1998058736A1 (en) * 1997-06-20 1998-12-30 Sumitomo Metal Industries, Ltd. Titanium oxide-based photocatalyst, process for preparing the same, and use thereof
JP2001286766A (en) * 2000-04-11 2001-10-16 Nippon Soda Co Ltd Photocatalyst-bearing structure body, production method of the same, composition for intermediate layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5087761B2 (en) 2007-10-30 2012-12-05 Jfe鋼板株式会社 Pre-coated steel sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264299A (en) * 1997-03-26 1998-10-06 Nisshin Steel Co Ltd Coated metal plate with excellent stain resistance and its manufacture
WO1998058736A1 (en) * 1997-06-20 1998-12-30 Sumitomo Metal Industries, Ltd. Titanium oxide-based photocatalyst, process for preparing the same, and use thereof
JP2001286766A (en) * 2000-04-11 2001-10-16 Nippon Soda Co Ltd Photocatalyst-bearing structure body, production method of the same, composition for intermediate layer

Also Published As

Publication number Publication date
CN117255744A (en) 2023-12-19
TW202304705A (en) 2023-02-01
JPWO2022270283A1 (en) 2022-12-29
KR20230148209A (en) 2023-10-24

Similar Documents

Publication Publication Date Title
JP5555179B2 (en) Surface treatment agent for galvanized steel sheet, surface treatment method for galvanized steel sheet, and galvanized steel sheet
JP5600417B2 (en) Surface treatment composition and surface treated steel sheet
WO2006126394A1 (en) Aqueous surface treating agent for precoated metal material, surface treatment method and method for producing precoated metal material
EP2990505B1 (en) Surface treatment composition for coated steel sheet, surface treated plated steel sheet and method of production of same
JP2005120469A (en) Composition for treating surface of metallic material, and surface treatment method
JPWO2010095756A1 (en) Surface-treated pre-coated metal sheet, method for producing the same, and surface-treating liquid
JP2009280889A (en) Aquaous surface-treatment agent, pretreatment method for precoating metallic material, manufacturing method for precoating metallic material, and precoating metallic material
KR20170076258A (en) Composition for surface-treating a steel sheet, surface-treated steel sheet using the same composition, and method for manufacturing the same
WO2018083784A1 (en) Surface-treated steel sheet
WO2022191213A1 (en) Hod dipped al-zn-si-mg coated steel sheet and method for producing same, surface-treated steel sheet and method for producing same, and coated steel sheet and method for producing same
WO2023054624A1 (en) Coated metal sheet
WO2022270283A1 (en) Coated metal sheet
WO2024034607A1 (en) Coated metal sheet
TWI743280B (en) Surface treatment agent for zinc-based plated steel sheet
JP4916913B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet
JP2005097719A (en) Non-chromium surface treatment agent for galvanized product
JP2022149319A (en) Precoat plated steel sheet
CN108291312B (en) Hot-dip galvanized steel sheet and method for producing same
JP7001209B1 (en) Painted galvanized steel sheet or painted steel strip
WO2024071189A1 (en) Surface-treated steel sheet
TWI769091B (en) Surface-treated steel sheet for organic resin coating and method for producing the same, and organic resin-coated steel sheet and method for producing the same
WO2022203063A1 (en) Precoated metal sheet
JP4349712B2 (en) Surface-treated galvanized steel without chromium
JP2024048206A (en) Painted steel plate
JP2011137221A (en) Composition for metal surface treatment, and base metal having surface-treated coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023529787

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237031983

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031983

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE