WO2006126394A1 - Aqueous surface treating agent for precoated metal material, surface treatment method and method for producing precoated metal material - Google Patents

Aqueous surface treating agent for precoated metal material, surface treatment method and method for producing precoated metal material Download PDF

Info

Publication number
WO2006126394A1
WO2006126394A1 PCT/JP2006/309391 JP2006309391W WO2006126394A1 WO 2006126394 A1 WO2006126394 A1 WO 2006126394A1 JP 2006309391 W JP2006309391 W JP 2006309391W WO 2006126394 A1 WO2006126394 A1 WO 2006126394A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
surface treatment
metal material
silane coupling
adhesion
Prior art date
Application number
PCT/JP2006/309391
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Iko
Tomoyoshi Konishi
Atsushi Miura
Original Assignee
Nihon Parkerizing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co., Ltd. filed Critical Nihon Parkerizing Co., Ltd.
Publication of WO2006126394A1 publication Critical patent/WO2006126394A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/361Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing titanium, zirconium or hafnium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • C23C22/365Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/368Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing magnesium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/62Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • C23C22/80Pretreatment of the material to be coated with solutions containing titanium or zirconium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • Aqueous surface treatment agent for precoat metal material for precoat metal material, surface treatment method, and method for producing precoat metal material
  • the present invention is useful as a base treatment agent for producing a precoat metal material having excellent coating adhesion (coating adhesion of a coating film), corrosion resistance and coin scratch resistance, and also has storage stability.
  • the present invention relates to a good non-chromium aqueous surface treatment agent, a treatment method, and a method for producing a non-chromium pre-coated metal material. Background art
  • Patent Document 1 discloses a precoated steel sheet in which end face corrosion resistance is improved by applying a specific chromate treatment liquid and drying without washing with water.
  • Pre-coated steel sheets with such a chromium-containing pretreatment have corrosion resistance, workability and paint adhesion (coating adhesion of the coating film) due to the combined effects of chromate treatment and organic coating, and are coated after processing.
  • the purpose is to improve productivity and quality, and is currently used for general purposes.
  • non-chromium anti-glare treatment and non-chromium organic coating due to the toxicity of hexavalent chromium that may be dissolved. .
  • the first characteristic required for the pretreatment of precoated steel sheets is paint adhesion (coating adhesion of the paint film), and the two interfaces between the underlying metal as the lower layer and the primer as the upper layer are excellent. Adhesion is required. This coating adhesion may be evaluated after being immersed in boiling water for a predetermined time. This is called the secondary coating adhesion, and it is applied before being immersed in boiling water. Distinguish from primary paint adhesion, which is adhesion. Both the primary and secondary adhesion are extremely important characteristics that are essential for pre-coated steel sheets that are assumed to be processed into complex shapes by post-processing. The T-bending test is an extremely rigorous test and is used to evaluate the adhesion of precoated steel sheets.
  • the second characteristic required for the pretreatment of the precoated steel sheet is a coin scratch resistance. This is a property that is influenced not only by adhesion but also by the film hardness of the ground treatment.
  • a third characteristic required for the pretreatment of the precoated steel sheet is corrosion resistance.
  • a base treatment, a primer coating process, and a top coat coating process are sequentially performed on the steel sheet.
  • chromate is also contained in the primer layer that consists of only the ground treatment layer.
  • Primer that is used as thick as LO m One layer contains many chromium components as anti-glare pigments, giving corrosion resistance to pre-coated steel sheets. It plays the main role.
  • the actual condition is that the primer in the pre-coated steel sheet not containing chromium can only provide corrosion resistance as much as the primer containing the chromium-based anti-corrosive pigment. Therefore, it can be said that in non-chromated pre-coated steel sheets, the surface treatment part plays a role of imparting corrosion resistance rather than the conventional chromate system.
  • Patent Document 2 discloses a non-chromium antifouling treatment method as an alternative to chromate treatment.
  • Surface treatment of zinc and a zinc alloy with an aqueous solution containing tannic acid and a silane coupling agent results in anti-whitening resistance and paint.
  • a technique for improving adhesion is disclosed, this method cannot sufficiently ensure the coin scratch resistance and corrosion resistance required for the precoated metal sheet.
  • Patent Document 3 discloses a metal surface treatment agent containing a silane coupling agent, a water-dispersible silica, a Zr compound, and an acrylic resin for application to a metal surface such as a zinc-plated steel sheet. This surface treatment agent cannot satisfy the paint adhesion and corrosion resistance required for precoated steel sheets.
  • Patent Document 4 discloses a metal comprising a silane coupling agent, silica, and a water-soluble resin.
  • the force S for which a surface treatment agent is disclosed S, and even this surface treatment agent cannot satisfy the paint adhesion and corrosion resistance required for precoated steel sheets.
  • Patent Document 5 describes that a chemical conversion film containing silica fine particles and a binder such as polyacrylic acid is formed on the surface of a zinc-plated steel sheet.
  • a chemical conversion film containing silica fine particles and a binder such as polyacrylic acid is formed on the surface of a zinc-plated steel sheet.
  • the paint adhesion and corrosion resistance achieved using this method is inferior to those achieved with chromate treatment.
  • Patent Document 6 describes a surface treatment agent containing a carbon-based polyurethane, a silane coupling agent, and a water-soluble Zr compound.
  • this surface treatment agent is used for imparting temporary antifungal properties and cannot achieve the level of paint adhesion required for precoated steel sheets.
  • Pre-coated steel plates are required to have paint adhesion that can withstand severe post-processing such as deep drawing.
  • the adhesion achieved by the surface treatment liquid for imparting temporary anti-fouling property is the work adhesion at the Erichsen extrusion level, and the work adhesion at a level that passes the T-bending test is not achieved.
  • the anti-fingerprint surface treatment solution or the surface treatment solution for lubrication is diverted to the pretreatment of the pre-coated steel sheet, and the level of processing adhesion that passes the T-bending test is not achieved.
  • a surface treatment agent having both the level of paint adhesion required for precoated steel sheets and sufficient corrosion resistance has not been put into practical use at present, and rapid development has been desired.
  • Patent Document 1 Japanese Patent Laid-Open No. 3-100180
  • Patent Document 2 JP 59-116381
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-316845
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-164195
  • Patent Document 5 Japanese Patent Laid-Open No. 2002-80979
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2004-204333
  • the present invention is an environment-friendly non-chromium material, but when used as a coating base for a pre-coated metal material, the resulting pre-coated metal material has a coating adhesion (coating film).
  • Non-chromium pre-coated metal with excellent processing adhesion, corrosion resistance and coin scratch resistance, aqueous surface treatment agent with excellent storage stability, surface treatment method using the same, and excellent processing adhesion, corrosion resistance and coin scratch resistance
  • the object is to provide a method for producing the material.
  • Silane coupling agent (A) consists of silane coupling agents each having functional groups that react with each other, and the equivalent ratio of one functional group to the other functional group is 50: 1 to 1:50
  • At least one metal compound selected from V compound, Mo compound, W compound, Co compound, A1 compound, Zn compound, Ni compound, Mn compound, Ce compound, Nb compound, Sn compound and Mg compound The aqueous surface treating agent according to any one of (1) to (3) above, which contains (E) in the range of lZl, 000 to 1Z2 as a mass ratio of the metal atom Z (B);
  • a surface treatment method of a metal material characterized by:
  • a method for producing a pre-coated metal material wherein the metal material surface-treated by the surface treatment method described in (6) above is further coated with an upper layer coating not containing chromium. Achieved by:
  • the aqueous surface treatment agent for precoated metal materials of the present invention has good storage stability, and further chromium is added to the aqueous surface treatment agent and the metal material surface-treated by the surface treatment method of the present invention.
  • the aqueous surface treatment agent for precoated metal materials of the present invention comprises a silane coupling agent (A), a cationic urethane resin (B), a Zr compound and a Z or Ti compound (C), and a fluorine-containing inorganic compound (D). It is an aqueous surface treatment agent contained as an essential component.
  • the silane coupling agent forms a strong chemical bond of Si—O—M via the base metal M, which is a base material with high OH activity of the silanol group generated by hydrolysis, and oxygen atoms. .
  • This chemical bond particularly contributes to good adhesion to the base metal.
  • the reaction with the organic functional group contained in the upper layer may contribute to improving the adhesion with the upper layer.
  • the adhesion with the upper layer is further improved.
  • silane coupling agents include N- (2 aminoethyl) 3 -aminopropyltrimethoxysilane, N- (2 aminoethyl) 3 aminopropylmethyldimethoxysilane, N- (2 Aminoethyl) 3 Aminopropyltriethoxysilane, N— (2-Aminoethyl) 3 Aminopropylmethyl jetoxysilane, N— (2 Aminoethyl) 3 — Aminopropylmethyldimethoxysilane, ⁇ -Amino Propyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ Phenol ⁇ -Aminopropyltrimethoxysilane, ⁇ -Phenol ⁇ -Aminopropyltriethoxysilane, ⁇ -Methacryloxypropyltrimethoxysilane , ⁇ -methacryloxypropyltrimethoxysilane
  • Anirinopu port pills trimethoxysilane silane, .gamma. ⁇ two Reno propyl methyl dimethoxy silane, .gamma.
  • Anirinopu port pills triethoxysilane, I - ⁇ d Reno propyl methyl jet silane, Isoshianatopu port pills trimethoxysilane, isocyanatopropyltriethoxysilane, ureidopropyltriethoxysilane Silane, bis (trimethoxysilyl) aminovinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyltriethoxysilane, vinylmethyljetoxysilane, octadecyl dimethyl [3- (trimethoxy Silyl) propyl] ammonium chloride, octadecyl dimethyl [3- (methyldimethoxysilyl) propyl] ammonium chloride, oc
  • the bright water-based surface treatment agent preferably contains at least one silane coupling agent (A) having an amino group.
  • the amino functional group refers to a functional group selected from a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group.
  • Examples of counter ions having a quaternary ammonium group include halogen ions such as chlorine ions, phosphate ions, nitrate ions, sulfate ions, and organic acid ions.
  • Silane force having amino functional group The amount of the coupling agent used for the entire silane coupling agent (A) is preferably 5% by mass or more, more preferably 10% by mass or more, more preferably 20% by mass. As described above, it is even more preferable that, depending on the type of primer, the adhesion to the primer can be prevented from being adversely affected or minimized.
  • silane coupling agents (A) each having a functional group that reacts with each other to form a new bond.
  • a silane coupling agent having a primary amino group or a secondary amino group and a functional group capable of reacting with the amino group for example, an epoxy group bonded to an adjacent carbon atom (glycidyl group, 3, 4 epoxy cyclohexane).
  • a silane coupling agent having a hexyl group or the like and a silane coupling agent having or capable of generating a hydroxyl group (for example, having an epoxy group bonded to an adjacent carbon atom).
  • a silane coupling agent having an isocyanato group is preferably used in combination.
  • the usage ratio of the silane coupling agents each having a functional group that reacts with each other is such that the amount of the functional groups that react with each other does not need to be sufficient.
  • the equivalent ratio between the primary amino group and the other functional group is preferably in the range of 50: 1 to 1:50 30: 1 to 1 : More preferably, the range is 30.
  • the cationic urethane resin (B) used in the present invention is water-soluble or water-based emulsion type.
  • the dissolution or dispersion of the cationic urethane resin (B) in water may be achieved on the basis of self-solubility or self-dispersibility, and cationic surfactants (eg tetraalkyl ammonium salts) And may be dispersed in the presence of Z or a non-ionic surfactant (such as alkyl ether).
  • the cationic urethane resin (B) imparts flexibility to the base film and contributes to the improvement of coating adhesion, and thus effectively acts to improve bending adhesion and coin scratch resistance.
  • the cationic urethane resin (B) in the surface treating agent composition of the present invention is at least one cationic functional selected from the primary forces of primary to tertiary amino groups and quaternary ammonium salts.
  • the polyol component and the polyisocyanate component, which are constituent monomer components, and the polymerization method are not particularly limited.
  • aliphatic, cycloaliphatic or aromatic diisocyanates such as hexamethylene diisocyanate (HDI), dicyclohexylmethane diisocyanate (HMDI), isophorone diisocyanate (IPDI) and polyester Cationic urethane resin by polymerizing polyols such as polyols, polyether polyols, polycarbonate polyols, etc., in which amino groups are introduced into the chain by a known method, and partially quaternizing the amine with alkyl sulfuric acid or the like. (B) can be obtained.
  • HDI hexamethylene diisocyanate
  • HMDI dicyclohexylmethane diisocyanate
  • IPDI isophorone diisocyanate
  • polyester Cationic urethane resin by polymerizing polyols such as polyols, polyether polyols, polycarbonate polyols, etc., in which amino groups are introduced into the chain
  • the substituent on nitrogen in the cationic functional group includes, but is not limited to, a hydrogen atom, an alkyl group, an aryl group, an alkenyl group, an alkyl group, and a hydroxyalkyl group.
  • the cationic urethane resin (B) can be used alone or in combination of two or more.
  • examples of the aliphatic, alicyclic or aromatic polyisocyanate include tetramethylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate ester, hydrogenated xylylene diisocyanate.
  • tetramethylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate ester, hydrogenated xylylene diisocyanate 1,4-cyclohexylene diisocyanate, 4,4'-dicyclohexylenemethane When using aliphatic or alicyclic polyisocyanate compounds such as diisocyanate, 2,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, etc., chemical resistance, anticorrosion, etc. It is preferable because a film excellent in weather resistance is obtained.
  • examples of the polyol include ethylene glycol, diethylene glycol, triethylene glycol, 1,2 propylene glycol, 1,3 propylene glycol, neopentyl glycol, 1,2 butylene glycol, and 1,3 butylene glycol.
  • 1,4-butylene glycol hexamethylene glycol, bisphenol A, hydrogenated bisphenol A, trimethylolpropane, 1,2 propanediol, 1,3 propanediol, 2-methyl-1,3 propanediol, 2 butyl 2-ethyl-1,3-prononediol, 1,4 butanediol, neopentylglycol, 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2- Methyl-2,4 pentanediol, 2,4 di 1,5-pentanediol, 1,6 hexanediol, 1,7 heptanediol, 3,5 heptanediol, 1,8 octanediol, 2-methyl-1,8 octanediol, 1,9-
  • examples of the polyether polyol include ethylene oxide adducts such as ethylene glycol, polyethylene glycol, and triethylene glycol, propylene oxide adducts such as propylene glycol, dipropylene glycol, and tripropylene glycol.
  • examples of the polyol include ethylene oxide and Z- or propylene oxide-attached carbohydrate, polytetramethylene glycol, and the like.
  • the polyester polyol includes, for example, the above polyol and the like, an ester-forming derivative such as a polycarboxylic acid having an amount less than the stoichiometric amount or its ester, anhydride, halide, and the like, and Direct esterification reaction and Z or transesterification with Z or ratatones or hydroxycarboxylic acid compounds obtained by hydrolyzing them
  • an ester-forming derivative such as a polycarboxylic acid having an amount less than the stoichiometric amount or its ester, anhydride, halide, and the like
  • Direct esterification reaction and Z or transesterification with Z or ratatones or hydroxycarboxylic acid compounds obtained by hydrolyzing them examples include polyester polyols obtained by the reaction.
  • polyvalent carboxylic acid examples include oxalic acid, malonic acid, succinic acid, dartaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, 2-methylsuccinic acid, 2 —Methyl adipic acid, 3 methyl adipic acid, 3-methylpentanedioic acid, 2 methyloctanedioic acid, 3,8-dimethyldecanedioic acid, 3,7-dimethyldecanedioic acid, dimer acid, hydrogenated dimer monoacid, etc.
  • Aliphatic dicarboxylic acids such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid; trimellitic acid, trimesic acid, castor oil fatty acid 3
  • aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid
  • trimellitic acid trimesic acid, castor oil fatty acid 3
  • tricarboxylic acids such as trimers
  • polycarboxylic acids such as tetracarboxylic acids such as pyromellitic acid.
  • Examples of the conductor include acid anhydrides of these polyvalent carboxylic acids; halides of the polyvalent carboxylic acids such as chlorides and bromides; methyl esters of the polyvalent carboxylic acids, ethyl esterol, propinoreesterol, isopropinoreesterol, And lower aliphatic esters such as butinoreesterol, isobutinol ester and amyl ester.
  • Examples of the latatones include latones such as y-one-strength prolatatone, ⁇ -one-strength pro-latatone, ⁇ -one-strength pro-latatone, ⁇ -norralatataton, and ⁇ -valerolatatone.
  • a surfactant as a solubilizer or emulsifier should not be used because it may adversely affect adhesion to metal materials and water resistance! ⁇ Soap-free or those with reduced usage are preferred.
  • the weight average molecular weight of the cationic urethane resin ( ⁇ ) is preferably 1,000 to 1,000,000, more preferably 2,000-500,000! / ⁇ .
  • the molecular weight force is less than ⁇ 1,000, the film-forming property is insufficient, while when it exceeds 1,000,000, the stability of the aqueous surface treatment agent tends to decrease.
  • cationic urethane resin resin
  • other resin such as acrylic resin, ester resin, amino resin, epoxy resin, phenol resin can be used. You may mix and use.
  • an organic solvent may be used to improve the film forming property of the cationic urethane resin (soot) and form a more uniform and smooth coating film.
  • the blending amount of the silane coupling agent ( ⁇ ) is required to be 1 ⁇ 50 to 20 ⁇ 1 as a mass ratio ( ⁇ ) ⁇ ( ⁇ ) with respect to the cationic urethane resin ( ⁇ ). : L0Z1 More preferably, it is more preferably 1Z10 to 5Z1. If the amount of the silane coupling agent (A) is less than 1Z50, the coating hardness will decrease, making it difficult to obtain sufficient coin scratch resistance.If it is more than 20Z1, the adhesion to the underlying metal will decrease. As a result, processing adhesion deteriorates.
  • Zr compounds and Z or Ti compounds (C) used in the present invention impart or improve the corrosion resistance of the metal material.
  • Zr compounds and Z or Ti compounds (C) include Zr or Ti carbonate, oxide, nitrate, sulfate, phosphate, fluoride, fluoro acid (salt), organic acid salt Organic complex compounds and the like can be used, and among them, a fluoride also serving as a fluorine-containing inorganic compound (D) described later, and a fluoro acid (salt) are preferable.
  • Ti zirconium nitrate, zirconium nitrate ZrO (NO), titanium nitrate, zirconium sulfate
  • the blending amount of the Zr compound and the Z or Ti compound (C) is 1/1 / mass ratio of (Zr and Z or Ti atom) Z (B) to the cationic urethane resin (B). It is necessary to be 1,000 to 1Z2, and it is preferably 1Z500 to 1Z4, more preferably 1Z250 to 1Z10. If the amount of Zr compound and Z or Ti compound (C) is less than 1Z1,000, the corrosion resistance is insufficient, and if more than 1Z2, the work adhesion or liquid stability decreases. become a trend. When the Zr compound and Ti compound are used in combination, the above compounding amount is the total compounding amount.
  • the fluorine-containing inorganic compound (D) contained in the aqueous surface treatment agent of the present invention releases free fluorine ions or complex fluorine ions into the liquid and serves as an etching agent for the substrate.
  • the fluorine-containing inorganic compound (D) is not particularly limited, and examples of those that release free fluorine ions include hydrofluoric acid, ammonium fluoride, sodium fluoride, and the like.
  • Tetrafluoro-borate hexafluorosilicate, zinc hexafluorosilicate, manganese hexafluorosilicate, magnesium hexafluorosilicate, nickel hexafluorosilicate, hexafluorozirconate, hexafluoro A titanic acid etc. can be mentioned.
  • One of the above compounds may be used alone, or two or more may be used in combination.
  • the compounding amount of the fluorine-containing inorganic compound (D) must be lZl, 000 to 2Zl as a mass ratio of the fluorine atom Z (B) to the cationic urethane resin (B). 1/50 0 to lZl is preferred and 1Z250 to 1Z2 is more preferred.
  • the blending amount of the fluorine-containing inorganic compound (D) is less than 1Z1,000, the work adhesion becomes insufficient, and when it exceeds 2Z1, the stability of the aqueous surface treatment agent decreases.
  • the aqueous surface treatment agent of the present invention further includes, as optional components, V compound, Mo compound, W compound, Co compound, Ni compound, A1 compound, Zn compound, Mn compound, Ce compound, Nb compound, Sn
  • At least one metal compound (E) selected from a compound and an Mg compound can be blended.
  • These metal compounds (E) have the effect of improving the corrosion resistance especially at the end face portions.
  • the metal compound (E) include carbonates, oxides, hydroxides, nitrates, sulfates, phosphates, fluorides, chlorides, fluoroacids (salts), oxygen acids (salts), and organic acids of the above metals. Examples thereof include salts and organic complex compounds.
  • V compound, Mo compound, W compound, Co compound, Ni compound, A1 compound and Zn compound include pentanoic acid vanadium, metavanadate HVO, metavanadate.
  • vanadium trichloride VC1 vanadium trichloride VC1; lymphadromib
  • Cobalt dialuminum CoO 'Al O Cobalt hydroxide, cobalt phosphate, etc .
  • Nickel sulfate, nickel carbonate, nickel acetylacetonate Ni (OC ( CH) C
  • Nickel fluoride nickel hydroxide
  • aluminum nitrate aluminum sulfate, potassium aluminum sulfate, sodium aluminum sulfate, ammonium aluminum sulfate, aluminum phosphate, aluminum carbonate, aluminum oxide,
  • Aluminum hydroxide, aluminum iodide; zinc sulfate, zinc carbonate, zinc chloride, zinc iodide, zinc acetylylacetonate Zn (OC ( CH) CHCOCH)), zinc dihydrogen phosphate, etc. .
  • Mn compounds, Ce compounds, Nb compounds, Sn compounds, and Mg compounds include HMnO permanganate, potassium permanganate, sodium permanganate, and dihydrogen phosphate.
  • Ce (CH 2 CO 3), cerium nitrate (IV) or (IV), cerium nitrate ammonium, sulfur
  • Niobium fluoride NbF
  • ammonium hexafluoroniobate NH4
  • Tin nitrate (IV), ammonium hexafluorosuccinate (NH4) NbF; magnesium nitrate
  • magnesium sulfate magnesium carbonate, magnesium hydroxide, magnesium fluoride, ammonium magnesium phosphate, magnesium hydrogen phosphate, magnesium oxide and the like.
  • the compounding amount of the metal compound (E) is preferably lZl, 000 to lZ2 as a mass ratio of the metal atom Z (B) to the cationic urethane resin (B). 1Z4 is more preferable 1Z50 to 1Z8 is even more preferable. If the compounding amount of the metal compound (E) is less than 1Z1,000, the effect of improving the corrosion resistance is not exhibited, while if it exceeds 1Z2, the work adhesion tends to be lowered.
  • the metal compound (E) may be used alone or in combination of two or more. When two or more types are used in combination, the above blending amount is the total blending amount.
  • a surfactant called a wettability improver for forming a uniform film on the coated surface; a thickener; for improving weldability
  • coloring pigments and the like can be blended within a range that does not impair the liquid stability and film performance of the aqueous surface treatment agent.
  • the medium used in the aqueous surface treatment agent of the present invention is usually water, but a small amount (for example, 10% by volume or less of the entire aqueous medium) of alcohol, ketone, or mouth-solve is used for the purpose of improving the drying property of the film.
  • a water-soluble organic solvent Use a water-soluble organic solvent.
  • the pH of the aqueous surface treatment agent of the present invention is not particularly limited, but is preferably in the range of 3-12, more preferably in the range of 4-8.
  • the pH is less than 3, the etching becomes excessive and the function as a surface treatment agent cannot be fully exerted, and the liquid stability tends to be lowered.
  • the pH is higher than 12, especially the dissolution rate of amphoteric metal zinc and the like increases, and the storage stability of the silane coupling agent tends to be adversely affected.
  • alkaline components such as ammonia, dimethylamine, and triethylamine, or acidic components such as acetic acid and phosphoric acid can be added.
  • the lower limit of the total solid content concentration of the aqueous surface treating agent of the present invention is not particularly limited as long as the effect of the present invention can be achieved, but the upper limit is limited from the viewpoint of liquid stability.
  • the total solid concentration of the metal surface treatment agent of the present invention is preferably adjusted to a range of 0.1 to 40% by mass, more preferably adjusted to a range of 1 to 30% by mass, and 5 to 25% by mass. It is even more preferable to adjust to the range of%.
  • the aqueous surface treatment agent of the present invention includes a silane coupling agent (A), a cationic raw urethane resin (B), a Zr compound and a Z or Ti compound (C), a fluorine-containing inorganic compound. It can be produced by adding (D) and, if necessary, the metal compound (E) and optionally other optional components to water as a dispersion medium and stirring. There is no particular limitation on the order of addition of each component.
  • Examples of the metal material to which the water-based surface treatment agent of the present invention is applied include cold-rolled steel sheets, hot-rolled steel sheets, hot-dip galvanized steel sheets, electrogalvanized steel sheets, molten alloyed zinc-plated steel sheets, aluminum-plated steel sheets, aluminum zinc
  • Commonly known metal materials such as alloyed steel plates, stainless steel plates, aluminum plates, copper plates, titanium plates, magnesium plates and the like are mentioned, and particularly suitable metal materials are zinc-containing steel plates.
  • the pretreatment step prior to the treatment with the water-based surface treatment agent of the present invention is not particularly limited, but usually an alkali is used to remove oil and dirt adhering to the metal material to be treated before the main treatment. Wash with a degreasing agent or acidic degreasing agent, or wash with hot water or solvent, and then adjust the surface with acid or alkali as necessary. In cleaning the surface of the metal material, it is preferable to wash with water after cleaning so that the cleaning agent does not remain on the surface of the metal material.
  • the treatment with the aqueous surface treatment agent of the present invention is performed by applying the aqueous surface treatment agent and then drying.
  • application method There are no particular restrictions on the application method. For example, usual application methods such as roll coating, curtain flow coating, air spray, airless spray, dipping, bar coating, and brush coating can be employed.
  • temperature of the processing solution is preferably 0 to 60 ° C, preferably 5 to 40 ° C. More preferred.
  • the drying step after the application of the aqueous surface treating agent of the present invention it is not necessary to accelerate the curing of the cationic urea resin (B), and it is not always necessary to remove the adhering water.
  • air drying or physical removal such as air blowing may be used.
  • heating and drying are required to accelerate the curing of the cationic urethane resin (B) or to enhance the coating effect of soft wrinkles.
  • the temperature is preferably 50 to 250 ° C, more preferably 60 to 220 ° C.
  • the amount of the base film formed is 10 to L, OOOmgZm 2 as dry film mass, more preferably 20 to 500 mg / m 2 force, and more preferably 30 to 250 mg / m 2 force ⁇ ! / ⁇ . Dry film mass is not sufficient corrosion resistance is obtained when less than lOmgZm 2, 1, OOOmg Zm 2 by weight, the mosquito ⁇ adhesion property is lowered, it becomes disadvantageous in terms of cost.
  • the base film formed as described above is usually used as a base film for a pre-coated metal material. However, since it has excellent adhesiveness, it imparts fingerprint resistance, lubricity, and the like. It can also be used as an undercoat for high-performance coatings having one to three coating layers on top.
  • the precoat metal material is produced by further forming an upper film layer on the metal film surface on the base film formed as described above using the aqueous surface treatment agent of the present invention.
  • the top coating layer can be formed by applying a non-chromate primer on the base coating and then drying, then applying a top coat, or applying a top coat directly without using a primer, or using a laminate film. It can be performed using a coating method generally used for pre-coated steel sheets such as affixing method.
  • any primer can be used as long as it is a primer that does not contain a chromate anti-mold pigment.
  • the non-chromate primer usually contains a resin and, if necessary, a colored pigment or an antifungal pigment.
  • the resin can be in any form such as aqueous, solvent-based, or powder-based.
  • the types of resin are known, such as polyacrylic resin, polyolefin resin, polyurethane resin, epoxy These can be used singly or in combination, such as a polyester resin, a polyester resin, a polypropylene resin, a melamine resin, and a fluorine resin.
  • the color pigment examples include inorganic pigments such as titanium oxide, zinc oxide, zirconium oxide, calcium carbonate, barium sulfate, alumina, kaolin clay, carbon black, iron oxide, and the like.
  • Known color pigments such as machine pigments can be used.
  • Commonly known anti-fouling pigments include, for example, phosphoric acid-based anti-fouling pigments such as zinc phosphate, iron phosphate, and aluminum phosphate, and molybdate-based defenses such as calcium molybdate, aluminum molybdate, and barium molybdate.
  • Pigments, vanadium-type anti-bacterial pigments such as acid vanadium, and the like can be used.
  • finely divided silica such as water-dispersible silica and fumed silica can be used as appropriate.
  • an antifoaming agent, a dispersion aid, a diluent for lowering the viscosity of the paint, and the like can be appropriately used.
  • the method of applying the non-chromate is not particularly limited, and a commonly used dipping method, spray method, roll coat method, air spray method, airless spray method, or the like can be used.
  • the coating film thickness of the primer is preferably 1 to 30 m as a dry film thickness, more preferably 2 to 20 ⁇ m. If the thickness is less than 1 ⁇ m, the corrosion resistance decreases, and if it exceeds 30 m, the adhesion during processing tends to decrease.
  • the baking and drying conditions of the non-chromate primer are not particularly limited, for example, 130 to 250 ° C., and the time can be 10 seconds to 5 minutes.
  • the topcoat is not particularly limited, and any ordinary topcoat for coating can be used. That is, the top coat contains rosin and, if necessary, a colored pigment, an antifungal pigment, and the like. As the resin, coloring pigment and anti-bacterial pigment, those similar to those used in the non-chromate primer can be used, and other optional components which can be used in the non-chromate primer can also be used.
  • the top coat application method and baking drying conditions may be the same as those for the non-chromate primer.
  • the coating thickness of the top coat is preferably 3 to 50 m, more preferably 5 to 40 m as the dry film thickness. If it is less than 3 ⁇ m, the corrosion resistance decreases, and if it exceeds 50 m, the adhesion tends to decrease, and the cost is disadvantageous.
  • CL-N364S (manufactured by Nihon Parkerizing Co., Ltd.), an alkaline degreasing agent, is made into an aqueous solution with a concentration of 20gZL and a temperature of 60 ° C. After EG or GL material is immersed in this for 10 seconds and washed with pure water Dried. For GI materials, after degreasing in the same manner as above using CL-N364S, it was immersed in an aqueous solution at a temperature of 50 ° C that was built at 100 g / L using LN-4015 (Nihon Parkerizing Co., Ltd.). and it was subjected to the original surface conditioning conditions Ni deposition amount is 5mgZm 2.
  • Primer and top coat were applied to the treated surface of each surface-treated plate prepared in 3 by the following two combinations.
  • ⁇ Upper layer F1> After applying a commercially available primer coating (Dai Nippon Paint Co., Ltd., V Knit # 200) (film thickness 5.5 m), baking at 200 ° C, then further on top of the baking surface Coat paint (Dai Nippon Paint Co., Ltd., V Knit # 500) was applied (after film thickness, baked at 220 ° C) A test plate was prepared by soldering.
  • a commercially available primer coating (Dai Nippon Paint Co., Ltd., V Knit # 200) (film thickness 5.5 m)
  • baking surface Coat paint (Dai Nippon Paint Co., Ltd., V Knit # 500) was applied (after film thickness, baked at 220 ° C)
  • a test plate was prepared by soldering.
  • Upper layer F2> After applying a commercially available primer paint (Nippon Paint Co., Ltd., Flexcoat 600) (film thickness 5.5 m), baking at 200 ° C, then topcoat paint ( After applying Nippon Paint Co., Ltd. (Flexcoat 5030) (film thickness 7 m), it was baked at 220 ° C to prepare a test plate.
  • a commercially available primer paint Nippon Paint Co., Ltd., Flexcoat 600
  • topcoat paint After applying Nippon Paint Co., Ltd. (Flexcoat 5030) (film thickness 7 m), it was baked at 220 ° C to prepare a test plate.
  • the coating film of each test plate was scratched to reach the metal substrate with a cutter, and the salt spray test specified in JIS-Z2371 was conducted for 480 hours. Judgment criteria were measured for the swollen width (maximum value on one side) of the cut part force. The end face corrosion resistance was measured by measuring the swollen width (maximum value) of the coating film from the end face.
  • 5 mm or more and less than 10 mm
  • 4mm or more, less than 8mm
  • each test plate was subjected to a 2T bending test with two inner spacing plates at 20 ° C, and the peeled state of the coating after tape peeling was observed with the naked eye.
  • the coating adhesion was evaluated according to the above criteria.
  • Mouth peeling area 10% or more, less than 50%
  • peeling area 50% or more and less than 80%
  • test plate was immersed in boiling water for 2 hours and then allowed to stand for one day, and then the same test as the primary bending adhesion test was performed. Judgment criteria are as follows.
  • Mouth peeling area 10% or more, less than 50%
  • peeling area 50% or more and less than 80%
  • a 10-yen coin was installed at an angle of 45 ° to each test plate, the coating film was rubbed at a constant speed with a load of 3 kg, and the degree of damage to the coating film was observed with the naked eye. Sexuality was evaluated.
  • the substrate exposure is 10% or more and less than 50%
  • Base exposure is 50% or more and less than 80%
  • the substrate exposure is 80% or more
  • Table 2 shows the evaluation results of the above test.
  • Examples 1-28 in Table 2 are metal materials of any one of EG, GI, and GL, which were coated with the aqueous surface treatment agent of the present invention (Nos. 1-27 in Table 1) and dried to form a film.
  • the corrosion resistance X cut part and end face corrosion resistance
  • primary bending adhesion secondary bending adhesion and coin scratch resistance
  • secondary bending adhesion coin scratch resistance
  • the primary coating adhesion was generally excellent, and even when a silane coupling agent having an amino group was used, the silane coupling agent / Depending on the ratio of urethane resin, the primary coating adhesion may be the same as when a silane coupling agent having a glycidyl group or a mercapto group is used.
  • Example 13 in which an amino group-containing silane coupling agent and a glycidyl group-containing silane coupling agent are used in combination has superior end face corrosion resistance compared to Example 5 using an amino group-containing silane coupling agent.
  • Each child Z (B) is in mass ratio.
  • the equivalent ratio of the A1 amino group of No. 12 to the glycidyl group of A3 was 5: 1.
  • the C1: C3 (mass ratio) of No. 4 and 12 was 2: 1.
  • Cationic urethane resin Bl, B2 and B3 were prepared by the following method.
  • Polyether polyol (synthesis components: polytetramethylene glycol and ethylene glycol, molecular weight 1500) 150 parts by mass, 6 parts by mass of trimethylolpropane, 24 parts by mass of N-methyl N, N diethanolamine, isophorone diisocyanate 94 Mass parts and 135 parts by mass of methyl ethyl ketone are placed in a reaction vessel, and 15 parts by mass of dimethyl sulfuric acid is added to the urethane prepolymer obtained by reaction while maintaining the temperature at 70 to 75 ° C. Cationic urethane prepolymers were obtained by reacting for ⁇ 60 minutes.
  • aqueous dispersion 576 parts by mass of water was added to the cationic urethane prepolymer and uniformly emulsified, and then methyl ethyl ketone was recovered to obtain a cationic polyether urethane resin (aqueous dispersion) (B1). .
  • Polyester polyol (Synthetic components: isophthalic acid, adipic acid and 1,6 hexanediol, ethylene glycol, molecular weight 1700) 135 parts by mass, trimethylolpropane 5 parts by mass, N-methyl N, N diethanolamine 22 parts by mass, isophorone
  • Add 86 parts by weight of diisocyanate and 120 parts by weight of methyl ethyl ketone to a reaction vessel and add 17 parts by weight of dimethyl sulfate to the urethane prepolymer obtained by reacting while maintaining at 70 to 75 ° C.
  • a cationic urethane prepolymer was obtained by reacting at 50 to 60 ° C. for 30 to 60 minutes.
  • Polycarbonate polyol (synthesis component: 1, 6 hexane carbonate diol, ethylene glycol, molecular weight 2000) 130 parts by mass, 4 parts by mass of trimethylolpropane, 21 parts by mass of N-methyl N, N diethanolamine, isophorone diisocyanate 75 parts by mass and 115 parts by mass of methyl ethyl ketone were placed in a reaction vessel, and 22 parts by mass of dimethyl sulfate was added to a urethane polymer obtained by reacting while maintaining at 70 to 75 ° C., and 50 to 60 A cationic urethane prepolymer was obtained by reacting at 30 ° C. for 30 to 60 minutes.
  • aqueous dispersion 633 parts by mass of water was added to the cationic urethane prepolymer and uniformly emulsified, and then methyl ethyl ketone was recovered to obtain a cationic polycarbonate urethane resin (aqueous dispersion) (B3).

Abstract

Disclosed is an aqueous surface treating agent for precoated metal materials which contains a silane coupling agent (A), a cationic urethane resin (B), a Zr compound and/or Ti compound (C), and a fluorine-containing inorganic compound (D). In this aqueous surface treating agent, the mass ratio of (A) to(B) is from 1/50 to 20/1, the mass ratio of Zr and/or Ti atoms to (B) is from 1/1000 to 1/2, and the mass ratio of fluorine atoms to(B) is from 1/1000 to 2/1. Also disclosed are a treatment method and a method for producing a non-chromium precoated metal material. This non-chromium aqueous surface treating agent has good storage stability, and is useful as a foundation-treating agent for producing a precoated metal material which is excellent in adhesion of coating during processing, corrosion resistance and coin-scratch resistance. The corrosion resistance can be further improved by blending a specific metal compound (E) into the aqueous surface treating agent.

Description

明 細 書  Specification
プレコート金属材料用水系表面処理剤、表面処理方法及びプレコート金 属材料の製造方法  Aqueous surface treatment agent for precoat metal material, surface treatment method, and method for producing precoat metal material
技術分野  Technical field
[0001] 本発明は、塗装密着性 (塗膜の加工密着性)、耐食性及び耐コインスクラッチ性に 優れるプレコート金属材料を作製するための下地処理剤として有用であって、かつ、 貯蔵安定性も良好なノンクロム系水系表面処理剤、並びに処理方法及びノンクロム 系プレコート金属材料の製造方法に関するものである。 背景技術  [0001] The present invention is useful as a base treatment agent for producing a precoat metal material having excellent coating adhesion (coating adhesion of a coating film), corrosion resistance and coin scratch resistance, and also has storage stability. The present invention relates to a good non-chromium aqueous surface treatment agent, a treatment method, and a method for producing a non-chromium pre-coated metal material. Background art
[0002] 家電用、建材用、自動車用などの部品に、加工後塗装されていた従来のポスト塗 装製品はリン酸塩などの前処理が多く施されているが、近年特に家電用に関しては、 このような前処理に代わって、着色した有機皮膜を被覆したプレコート金属板が使用 されるようになってきている。この金属板は、下地処理を施した金属板及びめつき金 属板に有機皮膜を被覆したもので、美観を有しながら、加工性を有し、耐食性が良好 であると 、う特性を有して 、る。  [0002] Conventional post-coated products that have been coated after processing on parts for home appliances, building materials, automobiles, etc. have been subjected to many pre-treatments such as phosphates. Instead of such pretreatment, precoated metal plates coated with a colored organic film have been used. This metal plate is a metal plate with a base treatment and a metal plate coated with an organic film. It has a good appearance, good workability, and good corrosion resistance. And then.
[0003] 例えば、特許文献 1には、特定のクロメート処理液を塗布し、水洗することなく乾燥 することで端面耐食性を改善したプレコート鋼板が開示されて 、る。このようなクロム を含有する下地処理を施したプレコート鋼板は、クロメート処理、有機皮膜の複合効 果によって耐食性と共に、加工性、塗装密着性 (塗膜の加工密着性)を有し、加工後 塗装を省略して、生産性向上や品質改良を目的としており、現在では汎用的に使用 されている。しカゝしながら、クロメート処理皮膜及びクロム系防鲭顔料を含む有機皮膜 力 溶出する可能性のある 6価クロムの毒性問題から、最近ではノンクロム防鲭処理 、ノンクロム有機皮膜に対する要望が高まっている。  [0003] For example, Patent Document 1 discloses a precoated steel sheet in which end face corrosion resistance is improved by applying a specific chromate treatment liquid and drying without washing with water. Pre-coated steel sheets with such a chromium-containing pretreatment have corrosion resistance, workability and paint adhesion (coating adhesion of the coating film) due to the combined effects of chromate treatment and organic coating, and are coated after processing. The purpose is to improve productivity and quality, and is currently used for general purposes. However, there is a growing demand for non-chromium anti-glare treatment and non-chromium organic coating due to the toxicity of hexavalent chromium that may be dissolved. .
[0004] プレコート鋼板の下地処理に求められる第 1の特性は塗装密着性 (塗膜の加工密 着性)であり、下層である下地金属及び上層であるプライマー等との 2つの界面ともに 良好に密着することが求められる。この塗装密着性は沸騰水に所定時間浸漬後に評 価する場合もあり、これを特に塗装二次密着性と呼び、沸騰水に浸漬する前の塗装 密着性である塗装一次密着性と区別する。これら一次、二次の密着性とも、後加工 により複雑な形状物に加工されることを前提とするプレコート鋼板には必須の極めて 重要な特性である。 T曲げ試験は極めて厳しい試験として、プレコート鋼板の密着性 評価に用いられる。 [0004] The first characteristic required for the pretreatment of precoated steel sheets is paint adhesion (coating adhesion of the paint film), and the two interfaces between the underlying metal as the lower layer and the primer as the upper layer are excellent. Adhesion is required. This coating adhesion may be evaluated after being immersed in boiling water for a predetermined time. This is called the secondary coating adhesion, and it is applied before being immersed in boiling water. Distinguish from primary paint adhesion, which is adhesion. Both the primary and secondary adhesion are extremely important characteristics that are essential for pre-coated steel sheets that are assumed to be processed into complex shapes by post-processing. The T-bending test is an extremely rigorous test and is used to evaluate the adhesion of precoated steel sheets.
[0005] プレコート鋼板の下地処理に求められる第 2の特性として、耐コインスクラッチ性が 挙げられる。これは密着性のみでなぐ下地処理の皮膜硬度などにも影響される特性 である。  [0005] The second characteristic required for the pretreatment of the precoated steel sheet is a coin scratch resistance. This is a property that is influenced not only by adhesion but also by the film hardness of the ground treatment.
[0006] プレコート鋼板の下地処理に求められる第 3の特性として、耐食性が挙げられる。プ レコート鋼板の場合、通常、鋼板の上に順に、下地処理、プライマー塗布処理、そし てトップコート塗布処理を行う。従来のクロメート処理を施したプレコート鋼板の場合、 下地処理層のみでなぐプライマー層にもクロメートを含有する。特に通常 0. を 越えて使用されることのない下地処理に比べ、 3〜: LO mと厚く使用されるプライマ 一層は多くのクロム成分を防鲭顔料として含有し、プレコート鋼板に対する耐食性付 与の主たる役割を担っている。ところが、クロムを含有しないプレコート鋼板における プライマーは、クロム系防鲭顔料を含むプライマーに到底及ばな ヽ耐食性しか付与 できないのが実状である。そのため、ノンクロメートのプレコート鋼板において、下地 処理部分は耐食性付与の役割を従来のクロメートシステム以上にむしろ担っていると 言える。  [0006] A third characteristic required for the pretreatment of the precoated steel sheet is corrosion resistance. In the case of a pre-coated steel sheet, usually, a base treatment, a primer coating process, and a top coat coating process are sequentially performed on the steel sheet. In the case of a pre-coated steel sheet that has been subjected to conventional chromate treatment, chromate is also contained in the primer layer that consists of only the ground treatment layer. In particular, compared to the surface treatment that is not normally used exceeding 0. 3 to: Primer that is used as thick as LO m One layer contains many chromium components as anti-glare pigments, giving corrosion resistance to pre-coated steel sheets. It plays the main role. However, the actual condition is that the primer in the pre-coated steel sheet not containing chromium can only provide corrosion resistance as much as the primer containing the chromium-based anti-corrosive pigment. Therefore, it can be said that in non-chromated pre-coated steel sheets, the surface treatment part plays a role of imparting corrosion resistance rather than the conventional chromate system.
[0007] クロメート処理に代わる非クロム系防鲭処理方法として特許文献 2には、タンニン酸 とシランカップリング剤を含有する水溶液で亜鉛及び亜鉛合金を表面処理することで 、耐白鲭性及び塗料密着性を向上させる技術が開示されているが、この方法ではプ レコート金属板に要求される耐コインスクラッチ性、耐食性を十分には確保することが できない。  [0007] Patent Document 2 discloses a non-chromium antifouling treatment method as an alternative to chromate treatment. Surface treatment of zinc and a zinc alloy with an aqueous solution containing tannic acid and a silane coupling agent results in anti-whitening resistance and paint. Although a technique for improving adhesion is disclosed, this method cannot sufficiently ensure the coin scratch resistance and corrosion resistance required for the precoated metal sheet.
[0008] 特許文献 3には、亜鉛めつき鋼板等の金属の表面に適用するための、シランカップ リング剤、水分散性シリカ、 Zr化合物及びアクリル榭脂を含有する金属表面処理剤 が開示されている力 この表面処理剤ではプレコート鋼板に要求される塗装密着性 及び耐食性を満足できな ヽ。  [0008] Patent Document 3 discloses a metal surface treatment agent containing a silane coupling agent, a water-dispersible silica, a Zr compound, and an acrylic resin for application to a metal surface such as a zinc-plated steel sheet. This surface treatment agent cannot satisfy the paint adhesion and corrosion resistance required for precoated steel sheets.
[0009] また、特許文献 4には、シランカップリング剤、シリカ及び水溶性榭脂からなる金属 表面処理剤が開示されている力 S、この表面処理剤でもプレコート鋼板に要求される 塗装密着性及び耐食性を満足できな ヽ。 [0009] Patent Document 4 discloses a metal comprising a silane coupling agent, silica, and a water-soluble resin. The force S for which a surface treatment agent is disclosed S, and even this surface treatment agent cannot satisfy the paint adhesion and corrosion resistance required for precoated steel sheets.
[0010] 特許文献 5には、亜鉛めつき鋼板の表面にシリカ微粒子とポリアクリル酸などの結合 剤を含有する化成皮膜を形成させることが記載されて 、る。しかしこの方法を用いて 達成される塗装密着性及び耐食性は、クロメート処理した場合に達成されるそれらに は及ばない。 Patent Document 5 describes that a chemical conversion film containing silica fine particles and a binder such as polyacrylic acid is formed on the surface of a zinc-plated steel sheet. However, the paint adhesion and corrosion resistance achieved using this method is inferior to those achieved with chromate treatment.
[0011] 特許文献 6には、ァ-オン性ポリウレタン、シランカップリング剤及び水溶性 Zrィ匕合 物を含有する表面処理剤が記載されている。しかし、この表面処理剤は一時防鲭性 付与に用いられるものであり、プレコート鋼板に要求されるレベルの塗装密着性を達 成できない。  [0011] Patent Document 6 describes a surface treatment agent containing a carbon-based polyurethane, a silane coupling agent, and a water-soluble Zr compound. However, this surface treatment agent is used for imparting temporary antifungal properties and cannot achieve the level of paint adhesion required for precoated steel sheets.
[0012] プレコート鋼板には深絞り加工のような厳 、後加工に耐え得る塗装密着性が要求 される。一時防鲭性付与用の表面処理液によって達成される密着性は、エリクセン押 出しレベルの加工密着性であり、 T曲げ試験を合格するレベルの加工密着性は達成 されない。同様のことが、耐指紋性表面処理液や潤滑用表面処理液をプレコート鋼 板の下地処理に転用した場合にも当てはまり、 T曲げ試験を合格するレベルの加工 密着性は達成されない。このように、プレコート鋼板に要求されるレベルの塗装密着 性と十分な耐食性を併せ持つ表面処理剤は現在のところ実用化されておらず、早急 な開発が望まれていた。  [0012] Pre-coated steel plates are required to have paint adhesion that can withstand severe post-processing such as deep drawing. The adhesion achieved by the surface treatment liquid for imparting temporary anti-fouling property is the work adhesion at the Erichsen extrusion level, and the work adhesion at a level that passes the T-bending test is not achieved. The same applies to the case where the anti-fingerprint surface treatment solution or the surface treatment solution for lubrication is diverted to the pretreatment of the pre-coated steel sheet, and the level of processing adhesion that passes the T-bending test is not achieved. As described above, a surface treatment agent having both the level of paint adhesion required for precoated steel sheets and sufficient corrosion resistance has not been put into practical use at present, and rapid development has been desired.
特許文献 1 :特開平 3— 100180号公報  Patent Document 1: Japanese Patent Laid-Open No. 3-100180
特許文献 2 :特開昭 59— 116381号公報  Patent Document 2: JP 59-116381
特許文献 3 :特開 2001—316845号公報  Patent Document 3: Japanese Patent Laid-Open No. 2001-316845
特許文献 4:特開 2001— 164195号公報  Patent Document 4: Japanese Patent Laid-Open No. 2001-164195
特許文献 5 :特開 2002— 80979号公報  Patent Document 5: Japanese Patent Laid-Open No. 2002-80979
特許文献 6:特開 2004— 204333号公報  Patent Document 6: Japanese Unexamined Patent Application Publication No. 2004-204333
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 本発明は、環境に対応したノンクロム系でありながら、プレコート金属材料に対する 塗装下地として使用した場合に、得られるプレコート金属材料が塗装密着性 (塗膜の 加工密着性)、耐食性及び耐コインスクラッチ性に優れる、貯蔵安定性も良好な水系 表面処理剤、それを用いる表面処理方法、並びに加工密着性、耐食性及び耐コイン スクラッチ性に優れる、ノンクロム系プレコート金属材料の製造方法を提供することを 目的とするものである。 [0013] The present invention is an environment-friendly non-chromium material, but when used as a coating base for a pre-coated metal material, the resulting pre-coated metal material has a coating adhesion (coating film). Non-chromium pre-coated metal with excellent processing adhesion, corrosion resistance and coin scratch resistance, aqueous surface treatment agent with excellent storage stability, surface treatment method using the same, and excellent processing adhesion, corrosion resistance and coin scratch resistance The object is to provide a method for producing the material.
課題を解決するための手段 Means for solving the problem
上記課題は、  The above issues
(1)シランカップリング剤 (A)、カチオン性ウレタン榭脂(B)、 Zr化合物及び Zまたは Ti化合物 (C)並びにフッ素含有無機化合物 (D)を含有するプレコート金属材料用水 系表面処理剤であって、(A)Z(B)の質量比が 1Z50〜20Z1、(Zr及び Ζ又は Ti 原子) Z(B)の質量比が lZl, 000〜1Z2、及びフッ素原子 Z(B)の質量比が 1Z 1, 000〜2Zlである該水系表面処理剤;  (1) A silane coupling agent (A), cationic urethane resin (B), Zr compound and Z or Ti compound (C), and an aqueous surface treatment agent for precoated metal materials containing fluorine-containing inorganic compound (D). (A) The mass ratio of Z (B) is 1Z50 to 20Z1, (Zr and Ζ or Ti atom) The mass ratio of Z (B) is lZl, 000 to 1Z2, and the mass ratio of fluorine atom Z (B) The water-based surface treatment agent wherein is 1Z 1,000-2Zl;
(2)シランカップリング剤 (A)全体の 5質量%以上が、第 1級ァミノ基、第 2級ァミノ基 、第 3級ァミノ基及び第 4級アンモ-ゥム基力 選ばれるアミノ性官能基を有するシラ ンカップリング剤である上記(1)記載の水系表面処理剤;  (2) Silane coupling agent (A) 5% by mass or more of primary aminoamino group, secondary amino group, tertiary amino group and quaternary ammonium group selected An aqueous surface treating agent according to the above (1), which is a silane coupling agent having a group;
(3)シランカップリング剤 (A)が互いに反応する官能基をそれぞれ有するシランカツ プリング剤からなり、一方の官能基と他方の官能基との当量比が 50: 1〜 1: 50である 上記(1)又は(2)記載の水系表面処理剤。  (3) Silane coupling agent (A) consists of silane coupling agents each having functional groups that react with each other, and the equivalent ratio of one functional group to the other functional group is 50: 1 to 1:50 The aqueous surface treating agent according to 1) or (2).
(4)さらに、 V化合物、 Mo化合物、 W化合物、 Co化合物、 A1化合物、 Zn化合物、 Ni 化合物、 Mn化合物、 Ce化合物、 Nb化合物、 Sn化合物及び Mg化合物から選ばれ る少なくとも 1種の金属化合物 (E)を、金属原子 Z(B)の質量比として lZl, 000〜 1Z2の範囲で含有する上記(1)〜(3)の 、ずれか 1項に記載の水系表面処理剤; (4) Further, at least one metal compound selected from V compound, Mo compound, W compound, Co compound, A1 compound, Zn compound, Ni compound, Mn compound, Ce compound, Nb compound, Sn compound and Mg compound The aqueous surface treating agent according to any one of (1) to (3) above, which contains (E) in the range of lZl, 000 to 1Z2 as a mass ratio of the metal atom Z (B);
(5) Zrィ匕合物及び Zまたは Tiィ匕合物(C)がフッ化物又はフルォロ酸もしくはフルォロ 酸塩である上記(1)〜 (4)の 、ずれか 1項に記載の水系表面処理剤; (5) The water-based surface according to any one of (1) to (4) above, wherein the Zr compound and the Z or Ti compound (C) are fluoride, fluoro acid or fluoro acid salt. Processing agent;
(6)上記(1)〜(5)の 、ずれか 1項に記載の水系表面処理剤を金属材料表面に塗 布後乾燥して、 10〜: L, 000mg/m2の乾燥皮膜を形成させることを特徴とする金属 材料の表面処理方法;並びに (6) Apply the water-based surface treatment agent described in (1) to (5) above on the surface of the metal material and then dry to form a dry film of 10-: L, 000 mg / m 2 A surface treatment method of a metal material, characterized by:
(7)上記(6)記載の表面処理方法により表面処理した金属材料に、さらにクロムを含 まない上層被覆を施すことを特徴とするプレコート金属材料の製造方法 によって達成される。 (7) A method for producing a pre-coated metal material, wherein the metal material surface-treated by the surface treatment method described in (6) above is further coated with an upper layer coating not containing chromium. Achieved by:
発明の効果  The invention's effect
[0015] 本発明のプレコート金属材料用水系表面処理剤は良好な貯蔵安定性を有し、また 該水系表面処理剤及び本発明の表面処理方法により表面処理した金属材料に、さ らにクロムを含まない上層被覆を施すことにより得られるプレコート金属材料は、複合 皮膜がクロムを含まないにもかかわらず、耐食性 (Xカット部耐食性及び端面耐食性) 、加工密着性 (一次折曲げ密着性及び二次折曲げ密着性)及び耐コインスクラッチ 性に優れる。したがって、本発明は工業的価値が極めて高い発明である。  [0015] The aqueous surface treatment agent for precoated metal materials of the present invention has good storage stability, and further chromium is added to the aqueous surface treatment agent and the metal material surface-treated by the surface treatment method of the present invention. Pre-coated metal material obtained by applying an upper layer coating that does not contain, even though the composite film does not contain chromium, corrosion resistance (X-cut corrosion resistance and end face corrosion resistance), work adhesion (primary bending adhesion and secondary adhesion) Excellent bending adhesion and coin scratch resistance. Therefore, the present invention has extremely high industrial value.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明を以下に詳細に説明する。  [0016] The present invention is described in detail below.
本発明のプレコート金属材料用水系表面処理剤はシランカップリング剤 (A)、カチ オン性ウレタン榭脂(B)、 Zr化合物及び Zまたは Ti化合物(C)並びにフッ素含有無 機化合物 (D)を必須成分として含有する水系表面処理剤である。  The aqueous surface treatment agent for precoated metal materials of the present invention comprises a silane coupling agent (A), a cationic urethane resin (B), a Zr compound and a Z or Ti compound (C), and a fluorine-containing inorganic compound (D). It is an aqueous surface treatment agent contained as an essential component.
[0017] シランカップリング剤は、加水分解することにより生成するシラノール基の OHの 活性が高ぐ母材である下地金属 Mと酸素原子を介し、 Si— O— Mの強固な化学 結合をする。この化学結合は、特に下地金属との良好な密着性に寄与する。また、上 層に含まれる有機官能基との反応により、上層との密着性向上にも寄与する場合も ある。シランカップリング剤の官能基として極性の強い 0、 Nなどを構成要素とした極 性基が導入されて 、る場合、上層との密着性はさらに向上する。  [0017] The silane coupling agent forms a strong chemical bond of Si—O—M via the base metal M, which is a base material with high OH activity of the silanol group generated by hydrolysis, and oxygen atoms. . This chemical bond particularly contributes to good adhesion to the base metal. In addition, the reaction with the organic functional group contained in the upper layer may contribute to improving the adhesion with the upper layer. In the case where a polar group having 0, N or the like having a strong polarity as a functional group of the silane coupling agent is introduced, the adhesion with the upper layer is further improved.
[0018] 本発明に適用できるシランカップリング剤として、例えば、 N- (2 アミノエチル) 3 —ァミノプロピルトリメトキシシラン、 N— (2 アミノエチル) 3 ァミノプロピルメチルジ メトキシシラン、 N— (2 アミノエチル) 3 ァミノプロピルトリエトキシシラン、 N— (2- アミノエチル) 3 ァミノプロピルメチルジェトキシシラン、 N— (2 アミノエチル) 3— ァミノプロピルメチルジメトキシシラン、 γ—ァミノプロピルトリエトキシシラン、 γ アミ ノプロピルトリメトキシシラン、 Ν フエ二ノレ一 γ—ァミノプロピルトリメトキシシラン、 Ν —フエ二ノレ一 γ—ァミノプロピルトリエトキシシラン、 γ—メタクリロキシプロピルトリメト キシシラン、 γ—メタクリロキシプロピルメチルジメトキシシラン、 γ—メタクリロキシプロ ピルトリエトキシシラン、 Ύ—メタクリロキシプロピルメチルジェトキシシラン、 N— j8— ( N ビュルべンジルアミノエチル) 3—ァミノプロピルトリメトキシシラン、 N— j8— (N —ビュルべンジルアミノエチル) 3—ァミノプロピルメチルジメトキシシラン、 N— j8 - (N ビュルべンジルアミノエチル) 3—ァミノプロピルトリエトキシシラン、 N— β - (Ν ビュルべンジルアミノエチル) 3—ァミノプロピルメチルジェトキシシラン、 γ ラン、 Ύーグリシドキシプロピルトリエトキシシラン、 γ—グリシドキシプロピルメチルジ エトキシシラン、 2- (3, 4 エポキシシクロへキシル)ェチルトリメトキシシラン、 γ—メ メルカプトプロピルトリエトキシシラン、 γ メルカプトプロピルメチルジェトキシシラ ン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、ジメ チルジェトキシシラン、ビニルトリァセトキシシラン、 Ί—クロ口プロピルトリメトキシシラ ン、 Ί クロ口プロピルメチルジメトキシシラン、 Ί クロ口プロピルトリエトキシシラン、 γ クロ口プロピルメチルジェトキシシラン、へキサメチルジシラザン、 γ—ァニリノプ 口ピルトリメトキシシラン、 γ—ァニリノプロピルメチルジメトキシシラン、 γ—ァニリノプ 口ピルトリエトキシシラン、 Ί—ァニリノプロピルメチルジェトキシシラン、イソシアナトプ 口ピルトリメトキシシラン、イソシアナトプロピルトリエトキシシラン、ウレイドプロピルトリ エトキシシラン、ビス(トリメトキシシリル)アミノビニルトリメトキシシラン、ビニルメチルジ メトキシシラン、ビニルトリエトキシシラン、ビニルメチルジェトキシシラン、ォクタデシル ジメチル〔3—(トリメトキシシリル)プロピル〕アンモ-ゥムクロライド、ォクタデシルジメ チル〔3—(メチルジメトキシシリル)プロピル〕アンモ-ゥムクロライド、ォクタデシルジメ チル〔3—(トリエトキシシリル)プロピル〕アンモ-ゥムクロライド、ォクタデシルジメチル 〔3— (メチルジェトキシシリル)プロピル〕アンモ-ゥムクロライド、 γ—クロ口プロピルメ チルジメトキシシラン、 γ メルカプトプロピルメチルジメトキシシラン、メチルトリクロ口 シラン、ジメチルジクロロシラン、トリメチルクロロシランなどを挙げることができる。これ らをのうち 1成分のみ、または複数を組み合わせて使用することができる。 [0018] Examples of silane coupling agents applicable to the present invention include N- (2 aminoethyl) 3 -aminopropyltrimethoxysilane, N- (2 aminoethyl) 3 aminopropylmethyldimethoxysilane, N- (2 Aminoethyl) 3 Aminopropyltriethoxysilane, N— (2-Aminoethyl) 3 Aminopropylmethyl jetoxysilane, N— (2 Aminoethyl) 3 — Aminopropylmethyldimethoxysilane, γ-Amino Propyltriethoxysilane, γ-aminopropyltrimethoxysilane, ΝPhenol γ-Aminopropyltrimethoxysilane, Ν-Phenol γ-Aminopropyltriethoxysilane, γ-Methacryloxypropyltrimethoxysilane , Γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropirtrie Toxisilane, Ύ —Methacryloxypropylmethyl jetoxysilane , N—j8— ( N-Bulbenylaminoethyl) 3-Aminopropyltrimethoxysilane, N—j8— (N—Bulbenylaminoethyl) 3-aminopropylmethyldimethoxysilane, N—j8— (N Bulbendil) Aminoethyl) 3-Aminopropyltriethoxysilane, N-β- (ΝBulbenylaminoethyl) 3-Aminopropylmethyljetoxysilane, γ-run, グ リ -glycidoxypropyltriethoxysilane, γ— Glycidoxypropylmethyldiethoxysilane, 2- (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γmercaptopropylmethyljetoxysilane, methyltrimethoxysilane, dimethyl Dimethoxysilane, methyltriethoxysilane, dimethyljetoxysilane, vinyltria Setokishishiran, I - black port propyl trimethoxysilane down, I black port methyl dimethoxy silane, I black port triethoxysilane, gamma black port propyl methyl jet silane, the hexamethyldisilazane, .gamma. Anirinopu port pills trimethoxysilane silane, .gamma. § two Reno propyl methyl dimethoxy silane, .gamma. Anirinopu port pills triethoxysilane, I - § d Reno propyl methyl jet silane, Isoshianatopu port pills trimethoxysilane, isocyanatopropyltriethoxysilane, ureidopropyltriethoxysilane Silane, bis (trimethoxysilyl) aminovinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyltriethoxysilane, vinylmethyljetoxysilane, octadecyl dimethyl [3- (trimethoxy Silyl) propyl] ammonium chloride, octadecyl dimethyl [3- (methyldimethoxysilyl) propyl] ammonium chloride, octadecyl dimethyl [3- (triethoxysilyl) propyl] ammonium chloride, octadecyldimethyl [3- Toxisilyl) propyl] ammonium chloride, γ-chloropropyl dimethyldimethoxysilane, γ mercaptopropylmethyldimethoxysilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane and the like. Of these, only one component or a combination of two or more can be used.
下地処理剤は多くの場合、多少なりとも上層に塗布するプライマーとの相性があり、 組合せによっては性能が期待通りに出現しな 、ケースがある。上記カップリング剤の うちアミノ性官能基を有するものは、上層との相性に左右されにくい。そのため本発 明の水系表面処理剤(下地処理剤)においては、シランカップリング剤 (A)力 ァミノ 性官能基を有するものを少なくとも 1種含有することが好ましい。ここで、本発明でアミ ノ性官能基とは第 1級ァミノ基、第 2級ァミノ基、第 3級ァミノ基及び第 4級アンモ-ゥ ム基から選ばれる官能基を示すものとする。なお、第 4級アンモ-ゥム基を有する場 合の対イオンとしては塩素イオンを初めとするハロゲンイオン、リン酸イオン、硝酸ィ オン、硫酸イオン、有機酸イオンなどが挙げられる。アミノ性官能基を有するシラン力 ップリング剤のシランカップリング剤 (A)全体に対する使用量は、 5質量%以上である のが好ましぐ 10質量%以上であるのがより好ましぐ 20質量%以上であるのがより 一層好ましぐそれによつてプライマーの種類によって、プライマーとの密着性等が悪 影響を受けることをなくすことができるか最小限にすることができる。 In many cases, the surface treatment agent is somewhat compatible with the primer applied to the upper layer, and depending on the combination, the performance may not appear as expected. Among the above coupling agents, those having an amino functional group are not easily affected by compatibility with the upper layer. Therefore, this departure The bright water-based surface treatment agent (primary treatment agent) preferably contains at least one silane coupling agent (A) having an amino group. Here, in the present invention, the amino functional group refers to a functional group selected from a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group. Examples of counter ions having a quaternary ammonium group include halogen ions such as chlorine ions, phosphate ions, nitrate ions, sulfate ions, and organic acid ions. Silane force having amino functional group The amount of the coupling agent used for the entire silane coupling agent (A) is preferably 5% by mass or more, more preferably 10% by mass or more, more preferably 20% by mass. As described above, it is even more preferable that, depending on the type of primer, the adhesion to the primer can be prevented from being adversely affected or minimized.
[0020] シランカップリング剤 (A)として 2種以上を用いる場合、互いに反応して新たな結合 を生成させる官能基をそれぞれ有するシランカップリング剤を用いることによって、耐 食性をさらに向上させることができる。例えば、第 1級ァミノ基もしくは第 2級アミノ基を 有するシランカップリング剤とアミノ基と反応し得る官能基、例えば隣り合った炭素原 子に結合したエポキシ基 (グリシジル基、 3, 4 エポキシシクロへキシル基等)を有す るシランカップリング剤とを併用するのが好ましぐまた、ヒドロキシル基を有するか生 じ得るシランカップリング剤 (例えば隣り合った炭素原子に結合したエポキシ基を有す るシランカップリング剤)とイソシアナト基を有するシランカップリング剤とを併用するの が好ましい。互いに反応する官能基をそれぞれ有するシランカップリング剤同士の使 用割合は、互いの官能基が過不足なく反応する量である必要はなぐ一方の官能基 (例えば、第 1級ァミノ基もしくは第 2級ァミノ基)と他方の官能基 (例えば、隣り合った 炭素原子に結合したエポキシ基)との当量比として、 50 : 1〜1: 50の範囲であるのが 好ましぐ 30 : 1〜1: 30の範囲であるのがより好ましい。  [0020] When two or more kinds of silane coupling agents (A) are used, the corrosion resistance can be further improved by using silane coupling agents each having a functional group that reacts with each other to form a new bond. it can. For example, a silane coupling agent having a primary amino group or a secondary amino group and a functional group capable of reacting with the amino group, for example, an epoxy group bonded to an adjacent carbon atom (glycidyl group, 3, 4 epoxy cyclohexane). It is preferable to use in combination with a silane coupling agent having a hexyl group or the like, and a silane coupling agent having or capable of generating a hydroxyl group (for example, having an epoxy group bonded to an adjacent carbon atom). And a silane coupling agent having an isocyanato group is preferably used in combination. The usage ratio of the silane coupling agents each having a functional group that reacts with each other is such that the amount of the functional groups that react with each other does not need to be sufficient. The equivalent ratio between the primary amino group and the other functional group (for example, an epoxy group bonded to an adjacent carbon atom) is preferably in the range of 50: 1 to 1:50 30: 1 to 1 : More preferably, the range is 30.
[0021] 本発明で用いるカチオン性ウレタン榭脂(B)は水溶性または水系ェマルジヨン形態 のものである。カチオン性ウレタン榭脂(B)の水への溶解または分散は、自己溶解性 または自己分散性に基づいて達成されてもよぐまたカチオン性界面活性剤 (例えば テトラアルキルアンモ-ゥム塩等)及び Zまたはノ-オン性界面活性剤(例えばアル キルフエ-ルエーテル等)の存在により分散されてもょ 、。 [0022] カチオン性ウレタン榭脂 (B)は、下地皮膜に柔軟性を付与し、かつ塗装密着性の 向上に寄与する結果、折曲げ密着性及び耐コインスクラッチ性向上に効果的に作用 する。 [0021] The cationic urethane resin (B) used in the present invention is water-soluble or water-based emulsion type. The dissolution or dispersion of the cationic urethane resin (B) in water may be achieved on the basis of self-solubility or self-dispersibility, and cationic surfactants (eg tetraalkyl ammonium salts) And may be dispersed in the presence of Z or a non-ionic surfactant (such as alkyl ether). [0022] The cationic urethane resin (B) imparts flexibility to the base film and contributes to the improvement of coating adhesion, and thus effectively acts to improve bending adhesion and coin scratch resistance.
本発明における表面処理剤組成物中のカチオン性ウレタン榭脂 (B)は、第 1〜第 3 級ァミノ基及び第 4級アンモ-ゥム塩の中力 選ばれる少なくとも 1種のカチオン性官 能基を有するものであれば、構成するモノマー成分であるポリオール成分及びポリィ ソシアナート成分並びに重合方法は特に限定されるものではない。例えば、へキサメ チレンジイソシアナート(HDI)、ジシクロへキシルメタンジイソシアナート(HMDI)、ィ ソホロンジイソシアナ一ト (IPDI)などの脂肪族、脂環式もしくは芳香族ジイソシアナ ートと、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオ一 ルなどの鎖中にアミノ基を導入したポリオールとを公知の方法により重合させ、アルキ ル硫酸等でアミンを一部 4級化することによってカチオン性ウレタン榭脂(B)を得るこ とができる。カチオン性官能基における窒素上の置換基としては、水素原子、アルキ ル基、ァリール基、アルケニル基、アルキ-ル基、ヒドロキシアルキル基等が挙げられ る力 これらに限定されるものではない。カチオン性ウレタン榭脂(B)は 1種単独でも しくは 2種以上を組み合わせて用いることができる。  The cationic urethane resin (B) in the surface treating agent composition of the present invention is at least one cationic functional selected from the primary forces of primary to tertiary amino groups and quaternary ammonium salts. As long as it has a group, the polyol component and the polyisocyanate component, which are constituent monomer components, and the polymerization method are not particularly limited. For example, aliphatic, cycloaliphatic or aromatic diisocyanates such as hexamethylene diisocyanate (HDI), dicyclohexylmethane diisocyanate (HMDI), isophorone diisocyanate (IPDI) and polyester Cationic urethane resin by polymerizing polyols such as polyols, polyether polyols, polycarbonate polyols, etc., in which amino groups are introduced into the chain by a known method, and partially quaternizing the amine with alkyl sulfuric acid or the like. (B) can be obtained. The substituent on nitrogen in the cationic functional group includes, but is not limited to, a hydrogen atom, an alkyl group, an aryl group, an alkenyl group, an alkyl group, and a hydroxyalkyl group. The cationic urethane resin (B) can be used alone or in combination of two or more.
[0023] 上記において、脂肪族、脂環式もしくは芳香族ポリイソシァネートとしては、例えば テトラメチレンジイソシァネート、へキサメチレンジイソシァネート、リジンジイソシァネ ートエステル、水添キシリレンジイソシァネート、 1, 4ーシクロへキシレンジイソシァネ ート、 4, 4'ージシクロへキシルメタンジイソシァネート、 2, 4'ージシクロへキシルメタ ンジイソシァネート、イソホロンジイソシァネート、 3, 3,ージメトキシ 4, 4,ービフエ- レンジイソシァネート、 1, 5 ナフタレンジイソシァネート、 1, 5—テトラヒドロナフタレ ンジイソシァネート、 2, 4 トリレンジイソシァネート、 2, 6 トリレンジイソシァネート、 4, 4'ージフエ-ルメタンジイソシァネート、 2, 4'ージフエ-ルメタンジイソシァネート 、フエ-レンジイソシァネート、キシリレンジイソシァネート、テトラメチルキシリレンジィ ソシァネート等が挙げられる力 これらの中でも、テトラメチレンジイソシァネート、へキ サメチレンジイソシァネート、リジンジイソシァネートエステル、水添キシリレンジイソシ ァネート、 1, 4ーシクロへキシレンジイソシァネート、 4, 4'ージシクロへキシノレメタン ジイソシァネート、 2, 4'ージシクロへキシルメタンジイソシァネート、イソホロンジイソ シァネート等の脂肪族又は脂環式ポリイソシァネートイ匕合物を用いた場合に、耐薬品 性、防食性等だけではなぐ耐候性に優れた被膜が得られるので好ましい。 In the above, examples of the aliphatic, alicyclic or aromatic polyisocyanate include tetramethylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate ester, hydrogenated xylylene diisocyanate. Cyanate, 1,4-cyclohexylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 2,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, 3, 3 , -Dimethoxy 4,4, -biphenol-diisocyanate, 1,5 naphthalene diisocyanate, 1,5-tetrahydronaphthalene diisocyanate, 2,4 tolylene diisocyanate, 2,6 tolylene diisocyanate 4,4'-dimethanemethane diisocyanate, 2,4'-dimethanemethane diisocyanate, phenolic diisocyanate Powers such as xylylene diisocyanate, tetramethylxylylene diisocyanate, etc. Among these, tetramethylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate ester, hydrogenated xylylene diisocyanate 1,4-cyclohexylene diisocyanate, 4,4'-dicyclohexylenemethane When using aliphatic or alicyclic polyisocyanate compounds such as diisocyanate, 2,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, etc., chemical resistance, anticorrosion, etc. It is preferable because a film excellent in weather resistance is obtained.
[0024] 上記において、ポリオールとしては、例えばエチレングリコール、ジエチレングリコー ル、トリエチレングリコール、 1, 2 プロピレングリコール、 1, 3 プロピレングリコーノレ 、ネオペンチルグリコール、 1, 2 ブチレングリコール、 1, 3 ブチレングリコール、 1 , 4—ブチレングリコール、へキサメチレングリコール、ビスフエノール A、水添ビスフエ ノール A、トリメチロールプロパン、 1, 2 プロパンジオール、 1, 3 プロパンジォー ル、 2—メチルー 1, 3 プロパンジオール、 2 ブチルー 2 ェチルー 1, 3 プロノ ンジオール、 1, 4 ブタンジオール、ネオペンチルグリコール、 3—メチルー 2, 4— ペンタンジオール、 2, 4 ペンタンジオール、 1, 5 ペンタンジオール、 3 メチル 1, 5 ペンタンジオール、 2—メチルー 2, 4 ペンタンジオール、 2, 4 ジェチル 1, 5 ペンタンジオール、 1, 6 へキサンジオール、 1, 7 ヘプタンジオール、 3 , 5 ヘプタンジオール、 1, 8 オクタンジオール、 2—メチルー 1, 8 オクタンジォ ール、 1, 9ーノナンジオール、 1, 10 デカンジオール等の脂肪族ジオール化合物 、トリメチロールェタン、トリメチロールプロパン、へキシトール類、ペンチトール類、グリ セリン、ジグリセリン、ポリグリセリン、ペンタエリスリトール、ジペンタエリスリトール、テト ラメチロールプロパン等の 3価以上の脂肪族又は脂環族アルコール化合物等が挙げ られる。 In the above, examples of the polyol include ethylene glycol, diethylene glycol, triethylene glycol, 1,2 propylene glycol, 1,3 propylene glycol, neopentyl glycol, 1,2 butylene glycol, and 1,3 butylene glycol. 1,4-butylene glycol, hexamethylene glycol, bisphenol A, hydrogenated bisphenol A, trimethylolpropane, 1,2 propanediol, 1,3 propanediol, 2-methyl-1,3 propanediol, 2 butyl 2-ethyl-1,3-prononediol, 1,4 butanediol, neopentylglycol, 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2- Methyl-2,4 pentanediol, 2,4 di 1,5-pentanediol, 1,6 hexanediol, 1,7 heptanediol, 3,5 heptanediol, 1,8 octanediol, 2-methyl-1,8 octanediol, 1,9-nonanediol, 1,10 Trivalent diol compounds such as decane diol, trimethylol ethane, trimethylol propane, hexitols, pentitols, glycerol, diglycerol, polyglycerol, pentaerythritol, dipentaerythritol, tetramethylol propane, etc. Examples include the above aliphatic or alicyclic alcohol compounds.
[0025] 上記においてポリエーテルポリオールとしては、例えばエチレングリコール、ジェチ レングリコール、トリエチレングリコール等のエチレンオキサイド付カ卩物、プロピレングリ コール、ジプロピレングリコール、トリプロピレングリコール等のプロピレンオキサイド付 加物、上記のポリオールのエチレンオキサイド及び Z又はプロピレンオキサイド付カロ 物、ポリテトラメチレングリコール等が挙げられる。  In the above, examples of the polyether polyol include ethylene oxide adducts such as ethylene glycol, polyethylene glycol, and triethylene glycol, propylene oxide adducts such as propylene glycol, dipropylene glycol, and tripropylene glycol. Examples of the polyol include ethylene oxide and Z- or propylene oxide-attached carbohydrate, polytetramethylene glycol, and the like.
[0026] 上記にぉ 、てポリエステルポリオールとしては、例えば上記ポリオール等と、その化 学量論的量より少ない量の多価カルボン酸又はそのエステル、無水物、ハライド等の エステル形成性誘導体、及び Z又は、ラタトン類もしくはそれらを加水分解して得ら れるヒドロキシカルボン酸ィ匕合物、との直接エステルイ匕反応及び Z又はエステル交換 反応により得られるポリエステルポリオールが挙げられる。上記で多価カルボン酸とし ては、例えば、シユウ酸、マロン酸、コハク酸、ダルタル酸、アジピン酸、ピメリン酸、ス ベリン酸、ァゼライン酸、セバシン酸、ドデカン二酸、 2—メチルコハク酸、 2—メチル アジピン酸、 3 メチルアジピン酸、 3—メチルペンタン二酸、 2 メチルオクタン二酸 、 3, 8—ジメチルデカン二酸、 3, 7—ジメチルデカン二酸、ダイマー酸、水添ダイマ 一酸等の脂肪族ジカルボン酸類;シクロへキサンジカルボン酸等の脂環式ジカルボ ン酸類;フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸等の芳香族 ジカルボン酸類;トリメリット酸、トリメシン酸、ひまし油脂肪酸の 3量体等のトリカルボン 酸類、ピロメリット酸等のテトラカルボン酸などのポリカルボン酸が挙げられ、そのエス テル形成性誘導体としては、これらの多価カルボン酸の酸無水物;該多価カルボン 酸のクロライド、ブロマイド等のハライド;該多価カルボン酸のメチルエステル、ェチル エステノレ、プロピノレエステノレ、イソプロピノレエステノレ、ブチノレエステノレ、イソブチノレエス テル、ァミルエステル等の低級脂肪族エステル等が挙げられる。上記ラタトン類として は、 y一力プロラタトン、 δ一力プロラタトン、 ε一力プロラタトン、 γ ノ レ口ラタトン、 δ バレロラタトン等のラタトン類等が挙げられる。 [0026] In the above, the polyester polyol includes, for example, the above polyol and the like, an ester-forming derivative such as a polycarboxylic acid having an amount less than the stoichiometric amount or its ester, anhydride, halide, and the like, and Direct esterification reaction and Z or transesterification with Z or ratatones or hydroxycarboxylic acid compounds obtained by hydrolyzing them Examples include polyester polyols obtained by the reaction. Examples of the polyvalent carboxylic acid include oxalic acid, malonic acid, succinic acid, dartaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, 2-methylsuccinic acid, 2 —Methyl adipic acid, 3 methyl adipic acid, 3-methylpentanedioic acid, 2 methyloctanedioic acid, 3,8-dimethyldecanedioic acid, 3,7-dimethyldecanedioic acid, dimer acid, hydrogenated dimer monoacid, etc. Aliphatic dicarboxylic acids such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid; trimellitic acid, trimesic acid, castor oil fatty acid 3 Examples include tricarboxylic acids such as trimers, and polycarboxylic acids such as tetracarboxylic acids such as pyromellitic acid. Examples of the conductor include acid anhydrides of these polyvalent carboxylic acids; halides of the polyvalent carboxylic acids such as chlorides and bromides; methyl esters of the polyvalent carboxylic acids, ethyl esterol, propinoreesterol, isopropinoreesterol, And lower aliphatic esters such as butinoreesterol, isobutinol ester and amyl ester. Examples of the latatones include latones such as y-one-strength prolatatone, δ-one-strength pro-latatone, ε-one-strength pro-latatone, γ-norralatataton, and δ-valerolatatone.
[0027] カチオン性ウレタン榭脂 (Β)としては、金属材料への密着性や耐水性へ悪影響を 及ぼす恐れがあるため、可溶化剤又は乳化剤としての界面活性剤を使用しな!ヽソー プフリー或いはその使用量を抑えたものがより好まし 、。  [0027] As the cationic urethane resin (wax), a surfactant as a solubilizer or emulsifier should not be used because it may adversely affect adhesion to metal materials and water resistance!ヽ Soap-free or those with reduced usage are preferred.
[0028] カチオン性ウレタン榭脂(Β)の重量平均分子量は、 1, 000〜1, 000, 000である の力好ましく、 2, 000-500, 000であるの力より好まし!/ヽ。該分子量力 ^1, 000未満 では皮膜形成性が不十分で、一方 1, 000, 000を超えると水系表面処理剤の安定 性が低下する傾向となる。  [0028] The weight average molecular weight of the cationic urethane resin (榭) is preferably 1,000 to 1,000,000, more preferably 2,000-500,000! / ヽ. When the molecular weight force is less than ^ 1,000, the film-forming property is insufficient, while when it exceeds 1,000,000, the stability of the aqueous surface treatment agent tends to decrease.
[0029] また、カチオン性ウレタン榭脂 (Β)と相溶する限り、アクリル系榭脂、エステル系榭 脂、アミノ系榭脂、エポキシ系榭脂、フエノール系榭脂などの他の榭脂を混合して用 いてもよい。また、カチオン性ウレタン榭脂(Β)の造膜性を向上させ、より均一で平滑 な塗膜を形成するために有機溶剤を用いてもょ ヽ。  [0029] In addition, as long as it is compatible with the cationic urethane resin (resin), other resin such as acrylic resin, ester resin, amino resin, epoxy resin, phenol resin can be used. You may mix and use. In addition, an organic solvent may be used to improve the film forming property of the cationic urethane resin (soot) and form a more uniform and smooth coating film.
[0030] シランカップリング剤 (Α)の配合量は、カチオン性ウレタン榭脂(Β)に対して、質量 比(Α) Ζ (Β)として 1Ζ50〜20Ζ1であることが必要であり、 1Z20〜: L0Z1であるこ と力 子ましく、 1Z10〜5Z1であることがより好ましい。シランカップリング剤 (A)の配 合量が 1Z50よりが少ないと、皮膜硬度が低下するため十分な耐コインスクラッチ性 が得られ難くなり、 20Z1より多いと下地金属との密着性がかえって低下し、加工密 着性が悪化する。 [0030] The blending amount of the silane coupling agent (Α) is required to be 1Ζ50 to 20Ζ1 as a mass ratio (Α) Ζ (Β) with respect to the cationic urethane resin (Β). : L0Z1 More preferably, it is more preferably 1Z10 to 5Z1. If the amount of the silane coupling agent (A) is less than 1Z50, the coating hardness will decrease, making it difficult to obtain sufficient coin scratch resistance.If it is more than 20Z1, the adhesion to the underlying metal will decrease. As a result, processing adhesion deteriorates.
[0031] 本発明で用いられる Zrィ匕合物及び Z又は Tiィ匕合物(C)は金属材料に耐食性を付 与又は向上させる。 Zrィ匕合物及び Z又は Tiィ匕合物(C)としては、 Zr又は Tiの炭酸 塩、酸化物、硝酸塩、硫酸塩、リン酸塩、フッ化物、フルォロ酸 (塩)、有機酸塩、有機 錯ィ匕合物等を用いることができ、中でも、後述するフッ素含有無機化合物 (D)を兼ね るフッ化物、フルォロ酸 (塩)が好ましい。具体的には、塩基性炭酸ジルコニウム、ォ キシ炭酸ジルコニウム、炭酸ジルコニウムアンモ-ゥム、炭酸ジルコ二ルアンモ -ゥム (NH ) [Zr (CO ) (OH) ]、酸化ジルコニウム(IV) (ジルコニァ)、酸化チタン(IV)  [0031] The Zr compound and the Z or Ti compound (C) used in the present invention impart or improve the corrosion resistance of the metal material. Zr compounds and Z or Ti compounds (C) include Zr or Ti carbonate, oxide, nitrate, sulfate, phosphate, fluoride, fluoro acid (salt), organic acid salt Organic complex compounds and the like can be used, and among them, a fluoride also serving as a fluorine-containing inorganic compound (D) described later, and a fluoro acid (salt) are preferable. Specifically, basic zirconium carbonate, zirconium oxide carbonate, zirconium carbonate ammonium, zirconium carbonate ammonium (NH) [Zr (CO) (OH)], zirconium oxide (IV) (zirconia) , Titanium oxide (IV)
4 2 3 2 2  4 2 3 2 2
(チタ-ァ)、硝酸ジルコニウム、硝酸ジルコ-ル ZrO (NO ) 、硝酸チタン、硫酸ジル  (Titer), zirconium nitrate, zirconium nitrate ZrO (NO), titanium nitrate, zirconium sulfate
3 2  3 2
コニゥム(IV)、硫酸ジルコニル、硫酸チタン(III)、硫酸チタン (IV)、硫酸チタニル Ti OSO、ォキシリン酸ジルコニウム、ピロリン酸ジルコニウム、リン酸二水素ジルコ-ル Conium (IV), zirconyl sulfate, titanium (III) sulfate, titanium (IV) sulfate, titanyl sulfate Ti OSO, zirconium oxyphosphate, zirconium pyrophosphate, zirconium dihydrogen phosphate
4 Four
、フッ化ジルコニウム、フッ化チタン(ΠΙ)、フッ化チタン(IV)、へキサフルォロジルコ -ゥム酸(H ZrF )、 へキサフルォロジルコニウム酸アンモ-ゥム [ (NH ) ZrF ) ]、  , Zirconium fluoride, titanium fluoride (チ タ ン), titanium fluoride (IV), hexafluorozirco-humic acid (H ZrF), hexafluorozirconate ammonium [(NH) ZrF )],
2 6 4 2 6 へキサフルォロチタン酸(H TiF )、 へキサフルォロチタン酸アンモ-ゥム [ (NH ) T  2 6 4 2 6 Hexafluorotitanate (H TiF), Hexafluorotitanate ammonium [(NH) T
2 6 4 2 iF ) ]、酢酸ジルコ -ル、チタンラウレート、ジルコニウムァセチルァセトネート Zr (OC 2 6 4 2 iF)], zirconium acetate, titanium laurate, zirconium acetyl cetate Zr (OC
6 6
( = CH ) CH COCH ) ) ジイソプロポキシチタニウムビスァセチルアセトン(C H O  (= CH) CH COCH)) Diisopropoxytitanium bisacetylacetone (C H O
2 2 3 4、 5 7 2 2 3 4, 5 7
) Ti[OCH (CH ) ] 、チタニウムァセチルァセトネート Ti(OC ( = CH ) CH COC) Ti [OCH (CH)], Titanium Acetylacetonate Ti (OC (= CH) CH COC
2 2 3 2 2 2 2 2 2 3 2 2 2 2
H ) ) 等が挙げられる。これらは無水物であっても存在する場合の水和物であっても H))) and the like. These may be anhydrides or hydrates if present
3 3 3 3
よい。これらの化合物は単独で使用してもよいし、 2種以上組み合わせて使用しても よい。  Good. These compounds may be used alone or in combination of two or more.
[0032] Zr化合物及び Z又は Ti化合物(C)の配合量は、カチオン性ウレタン榭脂(B)に対 して、(Zr及び Z又は Ti原子) Z(B)の質量比として、 1/1, 000〜1Z2であること が必要であり、 1Z500〜1Z4であることが好ましぐ 1Z250〜1Z10であることがよ り好ましい。 Zr化合物及び Z又は Ti化合物(C)の配合量が 1Z1, 000より力少ない と、耐食性が不十分であり、 1Z2より多いと、加工密着性又は液安定性が低下する 傾向になる。 Zrィ匕合物と Tiィ匕合物とを組み合わせて使用する場合、上記配合量は合 計としての配合量である。 [0032] The blending amount of the Zr compound and the Z or Ti compound (C) is 1/1 / mass ratio of (Zr and Z or Ti atom) Z (B) to the cationic urethane resin (B). It is necessary to be 1,000 to 1Z2, and it is preferably 1Z500 to 1Z4, more preferably 1Z250 to 1Z10. If the amount of Zr compound and Z or Ti compound (C) is less than 1Z1,000, the corrosion resistance is insufficient, and if more than 1Z2, the work adhesion or liquid stability decreases. Become a trend. When the Zr compound and Ti compound are used in combination, the above compounding amount is the total compounding amount.
[0033] 本発明の水系表面処理剤に含まれるフッ素含有無機化合物 (D)は、液中に遊離 フッ素イオン又は錯フッ素イオンを放出し、基材に対するエッチング剤としての役割を 果たすものである。上記フッ素含有無機化合物 (D)としては特に限定されず、例えば 、遊離フッ素イオンを放出するものとしてフッ化水素酸、フッ化アンモ-ゥム、フッ化ナ トリウム等を挙げることができ、また、錯フッ素イオンを放出するものとしてテトラフルォ 口ホウ酸、へキサフルォロケィ酸、へキサフルォロケィ酸亜鉛、へキサフルォロケィ酸 マンガン、へキサフルォロケィ酸マグネシウム、へキサフルォロケィ酸ニッケル、へキ サフルォロジルコニウム酸、へキサフルォロチタン酸等を挙げることができる。上記化 合物は 1種類を単独で使用してもょ ヽし、 2種類以上を組み合わせて用いてもょ ヽ。  [0033] The fluorine-containing inorganic compound (D) contained in the aqueous surface treatment agent of the present invention releases free fluorine ions or complex fluorine ions into the liquid and serves as an etching agent for the substrate. The fluorine-containing inorganic compound (D) is not particularly limited, and examples of those that release free fluorine ions include hydrofluoric acid, ammonium fluoride, sodium fluoride, and the like. Tetrafluoro-borate, hexafluorosilicate, zinc hexafluorosilicate, manganese hexafluorosilicate, magnesium hexafluorosilicate, nickel hexafluorosilicate, hexafluorozirconate, hexafluoro A titanic acid etc. can be mentioned. One of the above compounds may be used alone, or two or more may be used in combination.
[0034] フッ素含有無機化合物 (D)の配合量は、カチオン性ウレタン榭脂 (B)に対して、フ ッ素原子 Z(B)の質量比として、 lZl, 000〜2Zlであることが必要であり、 1/50 0〜lZlであることが好ましぐ 1Z250〜1Z2であることがより好ましい。フッ素含有 無機化合物(D)の配合量が 1Z1, 000より少ないと、加工密着性が不十分となり、 2 Z1より多いと水系表面処理剤の安定性が低下する。  [0034] The compounding amount of the fluorine-containing inorganic compound (D) must be lZl, 000 to 2Zl as a mass ratio of the fluorine atom Z (B) to the cationic urethane resin (B). 1/50 0 to lZl is preferred and 1Z250 to 1Z2 is more preferred. When the blending amount of the fluorine-containing inorganic compound (D) is less than 1Z1,000, the work adhesion becomes insufficient, and when it exceeds 2Z1, the stability of the aqueous surface treatment agent decreases.
[0035] 本発明の水系表面処理剤には、さらに、任意成分として、 V化合物、 Mo化合物、 W化合物、 Co化合物、 Ni化合物、 A1化合物、 Zn化合物、 Mn化合物、 Ce化合物、 Nb化合物、 Sn化合物及び Mg化合物から選ばれる少なくとも 1種の金属化合物 (E) を配合することができる。これら金属化合物 (E)は、特に端面部における耐食性を向 上させる効能を有する。金属化合物 (E)としては、上記金属の炭酸塩、酸化物、水酸 化物、硝酸塩、硫酸塩、リン酸塩、フッ化物、塩化物、フルォロ酸 (塩)、酸素酸 (塩)、 有機酸塩、有機錯化合物等が挙げられる。  [0035] The aqueous surface treatment agent of the present invention further includes, as optional components, V compound, Mo compound, W compound, Co compound, Ni compound, A1 compound, Zn compound, Mn compound, Ce compound, Nb compound, Sn At least one metal compound (E) selected from a compound and an Mg compound can be blended. These metal compounds (E) have the effect of improving the corrosion resistance especially at the end face portions. Examples of the metal compound (E) include carbonates, oxides, hydroxides, nitrates, sulfates, phosphates, fluorides, chlorides, fluoroacids (salts), oxygen acids (salts), and organic acids of the above metals. Examples thereof include salts and organic complex compounds.
[0036] V化合物、 Mo化合物、 W化合物、 Co化合物、 Ni化合物、 A1化合物及び Zn化合 物として具体的には、五酸ィ匕バナジウム、メタバナジン酸 HVO、メタバナジン酸アン  [0036] Specific examples of the V compound, Mo compound, W compound, Co compound, Ni compound, A1 compound and Zn compound include pentanoic acid vanadium, metavanadate HVO, metavanadate.
3  Three
モニゥム、メタバナジン酸ナトリウム、ォキシ三塩化バナジウム VOC1、三酸化バナジ  Monium, sodium metavanadate, vanadium trichloride VOC1, vanadium trioxide
3  Three
ゥム V O、二酸化バナジウム VO、ォキシ硫酸バナジウム VOSO、バナジウムォキ Um V O, vanadium dioxide VO, vanadium oxysulfate VOSO, vanadium oxide
2 3 2 4 2 3 2 4
シァセチルァセトネート VO (OC ( = CH ) CH COCH ) )、バナジウムァセチルァセ トネート V(OC ( = CH ) CH COCH ) )、三塩化バナジウム VC1;リンパナドモリブCiacetylacetonate VO (OC (= CH) CH COCH)), vanadium acetylacetate Tonate V (OC (= CH) CH COCH)), vanadium trichloride VC1; lymphadromib
2 2 3 3 3 2 2 3 3 3
デン酸 H [PV Mo O ] ·ηΗ 0 (6<x< 12, n< 30)、酸化モリブデン、モリブ Deacid H [PV Mo O] · ηΗ 0 (6 <x <12, n <30), molybdenum oxide, molybdenum
15- X 12- 40 2  15- X 12- 40 2
デン酸 H MoO、モリブデン酸アンモ-ゥム、パラモリブデン酸アンモ-ゥム、モリブ De-acid H MoO, ammonium molybdate, ammonium paramolybdate, molybdenum
2 4  twenty four
デン酸ナトリウム、モリブドリン酸ィ匕合物(例えば、モリブドリン酸アンモ-ゥム (NH ) [ Sodium denoate and molybdophosphoric acid compounds (eg, ammonium molybdophosphate (NH) [
4 3 4 3
PO Mo O ] · 3Η 0、モリブドリン酸ナトリウム Na [PO · 12ΜοΟ ] ·ηΗ Ο等);メPO Mo O] · 3Η 0, sodium molybdate Na [PO · 12ΜοΟ] · ηΗ Η etc.);
4 12 36 2 3 4 3 2 タタングステン酸 H [H W Ο ]、メタタングステン酸アンモニゥム(ΝΗ ) [H W Ο 4 12 36 2 3 4 3 2 Tungstic acid H [H W Ο], ammonium metatungstate (ΝΗ) [H W Ο
6 2 12 40 4 6 2 12 6 2 12 40 4 6 2 12
]、メタタングステン酸ナトリウム、パラタングステン酸 H [W Ο Η ]、パラタンダ], Sodium metatungstate, paratungstic acid H [W Ο Η], paratanda
40 10 12 46 10 40 10 12 46 10
ステン酸アンモ-ゥム、パラタングステン酸ナトリウム;塩化コバルト、クロ口ペンタアン ミンコバルト塩化物 [CoCl (NH ) ]C1、へキサアンミンコバルト塩化物 [Co (NH ) ] Ammonium stearate, sodium paratungstate; cobalt chloride, black-open pentaamminecobalt chloride [CoCl (NH)] C1, hexamminecobalt chloride [Co (NH)]
3 5 3 6 3 5 3 6
C1、クロム酸コバルト、硫酸コバルト、硫酸アンモ-ゥムコバルト、硝酸コバルト、酸化C1, cobalt chromate, cobalt sulfate, ammonium cobalt sulfate, cobalt nitrate, oxidation
2 2
コバルト二アルミニウム CoO 'Al O、水酸化コバルト、リン酸コバルト等;硝酸-ッケ Cobalt dialuminum CoO 'Al O, cobalt hydroxide, cobalt phosphate, etc .;
2 3  twenty three
ル、硫酸ニッケル、炭酸ニッケル、ニッケルァセチルァセトネート Ni (OC ( = CH ) C , Nickel sulfate, nickel carbonate, nickel acetylacetonate Ni (OC (= CH) C
2 2
H COCH ) ) 、塩化ニッケル、へキサアンミンニッケル塩化物 [Ni(NH ) ]C1、酸H COCH)), nickel chloride, hexammine nickel chloride [Ni (NH)] C1, acid
2 3 3 3 6 2 化ニッケル、水酸化ニッケル;硝酸アルミニウム、硫酸アルミニウム、硫酸カリウムアル ミニゥム、硫酸ナトリウムアルミニウム、硫酸アンモ-ゥムアルミニウム、リン酸アルミ- ゥム、炭酸アルミニウム、酸ィ匕アルミニウム、水酸ィ匕アルミニウム、ヨウ化アルミニウム; 硫酸亜鉛、炭酸亜鉛、塩化亜鉛、ヨウ化亜鉛、亜鉛ァセチルァセトネート Zn(OC ( = CH ) CH COCH ) ) 、リン酸二水素亜鉛等が挙げられる。 2 3 3 3 6 2 Nickel fluoride, nickel hydroxide; aluminum nitrate, aluminum sulfate, potassium aluminum sulfate, sodium aluminum sulfate, ammonium aluminum sulfate, aluminum phosphate, aluminum carbonate, aluminum oxide, Aluminum hydroxide, aluminum iodide; zinc sulfate, zinc carbonate, zinc chloride, zinc iodide, zinc acetylylacetonate Zn (OC (= CH) CHCOCH)), zinc dihydrogen phosphate, etc. .
2 2 3 2  2 2 3 2
Mn化合物、 Ce化合物、 Nb化合物、 Sn化合物及び Mg化合物として具体的には、 過マンガン酸 HMnO、過マンガン酸カリウム、過マンガン酸ナトリウム、リン酸二水素  Specific examples of Mn compounds, Ce compounds, Nb compounds, Sn compounds, and Mg compounds include HMnO permanganate, potassium permanganate, sodium permanganate, and dihydrogen phosphate.
4  Four
マンガン Mn(H PO ) 、硝酸マンガン Mn (NO ) 、硫酸マンガン(11)、(III)もしくは Manganese Mn (H PO), manganese nitrate Mn (NO), manganese sulfate (11), (III) or
2 4 2 3 2  2 4 2 3 2
(IV)、フッ化マンガン (Π)もしくは (III)、炭酸マンガン、酢酸マンガン (Π)もしくは (III )、硫酸アンモ-ゥムマンガン、マンガンァセチルァセトネート Mn (OC ( = CH ) CH  (IV), manganese fluoride (Π) or (III), manganese carbonate, manganese acetate (Π) or (III), ammonium manganese sulfate, manganese acetyl cetate Mn (OC (= CH) CH
2 2 twenty two
COCH ) ) 、ヨウ化マンガン、酸化マンガン、水酸化マンガン;酸化セリウム、酢酸セCOCH)), Manganese iodide, Manganese oxide, Manganese hydroxide; Cerium oxide, Ce acetate
3 3 3 3
リウム Ce (CH CO ) 、硝酸セリウム(ΠΙ)もしくは(IV)、硝酸セリウムアンモ-ゥム、硫 Ce (CH 2 CO 3), cerium nitrate (IV) or (IV), cerium nitrate ammonium, sulfur
3 2 3  3 2 3
酸セリウム、塩化セリウム、五酸化二ニオブ (Nb O )、ニオブ酸ナトリウム(NaNbO ) Cerium acid, cerium chloride, niobium pentoxide (Nb 2 O 3), sodium niobate (NaNbO 2)
2 5 3 2 5 3
、フッ化ニオブ(NbF )、へキサフルォロニオブ酸アンモニゥム(NH4) NbF;酸化ス , Niobium fluoride (NbF), ammonium hexafluoroniobate (NH4) NbF;
5 6 ズ(IV)、スズ酸ナトリウム(Na SnO )、塩化スズ (Π)、塩化スズ (IV)、硝酸スズ (Π)、  5 6 (IV), sodium stannate (Na SnO), tin chloride (Π), tin chloride (IV), tin nitrate (Π),
2 3 硝酸スズ(IV)、へキサフルォロスズ酸アンモ -ゥム(NH4) NbF;硝酸マグネシウム twenty three Tin nitrate (IV), ammonium hexafluorosuccinate (NH4) NbF; magnesium nitrate
6  6
、硫酸マグネシウム、炭酸マグネシウム、水酸化マグネシウム、フッ化マグネシウム、リ ン酸アンモニムマグネシウム、リン酸水素マグネシウム、酸化マグネシウム等が挙げら れる。  , Magnesium sulfate, magnesium carbonate, magnesium hydroxide, magnesium fluoride, ammonium magnesium phosphate, magnesium hydrogen phosphate, magnesium oxide and the like.
[0038] 金属化合物 (E)の配合量は、カチオン性ウレタン榭脂 (B)に対して、金属原子 Z ( B)の質量比として、 lZl, 000〜lZ2であることが好ましぐ 1Z100〜1Z4である ことがより好ましぐ 1Z50〜1Z8であることがより一層好ましい。金属化合物(E)の 配合量が 1Z1, 000より少ないと、耐食性を向上させる効果が発揮されず、 1Z2より 多いと加工密着性を低下させる傾向にある。上記金属化合物 (E)は 1種類を単独で 使用してもよいし、 2種類以上を組み合わせて用いてもよい。 2種類以上を組み合わ せて用いる場合、上記配合量は合計としての配合量である。  [0038] The compounding amount of the metal compound (E) is preferably lZl, 000 to lZ2 as a mass ratio of the metal atom Z (B) to the cationic urethane resin (B). 1Z4 is more preferable 1Z50 to 1Z8 is even more preferable. If the compounding amount of the metal compound (E) is less than 1Z1,000, the effect of improving the corrosion resistance is not exhibited, while if it exceeds 1Z2, the work adhesion tends to be lowered. The metal compound (E) may be used alone or in combination of two or more. When two or more types are used in combination, the above blending amount is the total blending amount.
[0039] 本発明の水系表面処理剤には、さらに、任意成分として、被塗面に均一な皮膜を 形成させるための濡れ性向上剤と呼ばれる界面活性剤;増粘剤;溶接性向上のため の導電性物質、意匠性向上のため着色顔料等を、水系表面処理剤の液安定性や皮 膜性能を損なわない範囲で、配合し得る。  [0039] In the aqueous surface treatment agent of the present invention, as an optional component, a surfactant called a wettability improver for forming a uniform film on the coated surface; a thickener; for improving weldability In order to improve the design properties of the conductive material, coloring pigments and the like can be blended within a range that does not impair the liquid stability and film performance of the aqueous surface treatment agent.
[0040] 本発明の水系表面処理剤で用いる媒体は通常水であるが、皮膜の乾燥性の改善 などの目的で少量 (例えば水性媒体全体の 10容量%以下)のアルコール、ケトン、セ 口ソルブ系の水溶性有機溶剤を併用をしてもょ ヽ。  [0040] The medium used in the aqueous surface treatment agent of the present invention is usually water, but a small amount (for example, 10% by volume or less of the entire aqueous medium) of alcohol, ketone, or mouth-solve is used for the purpose of improving the drying property of the film. Use a water-soluble organic solvent.
[0041] 本発明の水系表面処理剤の pHについては特に制限はないが、 3〜12の範囲であ るのが好ましぐ 4〜8の範囲であるのがより好ましい。 pHが 3未満である場合には、 エッチング過多となり下地処理剤としての機能を十分に発揮できなくなり、また、液安 定性も低下する傾向にある。 pHが 12より大である場合には、特に両性金属である亜 鉛などの溶解速度が増加し、また、シランカップリング剤の貯蔵安定性に悪影響が出 る傾向にある。 pH調整の必要がある場合には、アンモニア、ジメチルァミン、トリェチ ルァミン等のアルカリ成分、又は、酢酸、リン酸等の酸性成分を添加することができる  [0041] The pH of the aqueous surface treatment agent of the present invention is not particularly limited, but is preferably in the range of 3-12, more preferably in the range of 4-8. When the pH is less than 3, the etching becomes excessive and the function as a surface treatment agent cannot be fully exerted, and the liquid stability tends to be lowered. When the pH is higher than 12, especially the dissolution rate of amphoteric metal zinc and the like increases, and the storage stability of the silane coupling agent tends to be adversely affected. When pH adjustment is necessary, alkaline components such as ammonia, dimethylamine, and triethylamine, or acidic components such as acetic acid and phosphoric acid can be added.
[0042] 本発明の水系表面処理剤の合計固形分濃度の下限については、本発明の効果が 達成しうる限り特に制限はないが、上限については液安定性の観点から制限される。 本発明の金属表面処理剤の合計固形分濃度は 0. 1〜40質量%の範囲に調整する のが好ましぐ 1〜30質量%の範囲に調整するのがより好ましぐ 5〜25質量%の範 囲に調整するのがより一層好ましい。 [0042] The lower limit of the total solid content concentration of the aqueous surface treating agent of the present invention is not particularly limited as long as the effect of the present invention can be achieved, but the upper limit is limited from the viewpoint of liquid stability. The total solid concentration of the metal surface treatment agent of the present invention is preferably adjusted to a range of 0.1 to 40% by mass, more preferably adjusted to a range of 1 to 30% by mass, and 5 to 25% by mass. It is even more preferable to adjust to the range of%.
[0043] 本発明の水系表面処理剤は、シランカップリング剤 (A)、カチオン生ウレタン榭脂( B)、 Zrィ匕合物及び Zまたは Tiィ匕合物 (C)、フッ素含有無機化合物 (D)、さらに必要 に応じ金属化合物 (E)、場合によってはさらにその他の任意成分を、分散媒である 水に添加し、撹拌すること〖こよって製造することができる。各成分の添加順序には特 に制限は無い。  [0043] The aqueous surface treatment agent of the present invention includes a silane coupling agent (A), a cationic raw urethane resin (B), a Zr compound and a Z or Ti compound (C), a fluorine-containing inorganic compound. It can be produced by adding (D) and, if necessary, the metal compound (E) and optionally other optional components to water as a dispersion medium and stirring. There is no particular limitation on the order of addition of each component.
[0044] 次に、本発明の表面処理方法について述べる。  Next, the surface treatment method of the present invention will be described.
本発明の水系表面処理剤を適用する金属材料としては、冷延鋼板、熱延鋼板、溶 融亜鉛めつき鋼板、電気亜鉛めつき鋼板、溶融合金化亜鉛めつき鋼板、アルミニウム めっき鋼板、アルミ 亜鉛合金化めつき鋼板、ステンレス鋼板、アルミニウム板、銅板 、チタン板、マグネシウム板等の一般に公知の金属材料、及びめつき板が挙げられ、 特に好適な金属材料は亜鉛を含有するめつき鋼板である。  Examples of the metal material to which the water-based surface treatment agent of the present invention is applied include cold-rolled steel sheets, hot-rolled steel sheets, hot-dip galvanized steel sheets, electrogalvanized steel sheets, molten alloyed zinc-plated steel sheets, aluminum-plated steel sheets, aluminum zinc Commonly known metal materials such as alloyed steel plates, stainless steel plates, aluminum plates, copper plates, titanium plates, magnesium plates and the like are mentioned, and particularly suitable metal materials are zinc-containing steel plates.
[0045] 本発明の水系表面処理剤による処理に先立つ前処理工程については特に制限は ないが、通常は、本処理を行う前に被処理金属材料に付着した油分、汚れを取り除く ために、アルカリ脱脂剤又は酸性脱脂剤で洗浄するか、湯洗、溶剤洗浄等を行い、 その後、必要に応じて酸、アルカリなどによる表面調整を行う。金属材料表面の洗浄 にお ヽては、洗浄剤が金属材料表面になるべく残留しな ヽように洗浄後に水洗する ことが好ましい。  [0045] The pretreatment step prior to the treatment with the water-based surface treatment agent of the present invention is not particularly limited, but usually an alkali is used to remove oil and dirt adhering to the metal material to be treated before the main treatment. Wash with a degreasing agent or acidic degreasing agent, or wash with hot water or solvent, and then adjust the surface with acid or alkali as necessary. In cleaning the surface of the metal material, it is preferable to wash with water after cleaning so that the cleaning agent does not remain on the surface of the metal material.
[0046] 本発明の水系表面処理剤による処理は、水系表面処理剤を塗布した後、乾燥する ことにより行う。塗布方法については特に制限はなぐ例えば、ロールコート、カーテ ンフローコート、エアースプレー、エアーレススプレー、浸漬、バーコート、刷毛塗りな どの通常の塗布方法を採用し得る。処理液温度についても特に制限はないが、本処 理剤の溶媒は水が主体であるため、処理液温度は 0〜60°Cであるのが好ましぐ 5〜 40°Cであるのがより好ましい。  [0046] The treatment with the aqueous surface treatment agent of the present invention is performed by applying the aqueous surface treatment agent and then drying. There are no particular restrictions on the application method. For example, usual application methods such as roll coating, curtain flow coating, air spray, airless spray, dipping, bar coating, and brush coating can be employed. There is no particular limitation on the temperature of the processing solution, but since the solvent of this processing agent is mainly water, the processing solution temperature is preferably 0 to 60 ° C, preferably 5 to 40 ° C. More preferred.
[0047] 本発明の水系表面処理剤を塗布した後の乾燥工程については、カチオン性ウレタ ン榭脂 (B)の硬化を促進する必要がなく付着水の除去だけ行う場合は、必ずしも熱 を必要とせず風乾、もしくはエアーブロー等の物理的除去でも構わないが、カチオン 性ウレタン榭脂(B)の硬化を促進し又は軟ィ匕による被覆効果を高めるためには加熱 乾燥する必要がある。その場合の温度は、 50〜250°Cが好ましぐ 60〜220°Cがよ り好ましい。 [0047] Regarding the drying step after the application of the aqueous surface treating agent of the present invention, it is not necessary to accelerate the curing of the cationic urea resin (B), and it is not always necessary to remove the adhering water. However, air drying or physical removal such as air blowing may be used. However, heating and drying are required to accelerate the curing of the cationic urethane resin (B) or to enhance the coating effect of soft wrinkles. . In this case, the temperature is preferably 50 to 250 ° C, more preferably 60 to 220 ° C.
[0048] 形成される下地皮膜の付着量は乾燥皮膜質量として 10〜: L, OOOmgZm2が好ま しく、 20〜500mg/m2力より好ましく、 30〜250mg/m2力 ^より一層好まし!/ヽ。乾燥 皮膜質量が lOmgZm2未満である場合には十分な耐食性が得られず、 1, OOOmg Zm2を超えるとカ卩工密着性が低下し、コスト面でも不利になる。 [0048] The amount of the base film formed is 10 to L, OOOmgZm 2 as dry film mass, more preferably 20 to 500 mg / m 2 force, and more preferably 30 to 250 mg / m 2 force ^! / ヽ. Dry film mass is not sufficient corrosion resistance is obtained when less than lOmgZm 2, 1, OOOmg Zm 2 by weight, the mosquito卩工adhesion property is lowered, it becomes disadvantageous in terms of cost.
[0049] なお、上記のようにして形成された下地皮膜はプレコート金属材料のための下地皮 膜として通常用いられるが、接着性に優れていることから、耐指紋性や潤滑性等を付 与した 1〜3層の皮膜層を上層に有する高機能コーティングの下地皮膜としても用い ることがでさる。  [0049] The base film formed as described above is usually used as a base film for a pre-coated metal material. However, since it has excellent adhesiveness, it imparts fingerprint resistance, lubricity, and the like. It can also be used as an undercoat for high-performance coatings having one to three coating layers on top.
[0050] 次に、本発明のプレコート金属材料の製造方法について述べる。該プレコート金属 材料は、金属材料表面上に、本発明の水系表面処理剤を用いて上記のようにして形 成させた下地皮膜の上に、さらに上層皮膜層を形成させることにより製造される。上 層皮膜層の形成は、下地皮膜上に、ノンクロメートプライマーを塗布乾燥後、さらにト ップコートを塗布する塗装法や、プライマーを使用せずに直接トップコートを塗布する 塗装法や、ラミネートフィルムを貼付する方法など、プレコート鋼板に対して一般的に 用いる塗装法を用いて行うことができる。  [0050] Next, a method for producing the precoated metal material of the present invention will be described. The precoat metal material is produced by further forming an upper film layer on the metal film surface on the base film formed as described above using the aqueous surface treatment agent of the present invention. The top coating layer can be formed by applying a non-chromate primer on the base coating and then drying, then applying a top coat, or applying a top coat directly without using a primer, or using a laminate film. It can be performed using a coating method generally used for pre-coated steel sheets such as affixing method.
[0051] ノンクロメートプライマーとしては、クロメート系の防鲭顔料を配合していないプライマ 一であればいずれのプライマーでも使用できる。ノンクロメートプライマーは、通常、 榭脂及び、必要に応じ着色顔料ゃ防鲭顔料等を含有する。榭脂としては水系、溶剤 系、紛体系等のいずれの形態のものでもよぐ榭脂の種類としては一般に公知のもの 、例えばポリアクリル系榭脂、ポリオレフイン系榭脂、ポリウレタン系榭脂、エポキシ系 榭脂、ポリエステル系榭脂、ポリプチラール系榭脂、メラミン系榭脂、フッ素系榭脂等 を単独であるいは組み合わせて使用することができる。  [0051] As the non-chromate primer, any primer can be used as long as it is a primer that does not contain a chromate anti-mold pigment. The non-chromate primer usually contains a resin and, if necessary, a colored pigment or an antifungal pigment. The resin can be in any form such as aqueous, solvent-based, or powder-based. Generally, the types of resin are known, such as polyacrylic resin, polyolefin resin, polyurethane resin, epoxy These can be used singly or in combination, such as a polyester resin, a polyester resin, a polypropylene resin, a melamine resin, and a fluorine resin.
[0052] 着色顔料としては、酸化チタン、酸化亜鉛、酸ィ匕ジルコニウム、炭酸カルシウム、硫 酸バリウム、アルミナ、カオリンクレー、カーボンブラック、酸化鉄等の無機顔料や、有 機顔料など公知の着色顔料を用いることができる。防鲭顔料としては一般に公知のも の、例えばリン酸亜鉛、リン酸鉄、リン酸アルミニウムなどのリン酸系防鲭顔料、モリブ デン酸カルシウム、モリブデン酸アルミニウム、モリブデン酸バリウムなどのモリブデン 酸系防衛顔料、酸ィ匕バナジウムなどのバナジウム系防鲭顔料等を用いることができる 。また、水分散性シリカ、フュームドシリカなどの微粒シリカなども適宜用いることがで きる。さらに、消泡剤、分散補助剤、塗料粘度を下げるための希釈剤なども適宜用い ることがでさる。 [0052] Examples of the color pigment include inorganic pigments such as titanium oxide, zinc oxide, zirconium oxide, calcium carbonate, barium sulfate, alumina, kaolin clay, carbon black, iron oxide, and the like. Known color pigments such as machine pigments can be used. Commonly known anti-fouling pigments include, for example, phosphoric acid-based anti-fouling pigments such as zinc phosphate, iron phosphate, and aluminum phosphate, and molybdate-based defenses such as calcium molybdate, aluminum molybdate, and barium molybdate. Pigments, vanadium-type anti-bacterial pigments such as acid vanadium, and the like can be used. In addition, finely divided silica such as water-dispersible silica and fumed silica can be used as appropriate. Further, an antifoaming agent, a dispersion aid, a diluent for lowering the viscosity of the paint, and the like can be appropriately used.
[0053] ノンクロメートの塗布方法は特に制限されず、一般に使用される浸漬法、スプレー 法、ロールコート法、エアスプレー法、エアレススプレー法等を利用することができる。 プライマーの塗布膜厚は、乾燥膜厚として、 1〜30 mであるのが好ましぐ 2〜20 μ mであるのがより好ましい。 1 μ m未満では耐食性が低下し、また 30 mを超えると 加工時の密着性が低下する傾向にある。ノンクロメートプライマーの焼付け乾燥条件 については、特に制限はなぐ例えば 130〜250°C、時間を 10秒〜 5分とすることが できる。  [0053] The method of applying the non-chromate is not particularly limited, and a commonly used dipping method, spray method, roll coat method, air spray method, airless spray method, or the like can be used. The coating film thickness of the primer is preferably 1 to 30 m as a dry film thickness, more preferably 2 to 20 μm. If the thickness is less than 1 μm, the corrosion resistance decreases, and if it exceeds 30 m, the adhesion during processing tends to decrease. The baking and drying conditions of the non-chromate primer are not particularly limited, for example, 130 to 250 ° C., and the time can be 10 seconds to 5 minutes.
[0054] トップコートとしては特に制限されず、通常の塗装用トップコートのいずれをも用いる ことができる。すなわち、トップコートは榭脂及び、必要に応じ着色顔料ゃ防鲭顔料 等を含有する。榭脂、着色顔料及び防鲭顔料としてはノンクロメートプライマーで使 用するものと同様のものを用いることができ、また、ノンクロメートプライマーで使用し 得るその他の任意成分も用いることができる。トップコートの塗布方法や焼付け乾燥 条件はノンクロメートプライマーの場合と同様でよい。トップコートの塗布膜厚は、乾 燥膜厚として、 3〜50 mであるのが好ましぐ 5〜40 mであるのがより好ましい。 3 μ m未満では耐食性が低下し、また 50 mを超えると密着性が低下する傾向となり、 またコスト面でも不利になる。  [0054] The topcoat is not particularly limited, and any ordinary topcoat for coating can be used. That is, the top coat contains rosin and, if necessary, a colored pigment, an antifungal pigment, and the like. As the resin, coloring pigment and anti-bacterial pigment, those similar to those used in the non-chromate primer can be used, and other optional components which can be used in the non-chromate primer can also be used. The top coat application method and baking drying conditions may be the same as those for the non-chromate primer. The coating thickness of the top coat is preferably 3 to 50 m, more preferably 5 to 40 m as the dry film thickness. If it is less than 3 μm, the corrosion resistance decreases, and if it exceeds 50 m, the adhesion tends to decrease, and the cost is disadvantageous.
実施例  Example
[0055] 以下に本発明の実施例及び比較例を挙げ、本発明を具体的に説明するが、本発 明はこれらの実施例のみに限定されるものではない。  [0055] The present invention will be specifically described below with reference to examples and comparative examples of the present invention. However, the present invention is not limited to these examples.
[0056] 1.試験板の作製 [0056] 1. Preparation of test plate
1. 1 供試材 •電気亜鉛めつき鋼板 (以下記号: EG) 1.1 Sample material • Electrogalvanized steel sheet (hereinafter referred to as EG)
板厚 0. 6mm、めっき付着量片面当たり 20gZm2 (両面めつき) Plate thickness 0.6mm, plating coverage 20gZm 2 per side (mesh on both sides)
•溶融亜鉛めつき鋼板 (以下記号: GI)  • Hot-dip galvanized steel sheet (hereinafter referred to as GI)
板厚 0. 6mm,亜鉛付着量片面当たり 50gZm2 (両面めつき) Thickness 0.6mm, Zinc adhesion 50gZm 2 per side
•アルミ 亜鉛合金めつき鋼板 (以下記号: GL)  • Aluminum zinc alloy plated steel sheet (Symbol: GL)
板厚 0. 6mm、めっき付着量片面当たり 50gZm2 (両面めつき) Plate thickness 0.6mm, plating coverage 50gZm 2 per side (with double sided)
[0057] 1. 2 前処理 [0057] 1.2 Pre-processing
アルカリ脱脂剤である CL— N364S (日本パ—カライジング (株)製)を濃度 20gZL 、温度 60°Cの水溶液とし、これに EG材又は GL材を 10秒間浸漬し、純水で水洗した 後乾燥した。また、 GI材については、 CL— N364Sを用いた上記と同様の脱脂後、 L N— 4015 (日本パーカライジング (株)製)を用いて 100g/Lに建浴した温度 50°C の水溶液中に浸漬し、 Ni付着量が 5mgZm2となる条件のもと表面調整を行った。 CL-N364S (manufactured by Nihon Parkerizing Co., Ltd.), an alkaline degreasing agent, is made into an aqueous solution with a concentration of 20gZL and a temperature of 60 ° C. After EG or GL material is immersed in this for 10 seconds and washed with pure water Dried. For GI materials, after degreasing in the same manner as above using CL-N364S, it was immersed in an aqueous solution at a temperature of 50 ° C that was built at 100 g / L using LN-4015 (Nihon Parkerizing Co., Ltd.). and it was subjected to the original surface conditioning conditions Ni deposition amount is 5mgZm 2.
[0058] 1. 3 表面処理 [0058] 1.3 Surface treatment
•ノンクロメート水系表面処理  Non-chromate aqueous surface treatment
前処理後の供試材の表面 (片面)に、表 1に示す組成の水系表面処理剤を、ロー ルコーターを用いて乾燥皮膜量が lOOmgZm2となるように塗布し、熱風乾燥炉中で 到達板温度が 80°Cとなるように乾燥した。表 1中、 No. 1〜26は本発明の水系表面 処理剤であり、 No. 27〜40は本発明の範囲力 外れる水系表面処理剤である。 •塗布型クロメート処理 Apply the aqueous surface treatment agent with the composition shown in Table 1 on the surface (one side) of the pre-treated sample using a roll coater so that the dry film amount is lOOmgZm 2 and arrive in a hot air drying oven. The plate temperature was dried to 80 ° C. In Table 1, Nos. 1 to 26 are aqueous surface treatment agents of the present invention, and Nos. 27 to 40 are aqueous surface treatment agents outside the scope of the present invention. • Coating chromate treatment
前処理後の供試材の表面 (片面)に、塗布クロメート薬剤としての ZM— 1300AN ( 日本パーカライジング (株)製)を、ロールコーターを用いて Cr付着量力 0mg/m2と なるように塗布し、熱風乾燥炉中で到達板温度が 80°Cとなるように乾燥した。 Apply ZM-1300AN (manufactured by Nihon Parkerizing Co., Ltd.) as an applied chromate agent to the surface (one side) of the pretreated sample using a roll coater so that the Cr adhesion amount is 0 mg / m 2. Then, it was dried in a hot air drying oven so that the ultimate plate temperature was 80 ° C.
[0059] 1. 4 下塗り塗料及び上塗り塗料の塗布 [0059] 1.4 Application of undercoat and topcoat
1. 3で作製した各表面処理板の処理表面上に、下記の 2通りの組合せで、プライマ 一及びトップコートを塗布した。  1. Primer and top coat were applied to the treated surface of each surface-treated plate prepared in 3 by the following two combinations.
<上層 F1 >:市販のプライマー塗料 (大日本塗料 (株)製、 Vニット # 200)を塗布し た (膜厚 5. 5 m)後、 200°Cで焼き付け、ついで、焼付け表面にさらにトップコート 塗料 (大日本塗料 (株)製、 Vニット # 500)を塗布した (膜厚 後、 220°Cで焼 き付けて試験板を作製した。 <Upper layer F1>: After applying a commercially available primer coating (Dai Nippon Paint Co., Ltd., V Knit # 200) (film thickness 5.5 m), baking at 200 ° C, then further on top of the baking surface Coat paint (Dai Nippon Paint Co., Ltd., V Knit # 500) was applied (after film thickness, baked at 220 ° C) A test plate was prepared by soldering.
く上層 F2>:市販のプライマー塗料(日本ペイント (株)製、フレキコート 600)を塗布 した (膜厚 5. 5 m)後、 200°Cで焼き付け、ついで、焼付け表面にさらにトップコート 塗料(日本ペイント (株)製、フレキコート 5030)を塗布した (膜厚 7 m)後、 220°Cで 焼き付けて試験板を作製した。  Upper layer F2>: After applying a commercially available primer paint (Nippon Paint Co., Ltd., Flexcoat 600) (film thickness 5.5 m), baking at 200 ° C, then topcoat paint ( After applying Nippon Paint Co., Ltd. (Flexcoat 5030) (film thickness 7 m), it was baked at 220 ° C to prepare a test plate.
[0060] 2.評価試験 [0060] 2. Evaluation test
2. 1耐食性  2.1 Corrosion resistance
作製した各試験板の塗膜に、カッターで金属素地に達する傷を入れ、 JIS—Z237 1に規定された塩水噴霧試験を 480時間実施した。判定基準はカット部力ゝらの塗膜 膨れ幅 (片側最大値)を測定した。また、端面耐食性は、端面からの塗膜膨れ幅 (最 大値)を測定した。  The coating film of each test plate was scratched to reach the metal substrate with a cutter, and the salt spray test specified in JIS-Z2371 was conducted for 480 hours. Judgment criteria were measured for the swollen width (maximum value on one side) of the cut part force. The end face corrosion resistance was measured by measuring the swollen width (maximum value) of the coating film from the end face.
<評価基準 カット部 >  <Evaluation criteria Cut part>
◎: 2mm未満  : Less than 2mm
〇: 2mm以上 5mm未満  ○: 2mm or more and less than 5mm
△: 5mm以上 10mm未満  Δ: 5 mm or more and less than 10 mm
X: 10mm以上  X: 10mm or more
<評価基準一端面 >  <One end of evaluation standard>
© :4mm未満  ©: Less than 4mm
〇: 4mm以上 8mm未満  ○: 4mm or more, less than 8mm
△: 8mm以上 12mm未満  △: 8mm or more and less than 12mm
X : 12mm以上  X: 12mm or more
[0061] 2. 2 折曲げ密着性試験  [0061] 2.2 Bending adhesion test
2. 2. 1一次折曲げ密着性試験 (塗装一次密着性)  2. 2. 1 Primary bending adhesion test (paint primary adhesion)
JIS— G3312の試験法に準じて、各試験板について、内側間隔板を 2枚とした 2T 折曲げ試験を 20°Cで行い、テープ剥離後の塗膜の剥離状態を肉眼で観察し、下記 の判定基準に従って塗装密着性の評価を行った。  In accordance with the test method of JIS-G3312, each test plate was subjected to a 2T bending test with two inner spacing plates at 20 ° C, and the peeled state of the coating after tape peeling was observed with the naked eye. The coating adhesion was evaluated according to the above criteria.
<評価基準 >  <Evaluation criteria>
◎:剥離なし 〇:剥離面積 10%未満 ◎: No peeling ○: Peeling area less than 10%
口:剥離面積 10%以上 50%未満  Mouth: peeling area 10% or more, less than 50%
△:剥離面積 50%以上 80%未満  Δ: peeling area 50% or more and less than 80%
X:剥離面積 80%以上  X: peeling area 80% or more
[0062] 2. 2. 2二次折り曲げ密着性 (塗装二次密着性) [0062] 2. 2. 2 Secondary bending adhesion (paint secondary adhesion)
試験板を沸水中に 2時間浸漬した後、一日放置し、ついで一次折曲げ密着性試験 と同じ試験を行った。判定基準は以下の通りである。  The test plate was immersed in boiling water for 2 hours and then allowed to stand for one day, and then the same test as the primary bending adhesion test was performed. Judgment criteria are as follows.
<評価基準 >  <Evaluation criteria>
◎:剥離なし  ◎: No peeling
〇:剥離面積 10%未満  ○: Peeling area less than 10%
口:剥離面積 10%以上 50%未満  Mouth: peeling area 10% or more, less than 50%
△:剥離面積 50%以上 80%未満  Δ: peeling area 50% or more and less than 80%
X:剥離面積 80%以上  X: peeling area 80% or more
[0063] 2. 3耐コインスクラッチ性 [0063] 2.3 Coin scratch resistance
各試験板に対して 45° の角度に 10円硬貨を設置し、塗膜を 3Kgの荷重、一定速 度でこすり、塗膜の傷つき度を肉眼で観察し、下記の判定基準に従って耐コインスク ラッチ性の評価を行った。  A 10-yen coin was installed at an angle of 45 ° to each test plate, the coating film was rubbed at a constant speed with a load of 3 kg, and the degree of damage to the coating film was observed with the naked eye. Sexuality was evaluated.
<評価基準 >  <Evaluation criteria>
◎:素地の露出が 0% (プライマーのみ露出)  ◎: 0% substrate exposure (primer only exposed)
〇:素地の露出が 10%未満  〇: Substrate exposure is less than 10%
口:素地の露出が 10%以上 50%未満  Mouth: The substrate exposure is 10% or more and less than 50%
△:素地の露出が 50%以上 80%未満  △: Base exposure is 50% or more and less than 80%
X:素地の露出が 80%以上  X: The substrate exposure is 80% or more
[0064] 2. 4 水系表面処理剤の貯蔵安定性 [0064] 2.4 Storage stability of aqueous surface treatment agent
水系表面処理剤を恒温装置内に 40°Cで 3ヶ月貯蔵した後のゲルィ匕ゃ沈殿等の状 態を肉眼で観察し、次の基準に従って貯蔵安定性を評価した。  After storage of the water-based surface treatment agent in a thermostat at 40 ° C for 3 months, the state of gely gel precipitation was observed with the naked eye, and the storage stability was evaluated according to the following criteria.
<評価基準 >  <Evaluation criteria>
〇:変化無し △:増粘 ○: No change Δ: Thickening
X:ゲルィ匕又は沈殿している  X: Gelly or precipitated
[0065] 3. 評価結果  [0065] 3. Evaluation results
表 2に上記試験の評価結果を示す。表 2中の実施例 1〜28は、本発明の水系表面 処理剤(表 1の No. 1〜27)を塗布後乾燥して皮膜を形成させた EG、 GI及び GLの いずれかの金属材料の塗装板性能を示すが、耐食性 (Xカット部及び端面耐食性)、 一次折曲げ密着性、二次折曲げ密着性及び耐コインスクラッチ性が金属材料に関わ らず何れも良好であり、また水系表面処理剤の貯蔵安定性も良好であり、比較例 16 〜18のクロメート処理の場合とほぼ同等の性能を示した。  Table 2 shows the evaluation results of the above test. Examples 1-28 in Table 2 are metal materials of any one of EG, GI, and GL, which were coated with the aqueous surface treatment agent of the present invention (Nos. 1-27 in Table 1) and dried to form a film. However, the corrosion resistance (X cut part and end face corrosion resistance), primary bending adhesion, secondary bending adhesion and coin scratch resistance are all good regardless of the metal material, and water-based The storage stability of the surface treatment agent was also good, and almost the same performance as the chromate treatment of Comparative Examples 16 to 18 was shown.
一方、本発明の範囲外である表 1の No. 28〜41の水系表面処理剤を用いた表 2 の比較例 1〜15においては、耐食性 (Xカット部及び端面耐食性)、一次折曲げ密着 性、二次折曲げ密着性及び耐コインスクラッチ性、並びに水系表面処理剤の貯蔵安 定性の少なくとも 2つが劣っており、性能のバランスが取れていなかった。  On the other hand, in Comparative Examples 1 to 15 in Table 2 using No. 28 to 41 aqueous surface treatment agents in Table 1 that are outside the scope of the present invention, corrosion resistance (X-cut portion and end surface corrosion resistance), primary bending adhesion Performance, secondary bending adhesion and coin scratch resistance, and storage stability of the water-based surface treatment agent were inferior, and the performance was not balanced.
[0066] また、実施例同士の比較にお!、ても、アミノ基を有するシランカップリング剤を用いた 実施例 1〜19は、グリシジル基もしくはメルカプト基を有するシランカップリング剤を用 V、た実施例 20〜28に比し、総体的に一次塗装密着性が優れて 、た (アミノ基を有す るシランカップリング剤を用いた場合でも、シランカップリング剤/力チ才ン '性ウレタン 榭脂の比率によっては、グリシジル基もしくはメルカプト基を有するシランカップリング 剤を用いた場合と一次塗装密着性が同等である場合もある)。したがって、アミノ性官 能基を有するシランカップリング剤を用いる場合には、少なくとも一次塗装密着性が 上層との相性に左右されにくいと言うことができる。また、アミノ基を有するシランカツ プリング剤とグリシジル基を有するシランカップリング剤とを併用した実施例 13は、ァ ミノ基を有するシランカップリング剤を用いた実施例 5に比し、端面耐食性に優れて!/ヽ た。  [0066] Further, for comparison between Examples, even though Examples 1 to 19 using an amino group-containing silane coupling agent used silane coupling agents having a glycidyl group or a mercapto group V, Compared to Examples 20 to 28, the primary coating adhesion was generally excellent, and even when a silane coupling agent having an amino group was used, the silane coupling agent / Depending on the ratio of urethane resin, the primary coating adhesion may be the same as when a silane coupling agent having a glycidyl group or a mercapto group is used. Therefore, when a silane coupling agent having an amino functional group is used, it can be said that at least the primary coating adhesion is hardly influenced by the compatibility with the upper layer. Further, Example 13 in which an amino group-containing silane coupling agent and a glycidyl group-containing silane coupling agent are used in combination has superior end face corrosion resistance compared to Example 5 using an amino group-containing silane coupling agent. Te!
[0067] [表 1] Z r化合物 フッ素含有 金属化合物 [0067] [Table 1] Zr compound Fluorine-containing metal compound
及び 無機化合物 シラン力ッ カチオ Z又は  And inorganic compounds Silane force Z or
ン性 ( E)  (E)
T "匕' 物 (C) ( D) プリング剤 ウレタン (A)/(B)  T "匕" thing (C) (D) Pulling agent Urethane (A) / (B)
Zr又は 金属 フッ素 (A) 樹脂 (B)  Zr or metal Fluorine (A) Resin (B)
種類 Ti原子 種類 原子 種類 原子 /(B) /(B) /(B) Type Ti atom Type atom Type atom / (B) / (B) / (B)
A1 B1 10/1 C1 2/5 E1 1/50 C1 1/2A1 B1 10/1 C1 2/5 E1 1/50 C1 1/2
A1 B1 2/1 C3 1/20 E1 1/50 C3 1/5A1 B1 2/1 C3 1/20 E1 1/50 C3 1/5
A1 B1 2/1 C1 1/20 ― ― C1 1/20A1 B1 2/1 C1 1/20--C1 1/20
A1 B1 1/1 C1.C3 1/10 ― ― C1.C3 1/3A1 B1 1/1 C1.C3 1/10--C1.C3 1/3
A1 B1 1/1 C2 1/10 E3 1/200 C2, D1 1/5A1 B1 1/1 C2 1/10 E3 1/200 C2, D1 1/5
A1 B1 1/1 C1 1/10 E4 1/50 C1.C3 1/10A1 B1 1/1 C1 1/10 E4 1/50 C1.C3 1/10
A1 B1 1/1 C1 1/10 E5 1/50 C1.C3 1/10A1 B1 1/1 C1 1/10 E5 1/50 C1.C3 1/10
A1 B1 1/1 C1 1/10 E6 1/50 C1.C3 1/10A1 B1 1/1 C1 1/10 E6 1/50 C1.C3 1/10
A1 B1 1/1 C1 1/10 E7 1/50 C1.C3 1/10A1 B1 1/1 C1 1/10 E7 1/50 C1.C3 1/10
A1 B1 1/2 C1 1/5 E3 1/50 Cl'Dl 2/5A1 B1 1/2 C1 1/5 E3 1/50 Cl'Dl 2/5
A1 B1 1/5 C3 1/10 ― - C3, D1 2/5A1 B1 1/5 C3 1/10--C3, D1 2/5
A1.A3 B1 1/1 C1.C3 1/10 ― ― C1.C3 1/3A1.A3 B1 1/1 C1.C3 1/10--C1.C3 1/3
A1 B2 1/20 C3 1/25 ― ― C3 1/10A1 B2 1/20 C3 1/25 ― ― C3 1/10
A1 B2 1/30 C4 1/10 E1 2/5 C4, D1 1/1A1 B2 1/30 C4 1/10 E1 2/5 C4, D1 1/1
A2 B2 2/1 C1 1/10 E2 1/25 C1.D2 1/5A2 B2 2/1 C1 1/10 E2 1/25 C1.D2 1/5
A2 B2 2/1 C3 1/10 E2 1/25 C3 1/3A2 B2 2/1 C3 1/10 E2 1/25 C3 1/3
A2 B3 1/5 C3 1/10 ― - C3, D2 1/2A2 B3 1/5 C3 1/10--C3, D2 1/2
A2 B3 1/20 C4 1/10 ― - C4 1/4A2 B3 1/20 C4 1/10--C4 1/4
A3 B3 2/1 C1 2/5 ― ― C1 1/2A3 B3 2/1 C1 2/5--C1 1/2
A3 B1 2/1 C1 1/30 E1 1/50 C1 1/30A3 B1 2/1 C1 1/30 E1 1/50 C1 1/30
A3 B1 1/5 C3 1/10 E1 1/25 C3.D2 2/5A3 B1 1/5 C3 1/10 E1 1/25 C3.D2 2/5
A3 B2 1/5 C2 1/20 E1 1/10 C2 1/10A3 B2 1/5 C2 1/20 E1 1/10 C2 1/10
A3 B2 1/20 C3 1/10 ― - C3.D3 2/1A3 B2 1/20 C3 1/10--C3.D3 2/1
A3 B2 1/20 C5 1/200 E1 1/10 D1 1/200A3 B2 1/20 C5 1/200 E1 1/10 D1 1/200
A3 B3 1/30 C1 1/10 ― - C1 1/10A3 B3 1/30 C1 1/10--C1 1/10
A4 B3 1/5 C4 1/5 ― ― C4, D3 2/5A4 B3 1/5 C4 1/5 ― ― C4, D3 2/5
A4 B3 1/20 C6 1/10 ― ― D3 1/1A4 B3 1/20 C6 1/10--D3 1/1
A1 ― ― ― ― ― ― ― ―A1 ― ― ― ― ― ― ― ―
A1 B1 30/1 C1 1/25 E1 1/50 C1 1/25A1 B1 30/1 C1 1/25 E1 1/50 C1 1/25
A1 B1 1/200 C1 1/25 E1 1/50 C1 1/25A1 B1 1/200 C1 1/25 E1 1/50 C1 1/25
A1 B1 2/1 ― ― ― ― ― ―A1 B1 2/1 ― ― ― ― ― ―
A1 B1 2/1 ― ― ― ― 一 1/25A1 B1 2/1 ― ― ― ― One 1/25
A1 B1 2/1 C1 3/5 ― ― C1 3/1A1 B1 2/1 C1 3/5--C1 3/1
A1 B1 2/1 C3 1/2 E1 1/1 C3.D1 1/1A1 B1 2/1 C3 1/2 E1 1/1 C3.D1 1/1
A1 B4 1/5 C5 1/10 ― ― ― ―A1 B4 1/5 C5 1/10----
A1 B1 2/1 C1 2/5 ― ― C1 1/2A1 B1 2/1 C1 2/5--C1 1/2
A1 ― ― C1 2/5 ― ― C1 1/2A1 ― ― C1 2/5 ― ― C1 1/2
A1 ― ― C1 2/5 ― ― C1.D1 3/5A1 ― ― C1 2/5 ― ― C1.D1 3/5
A1 ― ― ― 一 ― 一 D1 1/10A1 ― ― ― One ― One D1 1/10
A1 B1 1/5 ― ― ― ― D1 1/1A1 B1 1/5 ― ― ― ― D1 1/1
A1 B5 1/5 C6 1/3 ― ― ― ― お 、て、 (A) / (B)、 Zr又は Ti原子 Z (B)、金属原子 Z (B)並びにフッ素原 子 Z(B)はいずれも質量比である。また、 No.12の A1のァミノ基と A3のグリシジル 基との当量比は 5:1とした。また、 No.4及び 12の C1:C3(質量比)は 2:1とした。 A1 B5 1/5 C6 1/3 ― ― ― ― (A) / (B), Zr or Ti atom Z (B), metal atom Z (B) and fluorine source Each child Z (B) is in mass ratio. The equivalent ratio of the A1 amino group of No. 12 to the glycidyl group of A3 was 5: 1. The C1: C3 (mass ratio) of No. 4 and 12 was 2: 1.
[表 2] [Table 2]
水系表面 供試 耐 性 塗装; 着性 耐コイン Aqueous surface Test resistance Paint; Wear resistance Coin resistance
塗料 :  Paint:
貯蔵安定性 処理剤 材 Xカット部 端面 一次 二次 スクラッチ性 実施例 1 No. 1 GI Fl ◎ 〇 〇 ◎ ◎ 〇 実施例 2 No. 2 GI Fl ◎ 〇 〇 ◎ ◎ 〇 実施例 3 No. 2 GI F2 〇 〇 〇 ◎ ◎ 〇 実施例 4 No. 3 GI Fl 〇 〇 〇 © ◎ 〇 実施例 5 No. 4 GI Fl © 〇 © ◎ ◎ 〇 実施例 6 No. 5 GL Fl 〇 〇 © ◎ ◎ 〇 実施例 7 No. 6 EG Fl © 〇 ◎ ◎ ◎ 〇 実施例 8 No. 7 GI Fl © 〇 © ◎ ◎ 〇 実施例 9 No. 8 GI Fl ◎ 〇 ◎ ◎ ◎ Ο 実施例 10 No. 9 GI Fl ◎ 〇 ◎ ◎ ◎ 〇 実施例 11 No. 10 GI Fl © 〇 ◎ ◎ © 〇 実施例 12 No. 11 GI Fl 〇 〇 ◎ ◎ ◎ 〇 実施例 13 No. 12 GI Fl ◎ ◎ ◎ ◎ ◎ 〇 実施例 14 No. 13 GI Fl ◎ o ◎ ◎ ◎ 〇 実施例 15 No. 14 GI Fl ® 〇 〇 ◎ ◎ 〇 実施例 16 No. 15 GI Fl ◎ 〇 〇 ◎ ◎ 〇 実施例 17 No. 16 GI Fl 〇 〇 ◎ ◎ © 〇 実施例 18 No. 17 GI Fl ◎ 〇 ◎ ◎ ◎ 〇 実施例 19 No. 18 GI Fl ◎ 〇 〇 © © Ο 実施例 20 No. 19 GI Fl 〇 〇 〇 ◎ ◎ 〇 実施例 21 No. 20 GI F2 〇 o 〇 〇 ◎ 〇 実施例 22 No. 21 GI Fl ◎ 〇 〇 © ◎ 〇 実施例 23 No. 22 GI Fl 〇 〇 ◎ ◎ 〇 実施例 24 No. 23 Gし Fl ◎ 〇 〇 ◎ © 〇 実施例 25 No. 24 GI Fl ◎ © 〇 © ◎ 〇 実施例 26 No. 25 GI Fl 〇 〇 〇 ◎ ◎ 〇 実施例 27 No. 26 EG Fl ◎ 〇 〇 © ◎ 〇 実施例 28 No. 27 GI Fl © 〇 〇 ◎ ◎ 〇 比較例 1 No. 28 GI Fl 〇 Δ X X X 〇 比較例 2 No. 29 GI Fl 〇 〇 Δ Δ Ο 〇 比較例 3 No. 30 GI Fl 〇 〇 □ □ Δ ο 比較例 4 No. 31 GI Fl o Δ □ Δ □ 〇 比較例 5 No. 32 GI Fl 〇 Δ □ □ □ 〇 比較例 6 No. 33 GI Fl ◎ 〇 〇 Ο 〇 Δ 比較例 7 No. 34 GI Fl ◎ ◎ Δ □ ◎ X 比較例 8 No. 35 GI Fl ◎ 〇 □ □ □ 〇 比較例 9 No. 35 EG Fl ◎ 〇 Δ Δ Δ 〇 比較例 10 No. 36 GI Fl ◎ 〇 □ □ □ 〇 比較例 11 No. 37 GI Fl 〇 〇 Δ Δ Δ , 〇 比較例 12 No. 38 GI Fl 〇 〇 Δ Δ Δ 〇 比較例 13 No. 39 GI Fl 〇 Δ Δ Δ X 〇 比較例 14 No. 40 GI Fl 〇 Δ □ □ □ 〇 比較例 15 No. 41 GI Fl 〇 〇 Δ □ 〇 〇 比較例 16 クロメート EG Fl ◎ ◎ 〇 ◎ ◎ 〇 比較例 17 クロメート GI Fl ◎ ◎ 〇 ◎ ◎ 〇 比較例 18 クロメート GL Fl ◎ ◎ Ο ◎ ◎ 〇 1における各成分の内容は以下の通りである。 シランカップリング剤 (A) Storage stability Treatment material X-cut part End face Primary Secondary Scratch Example 1 No. 1 GI Fl ◎ ○ ○ ◎ ◎ ○ Example 2 No. 2 GI Fl ◎ ○ ○ ◎ ◎ Example 3 No. 2 GI F2 ○ ○ ○ ◎ ◎ Example 4 No. 3 GI Fl 〇 〇 〇 © ◎ 〇 Example 5 No. 4 GI Fl © 〇 © ◎ ◎ 〇 Example 6 No. 5 GL Fl 〇 〇 © ◎ ◎ 〇 Example 7 No. 6 EG Fl © 〇 ◎ ◎ ◎ Example 8 No. 7 GI Fl © 〇 © ◎ ◎ 〇 Example 9 No. 8 GI Fl ◎ 〇 ◎ ◎ ◎ Ο Example 10 No. 9 GI Fl ◎ ○ ◎ ◎ ◎ ○ Example 11 No. 10 GI Fl © ○ ◎ ◎ © ○ Example 12 No. 11 GI Fl ○ ○ ◎ ◎ ◎ ◎ Example 13 No. 12 GI Fl ◎ ◎ ◎ ◎ ◎ 〇 Example 14 No. 13 GI Fl ◎ o ◎ ◎ ◎ ○ Example 15 No. 14 GI Fl ® ○ ○ ◎ ◎ ○ Example 16 No. 15 GI Fl ◎ ○ ○ ◎ ◎ ○ Example 17 No. 16 GI Fl ○ ○ ◎ ◎ © 〇 Example 18 No. 17 GI Fl ◎ 〇 ◎ ◎ ◎ 〇 Example 19 No. 18 GI Fl ◎ 〇 〇 © © Ο Example 20 No. 19 GI Fl ○ ○ ○ ◎ ◎ ○ Example 21 No. 20 GI F2 ○ o ○ ○ ◎ ○ Example 22 No. 21 GI Fl ◎ ○ ○ © ◎ ○ Example 23 23 No. 22 GI Fl ○ ○ ◎ ◎ ○ Example 24 No. 23 G and Fl ◎ ○ ○ ◎ © ○ Example 25 No. 24 GI Fl ◎ © ○ © ◎ ○ Example 26 No. 25 GI Fl ○ ○ ○ ◎ ◎ ◎ Example 27 No. 26 EG Fl ◎ ○ ○ © ◎ ○ Example 28 No. 27 GI Fl © ○ ○ ◎ ◎ ○ Comparative Example 1 No. 28 GI Fl ○ Δ XXX ○ Comparative Example 2 No. 29 GI Fl ○ ○ Δ Δ 〇 〇 Comparative example 3 No. 30 GI Fl 〇 〇 □ □ Δ ο Comparative example 4 No. 31 GI Fl o Δ □ Δ □ 〇 Comparative example 5 No. 32 GI Fl 〇 Δ □ □ □ 〇 Comparative example 6 No. 33 GI Fl ◎ ○ ○ Ο ○ Δ Comparative Example 7 No. 34 GI Fl ◎ ◎ Δ □ ◎ X Comparative Example 8 No. 35 GI Fl ◎ ○ □ □ □ ○ Comparative Example 9 No. 35 EG Fl ◎ ○ Δ Δ Δ 〇 Comparative Example 10 No. 36 GI Fl ◎ ○ □ □ □ ○ Comparative Example 11 No. 37 GI Fl ○ ○ Δ Δ Δ, ○ Comparative Example 12 No. 38 GI Fl ○ ○ Δ Δ Δ ○ Comparative Example 13 No. 39 GI Fl ○ Δ Δ Δ X ○ Comparative Example 14 No. 40 GI Fl ○ Δ □ □ ○ ○ Comparative Example 15 No. 41 GI Fl ○ ○ Δ □ ○ ○ Comparative Example 16 Chromate EG Fl ◎ ◎ 〇 ◎ ◎ 〇 Comparative Example 17 Chromate GI Fl ◎ ◎ 〇 ◎ 〇 Comparative Example 18 Chromate GL Fl ◎ ◎ Ο ◎ ◎ 〇 The contents of each component in 1 are as follows. Silane coupling agent (A)
A1 : γーァミノプロピルトリエトキシシラン  A1: γ-Aminopropyltriethoxysilane
Α2 :Ν- (2 アミノエチル) 3 ァミノプロピルトリメトキシシラン  Α2: Ν- (2 aminoethyl) 3 aminopropyltrimethoxysilane
Α4 : γ—メルカプトプロピルトリメトキシシラン Α4: γ-Mercaptopropyltrimethoxysilane
[0071] カチオン性ウレタン榭脂(Β) [0071] Cationic Urethane Resin (Amber)
B1:カチオン性ポリエーテル系ウレタン榭脂(水分散体)  B1: Cationic polyether urethane urethane (water dispersion)
Β2 :カチオン性ポリエステル系ウレタン榭脂(水分散体)  Β2: Cationic polyester urethane resin (water dispersion)
Β3:カチオン性ポリカーボネート系ウレタン榭脂(水分散体)  Β3: Cationic polycarbonate-based urethane resin (water dispersion)
Β4 :スーパーフレックス 410 (ァ-オン性ポリカーボネート系ポリウレタン水分散体、第 一工業製薬 (株)製)  Β4: Superflex 410 (A-on polycarbonate polyurethane dispersion, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
Β5 :プライマル Κ— 3 (ポリアクリル榭脂、 ROHM AND HAAS社製)  Β5: Primal Κ-3 (Polyacrylic resin, manufactured by ROHM AND HAAS)
[0072] カチオン性ウレタン榭脂 Bl、 B2及び B3は以下の手法にて調製した。 [0072] Cationic urethane resin Bl, B2 and B3 were prepared by the following method.
カチオン性ポリエーテル系ウレタン榭脂(水分散体) B1  Cationic polyether urethane resin (water dispersion) B1
ポリエーテルポリオール (合成成分:ポリテトラメチレングリコール及びエチレングリコ ール、分子量 1500) 150質量部、トリメチロールプロパン 6質量部、 N—メチル N, N ジエタノールァミン 24質量部、イソホロンジイソシァネート 94質量部及びメチル ェチルケトン 135質量部を反応容器に入れ、 70〜75°Cに保ちながら反応させて得 たウレタンプレポリマーに、ジメチル硫酸 15質量部を添カ卩し、 50〜60°Cで 30〜60 分間反応させてカチオン性ウレタンプレボリマーを得た。さらに水 576質量部を前記 カチオン性ウレタンプレボリマーに添加し、均一に乳化させた後、メチルェチルケトン を回収してカチオン性ポリエーテル系ウレタン榭脂 (水分散体) (B1)を得た。  Polyether polyol (synthesis components: polytetramethylene glycol and ethylene glycol, molecular weight 1500) 150 parts by mass, 6 parts by mass of trimethylolpropane, 24 parts by mass of N-methyl N, N diethanolamine, isophorone diisocyanate 94 Mass parts and 135 parts by mass of methyl ethyl ketone are placed in a reaction vessel, and 15 parts by mass of dimethyl sulfuric acid is added to the urethane prepolymer obtained by reaction while maintaining the temperature at 70 to 75 ° C. Cationic urethane prepolymers were obtained by reacting for ~ 60 minutes. Further, 576 parts by mass of water was added to the cationic urethane prepolymer and uniformly emulsified, and then methyl ethyl ketone was recovered to obtain a cationic polyether urethane resin (aqueous dispersion) (B1). .
[0073] カチオン性ポリエステル系ウレタン榭脂(水分散体) B2 [0073] Cationic polyester urethane resin (aqueous dispersion) B2
ポリエステルポリオール(合成成分:イソフタル酸、アジピン酸及び 1, 6 へキサン ジオール、エチレングリコール、分子量 1700) 135質量部、トリメチロールプロパン 5 質量部、 N—メチル N, N ジエタノールァミン 22質量部、イソホロンジイソシァネ ート 86質量部及びメチルェチルケトン 120質量部を反応容器に入れ、 70〜75°Cに 保ちながら反応させて得たウレタンプレボリマーに、ジメチル硫酸 17質量部を添加し 、 50〜60°Cで 30〜60分間反応させてカチオン性ウレタンプレポリマーを得た。さら に水 615質量部を前記カチオン性ウレタンプレボリマーに添加し、均一に乳化させた 後、メチルェチルケトンを回収してカチオン性ポリエステル系ウレタン榭脂(水分散体 ) (B2)を得た。 Polyester polyol (Synthetic components: isophthalic acid, adipic acid and 1,6 hexanediol, ethylene glycol, molecular weight 1700) 135 parts by mass, trimethylolpropane 5 parts by mass, N-methyl N, N diethanolamine 22 parts by mass, isophorone Add 86 parts by weight of diisocyanate and 120 parts by weight of methyl ethyl ketone to a reaction vessel and add 17 parts by weight of dimethyl sulfate to the urethane prepolymer obtained by reacting while maintaining at 70 to 75 ° C. A cationic urethane prepolymer was obtained by reacting at 50 to 60 ° C. for 30 to 60 minutes. Further, 615 parts by mass of water was added to the cationic urethane prepolymer and uniformly emulsified, and then methyl ethyl ketone was recovered to obtain a cationic polyester urethane resin (water dispersion) (B2). .
[0074] カチオン性ポリカーボネート系ウレタン榭脂(水分散体) B3  [0074] Cationic polycarbonate urethane resin (aqueous dispersion) B3
ポリカーボネートポリオール(合成成分: 1, 6 へキサンカーボネートジオール、ェ チレングリコール、分子量 2000) 130質量部、トリメチロールプロパン 4質量部、 N— メチル N, N ジエタノールァミン 21質量部、イソホロンジイソシァネート 75質量部 及びメチルェチルケトン 115質量部を反応容器に入れ、 70〜75°Cに保ちながら反 応させて得たウレタンプレボリマーに、ジメチル硫酸 22質量部を添カ卩し、 50〜60°C で 30〜60分間反応させてカチオン性ウレタンプレボリマーを得た。さらに水 633質 量部を前記カチオン性ウレタンプレボリマーに添加し、均一に乳化させた後、メチル ェチルケトンを回収してカチオン性ポリカーボネート系ウレタン榭脂(水分散体) (B3) を得た。  Polycarbonate polyol (synthesis component: 1, 6 hexane carbonate diol, ethylene glycol, molecular weight 2000) 130 parts by mass, 4 parts by mass of trimethylolpropane, 21 parts by mass of N-methyl N, N diethanolamine, isophorone diisocyanate 75 parts by mass and 115 parts by mass of methyl ethyl ketone were placed in a reaction vessel, and 22 parts by mass of dimethyl sulfate was added to a urethane polymer obtained by reacting while maintaining at 70 to 75 ° C., and 50 to 60 A cationic urethane prepolymer was obtained by reacting at 30 ° C. for 30 to 60 minutes. Further, 633 parts by mass of water was added to the cationic urethane prepolymer and uniformly emulsified, and then methyl ethyl ketone was recovered to obtain a cationic polycarbonate urethane resin (aqueous dispersion) (B3).
[0075] Zr化合物及び Z又は Ti化合物(C)  [0075] Zr compound and Z or Ti compound (C)
C1:へキサフルォロジルコニウム酸  C1: Hexafluorozirconic acid
C2:へキサフルォロジルコニウム酸アンモ-ゥム  C2: Hexafluoro zirconate ammonium
C3:へキサフルォロチタン酸  C3: Hexafluorotitanic acid
C4:へキサフルォロチタン酸アンモ-ゥム  C4: Hexafluorotitanate ammonium
C5:炭酸ジルコニウムアンモ-ゥム  C5: Zirconium carbonate ammonia
C6 :ジノレコニァゾノレ  C6: Ginoleconiazonore
[0076] フッ素含有無機化合物 (D) [0076] Fluorine-containing inorganic compound (D)
D1 :フッ化アンモ-ゥム  D1: Ammonium fluoride
D2 :フッ化水素酸  D2: Hydrofluoric acid
D3 :ケィフッ化水素酸  D3: Key hydrofluoric acid
[0077] 金属化合物 (E) [0077] Metallic compound (E)
E1:バナジウムォキシァセチルァセトネート  E1: Vanadium oxycetylacetonate
E2:モリブデン酸アンモニゥム E3:メタタングステン酸アンモニE2: Ammonium molybdate E3: Ammoni metatungstate
E4:硝酸コバルト E4: Cobalt nitrate
E5:水酸化アルミニウム E5: Aluminum hydroxide
E6:硝酸セリウムアンモニゥムE6: Cerium ammonium nitrate
E7:炭酸ニッケル E7: Nickel carbonate

Claims

請求の範囲 The scope of the claims
[1] シランカップリング剤 (A)、カチオン性ウレタン榭脂 (B)、 Zrィ匕合物及び Zまたは Ti 化合物 (C)並びにフッ素含有無機化合物 (D)を含有するプレコート金属材料用水系 表面処理剤であって、(A)Z(B)の質量比が 1Z50〜20Z1、(Zr及び Ζ又は Ti原 子) Z(B)の質量比が 1Z1, 000〜1Z2、及びフッ素原子 Z(B)の質量比が lZl, 000〜2Zlである該水系表面処理剤。  [1] Aqueous surface for precoated metal materials containing silane coupling agent (A), cationic urethane resin (B), Zr compound and Z or Ti compound (C) and fluorine-containing inorganic compound (D) (A) The mass ratio of Z (B) is 1Z50 to 20Z1, (Zr and Ζ or Ti atoms) The mass ratio of Z (B) is 1Z1,000 to 1Z2, and the fluorine atom Z (B ) Is a water-based surface treatment agent having a mass ratio of lZl, 000 to 2Zl.
[2] シランカップリング剤 (A)全体の 5質量%以上が、第 1級ァミノ基、第 2級ァミノ基、第 3級ァミノ基及び第 4級アンモ-ゥム基力 選ばれるアミノ性官能基を有するシラン力 ップリング剤である請求項 1記載の水系表面処理剤。  [2] Silane coupling agent (A) 5% by mass or more of primary amino group, secondary amino group, tertiary amino group and quaternary ammonium group selected 2. The aqueous surface treating agent according to claim 1, which is a silane power peeling agent having a group.
[3] シランカップリング剤 (A)が互いに反応する官能基をそれぞれ有するシランカップリン グ剤カもなり、一方の官能基と他方の官能基との当量比が 50 : 1〜1 : 50である請求 項 1又は 2記載の水系表面処理剤。  [3] The silane coupling agent (A) also has a silane coupling agent having functional groups that react with each other, and the equivalent ratio of one functional group to the other functional group is 50: 1 to 1:50. The water-based surface treatment agent according to claim 1 or 2.
[4] さらに、 V化合物、 Mo化合物、 W化合物、 Co化合物、 A1ィ匕合物、 Zn化合物、 Niィ匕 合物、 Mn化合物、 Ce化合物、 Nb化合物、 Sn化合物及び Mg化合物から選ばれる 少なくとも 1種の金属化合物 (E)を、金属原子 Z(B)の質量比として lZl, 000〜1 Z2の範囲で含有する請求項 1〜3のいずれか 1項に記載の水系表面処理剤。  [4] Further, at least selected from V compound, Mo compound, W compound, Co compound, A1 compound, Zn compound, Ni compound, Mn compound, Ce compound, Nb compound, Sn compound and Mg compound The water-based surface treatment agent according to any one of claims 1 to 3, which contains one metal compound (E) in a range of lZl, 000 to 1 Z2 as a mass ratio of the metal atom Z (B).
[5] Zr化合物及び Z又は Ti化合物(C)がフッ化物又はフルォロ酸もしくはフルォロ酸塩 である請求項 1〜4のいずれか 1項に記載の水系表面処理剤。  [5] The aqueous surface treating agent according to any one of claims 1 to 4, wherein the Zr compound and the Z or Ti compound (C) are fluoride, fluoro acid or fluoro acid salt.
[6] 請求項 1〜5のいずれか 1項に記載の水系表面処理剤を金属材料表面に塗布後乾 燥して、 10〜1, 000mg/m2の乾燥皮膜を形成させることを特徴とする金属材料の 表面処理方法。 [6] The water-based surface treatment agent according to any one of claims 1 to 5 is applied to the surface of the metal material and then dried to form a dry film of 10 to 1,000 mg / m 2. Surface treatment method for metallic materials.
[7] 請求項 6記載の表面処理方法により表面処理した金属材料に、さらにクロムを含まな い上層被覆を施すことを特徴とするプレコート金属材料の製造方法。  [7] A method for producing a precoated metal material, wherein the metal material surface-treated by the surface treatment method according to [6] is further coated with an upper layer coating not containing chromium.
PCT/JP2006/309391 2005-05-23 2006-05-10 Aqueous surface treating agent for precoated metal material, surface treatment method and method for producing precoated metal material WO2006126394A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-150185 2005-05-23
JP2005150185A JP2006328445A (en) 2005-05-23 2005-05-23 Water-based surface treating agent for precoat metal material, surface treating method and method for manufacturing precoat metal material

Publications (1)

Publication Number Publication Date
WO2006126394A1 true WO2006126394A1 (en) 2006-11-30

Family

ID=37451820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309391 WO2006126394A1 (en) 2005-05-23 2006-05-10 Aqueous surface treating agent for precoated metal material, surface treatment method and method for producing precoated metal material

Country Status (2)

Country Link
JP (1) JP2006328445A (en)
WO (1) WO2006126394A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069588A1 (en) * 2005-12-12 2007-06-21 Dic Corporation Aqueous coating composition, organic/inorganic composite coating film and method for producing same
JP2008291162A (en) * 2007-05-28 2008-12-04 Kansai Paint Co Ltd Coating material composition with excellent corrosion resistance
CN102534597A (en) * 2012-02-14 2012-07-04 蚌埠市钰诚五金工贸有限公司 Metal surface silanization protection treating fluid
CN102534601A (en) * 2011-12-28 2012-07-04 蚌埠市钰诚五金工贸有限公司 Preparation process of metal surface protective treatment solution
CN102534602A (en) * 2011-12-29 2012-07-04 蚌埠市钰诚五金工贸有限公司 Finishing agent for metal surface protection
CN102534595A (en) * 2011-12-28 2012-07-04 蚌埠市钰诚五金工贸有限公司 Preparation process of metal surface protective treatment fluid
CN104099592A (en) * 2014-06-19 2014-10-15 锐展(铜陵)科技有限公司 Surface treating agent for smooth foamless aluminum alloy
WO2016103491A1 (en) * 2014-12-26 2016-06-30 日本パーカライジング株式会社 Paint for hot-dip galvanized steel sheet, method for treating hot-dip galvanized steel sheet, process for producing surface-treated hot-dip galvanized steel sheet, and surface-treated hot-dip galvanized steel sheet
US10435806B2 (en) 2015-10-12 2019-10-08 Prc-Desoto International, Inc. Methods for electrolytically depositing pretreatment compositions

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5433950B2 (en) 2008-01-24 2014-03-05 日本軽金属株式会社 Metal paint
JP5380846B2 (en) 2008-01-24 2014-01-08 日本軽金属株式会社 Painted steel with excellent bending workability
JP5108820B2 (en) * 2008-04-17 2012-12-26 日本パーカライジング株式会社 Water-based surface treatment agent for precoat metal material, surface treatment metal material, and precoat metal material
JP5183586B2 (en) * 2008-08-12 2013-04-17 日本パーカライジング株式会社 Water-based paint surface treatment agent also used as a primer, surface-treated metal material, and pre-coated metal material
JP5718550B2 (en) * 2009-02-23 2015-05-13 リンテック株式会社 Adhesive sheet
JP5420354B2 (en) * 2009-09-08 2014-02-19 日本パーカライジング株式会社 Chromium-free black surface-treated iron-based metal material and method for producing the same
AU2009352402B2 (en) 2009-09-11 2013-01-31 Nihon Parkerizing Co., Ltd. Composition for adhesion layer used for multi-layered surface-treatment steel sheet
WO2011049238A1 (en) * 2009-10-20 2011-04-28 新日本製鐵株式会社 Chromium-free surface-treated galvanized steel sheet
JP5663490B2 (en) * 2009-10-30 2015-02-04 日本パーカライジング株式会社 Surface treatment agent for laminated metal material and method for producing laminated metal material
JP5220050B2 (en) * 2010-03-09 2013-06-26 新日鐵住金株式会社 Surface-treated steel sheet with excellent resistance to condensation whitening and corrosion
US9127366B2 (en) * 2010-09-29 2015-09-08 Jfe Steel Corporation Zinc-based metal coated steel sheet
TWI443225B (en) * 2010-09-29 2014-07-01 Jfe Steel Corp Method for manufacturing zinc coated steel sheet and the zinc coated steel sheet
CN103635607B (en) * 2011-04-27 2015-12-02 新日铁住金株式会社 Surface-treated metal material and water-based metal-surface-treating agent
JP2012233243A (en) * 2011-05-09 2012-11-29 Nippon Paint Co Ltd Chemical conversion treatment agent for surface treatment of metal substrate, and surface treatment method of metal substrate using same
FR2981366B1 (en) * 2011-10-14 2014-10-17 Univ Toulouse 3 Paul Sabatier METHOD FOR THE ANTICORROSIVE TREATMENT OF A SOLID METAL SUBSTRATE AND A TREATED SOLID METAL SUBSTRATE WHICH CAN BE OBTAINED BY SUCH A METHOD
BR112015004358B1 (en) 2012-08-29 2021-05-25 Ppg Industries Ohio, Inc method for coating a metal substrate and pretreatment composition for treating a metal substrate
KR102181792B1 (en) 2012-08-29 2020-11-24 피피지 인더스트리즈 오하이오 인코포레이티드 Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates
JP6080670B2 (en) 2013-04-22 2017-02-15 日本パーカライジング株式会社 Ground treatment composition for coated steel sheet, plated steel sheet subjected to ground treatment and method for producing the same, painted steel sheet and method for producing the same
WO2015052546A1 (en) * 2013-10-09 2015-04-16 ArcelorMittal Investigación y Desarrollo, S.L. Sheet metal having a znaimg coating and improved flexibility and corresponding production method
EP2915903B1 (en) * 2014-03-05 2018-02-21 The Boeing Company Chromium-free conversion coating
JP6467195B2 (en) 2014-11-10 2019-02-06 三桜工業株式会社 Coated metal pipe for vehicle piping
RU2711893C2 (en) * 2015-02-13 2020-01-23 Сано Индастриал Ко., Лтд. Coated metal pipe for vehicle pipeline and method for its production
JP6680002B2 (en) * 2016-03-10 2020-04-15 日本製鉄株式会社 Surface-treated steel sheet for fuel tanks
CA3034712C (en) 2016-08-24 2021-10-12 Ppg Industries Ohio, Inc. Alkaline composition for treating metal substartes
JP2019019357A (en) * 2017-07-13 2019-02-07 日本ペイント・サーフケミカルズ株式会社 Treatment method using de-zinc phosphate treatment agent containing cationic urethane resin and treated automobile component
JP2019019356A (en) * 2017-07-13 2019-02-07 日本ペイント・サーフケミカルズ株式会社 Chemical conversion treatment agent and coating pretreatment method and metal member
JP7101066B2 (en) * 2018-07-10 2022-07-14 日本ペイント・サーフケミカルズ株式会社 Chromium-free metal surface treatment agents, metal surface treatment methods, and metal substrates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316845A (en) * 2000-02-29 2001-11-16 Nippon Paint Co Ltd Non-chromate metal surface treating agent, surface treating method and treated coated steel material
JP2004218075A (en) * 2002-12-24 2004-08-05 Nippon Paint Co Ltd Chemical conversion coating agent and surface-treated metal
JP2005120469A (en) * 2003-09-26 2005-05-12 Nippon Parkerizing Co Ltd Composition for treating surface of metallic material, and surface treatment method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4291022B2 (en) * 2003-03-18 2009-07-08 日本パーカライジング株式会社 Surface treatment agent for metal material and surface treatment method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316845A (en) * 2000-02-29 2001-11-16 Nippon Paint Co Ltd Non-chromate metal surface treating agent, surface treating method and treated coated steel material
JP2004218075A (en) * 2002-12-24 2004-08-05 Nippon Paint Co Ltd Chemical conversion coating agent and surface-treated metal
JP2005120469A (en) * 2003-09-26 2005-05-12 Nippon Parkerizing Co Ltd Composition for treating surface of metallic material, and surface treatment method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069588A1 (en) * 2005-12-12 2007-06-21 Dic Corporation Aqueous coating composition, organic/inorganic composite coating film and method for producing same
JP2008291162A (en) * 2007-05-28 2008-12-04 Kansai Paint Co Ltd Coating material composition with excellent corrosion resistance
CN102534601A (en) * 2011-12-28 2012-07-04 蚌埠市钰诚五金工贸有限公司 Preparation process of metal surface protective treatment solution
CN102534595A (en) * 2011-12-28 2012-07-04 蚌埠市钰诚五金工贸有限公司 Preparation process of metal surface protective treatment fluid
CN102534602A (en) * 2011-12-29 2012-07-04 蚌埠市钰诚五金工贸有限公司 Finishing agent for metal surface protection
CN102534597A (en) * 2012-02-14 2012-07-04 蚌埠市钰诚五金工贸有限公司 Metal surface silanization protection treating fluid
CN104099592A (en) * 2014-06-19 2014-10-15 锐展(铜陵)科技有限公司 Surface treating agent for smooth foamless aluminum alloy
WO2016103491A1 (en) * 2014-12-26 2016-06-30 日本パーカライジング株式会社 Paint for hot-dip galvanized steel sheet, method for treating hot-dip galvanized steel sheet, process for producing surface-treated hot-dip galvanized steel sheet, and surface-treated hot-dip galvanized steel sheet
JPWO2016103491A1 (en) * 2014-12-26 2017-08-24 日本パーカライジング株式会社 Paint for hot dipped galvanized steel sheet, processing method for hot dipped galvanized steel sheet, method for manufacturing surface dipped hot dip galvanized steel sheet, and surface-treated hot dip galvanized steel sheet
CN107109111A (en) * 2014-12-26 2017-08-29 日本帕卡濑精株式会社 Hot dipping fused zinc-plated plated steel sheet coating, the processing method of hot dipping fused zinc-plated plated steel sheet, the manufacture method for being surface-treated hot dipping fused zinc-plated plated steel sheet and surface treatment fused zinc plated steel sheet
CN107109111B (en) * 2014-12-26 2020-03-10 日本帕卡濑精株式会社 Coating material for hot-dip galvanized steel sheet, method for treating steel sheet, method for producing surface-treated steel sheet, and surface-treated steel sheet
US10435806B2 (en) 2015-10-12 2019-10-08 Prc-Desoto International, Inc. Methods for electrolytically depositing pretreatment compositions
US11591707B2 (en) 2015-10-12 2023-02-28 Ppg Industries Ohio, Inc. Methods for electrolytically depositing pretreatment compositions

Also Published As

Publication number Publication date
JP2006328445A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
WO2006126394A1 (en) Aqueous surface treating agent for precoated metal material, surface treatment method and method for producing precoated metal material
KR101129212B1 (en) Aqueous surface treatment for environment-friendly precoated metal materials, surface-treated metal materials, and environment-friendly precoated metal materials
JP5108820B2 (en) Water-based surface treatment agent for precoat metal material, surface treatment metal material, and precoat metal material
JP5663490B2 (en) Surface treatment agent for laminated metal material and method for producing laminated metal material
JP5183586B2 (en) Water-based paint surface treatment agent also used as a primer, surface-treated metal material, and pre-coated metal material
EP2620524B1 (en) Surface treatment fluid for zinc-plated steel sheet, zinc-plated steel sheet, and manufacturing method for same
JP5663486B2 (en) Composition for forming an adhesive layer for use in a multilayer surface-treated steel sheet
KR101725704B1 (en) Substrate treating composition for coated metal plate, plated metal plate subjected to substrate treatment and method for manufacturing said plate, coated and plated metal plate and method for manufacturing said plate
JP5055822B2 (en) Painted steel sheet with excellent coating adhesion
JP2009280889A (en) Aquaous surface-treatment agent, pretreatment method for precoating metallic material, manufacturing method for precoating metallic material, and precoating metallic material
JP2001089868A (en) Substrate treating agent for precoated metallic sheet, coated substrate treated metallic sheet coated with the same and precoated metallic sheet excellent in working adhesion of coating film using the same
JP5661238B2 (en) Surface-treated galvanized steel sheet
JP5638191B2 (en) Chemical conversion treated metal plate and manufacturing method thereof
WO2022091850A1 (en) HOT DIPPED Al-Zn-Si-Mg COATED STEEL SHEET, SURFACE-TREATED STEEL SHEET, AND COATED STEEL SHEET
WO2006123556A1 (en) Water-based surface treatments for environment-friendly precoated metal materials and method of surface treatment
JP5490657B2 (en) High corrosion resistance surface-treated steel sheet
JP2009287078A (en) Highly corrosion resistant surface-treated steel sheet
JP4291022B2 (en) Surface treatment agent for metal material and surface treatment method
TW201839170A (en) Surface treatment agent for galvanized steel sheets
JP5101271B2 (en) Surface-treated steel sheet
JP7001209B1 (en) Painted galvanized steel sheet or painted steel strip
WO2023132327A1 (en) HOD DIPPED Al-Zn-Si-Mg COATED STEEL SHEET AND METHOD FOR PRODUCING SAME, SURFACE-TREATED STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COATED STEEL SHEET AND METHOD FOR PRODUCING SAME
JP5489961B2 (en) Metal surface treatment composition and metal substrate having surface treatment film
JP2024048206A (en) Painted steel plate
JP2000167482A (en) Precoated metal sheet having excellent adhesion property with coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746205

Country of ref document: EP

Kind code of ref document: A1