WO2016103491A1 - Paint for hot-dip galvanized steel sheet, method for treating hot-dip galvanized steel sheet, process for producing surface-treated hot-dip galvanized steel sheet, and surface-treated hot-dip galvanized steel sheet - Google Patents

Paint for hot-dip galvanized steel sheet, method for treating hot-dip galvanized steel sheet, process for producing surface-treated hot-dip galvanized steel sheet, and surface-treated hot-dip galvanized steel sheet Download PDF

Info

Publication number
WO2016103491A1
WO2016103491A1 PCT/JP2014/084637 JP2014084637W WO2016103491A1 WO 2016103491 A1 WO2016103491 A1 WO 2016103491A1 JP 2014084637 W JP2014084637 W JP 2014084637W WO 2016103491 A1 WO2016103491 A1 WO 2016103491A1
Authority
WO
WIPO (PCT)
Prior art keywords
galvanized steel
hot
mass
steel sheet
polyurethane resin
Prior art date
Application number
PCT/JP2014/084637
Other languages
French (fr)
Japanese (ja)
Inventor
雅能 田中
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to PCT/JP2014/084637 priority Critical patent/WO2016103491A1/en
Priority to JP2016565832A priority patent/JP6359690B2/en
Priority to CN201480084464.3A priority patent/CN107109111B/en
Priority to TW104143783A priority patent/TWI683869B/en
Publication of WO2016103491A1 publication Critical patent/WO2016103491A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes

Definitions

  • the present invention relates to a coating for hot pickled hot dip galvanized steel sheet, a processing method for hot pickled hot dip galvanized steel sheet, a manufacturing method of surface treated hot dipped galvanized steel sheet, and a surface treated hot dip galvanized steel sheet.
  • zinc-based plated steel sheets including hot-dip galvanized steel sheets, hot-dip zinc-5% aluminum alloy-plated steel sheets, and hot-dip zinc alloy-plated steel sheets have been widely used for home appliances and building materials.
  • a method of producing a zinc-based plated steel sheet for example, a steel sheet which is an object to be treated is immersed in a hot dip zinc bath, and plating is performed on the entire surface by a soaking method (so-called “soaked zinc plating”).
  • soaked zinc plating The method of hot-dip galvanizing is mentioned, and the obtained steel plate is also called a soaked hot-dip galvanized steel plate.
  • the zinc adhesion amount control by an air knife or the like performed in CGL continuous hot dip galvanizing plate line
  • CGL continuous hot dip galvanizing plate line
  • Patent Document 1 discloses a method of preventing corrosion of a steel material surface by bringing an aqueous solution containing a vanadate and a water-soluble acrylic resin into contact with the surface of the galvanized steel material.
  • the inventors of the present invention have evaluated the above-mentioned various properties with respect to the steel plate obtained by applying the method described in Patent Document 1 to the hot dipped galvanized steel plate. As a result, appearance characteristics, rubbing resistance, and It was found that the corrosion resistance could not be satisfied at the same time as the recent required level, and further improvement was necessary.
  • the present invention imparts excellent appearance characteristics, excellent rubbing resistance, and excellent corrosion resistance to hot dipped galvanized steel sheets (or hot dip galvanized steel sheets or galvanized steel sheets). It is an object of the present invention to provide a coating for a hot dipped galvanized steel sheet (or a hot-dip galvanized steel sheet or a galvanized steel sheet).
  • the inventors of the present invention have made extensive studies on the above problems and have found that a desired effect can be obtained by using a paint containing a cationic polyurethane resin exhibiting predetermined characteristics. More specifically, the present inventors have found that the above object can be achieved by the following configuration.
  • a cationic polyurethane resin containing a cationic polyurethane resin (A) having at least one cationic functional group selected from the group consisting of primary to tertiary amino groups and quaternary ammonium bases (A) has a polycarbonate structural unit and a bisphenol structural unit, and the temperature (Tg1) showing the maximum peak value of the loss elastic modulus E ′′ of the cationic polyurethane resin (A) is in the range of ⁇ 60 ° C. to ⁇ 5 ° C.
  • the coating material for hot dipped galvanized steel sheet wherein the loss tangent tan ⁇ , which is the ratio of the loss elastic modulus E ′′ and the storage elastic modulus E ′ of the cationic polyurethane resin (A), has one peak.
  • Tg2 peak temperature of the loss tangent tan ⁇ is in the range of ⁇ 50 ° C. to ⁇ 2 ° C.
  • the paint for hot dipped galvanized steel sheets according to (5) which is 5.
  • a method for treating a soaked hot dip galvanized steel sheet wherein the soaked hot dip galvanized steel sheet is treated using the paint for a soaked hot dip galvanized steel sheet according to any one of (1) to (7).
  • the paint for hot dipped galvanized steel sheet according to any one of (1) to (7) is brought into contact with the hot dipped galvanized steel sheet and placed on the hot dipped galvanized steel sheet and its surface.
  • the present invention is used for imparting excellent appearance characteristics, excellent rubbing resistance, and excellent corrosion resistance to hot dipped galvanized steel sheets (or hot-dip galvanized steel sheets or galvanized steel sheets). It is possible to provide a coating material for hot-dip galvanized steel sheets (or hot-dip galvanized steel sheets or galvanized steel sheets). Furthermore, the paint is used to treat the soaked hot dip galvanized steel sheet (or hot dip galvanized steel sheet or galvanized steel sheet).
  • the processing method of the plated steel sheet, and its paint and the hot-dip galvanized steel sheet (or hot-dip galvanized steel sheet or galvanized steel sheet) are brought into contact with each other, and the hot-dip galvanized steel sheet (or hot-dip zinc)
  • a method for producing a surface-treated dip galvanized steel sheet (or a hot-dip galvanized steel sheet or a galvanized steel sheet) having a coating disposed on the surface thereof and a steel sheet thereof are provided. can do.
  • the paint for hot-dip galvanized steel sheets of the present invention is a hexavalent chromium-free technique, the performance is greatly improved by containing trivalent chromium. Moreover, even if it is a form which does not contain trivalent chromium, there exists a desired effect.
  • the paint for hot dipped galvanized steel sheet of the present invention (hereinafter simply referred to as “paint”) will be described in detail.
  • the reason why the desired effect can be obtained by using the paint of the present invention is presumed as follows.
  • the temperature (Tg1) showing the maximum peak value of the loss elastic modulus E ′′ of the cationic polyurethane resin is in the range of ⁇ 60 ° C. to ⁇ 5 ° C.
  • the present inventors have found that the temperature (Tg1) is related to the appearance characteristics and rubbing resistance of the film.
  • the loss elastic modulus E ′′ is an index indicating the viscosity of an object.
  • the resin exhibits good fluidity and the flatness of the film is improved. Excellent appearance characteristics can be obtained, but the hardness of the formed film is inferior and the rubbing resistance is lowered. On the other hand, when the temperature is too high, the hardness of the formed film is excellent and the rubbing resistance is excellent, but the fluidity of the resin is lowered and the appearance characteristics are poor.
  • the temperature (Tg1) of the cationic polyurethane resin is within the above range, both appearance characteristics and rubbing resistance can be achieved.
  • the rubbing resistance is intended to indicate the resistance of the film to the work of wiping off the oil-based magic applied as a mark during assembly work with a cloth soaked in alcohol or the like.
  • the reason why the corrosion resistance is improved is that the loss tangent tan ⁇ of the cationic polyurethane resin consists of one peak.
  • a polyurethane resin tends to form a sea-island structure having two or more domains of a soft segment and a hard segment in a film form because of its resin skeleton. Therefore, when dynamic viscoelasticity measurement is performed, two or more peaks are observed at the loss tangent tan ⁇ .
  • the loss tangent tan ⁇ has one peak, the sea-island structure is hardly formed in the film, and a uniform film is formed. As a result, the corrosion resistance is estimated to be improved. Is done.
  • the peak temperature (Tg2) of the loss tangent tan ⁇ of the cationic polyurethane resin is preferably in the range of ⁇ 50 ° C. to ⁇ 2 ° C.
  • Tg2 peak temperature
  • Paints containing components with high peak loss tangent tan ⁇ used in surface treatments are hard, so when coated at low temperatures, especially in winter, adhesion to the top coat is insufficient, and coating film peeling tends to occur. .
  • the amine value of the cationic polyurethane resin is preferably in the range of 2.0 to 5.0 mgKOH / g.
  • the cationic functional group in the cationic polyurethane resin contributes to making the cationic polyurethane resin water-soluble or water-dispersible. Therefore, if the cationic functional group is small, in other words, if the amine value is low, the stability of the cationic polyurethane resin is insufficient and redispersion in the paint is possible, but the resin tends to precipitate. Therefore, in order to improve the stability of the cationic polyurethane resin, it is desirable to increase the number of cationic functional groups, in other words, to increase the amine value, but the hydrophilic group in the resin is excessively increased.
  • the viscosity is too high, the cationic urethane resin becomes water-soluble so that the viscosity becomes strong and the paint thickens, which may affect the redispersibility of the paint.
  • the workability of coating may be affected by thickening. Therefore, it is presumed that good storage stability can be obtained by controlling the amine value of the cationic polyurethane resin in the range of 2.0 to 5.0 mgKOH / g.
  • a point that the phosphate treatment property is excellent is also mentioned. The reason why the phosphate treatment property is excellent is that a cationic polyurethane resin having a predetermined functional group is used. Zinc phosphate, etc.
  • the ratio (BV) / (AV) of the phosphoric acid compound based on the solid content of the cationic polyurethane resin (mass%) (BV) and the amine value (BV) / (AV) is not particularly limited and may be 0.05 to 20 or the like. However, it is preferably 0.1 to 9.5, more preferably 0.5 to 9.0, and still more preferably 0.5 to 6.0.
  • the phosphate treatment is intended to be a treatment using a phosphate treatment liquid mainly composed of zinc phosphate, manganese phosphate, magnesium phosphate or the like applied to a coating base or the like.
  • the coating type phosphate treatment is a form of phosphate treatment.
  • fine and dense crystals of zinc phosphate are formed on the surface of an object to be treated (for example, a galvanized steel sheet such as a hot dipped galvanized steel sheet) by applying a coating type phosphate treatment solution. It is intended to perform a treatment for improving the slip resistance at the frictional joint surface with the high-strength bolt.
  • the paint of the present invention can be suitably applied to hot dipped hot dip galvanized steel sheets, hot dip galvanized steel sheets manufactured by CGL (continuous hot dip galvanized plate line), hot dip zinc-5% aluminum alloy plating.
  • the paint of the present invention can be suitably applied to a zinc-based plated steel sheet and can also be used as a paint for a zinc-based plated steel sheet.
  • hot dipped galvanized steel sheet hot dip galvanized steel sheet manufactured with CGL (continuous galvanized sheet line), hot dip zinc-5% aluminum alloy plated steel sheet, hot dip zinc-55% molten aluminum alloy plated steel sheet, alloy
  • the present invention can be suitably applied to a hot dip galvanized steel sheet obtained by performing a plating process using hot galvanized steel such as a hot dip galvanized steel sheet, and can also be used as a paint for a hot dip galvanized steel sheet.
  • the paint of the present invention contains at least a cationic polyurethane resin (A).
  • A cationic polyurethane resin
  • the various components contained in the paint will be described in detail, and then the treatment method for the soaked hot dip galvanized steel sheet using the paint (in other words, the soaked hot dip galvanized steel sheet and the surface having the film disposed on the surface thereof)
  • a method for producing a surface-treated soaked hot-dip galvanized steel sheet, which produces a soaked hot-dip galvanized steel sheet, will be described in detail.
  • the paint of the present invention includes a cationic polyurethane resin (A) having at least one cationic functional group selected from the group consisting of primary to tertiary amino groups and quaternary ammonium bases.
  • Anionic resins used in the prior art generally have poor alkali resistance and tend to be excellent in acid resistance. When it is inferior in alkali resistance, the film is easily dissolved and peeled off by an alkali degreasing step after the film is formed, which causes a decrease in corrosion resistance. Moreover, since it is excellent in acid resistance, it is often difficult to perform phosphate treatment.
  • the cationic polyurethane resin (A) is excellent in alkali resistance, it is excellent in corrosion resistance even after the alkali degreasing step.
  • the polyurethane resin has a strong film due to hydrogen bonding by urethane bonds in the molecule, leading to improved corrosion resistance.
  • it since it may have a cationic functional group relatively, and acid resistance is low, it is easy to perform a phosphate process also as a characteristic of resin.
  • cationic functional group examples include an amino group, a methylamino group, an ethylamino group, a dimethylamino group, a diethylamino group, a trimethylamino group, and a triethylamino group. There is no particular limitation as long as it is a primary to tertiary amino group or a quaternary ammonium base.
  • the cationic functional group in the cationic polyurethane resin (A) contributes to making the cationic polyurethane resin (A) water-soluble or water-dispersible.
  • the dissolution or dispersion of the cationic polyurethane resin (A) in water may be achieved based on the self-solubility or self-dispersibility of the cationic polyurethane resin (A) in water. It may be achieved with the help of activators (eg alkyl quaternary ammonium salts) and / or nonionic surfactants (eg alkyl phenyl ethers).
  • activators eg alkyl quaternary ammonium salts
  • nonionic surfactants eg alkyl phenyl ethers
  • the temperature (Tg1) showing the maximum peak value of the loss elastic modulus E ′′ of the cationic polyurethane resin (A) is in the range of ⁇ 60 ° C. to ⁇ 5 ° C., appearance characteristics, rubbing resistance, corrosion resistance, phosphate -55 ° C to -10 ° C in that at least one of processability, top coat adhesion, impact resistance, and storage stability is superior (hereinafter also referred to simply as “the point where the effect of the present invention is more excellent”). Is preferable, and ⁇ 50 ° C. to ⁇ 15 ° C. is more preferable.
  • the said maximum peak value is in the loss elastic modulus curve (temperature dependence curve of the loss elastic modulus in the graph which made the horizontal axis temperature and the vertical axis
  • the maximum peak value among the observed peak values is intended.
  • the peak value can be said to be a so-called maximum value.
  • the loss tangent tan ⁇ which is the ratio (loss elastic modulus E ′′ / storage elastic modulus E ′) of the loss elastic modulus E ′′ and the storage elastic modulus E ′ of the cationic polyurethane resin (A), consists of one peak ( It has only one peak). That is, a loss tangent tan ⁇ curve (temperature dependence curve of loss tangent tan ⁇ in a graph in which the horizontal axis is temperature and the vertical axis is loss tangent tan ⁇ ) obtained from dynamic viscoelasticity measurement described later consists of one peak ( Intended to have only one peak). In other words, it is intended that there are no more than two peaks. As described above, when two or more peaks are observed, the formed film is microscopically uneven and inferior in corrosion resistance.
  • the range of the peak temperature (Tg2) of the loss tangent tan ⁇ is not particularly limited, but ⁇ 50 ° C. to ⁇ 2 ° C. is preferable from the viewpoint of more excellent effects of the present invention (particularly adhesion to the top coat and impact resistance). 48 ° C to -5 ° C is more preferable, and -45 ° C to -10 ° C is more preferable.
  • A cationic polyurethane resin
  • the storage elastic modulus E ′ and the loss elastic modulus E ′′ are measured from ⁇ 100 ° C. to 200 ° C. at a temperature rising rate of 5 ° C./min at a vibration frequency of 10 Hz and a strain of 0.1%.
  • the loss tangent tan ⁇ is calculated.
  • the above characteristics (loss elastic modulus E ′′, loss tangent tan ⁇ ) of the cationic polyurethane resin (A) contained in the paint of the present invention can be appropriately adjusted by controlling the structure and synthesis method.
  • the temperature (Tg1) can be controlled by the amount and molecular weight of the polyol that forms the soft segment of the cationic polyurethane resin (A), and the temperature during polymerization. When the amount of polyol is large, the temperature (Tg1) tends to be low, and when the amount is small, the temperature (Tg1) tends to be high.
  • the cationic polyurethane resin (A) has a polycarbonate structural unit and a bisphenol structural unit.
  • the cationic polyurethane resin (A) has a polycarbonate structure repeating unit and a bisphenol structure repeating unit as a repeating unit constituting the resin.
  • the carbonate structural unit is flexible and has excellent adhesion, but tends to be inferior in hydrolysis resistance of the film when wet with water.
  • Bisphenol structural units are excellent in hydrolysis resistance, but are hard and inferior in flexibility, and tend to be damaged by rubbing.
  • the corrosion resistance and the rubbing resistance are inferior to those having the polycarbonate structural unit and the bisphenol structural unit.
  • excellent corrosion resistance and rubbing resistance are obtained by combining the two and controlling the temperature (Tg1) at which the loss elastic modulus E ′′ shows the maximum peak value to be in the range of ⁇ 60 ° C. to ⁇ 5 ° C. And excellent appearance characteristics can be obtained at the same time.
  • the polycarbonate structural unit is a repeating unit having a plurality of carbonate bonds (—O—C ( ⁇ O) —O—) in the structure.
  • a polyurethane resin is produced by reaction of a polyol and a polyisocyanate. Then, as a method of introducing a carbonate structural unit into the cationic polyurethane resin (A), a method of producing the cationic polyurethane resin (A) using a polycarbonate polyol can be mentioned.
  • polycarbonate polyol examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 1,8-nonanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, bisphenol-A, or hydrogenated bisphenol-A
  • Examples of the bisphenol structural unit include structural units derived from bisphenol A, bisphenol F, or bisphenol S.
  • Examples of the method for introducing the bisphenol structural unit into the cationic polyurethane resin (A) include a method for producing the cationic polyurethane resin (A) using a polyol having a bisphenol structure.
  • Examples of the polyol having a bisphenol structure include bisphenol A type, bisphenol F type, bisphenol E type, polyol in which alkylene oxide is added to bisphenol A type, polyol in which alkylene oxide is added to bisphenol F type, and alkylene oxide in bisphenol E type.
  • the cationic polyurethane resin (A) may have a structural unit other than the polycarbonate structural unit and the bisphenol structural unit. For example, you may use together other polyols other than polycarbonate polyols, such as polyether polyol and polyester polyol, at the time of manufacture of a cationic polyurethane resin (A). Further, in the production of the cationic polyurethane resin (A), an alcohol compound having a cationic functional group such as a (substituted) amino group (preferably a polyol compound having a cationic functional group such as a (substituted) amino group).
  • the cationic polyurethane resin (A) it is obtained by reacting the above-described polyol with a polyisocyanate (for example, aliphatic, alicyclic or aromatic polyisocyanate). .
  • a polyisocyanate for example, aliphatic, alicyclic or aromatic polyisocyanate.
  • polyether polyol examples include polyethylene glycols such as diethylene glycol and triethylene glycol, and polyethylene / propylene glycol.
  • Polyester polyols include alkylene (for example, 1 to 6 carbon atoms) glycol (ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, hexamethylene glycol, etc.), polyether polyol, bisphenol A, hydrogenated bisphenol A, trimethylolpropane.
  • a polyol such as glycerin
  • a polybasic acid such as succinic acid, glutaric acid, adipic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, or trimellitic acid
  • the amine value of the cationic polyurethane resin (A) is not particularly limited, but is preferably from 2.0 to 5.0 mgKOH / g, more preferably from 2.3 to 4.5 mgKOH / g in terms of better storage stability of the paint. More preferably, 2.5 to 4.0 mgKOH / g is more preferable.
  • the amine value is defined as the total amine value measured by the following measurement method. About 3 g of the cationic polyurethane resin (A) is collected in terms of solid content and accurately weighed. Thereafter, dimethylformamide is added and dissolved.
  • Total amine value [(F1-F2) ⁇ f ⁇ 5.661 / S]
  • F1 0.1 mol / L hydrochloric acid titration solution required for this test (mL)
  • F2 0.1 mol / L hydrochloric acid titration solution volume required for the blank test
  • f titer of 0.1 mol / L hydrochloric acid titration solution
  • S sampling amount (g) It is.
  • the said blank test intends the test measured not using cationic polyurethane resin but using deionized water.
  • the coating material of the present invention may contain components other than the cationic polyurethane resin (A).
  • the optional components will be described in detail.
  • the paint of the present invention may contain a phosphoric acid compound (B).
  • a phosphoric acid compound (B) By including the phosphoric acid compound (B), the corrosion resistance is further improved.
  • the phosphoric acid compound (B) include at least one selected from the group consisting of inorganic phosphoric acid, inorganic phosphate, organic phosphoric acid, and organic phosphate.
  • inorganic phosphoric acid and salts thereof include phosphoric acid (orthophosphoric acid), phosphorous acid, triphosphoric acid, hypophosphorous acid, monophosphoric acid such as hypophosphoric acid, monophosphoric acid derivatives and salts, metaphosphoric acid, tripolyphosphoric acid, Examples include condensed phosphoric acid such as tetraphosphoric acid and hexaphosphoric acid, derivatives and salts of condensed phosphoric acid, and the like.
  • organic phosphoric acid and salts thereof include phosphoric acid monoesters (for example, monododecyl dihydrogen phosphate, monotridecyl dihydrogen phosphate) and salts thereof, phosphoric diesters (for example, didodecyl hydrogen phosphate, ditridecyl hydrogen phosphate, etc.) ) And its salts.
  • Specific examples of the organic phosphoric acid include compounds represented by R 10 O—P ( ⁇ O) (OR 11 ) (OR 12 ).
  • R 10 represents an organic group, and R 11 and R 12 each independently represent a hydrogen atom or an organic group.
  • the organic group include a hydrocarbon group (for example, an alkyl group, an aryl group, or a group obtained by combining these).
  • the phosphoric acid compound (B) contains at least 1 sort (s) selected from the group which consists of orthophosphoric acid, condensed phosphoric acid, and these salts at the point which the effect of this invention is more excellent.
  • the paint of the present invention may contain a trivalent chromium compound (C).
  • a trivalent chromium compound (C) is a compound which can supply a trivalent chromium ion, for example, a trivalent chromium salt is mentioned.
  • the salt include inorganic acid salts such as nitrate, sulfate, and hydrochloride, and organic acid salts such as acetate, oxalate, and succinate.
  • trivalent chromium compound (C) examples include, for example, chromium (III) fluoride, chromium (III) chloride, chromium (III) nitrate, chromium (III) sulfate, and chromium (III) acetate.
  • the paint of the present invention may contain a solvent.
  • the solvent include water and organic solvents (for example, alcohol).
  • the paint of the present invention contains a thickener, a leveling agent, a wettability improver, an antifoaming agent, a surfactant, a water-soluble alcohol, a cellosolve solvent, etc. for the purpose of adjusting coating properties. Also good. Moreover, you may contain antiseptic
  • the paint of the present invention contains the various components described above.
  • the content of the cationic polyurethane resin (A) in the paint is not particularly limited, but is 1 to 40% by weight with respect to the total weight of the paint in terms of more excellent effects of the present invention and handling. Preferably, 5 to 30% by mass is more preferable.
  • the content of the phosphoric acid compound (B) is not particularly limited, but the cationic polyurethane resin (A) is added in 100 parts by mass in terms of more excellent effects of the present invention.
  • 0.1 to 30 parts by mass is preferable, 0.3 to 25 parts by mass is more preferable, and 1 to 10 parts by mass is further preferable.
  • the trivalent chromium compound (C) is contained in the paint, the content of the trivalent chromium compound (C) is not particularly limited, but the cationic polyurethane resin (A) 100 mass in that the effect of the present invention is more excellent. 0.5 to 20 parts by mass is preferable with respect to parts, and 1 to 10 parts by mass is more preferable.
  • the method for preparing the paint is not particularly limited, and for example, it can be prepared by adding the cationic polyurethane resin (A) and other optional components to a solvent such as water and mixing them.
  • the paint of the present invention can be suitably applied to the soaked hot dip galvanized steel sheet, and is placed on the soaked hot dip galvanized steel sheet and its surface by bringing the paint of the present invention into contact with the soaked hot dip galvanized steel sheet.
  • a surface-treated soaked hot-dip galvanized steel sheet having a film can be produced.
  • the paint of the present invention can also be suitably applied to galvanized steel sheets (or hot dip galvanized steel sheets) including hot dipped galvanized steel sheets.
  • the embodiment using the soaked hot dip galvanized steel sheet as the object to be treated will be representatively described.
  • a predetermined film is formed on a galvanized steel sheet other than the soaked hot dip galvanized steel sheet under the conditions described later. It is also possible to produce a surface-treated galvanized steel sheet that is excellent in various properties. Moreover, when the above-mentioned hot-dip galvanized steel sheet is used, a hot-dip galvanized steel sheet and a surface-treated hot-dip galvanized steel sheet having a film thereon can also be produced.
  • the method for producing the surface-treated dip galvanized steel sheet using the above-mentioned paint is not particularly limited, but usually, the above-mentioned paint is brought into contact with the dip galvanized steel sheet and, if necessary, heated and dried. It has a step of forming a film on the hot-dip galvanized steel sheet and obtaining a surface-treated hot-dip galvanized steel sheet.
  • the soaked hot-dip galvanized steel sheet that is the object to be processed will be described in detail, and the procedure of the subsequent process will be described in detail.
  • the soaked hot dip galvanized steel sheet is a steel sheet obtained by a dipping method in which a steel sheet, which is the object to be treated, is immersed in a hot dip galvanized tank, and the object is slowly pulled up from the plating tank as it is.
  • the amount of zinc attached is not controlled by an air knife or the like performed in CGL, and the object to be processed is pulled up from the plating tank and left as it is (cooled).
  • steel sheet that is galvanized such as H steel, guardrails, corrugated pipes, building columns and beams, soundproof wall columns, sign columns, lighting columns, large bridge girder bridges, and overpass bridges.
  • All building materials that are galvanized such as bridges, rebars, overhead metal fittings used for power towers, small parts such as bolts and nuts, mounts for solar cells and small wind power generators, outdoor exposed steel frames, etc.
  • a cut plate steel material or a coil steel material may be used.
  • dip contact method There are no particular restrictions on the method of contacting the paint with the hot-dip galvanized steel sheet, and examples include immersion treatment, spray treatment, brush coating treatment, and electrostatic coating treatment performed in the cooling step after plating.
  • a conventionally used method can be applied, for example, roll coating, shower ringer roll drawing, spraying, dipping, curtain coating, flow coating, Examples include spin coating.
  • the most economical method for drying the paint is to use preheating after the plating process. It can be dried by dipping the hot dipped galvanized steel sheet in the paint and leaving it as it is. In addition, you may send the wind for flying away the water
  • a drying facility that can evaporate water contained in the paint.
  • the type of drying equipment is not particularly limited, and examples thereof include hot air drying equipment, induction heating drying equipment, infrared heater drying equipment, and near infrared heater drying equipment.
  • the drying temperature when these drying facilities are used is not particularly limited, but is preferably 60 ° C. to 200 ° C., more preferably 80 ° C. to 180 ° C. as the ultimate temperature on the surface of the hot dipped galvanized steel sheet.
  • a surface-treated hot-dip galvanized steel sheet having a hot-dip hot-dip galvanized steel sheet and a film disposed on the surface thereof is produced.
  • the amount of the coating film is not particularly limited, but is preferably 0.3 to 5.0 g / m 2 and more preferably 0.5 to 3.0 g / m 2 from the viewpoint that the effect of the present invention is more excellent.
  • the manufactured surface-treated soaked hot-dip galvanized steel sheet can be suitably applied to various uses, and examples thereof include members for home appliances and building materials. Moreover, you may apply
  • test materials The test agents (materials) used are listed below. Usually, most of the pickled galvanized products are shaped, but in this test, a plate was used as the material. It should be noted that even if the shape of the material changes, the effect of the present invention is not affected.
  • the hot-dip galvanized steel sheet represented by M1 below corresponds to the above-described hot-dip galvanized steel sheet produced by soaking.
  • M1 to M3 correspond to hot-dip galvanized steel sheets (note that M2 and M3 do not correspond to hot-dip galvanized steel sheets).
  • M1 Hot-dip galvanized steel sheet (according to JIS H8641 HDZ35), small spangle, dimensions: 700 mm ⁇ 150 mm ⁇ 1.6 mm (plate thickness), double-sided plating adhesion amount: 360 g / m 2
  • M2 Hot-dip galvanized steel sheet (according to JIS G 3302 SGCC Z06), dimensions: 700 mm ⁇ 150 mm ⁇ 0.8 mm (plate thickness), double-sided plating adhesion amount: 60 g / m 2
  • M3 Hot-dip zinc-5% aluminum alloy plated steel sheet (according to JIS G 3317 SZACCY08), dimensions: 700 mm ⁇ 150 mm ⁇ 0.8 mm (plate thickness), double-sided plating adhesion amount: 80 g / m 2
  • test material was sprayed for 10 seconds under the conditions of a concentration of 20 g / L and a temperature of 60 ° C., and further with pure water for 30 seconds. What was dried after being washed with water was used in the following tests.
  • Paint Table 1 shows the details of the used cationic polyurethane resin (A). The manufacturing method will be described in detail later.
  • the loss elastic modulus E ′′ and loss tangent tan ⁇ of the cationic polyurethane resin (A) were measured by the following procedure. First, the film (thickness: 300 to 500 ⁇ m) of the cationic polyurethane resin (A) was left at room temperature for 15 hours, then dried at 80 ° C. for 6 hours, and further dried at 120 ° C. for 20 minutes.
  • the vibration frequency is 10 Hz
  • the strain is Measurements were made from -100 ° C. to 200 ° C. at a rate of temperature rise of 5 ° C./min at 0.1%
  • storage elastic modulus E ′, loss elastic modulus E ′′ and loss tangent tan ⁇ were calculated.
  • the distance between grips (chuck) was set to 10 mm.
  • the method for measuring the amine value is as described above.
  • Tg1 represents the temperature indicating the maximum peak value of the loss elastic modulus E ′′ obtained from the above measurement
  • Tg2 represents the peak temperature of the loss tangent tan ⁇ obtained from the above measurement.
  • the number of peaks is intended to be the number of peaks in the temperature dependence curve of the loss tangent tan ⁇ , which is the ratio of the loss elastic modulus E ′′ and the storage elastic modulus E ′.
  • a methyl ethyl ketone solution of urethane prepolymer having a free isocyanate group content of 3.0% by mass relative to the nonvolatile content was obtained.
  • the solution was cooled to 40 ° C., 103 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour.
  • the solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 1 containing a cationic polyurethane resin (A1) having a nonvolatile content of about 35% by mass.
  • a methyl ethyl ketone solution of urethane prepolymer having a free isocyanate group content of 3.0% by mass relative to the nonvolatile content was obtained.
  • the solution was cooled to 40 ° C., 101 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour.
  • the solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 4 containing a cationic polyurethane resin (A4) having a nonvolatile content of about 35% by mass.
  • a methyl ethyl ketone solution of urethane prepolymer having a free isocyanate group content of 3.0% by mass relative to the nonvolatile content was obtained.
  • This solution was cooled to 40 ° C., 48 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 5 containing a cationic polyurethane resin (A5) having a nonvolatile content of about 35% by mass.
  • A5 cationic polyurethane resin
  • a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 3.0% by mass with respect to the non-volatile content The solution was cooled to 40 ° C., 87 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 6 containing a cationic polyurethane resin (A6) having a nonvolatile content of about 35% by mass.
  • A6 cationic polyurethane resin
  • Ethyl ether (BPE20T, Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g) 100 parts by mass, N-methyldiethanolamine 50 parts by mass, hexamethylene diisocyanate 260 parts by mass, dicyclohexylmethane diisocyanate 150 parts by mass, methyl ethyl ketone 800 parts by mass
  • This solution was cooled to 40 ° C., 49 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 7 containing a cationic polyurethane resin (A7) having a nonvolatile content of about 35% by mass.
  • A7 cationic polyurethane resin
  • Ethyl ether (BPE20T, manufactured by Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g) 100 parts by mass, N-methyldiethanolamine 50 parts by mass, hexamethylene diisocyanate 315 parts by mass, dicyclohexylmethane diisocyanate 80 parts by mass, methyl ethyl ketone 800 parts by mass
  • N-methyldiethanolamine 50 parts by mass
  • methyl ethyl ketone 800 parts by mass In addition, it was reacted at 75 ° C. for 4 hours to obtain a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 3.0% by mass with respect to the non-volatile content.
  • This solution was cooled to 40 ° C., 49 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 8 containing a cationic polyurethane resin (A8) having a nonvolatile content of about 35% by mass.
  • A8 cationic polyurethane resin
  • Ethyl ether (BPE20T, manufactured by Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g), 50 parts by mass of N-methyldiethanolamine, 310 parts by mass of hexamethylene diisocyanate, 35 parts by mass of dicyclohexylmethane diisocyanate, and 800 parts by mass of methyl ethyl ketone.
  • it was reacted at 75 ° C. for 4 hours to obtain a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 3.0% by mass with respect to the non-volatile content.
  • This solution was cooled to 40 ° C., 49 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 9 containing a cationic polyurethane resin (A9) having a nonvolatile content of about 35% by mass.
  • A9 cationic polyurethane resin
  • a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 3.0% by mass with respect to the non-volatile content This solution was cooled to 40 ° C., 51 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 10 containing a cationic polyurethane resin (A10) having a nonvolatile content of about 35% by mass.
  • A10 cationic polyurethane resin
  • a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 3.0% by mass with respect to the non-volatile content The solution was cooled to 40 ° C., 50 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 11 containing a cationic polyurethane resin (A11) having a nonvolatile content of about 35% by mass.
  • A11 cationic polyurethane resin
  • ethyl ether 150 parts by mass of ethyl ether (BPE20T, manufactured by Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g), 50 parts by mass of N-methyldiethanolamine, 245 parts by mass of hexamethylene diisocyanate, 275 parts by mass of dicyclohexylmethane diisocyanate, and 800 parts by mass of methyl ethyl ketone.
  • This solution was cooled to 40 ° C., 48 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 15 containing a cationic polyurethane resin (A15) having a nonvolatile content of about 35% by mass.
  • A15 cationic polyurethane resin
  • a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 3.0% by mass relative to the nonvolatile content This solution was cooled to 40 ° C., 30 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 17 containing a cationic polyurethane resin (A17) having a nonvolatile content of about 35% by mass.
  • A17 cationic polyurethane resin
  • This solution was cooled to 40 ° C., 30.2 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 18 containing a cationic polyurethane resin (A18) having a nonvolatile content of about 35% by mass.
  • A18 cationic polyurethane resin
  • Table 2 shows the phosphoric acid compound (B) used, and Table 3 shows the trivalent chromium compound (C) used.
  • BV / AV represents the ratio of the phosphoric acid compound (B) content ratio (% by mass) (BV) to the solid content of the cationic polyurethane resin (A) and the amine value.
  • Test plate production method The coating material of the present invention is applied onto each test material with a bar coater, heat-treated at the ultimate plate temperature shown in Table 5, a film is formed on each test material, and a test plate is produced. did.
  • the coating amount in each example is as shown in Table 5, and the coating amount was adjusted by adjusting the concentration of the paint (diionized water dilution) and the bar coater.
  • Evaluation method Appearance characteristics (film appearance) The appearance of the obtained test plate was visually evaluated. ⁇ Above are practical levels. ⁇ +: Almost the same as the plating appearance, and hardly changes even after the coating treatment ⁇ : Almost the same as the plating appearance, but there is a slight color tone unevenness depending on the viewing angle. ⁇ : Almost the same as the plating appearance, but there is a slight color unevenness. (Triangle
  • Example 20 when the amine value (AV) is within a predetermined range (2 to 5 mgKOH / g), the effect is more excellent (particularly, the storage stability is excellent). confirmed. Further, from comparison between Example 25 and Examples 30 to 32, it was confirmed that the use of the trivalent chromium compound (C) further improved the effect (particularly the corrosion resistance was excellent).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating With Molten Metal (AREA)

Abstract

The present invention provides a paint for hot-dip galvanized steel sheets which is for use in imparting, to a hot-dip galvanized steel sheet, excellent appearance properties, excellent rubbing resistance, and excellent corrosion resistance. The paint for hot-dip galvanized steel sheets according to the present invention contains a cationic polyurethane resin (A) having at least one kind of cationic functional groups selected from among primary to tertiary amino groups and quaternary ammonium salt groups, wherein the cationic polyurethane resin (A) includes a polycarbonate structural unit and bisphenol structural units, the loss modulus E" of the cationic polyurethane resin (A) shows a maximum peak value at a temperature (Tg1) in the range of -60ºC to -5ºC, and the loss tangent tanδ, which is the ratio of the loss modulus E" to the storage modulus E' of the cationic polyurethane resin (A), has one peak.

Description

どぶ漬け溶融亜鉛メッキ鋼板用塗料、どぶ漬け溶融亜鉛メッキ鋼板の処理方法、表面処理どぶ漬け溶融亜鉛メッキ鋼板の製造方法、および、表面処理溶融亜鉛メッキ鋼板Paint for hot dipped galvanized steel sheet, processing method for hot dipped galvanized steel sheet, method for manufacturing surface dipped hot dip galvanized steel sheet, and surface-treated hot dip galvanized steel sheet
 本発明は、どぶ漬け溶融亜鉛メッキ鋼板用塗料、どぶ漬け溶融亜鉛メッキ鋼板の処理方法、表面処理どぶ漬け溶融亜鉛メッキ鋼板の製造方法、および、表面処理溶融亜鉛メッキ鋼板に関する。 The present invention relates to a coating for hot pickled hot dip galvanized steel sheet, a processing method for hot pickled hot dip galvanized steel sheet, a manufacturing method of surface treated hot dipped galvanized steel sheet, and a surface treated hot dip galvanized steel sheet.
 従来から家電製品や建材などには、溶融亜鉛メッキ鋼板、溶融亜鉛-5%アルミ合金メッキ鋼板、および、溶融亜鉛合金メッキ鋼板などを含む亜鉛系メッキ鋼板が広く用いられている。なお、亜鉛系メッキ鋼板を作製する方法としては、例えば、溶融亜鉛槽に被処理体である鋼板を浸漬させて、メッキを施す浸漬法(いわゆる“どぶ漬け亜鉛メッキ”)にて、その全面に溶融亜鉛メッキを施す方法が挙げられ、得られる鋼板はどぶ漬け溶融亜鉛メッキ鋼板とも呼ばれる。なお、どぶ漬けによる浸漬法(以後、どぶ漬け法とも称する)においては、CGL(連続溶融亜鉛めっき板ライン)にて実施されるエアナイフなどによる亜鉛の付着量制御は実施されない。
 亜鉛系メッキ鋼板においては、耐食性を向上させる目的でクロム酸、重クロム酸またはその塩類を主要成分とした処理液によるクロメート処理が施された鋼板が広く用いられている。
 しかし、通常、クロメート処理皮膜は環境負荷性の高い6価のクロムを含有することから、近年この処理皮膜の6価クロムフリー化に対する要望が高まっており、種々の技術が提案されている。
Conventionally, zinc-based plated steel sheets including hot-dip galvanized steel sheets, hot-dip zinc-5% aluminum alloy-plated steel sheets, and hot-dip zinc alloy-plated steel sheets have been widely used for home appliances and building materials. In addition, as a method of producing a zinc-based plated steel sheet, for example, a steel sheet which is an object to be treated is immersed in a hot dip zinc bath, and plating is performed on the entire surface by a soaking method (so-called “soaked zinc plating”). The method of hot-dip galvanizing is mentioned, and the obtained steel plate is also called a soaked hot-dip galvanized steel plate. In addition, in the soaking method by soaking (hereinafter also referred to as the soaking method), the zinc adhesion amount control by an air knife or the like performed in CGL (continuous hot dip galvanizing plate line) is not performed.
In galvanized steel sheets, steel sheets subjected to chromate treatment with a treatment liquid containing chromic acid, dichromic acid or salts thereof as main components are widely used for the purpose of improving corrosion resistance.
However, since the chromate-treated film usually contains hexavalent chromium having a high environmental load, in recent years, there has been an increasing demand for the hexavalent chromium-free treatment film, and various techniques have been proposed.
 例えば、特許文献1においては、亜鉛メッキ鋼材の表面にバナジン酸塩および水溶性アクリル樹脂を含有する水溶液を接触させて鋼材表面を防食する方法が開示されている。 For example, Patent Document 1 discloses a method of preventing corrosion of a steel material surface by bringing an aqueous solution containing a vanadate and a water-soluble acrylic resin into contact with the surface of the galvanized steel material.
特開2002-146554号公報JP 2002-146554 A
 一方、近年、亜鉛系メッキ鋼板は種々の用途へと展開されており、耐食性のより一層の向上のみならず、他の特性の向上が求められている。例えば、亜鉛系メッキ鋼板の外観特性の向上や、組立作業時等に目印としてつけた油性マジックをアルコールを浸み込ませた布等で拭き取る作業に対する皮膜(亜鉛系メッキ鋼板上に配置される皮膜)の剥がれにくさである皮膜の耐性(以下、耐ラビング性という。)の向上が挙げられる。特に、どぶ漬け溶融亜鉛メッキ鋼板に関しては、上記特性(耐食性、外観特性、耐ラビング性)の向上の要望が強い。
 本発明者らは、どぶ漬け溶融亜鉛メッキ鋼板に対して特許文献1に記載の方法を適用して得られた鋼板に関して、上記各種特性の評価を行ったところ、外観特性、耐ラビング性、および、耐食性を昨今の要求レベルで同時に満たすことはできず、更なる改良が必要であることを知見した。
On the other hand, in recent years, zinc-based plated steel sheets have been developed for various uses, and not only further improvement of corrosion resistance but also improvement of other characteristics is required. For example, improvement of the appearance characteristics of galvanized steel sheets and coatings for the work of wiping off oil-based magic that has been marked as an assemblage with a cloth soaked in alcohol (films placed on galvanized steel sheets) ) Of the film, which is difficult to peel off (hereinafter referred to as rubbing resistance). In particular, with respect to the hot dipped galvanized steel sheet, there is a strong demand for improvement of the above characteristics (corrosion resistance, appearance characteristics, rubbing resistance).
The inventors of the present invention have evaluated the above-mentioned various properties with respect to the steel plate obtained by applying the method described in Patent Document 1 to the hot dipped galvanized steel plate. As a result, appearance characteristics, rubbing resistance, and It was found that the corrosion resistance could not be satisfied at the same time as the recent required level, and further improvement was necessary.
 本発明は、上記実情に鑑みて、どぶ漬け溶融亜鉛メッキ鋼板(または、溶融系亜鉛メッキ鋼板もしくは亜鉛系メッキ鋼板)に、優れた外観特性、優れた耐ラビング性、および、優れた耐食性を付与するために用いる、どぶ漬け溶融亜鉛メッキ鋼板(または、溶融系亜鉛メッキ鋼板もしくは亜鉛系メッキ鋼板)用塗料を提供することを目的とする。 In view of the above circumstances, the present invention imparts excellent appearance characteristics, excellent rubbing resistance, and excellent corrosion resistance to hot dipped galvanized steel sheets (or hot dip galvanized steel sheets or galvanized steel sheets). It is an object of the present invention to provide a coating for a hot dipped galvanized steel sheet (or a hot-dip galvanized steel sheet or a galvanized steel sheet).
 本発明者らは、上記課題について鋭意検討を行ったところ、所定の特性を示すカチオン性ポリウレタン樹脂を含む塗料を使用することにより、所望の効果が得られることを知見した。
 より具体的には、以下の構成により上記目的を達成することができることを見出した。
The inventors of the present invention have made extensive studies on the above problems and have found that a desired effect can be obtained by using a paint containing a cationic polyurethane resin exhibiting predetermined characteristics.
More specifically, the present inventors have found that the above object can be achieved by the following configuration.
(1) 第1級~第3級アミノ基および第4級アンモニウム塩基からなる群から選択される少なくとも1種のカチオン性官能基を有するカチオン性ポリウレタン樹脂(A)を含有し、カチオン性ポリウレタン樹脂(A)は、ポリカーボネート構造単位およびビスフェノール構造単位を有し、カチオン性ポリウレタン樹脂(A)の損失弾性率E’’の最大ピーク値を示す温度(Tg1)が-60℃~-5℃の範囲にあり、カチオン性ポリウレタン樹脂(A)の損失弾性率E’’と貯蔵弾性率E’との比である損失正接tanδが一つのピークからなる、どぶ漬け溶融亜鉛メッキ鋼板用塗料。
(2) 損失正接tanδのピーク温度(Tg2)が-50℃~-2℃の範囲にある、(1)に記載のどぶ漬け溶融亜鉛メッキ鋼板用塗料。
(3) さらに、リン酸化合物(B)を含有する、(1)または(2)に記載のどぶ漬け溶融亜鉛メッキ鋼板用塗料。
(4) リン酸化合物(B)が、オルトリン酸、縮合リン酸、および、これらの塩からなる群から選択される少なくとも1種を含有する、(3)に記載のどぶ漬け溶融亜鉛メッキ鋼板用塗料。
(5) カチオン性ポリウレタン樹脂(A)のアミン価(AV)が2.0~5.0mgKOH/gである、(1)~(4)のいずれかに記載のどぶ漬け溶融亜鉛メッキ鋼板用塗料。
(6) リン酸化合物(B)のカチオン性ポリウレタン樹脂の固形分に対する含有割合(質量%)(BV)とアミン価との比((BV)/(AV))が、0.1~9.5である、(5)に記載のどぶ漬け溶融亜鉛メッキ鋼板用塗料。
(7) さらに、3価クロム化合物(C)を含有する、(1)~(6)のいずれかに記載のどぶ漬け溶融亜鉛メッキ鋼板用塗料。
(8) (1)~(7)のいずれかに記載のどぶ漬け溶融亜鉛メッキ鋼板用塗料を用いて、どぶ漬け溶融亜鉛メッキ鋼板の処理を行う、どぶ漬け溶融亜鉛メッキ鋼板の処理方法。
(9) (1)~(7)のいずれかに記載のどぶ漬け溶融亜鉛メッキ鋼板用塗料と、どぶ漬け溶融亜鉛メッキ鋼板とを接触させ、どぶ漬け溶融亜鉛メッキ鋼板およびその表面上に配置された皮膜を有する表面処理どぶ漬け溶融亜鉛メッキ鋼板を製造する、表面処理どぶ漬け溶融亜鉛メッキ鋼板の製造方法。
(10) (9)に記載の製造方法より得られる、表面処理溶融亜鉛メッキ鋼板。
(1) A cationic polyurethane resin containing a cationic polyurethane resin (A) having at least one cationic functional group selected from the group consisting of primary to tertiary amino groups and quaternary ammonium bases (A) has a polycarbonate structural unit and a bisphenol structural unit, and the temperature (Tg1) showing the maximum peak value of the loss elastic modulus E ″ of the cationic polyurethane resin (A) is in the range of −60 ° C. to −5 ° C. The coating material for hot dipped galvanized steel sheet, wherein the loss tangent tan δ, which is the ratio of the loss elastic modulus E ″ and the storage elastic modulus E ′ of the cationic polyurethane resin (A), has one peak.
(2) The paint for hot dipped galvanized steel sheets according to (1), wherein the peak temperature (Tg2) of the loss tangent tan δ is in the range of −50 ° C. to −2 ° C.
(3) The paint for hot dipped galvanized steel sheets according to (1) or (2), which further contains a phosphoric acid compound (B).
(4) The soaked hot-dip galvanized steel sheet according to (3), wherein the phosphoric acid compound (B) contains at least one selected from the group consisting of orthophosphoric acid, condensed phosphoric acid, and salts thereof paint.
(5) The coating material for hot dipped galvanized steel sheets according to any one of (1) to (4), wherein the cationic polyurethane resin (A) has an amine value (AV) of 2.0 to 5.0 mgKOH / g. .
(6) The content ratio (% by mass) (BV) of the phosphoric acid compound (B) to the solid content of the cationic polyurethane resin and the amine value ((BV) / (AV)) is 0.1 to 9. The paint for hot dipped galvanized steel sheets according to (5), which is 5.
(7) The paint for hot dipped galvanized steel sheets according to any one of (1) to (6), further comprising a trivalent chromium compound (C).
(8) A method for treating a soaked hot dip galvanized steel sheet, wherein the soaked hot dip galvanized steel sheet is treated using the paint for a soaked hot dip galvanized steel sheet according to any one of (1) to (7).
(9) The paint for hot dipped galvanized steel sheet according to any one of (1) to (7) is brought into contact with the hot dipped galvanized steel sheet and placed on the hot dipped galvanized steel sheet and its surface. A method for producing a surface-treated soaked hot-dip galvanized steel sheet having a coated surface.
(10) A surface-treated hot-dip galvanized steel sheet obtained from the production method according to (9).
 本発明によれば、どぶ漬け溶融亜鉛メッキ鋼板(または、溶融系亜鉛メッキ鋼板もしくは亜鉛系メッキ鋼板)に、優れた外観特性、優れた耐ラビング性、および、優れた耐食性を付与するために用いる、どぶ漬け溶融亜鉛メッキ鋼板(または、溶融系亜鉛メッキ鋼板もしくは亜鉛系メッキ鋼板)用塗料を提供することができる。
 さらに、その塗料を用いて、どぶ漬け溶融亜鉛メッキ鋼板(または、溶融系亜鉛メッキ鋼板もしくは亜鉛系メッキ鋼板)の処理を行う、どぶ漬け溶融亜鉛メッキ鋼板(または、溶融系亜鉛メッキ鋼板もしくは亜鉛系メッキ鋼板)の処理方法、並びに、その塗料と、どぶ漬け溶融亜鉛メッキ鋼板(または、溶融系亜鉛メッキ鋼板もしくは亜鉛系メッキ鋼板)とを接触させ、どぶ漬け溶融亜鉛メッキ鋼板(または、溶融系亜鉛メッキ鋼板もしくは亜鉛系メッキ鋼板)およびその表面上に配置された皮膜を有する表面処理どぶ漬け溶融亜鉛メッキ鋼板(または、溶融系亜鉛メッキ鋼板もしくは亜鉛系メッキ鋼板)を製造する方法とその鋼板を提供することができる。
 また、本発明のどぶ漬け溶融亜鉛メッキ鋼板用塗料は、6価クロムフリーの技術であるが、3価クロムを含むことにより非常に性能が向上する。また、3価クロムを含まない形態であっても所望の効果を奏する。
According to the present invention, it is used for imparting excellent appearance characteristics, excellent rubbing resistance, and excellent corrosion resistance to hot dipped galvanized steel sheets (or hot-dip galvanized steel sheets or galvanized steel sheets). It is possible to provide a coating material for hot-dip galvanized steel sheets (or hot-dip galvanized steel sheets or galvanized steel sheets).
Furthermore, the paint is used to treat the soaked hot dip galvanized steel sheet (or hot dip galvanized steel sheet or galvanized steel sheet). The processing method of the plated steel sheet, and its paint and the hot-dip galvanized steel sheet (or hot-dip galvanized steel sheet or galvanized steel sheet) are brought into contact with each other, and the hot-dip galvanized steel sheet (or hot-dip zinc) A method for producing a surface-treated dip galvanized steel sheet (or a hot-dip galvanized steel sheet or a galvanized steel sheet) having a coating disposed on the surface thereof and a steel sheet thereof are provided. can do.
Moreover, although the paint for hot-dip galvanized steel sheets of the present invention is a hexavalent chromium-free technique, the performance is greatly improved by containing trivalent chromium. Moreover, even if it is a form which does not contain trivalent chromium, there exists a desired effect.
 以下、本発明のどぶ漬け溶融亜鉛メッキ鋼板用塗料(以後、単に「塗料」とも称する)について詳述する。本発明の塗料を使用することにより所望の効果が得られる理由は、以下のように推測される。
 まず、外観特性が向上する理由としては、カチオン性ポリウレタン樹脂の損失弾性率E’’の最大ピーク値を示す温度(Tg1)が-60℃~-5℃の範囲にある点が挙げられる。本発明者らは、上記温度(Tg1)が、皮膜の外観特性および耐ラビング性に関連していることを知見している。つまり、損失弾性率E’’は物体の粘性を示す指標であり、損失弾性率E’’の最大ピーク値を示す温度が低すぎる場合、樹脂は良好な流動性を示し皮膜の平坦性が向上して優れた外観特性が得られるが、形成される皮膜の硬度が劣り耐ラビング性の低下を引き起こす。一方、上記温度が高すぎる場合は、形成される皮膜の硬度が優れ耐ラビング性は優れるものの、樹脂の流動性が低下し外観特性に劣る。本発明においては、カチオン性ポリウレタン樹脂の温度(Tg1)が上記範囲内であれば、外観特性および耐ラビング性を両立できることを見出している。なお、上記耐ラビング性とは、組立作業時等に目印としてつけた油性マジックを、アルコールを浸み込ませた布等で拭き取る作業に対する皮膜の耐性を意図している。
 また、耐食性が向上する理由としては、カチオン性ポリウレタン樹脂の損失正接tanδが一つのピークからなる点が挙げられる。一般的に、ポリウレタン樹脂は、その樹脂骨格のため膜形態においてソフトセグメントとハードセグメントとの二つ以上のドメインがある海島構造を形成しやすい。そのため、動的粘弾性測定を行うと、損失正接tanδにおいて二つ以上のピークが観測される。それに対して、本発明で用いるカチオン性ポリウレタン樹脂においては、損失正接tanδが一つのピークからなり、膜中において上記海島構造が形成されにくく、均一な膜が形成され、結果として耐食性が向上すると推測される。
Hereinafter, the paint for hot dipped galvanized steel sheet of the present invention (hereinafter simply referred to as “paint”) will be described in detail. The reason why the desired effect can be obtained by using the paint of the present invention is presumed as follows.
First, the reason why the appearance characteristics are improved is that the temperature (Tg1) showing the maximum peak value of the loss elastic modulus E ″ of the cationic polyurethane resin is in the range of −60 ° C. to −5 ° C. The present inventors have found that the temperature (Tg1) is related to the appearance characteristics and rubbing resistance of the film. In other words, the loss elastic modulus E ″ is an index indicating the viscosity of an object. If the temperature showing the maximum peak value of the loss elastic modulus E ″ is too low, the resin exhibits good fluidity and the flatness of the film is improved. Excellent appearance characteristics can be obtained, but the hardness of the formed film is inferior and the rubbing resistance is lowered. On the other hand, when the temperature is too high, the hardness of the formed film is excellent and the rubbing resistance is excellent, but the fluidity of the resin is lowered and the appearance characteristics are poor. In the present invention, it has been found that if the temperature (Tg1) of the cationic polyurethane resin is within the above range, both appearance characteristics and rubbing resistance can be achieved. The rubbing resistance is intended to indicate the resistance of the film to the work of wiping off the oil-based magic applied as a mark during assembly work with a cloth soaked in alcohol or the like.
Further, the reason why the corrosion resistance is improved is that the loss tangent tan δ of the cationic polyurethane resin consists of one peak. Generally, a polyurethane resin tends to form a sea-island structure having two or more domains of a soft segment and a hard segment in a film form because of its resin skeleton. Therefore, when dynamic viscoelasticity measurement is performed, two or more peaks are observed at the loss tangent tan δ. On the other hand, in the cationic polyurethane resin used in the present invention, the loss tangent tan δ has one peak, the sea-island structure is hardly formed in the film, and a uniform film is formed. As a result, the corrosion resistance is estimated to be improved. Is done.
 また、良好な上塗り塗装密着性および耐衝撃性を確保するためには、カチオン性ポリウレタン樹脂の損失正接tanδのピーク温度(Tg2)が-50℃~-2℃の範囲にあることが好ましい。本発明の塗料を施した製品の使用環境によっては、寒冷地で加工を施す場合がある。表面処理で使用される損失正接tanδのピーク温度が高い成分を含む塗料では皮膜が硬いため、特に冬期の低温下で加工を施した際に上塗り塗装密着性が不足し、塗膜剥離を生じやすい。また、表面処理で使用される損失正接tanδのピーク温度が低い成分を含む塗料では皮膜が柔らかいため、特に夏期の高温下で加工を施した際に、耐衝撃性が不足して、塗膜剥離を生じやすい。それに対して、損失正接tanδのピーク温度(Tg2)が-50℃~-2℃の範囲にあれば、低温時においても、高温時においても、皮膜が十分な柔軟性と硬度を持ち、十分な上塗り塗装密着性および耐衝撃性を発揮すると推察される。
 また、良好な貯蔵安定性を確保するためには、カチオン性ポリウレタン樹脂のアミン価が2.0~5.0mgKOH/gの範囲にあることが好ましい。カチオン性ポリウレタン樹脂中のカチオン性官能基は、カチオン性ポリウレタン樹脂を水溶性または水分散性にするのに寄与する。そのため、カチオン性官能基が少ないと、言い換えればアミン価が低いと、カチオン性ポリウレタン樹脂の安定性が不足して、塗料中において再分散可能であるが、樹脂の沈殿が生じやすい。したがって、カチオン性ポリウレタン樹脂の安定性を良化させるためにはカチオン性官能基を多く、言い換えればアミン価を高くすることが望ましいが、樹脂中の親水基が増加しすぎる、つまり、アミン価が高すぎると、逆に、カチオン性ウレタン樹脂が水溶化するため粘性が強まり、塗料が増粘して、塗料の再分散性に影響を及ぼす場合がある。また、増粘により塗布作業性に影響を及ぼす場合もある。そこで、カチオン性ポリウレタン樹脂のアミン価を2.0~5.0mgKOH/gの範囲に制御することにより、良好な貯蔵安定性を得ることが可能になると推察する。
 さらに、本発明の塗料の他の効果として、リン酸塩処理性が優れる点も挙げられる。リン酸塩処理性が優れる理由としては、所定の官能基を有するカチオン性ポリウレタン樹脂を使用している点が挙げられる。どぶ漬け溶融亜鉛メッキ鋼板上に形成される皮膜中のカチオン性ポリウレタン樹脂中のカチオン性官能基と、リン酸化合物に存在するリン酸とが相互作用して、リン酸塩処理におけるリン酸亜鉛などのリン酸塩の生成反応の起点となり、リン酸塩処理性が向上すると推察している。リン酸化合物のカチオン性ポリウレタン樹脂の固形分に対する含有割合(質量%)(BV)と、アミン価との比(BV)/(AV)は特に制限されず、0.05~20等が挙げられるが、なかでも、0.1~9.5であることが好ましく、0.5~9.0であることがより好ましく、0.5~6.0であることがさらに好ましい。(BV)/(AV)が上記範囲(0.1~9.5)内にあることにより、皮膜上にリン酸塩の生成反応の起点がより良好に生じ、より優れたリン酸塩処理性を得られると推察している。この場合、リン酸化合物が相対的に多いとき、つまり(BV)/(AV)が大きいと、リン酸化合物がリン酸塩処理液に相対的に多く溶け出すために、リン酸塩皮膜の形成が遅れやすいことが多く、また、逆にリン酸化合物が相対的に少ないとき、つまり(BV)/(AV)が小さいと、カチオン性ポリウレタン樹脂のカチオン性官能基に対するリン酸化合物の相互作用が相対的に少なくなるため、リン酸塩処理液によるカチオン性ポリウレタン樹脂の膨潤や溶解が低くなることがおき、リン酸塩皮膜の形成が遅れやすいと推測している。
 なお、リン酸塩処理とは、塗装下地などに適用されるリン酸亜鉛、リン酸マンガン、リン酸マグネシウムなどを主成分としたリン酸塩処理液を用いた処理を意図する。塗布型リン酸塩処理は、リン酸塩処理の一形態となる。塗布型リン酸塩処理は、被処理物(例えば、どぶ漬け溶融亜鉛メッキ鋼板などの亜鉛メッキ系鋼板)の表面に塗布型リン酸塩処理液の塗布により微細で緻密なリン酸亜鉛の結晶を形成させて、高力ボルトとの摩擦接合面におけるすべり耐力を向上させる処理等を意図する。
In order to ensure good top coat adhesion and impact resistance, the peak temperature (Tg2) of the loss tangent tan δ of the cationic polyurethane resin is preferably in the range of −50 ° C. to −2 ° C. Depending on the use environment of the product to which the paint of the present invention is applied, there are cases where processing is performed in a cold region. Paints containing components with high peak loss tangent tan δ used in surface treatments are hard, so when coated at low temperatures, especially in winter, adhesion to the top coat is insufficient, and coating film peeling tends to occur. . In addition, paints containing components with low peak tangent loss tan δ used in surface treatments are soft, so when they are processed at high temperatures especially in summer, the impact resistance is insufficient and the coating film peels off. It is easy to produce. In contrast, if the peak temperature (Tg2) of the loss tangent tan δ is in the range of −50 ° C. to −2 ° C., the film has sufficient flexibility and hardness at both low and high temperatures, It is presumed to exhibit top coat adhesion and impact resistance.
In order to ensure good storage stability, the amine value of the cationic polyurethane resin is preferably in the range of 2.0 to 5.0 mgKOH / g. The cationic functional group in the cationic polyurethane resin contributes to making the cationic polyurethane resin water-soluble or water-dispersible. Therefore, if the cationic functional group is small, in other words, if the amine value is low, the stability of the cationic polyurethane resin is insufficient and redispersion in the paint is possible, but the resin tends to precipitate. Therefore, in order to improve the stability of the cationic polyurethane resin, it is desirable to increase the number of cationic functional groups, in other words, to increase the amine value, but the hydrophilic group in the resin is excessively increased. On the other hand, if the viscosity is too high, the cationic urethane resin becomes water-soluble so that the viscosity becomes strong and the paint thickens, which may affect the redispersibility of the paint. In addition, the workability of coating may be affected by thickening. Therefore, it is presumed that good storage stability can be obtained by controlling the amine value of the cationic polyurethane resin in the range of 2.0 to 5.0 mgKOH / g.
Furthermore, as another effect of the coating material of the present invention, a point that the phosphate treatment property is excellent is also mentioned. The reason why the phosphate treatment property is excellent is that a cationic polyurethane resin having a predetermined functional group is used. Zinc phosphate, etc. in the phosphate treatment by interaction between the cationic functional group in the cationic polyurethane resin in the film formed on the hot dipped galvanized steel sheet and the phosphoric acid present in the phosphate compound This is the starting point for the phosphate formation reaction, and it is assumed that the phosphate processability is improved. The ratio (BV) / (AV) of the phosphoric acid compound based on the solid content of the cationic polyurethane resin (mass%) (BV) and the amine value (BV) / (AV) is not particularly limited and may be 0.05 to 20 or the like. However, it is preferably 0.1 to 9.5, more preferably 0.5 to 9.0, and still more preferably 0.5 to 6.0. When (BV) / (AV) is within the above-mentioned range (0.1 to 9.5), the starting point of the phosphate formation reaction is more favorably generated on the film, and more excellent phosphatability. I guess that you can get. In this case, when the phosphoric acid compound is relatively large, that is, when (BV) / (AV) is large, the phosphoric acid compound dissolves in the phosphating solution so that a phosphate film is formed. When the phosphate compound is relatively small, that is, when (BV) / (AV) is small, the interaction of the phosphate compound with the cationic functional group of the cationic polyurethane resin Since it becomes relatively small, the swelling and dissolution of the cationic polyurethane resin by the phosphating solution is lowered, and it is estimated that the formation of the phosphate film is likely to be delayed.
The phosphate treatment is intended to be a treatment using a phosphate treatment liquid mainly composed of zinc phosphate, manganese phosphate, magnesium phosphate or the like applied to a coating base or the like. The coating type phosphate treatment is a form of phosphate treatment. In the coating type phosphate treatment, fine and dense crystals of zinc phosphate are formed on the surface of an object to be treated (for example, a galvanized steel sheet such as a hot dipped galvanized steel sheet) by applying a coating type phosphate treatment solution. It is intended to perform a treatment for improving the slip resistance at the frictional joint surface with the high-strength bolt.
 なお、本発明の塗料は、どぶ漬け溶融亜鉛メッキ鋼板に好適に適用することができ、CGL(連続溶融亜鉛めっき板ライン)などで製造される溶融亜鉛メッキ鋼板、溶融亜鉛-5%アルミ合金メッキ鋼板、溶融亜鉛-55%溶アルミ合金メッキ鋼板、合金化溶融亜鉛メッキ鋼板、EGL(電気亜鉛めっきライン)などで製造される電気亜鉛メッキ鋼板などを含む亜鉛系メッキ鋼板に対しても好適に適用することができ、上述した各種特性(外観特性、耐ラビング性、耐食性、上塗り塗装密着性、耐衝撃性、リン酸塩処理性など)を向上させることができる。言い換えれば、本発明の塗料は、亜鉛系メッキ鋼板に対しては好適に適用することができ、亜鉛系メッキ鋼板用塗料としても使用できる。特に、どぶ漬け溶融亜鉛メッキ鋼板、CGL(連続溶融亜鉛めっき板ライン)などで製造される溶融亜鉛メッキ鋼板、溶融亜鉛-5%アルミ合金メッキ鋼板、溶融亜鉛-55%溶アルミ合金メッキ鋼板、合金化溶融亜鉛メッキ鋼板などの、溶融亜鉛を用いてメッキ処理が実施されて得られる溶融系亜鉛メッキ鋼板に対して好適に適用でき、溶融系亜鉛メッキ鋼板用塗料としても使用できる。 The paint of the present invention can be suitably applied to hot dipped hot dip galvanized steel sheets, hot dip galvanized steel sheets manufactured by CGL (continuous hot dip galvanized plate line), hot dip zinc-5% aluminum alloy plating. Applicable to galvanized steel sheets including steel sheets, hot dip galvanized 55% aluminum alloy plated steel sheets, galvannealed steel sheets, electrogalvanized steel sheets manufactured by EGL (electrogalvanizing line), etc. It is possible to improve the above-described various characteristics (appearance characteristics, rubbing resistance, corrosion resistance, adhesion to top coat, impact resistance, phosphate treatment, etc.). In other words, the paint of the present invention can be suitably applied to a zinc-based plated steel sheet and can also be used as a paint for a zinc-based plated steel sheet. In particular, hot dipped galvanized steel sheet, hot dip galvanized steel sheet manufactured with CGL (continuous galvanized sheet line), hot dip zinc-5% aluminum alloy plated steel sheet, hot dip zinc-55% molten aluminum alloy plated steel sheet, alloy The present invention can be suitably applied to a hot dip galvanized steel sheet obtained by performing a plating process using hot galvanized steel such as a hot dip galvanized steel sheet, and can also be used as a paint for a hot dip galvanized steel sheet.
 本発明の塗料には、カチオン性ポリウレタン樹脂(A)が少なくとも含まれる。
 以下、塗料に含まれる各種成分について詳述し、その後、塗料を用いたどぶ漬け溶融亜鉛メッキ鋼板の処理方法(言い換えれば、どぶ漬け溶融亜鉛メッキ鋼板およびその表面上に配置された皮膜を有する表面処理どぶ漬け溶融亜鉛メッキ鋼板を製造する、表面処理どぶ漬け溶融亜鉛メッキ鋼板の製造方法)について詳述する。
The paint of the present invention contains at least a cationic polyurethane resin (A).
Hereinafter, the various components contained in the paint will be described in detail, and then the treatment method for the soaked hot dip galvanized steel sheet using the paint (in other words, the soaked hot dip galvanized steel sheet and the surface having the film disposed on the surface thereof) A method for producing a surface-treated soaked hot-dip galvanized steel sheet, which produces a soaked hot-dip galvanized steel sheet, will be described in detail.
<カチオン性ポリウレタン樹脂(A)>
 本発明の塗料には、第1級~3級アミノ基および第4級アンモニウム塩基からなる群から選択される少なくとも1種のカチオン性官能基を有するカチオン性ポリウレタン樹脂(A)が含まれる。
 従来技術で使用されているアニオン性樹脂は、一般的に耐アルカリ性に劣り、耐酸性に優れる傾向がある。耐アルカリ性に劣る場合、皮膜形成後のアルカリ脱脂工程などによって、皮膜が溶解・剥離しやすいため、耐食性低下の原因となる。また、耐酸性に優れるため、リン酸塩処理を施すことが困難となる場合が多い。それに対して、カチオン性ポリウレタン樹脂(A)は、耐アルカリ性に優れるため、アルカリ脱脂工程後においても耐食性に優れる。また、ポリウレタン樹脂は、分子内のウレタン結合による水素結合により皮膜が強靭となり、耐食性向上につながる。さらに、比較的、カチオン性官能基を有していることもあり、耐酸性が低いため、樹脂の特性としてもリン酸塩処理が施しやすい。
<Cationic polyurethane resin (A)>
The paint of the present invention includes a cationic polyurethane resin (A) having at least one cationic functional group selected from the group consisting of primary to tertiary amino groups and quaternary ammonium bases.
Anionic resins used in the prior art generally have poor alkali resistance and tend to be excellent in acid resistance. When it is inferior in alkali resistance, the film is easily dissolved and peeled off by an alkali degreasing step after the film is formed, which causes a decrease in corrosion resistance. Moreover, since it is excellent in acid resistance, it is often difficult to perform phosphate treatment. On the other hand, since the cationic polyurethane resin (A) is excellent in alkali resistance, it is excellent in corrosion resistance even after the alkali degreasing step. In addition, the polyurethane resin has a strong film due to hydrogen bonding by urethane bonds in the molecule, leading to improved corrosion resistance. Furthermore, since it may have a cationic functional group relatively, and acid resistance is low, it is easy to perform a phosphate process also as a characteristic of resin.
(カチオン性官能基)
 カチオン性ポリウレタン樹脂(A)に含まれるカチオン性官能基としては、例えば、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、トリメチルアミノ基、トリエチルアミノ基などが挙げられるが、第1級~第3級アミノ基、または第4級アンモニウム塩基であれば、特に限定はしない。
 なお、カチオン性ポリウレタン樹脂(A)中のカチオン性官能基は、カチオン性ポリウレタン樹脂(A)を水溶性または水分散性にするのに寄与する。なお、カチオン性ポリウレタン樹脂(A)の水への溶解または分散は、カチオン性ポリウレタン樹脂(A)の水への自己溶解性または自己分散性に基づいて達成されてもよく、また、カチオン性界面活性剤(例えば、アルキル4級アンモニウム塩)および/またはノニオン性界面活性剤(例えば、アルキルフェニルエーテル)の助けを借りて達成されてもよい。
(Cationic functional group)
Examples of the cationic functional group contained in the cationic polyurethane resin (A) include an amino group, a methylamino group, an ethylamino group, a dimethylamino group, a diethylamino group, a trimethylamino group, and a triethylamino group. There is no particular limitation as long as it is a primary to tertiary amino group or a quaternary ammonium base.
The cationic functional group in the cationic polyurethane resin (A) contributes to making the cationic polyurethane resin (A) water-soluble or water-dispersible. The dissolution or dispersion of the cationic polyurethane resin (A) in water may be achieved based on the self-solubility or self-dispersibility of the cationic polyurethane resin (A) in water. It may be achieved with the help of activators (eg alkyl quaternary ammonium salts) and / or nonionic surfactants (eg alkyl phenyl ethers).
(損失弾性率E’’の最大ピーク値を示す温度(Tg1))
 カチオン性ポリウレタン樹脂(A)の損失弾性率E’’の最大ピーク値を示す温度(Tg1)は、-60℃~-5℃の範囲にあり、外観特性、耐ラビング性、耐食性、リン酸塩処理性、上塗り塗装密着性、耐衝撃性、および、貯蔵安定性の少なくとも1つがより優れる点(以後、単に「本発明の効果がより優れる点」とも称する)で、-55℃~-10℃が好ましく、-50℃~-15℃がより好ましい。
 温度(Tg1)が-60℃未満である場合、耐ラビング性に劣り、-5℃超である場合、皮膜外観特性に劣る。
 なお、上記最大ピーク値とは、後述する動的粘弾性測定より得られる損失弾性率曲線(横軸を温度、縦軸を損失弾性率としたグラフにおける、損失弾性率の温度依存性曲線)において観測されるピーク値のうち、最大のピーク値を意図する。ピーク値とは、いわゆる極大値ともいえる。
(Temperature (Tg1) showing maximum peak value of loss elastic modulus E ″)
The temperature (Tg1) showing the maximum peak value of the loss elastic modulus E ″ of the cationic polyurethane resin (A) is in the range of −60 ° C. to −5 ° C., appearance characteristics, rubbing resistance, corrosion resistance, phosphate -55 ° C to -10 ° C in that at least one of processability, top coat adhesion, impact resistance, and storage stability is superior (hereinafter also referred to simply as “the point where the effect of the present invention is more excellent”). Is preferable, and −50 ° C. to −15 ° C. is more preferable.
When the temperature (Tg1) is less than −60 ° C., the rubbing resistance is inferior, and when it exceeds −5 ° C., the film appearance characteristics are inferior.
In addition, the said maximum peak value is in the loss elastic modulus curve (temperature dependence curve of the loss elastic modulus in the graph which made the horizontal axis temperature and the vertical axis | shaft loss elastic modulus) obtained from the dynamic-viscoelasticity measurement mentioned later. The maximum peak value among the observed peak values is intended. The peak value can be said to be a so-called maximum value.
(損失正接tanδ)
 カチオン性ポリウレタン樹脂(A)の損失弾性率E’’と貯蔵弾性率E’との比(損失弾性率E’’/貯蔵弾性率E’)である損失正接tanδは、一つのピークからなる(一つのピークのみを有する)。つまり、後述する動的粘弾性測定より得られる損失正接tanδ曲線(横軸が温度、縦軸を損失正接tanδとしたグラフにおける、損失正接tanδの温度依存性曲線)において、一つのピークからなる(一つのピークのみを有する)ことを意図する。言い換えれば、二つ以上のピークがないことを意図する。上述したように、二つ以上のピークが観測される場合、形成される皮膜がミクロ的には不均一であり、耐食性に劣る。
(Loss tangent tan δ)
The loss tangent tan δ, which is the ratio (loss elastic modulus E ″ / storage elastic modulus E ′) of the loss elastic modulus E ″ and the storage elastic modulus E ′ of the cationic polyurethane resin (A), consists of one peak ( It has only one peak). That is, a loss tangent tan δ curve (temperature dependence curve of loss tangent tan δ in a graph in which the horizontal axis is temperature and the vertical axis is loss tangent tan δ) obtained from dynamic viscoelasticity measurement described later consists of one peak ( Intended to have only one peak). In other words, it is intended that there are no more than two peaks. As described above, when two or more peaks are observed, the formed film is microscopically uneven and inferior in corrosion resistance.
(損失正接tanδのピーク温度(Tg2))
 損失正接tanδのピーク温度(Tg2)の範囲は特に制限されないが、本発明の効果(特に、上塗り塗装密着性と耐衝撃性)がより優れる点で、-50℃~-2℃が好ましく、-48℃~-5℃がより好ましく、-45℃~-10℃がさらに好ましい。
 動的粘弾性測定の方法としては、TAインスツルメント製動的粘弾性測定装置「RSAG2」を用い、カチオン性ポリウレタン樹脂(A)のフィルム(サンプル面積:つかみ長×幅=20mm×5mm)の横方向(TD)について、振動周波数10Hz、歪み0.1%にて、昇温速度5℃/分で-100℃から200℃まで測定し、貯蔵弾性率E’と損失弾性率E’’と損失正接tanδを算出する。
(Peak temperature of loss tangent tan δ (Tg2))
The range of the peak temperature (Tg2) of the loss tangent tan δ is not particularly limited, but −50 ° C. to −2 ° C. is preferable from the viewpoint of more excellent effects of the present invention (particularly adhesion to the top coat and impact resistance). 48 ° C to -5 ° C is more preferable, and -45 ° C to -10 ° C is more preferable.
As a method for measuring dynamic viscoelasticity, a dynamic viscoelasticity measuring device “RSAG2” manufactured by TA Instruments was used, and a film of a cationic polyurethane resin (A) (sample area: grip length × width = 20 mm × 5 mm) was used. In the transverse direction (TD), the storage elastic modulus E ′ and the loss elastic modulus E ″ are measured from −100 ° C. to 200 ° C. at a temperature rising rate of 5 ° C./min at a vibration frequency of 10 Hz and a strain of 0.1%. The loss tangent tan δ is calculated.
 本発明の塗料中に含まれるカチオン性ポリウレタン樹脂(A)の上記特性(損失弾性率E’’、損失正接tanδ)は、その構造や合成方法を制御することにより適宜調整可能である。
 例えば、温度(Tg1)は、カチオン性ポリウレタン樹脂(A)のソフトセグメントを構成する部分となるポリオールの量および分子量や、重合時の温度によって制御することができる。ポリオールの量が多い場合は温度(Tg1)が低くなり、量が少ない場合は温度(Tg1)が高くなる傾向がある。
 また、損失正接tanδのピークが二つ以上観測されないためには、例えば、カチオン性ポリウレタン樹脂(A)のソフトセグメントを構成する部分となるポリオールの分子量や、重合時の温度を制御する方法がある。
The above characteristics (loss elastic modulus E ″, loss tangent tan δ) of the cationic polyurethane resin (A) contained in the paint of the present invention can be appropriately adjusted by controlling the structure and synthesis method.
For example, the temperature (Tg1) can be controlled by the amount and molecular weight of the polyol that forms the soft segment of the cationic polyurethane resin (A), and the temperature during polymerization. When the amount of polyol is large, the temperature (Tg1) tends to be low, and when the amount is small, the temperature (Tg1) tends to be high.
In order to prevent two or more peaks of the loss tangent tan δ from being observed, for example, there is a method of controlling the molecular weight of the polyol that constitutes the soft segment of the cationic polyurethane resin (A) and the temperature during polymerization. .
(ウレタン樹脂の構造)
 カチオン性ポリウレタン樹脂(A)は、ポリカーボネート構造単位およびビスフェノール構造単位を有する。言い換えると、カチオン性ポリウレタン樹脂(A)は、樹脂を構成する繰り返し単位として、ポリカーボネート構造繰り返し単位およびビスフェノール構造繰り返し単位を有する。
 カーボネート構造単位は柔軟性があり、密着性に優れるが水などに濡れた場合における膜の耐加水分解性に劣る傾向がある。ビスフェノール構造単位は耐加水分解性に優れるが、固く柔軟性に劣り、擦過などにより傷がつきやすい傾向がある。
 つまり、ポリカーボネート構造単位およびビスフェノール構造単位を有しないと、ポリカーボート構造単位およびビスフェノール構造単位を有するものと比較して、耐食性および耐ラビング性が劣ることになる。
 本発明においては、両者を組み合わせ、損失弾性率E’’の最大ピーク値を示す温度(Tg1)が-60℃~-5℃の範囲となるように制御することにより、優れた耐食性、耐ラビング性、および、優れた外観特性を同時に得ることができる。
(Structure of urethane resin)
The cationic polyurethane resin (A) has a polycarbonate structural unit and a bisphenol structural unit. In other words, the cationic polyurethane resin (A) has a polycarbonate structure repeating unit and a bisphenol structure repeating unit as a repeating unit constituting the resin.
The carbonate structural unit is flexible and has excellent adhesion, but tends to be inferior in hydrolysis resistance of the film when wet with water. Bisphenol structural units are excellent in hydrolysis resistance, but are hard and inferior in flexibility, and tend to be damaged by rubbing.
That is, if the polycarbonate structural unit and the bisphenol structural unit are not included, the corrosion resistance and the rubbing resistance are inferior to those having the polycarbonate structural unit and the bisphenol structural unit.
In the present invention, excellent corrosion resistance and rubbing resistance are obtained by combining the two and controlling the temperature (Tg1) at which the loss elastic modulus E ″ shows the maximum peak value to be in the range of −60 ° C. to −5 ° C. And excellent appearance characteristics can be obtained at the same time.
 ポリカーボネート構造単位とは、その構造内にカーボネート結合(-O-C(=O)-O-)を複数有する繰り返し単位である。通常、ポリウレタン樹脂はポリオールとポリイソシアネートの反応により作製される。そこで、カチオン性ポリウレタン樹脂(A)にカーボネート構造単位を導入する方法としては、ポリカーボネートポリオールを用いてカチオン性ポリウレタン樹脂(A)を製造する方法が挙げられる。
 ポリカーボネートポリオールとしては、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、1,8-ノナンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、ビスフェノール-A、または、水添ビスフェノール-Aなどのポリオールと、ジメチルカーボネート、ジフェニルカーボネート、エチレンカーボネート、または、ホスゲンなどとを反応させることにより得られる末端に水酸基を有するポリカーボネートポリオールなどが例示される。
The polycarbonate structural unit is a repeating unit having a plurality of carbonate bonds (—O—C (═O) —O—) in the structure. Usually, a polyurethane resin is produced by reaction of a polyol and a polyisocyanate. Then, as a method of introducing a carbonate structural unit into the cationic polyurethane resin (A), a method of producing the cationic polyurethane resin (A) using a polycarbonate polyol can be mentioned.
Examples of the polycarbonate polyol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 1,8-nonanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, bisphenol-A, or hydrogenated bisphenol-A Examples thereof include polycarbonate polyol having a hydroxyl group at the terminal obtained by reacting polyol such as dimethyl carbonate, diphenyl carbonate, ethylene carbonate, or phosgene.
 ビスフェノール構造単位としては、例えば、ビスフェノールA、ビスフェノールFまたはビスフェノールSに由来する構造単位が挙げられる。カチオン性ポリウレタン樹脂(A)にビスフェノール構造単位を導入する方法としては、ビスフェノール構造を有するポリオールを用いてカチオン性ポリウレタン樹脂(A)を製造する方法が挙げられる。
 ビスフェノール構造を有するポリオールとしては、例えば、ビスフェノールA型、ビスフェノールF型、ビスフェノールE型、ビスフェノールA型にアルキレンオキサイドが付加したポリオール、ビスフェノールF型にアルキレンオキサイドが付加したポリオール、ビスフェノールE型にアルキレンオキサイドが付加したポリオール、水添ビスフェノールA型、水添ビスフェノールF型、水添ビスフェノールA型にアルキレンオキサイドが付加したポリオール、水添ビスフェノールF型にアルキレンオキサイドが付加したポリオール等、水添ビスフェノールE型にアルキレンオキサイドが付加したポリオールが挙げられる。
Examples of the bisphenol structural unit include structural units derived from bisphenol A, bisphenol F, or bisphenol S. Examples of the method for introducing the bisphenol structural unit into the cationic polyurethane resin (A) include a method for producing the cationic polyurethane resin (A) using a polyol having a bisphenol structure.
Examples of the polyol having a bisphenol structure include bisphenol A type, bisphenol F type, bisphenol E type, polyol in which alkylene oxide is added to bisphenol A type, polyol in which alkylene oxide is added to bisphenol F type, and alkylene oxide in bisphenol E type. Hydrogenated bisphenol A type, hydrogenated bisphenol A type, hydrogenated bisphenol F type, polyol obtained by adding alkylene oxide to hydrogenated bisphenol A type, polyol obtained by adding alkylene oxide to hydrogenated bisphenol F type, etc. Examples include polyols to which alkylene oxide is added.
 カチオン性ポリウレタン樹脂(A)は、上記ポリカーボネート構造単位およびビスフェノール構造単位以外の構造単位を有していてもよい。
 例えば、カチオン性ポリウレタン樹脂(A)の製造時に、ポリエーテルポリオール、ポリエステルポリオールなどのポリカーボネートポリオール以外の他のポリオールを合わせて使用してもよい。
 また、カチオン性ポリウレタン樹脂(A)の製造の際に、(置換)アミノ基などのカチオン性官能基を有するアルコール化合物(好ましくは、(置換)アミノ基などのカチオン性官能基を有するポリオール化合物)(例えば、N-メチルジエタノールアミン、N,N-ジメチルアミノジメチロールプロパンなど)や、所定のカチオン性官能基を有するアミン化合物を合わせて用いることにより、所望のカチオン性官能基をポリウレタン樹脂中に導入することができる。
 また、上述したように、カチオン性ポリウレタン樹脂(A)の製造の際には、上述したポリオールと、ポリイソシアネート(例えば、脂肪族、脂環式または芳香族ポリイソシアネート)とを反応させて得られる。
The cationic polyurethane resin (A) may have a structural unit other than the polycarbonate structural unit and the bisphenol structural unit.
For example, you may use together other polyols other than polycarbonate polyols, such as polyether polyol and polyester polyol, at the time of manufacture of a cationic polyurethane resin (A).
Further, in the production of the cationic polyurethane resin (A), an alcohol compound having a cationic functional group such as a (substituted) amino group (preferably a polyol compound having a cationic functional group such as a (substituted) amino group). (For example, N-methyldiethanolamine, N, N-dimethylaminodimethylolpropane, etc.) and an amine compound having a predetermined cationic functional group are used together to introduce a desired cationic functional group into the polyurethane resin. can do.
In addition, as described above, in the production of the cationic polyurethane resin (A), it is obtained by reacting the above-described polyol with a polyisocyanate (for example, aliphatic, alicyclic or aromatic polyisocyanate). .
 ポリエーテルポリオールとしては、ジエチレングリコール、トリエチレングリコールなどのポリエチレングリコール、ポリエチレン/プロピレングリコールなどが例示される。
 ポリエステルポリオールとしては、アルキレン(例えば炭素数1~6)グリコール(エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、ヘキサメチレングリコールなど)、ポリエーテルポリオール、ビスフェノールA、水添ビスフェノールA、トリメチロールプロパン、または、グリセリンなどのポリオールと、コハク酸、グルタル酸、アジピン酸、セバチン酸、フタル酸、イソフタル酸、テレフタル酸、または、トリメリット酸などの多塩基酸との重縮合によって得られる末端に水酸基を有するポリエステルポリオールなどが例示される。
 脂肪族、脂環式または芳香族ポリイソシアネートとしては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、シクロヘキシレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネートなどが例示される。
Examples of the polyether polyol include polyethylene glycols such as diethylene glycol and triethylene glycol, and polyethylene / propylene glycol.
Polyester polyols include alkylene (for example, 1 to 6 carbon atoms) glycol (ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, hexamethylene glycol, etc.), polyether polyol, bisphenol A, hydrogenated bisphenol A, trimethylolpropane. Or a hydroxyl group at the terminal obtained by polycondensation of a polyol such as glycerin with a polybasic acid such as succinic acid, glutaric acid, adipic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, or trimellitic acid Examples include polyester polyols having
Examples of the aliphatic, alicyclic or aromatic polyisocyanate include tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, cyclohexylene diisocyanate, hexamethylene diisocyanate, and lysine diisocyanate.
(アミン価)
 カチオン性ポリウレタン樹脂(A)のアミン価は特に制限されないが、塗料の貯蔵安定性がより優れる点で、2.0~5.0mgKOH/gが好ましく、2.3~4.5mgKOH/gがより好ましく、更に、2.5~4.0mgKOH/gがさらに好ましい。
 上記アミン価は、下記の測定方法により測定した値を全アミン価として定義する。
 カチオン性ポリウレタン樹脂(A)を固形分換算で約3g採取し、正確に秤量する。その後、ジメチルホルムアミドを加え溶解する。次いで、ブロムクレゾールグリーン指示薬を数滴加え、0.1mol/L塩酸滴定用溶液で滴定し、青色から黄色に変わった点を終点として滴定液の量を読み取る。下記の計算式により全アミン価(mgKOH/g)を算出する。
全アミン価=[(F1-F2)×f×5.611/S]
式中:
F1:本試験に要した0.1mol/L塩酸滴定用溶液量(mL)
F2:空試験に要した0.1mol/L塩酸滴定用溶液量(mL)
f:0.1mol/L塩酸滴定用溶液の力価
S:試料採取量(g)
である。
 なお、上記空試験とは、カチオン性ポリウレタン樹脂ではなく、脱イオン水を用いて測定する試験を意図する。
(Amine number)
The amine value of the cationic polyurethane resin (A) is not particularly limited, but is preferably from 2.0 to 5.0 mgKOH / g, more preferably from 2.3 to 4.5 mgKOH / g in terms of better storage stability of the paint. More preferably, 2.5 to 4.0 mgKOH / g is more preferable.
The amine value is defined as the total amine value measured by the following measurement method.
About 3 g of the cationic polyurethane resin (A) is collected in terms of solid content and accurately weighed. Thereafter, dimethylformamide is added and dissolved. Next, a few drops of bromcresol green indicator are added, titrated with a 0.1 mol / L hydrochloric acid titration solution, and the amount of titrant is read with the point where the color changed from blue to yellow as the end point. The total amine value (mgKOH / g) is calculated by the following formula.
Total amine value = [(F1-F2) × f × 5.661 / S]
In the formula:
F1: 0.1 mol / L hydrochloric acid titration solution required for this test (mL)
F2: 0.1 mol / L hydrochloric acid titration solution volume required for the blank test (mL)
f: titer of 0.1 mol / L hydrochloric acid titration solution S: sampling amount (g)
It is.
In addition, the said blank test intends the test measured not using cationic polyurethane resin but using deionized water.
<その他任意成分>
 本発明の塗料には、上記カチオン性ポリウレタン樹脂(A)以外の他の成分が含まれていてよい。以下、任意成分について詳述する。
<Other optional components>
The coating material of the present invention may contain components other than the cationic polyurethane resin (A). Hereinafter, the optional components will be described in detail.
(リン酸化合物(B))
 本発明の塗料には、リン酸化合物(B)が含まれていてもよい。リン酸化合物(B)が含まれることにより、耐食性がより向上する。
 リン酸化合物(B)としては、例えば、無機リン酸、無機リン酸塩、有機リン酸、および、有機リン酸塩からなる群から選択される少なくとも1種が挙げられる。
 無機リン酸およびその塩としては、リン酸(オルトリン酸)、亜リン酸、三リン酸、次亜リン酸、次リン酸などのモノリン酸、モノリン酸の誘導体および塩類、メタリン酸、トリポリリン酸、テトラリン酸、ヘキサリン酸などの縮合リン酸、縮合リン酸の誘導体および塩類などが挙げられる。
 有機リン酸およびその塩としては、リン酸モノエステル(例えば、リン酸モノドデシル二水素、リン酸モノトリデシル二水素など)およびその塩、リン酸ジエステル(例えば、リン酸ジドデシル水素、リン酸ジトリデシル水素など)およびその塩などが挙げられる。有機リン酸の具体例としては、例えば、R10O-P(=O)(OR11)(OR12)によって表される化合物が挙げられる。なお、R10は有機基を表し、R11およびR12はそれぞれ独立に水素原子または有機基を表す。有機基としては、例えば、炭化水素基(例えば、アルキル基、アリール基、または、これらを組み合わせた基)が挙げられる。
 なお、無機リン酸塩(無機リン酸の塩)、有機リン酸塩(有機リン酸の塩)などの塩類としては特に制限されないが、例えば、アルカリ金属塩、アンモニウム塩、アミン塩を挙げることができる。
 なかでも、本発明の効果がより優れる点で、リン酸化合物(B)は、オルトリン酸、縮合リン酸、および、これらの塩からなる群から選択される少なくとも1種を含有することが好ましい。
(Phosphate compound (B))
The paint of the present invention may contain a phosphoric acid compound (B). By including the phosphoric acid compound (B), the corrosion resistance is further improved.
Examples of the phosphoric acid compound (B) include at least one selected from the group consisting of inorganic phosphoric acid, inorganic phosphate, organic phosphoric acid, and organic phosphate.
Examples of inorganic phosphoric acid and salts thereof include phosphoric acid (orthophosphoric acid), phosphorous acid, triphosphoric acid, hypophosphorous acid, monophosphoric acid such as hypophosphoric acid, monophosphoric acid derivatives and salts, metaphosphoric acid, tripolyphosphoric acid, Examples include condensed phosphoric acid such as tetraphosphoric acid and hexaphosphoric acid, derivatives and salts of condensed phosphoric acid, and the like.
Examples of organic phosphoric acid and salts thereof include phosphoric acid monoesters (for example, monododecyl dihydrogen phosphate, monotridecyl dihydrogen phosphate) and salts thereof, phosphoric diesters (for example, didodecyl hydrogen phosphate, ditridecyl hydrogen phosphate, etc.) ) And its salts. Specific examples of the organic phosphoric acid include compounds represented by R 10 O—P (═O) (OR 11 ) (OR 12 ). R 10 represents an organic group, and R 11 and R 12 each independently represent a hydrogen atom or an organic group. Examples of the organic group include a hydrocarbon group (for example, an alkyl group, an aryl group, or a group obtained by combining these).
In addition, although it does not restrict | limit especially as salts, such as inorganic phosphate (salt of inorganic phosphoric acid) and organic phosphate (salt of organic phosphoric acid), For example, an alkali metal salt, ammonium salt, and an amine salt are mentioned. it can.
Especially, it is preferable that the phosphoric acid compound (B) contains at least 1 sort (s) selected from the group which consists of orthophosphoric acid, condensed phosphoric acid, and these salts at the point which the effect of this invention is more excellent.
(3価クロム化合物(C))
 本発明の塗料には、3価クロム化合物(C)が含まれていてもよい。3価クロム化合物(C)が含まれることにより、耐食性がより向上する。
 3価クロム化合物(C)とは、3価のクロムイオンを供給できる化合物であり、例えば、3価クロム塩が挙げられる。塩の種類としては、例えば、硝酸塩、硫酸塩、塩酸塩などの無機酸塩、酢酸塩、蓚酸塩、コハク酸塩などの有機酸塩が挙げられる。
 3価クロム化合物(C)の具体例としては、例えば、フッ化クロム(III)、塩化クロム(III)、硝酸クロム(III)、硫酸クロム(III)、酢酸クロム(III)などが挙げられる。
(Trivalent chromium compound (C))
The paint of the present invention may contain a trivalent chromium compound (C). By including the trivalent chromium compound (C), the corrosion resistance is further improved.
A trivalent chromium compound (C) is a compound which can supply a trivalent chromium ion, for example, a trivalent chromium salt is mentioned. Examples of the salt include inorganic acid salts such as nitrate, sulfate, and hydrochloride, and organic acid salts such as acetate, oxalate, and succinate.
Specific examples of the trivalent chromium compound (C) include, for example, chromium (III) fluoride, chromium (III) chloride, chromium (III) nitrate, chromium (III) sulfate, and chromium (III) acetate.
(溶媒)
 本発明の塗料には、溶媒が含まれていてもよい。溶媒としては、水や有機溶媒(例えば、アルコール)が挙げられる。
(solvent)
The paint of the present invention may contain a solvent. Examples of the solvent include water and organic solvents (for example, alcohol).
(その他添加剤)
 本発明の塗料は、塗工性を調整する目的で、増粘剤、レベリング剤、濡れ性向上剤、消泡剤、界面活性剤、水溶性のアルコール類、セロソルブ系溶剤などを含有していてもよい。
 また、防腐剤、抗菌剤、着色剤、傷付き防止剤、潤滑剤などを含有していてもよい。
 また、ベンゾトリアゾール、グアニジン系化合物、ヒンダードアミンなどを含有していてもよい。
(Other additives)
The paint of the present invention contains a thickener, a leveling agent, a wettability improver, an antifoaming agent, a surfactant, a water-soluble alcohol, a cellosolve solvent, etc. for the purpose of adjusting coating properties. Also good.
Moreover, you may contain antiseptic | preservative, an antibacterial agent, a coloring agent, a damage prevention agent, a lubricant, etc.
Moreover, you may contain a benzotriazole, a guanidine type compound, a hindered amine, etc.
<どぶ漬け溶融亜鉛メッキ鋼板用塗料>
 本発明の塗料には、上述した各種成分が含まれる。
 塗料中におけるカチオン性ポリウレタン樹脂(A)の含有量は特に制限されないが、本発明の効果がより優れる点、および、取り扱い性の点で、塗料の全質量に対して、1~40質量%が好ましく、5~30質量%がより好ましい。
<Dow pickled hot-dip galvanized steel sheet paint>
The paint of the present invention contains the various components described above.
The content of the cationic polyurethane resin (A) in the paint is not particularly limited, but is 1 to 40% by weight with respect to the total weight of the paint in terms of more excellent effects of the present invention and handling. Preferably, 5 to 30% by mass is more preferable.
 塗料中にリン酸化合物(B)が含まれる場合、リン酸化合物(B)の含有量は特に制限されないが、本発明の効果がより優れる点で、カチオン性ポリウレタン樹脂(A)100質量部に対して、0.1~30質量部が好ましく、0.3~25質量部がより好ましく、1~10質量部がさらに好ましい。
 塗料中に3価クロム化合物(C)が含まれる場合、3価クロム化合物(C)の含有量は特に制限されないが、本発明の効果がより優れる点で、カチオン性ポリウレタン樹脂(A)100質量部に対して、0.5~20質量部が好ましく、1~10質量部がより好ましい。
When the phosphoric acid compound (B) is contained in the paint, the content of the phosphoric acid compound (B) is not particularly limited, but the cationic polyurethane resin (A) is added in 100 parts by mass in terms of more excellent effects of the present invention. On the other hand, 0.1 to 30 parts by mass is preferable, 0.3 to 25 parts by mass is more preferable, and 1 to 10 parts by mass is further preferable.
When the trivalent chromium compound (C) is contained in the paint, the content of the trivalent chromium compound (C) is not particularly limited, but the cationic polyurethane resin (A) 100 mass in that the effect of the present invention is more excellent. 0.5 to 20 parts by mass is preferable with respect to parts, and 1 to 10 parts by mass is more preferable.
 塗料の調製方法は特に制限されず、例えば、カチオン性ポリウレタン樹脂(A)およびその他任意成分を水などの溶媒に添加して、混合することにより調製することができる。 The method for preparing the paint is not particularly limited, and for example, it can be prepared by adding the cationic polyurethane resin (A) and other optional components to a solvent such as water and mixing them.
<表面処理どぶ漬け溶融亜鉛メッキ鋼板の製造方法>
 本発明の塗料は、どぶ漬け溶融亜鉛メッキ鋼板に好適に適用でき、本発明の塗料とどぶ漬け溶融亜鉛メッキ鋼板とを接触させることにより、どぶ漬け溶融亜鉛メッキ鋼板およびその表面上に配置された皮膜を有する表面処理どぶ漬け溶融亜鉛メッキ鋼板を製造することができる。
 なお、上述したように、本発明の塗料は、どぶ漬け溶融亜鉛メッキ鋼板を含む亜鉛メッキ系鋼板(または、溶融系亜鉛メッキ鋼板)にも好適に適用することができる。
 以下においては、どぶ漬け溶融亜鉛メッキ鋼板を被処理物として用いた態様について代表的に説明するが、後述する条件にてどぶ漬け溶融亜鉛メッキ鋼板以外の他の亜鉛メッキ系鋼板上に所定の皮膜を形成させ、各種特性に優れる表面処理亜鉛系メッキ鋼板を製造することもできる。また、上述した、溶融系亜鉛メッキ鋼板を使用した場合は、溶融系亜鉛メッキ鋼板とその上に皮膜を有する、表面処理溶融系亜鉛メッキ鋼板を製造することもできる。
<Manufacturing method of surface-treated dobu pickled galvanized steel sheet>
The paint of the present invention can be suitably applied to the soaked hot dip galvanized steel sheet, and is placed on the soaked hot dip galvanized steel sheet and its surface by bringing the paint of the present invention into contact with the soaked hot dip galvanized steel sheet. A surface-treated soaked hot-dip galvanized steel sheet having a film can be produced.
As described above, the paint of the present invention can also be suitably applied to galvanized steel sheets (or hot dip galvanized steel sheets) including hot dipped galvanized steel sheets.
In the following, the embodiment using the soaked hot dip galvanized steel sheet as the object to be treated will be representatively described. However, a predetermined film is formed on a galvanized steel sheet other than the soaked hot dip galvanized steel sheet under the conditions described later. It is also possible to produce a surface-treated galvanized steel sheet that is excellent in various properties. Moreover, when the above-mentioned hot-dip galvanized steel sheet is used, a hot-dip galvanized steel sheet and a surface-treated hot-dip galvanized steel sheet having a film thereon can also be produced.
 上述した塗料を用いて、表面処理どぶ漬け溶融亜鉛メッキ鋼板を製造する方法は特に制限されないが、通常、上述した塗料をどぶ漬け溶融亜鉛メッキ鋼板に接触させ、必要に応じて加熱乾燥して、どぶ漬け溶融亜鉛メッキ鋼板上に皮膜を形成し、表面処理どぶ漬け溶融亜鉛メッキ鋼板を得る工程を有する。
 以下では、まず、被処理物であるどぶ漬け溶融亜鉛メッキ鋼板について詳述し、その後工程の手順について詳述する。
The method for producing the surface-treated dip galvanized steel sheet using the above-mentioned paint is not particularly limited, but usually, the above-mentioned paint is brought into contact with the dip galvanized steel sheet and, if necessary, heated and dried. It has a step of forming a film on the hot-dip galvanized steel sheet and obtaining a surface-treated hot-dip galvanized steel sheet.
In the following, first, the soaked hot-dip galvanized steel sheet that is the object to be processed will be described in detail, and the procedure of the subsequent process will be described in detail.
(どぶ漬け溶融亜鉛メッキ鋼板)
 どぶ漬け溶融亜鉛メッキ鋼板とは、溶融亜鉛槽に被処理体である鋼板を浸漬させて、そのままゆっくりと被処理体をメッキ槽から引き上げることによりメッキを施す浸漬法により得られる鋼板である。なお、上述したように、どぶ漬け法では、CGLにて実施されるエアナイフなどによる亜鉛の付着量制御は実施されず、メッキ槽から被処理体を引き上げ、そのまま放置(冷却)する。
 どぶ漬け亜鉛メッキが施される鋼板の種類は特に制限されず、例えば、H鋼、ガードレール、コルゲートパイプ、建造物の柱や梁、防音壁支柱、標識柱、照明柱、大型の橋桁橋梁、跨線橋などの橋梁、鉄筋、電力鉄塔などに使用される架線金物、ボルト・ナットなどの小物部品、太陽電池や小型風力発電装置の架台、屋外露出型鉄骨など、亜鉛メッキ加工を施す全ての建築材料が挙げられ、切り板状鋼材やコイル状鋼材であっても構わない。
(Dow pickled hot dip galvanized steel sheet)
The soaked hot dip galvanized steel sheet is a steel sheet obtained by a dipping method in which a steel sheet, which is the object to be treated, is immersed in a hot dip galvanized tank, and the object is slowly pulled up from the plating tank as it is. As described above, in the soaking method, the amount of zinc attached is not controlled by an air knife or the like performed in CGL, and the object to be processed is pulled up from the plating tank and left as it is (cooled).
There are no particular restrictions on the type of steel sheet that is galvanized, such as H steel, guardrails, corrugated pipes, building columns and beams, soundproof wall columns, sign columns, lighting columns, large bridge girder bridges, and overpass bridges. All building materials that are galvanized, such as bridges, rebars, overhead metal fittings used for power towers, small parts such as bolts and nuts, mounts for solar cells and small wind power generators, outdoor exposed steel frames, etc. For example, a cut plate steel material or a coil steel material may be used.
 なお、どぶ漬け溶融亜鉛メッキ鋼板表面に油分、汚れなどが付着している場合には、アルカリ脱脂剤、中性脱脂剤または、酸性脱脂剤等で洗浄して、その後に湯洗または水洗を行い、表面状態を清浄にすることが好ましい。 If oil, dirt, etc. are adhered to the surface of the hot dipped galvanized steel sheet, wash it with an alkaline degreasing agent, neutral degreasing agent, or acidic degreasing agent, and then wash with hot water or water. It is preferable to clean the surface state.
(塗料の接触方法)
 どぶ漬け溶融亜鉛メッキ鋼板への塗料の接触方法は特に制限されず、メッキ加工後の冷却工程で行う浸漬処理、スプレー処理、刷毛塗り処理、静電塗装処理などが挙げられる。また、どぶ漬け溶融亜鉛メッキ鋼板がコイル状である場合は従来使用されている方法を適応することができ、例えば、ロールコート、シャワーリンガーロール絞り、スプレー処理、浸漬処理、カーテンコート、フローコート、スピンコートなどが挙げられる。
(Paint contact method)
There are no particular restrictions on the method of contacting the paint with the hot-dip galvanized steel sheet, and examples include immersion treatment, spray treatment, brush coating treatment, and electrostatic coating treatment performed in the cooling step after plating. In addition, when the dip galvanized steel sheet is coiled, a conventionally used method can be applied, for example, roll coating, shower ringer roll drawing, spraying, dipping, curtain coating, flow coating, Examples include spin coating.
(塗料の乾燥方法)
 塗料の乾燥方法としては、一番経済的なのはメッキ加工後の予熱を利用する方法であり、どぶ漬け溶融亜鉛メッキ鋼板を塗料に浸漬して、そのまま放置することにより乾燥することができる。なお、乾燥の際にどぶ漬け溶融亜鉛メッキ鋼板の表面に付着している水分を効率よく飛ばす為の風を送ってもよい。
 処理工程上、亜鉛メッキ加工後の予熱を利用するのが難しい場合には、塗料に含まれる水分を蒸発させることができる乾燥設備を利用するのが好ましい。その場合の乾燥設備の種類は特に制限されないが、熱風乾燥設備、誘導加熱式乾燥設備、赤外線ヒーター乾燥設備、近赤外ヒーター乾燥設備などが挙げられる。これら乾燥設備を用いた場合の乾燥温度は特に制限されないが、どぶ漬け溶融亜鉛メッキ鋼板表面の到達温度として60℃~200℃であることが好ましく、80℃~180℃であることがより好ましい。
(Drying method of paint)
The most economical method for drying the paint is to use preheating after the plating process. It can be dried by dipping the hot dipped galvanized steel sheet in the paint and leaving it as it is. In addition, you may send the wind for flying away the water | moisture content adhering to the surface of the hot-dip galvanized steel plate dripped at the time of drying efficiently.
When it is difficult to use preheating after the galvanizing process, it is preferable to use a drying facility that can evaporate water contained in the paint. In this case, the type of drying equipment is not particularly limited, and examples thereof include hot air drying equipment, induction heating drying equipment, infrared heater drying equipment, and near infrared heater drying equipment. The drying temperature when these drying facilities are used is not particularly limited, but is preferably 60 ° C. to 200 ° C., more preferably 80 ° C. to 180 ° C. as the ultimate temperature on the surface of the hot dipped galvanized steel sheet.
(塗料の皮膜付着量)
 上記処理を実施することにより、どぶ漬け溶融亜鉛メッキ鋼板と、その表面上に配置された皮膜とを有する、表面処理どぶ漬け溶融亜鉛メッキ鋼板が製造される。
 皮膜の付着量は特に制限されないが、本発明の効果がより優れる点で、0.3~5.0g/mが好ましく、0.5~3.0g/mがより好ましい。
 製造された表面処理どぶ漬け溶融亜鉛メッキ鋼板は各種用途に好適適用することができ、例えば、家電や建材用途の部材などが挙げられる。
 また、本発明の表面処理どぶ漬け溶融亜鉛メッキ鋼板に塗装を施してもよい。その場合、その塗装板について、さらになんらかの加工が施される場合もある。
(Amount of paint film attached)
By carrying out the above treatment, a surface-treated hot-dip galvanized steel sheet having a hot-dip hot-dip galvanized steel sheet and a film disposed on the surface thereof is produced.
The amount of the coating film is not particularly limited, but is preferably 0.3 to 5.0 g / m 2 and more preferably 0.5 to 3.0 g / m 2 from the viewpoint that the effect of the present invention is more excellent.
The manufactured surface-treated soaked hot-dip galvanized steel sheet can be suitably applied to various uses, and examples thereof include members for home appliances and building materials.
Moreover, you may apply | coat to the surface treatment soaked hot dip galvanized steel plate of this invention. In that case, the coating plate may be further processed.
 以下に本発明の実施例および比較例を挙げて、本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples of the present invention, but the present invention is not limited to these examples.
1.試験材
 使用した試験剤(素材)を以下に記す。通常、どぶ漬け亜鉛めっき加工品は形状物であることが殆どであるが、本試験においては板を素材として用いた。なお、素材の形状が変わっても、本発明が発現する効果については何の影響も及ぼさない。
 以下のM1で表される溶融亜鉛メッキ鋼板は、上述したどぶ漬けにより作製されたどぶ漬け溶融亜鉛メッキ鋼板に該当する。また、M1~M3は、溶融系亜鉛メッキ鋼板に該当する(なお、M2およびM3は、どぶ漬け溶融亜鉛メッキ鋼板には該当しない)。
M1:溶融亜鉛めっき鋼板(JIS H 8641 HDZ35に準ずる)、スパングル小、寸法:700mm×150mm×1.6mm(板厚)、両面めっき付着量:360g/m
M2:溶融亜鉛めっき鋼板(JIS G 3302 SGCC Z06に準ずる)、寸法:700mm×150mm×0.8mm(板厚)、両面めっき付着量:60g/m
M3:溶融亜鉛-5%アルミ合金メッキ鋼板(JIS G 3317 SZACCY08に準ずる)、寸法:700mm×150mm×0.8mm(板厚)、両面めっき付着量:80g/m
1. Test materials The test agents (materials) used are listed below. Usually, most of the pickled galvanized products are shaped, but in this test, a plate was used as the material. It should be noted that even if the shape of the material changes, the effect of the present invention is not affected.
The hot-dip galvanized steel sheet represented by M1 below corresponds to the above-described hot-dip galvanized steel sheet produced by soaking. M1 to M3 correspond to hot-dip galvanized steel sheets (note that M2 and M3 do not correspond to hot-dip galvanized steel sheets).
M1: Hot-dip galvanized steel sheet (according to JIS H8641 HDZ35), small spangle, dimensions: 700 mm × 150 mm × 1.6 mm (plate thickness), double-sided plating adhesion amount: 360 g / m 2
M2: Hot-dip galvanized steel sheet (according to JIS G 3302 SGCC Z06), dimensions: 700 mm × 150 mm × 0.8 mm (plate thickness), double-sided plating adhesion amount: 60 g / m 2
M3: Hot-dip zinc-5% aluminum alloy plated steel sheet (according to JIS G 3317 SZACCY08), dimensions: 700 mm × 150 mm × 0.8 mm (plate thickness), double-sided plating adhesion amount: 80 g / m 2
2.前処理(脱脂処理)
 シリケート系アルカリ脱脂剤のファインクリーナーE6406(日本パーカライジング(株)製)を用いて、濃度20g/L、温度60℃の条件で10秒間スプレー処理を上記試験材に施し、さらに、純水で30秒間水洗したのちに乾燥したものを以下の試験で使用した。
2. Pretreatment (degreasing treatment)
Using the silicate alkali degreasing agent Fine Cleaner E6406 (manufactured by Nippon Parkerizing Co., Ltd.), the test material was sprayed for 10 seconds under the conditions of a concentration of 20 g / L and a temperature of 60 ° C., and further with pure water for 30 seconds. What was dried after being washed with water was used in the following tests.
3.塗料
 表1に、使用したカチオン性ポリウレタン樹脂(A)の詳細を示す。なお、製造方法は後段で詳述する。
 カチオン性ポリウレタン樹脂(A)の損失弾性率E’’および損失正接tanδは、以下の手順にて測定した。まず、カチオン性ポリウレタン樹脂(A)のフィルム(厚み:300~500μm)を室温で15時間放置した後、80℃で6時間乾燥し、さらに、120℃で20分乾燥させた。
 次に、TAインスツルメント製動的粘弾性測定装置「RSAG2」を用い、得られたフィルム(サンプル面積:つかみ長×幅=20mm×5mm)の横方向(TD)について、振動周波数10Hz、歪み0.1%にて、昇温速度5℃/分で-100℃から200℃まで測定し、貯蔵弾性率E’と損失弾性率E’’と損失正接tanδを算出した。なお、つかみ具(チャック)間の距離を10mmに設定した。
 アミン価の測定方法は、上述した通りである。
3. Paint Table 1 shows the details of the used cationic polyurethane resin (A). The manufacturing method will be described in detail later.
The loss elastic modulus E ″ and loss tangent tan δ of the cationic polyurethane resin (A) were measured by the following procedure. First, the film (thickness: 300 to 500 μm) of the cationic polyurethane resin (A) was left at room temperature for 15 hours, then dried at 80 ° C. for 6 hours, and further dried at 120 ° C. for 20 minutes.
Next, using a dynamic viscoelasticity measuring device “RSAG2” manufactured by TA Instruments, with respect to the transverse direction (TD) of the obtained film (sample area: grip length × width = 20 mm × 5 mm), the vibration frequency is 10 Hz, the strain is Measurements were made from -100 ° C. to 200 ° C. at a rate of temperature rise of 5 ° C./min at 0.1%, and storage elastic modulus E ′, loss elastic modulus E ″ and loss tangent tan δ were calculated. In addition, the distance between grips (chuck) was set to 10 mm.
The method for measuring the amine value is as described above.
 表1中、Tg1は上記測定より得られる損失弾性率E’’の最大ピーク値を示す温度を、Tg2は上記測定より得られる損失正接tanδのピーク温度を表す。
 また、ピーク数は、損失弾性率E’’と貯蔵弾性率E’との比である損失正接tanδの温度依存性曲線におけるピークの数を意図する。
In Table 1, Tg1 represents the temperature indicating the maximum peak value of the loss elastic modulus E ″ obtained from the above measurement, and Tg2 represents the peak temperature of the loss tangent tan δ obtained from the above measurement.
The number of peaks is intended to be the number of peaks in the temperature dependence curve of the loss tangent tan δ, which is the ratio of the loss elastic modulus E ″ and the storage elastic modulus E ′.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(製造例1:カチオン性ポリウレタン樹脂(A1))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(ニッポラン981R、東ソー(株)製、Mw=2,000)1000質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)100質量部、N-メチルジエタノールアミン100質量部、ヘキサメチレンジイソシアネート400質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル103質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A1)を含むポリウレタン水分散体1を得た。
(Production Example 1: Cationic polyurethane resin (A1))
A four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube was charged with 1000 parts by mass of polycarbonate polyol (Nipporan 981R, manufactured by Tosoh Corporation, Mw = 2,000), bisphenol A-bis (hydroxy). Ethyl ether) (BPE20T, manufactured by Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g) 100 parts by mass, N-methyldiethanolamine 100 parts by mass, hexamethylene diisocyanate 400 parts by mass, methyl ethyl ketone 800 parts by mass and added at 75 ° C. for 4 hours By reacting, a methyl ethyl ketone solution of urethane prepolymer having a free isocyanate group content of 3.0% by mass relative to the nonvolatile content was obtained. The solution was cooled to 40 ° C., 103 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 1 containing a cationic polyurethane resin (A1) having a nonvolatile content of about 35% by mass.
(製造例2:カチオン性ポリウレタン樹脂(A2))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(ニッポラン981R、東ソー(株)製、Mw=2,000)1500質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)50質量部、N-メチルジエタノールアミン50質量部、ヘキサメチレンジイソシアネート325質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル47質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A2)を含むポリウレタン水分散体2を得た。
(Production Example 2: Cationic polyurethane resin (A2))
A four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube was charged with 1500 parts by mass of polycarbonate polyol (Nipporan 981R, manufactured by Tosoh Corporation, Mw = 2,000), bisphenol A-bis (hydroxy). (Ethyl ether) (BPE20T, manufactured by Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g) 50 parts by mass, N-methyldiethanolamine 50 parts by mass, hexamethylene diisocyanate 325 parts by mass, methyl ethyl ketone 800 parts by mass were added, and 75 ° C. for 4 hours. By reacting, a methyl ethyl ketone solution of urethane prepolymer having a free isocyanate group content of 3.0% by mass relative to the nonvolatile content was obtained. This solution was cooled to 40 ° C., 47 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed under reduced pressure at 50 ° C. to obtain a polyurethane water dispersion 2 containing a cationic polyurethane resin (A2) having a nonvolatile content of about 35% by mass.
(製造例3:カチオン性ポリウレタン樹脂(A3))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(ニッポラン980、東ソー(株)製、Mw=1,000)1000質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)300質量部、N-メチルジエタノールアミン100質量部、ヘキサメチレンジイソシアネート535質量部、ジシクロヘキシルメタンジイソシアネート250質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル95質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A3)を含むポリウレタン水分散体3を得た。
(Production Example 3: Cationic polyurethane resin (A3))
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube, 1000 parts by mass of polycarbonate polyol (Nipporan 980, manufactured by Tosoh Corporation, Mw = 1,000), bisphenol A-bis (hydroxy) Ethyl ether) (BPE20T, manufactured by Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g), 300 parts by mass of N-methyldiethanolamine, 535 parts by mass of hexamethylene diisocyanate, 250 parts by mass of dicyclohexylmethane diisocyanate, and 800 parts by mass of methyl ethyl ketone. In addition, it was reacted at 75 ° C. for 4 hours to obtain a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 3.0% by mass with respect to the non-volatile content. This solution was cooled to 40 ° C., 95 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 3 containing a cationic polyurethane resin (A3) having a nonvolatile content of about 35% by mass.
(製造例4:カチオン性ポリウレタン樹脂(A4))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(ニッポラン981R、東ソー(株)製、Mw=2,000)1000質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)200質量部、N-メチルジエタノールアミン100質量部、ヘキサメチレンジイソシアネート480質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル101質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A4)を含むポリウレタン水分散体4を得た。
(Production Example 4: Cationic polyurethane resin (A4))
A four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube was charged with 1000 parts by mass of polycarbonate polyol (Nipporan 981R, manufactured by Tosoh Corporation, Mw = 2,000), bisphenol A-bis (hydroxy). Ethyl ether) (BPE20T, manufactured by Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g) 200 parts by mass, N-methyldiethanolamine 100 parts by mass, hexamethylene diisocyanate 480 parts by mass, methyl ethyl ketone 800 parts by mass and added at 75 ° C. for 4 hours By reacting, a methyl ethyl ketone solution of urethane prepolymer having a free isocyanate group content of 3.0% by mass relative to the nonvolatile content was obtained. The solution was cooled to 40 ° C., 101 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 4 containing a cationic polyurethane resin (A4) having a nonvolatile content of about 35% by mass.
(製造例5:カチオン性ポリウレタン樹脂(A5))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(ニッポラン981R、東ソー(株)製、Mw=2,000)1500質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)100質量部、N-メチルジエタノールアミン50質量部、ヘキサメチレンジイソシアネート370質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル48質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A5)を含むポリウレタン水分散体5を得た。
(Production Example 5: Cationic polyurethane resin (A5))
A four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube was charged with 1500 parts by mass of polycarbonate polyol (Nipporan 981R, manufactured by Tosoh Corporation, Mw = 2,000), bisphenol A-bis (hydroxy). Ethyl ether) (BPE20T, Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g) 100 parts by mass, N-methyldiethanolamine 50 parts by mass, hexamethylene diisocyanate 370 parts by mass and methyl ethyl ketone 800 parts by mass were added at 75 ° C. for 4 hours. By reacting, a methyl ethyl ketone solution of urethane prepolymer having a free isocyanate group content of 3.0% by mass relative to the nonvolatile content was obtained. This solution was cooled to 40 ° C., 48 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 5 containing a cationic polyurethane resin (A5) having a nonvolatile content of about 35% by mass.
(製造例6:カチオン性ポリウレタン樹脂(A6))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(ニッポラン980、東ソー(株)製、Mw=1,000)1000質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)200質量部、N-メチルジエタノールアミン100質量部、ヘキサメチレンジイソシアネート450質量部、ジシクロヘキシルメタンジイソシアネート220質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル87質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A6)を含むポリウレタン水分散体6を得た。
(Production Example 6: Cationic polyurethane resin (A6))
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube, 1000 parts by mass of polycarbonate polyol (Nipporan 980, manufactured by Tosoh Corporation, Mw = 1,000), bisphenol A-bis (hydroxy) Ethyl ether) (BPE20T, manufactured by Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g) 200 parts by mass, N-methyldiethanolamine 100 parts by mass, hexamethylene diisocyanate 450 parts by mass, dicyclohexylmethane diisocyanate 220 parts by mass, methyl ethyl ketone 800 parts by mass In addition, it was reacted at 75 ° C. for 4 hours to obtain a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 3.0% by mass with respect to the non-volatile content. The solution was cooled to 40 ° C., 87 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 6 containing a cationic polyurethane resin (A6) having a nonvolatile content of about 35% by mass.
(製造例7:カチオン性ポリウレタン樹脂(A7))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(ニッポラン981R、東ソー(株)製、Mw=2,000)1500質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)100質量部、N-メチルジエタノールアミン50質量部、ヘキサメチレンジイソシアネート260質量部、ジシクロヘキシルメタンジイソシアネート150質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル49質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A7)を含むポリウレタン水分散体7を得た。
(Production Example 7: Cationic polyurethane resin (A7))
A four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube was charged with 1500 parts by mass of polycarbonate polyol (Nipporan 981R, manufactured by Tosoh Corporation, Mw = 2,000), bisphenol A-bis (hydroxy). Ethyl ether) (BPE20T, Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g) 100 parts by mass, N-methyldiethanolamine 50 parts by mass, hexamethylene diisocyanate 260 parts by mass, dicyclohexylmethane diisocyanate 150 parts by mass, methyl ethyl ketone 800 parts by mass In addition, it was reacted at 75 ° C. for 4 hours to obtain a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 3.0% by mass with respect to the non-volatile content. This solution was cooled to 40 ° C., 49 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 7 containing a cationic polyurethane resin (A7) having a nonvolatile content of about 35% by mass.
(製造例8:カチオン性ポリウレタン樹脂(A8))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(ニッポラン981R、東ソー(株)製、Mw=2,000)1500質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)100質量部、N-メチルジエタノールアミン50質量部、ヘキサメチレンジイソシアネート315質量部、ジシクロヘキシルメタンジイソシアネート80質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル49質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A8)を含むポリウレタン水分散体8を得た。
(Production Example 8: Cationic polyurethane resin (A8))
A four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube was charged with 1500 parts by mass of polycarbonate polyol (Nipporan 981R, manufactured by Tosoh Corporation, Mw = 2,000), bisphenol A-bis (hydroxy). Ethyl ether) (BPE20T, manufactured by Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g) 100 parts by mass, N-methyldiethanolamine 50 parts by mass, hexamethylene diisocyanate 315 parts by mass, dicyclohexylmethane diisocyanate 80 parts by mass, methyl ethyl ketone 800 parts by mass In addition, it was reacted at 75 ° C. for 4 hours to obtain a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 3.0% by mass with respect to the non-volatile content. This solution was cooled to 40 ° C., 49 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 8 containing a cationic polyurethane resin (A8) having a nonvolatile content of about 35% by mass.
(製造例9:カチオン性ポリウレタン樹脂(A9))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(ニッポラン981R、東ソー(株)製、Mw=2,000)1500質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)50質量部、N-メチルジエタノールアミン50質量部、ヘキサメチレンジイソシアネート310質量部、ジシクロヘキシルメタンジイソシアネート35質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル49質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A9)を含むポリウレタン水分散体9を得た。
(Production Example 9: Cationic polyurethane resin (A9))
A four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube was charged with 1500 parts by mass of polycarbonate polyol (Nipporan 981R, manufactured by Tosoh Corporation, Mw = 2,000), bisphenol A-bis (hydroxy). Ethyl ether) (BPE20T, manufactured by Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g), 50 parts by mass of N-methyldiethanolamine, 310 parts by mass of hexamethylene diisocyanate, 35 parts by mass of dicyclohexylmethane diisocyanate, and 800 parts by mass of methyl ethyl ketone. In addition, it was reacted at 75 ° C. for 4 hours to obtain a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 3.0% by mass with respect to the non-volatile content. This solution was cooled to 40 ° C., 49 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 9 containing a cationic polyurethane resin (A9) having a nonvolatile content of about 35% by mass.
(製造例10:カチオン性ポリウレタン樹脂(A10))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(ニッポラン981R、東ソー(株)製、Mw=2,000)750質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)125質量部、N-メチルジエタノールアミン50質量部、ヘキサメチレンジイソシアネート290質量部、ジシクロヘキシルメタンジイソシアネート35質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル51質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A10)を含むポリウレタン水分散体10を得た。
(Production Example 10: Cationic polyurethane resin (A10))
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube, 750 parts by weight of polycarbonate polyol (Niporan 981R, manufactured by Tosoh Corporation, Mw = 2,000), bisphenol A-bis (hydroxy) (Ethyl ether) (BPE20T, manufactured by Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g) 125 parts by mass, N-methyldiethanolamine 50 parts by mass, hexamethylene diisocyanate 290 parts by mass, dicyclohexylmethane diisocyanate 35 parts by mass, methyl ethyl ketone 800 parts by mass In addition, it was reacted at 75 ° C. for 4 hours to obtain a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 3.0% by mass with respect to the non-volatile content. This solution was cooled to 40 ° C., 51 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 10 containing a cationic polyurethane resin (A10) having a nonvolatile content of about 35% by mass.
(製造例11:カチオン性ポリウレタン樹脂(A11))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(ニッポラン981R、東ソー(株)製、Mw=2,000)750質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)125質量部、N-メチルジエタノールアミン50質量部、ヘキサメチレンジイソシアネート220質量部、ジシクロヘキシルメタンジイソシアネート110質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル50質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A11)を含むポリウレタン水分散体11を得た。
(Production Example 11: Cationic polyurethane resin (A11))
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube, 750 parts by weight of polycarbonate polyol (Niporan 981R, manufactured by Tosoh Corporation, Mw = 2,000), bisphenol A-bis (hydroxy) Ethyl ether) (BPE20T, manufactured by Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g) 125 parts by mass, N-methyldiethanolamine 50 parts by mass, hexamethylene diisocyanate 220 parts by mass, dicyclohexylmethane diisocyanate 110 parts by mass, methyl ethyl ketone 800 parts by mass In addition, it was reacted at 75 ° C. for 4 hours to obtain a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 3.0% by mass with respect to the non-volatile content. The solution was cooled to 40 ° C., 50 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 11 containing a cationic polyurethane resin (A11) having a nonvolatile content of about 35% by mass.
(製造例12:カチオン性ポリウレタン樹脂(A12))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(ニッポラン980、東ソー(株)製、Mw=1,000)500質量部、ポリカーボネートポリオール(ニッポラン981R、東ソー(株)製、Mw=2,000)250質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)150質量部、N-メチルジエタノールアミン50質量部、ヘキサメチレンジイソシアネート275質量部、ジシクロヘキシルメタンジイソシアネート150質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル44質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A12)を含むポリウレタン水分散体12を得た。
(Production Example 12: Cationic polyurethane resin (A12))
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube, 500 parts by mass of polycarbonate polyol (Nipporan 980, manufactured by Tosoh Corporation, Mw = 1,000), polycarbonate polyol (Nipporan 981R, Tosoh Co., Ltd., Mw = 2,000) 250 parts by mass, bisphenol A-bis (hydroxyethyl ether) (BPE20T, Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g) 150 parts by mass, N-methyldiethanolamine 50 Urethane whose mass content is 275 parts by mass of hexamethylene diisocyanate, 150 parts by mass of dicyclohexylmethane diisocyanate, and 800 parts by mass of methyl ethyl ketone and is reacted at 75 ° C. for 4 hours, and the content of free isocyanate groups with respect to the nonvolatile content is 3.0% by mass. Prepoly To obtain a methyl ethyl ketone solution of the over. This solution was cooled to 40 ° C., 44 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 12 containing a cationic polyurethane resin (A12) having a nonvolatile content of about 35% by mass.
(製造例13:カチオン性ポリウレタン樹脂(A13))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(ニッポラン980、東ソー(株)製、Mw=1,000)1500質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)25質量部、N-メチルジエタノールアミン50質量部、ヘキサメチレンジイソシアネート500質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル49質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A13)を含むポリウレタン水分散体13を得た。
(Production Example 13: Cationic polyurethane resin (A13))
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube, 1500 parts by mass of polycarbonate polyol (Nipporan 980, manufactured by Tosoh Corporation, Mw = 1,000), bisphenol A-bis (hydroxy) Ethyl ether) (BPE20T, manufactured by Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g) 25 parts by mass, N-methyldiethanolamine 50 parts by mass, hexamethylene diisocyanate 500 parts by mass, methyl ethyl ketone 800 parts by mass were added, and 75 ° C. for 4 hours. By reacting, a methyl ethyl ketone solution of urethane prepolymer having a free isocyanate group content of 3.0% by mass relative to the nonvolatile content was obtained. This solution was cooled to 40 ° C., 49 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 13 containing a cationic polyurethane resin (A13) having a nonvolatile content of about 35% by mass.
(製造例14:カチオン性ポリウレタン樹脂(A14))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(ニッポラン980、東ソー(株)製、Mw=1,000)1500質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)25質量部、N-メチルジエタノールアミン50質量部、ヘキサメチレンジイソシアネート500質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル25質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A14)を含むポリウレタン水分散体14を得た。
(Production Example 14: Cationic polyurethane resin (A14))
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube, 1500 parts by mass of polycarbonate polyol (Nipporan 980, manufactured by Tosoh Corporation, Mw = 1,000), bisphenol A-bis (hydroxy) Ethyl ether) (BPE20T, manufactured by Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g) 25 parts by mass, N-methyldiethanolamine 50 parts by mass, hexamethylene diisocyanate 500 parts by mass, methyl ethyl ketone 800 parts by mass were added, and 75 ° C. for 4 hours. By reacting, a methyl ethyl ketone solution of urethane prepolymer having a free isocyanate group content of 3.0% by mass relative to the nonvolatile content was obtained. The solution was cooled to 40 ° C., 25 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 14 containing a cationic polyurethane resin (A14) having a nonvolatile content of about 35% by mass.
(製造例15:カチオン性ポリウレタン樹脂(A15))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(ニッポラン981R、東ソー(株)製、Mw=2,000)1600質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)150質量部、N-メチルジエタノールアミン50質量部、ヘキサメチレンジイソシアネート245質量部、ジシクロヘキシルメタンジイソシアネート275質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル48質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A15)を含むポリウレタン水分散体15を得た。
(Production Example 15: Cationic polyurethane resin (A15))
A four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube was charged with 1600 parts by weight of polycarbonate polyol (Nipporan 981R, manufactured by Tosoh Corporation, Mw = 2,000), bisphenol A-bis (hydroxy). 150 parts by mass of ethyl ether (BPE20T, manufactured by Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g), 50 parts by mass of N-methyldiethanolamine, 245 parts by mass of hexamethylene diisocyanate, 275 parts by mass of dicyclohexylmethane diisocyanate, and 800 parts by mass of methyl ethyl ketone. In addition, it was reacted at 75 ° C. for 4 hours to obtain a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 3.0% by mass with respect to the non-volatile content. This solution was cooled to 40 ° C., 48 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 15 containing a cationic polyurethane resin (A15) having a nonvolatile content of about 35% by mass.
(製造例16:カチオン性ポリウレタン樹脂(A16))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(ニッポラン981R、東ソー(株)製、Mw=2,000)600質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)50質量部、N-メチルジエタノールアミン175質量部、ヘキサメチレンジイソシアネート550質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル179質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A16)を含むポリウレタン水分散体16を得た。
(Production Example 16: Cationic polyurethane resin (A16))
A four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube was charged with 600 parts by mass of polycarbonate polyol (Nipporan 981R, manufactured by Tosoh Corporation, Mw = 2,000), bisphenol A-bis (hydroxy). Ethyl ether) (BPE20T, Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g) 50 parts by mass, N-methyldiethanolamine 175 parts by mass, hexamethylene diisocyanate 550 parts by mass, and methyl ethyl ketone 800 parts by mass were added at 75 ° C. for 4 hours. By reacting, a methyl ethyl ketone solution of urethane prepolymer having a free isocyanate group content of 3.0% by mass relative to the nonvolatile content was obtained. This solution was cooled to 40 ° C., 179 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 16 containing a cationic polyurethane resin (A16) having a nonvolatile content of about 35% by mass.
(製造例17:カチオン性ポリウレタン樹脂(A17))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリカーボネートポリオール(クラレポリオールC-3090、クラレ(株)製、Mw=3,000)1000質量部、ビスフェノールA-ビス(ヒドロキシエチルエーテル)(BPE20T、三洋化成(株)製、ヒドロキシ価346mg/g)20質量部、N-メチルジエタノールアミン30質量部、ヘキサメチレンジイソシアネート160質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル30質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A17)を含むポリウレタン水分散体17を得た。
(Production Example 17: Cationic polyurethane resin (A17))
A four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube was charged with 1000 parts by mass of polycarbonate polyol (Kuraray Polyol C-3090, manufactured by Kuraray Co., Ltd., Mw = 3,000), bisphenol A- 20 parts by mass of bis (hydroxyethyl ether) (BPE20T, manufactured by Sanyo Chemical Co., Ltd., hydroxy value 346 mg / g), 30 parts by mass of N-methyldiethanolamine, 160 parts by mass of hexamethylene diisocyanate, and 800 parts by mass of methyl ethyl ketone were added at 75 ° C. For 4 hours to obtain a methyl ethyl ketone solution of a urethane prepolymer having a free isocyanate group content of 3.0% by mass relative to the nonvolatile content. This solution was cooled to 40 ° C., 30 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 17 containing a cationic polyurethane resin (A17) having a nonvolatile content of about 35% by mass.
(製造例18:カチオン性ポリウレタン樹脂(A18))
 撹拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、ポリエチレングリコール(PEG2000、三洋化成(株)製、Mw=2,000)600質量部、N-メチルジエタノールアミン30質量部、ヘキサメチレンジイソシアネート80質量部、メチルエチルケトン800質量部を加え、75℃で4時間反応させ、不揮発分に対する遊離のイソシアネート基含有量が3.0質量%であるウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、硫酸ジメチル30.2質量部を加えて後、脱イオン水2700質量部を徐々に加えて乳化分散を行った。その後、エチレンジアミン45質量部を水100gに溶解した水溶液を添加し、1時間撹拌を継続した。これを減圧下、50℃で脱溶剤を行い、不揮発分約35質量%のカチオン性ポリウレタン樹脂(A18)を含むポリウレタン水分散体18を得た。
(Production Example 18: Cationic polyurethane resin (A18))
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube, 600 parts by mass of polyethylene glycol (PEG 2000, manufactured by Sanyo Chemical Co., Ltd., Mw = 2,000), 30 parts by mass of N-methyldiethanolamine Part, 80 parts by mass of hexamethylene diisocyanate and 800 parts by mass of methyl ethyl ketone were added and reacted at 75 ° C. for 4 hours to obtain a methyl ethyl ketone solution of urethane prepolymer having a free isocyanate group content of 3.0% by mass with respect to the nonvolatile content. . This solution was cooled to 40 ° C., 30.2 parts by mass of dimethyl sulfate was added, and 2700 parts by mass of deionized water was gradually added to carry out emulsification dispersion. Thereafter, an aqueous solution in which 45 parts by mass of ethylenediamine was dissolved in 100 g of water was added, and stirring was continued for 1 hour. The solvent was removed at 50 ° C. under reduced pressure to obtain a polyurethane water dispersion 18 containing a cationic polyurethane resin (A18) having a nonvolatile content of about 35% by mass.
 表2に使用したりん酸化合物(B)を、表3に使用した3価クロム化合物(C)を示す。 Table 2 shows the phosphoric acid compound (B) used, and Table 3 shows the trivalent chromium compound (C) used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
4.塗料の調製
 表4に示す組合せおよび割合にて、カチオン性ポリウレタン樹脂(A)、リン酸化合物(B)、および、3価クロム化合物(C)をこの順序で混合し、脱イオン水により固形分濃度を20質量%に調整することにより、塗料を調製した。なお、リン酸化合物(B)、および、3価クロム化合物(C)の含有割合は、カチオン性ポリウレタン樹脂(A)の固形分に対する質量%である(言い換えれば、カチオン性ポリウレタン樹脂(A)100質量部に対する、各成分の含有量(質量部)を意図する)。
4). Preparation of coating materials In the combinations and proportions shown in Table 4, the cationic polyurethane resin (A), the phosphoric acid compound (B), and the trivalent chromium compound (C) were mixed in this order, and the solid content was determined with deionized water. A coating material was prepared by adjusting the concentration to 20% by mass. In addition, the content rate of a phosphoric acid compound (B) and a trivalent chromium compound (C) is the mass% with respect to solid content of cationic polyurethane resin (A) (in other words, cationic polyurethane resin (A) 100). The content (parts by mass) of each component with respect to parts by mass is intended).
 なお、表4中、「BV/AV」は、リン酸化合物(B)のカチオン性ポリウレタン樹脂(A)の固形分に対する含有割合(質量%)(BV)とアミン価との比を表す。 In Table 4, “BV / AV” represents the ratio of the phosphoric acid compound (B) content ratio (% by mass) (BV) to the solid content of the cationic polyurethane resin (A) and the amine value.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
5.試験板の作製方法
 本発明の塗料をバーコーターにて各試験材上に塗布し、表5に示す到達板温度にて加熱処理を施し、各試験材上に皮膜を形成し、試験板を製造した。なお、各例における皮膜量は表5の通りであり、皮膜量の調整は塗料の濃度調整(脱イオン水希釈)とバーコーターの番手によって実施した。
5. Test plate production method The coating material of the present invention is applied onto each test material with a bar coater, heat-treated at the ultimate plate temperature shown in Table 5, a film is formed on each test material, and a test plate is produced. did. The coating amount in each example is as shown in Table 5, and the coating amount was adjusted by adjusting the concentration of the paint (diionized water dilution) and the bar coater.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
6.評価方法
(1)外観特性(皮膜外観)
 得られた試験板の外観を目視評価した。○以上は実用レベルである。
◎+:メッキ外観とほぼ同じであり、皮膜処理後も殆ど変化しない
◎:メッキ外観とほぼ同じであるが、目視する角度によっては極僅かに色調ムラがある。
○:メッキ外観とほぼ同じであるが、極僅かに色調ムラがある程度である。
△:メッキ外観と異なる部位があり、その部位が薄く白色または黄色である。
×:メッキ外観と異なる部位が多く、明らかに白色または黄色である。
6). Evaluation method (1) Appearance characteristics (film appearance)
The appearance of the obtained test plate was visually evaluated. ○ Above are practical levels.
◎ +: Almost the same as the plating appearance, and hardly changes even after the coating treatment ◎: Almost the same as the plating appearance, but there is a slight color tone unevenness depending on the viewing angle.
○: Almost the same as the plating appearance, but there is a slight color unevenness.
(Triangle | delta): There exists a site | part different from a plating external appearance, and the site | part is light white or yellow.
X: There are many parts different from the plating appearance, and clearly white or yellow.
(2)耐ラビング性(耐溶剤性)
 ガーゼにエタノールを染み込ませ、得られた試験板の皮膜の表面に往復20回のラビング試験を施し、表面を観察した。△以上は実用レベルである。
◎+:外観全く変化なし
◎:外観変化なし(正面から見て変化なし)、斜めから見て若干変化あり
○:正面から見て若干変化有り
△:正面から見てやや変化有り(半分程度剥離)
×:変化有り(ほぼ全面剥離)
(2) Rubbing resistance (solvent resistance)
The gauze was soaked with ethanol, the surface of the film of the obtained test plate was subjected to a rubbing test 20 times, and the surface was observed. Above Δ is a practical level.
◎ +: No change in appearance ◎: No change in appearance (no change when viewed from the front), slight change when viewed from the angle ○: Some change when viewed from the front △: Some change when viewed from the front )
×: Changed (almost completely peeled)
(3)耐食性
 得られた試験板を用いて、JIS-Z-2371に基づき塩水噴霧試験を行い、24時間後の白錆発生面積率を求め、以下の基準に従って評価した。△以上は実用レベルである。ただし、試験材M3を用いた実施例および比較例に関しては、塩水噴霧試験48時間後の白錆発生面積率を求め、以下の基準に従って評価した。
◎+:5%未満
◎:5%以上10%未満
○+:10%以上20%未満
○:20%以上30%未満
△+:30%以上40%未満
△:40%以上50%未満
×:50%以上
(3) Corrosion resistance Using the obtained test plate, a salt spray test was performed based on JIS-Z-2371, the white rust generation area ratio after 24 hours was determined and evaluated according to the following criteria. Above Δ is a practical level. However, for the examples and comparative examples using the test material M3, the white rust generation area ratio after 48 hours of the salt spray test was obtained and evaluated according to the following criteria.
◎ +: Less than 5% ◎: 5% or more and less than 10% ○ +: 10% or more and less than 20% ○: 20% or more and less than 30% Δ +: 30% or more and less than 40% Δ: 40% or more and less than 50% ×: 50% or more
(4)リン酸塩処理性(塗布型リン酸塩処理性)
 得られた試験板を、日本パーカライジング(株)製りん酸塩処理用化成薬剤パルボンドL15C(A剤250g/L+B剤250g/L、25℃、刷毛塗り)で処理した後に5分間放置し、刷毛塗り部分の表面状態を観察し、刷毛塗り部分のグレー変色面積率を求め、以下の基準に従って評価した。なお、グレー変色面積率が高いほど、形成された皮膜がリン酸塩処理によって部分的に溶解し、且つ、リン酸塩皮膜が形成されてグレー色の色調を呈する。△以上は実用レベルである。
◎+:100%
◎:95%以上100%未満
○:85%以上95%未満
△:70%以上85%未満
×:70%未満
(4) Phosphate treatability (application type phosphate treatability)
The test plate obtained was treated with Nippon Parkerizing Co., Ltd. phosphate treatment chemical Palbond L15C (A agent 250 g / L + B agent 250 g / L, 25 ° C., brushed), left for 5 minutes, and then brushed. The surface state of the part was observed, the gray discoloration area ratio of the brushed part was determined, and evaluated according to the following criteria. Note that the higher the gray discoloration area ratio, the part of the formed film is dissolved by the phosphate treatment, and the phosphate film is formed to exhibit a gray color tone. Above Δ is a practical level.
◎ +: 100%
◎: 95% or more and less than 100% ○: 85% or more and less than 95% Δ: 70% or more and less than 85% ×: less than 70%
(5)上塗り塗装密着性
 得られた試験板の皮膜上に、バーコーターを用いてメラミンアルキッド系樹脂塗料を乾燥膜厚が25μmとなるように塗布し、炉温130℃で20分間焼き付けて、塗膜を製造した。次に、塗膜に対してカッターで幅1mmの100マスの碁盤目を施し、-20℃の恒温庫に5時間以上静置し、恒温庫から取り出した直後に碁盤目の部位を7mm押し出しでエリクセン加工を施した。加工を施した部分のテープ剥離試験を実施し、碁盤目の剥離個数を次のように評価した。△以上は実用レベルである。
◎+:剥離なし
◎:剥離個数1個以上5個未満
○:剥離個数6個以上10個未満
△:剥離個数11個以上20個未満
×:剥離個数20個以上
(5) Top coat adhesion Adhesion of the melamine alkyd resin coating to a dry film thickness of 25 μm using a bar coater on the film of the obtained test plate, and baking at a furnace temperature of 130 ° C. for 20 minutes. A coating was produced. Next, 100 square grids with a width of 1 mm are applied to the coating film with a cutter, left in a thermostatic chamber at -20 ° C. for 5 hours or more, and immediately after removal from the thermostatic chamber, the grids are extruded by 7 mm. Eriksen processing was applied. A tape peeling test was performed on the processed parts, and the number of peeled grids was evaluated as follows. Above Δ is a practical level.
◎ +: No peeling ◎: Number of peeled 1 to less than 5 ○: Number of peeled 6 to less than 10 △: Number of peeled 11 to less than 20 ×: Number of peeled 20 or more
(6)耐衝撃性
 得られた試験板の皮膜上に、バーコーターを用いてメラミンアルキッド系樹脂塗料を乾燥膜厚が25μmとなるように塗布し、炉温130℃で20分間焼き付けて、塗膜を製造した。次に、塗膜を有する試験板を40℃の恒温庫に5時間以上静置し、試験板を取り出した後、すぐに、デュポン衝撃試験機を用いて、直径1/2インチで1kgの垂錘を50cmの高さから塗膜に対して落下させた後、衝撃部をテープ剥離した。判定は塗膜の残存面積率を求めた。△以上は実用レベルである。
◎+:100%
◎:95%以上100%未満
○:80%以上95%未満
△:50%以上80%未満
×:50%未満
(6) Impact resistance A melamine alkyd resin coating was applied on the obtained test plate film using a bar coater to a dry film thickness of 25 μm, and baked at a furnace temperature of 130 ° C. for 20 minutes. A membrane was produced. Next, the test plate having the coating film is left in a constant temperature chamber at 40 ° C. for 5 hours or more, and immediately after taking out the test plate, using a DuPont impact tester, a 1 kg droop with a diameter of 1/2 inch is used. After dropping the weight with respect to the coating film from a height of 50 cm, the impact portion was peeled off with tape. The determination was made by determining the remaining area ratio of the coating film. Above Δ is a practical level.
◎ +: 100%
◎: 95% or more and less than 100% ○: 80% or more and less than 95% △: 50% or more and less than 80% ×: less than 50%
(7)塗料の貯蔵安定性
 各実施例および比較例にて使用した塗料を40℃の雰囲気で静置した場合に、ゲル化、沈殿が発生するまでの期間で貯蔵安定性を次のように評価した。△以上は実用レベルである。
◎+:3ヶ月以上
◎:2ヶ月以上3ヶ月未満
○:1ヶ月以上2ヶ月未満
△:2週間以上1ヶ月未満
×:2週間未満
(7) Storage stability of paint When the paint used in each example and comparative example is allowed to stand in an atmosphere of 40 ° C, the storage stability is as follows in the period until gelation and precipitation occur. evaluated. Above Δ is a practical level.
◎ +: 3 months or more ◎: 2 months or more and less than 3 months ○: 1 month or more and less than 2 months △: 2 weeks or more and less than 1 month ×: less than 2 weeks
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表6に示すように、本発明の塗料を用いることにより所望の効果が得られることが確認された。
 なかでも、実施例2、5、12および21と他の実施例との比較より、リン酸化合物を使用する場合、より効果が優れる(特に、リン酸塩処理性が優れる)ことが確認された。
 また、実施例26と他の実施例(例えば、実施例25など)との比較より、損失正接tanδのピーク温度(Tg2)が所定範囲(-50℃~-2℃)の場合、上塗り塗装密着性がより優れることが確認された。
 また、実施例7~8、および、実施例12~19の比較より、比((BV)/(AV))が所定の範囲(0.1~9.5)の場合、より効果が優れることが確認された。
 また、実施例20と実施例27~29との比較より、アミン価(AV)が所定の範囲(2~5mgKOH/g)の場合、より効果が優れる(特に、貯蔵安定性が優れる)ことが確認された。
 また、実施例25と実施例30~32との比較より、3価クロム化合物(C)をさらに使用することにより、より効果が優れる(特に、耐食性が優れる)ことが確認された。
 
As shown in Table 6, it was confirmed that the desired effect was obtained by using the paint of the present invention.
In particular, it was confirmed from the comparison between Examples 2, 5, 12 and 21 and other examples that when the phosphate compound is used, the effect is more excellent (particularly, the phosphate treatment ability is excellent). .
Further, when the peak temperature (Tg2) of the loss tangent tan δ is within a predetermined range (−50 ° C. to −2 ° C.) by comparing Example 26 with other examples (for example, Example 25, etc.) It was confirmed that the property is superior.
Further, when the ratio ((BV) / (AV)) is within a predetermined range (0.1 to 9.5), the effect is more excellent than the comparison between Examples 7 to 8 and Examples 12 to 19. Was confirmed.
Further, from comparison between Example 20 and Examples 27 to 29, when the amine value (AV) is within a predetermined range (2 to 5 mgKOH / g), the effect is more excellent (particularly, the storage stability is excellent). confirmed.
Further, from comparison between Example 25 and Examples 30 to 32, it was confirmed that the use of the trivalent chromium compound (C) further improved the effect (particularly the corrosion resistance was excellent).

Claims (10)

  1.  第1級~第3級アミノ基および第4級アンモニウム塩基からなる群から選択される少なくとも1種のカチオン性官能基を有するカチオン性ポリウレタン樹脂(A)を含有し、
     前記カチオン性ポリウレタン樹脂(A)は、ポリカーボネート構造単位およびビスフェノール構造単位を有し、
     前記カチオン性ポリウレタン樹脂(A)の損失弾性率E’’の最大ピーク値を示す温度(Tg1)が-60℃~-5℃の範囲にあり、
     前記カチオン性ポリウレタン樹脂(A)の損失弾性率E’’と貯蔵弾性率E’との比である損失正接tanδが一つのピークからなる、どぶ漬け溶融亜鉛メッキ鋼板用塗料。
    A cationic polyurethane resin (A) having at least one cationic functional group selected from the group consisting of primary to tertiary amino groups and quaternary ammonium bases,
    The cationic polyurethane resin (A) has a polycarbonate structural unit and a bisphenol structural unit,
    The cationic polyurethane resin (A) has a temperature (Tg1) showing the maximum peak value of the loss elastic modulus E ″ in the range of −60 ° C. to −5 ° C.,
    A paint for hot dipped galvanized steel sheets, in which the loss tangent tan δ, which is the ratio of the loss elastic modulus E ″ and the storage elastic modulus E ′ of the cationic polyurethane resin (A), has one peak.
  2.  前記損失正接tanδのピーク温度(Tg2)が-50℃~-2℃の範囲にある、請求項1に記載のどぶ漬け溶融亜鉛メッキ鋼板用塗料。 The paint for hot dipped galvanized steel sheets according to claim 1, wherein the peak temperature (Tg2) of the loss tangent tan δ is in the range of -50 ° C to -2 ° C.
  3.  さらに、リン酸化合物(B)を含有する、請求項1または2に記載のどぶ漬け溶融亜鉛メッキ鋼板用塗料。 The paint for hot dipped galvanized steel sheets according to claim 1 or 2, further comprising a phosphate compound (B).
  4.  前記リン酸化合物(B)が、オルトリン酸、縮合リン酸、および、これらの塩からなる群から選択される少なくとも1種を含有する、請求項3に記載のどぶ漬け溶融亜鉛メッキ鋼板用塗料。 The paint for hot dipped galvanized steel sheets according to claim 3, wherein the phosphoric acid compound (B) contains at least one selected from the group consisting of orthophosphoric acid, condensed phosphoric acid, and salts thereof.
  5.  前記カチオン性ポリウレタン樹脂(A)のアミン価(AV)が2.0~5.0mgKOH/gである、請求項1~4のいずれか1項に記載のどぶ漬け溶融亜鉛メッキ鋼板用塗料。 The paint for hot dipped galvanized steel sheets according to any one of claims 1 to 4, wherein the cationic polyurethane resin (A) has an amine value (AV) of 2.0 to 5.0 mgKOH / g.
  6.  前記リン酸化合物(B)の前記カチオン性ポリウレタン樹脂の固形分に対する含有割合(質量%)(BV)と前記アミン価との比((BV)/(AV))が、0.1~9.5である、請求項5に記載のどぶ漬け溶融亜鉛メッキ鋼板用塗料。 The ratio (% (BV) / (AV)) of the phosphoric acid compound (B) to the solid content of the cationic polyurethane resin (% by mass) (BV) and the amine value is 0.1 to 9. The paint for hot dipped galvanized steel sheets according to claim 5, which is 5.
  7.  さらに、3価クロム化合物(C)を含有する、請求項1~6のいずれか1項に記載のどぶ漬け溶融亜鉛メッキ鋼板用塗料。 The paint for hot dipped galvanized steel sheets according to any one of claims 1 to 6, further comprising a trivalent chromium compound (C).
  8.  請求項1~7のいずれか1項に記載のどぶ漬け溶融亜鉛メッキ鋼板用塗料を用いて、どぶ漬け溶融亜鉛メッキ鋼板の処理を行う、どぶ漬け溶融亜鉛メッキ鋼板の処理方法。 A method for treating a soaked hot dip galvanized steel sheet, wherein the soaked hot dip galvanized steel sheet is treated with the paint for hot soaked hot dip galvanized steel sheet according to any one of claims 1 to 7.
  9.  請求項1~7のいずれか1項に記載のどぶ漬け溶融亜鉛メッキ鋼板用塗料と、どぶ漬け溶融亜鉛メッキ鋼板とを接触させ、前記どぶ漬け溶融亜鉛メッキ鋼板およびその表面上に配置された皮膜を有する表面処理どぶ漬け溶融亜鉛メッキ鋼板を製造する、表面処理どぶ漬け溶融亜鉛メッキ鋼板の製造方法。 The paint for hot dipped galvanized steel sheet according to any one of claims 1 to 7 is contacted with the hot dipped galvanized steel sheet, and the film disposed on the surface thereof. A method for producing a surface-treated soaked hot-dip galvanized steel sheet, which comprises:
  10.  請求項9に記載の製造方法より得られる、表面処理溶融亜鉛メッキ鋼板。
     
    A surface-treated hot-dip galvanized steel sheet obtained from the production method according to claim 9.
PCT/JP2014/084637 2014-12-26 2014-12-26 Paint for hot-dip galvanized steel sheet, method for treating hot-dip galvanized steel sheet, process for producing surface-treated hot-dip galvanized steel sheet, and surface-treated hot-dip galvanized steel sheet WO2016103491A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2014/084637 WO2016103491A1 (en) 2014-12-26 2014-12-26 Paint for hot-dip galvanized steel sheet, method for treating hot-dip galvanized steel sheet, process for producing surface-treated hot-dip galvanized steel sheet, and surface-treated hot-dip galvanized steel sheet
JP2016565832A JP6359690B2 (en) 2014-12-26 2014-12-26 Paint for hot dipped galvanized steel sheet, processing method for hot dipped galvanized steel sheet, method for manufacturing surface dipped hot dip galvanized steel sheet, and surface-treated hot dip galvanized steel sheet
CN201480084464.3A CN107109111B (en) 2014-12-26 2014-12-26 Coating material for hot-dip galvanized steel sheet, method for treating steel sheet, method for producing surface-treated steel sheet, and surface-treated steel sheet
TW104143783A TWI683869B (en) 2014-12-26 2015-12-25 Coating material for zinc hot-dip galvanized steel sheet, method for treating zinc hot-dip galvanized steel sheet, method for producing surface-treated zinc hot-dip galvanized steel sheet and surface-treated zinc-galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084637 WO2016103491A1 (en) 2014-12-26 2014-12-26 Paint for hot-dip galvanized steel sheet, method for treating hot-dip galvanized steel sheet, process for producing surface-treated hot-dip galvanized steel sheet, and surface-treated hot-dip galvanized steel sheet

Publications (1)

Publication Number Publication Date
WO2016103491A1 true WO2016103491A1 (en) 2016-06-30

Family

ID=56149574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084637 WO2016103491A1 (en) 2014-12-26 2014-12-26 Paint for hot-dip galvanized steel sheet, method for treating hot-dip galvanized steel sheet, process for producing surface-treated hot-dip galvanized steel sheet, and surface-treated hot-dip galvanized steel sheet

Country Status (4)

Country Link
JP (1) JP6359690B2 (en)
CN (1) CN107109111B (en)
TW (1) TWI683869B (en)
WO (1) WO2016103491A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736594A (en) * 2022-04-21 2022-07-12 上海长润化工有限公司 Water-based single-component polyurethane varnish for galvanized sheet and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186777A (en) * 1987-01-28 1988-08-02 Kansai Paint Co Ltd Surface treating composition for imparting high corrosion resistance to metallic surface
WO2006004327A1 (en) * 2004-06-30 2006-01-12 Soon Suck Jang Digital hearing aid enhancing directional performance
WO2006126394A1 (en) * 2005-05-23 2006-11-30 Nihon Parkerizing Co., Ltd. Aqueous surface treating agent for precoated metal material, surface treatment method and method for producing precoated metal material
JP2007197669A (en) * 2005-12-26 2007-08-09 Dainippon Ink & Chem Inc Coating agent for metal
WO2008062605A1 (en) * 2006-11-21 2008-05-29 Nittetsu Mining Co., Ltd Resin composition, anti-reflection coating material, anti-dazzling coating material, anti-reflection coating, anti-reflection film, anti-dazzling film, corrosion protective coating, corrosion protective coating material, coating material, and coating film
JP2009102528A (en) * 2007-10-24 2009-05-14 Kansai Paint Co Ltd Aqueous resin composition and aqueous coating composition containing the same
JP2010053340A (en) * 2008-07-31 2010-03-11 Arakawa Chem Ind Co Ltd Rust preventive paint composition for steel sheet
WO2013133284A1 (en) * 2012-03-06 2013-09-12 新日鐵住金株式会社 Coated metal plate for vehicles which exhibits excellent resistance weldability, corrosion resistance, and moldability
WO2014175194A1 (en) * 2013-04-22 2014-10-30 日本パーカライジング株式会社 Substrate treating composition for coated metal plate, plated metal plate subjected to substrate treatment and method for manufacturing said plate, coated and plated metal plate and method for manufacturing said plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092998A1 (en) * 2004-03-29 2005-10-06 Dai-Ichi Kogyo Seiyaku Co., Ltd. Water-based coating composition for surface treatment of metallic material
JP2006118012A (en) * 2004-10-22 2006-05-11 Nippon Parkerizing Co Ltd Surface treatment agent for metal, surface treatment method for metallic material, and surface-treated metallic material
WO2006043727A1 (en) * 2004-10-22 2006-04-27 Nihon Parkerizing Co., Ltd. Agent for treating metal surface, method of treating surface of metallic material, and surface-treated metallic material
JP5741142B2 (en) * 2011-03-31 2015-07-01 Dic株式会社 Cationic urethane resin composition and metal coating agent

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186777A (en) * 1987-01-28 1988-08-02 Kansai Paint Co Ltd Surface treating composition for imparting high corrosion resistance to metallic surface
WO2006004327A1 (en) * 2004-06-30 2006-01-12 Soon Suck Jang Digital hearing aid enhancing directional performance
WO2006126394A1 (en) * 2005-05-23 2006-11-30 Nihon Parkerizing Co., Ltd. Aqueous surface treating agent for precoated metal material, surface treatment method and method for producing precoated metal material
JP2007197669A (en) * 2005-12-26 2007-08-09 Dainippon Ink & Chem Inc Coating agent for metal
WO2008062605A1 (en) * 2006-11-21 2008-05-29 Nittetsu Mining Co., Ltd Resin composition, anti-reflection coating material, anti-dazzling coating material, anti-reflection coating, anti-reflection film, anti-dazzling film, corrosion protective coating, corrosion protective coating material, coating material, and coating film
JP2009102528A (en) * 2007-10-24 2009-05-14 Kansai Paint Co Ltd Aqueous resin composition and aqueous coating composition containing the same
JP2010053340A (en) * 2008-07-31 2010-03-11 Arakawa Chem Ind Co Ltd Rust preventive paint composition for steel sheet
WO2013133284A1 (en) * 2012-03-06 2013-09-12 新日鐵住金株式会社 Coated metal plate for vehicles which exhibits excellent resistance weldability, corrosion resistance, and moldability
WO2014175194A1 (en) * 2013-04-22 2014-10-30 日本パーカライジング株式会社 Substrate treating composition for coated metal plate, plated metal plate subjected to substrate treatment and method for manufacturing said plate, coated and plated metal plate and method for manufacturing said plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736594A (en) * 2022-04-21 2022-07-12 上海长润化工有限公司 Water-based single-component polyurethane varnish for galvanized sheet and preparation method thereof

Also Published As

Publication number Publication date
CN107109111A (en) 2017-08-29
TWI683869B (en) 2020-02-01
CN107109111B (en) 2020-03-10
JPWO2016103491A1 (en) 2017-08-24
JP6359690B2 (en) 2018-07-18
TW201638241A (en) 2016-11-01

Similar Documents

Publication Publication Date Title
JP5183586B2 (en) Water-based paint surface treatment agent also used as a primer, surface-treated metal material, and pre-coated metal material
CN104246010B (en) The surface treated zinc-based metal plated steel sheet of pars affecta and end face corrosion resistance excellence and manufacture method thereof
CN102625818B (en) Composition for adhesive layer formation for use for steel sheet having surface treated with multiple layers
TWI616498B (en) Base treatment composition for coated steel plate, base plated steel plate and manufacturing method thereof, coated plated steel plate and manufacturing method thereof
JP4919799B2 (en) Water-based paint composition for metal material surface treatment
EP1959030A2 (en) Aqueous surface-treating agent for metal material and surface-coated metal material
TWI668327B (en) Aqueous metal surface treatment agent and metal surface treatment method
JP2018159032A (en) Epoxy viscous agent and cationic electrodeposition coating material composition
CN103003373B (en) Use the method for the anticorrosive coating metal surfaces of phosphorous polyester
JPS6264872A (en) Primer composition for metallic material and method of coating
JP7230356B2 (en) Surface-treated steel sheet and method for producing surface-treated steel sheet
JP6310154B2 (en) Metal surface treatment composition, method for producing metal material
JP6359690B2 (en) Paint for hot dipped galvanized steel sheet, processing method for hot dipped galvanized steel sheet, method for manufacturing surface dipped hot dip galvanized steel sheet, and surface-treated hot dip galvanized steel sheet
JP2009046564A (en) Extraheavy corrosion-resistant coating material, coating method thereof and coated material
KR102115648B1 (en) Single-component high anti-corrosion quick-drying epoxy coating composition
JP2017179261A (en) Primer coating for solvent-based metal, metal material with thin film and precoat metal material
JP2003041186A (en) Water-dispersed polyurethane composition for coating metallic material free from chrome finishing and method for producing the same
JP7417473B2 (en) Coated plated steel plate
JP2003226728A (en) Water-dispersible polyurethane composition, its manufacturing method and coating for non-chromium- treated metal
JP6767121B2 (en) Chromium-free alloyed hot-dip galvanized steel sheet and its manufacturing method
JPS62225569A (en) Primer composition for metal material and coating thereof
JP2022090448A (en) One-liquid type undercoat coating composition for metal
JPH0463109B2 (en)
JP2005022105A (en) Coated steel panel
JPH05148449A (en) Method for coating metal material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14909094

Country of ref document: EP

Kind code of ref document: A1