JP2012215347A - Aluminum fin material for heat exchanger - Google Patents

Aluminum fin material for heat exchanger Download PDF

Info

Publication number
JP2012215347A
JP2012215347A JP2011081006A JP2011081006A JP2012215347A JP 2012215347 A JP2012215347 A JP 2012215347A JP 2011081006 A JP2011081006 A JP 2011081006A JP 2011081006 A JP2011081006 A JP 2011081006A JP 2012215347 A JP2012215347 A JP 2012215347A
Authority
JP
Japan
Prior art keywords
resin layer
hydrophilic
hydrophilic resin
heat exchanger
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011081006A
Other languages
Japanese (ja)
Other versions
JP5620870B2 (en
Inventor
Takahiro Shimizu
高宏 清水
Keita Tateyama
慶太 館山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011081006A priority Critical patent/JP5620870B2/en
Publication of JP2012215347A publication Critical patent/JP2012215347A/en
Application granted granted Critical
Publication of JP5620870B2 publication Critical patent/JP5620870B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a hydrophilic aluminum fin material for a heat exchanger that has a suitable deodorization effect suitable for an indoor unit, etc. of an air conditioner.SOLUTION: The fin material 10 for a heat exchanger includes a base material 1 made of aluminum, a surface treatment film 2 formed on the surface of the base material 1 by the chemical conversion coating, a first hydrophilic resin layer 3, and a second hydrophilic resin layer 4, each hydrophilic resin layer being 0.05-2 μm thick, in this order. The first hydrophilic resin layer 3 comprises at least one of a hydrophilic resin selected from a polyvinyl alcohol based resin, an acrylic resin, and a sulfonic acid based resin. The second hydrophilic resin layer 4 is made up of a hydrophilic resin binder 41 containing a polyvinyl alcohol based resin and a polyethylene oxide based resin, and a predetermined amount of Zn-supported TiOparticulates 42.

Description

本発明は、空調機の室内機等に使用される熱交換器用アルミニウムフィン材に関する。   The present invention relates to an aluminum fin material for a heat exchanger used for an indoor unit or the like of an air conditioner.

熱交換器は、ルームエアコン、パッケージエアコン、冷凍ショーケース、冷蔵庫、オイルクーラー、およびラジエータ等として、様々な分野に利用されている。熱交換器においては、冷房運転時の結露水がフィンの間に溜まると、送風時の抵抗となって熱交換器特性を低下させる。熱交換器のフィンには、一般的に、熱伝導性および加工性が優れることからアルミニウムまたはアルミニウム合金(以下、総称してアルミニウムという)が使用されている。このようなアルミニウムからなるフィンは、耐食性に加え、フィン表面で結露水が溜まらないように親水性または撥水性を付与するため、塗膜等の表面処理をフィンの成形前の板材(以下、フィン材という)に対して施されている。すなわち、フィン表面を親水性として結露水の流動性を高くするか、撥水性として結露水の水滴が大きくならないうちに落下させるか、であり、熱交換器の用途等によって選択される。例えばルームエアコン等の空調機の室内機に搭載される熱交換器には、結露水が飛散し易い撥水性とするよりもフィン表面に一様に水が広がる親水性とした方が好適である。   Heat exchangers are used in various fields such as room air conditioners, packaged air conditioners, refrigeration showcases, refrigerators, oil coolers, and radiators. In the heat exchanger, if the dew condensation water during the cooling operation is accumulated between the fins, it becomes a resistance during blowing and deteriorates the heat exchanger characteristics. Generally, aluminum or an aluminum alloy (hereinafter collectively referred to as aluminum) is used for the fin of the heat exchanger because of its excellent thermal conductivity and workability. In addition to corrosion resistance, such aluminum fins impart hydrophilicity or water repellency so that condensed water does not accumulate on the fin surface. (Referred to as material). That is, the surface of the fin is made hydrophilic to increase the fluidity of the condensed water, or it is made water-repellent and dropped before the water droplets of the condensed water become large, depending on the use of the heat exchanger and the like. For example, for a heat exchanger mounted on an indoor unit of an air conditioner such as a room air conditioner, it is preferable to use a hydrophilic property in which water uniformly spreads on the fin surface rather than water repellency in which condensed water is easily scattered. .

アルミニウムからなるフィンは、長期に空調機の熱交換器に使用されたときに、アルミニウムの腐食臭、さらに表面を親水性とした場合には、空調機の運転停止からある程度の時間、表面が濡れた状態であるために黴や雑菌が繁殖して、これら黴や雑菌による悪臭が発生する虞がある。また、親水性樹脂等で塗膜を形成したフィンについては、室内機の熱交換器に使用されて室内の空気を吸入したときに、室内の臭気(環境臭)が塗膜に吸着されて蓄積することになる。環境臭は、例えばタバコ臭であれば、臭気成分として、アセトアルデヒド、アンモニア、酢酸が含有される。フィンにおけるこれらの臭気は、空調機を運転したときに、空気と共に室内に送出されることになる。このようなフィンからの臭気の発生を抑制するために、親水性のフィンにはアルミニウムの耐食性や防黴性等と共に、環境臭を送出させないことが要求される。そのため、親水性樹脂塗料に脱臭、消臭効果を有する材料を混合して皮膜を形成したフィン材が開発されている(例えば特許文献1〜3)。   When fins made of aluminum are used in air conditioner heat exchangers for a long period of time, the surface becomes wet for some time after the air conditioner is shut down if the corrosive odor of aluminum is made hydrophilic. In this state, the moths and germs propagate and the odor due to these moths and germs may be generated. In addition, for fins with a coating film made of hydrophilic resin, etc., indoor odors (environmental odors) are adsorbed and accumulated on the coating film when used in indoor unit heat exchangers and inhaling indoor air. Will do. If the environmental odor is, for example, a tobacco odor, acetaldehyde, ammonia and acetic acid are contained as odor components. These odors in the fins are sent into the room together with air when the air conditioner is operated. In order to suppress the generation of such odors from the fins, it is required that the hydrophilic fins do not send out environmental odors together with the corrosion resistance and antifungal properties of aluminum. Therefore, fin materials have been developed in which a film is formed by mixing a hydrophilic resin paint with a material having deodorizing and deodorizing effects (for example, Patent Documents 1 to 3).

特許文献1には、吸着性に優れたカーボンブラックを適用したアルミニウムフィン材が開示されている。また、特許文献2には、酸化チタン等の光触媒を適用したアルミニウムフィン材が開示されている。特許文献3には、吸着作用と光触媒作用を併せ持つ材料としてチタンアパタイトを適用したフィンが開示されている。   Patent Document 1 discloses an aluminum fin material to which carbon black having excellent adsorptivity is applied. Patent Document 2 discloses an aluminum fin material to which a photocatalyst such as titanium oxide is applied. Patent Document 3 discloses a fin to which titanium apatite is applied as a material having both an adsorption action and a photocatalytic action.

特開2009−214017号公報JP 2009-2104017 A 特許第3093953号公報Japanese Patent No. 3093953 特開2005−214469号公報JP 2005-214469 A

前記従来技術の特許文献1,3のように塗膜に臭気成分を吸着させるフィンは、空調機の長期の運転により、フィン表面に臭気成分が蓄積するにしたがい吸着性能が低下し、最終的には吸着飽和となって脱臭効果がなくなり、却って臭気の発生源となる虞がある。また、特許文献2,3のように光触媒を利用したフィンは、消臭性能を発現させるために紫外線等の光照射が必要となるが、室内機に搭載される場合には、導光用の窓を設けても設置場所によっては外光が十分に照射されないことがあり、光源を内蔵する等、室内機の設計上の制約を生じる。   As described in Patent Documents 1 and 3 of the prior art, the fin that adsorbs the odorous component to the coating film is deteriorated in adsorption performance as the odorous component accumulates on the fin surface due to the long-term operation of the air conditioner. Becomes saturated with adsorption and has no deodorizing effect, and may become a source of odor. Moreover, although the fin using a photocatalyst like patent document 2 and 3 needs light irradiation, such as an ultraviolet-ray, in order to express deodorant performance, when mounted in an indoor unit, it is for light guides. Even if the window is provided, external light may not be sufficiently irradiated depending on the installation location, which causes restrictions on the design of the indoor unit such as incorporating a light source.

本発明は前記問題点に鑑みてなされたものであり、長期の運転においても防臭効果を保持できる、空調機の室内機等に好適な熱交換器用アルミニウムフィン材を提供することを目的とする。   This invention is made | formed in view of the said problem, and it aims at providing the aluminum fin material for heat exchangers suitable for the indoor unit of an air conditioner etc. which can maintain a deodorizing effect also in a long-term driving | operation.

前記課題を解決するために、本発明者らは、臭気の吸着を抑制して、さらに消臭効果を有する親水性塗膜とすべく、親水性樹脂の中でも酸、アルカリいずれのガスも吸着し難い比較的中性の樹脂をベースとし、消臭機能を有する触媒を混合するという思想に至った。   In order to solve the above-mentioned problems, the present inventors have adsorbed both acid and alkali gases among hydrophilic resins in order to suppress adsorption of odors and to obtain a hydrophilic coating film having a deodorizing effect. It came to the idea of mixing a catalyst having a deodorizing function based on a difficult and relatively neutral resin.

すなわち本発明に係る熱交換器用アルミニウムフィン材は、アルミニウムまたはアルミニウム合金からなる基板と、この基板表面に形成された化成処理皮膜と、それぞれ厚さ0.05〜2μmの第1の親水性樹脂層と第2の親水性樹脂層とをこの順に備え、前記第1の親水性樹脂層は、ポリビニルアルコール系樹脂、アクリル系樹脂、スルホン酸系樹脂から選択される少なくとも一種の親水性樹脂からなり、前記第2の親水性樹脂層は、ポリビニルアルコール系樹脂およびポリエチレンオキサイド系樹脂を含有する親水性混合樹脂と、亜鉛を担持させたチタン酸化物微粒子とからなり、前記チタン酸化物微粒子の付着量がTiO2に換算して0.1〜100mg/m2であることを特徴とする。 That is, the aluminum fin material for a heat exchanger according to the present invention includes a substrate made of aluminum or an aluminum alloy, a chemical conversion treatment film formed on the surface of the substrate, and a first hydrophilic resin layer having a thickness of 0.05 to 2 μm. And the second hydrophilic resin layer in this order, the first hydrophilic resin layer is made of at least one hydrophilic resin selected from polyvinyl alcohol resin, acrylic resin, sulfonic acid resin, The second hydrophilic resin layer comprises a hydrophilic mixed resin containing a polyvinyl alcohol-based resin and a polyethylene oxide-based resin, and titanium oxide fine particles supporting zinc. characterized in that in terms of TiO 2 is 0.1-100 mg / m 2.

このように、最表面に中性のポリビニルアルコール系樹脂と潤滑性を有するポリエチレンオキサイド系樹脂との混合樹脂をベースとする第2の親水性樹脂層を形成することで、酸、アルカリいずれのガスも吸着し難く、また表面に潤滑性が付与されてフィン成形のための加工性が得られ、さらに亜鉛を担持させたチタン酸化物微粒子を混合したことで、酸化反応による消臭効果が得られる。また、基板表面に、化成処理皮膜と、所定の樹脂材料からなる第1の親水性樹脂層とを形成することで、基板(アルミニウム)の耐食性および第2の親水性樹脂層との密着性が得られる。   Thus, by forming a second hydrophilic resin layer based on a mixed resin of a neutral polyvinyl alcohol resin and a polyethylene oxide resin having lubricity on the outermost surface, either an acid or an alkali gas is formed. Is also difficult to adsorb, and the surface is lubricated to provide workability for fin molding, and by mixing titanium oxide fine particles supporting zinc, a deodorizing effect by an oxidation reaction can be obtained. . Further, by forming a chemical conversion treatment film and a first hydrophilic resin layer made of a predetermined resin material on the substrate surface, the corrosion resistance of the substrate (aluminum) and the adhesion with the second hydrophilic resin layer can be improved. can get.

本発明に係る熱交換器用アルミニウムフィン材によれば、フィンに好適に成形され、空調機の室内機等として結露水が溜まらない熱交換器とすることができ、また長期の運転にも消臭効果を保持できる。また、成形前に皮膜を形成したプレコート材とすることができるので、作業性に優れる。   According to the aluminum fin material for a heat exchanger according to the present invention, it can be suitably formed into a fin and can be a heat exchanger in which condensed water does not accumulate as an indoor unit of an air conditioner, etc. The effect can be maintained. Moreover, since it can be set as the precoat material which formed the film | membrane before shaping | molding, it is excellent in workability | operativity.

本発明に係る熱交換器用アルミニウムフィン材の構造を説明する拡大断面図である。It is an expanded sectional view explaining the structure of the aluminum fin material for heat exchangers which concerns on this invention.

〔熱交換器用アルミニウムフィン材〕
以下、本発明に係る熱交換器用アルミニウムフィン材(以下、熱交換器用フィン材)を実現するための形態について、図面を参照して説明する。
本発明に係る熱交換器用フィン材10は、フィンに成形する前の板材であり、図1に示すように、基板1と、基板1の片面または両面に形成された下地処理皮膜(化成処理皮膜)2と、下地処理皮膜2の上に形成された第1親水性樹脂層(第1の親水性樹脂層)3と、第1親水性樹脂層3の上に形成されて最表面に積層された第2親水性樹脂層(第2の親水性樹脂層)4と、を備える。下地処理皮膜2および第1、第2親水性樹脂層3,4を形成する基板1の面は片面でも両面でもよく、少なくとも熱交換器に組み立てたときに結露水が接触する虞のある側となる面に形成し、それ以外の面については例えば下地処理皮膜2のみが形成されていてもよい。以下、下地処理皮膜2および第1、第2親水性樹脂層3,4が形成される基板1の面を、単に基板1の表面という。
[Aluminum fin material for heat exchanger]
Hereinafter, the form for implement | achieving the aluminum fin material for heat exchangers (henceforth, fin material for heat exchangers) which concerns on this invention is demonstrated with reference to drawings.
The fin material 10 for heat exchangers according to the present invention is a plate material before being formed into fins. As shown in FIG. 1, as shown in FIG. 1, a base treatment film (chemical conversion treatment film) formed on one side or both sides of the substrate 1. ) 2, the first hydrophilic resin layer (first hydrophilic resin layer) 3 formed on the base treatment film 2, and the first hydrophilic resin layer 3 and laminated on the outermost surface. And a second hydrophilic resin layer (second hydrophilic resin layer) 4. The surface of the substrate 1 on which the base treatment film 2 and the first and second hydrophilic resin layers 3 and 4 are formed may be either one side or both sides, and at least the side on which condensed water may come into contact when assembled in a heat exchanger; For example, only the ground treatment film 2 may be formed on other surfaces. Hereinafter, the surface of the substrate 1 on which the base treatment film 2 and the first and second hydrophilic resin layers 3 and 4 are formed is simply referred to as the surface of the substrate 1.

(基板)
基板1は、通常の熱交換器用フィン材に適用されるアルミニウムまたはアルミニウム合金(以下、総称してアルミニウムという)で形成され、熱伝導性および加工性の点からJIS H4000規定の1000系のアルミニウムが好適に用いられ、より好ましくは合金番号1070,1050,1200のアルミニウムが用いられる。これらの材料は、鋳造、熱間圧延、冷間圧延、調質等の公知の方法で所望の厚さの板材に製造される。基板1の厚さは、特に規定するものではなく、製造される熱交換器の仕様等に合わせて、要求される熱伝導性や強度および耐食性等に対応可能な厚さとすればよく、具体的には板厚0.07〜0.25mm程度の板材が好適に使用される。
(substrate)
The substrate 1 is formed of aluminum or an aluminum alloy (hereinafter collectively referred to as aluminum) that is applied to an ordinary fin material for a heat exchanger, and 1000 series aluminum defined by JIS H4000 is used from the viewpoint of thermal conductivity and workability. Preferably, aluminum with alloy numbers 1070, 1050 and 1200 is used. These materials are produced into a plate material having a desired thickness by a known method such as casting, hot rolling, cold rolling, and tempering. The thickness of the substrate 1 is not particularly specified, and may be a thickness that can meet the required thermal conductivity, strength, corrosion resistance, etc. according to the specifications of the heat exchanger to be manufactured. For this, a plate material having a thickness of about 0.07 to 0.25 mm is preferably used.

(下地処理皮膜)
下地処理皮膜2は、アルミニウムからなる基板1(熱交換器用フィン材10)に耐食性を付与すると共に、基板1と第1親水性樹脂層3との密着性を向上させるための層であり、クロム(Cr)、ジルコニウム(Zr)、またはチタン(Ti)を無機物として含有する無機酸化物または有機−無機複合化合物よりなる。下地処理皮膜2は、基板1に耐食性を付与するものであれば成分や膜厚等は特に限定されず、使用目的等に合わせて適宜設定すればよいが、面積あたりの付着量が金属(Cr,Zr,Ti)換算で1〜100mg/m2の範囲となることが好ましく、膜厚では1〜100nmとすることが好ましい。
(Ground treatment film)
The ground treatment film 2 is a layer for imparting corrosion resistance to the substrate 1 (heat exchanger fin material 10) made of aluminum and improving the adhesion between the substrate 1 and the first hydrophilic resin layer 3, and is made of chromium. It consists of an inorganic oxide or an organic-inorganic composite compound containing (Cr), zirconium (Zr), or titanium (Ti) as an inorganic substance. The ground treatment film 2 is not particularly limited as long as it imparts corrosion resistance to the substrate 1, and may be appropriately set according to the purpose of use, but the adhesion amount per area is metal (Cr , Zr, Ti) is preferably in the range of 1 to 100 mg / m 2 in terms of film thickness and is preferably 1 to 100 nm in terms of film thickness.

下地処理皮膜2に適用される無機酸化物皮膜は、基板1に、リン酸クロメート処理、リン酸ジルコニウム処理、酸化ジルコニウム処理、クロム酸クロメート処理、リン酸亜鉛処理、あるいはリン酸チタン酸処理のような化成処理を施して表面に形成される。また、有機−無機複合化合物皮膜は、基板1に塗布型クロメート処理または塗布型ジルコニウム処理を行うことにより形成されたもので、アクリル−ジルコニウム複合体等が挙げられる。これらの下地処理皮膜2を形成する前に、基板1の表面をアルカリ性脱脂液にて予め脱脂することが好ましく、これにより化成処理の反応性が向上し、さらに形成された下地処理皮膜2の密着性が向上する。   The inorganic oxide film applied to the base treatment film 2 is formed on the substrate 1 by phosphoric acid chromate treatment, zirconium phosphate treatment, zirconium oxide treatment, chromate chromate treatment, zinc phosphate treatment, or phosphoric acid titanate treatment. It is formed on the surface by performing a chemical conversion treatment. The organic-inorganic composite compound film is formed by applying a coating type chromate treatment or a coating type zirconium treatment to the substrate 1, and examples thereof include an acryl-zirconium composite. Before forming these base treatment films 2, it is preferable to degrease the surface of the substrate 1 in advance with an alkaline degreasing solution. This improves the reactivity of the chemical conversion treatment, and the adhesion of the formed base treatment film 2 is further improved. Improves.

(第1親水性樹脂層)
第1親水性樹脂層3は、下地処理皮膜2と共に熱交換器用フィン材10の耐食性を高め、また第2親水性樹脂層4との密着性を向上させるための層であり、ポリビニルアルコール系樹脂(PVA)、アクリル系樹脂、スルホン酸系樹脂から選択される少なくとも一種の親水性樹脂からなる。これらの樹脂は、造膜性が良好で連続した皮膜を形成し易く、また耐湿性が高いために熱交換器用フィン材10の耐食性を高める効果があり、リン酸クロメート皮膜等からなる下地処理皮膜2への密着性がよく、また第2親水性樹脂層4との密着性にも優れる。また、第2親水性樹脂層4の下地である第1親水性樹脂層3が親水性であることで、第2親水性樹脂層4の親水性を好適に発現させることができる。第2親水性樹脂層4の下地がエポキシ系樹脂やアクリル系撥水樹脂のような疎水性であると、第2親水性樹脂層4の親水性が著しく低下する。
(First hydrophilic resin layer)
The 1st hydrophilic resin layer 3 is a layer for improving the corrosion resistance of the fin material 10 for heat exchangers with the base-treatment film | membrane 2, and improving adhesiveness with the 2nd hydrophilic resin layer 4, Polyvinyl alcohol-type resin (PVA), an acrylic resin, and at least one hydrophilic resin selected from sulfonic acid resins. These resins have good film-forming properties, are easy to form a continuous film, and have high moisture resistance, so that they have the effect of increasing the corrosion resistance of the fin material 10 for heat exchangers. 2 has good adhesion to the second hydrophilic resin layer 4 and excellent adhesion to the second hydrophilic resin layer 4. Moreover, the hydrophilicity of the 2nd hydrophilic resin layer 4 can be expressed suitably because the 1st hydrophilic resin layer 3 which is the foundation | substrate of the 2nd hydrophilic resin layer 4 is hydrophilic. If the base of the second hydrophilic resin layer 4 is hydrophobic, such as an epoxy resin or an acrylic water repellent resin, the hydrophilicity of the second hydrophilic resin layer 4 is significantly reduced.

第1親水性樹脂層3は、下地処理皮膜2を形成した基板1の表面に、当該第1親水性樹脂層3の樹脂材料(塗料)をロールコート法等の公知の方法で塗布し、焼付け処理を施して形成される。第1親水性樹脂層3の厚さは、均一な塗膜に形成可能で、十分な耐食性を得られる0.05μm以上とし、好ましくは0.3μm以上である。一方、第1親水性樹脂層3が2μmを超えて厚く形成されても、耐食性や密着性のさらなる向上の効果は得られず、コスト高となる上、熱交換器用フィン材10の加工性が低下するため、厚さは2μm以下とし、好ましくは1μm以下である。   The first hydrophilic resin layer 3 is baked by applying the resin material (paint) of the first hydrophilic resin layer 3 to the surface of the substrate 1 on which the base treatment film 2 is formed by a known method such as a roll coating method. Formed by processing. The thickness of the 1st hydrophilic resin layer 3 shall be 0.05 micrometer or more which can be formed in a uniform coating film and sufficient corrosion resistance is obtained, Preferably it is 0.3 micrometer or more. On the other hand, even if the first hydrophilic resin layer 3 is formed thicker than 2 μm, the effect of further improving the corrosion resistance and adhesion cannot be obtained, and the cost is increased and the workability of the heat exchanger fin material 10 is improved. In order to decrease, the thickness is 2 μm or less, preferably 1 μm or less.

(第2親水性樹脂層)
第2親水性樹脂層4は、熱交換器用フィン材10の最表面に形成されて、熱交換器用フィン材10の表面を親水性として濡れ性をよくして、また表面に潤滑性を付与して加工性を向上させ、さらに接触する臭気を吸着せずに消臭するための層である。第2親水性樹脂層4は、ポリビニルアルコール系樹脂(PVA)およびポリエチレンオキサイド系樹脂(PEO)を含有する樹脂バインダ(親水性混合樹脂)41をベースとして、Zn担持TiO2微粒子(亜鉛を担持させたチタン酸化物微粒子)42が混合されてなる。
(Second hydrophilic resin layer)
The 2nd hydrophilic resin layer 4 is formed in the outermost surface of the fin material 10 for heat exchangers, makes the surface of the fin material 10 for heat exchangers hydrophilic, improves wettability, and provides lubricity to the surface. It is a layer for improving processability and deodorizing without adsorbing odors coming into contact therewith. The second hydrophilic resin layer 4 is based on a resin binder (hydrophilic mixed resin) 41 containing a polyvinyl alcohol-based resin (PVA) and a polyethylene oxide-based resin (PEO), and supports Zn-supported TiO 2 fine particles (supports zinc). The titanium oxide fine particles) 42 are mixed.

ポリビニルアルコール系樹脂は、前記した通り造膜性が良好で、また親水性が高いために熱交換器用フィン材10表面を十分な親水性とする。また、ポリビニルアルコール系樹脂は、酸性、アルカリ性のいずれの側にも高い傾向を示さないため、酢酸のような酸性のガス、アンモニアのようなアルカリ性のガスのいずれも、熱交換器用フィン材10表面に接触しても吸着し難い。ポリエチレンオキサイド系樹脂は、ポリビニルアルコール系樹脂と同様に、酸性、アルカリ性のいずれの側にも高い傾向を示さないことに加え、潤滑性を付与する効果があり、熱交換器用フィン材10表面の潤滑性を高くして、加工性を向上させる。樹脂バインダ41において、ポリビニルアルコール系樹脂の質量比率が50%超95%以下であることが好ましく、75%以上がさらに好ましい   As described above, the polyvinyl alcohol-based resin has good film-forming properties and high hydrophilicity, so that the surface of the heat exchanger fin material 10 is sufficiently hydrophilic. In addition, since the polyvinyl alcohol-based resin does not show a high tendency on either the acidic side or the alkaline side, both the acidic gas such as acetic acid and the alkaline gas such as ammonia are used on the surface of the fin material 10 for heat exchanger. It is difficult to adsorb even if it touches. The polyethylene oxide resin, like the polyvinyl alcohol resin, has an effect of imparting lubricity in addition to not exhibiting a high tendency on either the acidic or alkaline side, and lubrication of the surface of the fin material 10 for heat exchangers. To improve processability. In the resin binder 41, the mass ratio of the polyvinyl alcohol resin is preferably more than 50% and 95% or less, and more preferably 75% or more.

Zn担持TiO2微粒子42は、Ti酸化物(酸化チタン、TiO2)からなる微粒子(TiO2微粒子)に亜鉛(Zn)を担持したもので、接触した臭気成分を酸化反応により分解して消臭し、また抗菌成分であるZnにより、雑菌の繁殖を抑える。担体であるTiO2微粒子の大きさは規定されないが、樹脂バインダ41中に好適に分散させるために平均粒径0.5〜30nm程度の範囲が好ましい。このようなZn担持TiO2微粒子42としては、例えば触媒型消臭剤として市販されている日揮触媒化成社製ATOMY BALL(登録商標)を適用できる。そして、Zn担持TiO2微粒子42は、十分な消臭性能を得るために、熱交換器用フィン材10における付着量がTiO2に換算して0.1mg/m2以上となるように、好ましくは1mg/m2以上となるように、さらに好ましくはZnOに換算して0.1mg/m2以上となるように、第2親水性樹脂層4に含有される。一方、Zn担持TiO2微粒子42が過剰に多いと、第2親水性樹脂層4が硬くなって熱交換器用フィン材10の加工性が低下するため、Zn担持TiO2微粒子42は、熱交換器用フィン材10における付着量がTiO2に換算して100mg/m2以下となるように、好ましくは50mg/m2以下となるように、第2親水性樹脂層4に含有される。Zn担持TiO2微粒子42のZnOに換算した付着量の上限は特に規定しないが、前記TiO2に換算した付着量の上限より、30mg/m2以下となることが好ましい。なお、Zn担持TiO2微粒子42のTiO2に換算した付着量とは、第2親水性樹脂層4の単位面積あたりにおけるTiO2微粒子のみの質量を指す。また、Zn担持TiO2微粒子42のZnOに換算した付着量とは、Zn担持TiO2微粒子42に担持されたZnが酸化物(ZnO)として存在するとみなした、第2親水性樹脂層4の単位面積あたりに含有する当該ZnOの質量を指す。すなわち酸化物を含めたZn化合物や金属Znのすべてを、Zn元素の個数を基準としてZnOに換算した質量を指す。 The Zn-supported TiO 2 fine particles 42 are those in which zinc (Zn) is supported on fine particles (TiO 2 fine particles) made of Ti oxide (titanium oxide, TiO 2 ). In addition, the antibacterial component Zn suppresses the growth of various bacteria. The size of the TiO 2 fine particles as the carrier is not specified, but an average particle size in the range of about 0.5 to 30 nm is preferable in order to be suitably dispersed in the resin binder 41. As such Zn-supported TiO 2 fine particles 42, for example, ATOMY BALL (registered trademark) manufactured by JGC Catalysts & Chemicals Co., Ltd. commercially available as a catalyst-type deodorant can be applied. And in order to obtain sufficient deodorizing performance, the Zn-supported TiO 2 fine particles 42 are preferably so that the amount of adhesion on the fin material 10 for heat exchanger is 0.1 mg / m 2 or more in terms of TiO 2. It is contained in the second hydrophilic resin layer 4 so as to be 1 mg / m 2 or more, and more preferably 0.1 mg / m 2 or more in terms of ZnO. On the other hand, if the Zn-supported TiO 2 fine particles 42 are excessively large, the second hydrophilic resin layer 4 becomes hard and the workability of the heat exchanger fin material 10 decreases, so that the Zn-supported TiO 2 fine particles 42 are used for heat exchangers. It is contained in the second hydrophilic resin layer 4 so that the adhesion amount on the fin material 10 is 100 mg / m 2 or less, preferably 50 mg / m 2 or less, in terms of TiO 2 . The upper limit of the deposited amount converted to ZnO of the Zn-supported TiO 2 fine particles 42 is not particularly defined, but is preferably 30 mg / m 2 or less than the upper limit of the deposited amount converted to TiO 2 . Note that the coating weight in terms of TiO 2 of the Zn bearing TiO 2 particles 42, refers to the mass of only the TiO 2 fine particles per unit area of the second hydrophilic resin layer 4. Further, Zn bearing and the deposition amount in terms of ZnO of TiO 2 fine particles 42, Zn supported on Zn bearing TiO 2 particles 42 were considered to be present as an oxide (ZnO), a unit of the second hydrophilic resin layer 4 The mass of the said ZnO contained per area is pointed out. That is, it refers to the mass of all Zn compounds including metal oxides and metal Zn converted to ZnO based on the number of Zn elements.

第2親水性樹脂層4は、基板1上に形成された第1親水性樹脂層3の表面に、第1親水性樹脂層3の形成と同様に、当該第2親水性樹脂層4の樹脂材料(塗料)をロールコート法等の公知の方法で塗布し、焼付け処理を施して形成される。この塗料は、ポリビニルアルコール系樹脂およびポリエチレンオキサイド系樹脂のそれぞれの樹脂材料を、焼付け後に所望の質量比になるように配合し、さらにZn担持TiO2微粒子42を混合、分散させて得られる。第2親水性樹脂層4の厚さは、第1親水性樹脂層3と同様に均一な塗膜に形成可能で、また臭気を第1親水性樹脂層3に到達させないような十分な遮蔽効果を得られる0.05μm以上とし、好ましくは0.3μm以上である。一方、第2親水性樹脂層4が2μmを超えて厚く形成されても、遮蔽性のさらなる向上の効果は得られず、コスト高となる上、熱交換器用フィン材10の加工性が低下するため、厚さは2μm以下とし、好ましくは1μm以下である。 Similar to the formation of the first hydrophilic resin layer 3, the second hydrophilic resin layer 4 is formed on the surface of the first hydrophilic resin layer 3 formed on the substrate 1. It is formed by applying a material (paint) by a known method such as a roll coating method and performing a baking treatment. This paint is obtained by blending each resin material of polyvinyl alcohol resin and polyethylene oxide resin so as to have a desired mass ratio after baking, and further mixing and dispersing Zn-supported TiO 2 fine particles 42. The thickness of the second hydrophilic resin layer 4 can be formed into a uniform coating film as in the case of the first hydrophilic resin layer 3, and a sufficient shielding effect to prevent the odor from reaching the first hydrophilic resin layer 3. The thickness is 0.05 μm or more, preferably 0.3 μm or more. On the other hand, even if the second hydrophilic resin layer 4 is formed thicker than 2 μm, the effect of further improving the shielding property is not obtained, and the cost is increased, and the workability of the heat exchanger fin material 10 is lowered. Therefore, the thickness is 2 μm or less, preferably 1 μm or less.

本発明に係る熱交換器用フィン材10は、その製造においては、コイル状のアルミニウム板材を基板1として、その表面に化成処理にて下地処理皮膜2を形成し、第1、第2親水性樹脂層3,4それぞれの塗料を調整し、塗布および焼付け処理にて第1親水性樹脂層3を形成し、さらに塗布および焼付け処理にて第2親水性樹脂層4を形成して製造される。さらに熱交換器用フィン材10は、所定の寸法に切断してプレス加工にて成形されて熱交換器用フィンに製造される。   In manufacturing the heat exchanger fin material 10 according to the present invention, a coil-shaped aluminum plate material is used as the substrate 1, and the surface treatment film 2 is formed on the surface thereof by chemical conversion treatment, and the first and second hydrophilic resins. Each of the layers 3 and 4 is prepared by preparing the first hydrophilic resin layer 3 by coating and baking, and further forming the second hydrophilic resin layer 4 by coating and baking. Further, the heat exchanger fin material 10 is cut into a predetermined size and formed by press working to be manufactured into a heat exchanger fin.

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と比較して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。   As mentioned above, although the form for implementing this invention was described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. In addition, this invention is not limited to this Example.

〔試料の作製〕
(基板、下地処理皮膜)
熱交換器用フィン材の試料における基板として、厚さ0.1mmのJIS 1200アルミニウム板を適用した。この基板に、アルカリ性薬剤(サーフクリーナー(登録商標)EC370、日本ペイント社製)で脱脂してから、リン酸クロメート処理を施して下地処理皮膜を形成した。化成処理液は、日本ペイント社製アルサーフ(登録商標)401/45、リン酸、およびクロム酸の混合液を使用した。蛍光X線法で測定した下地処理皮膜のCr換算値は30mg/m2であった。
[Sample preparation]
(Substrate, surface treatment film)
A JIS 1200 aluminum plate having a thickness of 0.1 mm was applied as a substrate in the sample of the fin material for heat exchanger. This substrate was degreased with an alkaline agent (Surf Cleaner (registered trademark) EC370, manufactured by Nippon Paint Co., Ltd.) and then subjected to phosphoric acid chromate treatment to form a base treatment film. As the chemical conversion treatment solution, a mixed solution of Alsurf (registered trademark) 401/45, phosphoric acid, and chromic acid manufactured by Nippon Paint Co., Ltd. was used. The Cr conversion value of the base treatment film measured by the fluorescent X-ray method was 30 mg / m 2 .

(第1親水性樹脂層)
樹脂材料として、ポリビニルアルコール系樹脂(表1表記はPVA、以下( )内同)、アクリル系樹脂(アクリル)、スルホン酸系樹脂(SA)を適用した。さらに、前記樹脂材料の2種または3種を固形分で以下の配合になるように混合した樹脂混合を適用した。すなわち、ポリビニルアルコール系樹脂:10質量部とアクリル系樹脂:1質量部からなる混合樹脂(PVA+アクリル)、ポリビニルアルコール系樹脂:10質量部とスルホン酸系樹脂:2質量部からなる混合樹脂(PVA+SA)、アクリル系樹脂:10質量部とスルホン酸系樹脂:5質量部からなる混合樹脂(アクリル+SA)、ポリビニルアルコール系樹脂:10質量部とアクリル系樹脂:2質量部とスルホン酸系樹脂:5質量部からなる混合樹脂(PVA+アクリル+SA)を適用した。また、本発明の範囲外の親水性樹脂材料として、ポリエチレングリコール樹脂(PEG)を、非親水性樹脂(撥水性樹脂)材料として、アクリル系樹脂を架橋剤添加にて撥水化させたもの(アクリル撥水)を適用した。これらの樹脂材料で調整した塗料を、基板上の下地処理皮膜の表面に、焼付け後に表1に示す膜厚となるようにバーコーターで塗布し、熱風乾燥炉にて基板到達温度約200℃で焼付けをして第1親水性樹脂層を形成した。なお、試料No.24については、表1に示すように、後記の第2親水性樹脂層と同様にZn担持TiO2微粒子を混合した。
(First hydrophilic resin layer)
As the resin material, polyvinyl alcohol resin (Table 1 is PVA, hereinafter the same in parentheses), acrylic resin (acrylic), and sulfonic acid resin (SA) were applied. Furthermore, resin mixing in which two or three of the resin materials were mixed so as to have the following composition in solid content was applied. That is, polyvinyl alcohol resin: 10 parts by mass and acrylic resin: 1 part by weight of mixed resin (PVA + acrylic), polyvinyl alcohol resin: 10 parts by weight of sulfonic acid resin: 2 parts by weight of mixed resin (PVA + SA) ), Acrylic resin: 10 parts by mass and sulfonic acid resin: 5 parts by mass of mixed resin (acrylic + SA), polyvinyl alcohol resin: 10 parts by mass, acrylic resin: 2 parts by mass, and sulfonic acid resin: 5 A mixed resin (PVA + acrylic + SA) consisting of parts by mass was applied. Further, as a hydrophilic resin material outside the scope of the present invention, a polyethylene glycol resin (PEG), a non-hydrophilic resin (water repellent resin) material, and an acrylic resin made water repellent by adding a crosslinking agent ( Acrylic water repellency) was applied. The coating material prepared with these resin materials is applied to the surface of the base treatment film on the substrate with a bar coater so as to have the film thickness shown in Table 1 after baking, and the substrate temperature reaches about 200 ° C. in a hot air drying furnace. Baking was performed to form a first hydrophilic resin layer. Sample No. As shown in Table 1, Zn-supported TiO 2 fine particles were mixed as in the second hydrophilic resin layer described later, as shown in Table 1.

(第2親水性樹脂層)
樹脂材料として、ポリビニルアルコール系樹脂(表1表記はPVA、以下( )内同)およびポリエチレンオキサイド系樹脂(PEO)を、固形分でPVA:10質量部、PEO:3質量部になるように混合して適用した(PVA+PEO)。また、本発明の範囲外の親水性樹脂材料として、セルロース系樹脂(セルロース)を、非親水性樹脂(撥水性樹脂)材料として、ポリアクリル酸ナトリウム(PAANa)を適用した。これらの樹脂材料に、Zn担持TiO2微粒子(TiO2に対するZnOの質量比10〜20%)を、その配合を変化させて混合して塗料を調整した。調整した塗料を、基板上の第1親水性樹脂層の表面(第1親水性樹脂層を形成しない比較例の試料については下地処理皮膜の表面)に、焼付け後に表1に示す膜厚となるようにバーコーターで塗布し、熱風乾燥炉にて基板到達温度約200℃で焼付けをして第2親水性樹脂層を形成し、熱交換器用フィン材の試料とした。得られた試料について、蛍光X線法で、表面に形成された皮膜(第2親水性樹脂層)に含有するチタン(Ti)について定量分析し、TiO2に換算して、Zn担持TiO2微粒子(表1表記:TiO2粒子)の付着量として表1に示す。
(Second hydrophilic resin layer)
As a resin material, polyvinyl alcohol-based resin (indicated by Table 1 is PVA, hereinafter the same in parentheses) and polyethylene oxide-based resin (PEO) are mixed so that the solid content is PVA: 10 parts by mass and PEO: 3 parts by mass. Applied (PVA + PEO). In addition, a cellulose resin (cellulose) was applied as a hydrophilic resin material outside the scope of the present invention, and sodium polyacrylate (PAANA) was applied as a non-hydrophilic resin (water repellent resin) material. The coating material was adjusted by mixing Zn resin-supported TiO 2 fine particles (mass ratio of ZnO to TiO 2 of 10 to 20%) with these resin materials while changing the formulation. The prepared coating film has the film thickness shown in Table 1 after baking on the surface of the first hydrophilic resin layer on the substrate (the surface of the ground treatment film for the comparative sample that does not form the first hydrophilic resin layer). In this way, it was applied with a bar coater and baked at a substrate reaching temperature of about 200 ° C. in a hot air drying furnace to form a second hydrophilic resin layer, which was used as a sample of a fin material for a heat exchanger. The obtained sample was quantitatively analyzed for titanium (Ti) contained in the film (second hydrophilic resin layer) formed on the surface by the fluorescent X-ray method, converted into TiO 2 , and Zn-supported TiO 2 fine particles It is shown in Table 1 as the adhesion amount of (Table 1 notation: TiO 2 particles).

〔評価〕
(密着性)
試料の表面をキムワイプ(登録商標)の乾いたものおよび水で濡らしたもので、各10往復ラビングした後、表面を目視で観察した。合格基準は基板の露出のないこととし、合格を「○」、一部でも第2親水性樹脂層等の塗膜が剥離して基板の露出が見られたものを不合格として「×」で表1に示す。
[Evaluation]
(Adhesion)
The surface of the sample was dried with Kimwipe (registered trademark) and wetted with water, and after rubbing 10 times each, the surface was visually observed. The acceptance criterion is that there is no exposure of the substrate, the acceptance is “◯”, and even if a part of the coating film such as the second hydrophilic resin layer is peeled off and the substrate is exposed, the acceptance is “x”. Table 1 shows.

(加工性)
試料に、実機フィンプレスにてドローレス加工を施してカラー成形性を評価した。リフレア部を超えた大きなカラー割れのないものを合格とし、割れ等がまったくないものを優れているとして「○」、リフレア部のみのカラー割れを「△」で、リフレア部を超えたカラー割れを不合格として「×」で表1に示す。
(Processability)
The sample was subjected to drawless processing with an actual fin press to evaluate the color moldability. Passing those that do not have large color cracks beyond the refracted part and accepting those that are not cracked at all as "○", color cracks only in the flared part as "△" It shows in Table 1 by "x" as a failure.

(親水性)
試料を流水中に240時間浸漬した後、乾燥させたものに、純水を滴下して接触角をゴニオメータにて測定した。合格基準は接触角が30°以下とし、合格を「○」、不合格を「×」で表1に示す。
(Hydrophilic)
After immersing the sample in running water for 240 hours, pure water was dropped into the dried sample, and the contact angle was measured with a goniometer. The acceptance criteria are shown in Table 1, where the contact angle is 30 ° or less, the acceptance is “◯”, and the rejection is “x”.

(耐食性)
耐食性は、JIS Z2371に準じた中性塩水噴霧試験を240時間行った後、試料の腐食の程度によって評価した。噴霧液として5質量%の塩化ナトリウム水溶液を用い、噴霧環境温度は35℃、噴霧量は面積80cm2で1時間毎に1.5ミリリットルとした。腐食面積率によって腐食の程度を定量化するレイティングナンバ法に準拠して数値化して、レイティングナンバが9.5以上を合格として「○」、9.5未満のものは不合格として「×」で表1に示す。
(Corrosion resistance)
The corrosion resistance was evaluated by the degree of corrosion of the sample after a neutral salt spray test according to JIS Z2371 was conducted for 240 hours. A 5 mass% sodium chloride aqueous solution was used as the spray solution, the spray environment temperature was 35 ° C., the spray amount was 80 cm 2 , and the amount was 1.5 ml per hour. Quantify in accordance with the rating number method that quantifies the degree of corrosion by the corrosion area ratio. If the rating number is 9.5 or higher, it is “O”, and if it is less than 9.5, it is “X”. Table 1 shows.

(臭気成分の脱離性)
臭気成分の難吸着性および分解の程度を評価するため、試料を臭気に曝露した後、試料から発生する臭気成分を測定した。試料を面積0.8m2に切り出して試験片とし、臭気成分としてアンモニアガス100ppmと酢酸ガス20ppmとを注入したデシケータ容器内(25℃)で24時間曝露した。この試験片を容量3リットルの脱臭試験用袋に1リットルの大気と共に封入し、40℃で2時間放置後、脱臭試験用袋内の酢酸ガス濃度を測定した。合格基準はアンモニアガス濃度が40ppm未満、かつ酢酸ガス濃度が10ppm未満とし、それぞれのガス濃度について前記基準を満足するものを「○」、不合格を「×」で表1に示す。
(Elimination of odor components)
In order to evaluate the poor adsorption property and the degree of decomposition of the odor component, the odor component generated from the sample was measured after the sample was exposed to the odor. A sample was cut into an area of 0.8 m 2 to form a test piece, and exposed for 24 hours in a desiccator container (25 ° C.) into which 100 ppm of ammonia gas and 20 ppm of acetic acid gas were injected as odor components. This test piece was sealed in a deodorizing test bag having a capacity of 3 liters together with 1 liter of air, and allowed to stand at 40 ° C. for 2 hours, and then the concentration of acetic acid gas in the deodorizing test bag was measured. The acceptance criteria are those in which the ammonia gas concentration is less than 40 ppm and the acetic acid gas concentration is less than 10 ppm. Those satisfying the above criteria for each gas concentration are shown as “◯”, and the rejection is shown as “x” in Table 1.

Figure 2012215347
Figure 2012215347

表1に示すように、第1、第2親水性樹脂層の各構成が本発明の範囲の実施例である試料No.1〜12は、いずれも密着性および加工性が良好で、プレコート板として問題なく、また、十分な親水性および耐食性を有し、さらにアンモニア、酢酸のいずれの臭気成分の脱離性が低く、防臭効果も有する熱交換器用フィン材として十分な特性を示した。   As shown in Table 1, each configuration of the first and second hydrophilic resin layers is sample No. which is an example within the scope of the present invention. Nos. 1 to 12 have good adhesion and workability, have no problem as a pre-coated plate, have sufficient hydrophilicity and corrosion resistance, and have low detachability of any odor component of ammonia and acetic acid, It showed sufficient characteristics as a fin material for heat exchangers, which also has a deodorizing effect.

これに対して、試料No.15は耐湿性を有する第1親水性樹脂層を設けなかったために、耐食性が劣化した。試料No.16は第1親水性樹脂層の厚さが不足しているために、試料No.14は第1親水性樹脂層が水溶性のポリエチレングリコール樹脂で形成されたために、それぞれ十分な耐湿性が得られず、耐食性が劣化した。試料No.14は、さらにポリエチレングリコール樹脂が水溶性であるために、親水性の試験で第2親水性樹脂層も含めて流失して親水性が消失し、また基板との密着性が低いために密着性が低下した。試料No.13は第1親水性樹脂層が撥水性のアクリル系樹脂で形成されたために、第2親水性樹脂層の親水性が著しく低下した。一方、試料No.17は第1親水性樹脂層の厚さが過剰なために加工性が低下した。   In contrast, sample no. Since No. 15 did not provide the first hydrophilic resin layer having moisture resistance, the corrosion resistance deteriorated. Sample No. No. 16 is a sample No. 16 because the thickness of the first hydrophilic resin layer is insufficient. In No. 14, since the first hydrophilic resin layer was formed of a water-soluble polyethylene glycol resin, sufficient moisture resistance could not be obtained, and the corrosion resistance deteriorated. Sample No. No. 14, since the polyethylene glycol resin is water-soluble, the hydrophilic property disappears in the hydrophilic test, including the second hydrophilic resin layer, and the adhesiveness to the substrate is low due to low adhesion. Decreased. Sample No. In No. 13, since the first hydrophilic resin layer was formed of a water-repellent acrylic resin, the hydrophilicity of the second hydrophilic resin layer was significantly lowered. On the other hand, Sample No. In No. 17, the workability decreased because the thickness of the first hydrophilic resin layer was excessive.

試料No.18は第2親水性樹脂層を設けなかったために、防臭効果が得られず、また表面に潤滑性がないために加工性が低下した。試料No.19は、Zn担持TiO2微粒子の付着量は十分であったが、第2親水性樹脂層の厚さが不足しているために酸性の傾向を示すアクリル系樹脂を含有する第1親水性樹脂層に臭気成分が吸着し、防臭効果が不十分となった。一方、試料No.20は第2親水性樹脂層の厚さが過剰なために加工性が低下した。試料No.25は、第2親水性樹脂層がポリビニルアルコール系樹脂のみで形成されてポリエチレンオキサイド系樹脂を含有しないために、加工性が低下した。同様に、試料No.27は、第2親水性樹脂層がセルロース系樹脂で形成されてポリエチレンオキサイド系樹脂を含有しないために、加工性が低下した。反対に、試料No.26は、第2親水性樹脂層がポリエチレンオキサイド系樹脂のみで形成されてポリビニルアルコール系樹脂を含有しないために連続した皮膜を形成せず、露出した第1親水性樹脂層に臭気成分が吸着して防臭効果が不十分となった。試料No.28は、第2親水性樹脂層が非親水性のポリアクリル酸ナトリウムで形成されたために、加工性が低下したことに加え、親水性がなく、さらにアルカリ性の傾向を示すポリアクリル酸ナトリウムに臭気成分が吸着して防臭効果が不十分となった。 Sample No. No. 18 was not provided with the second hydrophilic resin layer, so that the deodorizing effect was not obtained, and the workability was lowered because the surface was not lubricous. Sample No. No. 19 was a first hydrophilic resin containing an acrylic resin that showed an acid tendency because the adhesion amount of Zn-supported TiO 2 fine particles was sufficient, but the thickness of the second hydrophilic resin layer was insufficient. Odor components were adsorbed on the layer, and the deodorizing effect was insufficient. On the other hand, sample No. In No. 20, the workability decreased because the thickness of the second hydrophilic resin layer was excessive. Sample No. In No. 25, the second hydrophilic resin layer was formed only of a polyvinyl alcohol resin and did not contain a polyethylene oxide resin. Similarly, sample no. In No. 27, since the second hydrophilic resin layer was formed of a cellulose-based resin and did not contain a polyethylene oxide-based resin, the processability decreased. On the contrary, sample No. 26, since the second hydrophilic resin layer is formed only of polyethylene oxide resin and does not contain polyvinyl alcohol resin, it does not form a continuous film, and the odor component is adsorbed to the exposed first hydrophilic resin layer. As a result, the deodorizing effect was insufficient. Sample No. No. 28, because the second hydrophilic resin layer was formed of non-hydrophilic sodium polyacrylate, in addition to the decrease in processability, there was no odor in sodium polyacrylate that was not hydrophilic and showed a tendency to be alkaline. The components were adsorbed and the deodorizing effect was insufficient.

試料No.21,24は第2親水性樹脂層がZn担持TiO2微粒子を含有しなかったために、また試料No.22はZn担持TiO2微粒子の付着量が不足したために、それぞれ防臭効果が不十分となった。なお、試料No.24は、Zn担持TiO2微粒子が第1親水性樹脂層に含有されているが、最表層に存在しないために効果は得られず、さらに第2親水性樹脂層が親水性を発現せず、また加工性が低下した。反対に、試料No.23はZn担持TiO2微粒子の付着量が過剰なために、第2親水性樹脂層が硬くなって加工性が低下した。 Sample No. Nos. 21 and 24 are sample No. 2 because the second hydrophilic resin layer did not contain Zn-supported TiO 2 fine particles. No. 22 had insufficient deodorizing effect due to insufficient adhesion of Zn-supported TiO 2 fine particles. Sample No. 24, Zn-supported TiO 2 fine particles are contained in the first hydrophilic resin layer, but the effect is not obtained because it is not present in the outermost layer, and the second hydrophilic resin layer does not exhibit hydrophilicity, In addition, workability was reduced. On the contrary, sample No. In No. 23, since the adhesion amount of Zn-supported TiO 2 fine particles was excessive, the second hydrophilic resin layer became hard and the workability was lowered.

10 熱交換器用フィン材(熱交換器用アルミニウムフィン材)
1 基板
2 下地処理皮膜(化成処理皮膜)
3 第1親水性樹脂層(第1の親水性樹脂層)
4 第2親水性樹脂層(第2の親水性樹脂層)
41 樹脂バインダ(親水性混合樹脂)
42 Zn担持TiO2微粒子(亜鉛を担持させたチタン酸化物微粒子)
10 Heat exchanger fin material (Aluminum fin material for heat exchanger)
1 Substrate 2 Ground treatment film (chemical conversion film)
3 1st hydrophilic resin layer (1st hydrophilic resin layer)
4 Second hydrophilic resin layer (second hydrophilic resin layer)
41 Resin binder (hydrophilic mixed resin)
42 Zn-supported TiO 2 fine particles (titanium oxide fine particles supporting zinc)

Claims (1)

アルミニウムまたはアルミニウム合金からなる基板と、前記基板表面に形成された化成処理皮膜と、前記化成処理皮膜上に形成された厚さ0.05〜2μmの第1の親水性樹脂層と、前記第1の親水性樹脂層上に形成された厚さ0.05〜2μmの第2の親水性樹脂層と、を備え、
前記第1の親水性樹脂層は、ポリビニルアルコール系樹脂、アクリル系樹脂、スルホン酸系樹脂から選択される少なくとも一種の親水性樹脂からなり、
前記第2の親水性樹脂層は、ポリビニルアルコール系樹脂およびポリエチレンオキサイド系樹脂を含有する親水性混合樹脂と、亜鉛を担持させたチタン酸化物微粒子とからなり、前記チタン酸化物微粒子の付着量がTiO2に換算して0.1〜100mg/m2であることを特徴とする熱交換器用アルミニウムフィン材。
A substrate made of aluminum or an aluminum alloy, a chemical conversion coating formed on the substrate surface, a first hydrophilic resin layer having a thickness of 0.05 to 2 μm formed on the chemical conversion coating, and the first A second hydrophilic resin layer having a thickness of 0.05 to 2 μm formed on the hydrophilic resin layer of
The first hydrophilic resin layer is made of at least one hydrophilic resin selected from polyvinyl alcohol resins, acrylic resins, and sulfonic acid resins,
The second hydrophilic resin layer comprises a hydrophilic mixed resin containing a polyvinyl alcohol-based resin and a polyethylene oxide-based resin, and titanium oxide fine particles supporting zinc. heat exchanger aluminum fin stock, wherein in terms of TiO 2 is 0.1-100 mg / m 2.
JP2011081006A 2011-03-31 2011-03-31 Aluminum fin material for heat exchanger Expired - Fee Related JP5620870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011081006A JP5620870B2 (en) 2011-03-31 2011-03-31 Aluminum fin material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011081006A JP5620870B2 (en) 2011-03-31 2011-03-31 Aluminum fin material for heat exchanger

Publications (2)

Publication Number Publication Date
JP2012215347A true JP2012215347A (en) 2012-11-08
JP5620870B2 JP5620870B2 (en) 2014-11-05

Family

ID=47268254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011081006A Expired - Fee Related JP5620870B2 (en) 2011-03-31 2011-03-31 Aluminum fin material for heat exchanger

Country Status (1)

Country Link
JP (1) JP5620870B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015468A (en) * 2017-07-10 2019-01-31 日立ジョンソンコントロールズ空調株式会社 Air conditioner and manufacturing method of the same
WO2020201957A1 (en) * 2019-04-01 2020-10-08 3M Innovative Properties Company Laminate for frost prevention, heat exchanger including the laminate, and coating agent for frost prevention
WO2024034607A1 (en) * 2022-08-08 2024-02-15 日本製鉄株式会社 Coated metal sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11188272A (en) * 1998-07-07 1999-07-13 Ishihara Sangyo Kaisha Ltd Photocatalytic body and its production
WO2003012167A2 (en) * 2001-08-03 2003-02-13 Elisha Holding Llc An electroless process for treating metallic surfaces and products formed thereby
US20030039850A1 (en) * 2001-03-27 2003-02-27 Nippon Paint Co., Ltd. Modifier for hydrophilicity, hydrophilic modification method and aluminum material or aluminum alloy material modified hydrophilic thereby
JP2005002370A (en) * 2003-06-09 2005-01-06 Nippon Paint Co Ltd Surface treatment method for aluminum-based substrate, and surface-treated substrate
JP2009034589A (en) * 2007-07-31 2009-02-19 Kobe Steel Ltd Method of manufacturing aluminum based metallic material made-fin material and aluminum based metallic material made-fin material manufactured by the manufacturing method
JP2009150586A (en) * 2007-12-19 2009-07-09 Sumitomo Light Metal Ind Ltd Fin material for heat exchanger
EP2281684A1 (en) * 2008-05-27 2011-02-09 Toto Ltd. Object with photo-catalyst coating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11188272A (en) * 1998-07-07 1999-07-13 Ishihara Sangyo Kaisha Ltd Photocatalytic body and its production
US20030039850A1 (en) * 2001-03-27 2003-02-27 Nippon Paint Co., Ltd. Modifier for hydrophilicity, hydrophilic modification method and aluminum material or aluminum alloy material modified hydrophilic thereby
WO2003012167A2 (en) * 2001-08-03 2003-02-13 Elisha Holding Llc An electroless process for treating metallic surfaces and products formed thereby
JP2005002370A (en) * 2003-06-09 2005-01-06 Nippon Paint Co Ltd Surface treatment method for aluminum-based substrate, and surface-treated substrate
JP2009034589A (en) * 2007-07-31 2009-02-19 Kobe Steel Ltd Method of manufacturing aluminum based metallic material made-fin material and aluminum based metallic material made-fin material manufactured by the manufacturing method
JP2009150586A (en) * 2007-12-19 2009-07-09 Sumitomo Light Metal Ind Ltd Fin material for heat exchanger
EP2281684A1 (en) * 2008-05-27 2011-02-09 Toto Ltd. Object with photo-catalyst coating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015468A (en) * 2017-07-10 2019-01-31 日立ジョンソンコントロールズ空調株式会社 Air conditioner and manufacturing method of the same
WO2020201957A1 (en) * 2019-04-01 2020-10-08 3M Innovative Properties Company Laminate for frost prevention, heat exchanger including the laminate, and coating agent for frost prevention
WO2024034607A1 (en) * 2022-08-08 2024-02-15 日本製鉄株式会社 Coated metal sheet

Also Published As

Publication number Publication date
JP5620870B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
KR101503988B1 (en) Aluminum or aluminum alloy material having surface treatment coating film, and method for treating a surface therefor
JP4456551B2 (en) Aluminum fin material
JP4008620B2 (en) Aluminum alloy heat exchanger
JP2008224204A (en) Aluminum fin material for heat exchanger
JP5586834B2 (en) Aluminum fin material for heat exchanger
US9752046B2 (en) Aqueous hydrophilic coating composition capable of forming coating film having excellent self-cleaning ability against stains adhered thereon, and surface-treated material having formed thereon coating film having excellent self-cleaning ability against stains adhered thereon
JP2009243741A (en) Aluminum fin material for heat exchanger
JP5620870B2 (en) Aluminum fin material for heat exchanger
JP2009030894A (en) Aluminum fin material for heat exchanger
WO2014034514A1 (en) Anti-fouling coating, heat exchanger provided with same, and production method for same
JP5135167B2 (en) Aluminum painted plate
JP2009257628A (en) Aluminum fin material for heat exchanger
CN103673738A (en) Aluminum radiating sheet for heat exchangers
JP2007268387A (en) Surface-treated fin material for heat exchanger
JP2013190178A (en) Aluminum fin material
JP5328009B2 (en) Fins for heat exchanger
JP5319952B2 (en) Resin-coated aluminum fin material
WO2021153495A1 (en) Aluminum fin material, heat exchanger, air conditioner, and method for producing aluminum fin material
JP5358087B2 (en) Aluminum fin material for heat exchanger and heat exchanger using the same
JP2015190744A (en) Aluminum fin material for heat exchanger
JP5044275B2 (en) Antibacterial pre-coated aluminum alloy plate
JPH04254197A (en) Heat exchanger made of aluminum
JP5161746B2 (en) Aluminum fin material for heat exchanger
JP2010203702A (en) Air conditioner
JP6218719B2 (en) Aluminum fin material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140919

R150 Certificate of patent or registration of utility model

Ref document number: 5620870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees