WO2024034463A1 - Resin composition, copper foil with resin, and printed wiring board - Google Patents

Resin composition, copper foil with resin, and printed wiring board Download PDF

Info

Publication number
WO2024034463A1
WO2024034463A1 PCT/JP2023/028105 JP2023028105W WO2024034463A1 WO 2024034463 A1 WO2024034463 A1 WO 2024034463A1 JP 2023028105 W JP2023028105 W JP 2023028105W WO 2024034463 A1 WO2024034463 A1 WO 2024034463A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
copper foil
resin composition
group
weight
Prior art date
Application number
PCT/JP2023/028105
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 大澤
国春 小川
遥 牧野
昭典 田村
歩 立岡
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2024034463A1 publication Critical patent/WO2024034463A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a resin composition, a resin-coated copper foil, and a printed wiring board.
  • Printed wiring boards are widely used in electronic devices.
  • the frequency of signals has been increasing, making high-speed, large-capacity communication possible. Examples of such applications include communication servers, self-driving cars, and 5G-enabled mobile phones.
  • This high frequency printed wiring board is desired to have low transmission loss in order to be able to transmit high frequency signals without deteriorating their quality.
  • a printed wiring board is equipped with a copper foil processed into a wiring pattern and an insulating resin base material, but transmission loss is mainly a conductor loss due to the copper foil and a dielectric loss due to the insulating resin base material. It consists of. Therefore, in a copper foil with a resin layer applied to high frequency applications, it is desirable to suppress dielectric loss caused by the resin layer. For this purpose, the resin layer is required to have excellent dielectric properties, particularly a low dielectric loss tangent.
  • Patent Document 1 International Publication No. 2013/105650 discloses a copper foil with an adhesive layer that has an adhesive layer on one side of the copper foil, and this adhesive layer is made of a polyphenylene ether compound with a mass of 100% It is made of a resin composition containing 5 parts by mass or more and 65 parts by mass or less of a styrene-butadiene block copolymer.
  • Patent Document 2 International Publication No.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2011-225639 discloses a thermosetting resin composition containing an uncured semi-IPN composite and (D) a radical reaction initiator.
  • This uncured semi-IPN type composite consists of (A) polyphenylene ether, (B) a butadiene polymer containing 40% or more of 1,2-butadiene units having a 1,2-vinyl group in the side chain; (C) A prepolymer formed from a crosslinking agent is said to be compatible and uncured.
  • the present inventors have studied resin compositions that can be attached to base materials such as prepregs as primer layers (adhesive layers) as resin compositions with excellent dielectric properties and the like.
  • the layer of this resin composition is provided in the form of a resin-coated copper foil, and this copper foil can be used as a circuit-forming copper foil.
  • Resin compositions for the above-mentioned applications are desired to have not only excellent dielectric properties but also excellent adhesion to low-roughness surfaces (for example, the surface of low-roughness copper foil).
  • low-roughness copper foil is desired from the perspective of reducing transmission loss, but because such copper foil has low roughness, it tends to have poor adhesion with resin compositions. It is in.
  • resin compositions for the above applications must not only exhibit excellent dielectric properties and high adhesion to low-roughness surfaces (for example, the surface of low-roughness copper foil), but also exhibit high adhesion even after heat load. It is desirable to be able to maintain stable sex.
  • the present inventors have recently discovered that by blending a predetermined arylene ether compound and/or a predetermined styrenic copolymer with an organic filler composed of a liquid crystal polymer, excellent dielectric properties (for example, a low dielectric loss tangent at 10 GHz) can be achieved. ) and low-roughness surfaces (for example, the surface of low-roughness copper foil), it is possible to provide a resin composition that not only exhibits high adhesion to low-roughness surfaces (for example, the surface of low-roughness copper foil) but also can stably maintain that high adhesion even after heat load. I gained knowledge.
  • an object of the present invention is to provide a resin composition that not only exhibits excellent dielectric properties and high adhesion to low-roughness surfaces, but also can stably maintain this high adhesion even after heat load. It is in.
  • the reactive unsaturated bond is at least one selected from the group consisting of a cyanate group, a maleimide group, a terminal vinyl group, a (meth)acryloyl group, an ethynyl group, and a styryl group. thing.
  • Aspect 3 The resin composition according to aspect 1 or 2, wherein the styrenic copolymer has a styryl group as the reactive unsaturated bond.
  • Aspect 4 The resin composition according to any one of aspects 1 to 3, wherein the resin composition contains both the arylene ether compound and the styrenic copolymer.
  • Aspect 5 The resin composition according to any one of aspects 1 to 4, wherein the organic filler has a dielectric loss tangent of 0.001 or less at a frequency of 10 GHz.
  • a resin-coated copper foil comprising a copper foil and a resin layer containing the resin composition according to any one of aspects 1 to 5 provided on at least one surface of the copper foil.
  • the resin composition of the present invention contains at least one of an arylene ether compound and a styrene copolymer, and an organic filler.
  • the arylene ether compound has a weight average molecular weight of 30,000 or more, while the styrenic copolymer has a reactive unsaturated bond in its molecule that becomes reactive with heat or ultraviolet light.
  • the organic filler is composed of liquid crystal polymer.
  • the present inventors have studied resin compositions that can be attached to base materials such as prepregs as primer layers (adhesive layers) as resin compositions with excellent dielectric properties and the like.
  • the layer of this resin composition is provided in the form of a resin-coated copper foil, and this copper foil can be used as a circuit-forming copper foil.
  • Resin compositions for the above-mentioned applications are desired to have not only excellent dielectric properties but also excellent adhesion to low-roughness surfaces (for example, the surface of low-roughness copper foil).
  • low-roughness copper foil is desired from the perspective of reducing transmission loss, but because such copper foil has low roughness, it tends to have poor adhesion with resin compositions.
  • the resin composition of the present invention contains at least one of an arylene ether compound having a weight average molecular weight of 30,000 or more and a styrenic copolymer having a reactive unsaturated bond in the molecule that exhibits reactivity with heat or ultraviolet rays.
  • it contains both an arylene ether compound and the styrenic copolymer described above.
  • the resin composition of the present invention preferably has a dielectric loss tangent at a frequency of 10 GHz after curing of less than 0.0035, more preferably less than 0.0020, and still more preferably less than 0.0015.
  • the resin composition of the present invention preferably contains an arylene ether compound.
  • the weight average molecular weight of this arylene ether compound is 30,000 or more, preferably 30,000 or more and 300,000 or less, more preferably 40,000 or more and 200,000 or less, particularly preferably 45,000 or more and 120,000 or less.
  • the arylene ether compound having a weight average molecular weight of 30,000 or more is preferably a phenylene ether compound, such as polyphenylene ether.
  • the arylene ether compound or phenylene ether compound has the following formula: (In the formula, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms) It is preferable that the compound contains a skeleton represented by the following in its molecule.
  • phenylene ether compounds include styrene derivatives of phenylene ether compounds, phenylene ether compounds containing a maleic anhydride structure in the molecule, terminal hydroxyl group-modified phenylene ether compounds, terminal methacrylic-modified phenylene ether compounds, and terminal glycidyl ether-modified phenylene ether compounds. Can be mentioned.
  • Examples of products of arylene ether compounds having a maleic anhydride structure in the molecule and having a weight average molecular weight of 30,000 or more include PME-80 and PME-82 manufactured by Mitsubishi Engineering Plastics Corporation.
  • the arylene ether compound of the present invention preferably has a reactive unsaturated bond.
  • the resin composition may further include an additional arylene ether compound having a reactive unsaturated bond.
  • the additional arylene ether compound does not need to have a weight average molecular weight of 30,000 or more. That is, the additional arylene ether compound can have a weight average molecular weight of less than 30,000 (although it may have a weight average molecular weight of 30,000 or more), for example, it can have a number average molecular weight of 500 or more and 10,000 or less.
  • a reactive unsaturated bond is defined as an unsaturated bond that exhibits reactivity with heat or ultraviolet light.
  • Preferred examples of reactive unsaturated bonds include cyanate groups, maleimide groups, vinyl groups, (meth)acryloyl groups, ethynyl groups, styryl groups, and combinations thereof.
  • a styryl group is particularly preferred because it has high reactivity and allows control of the reaction (reactions are difficult to occur over time, the resin can be stored, and a long product life can be ensured).
  • the reactive unsaturated bond in the arylene ether compound is preferably located at or adjacent to the end of the molecular structure, since it exhibits high reactivity.
  • a 1,2-vinyl group is an example of a functional group having an unsaturated bond at the end of its molecular structure, and since the 1,2-vinyl group exhibits high reactivity, it can be used as a functional group for radical polymerization. It is common as On the other hand, in the case of ethylenically unsaturated bonds (vinyl groups not located at the ends of the molecular structure) present in the molecular chain, the reactivity decreases.
  • the position of the reactive unsaturated bond may be a) the end of the molecular structure (regardless of whether it is the main chain or the side chain), or b) the end of the molecular structure (regardless of whether it is the main chain or the side chain). If a benzene ring is located at the position (not present), it may be located adjacent to the terminal benzene ring.
  • the arylene ether compound may have styryl groups as reactive unsaturated bonds at both ends of its molecular structure.
  • Examples of products of arylene ether compounds having styryl groups at both ends of the molecule include OPE-2St-1200 and OPE-2St-2200 manufactured by Mitsubishi Gas Chemical Co., Ltd. (However, the arylene ether compounds of these products have a weight average molecular weight is less than 30,000).
  • the content is not particularly limited, but from the viewpoint of achieving both compatibility (related to peel strength) and dielectric properties. , preferably 10 parts by weight or more and 90 parts by weight or less, more preferably 15 parts by weight or more and 80 parts by weight or less, even more preferably 20 parts by weight or more and 60 parts by weight, based on 100 parts by weight of the total amount of resin components (solid content). It is as follows. In this specification, the total amount of resin components (solid content) of 100 parts by weight includes not only the polymer and resin but also the weight of additives such as reaction initiators that constitute a part of the resin. However, organic fillers are not included in the calculation.
  • the resin composition of the present invention preferably contains a styrenic copolymer having a reactive unsaturated bond in the molecule that exhibits reactivity with heat or ultraviolet light.
  • the styrenic copolymer may be either hydrogenated or non-hydrogenated. That is, the styrenic copolymer is a compound containing a moiety derived from styrene, and may also contain a moiety derived from a compound having a polymerizable unsaturated group such as an olefin in addition to styrene.
  • a double bond is further present in a site derived from a compound having a polymerizable unsaturated group in the styrenic copolymer
  • the double bond may be hydrogenated or not hydrogenated. It may be.
  • styrenic copolymers include acrylonitrile-butadiene-styrene copolymer (ABS), methacrylate-butadiene-styrene copolymer (MBS), acrylonitrile-acrylate-styrene copolymer (AAS), and acrylonitrile-butadiene-styrene copolymer (AAS).
  • Ethylene-styrene copolymer AES
  • SBR styrene-butadiene copolymer
  • SBS styrene-butadiene-styrene copolymer
  • SEBS styrene-ethylene-butadiene-styrene copolymer
  • SBR styrene-butadiene block copolymer
  • styrene/4-methylstyrene/isoprene/butadiene block copolymer Especially preferred is a styrene/4-methylstyrene/isoprene/butadiene block copolymer.
  • the weight average molecular weight of the styrenic copolymer is not particularly limited, but is preferably 40,000 or more and 400,000 or less, more preferably 60,000 or more and 370,000 or less, particularly preferably 80,000 or more and 340,000 or less.
  • the styrenic copolymer used in the present invention has a reactive unsaturated bond in its molecule that becomes reactive with heat or ultraviolet light.
  • Preferred examples of reactive unsaturated bonds include cyanate groups, maleimide groups, terminal vinyl groups, (meth)acryloyl groups, ethynyl groups, styryl groups, and combinations thereof.
  • a styryl group is particularly preferred because it has high reactivity and allows control of the reaction (reactions are difficult to occur over time, the resin can be stored, and a long product life can be ensured).
  • the reactive unsaturated bonds in the styrenic copolymer are preferably located at or adjacent to the ends of the molecular structure in view of exhibiting high reactivity.
  • a 1,2-vinyl group is an example of a functional group that has an unsaturated bond at the end of its molecular structure, but the 1,2-vinyl group (terminal vinyl group) is highly reactive and therefore difficult to radically polymerize. It is a common functional group that can be used. Therefore, a styrenic copolymer having such a functional group can be said to be a styrenic copolymer having a reactive unsaturated bond in its molecule that exhibits reactivity with heat or ultraviolet rays.
  • a styrenic copolymer having such an unsaturated bond cannot be said to be a styrenic copolymer having a reactive unsaturated bond in its molecule that exhibits reactivity with heat or ultraviolet rays.
  • An example of a product of a styrene copolymer having no unsaturated bond at the end of its molecular structure is TR2003 manufactured by JSR Corporation.
  • the position of the reactive unsaturated bond may be a) the end of the molecular structure (regardless of whether it is the main chain or the side chain), or b) the end of the molecular structure (regardless of whether it is the main chain or the side chain). If a benzene ring is located at the position (not present), it may be located adjacent to the terminal benzene ring.
  • Examples of products of styrenic copolymers having reactive unsaturated bonds include Septon (R) V9461 (contains a styryl group) manufactured by Kuraray Co., Ltd., and Ricon (R) 100, 181 and 184 (1,2- Styrene-butadiene copolymers having vinyl groups), Epofriend AT501 and CT310 (styrene-butadiene copolymers having 1,2-vinyl groups) manufactured by Daicel Corporation.
  • "exhibiting reactivity with heat or ultraviolet light” means exhibiting reactivity under heating conditions or ultraviolet irradiation conditions that are sufficient to cure the base material (for example, prepreg) that is suitably used in combination with the resin composition of the present invention. This means that the heating temperature under such conditions is typically about 160 to 230°C.
  • the styrenic copolymer has modified styrene butadiene.
  • the resin composition may further include an additional styrenic copolymer with modified styrene butadiene.
  • the additional styrenic copolymer the same styrenic copolymer described above can be used, except that it does not need to have a reactive unsaturated bond. That is, the additional styrenic copolymer can be one that does not have reactive unsaturated bonds (although it may have reactive unsaturated bonds).
  • the modified styrene-butadiene may be any styrene-butadiene that has been chemically modified by introducing various functional groups, such as amine-modified, pyridine-modified, carboxy-modified, etc., but amine-modified is preferred.
  • An example of a styrenic copolymer having modified styrene-butadiene includes Tuftec (R) MP10 manufactured by Asahi Kasei Corporation, which is a hydrogenated styrene-butadiene block copolymer and is an amine-modified product.
  • TR2003 manufactured by JSR Corporation, which is a styrene-butadiene block copolymer. (not a styrenic copolymer with bonds in the molecule).
  • the content of the styrenic copolymer having a reactive unsaturated bond that exhibits reactivity with heat or ultraviolet rays in the resin composition of the present invention is not particularly limited, but from the viewpoint of achieving both compatibility and dielectric properties, the resin component (solid) 20 parts by weight or more and 99.5 parts by weight or less, more preferably 30 parts by weight or more and 90 parts by weight or less, even more preferably 40 parts by weight or more and 70 parts by weight or less, based on 100 parts by weight of the total amount of .
  • the total content of the arylene ether compound having a weight average molecular weight of 30,000 or more and the styrenic copolymer having a reactive unsaturated bond in the molecule that exhibits reactivity with heat or ultraviolet rays is not particularly limited. , preferably 30 parts by weight or more and 99.5 parts by weight or less, more preferably 40 parts by weight or more and 90 parts by weight or less, even more preferably 50 parts by weight or more and 85 parts by weight, based on 100 parts by weight of the total amount of resin components (solid content). Parts by weight or less.
  • the resin composition of the present invention includes an organic filler made of liquid crystal polymer (LCP).
  • LCP liquid crystal polymer
  • a liquid crystal polymer By adding a liquid crystal polymer as a filler, not only can excellent dielectric properties be imparted to the resin composition, but also high adhesion to low roughness surfaces can be prevented from deteriorating even after heat load. This ability to suppress thermal deterioration is an advantage that cannot be obtained with inorganic fillers.
  • fillers made of liquid crystal polymers have excellent dispersibility in other resin components.
  • an organic filler made of polytetrafluoroethylene (PTFE) is very difficult to disperse in a resin component, but an organic filler made of a liquid crystal polymer is advantageous in that it does not have such drawbacks.
  • the organic filler is in the form of liquid crystal polymer particles.
  • liquid crystal polymer particles can be used, and for example, XYDAR (R) LF-31P (manufactured by ENEOS Corporation) can be preferably used as a powder grade liquid crystal polymer.
  • the particle size of the liquid crystal polymer particles is not particularly limited as long as it can be dispersed in the resin composition as an organic filler and exhibit the desired performance, but it is preferable that the average particle size D50 of the liquid crystal polymer particles is 0.1 to 10 ⁇ m. , more preferably 0.5 to 9 ⁇ m, still more preferably 1 to 8 ⁇ m.
  • the average particle diameter D50 of the liquid crystal polymer particles can be measured using a laser diffraction scattering particle size distribution analyzer.
  • the content of the organic filler is not particularly limited, but from the viewpoint of ease of filler dispersion, fluidity of the resin composition, etc., the content of the organic filler is 5 parts by weight based on 100 parts by weight of the total amount of the resin components (solid content) mentioned above. 300 parts by weight or less, more preferably 10 parts by weight or more and 200 parts by weight or less, still more preferably 15 parts by weight or more and 200 parts by weight, particularly preferably 15 parts by weight or more and 150 parts by weight or less, most preferably 25 parts by weight. The amount is 75 parts by weight or less.
  • the organic filler preferably has a dielectric loss tangent of 0.001 or less at a frequency of 10 GHz, more preferably 0.0009 or less, and still more preferably 0.0008 or less.
  • the resin composition of the present invention may contain additives commonly added to resins and polymers.
  • additives include reaction initiators, reaction promoters, flame retardants, silane coupling agents, dispersants, antioxidants, and the like.
  • Resin-coated copper foil The resin composition of the present invention is preferably used as a resin for resin-coated copper foil. That is, according to a preferred embodiment of the present invention, a resin-coated copper foil is provided that includes a copper foil and a resin layer containing a resin composition provided on at least one surface of the copper foil. Typically, the resin composition is in the form of a resin layer, and the resin composition is applied to the copper foil using a gravure coating method so that the thickness of the resin layer after drying becomes a predetermined value. Dry to obtain resin-coated copper foil.
  • the method of this coating is arbitrary, but in addition to the gravure coating method, a die coating method, a knife coating method, etc. can be adopted. In addition, it is also possible to apply using a doctor blade, bar coater, or the like.
  • the resin composition of the present invention not only has excellent dielectric properties (e.g., low dielectric loss tangent at 10 GHz) and high adhesion to low-roughness surfaces (e.g., the surface of low-roughness copper foil). , it is possible to maintain stable high adhesion to low-roughness surfaces even after heat load. Therefore, the resin-coated copper foil has various advantages brought about by such a resin composition.
  • the lower limit of the peel strength between the resin layer and the copper foil (that is, the normal peel strength) measured in accordance with JIS C 6481-1996 when the resin layer is cured is as follows: Preferably it is 0.5 kgf/cm or more, more preferably 0.8 kgf/cm or more, still more preferably 1.0 kgf/cm or more, particularly preferably 1.2 kgf/cm or more.
  • the higher the peel strength, the better, and its upper limit is not particularly limited, but is typically 2.0 kgf/cm or less.
  • the thickness of the resin layer is not particularly limited, but a thicker one is preferable in order to ensure peel strength, and a thinner thickness of the laminated substrate is preferable, so an appropriate thickness exists.
  • the thickness of the resin layer is preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 1.5 ⁇ m or more and 30 ⁇ m or less, particularly preferably 2 ⁇ m or more and 20 ⁇ m or less, and most preferably 2.5 ⁇ m or more and 10 ⁇ m or less.
  • the copper foil may be an electrolytic foil or a rolled metal foil (so-called raw foil), or it may be in the form of a surface-treated foil that has been surface-treated on at least one side.
  • Surface treatment is a variety of surface treatments performed to improve or impart certain properties to the surface of metal foil (for example, rust prevention, moisture resistance, chemical resistance, acid resistance, heat resistance, and adhesion to a substrate). It can be.
  • the surface treatment may be performed on one side of the metal foil or on both sides of the metal foil. Examples of surface treatments performed on copper foil include rust prevention treatment, silane treatment, roughening treatment, barrier formation treatment, and the like.
  • the ten-point average roughness Rzjis of the surface of the copper foil on the resin layer side measured in accordance with JIS B0601-2001 is preferably 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, and even more preferably 1 .0 ⁇ m or less, particularly preferably 0.7 ⁇ m or less, and most preferably 0.5 ⁇ m or less.
  • transmission loss in high frequency applications can be desirably reduced. That is, it is possible to reduce the conductor loss caused by the copper foil, which can increase due to the skin effect of the copper foil, which becomes more pronounced as the frequency increases, and further reduce the transmission loss.
  • the lower limit of the ten-point average roughness Rzjis on the surface of the copper foil on the resin layer side is not particularly limited, but from the viewpoint of improving adhesion with the resin layer and heat resistance, Rzjis is preferably 0.01 ⁇ m or more, more preferably 0. It is .03 ⁇ m or more, more preferably 0.05 ⁇ m or more.
  • the thickness of the copper foil is not particularly limited, but is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, more preferably 0.5 ⁇ m or more and 70 ⁇ m or less, even more preferably 1 ⁇ m or more and 50 ⁇ m or less, and particularly preferably 1.5 ⁇ m or more and 30 ⁇ m or less. , most preferably 2 ⁇ m or more and 20 ⁇ m or less. A thickness within these ranges has the advantage that fine circuitry can be formed.
  • the resin-coated copper foil of the present invention may be coated with a resin layer on the copper foil surface of the carrier-coated copper foil, which is provided with a release layer and a carrier to improve handling properties. It may also be formed by
  • the base material such as prepreg preferably contains a resin having a reactive unsaturated bond in the molecule, and from the viewpoint of compatibility with the resin layer, polyphenylene ether is preferably used. Preferably, it contains a resin.
  • base materials that satisfy both the requirements of containing a resin having a reactive unsaturated bond in the molecule and containing a polyphenylene ether resin include the MEGTRON 6 series, MEGTRON 7 series, and MEGTRON 8 series manufactured by Panasonic Corporation. It will be done.
  • a base material for example, prepreg
  • a resin layer containing the resin composition of the present invention or resin-coated copper foil of the present invention
  • the resin composition or resin-coated copper foil of the present invention is preferably used for producing a printed wiring board. That is, according to a preferred embodiment of the present invention, a printed wiring board including the resin-coated copper foil or a printed wiring board manufactured using the resin-coated copper foil is provided. In this case, the resin layer of the resin-coated copper foil is hardened.
  • the printed wiring board according to this embodiment includes a layered structure in which an insulating resin layer and a copper layer are laminated in this order. A known layer structure can be used for the printed wiring board.
  • printed wiring boards include single-sided or double-sided printed wiring boards in which the resin-coated copper foil of the present invention is adhered to one or both sides of a prepreg to form a cured laminate, and circuits are formed on the same, and multilayers made of these.
  • Examples include printed wiring boards.
  • Other specific examples include flexible printed wiring boards in which a circuit is formed by forming the resin-coated copper foil of the present invention on a resin film, COF, TAB tape, build-up multilayer wiring boards, and resin-coated copper foils on semiconductor integrated circuits. Examples include direct build-up on wafer, in which lamination of coated copper foil and circuit formation are alternately repeated.
  • the resin-coated copper foil of the present invention can be preferably applied as an insulating layer and a conductive layer for printed wiring boards for high-frequency digital communications in network equipment.
  • network devices include (i) in-base station servers, routers, etc., (ii) in-company networks, and (iii) backbone systems for high-speed mobile communications.
  • Examples 1 to 12 (1) Preparation of resin varnish First, the following arylene ether compound, styrene copolymer, additive, organic filler, and inorganic filler were prepared as raw materials for resin varnish.
  • ⁇ Arylene ether compound> -OPE-2St-1200 manufactured by Mitsubishi Gas Chemical Co., Ltd., phenylene ether compound having styryl groups at both ends of the molecule, number average molecular weight approximately 1200
  • -OPE-2St-2200 manufactured by Mitsubishi Gas Chemical Co., Ltd., phenylene ether compound having styryl groups at both ends of the molecule, number average molecular weight approximately 2200
  • -PME-82 manufactured by Mitsubishi Engineering Plastics Co., Ltd., a phenylene ether compound containing a maleic anhydride structure in the molecule, weight average molecular weight approximately 56,000
  • the number average molecular weight and weight average molecular weight of the above-mentioned arylene ether compound and styrene copolymer are values obtained by measurement using GPC (gel permeation chromatography) method under the following conditions.
  • the above molecular weights are relative values based on polystyrene.
  • ⁇ Detector Differential refractive index detector RI (manufactured by Tosoh Corporation, RI-8020, sensitivity 32)
  • Column TSKgel GMH HR -M, 2 (7.8mm x 30cm, manufactured by Tosoh Corporation)
  • Solvent Chloroform ⁇ Flow rate: 1.0mL/min ⁇ Column temperature: 40°C ⁇ Injection volume: 0.2mL
  • Standard sample Manufactured by Tosoh Corporation, monodisperse polystyrene
  • Data processing Manufactured by Toray Research Center Corporation, GPC data processing system
  • This mixed solvent is a mixture of methyl ethyl ketone (MEK) and toluene so that the MEK ratio (wt%) is shown in Tables 1 and 2.
  • MEK methyl ethyl ketone
  • a mantle heater, a stirring blade, and a flask lid with a reflux condenser tube were installed in a round flask containing the raw material components and mixed solvent, and the temperature was raised to 60 °C while stirring, and stirring was continued at 60 °C for 2 hours. The raw material components were dissolved or dispersed. The resin varnish obtained after stirring was allowed to cool. In this way, resin varnishes having solid content concentrations shown in Tables 1 and 2 were obtained.
  • Electrolytic copper foil was produced by the following method. Electrolysis was carried out in a copper sulfate solution using a titanium rotating electrode (surface roughness Ra: 0.20 ⁇ m) as the cathode and a dimensionally stable anode (DSA) as the anode at a solution temperature of 45°C and a current density of 55A/ dm2 . , an electrolytic copper foil was produced as a raw foil.
  • a titanium rotating electrode surface roughness Ra: 0.20 ⁇ m
  • DSA dimensionally stable anode
  • the composition of this copper sulfate solution is: copper concentration 80 g/L, free sulfuric acid concentration 140 g/L, bis(3-sulfopropyl) disulfide concentration 30 mg/L, diallyldimethylammonium chloride polymer concentration 50 mg/L, and chlorine concentration 40 mg/L. And so. Particulate protrusions were formed on the surface of the raw foil on the electrolyte side. The formation of particulate protrusions was performed in a copper sulfate solution (copper concentration: 13 g/L, free sulfuric acid concentration 55 g/L, 9-phenylacridine concentration 140 mg/L, chlorine concentration: 35 mg/L) at a solution temperature of 30°C and an electric current. This was carried out by electrolyzing at a density of 50 A/dm 2 .
  • a zinc-nickel coating, a chromate layer, and a silane layer were sequentially formed on the electrolyte side of the raw foil obtained in this manner under the conditions shown below.
  • ⁇ Zinc-nickel film formation> ⁇ Potassium pyrophosphate concentration: 80g/L ⁇ Zinc concentration: 0.2g/L ⁇ Nickel concentration: 2g/L ⁇ Liquid temperature: 40°C ⁇ Current density: 0.5A/ dm2 ⁇ Chromate layer formation> ⁇ Chromic acid concentration: 1g/L, pH 11 ⁇ Solution temperature: 25°C ⁇ Current density: 1A/dm 2 ⁇ Silane layer formation> ⁇ Silane coupling agent: 3-aminopropyltrimethoxysilane (3 g/L aqueous solution) ⁇ Liquid processing method: shower processing
  • the surface treated surface of this electrolytic copper foil has a ten-point average roughness Rzjis of 0.5 ⁇ m (according to JIS B0601-2001), and the particle-like protrusions have an average particle diameter of 100 nm as determined by a scanning electron microscope image.
  • the density was 205 pieces/ ⁇ m2 .
  • the total thickness of the electrolytic copper foil including the surface treated surface was 18 ⁇ m.
  • the peel strength measured here reflects four peeling modes: prepreg/resin interface peeling, resin cohesive failure, phase interface peeling within the resin layer, and resin/copper foil interface peeling.
  • ⁇ Dielectric loss tangent> The dielectric loss tangent of the resin film at 10 GHz was measured by the perturbation cavity resonator method. This measurement was performed in accordance with JIS R 1641 using a measuring device (a resonator manufactured by KEYCOM and a network analyzer manufactured by KEYSIGHT) after cutting the resin film according to the sample size of the resonator. The results were as shown in Tables 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a resin composition that not only exhibits high adhesiveness against less rough surfaces and has excellent dielectric properties, but also can stably sustain the high adhesiveness even after a heat load is applied thereto. The resin composition contains: an arylene ether compound having a weight average molecular weight of 30000 or more, and/or a styrene-based copolymer that has, within the molecule, a reactive unsaturated bond that expresses reactivity due to heat or ultraviolet rays; and an organic filler formed of a liquid crystal polymer.

Description

樹脂組成物、樹脂付銅箔及びプリント配線板Resin compositions, resin-coated copper foils, and printed wiring boards
 本発明は、樹脂組成物、樹脂付銅箔及びプリント配線板に関するものである。 The present invention relates to a resin composition, a resin-coated copper foil, and a printed wiring board.
 プリント配線板は電子機器等に広く用いられている。特に、近年の電子機器等の高機能化に伴って信号の高周波化が進んでおり、高速大容量通信が可能となってきている。そのような用途の例としては、通信サーバー、車の自動運転、5G対応の携帯電話等が挙げられる。こうした高周波用途に適したプリント配線板が求められるようになっている。この高周波用プリント配線板には、高周波信号の質を劣化させずに伝送可能とするために、伝送損失の低いものが望まれる。プリント配線板は配線パターンに加工された銅箔と絶縁樹脂基材とを備えたものであるが、伝送損失は、主として銅箔に起因する導体損失と、絶縁樹脂基材に起因する誘電体損失とからなる。したがって、高周波用途に適用する樹脂層付銅箔においては、樹脂層に起因する誘電体損失を抑制することが望ましい。このためには、樹脂層には優れた誘電特性、特に低い誘電正接が求められる。 Printed wiring boards are widely used in electronic devices. In particular, as electronic devices and the like have become more sophisticated in recent years, the frequency of signals has been increasing, making high-speed, large-capacity communication possible. Examples of such applications include communication servers, self-driving cars, and 5G-enabled mobile phones. There is a growing demand for printed wiring boards suitable for such high frequency applications. This high frequency printed wiring board is desired to have low transmission loss in order to be able to transmit high frequency signals without deteriorating their quality. A printed wiring board is equipped with a copper foil processed into a wiring pattern and an insulating resin base material, but transmission loss is mainly a conductor loss due to the copper foil and a dielectric loss due to the insulating resin base material. It consists of. Therefore, in a copper foil with a resin layer applied to high frequency applications, it is desirable to suppress dielectric loss caused by the resin layer. For this purpose, the resin layer is required to have excellent dielectric properties, particularly a low dielectric loss tangent.
 一方、誘電特性や密着性等に優れる様々な樹脂組成物がプリント配線板等の用途に提案されている。例えば、特許文献1(国際公開第2013/105650号)には、銅箔の片面に接着剤層を備える接着剤層付銅箔が開示されており、この接着剤層は、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を5質量部以上65質量部以下含む樹脂組成物からなるとされている。また、特許文献2(国際公開第2016/175326号)には、1分子中にN-置換マレイミド構造含有基及びポリフェニレンエーテル誘導体(A)、エポキシ樹脂、シアネート樹脂及びマレイミド化合物からなる群より選ばれる少なくとも1種類の熱硬化性樹脂(B)、及びスチレン系熱可塑性エラストマー(C)を含む樹脂組成物が開示されている。特許文献3(特開2011-225639号公報)は、未硬化のセミIPN型複合体と、(D)ラジカル反応開始剤とを含有する熱硬化性樹脂組成物が開示されている。この未硬化のセミIPN型複合体は、(A)ポリフェニレンエーテルと、(B)側鎖に1,2-ビニル基を有する1,2-ブタジエン単位を分子中に40%以上含有するブタジエンポリマー及び(C)架橋剤から形成されるプレポリマーと、が相容化した未硬化のものであるとされている。 On the other hand, various resin compositions with excellent dielectric properties, adhesion, etc. have been proposed for uses such as printed wiring boards. For example, Patent Document 1 (International Publication No. 2013/105650) discloses a copper foil with an adhesive layer that has an adhesive layer on one side of the copper foil, and this adhesive layer is made of a polyphenylene ether compound with a mass of 100% It is made of a resin composition containing 5 parts by mass or more and 65 parts by mass or less of a styrene-butadiene block copolymer. Further, Patent Document 2 (International Publication No. 2016/175326) describes a group containing an N-substituted maleimide structure in one molecule and a polyphenylene ether derivative (A) selected from the group consisting of an epoxy resin, a cyanate resin, and a maleimide compound. A resin composition containing at least one type of thermosetting resin (B) and a styrenic thermoplastic elastomer (C) is disclosed. Patent Document 3 (Japanese Unexamined Patent Publication No. 2011-225639) discloses a thermosetting resin composition containing an uncured semi-IPN composite and (D) a radical reaction initiator. This uncured semi-IPN type composite consists of (A) polyphenylene ether, (B) a butadiene polymer containing 40% or more of 1,2-butadiene units having a 1,2-vinyl group in the side chain; (C) A prepolymer formed from a crosslinking agent is said to be compatible and uncured.
国際公開第2013/105650号International Publication No. 2013/105650 国際公開第2016/175326号International Publication No. 2016/175326 特開2011-225639号公報Japanese Patent Application Publication No. 2011-225639
 本発明者らは、誘電特性等に優れる樹脂組成物として、プライマー層(接着層)としてプリプレグ等の基材に貼り付けられるものを検討してきた。そして、この樹脂組成物の層は樹脂付銅箔の形態で提供され、この銅箔は回路形成用銅箔として使用されうる。上記用途向けの樹脂組成物には、優れた誘電特性のみならず、低粗度表面(例えば低粗度銅箔の表面)に対しても密着性に優れることが望まれる。とりわけ、高周波向け回路形成においては、低粗度銅箔が伝送損失の低減の観点から望まれるところ、そのような銅箔は低粗度であるが故に樹脂組成物との密着性が低くなる傾向にある。特に、基板製造工程において熱処理を行った場合には、銅箔と樹脂組成物との密着性がさらに低下する傾向にある。そのため、上記用途向けの樹脂組成物には、優れた誘電特性及び低粗度表面(例えば低粗度銅箔の表面)に対する高い密着性を呈することのみならず、熱負荷後においてもその高い密着性を安定的に維持できることが望まれる。 The present inventors have studied resin compositions that can be attached to base materials such as prepregs as primer layers (adhesive layers) as resin compositions with excellent dielectric properties and the like. The layer of this resin composition is provided in the form of a resin-coated copper foil, and this copper foil can be used as a circuit-forming copper foil. Resin compositions for the above-mentioned applications are desired to have not only excellent dielectric properties but also excellent adhesion to low-roughness surfaces (for example, the surface of low-roughness copper foil). In particular, when forming high-frequency circuits, low-roughness copper foil is desired from the perspective of reducing transmission loss, but because such copper foil has low roughness, it tends to have poor adhesion with resin compositions. It is in. In particular, when heat treatment is performed in the substrate manufacturing process, the adhesion between the copper foil and the resin composition tends to further deteriorate. Therefore, resin compositions for the above applications must not only exhibit excellent dielectric properties and high adhesion to low-roughness surfaces (for example, the surface of low-roughness copper foil), but also exhibit high adhesion even after heat load. It is desirable to be able to maintain stable sex.
 本発明者らは、今般、所定のアリーレンエーテル化合物及び/又は所定のスチレン系コポリマーと、液晶ポリマーで構成される有機フィラーとをブレンドすることで、優れた誘電特性(例えば10GHzでの低い誘電正接)及び低粗度表面(例えば低粗度銅箔の表面)に対する高い密着性を呈するのみならず、熱負荷後においてもその高い密着性を安定的に維持可能な樹脂組成物を提供できるとの知見を得た。 The present inventors have recently discovered that by blending a predetermined arylene ether compound and/or a predetermined styrenic copolymer with an organic filler composed of a liquid crystal polymer, excellent dielectric properties (for example, a low dielectric loss tangent at 10 GHz) can be achieved. ) and low-roughness surfaces (for example, the surface of low-roughness copper foil), it is possible to provide a resin composition that not only exhibits high adhesion to low-roughness surfaces (for example, the surface of low-roughness copper foil) but also can stably maintain that high adhesion even after heat load. I gained knowledge.
 したがって、本発明の目的は、優れた誘電特性及び低粗度表面に対する高い密着性を呈するのみならず、熱負荷後においてもその高い密着性を安定的に維持可能な樹脂組成物を提供することにある。 Therefore, an object of the present invention is to provide a resin composition that not only exhibits excellent dielectric properties and high adhesion to low-roughness surfaces, but also can stably maintain this high adhesion even after heat load. It is in.
 本発明によれば、以下の態様が提供される。
[態様1]
 重量平均分子量30000以上のアリーレンエーテル化合物、及び熱又は紫外線により反応性を呈する反応性不飽和結合を分子中に有するスチレン系コポリマーのうち少なくとも1種と、
 液晶ポリマーで構成される有機フィラーと、
を含む、樹脂組成物。
[態様2]
 前記反応性不飽和結合が、シアネート基、マレイミド基、末端ビニル基、(メタ)アクリロイル基、エチニル基、及びスチリル基からなる群から選択される少なくとも1種である、態様1に記載の樹脂組成物。
[態様3]
 前記スチレン系コポリマーが、前記反応性不飽和結合として、スチリル基を有する、態様1又は2に記載の樹脂組成物。
[態様4]
 前記樹脂組成物が、前記アリーレンエーテル化合物及び前記スチレン系コポリマーの両方を含む、態様1~3のいずれか一つに記載の樹脂組成物。
[態様5]
 前記有機フィラーの周波数10GHzにおける誘電正接が0.001以下である、態様1~4のいずれか一つに記載の樹脂組成物。
[態様6]
 銅箔と、前記銅箔の少なくとも一方の表面に設けられた態様1~5のいずれか一つに記載の樹脂組成物を含む樹脂層とを備えた、樹脂付銅箔。
[態様7]
 前記銅箔の前記樹脂層側の表面における、JIS B0601-2001に準拠して測定される十点平均粗さRzjisが2.0μm以下である、態様6に記載の樹脂付銅箔。
[態様8]
 態様6又は7に記載の樹脂付銅箔を用いて作製された、プリント配線板。
According to the present invention, the following aspects are provided.
[Aspect 1]
At least one of an arylene ether compound having a weight average molecular weight of 30,000 or more and a styrenic copolymer having a reactive unsaturated bond in the molecule that exhibits reactivity with heat or ultraviolet light;
An organic filler composed of liquid crystal polymer,
A resin composition containing.
[Aspect 2]
The resin composition according to aspect 1, wherein the reactive unsaturated bond is at least one selected from the group consisting of a cyanate group, a maleimide group, a terminal vinyl group, a (meth)acryloyl group, an ethynyl group, and a styryl group. thing.
[Aspect 3]
The resin composition according to aspect 1 or 2, wherein the styrenic copolymer has a styryl group as the reactive unsaturated bond.
[Aspect 4]
The resin composition according to any one of aspects 1 to 3, wherein the resin composition contains both the arylene ether compound and the styrenic copolymer.
[Aspect 5]
The resin composition according to any one of aspects 1 to 4, wherein the organic filler has a dielectric loss tangent of 0.001 or less at a frequency of 10 GHz.
[Aspect 6]
A resin-coated copper foil comprising a copper foil and a resin layer containing the resin composition according to any one of aspects 1 to 5 provided on at least one surface of the copper foil.
[Aspect 7]
The resin-coated copper foil according to aspect 6, wherein the surface of the copper foil on the resin layer side has a ten-point average roughness Rzjis of 2.0 μm or less as measured in accordance with JIS B0601-2001.
[Aspect 8]
A printed wiring board produced using the resin-coated copper foil according to aspect 6 or 7.
 樹脂組成物
 本発明の樹脂組成物は、アリーレンエーテル化合物及びスチレン系コポリマーのうち少なくとも1種と、有機フィラーとを含む。アリーレンエーテル化合物は30000以上の重量平均分子量を有するものである一方、スチレン系コポリマーは熱又は紫外線により反応性を呈する反応性不飽和結合を分子中に有するものである。有機フィラーは、液晶ポリマーで構成される。このように、所定のアリーレンエーテル化合物及び/又は所定のスチレン系コポリマーと、液晶ポリマーで構成される有機フィラーとをブレンドすることで、優れた誘電特性(例えば10GHzでの低い誘電正接)及び低粗度表面(例えば低粗度銅箔の表面)に対する高い密着性を呈するのみならず、熱負荷後においてもその密着性を安定的に維持可能な樹脂組成物を提供することができる。
Resin Composition The resin composition of the present invention contains at least one of an arylene ether compound and a styrene copolymer, and an organic filler. The arylene ether compound has a weight average molecular weight of 30,000 or more, while the styrenic copolymer has a reactive unsaturated bond in its molecule that becomes reactive with heat or ultraviolet light. The organic filler is composed of liquid crystal polymer. In this way, by blending a predetermined arylene ether compound and/or a predetermined styrenic copolymer with an organic filler composed of a liquid crystal polymer, excellent dielectric properties (for example, low dielectric loss tangent at 10 GHz) and low roughness can be achieved. It is possible to provide a resin composition that not only exhibits high adhesion to rough surfaces (for example, the surface of low-roughness copper foil) but also can stably maintain its adhesion even after heat load.
 前述のとおり、本発明者らは、誘電特性等に優れる樹脂組成物として、プライマー層(接着層)としてプリプレグ等の基材に貼り付けられるものを検討してきた。そして、この樹脂組成物の層は樹脂付銅箔の形態で提供され、この銅箔は回路形成用銅箔として使用されうる。上記用途向けの樹脂組成物には、優れた誘電特性のみならず、低粗度表面(例えば低粗度銅箔の表面)に対しても密着性に優れることが望まれる。とりわけ、高周波向け回路形成においては、低粗度銅箔が伝送損失の低減の観点から望まれるところ、そのような銅箔は低粗度であるが故に樹脂組成物との密着性が低くなる傾向にある。特に、基板製造工程において熱処理を行った場合には、銅箔と樹脂組成物との密着性がさらに低下する傾向にある。この点、本発明の樹脂組成物によれば、上述した問題を好都合に解消することができる。 As mentioned above, the present inventors have studied resin compositions that can be attached to base materials such as prepregs as primer layers (adhesive layers) as resin compositions with excellent dielectric properties and the like. The layer of this resin composition is provided in the form of a resin-coated copper foil, and this copper foil can be used as a circuit-forming copper foil. Resin compositions for the above-mentioned applications are desired to have not only excellent dielectric properties but also excellent adhesion to low-roughness surfaces (for example, the surface of low-roughness copper foil). In particular, when forming high-frequency circuits, low-roughness copper foil is desired from the perspective of reducing transmission loss, but because such copper foil has low roughness, it tends to have poor adhesion with resin compositions. It is in. In particular, when heat treatment is performed in the substrate manufacturing process, the adhesion between the copper foil and the resin composition tends to further deteriorate. In this regard, according to the resin composition of the present invention, the above-mentioned problems can be conveniently solved.
 本発明の樹脂組成物は、重量平均分子量30000以上のアリーレンエーテル化合物、及び熱又は紫外線により反応性を呈する反応性不飽和結合を分子中に有するスチレン系コポリマーのうち少なくとも1種を含むが、上記アリーレンエーテル化合物及び上記スチレン系コポリマーの両方を含むのが好ましい。こうすることで、本発明による上述した効果をより効果的に実現することができる。 The resin composition of the present invention contains at least one of an arylene ether compound having a weight average molecular weight of 30,000 or more and a styrenic copolymer having a reactive unsaturated bond in the molecule that exhibits reactivity with heat or ultraviolet rays. Preferably, it contains both an arylene ether compound and the styrenic copolymer described above. By doing so, the above-described effects of the present invention can be more effectively achieved.
 本発明の樹脂組成物は、硬化後の周波数10GHzにおける誘電正接が0.0035未満であることが好ましく、より好ましくは0.0020未満、さらに好ましくは0.0015未満である。誘電正接は低い方が好ましく、下限値は特に限定されないが、典型的には0.0001以上である。 The resin composition of the present invention preferably has a dielectric loss tangent at a frequency of 10 GHz after curing of less than 0.0035, more preferably less than 0.0020, and still more preferably less than 0.0015. The lower the dielectric loss tangent is, the more preferable it is, and the lower limit is not particularly limited, but is typically 0.0001 or more.
 本発明の樹脂組成物は、アリーレンエーテル化合物を含むのが好ましい。このアリーレンエーテル化合物の重量平均分子量は30000以上であり、好ましくは30000以上300000以下、さらに好ましくは40000以上200000以下、特に好ましくは45000以上120000以下である。重量平均分子量30000以上のアリーレンエーテル化合物は、好ましくはフェニレンエーテル化合物、例えばポリフェニレンエーテルである。アリーレンエーテル化合物ないしフェニレンエーテル化合物は下記式:
Figure JPOXMLDOC01-appb-C000001
(式中、R、R、R及びRはそれぞれ独立して水素原子又は炭素数1以上3以下の炭化水素基である)
で表される骨格を分子中に含む化合物であるのが好ましい。フェニレンエーテル化合物の例としては、フェニレンエーテル化合物のスチレン誘導体、分子中に無水マレイン酸構造を含むフェニレンエーテル化合物、末端水酸基変性フェニレンエーテル化合物、末端メタクリル変性フェニレンエーテル化合物及び末端グリシジルエーテル変性フェニレンエーテル化合物が挙げられる。分子中に無水マレイン酸構造を含む重量平均分子量30000以上のアリーレンエーテル化合物の製品例としては、三菱エンジニアリングプラスチックス株式会社製のPME-80及びPME-82が挙げられる。
The resin composition of the present invention preferably contains an arylene ether compound. The weight average molecular weight of this arylene ether compound is 30,000 or more, preferably 30,000 or more and 300,000 or less, more preferably 40,000 or more and 200,000 or less, particularly preferably 45,000 or more and 120,000 or less. The arylene ether compound having a weight average molecular weight of 30,000 or more is preferably a phenylene ether compound, such as polyphenylene ether. The arylene ether compound or phenylene ether compound has the following formula:
Figure JPOXMLDOC01-appb-C000001
(In the formula, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms)
It is preferable that the compound contains a skeleton represented by the following in its molecule. Examples of phenylene ether compounds include styrene derivatives of phenylene ether compounds, phenylene ether compounds containing a maleic anhydride structure in the molecule, terminal hydroxyl group-modified phenylene ether compounds, terminal methacrylic-modified phenylene ether compounds, and terminal glycidyl ether-modified phenylene ether compounds. Can be mentioned. Examples of products of arylene ether compounds having a maleic anhydride structure in the molecule and having a weight average molecular weight of 30,000 or more include PME-80 and PME-82 manufactured by Mitsubishi Engineering Plastics Corporation.
 本発明のアリーレンエーテル化合物は、反応性不飽和結合を有するのが好ましい。あるいは、樹脂組成物が、反応性不飽和結合を有する追加のアリーレンエーテル化合物をさらに含むものであってもよい。この場合、追加のアリーレンエーテル化合物としては、重量平均分子量30000以上である必要が無い。すなわち、追加のアリーレンエーテル化合物は、(重量平均分子量30000以上であってもよいが)重量平均分子量30000未満のものであることができ、例えば、数平均分子量500以上10000以下でありうる。反応性不飽和結合は、熱又は紫外線により反応性を呈する不飽和結合と定義される。反応性不飽和結合の好ましい例としては、シアネート基、マレイミド基、ビニル基、(メタ)アクリロイル基、エチニル基、スチリル基、及びそれらの組合せが挙げられる。反応性が高く、かつ、反応の制御が可能(経時変化での反応が起こりにくく、樹脂の保管が可能で、製品寿命を長く確保できる)な点で、スチリル基が特に好ましい。 The arylene ether compound of the present invention preferably has a reactive unsaturated bond. Alternatively, the resin composition may further include an additional arylene ether compound having a reactive unsaturated bond. In this case, the additional arylene ether compound does not need to have a weight average molecular weight of 30,000 or more. That is, the additional arylene ether compound can have a weight average molecular weight of less than 30,000 (although it may have a weight average molecular weight of 30,000 or more), for example, it can have a number average molecular weight of 500 or more and 10,000 or less. A reactive unsaturated bond is defined as an unsaturated bond that exhibits reactivity with heat or ultraviolet light. Preferred examples of reactive unsaturated bonds include cyanate groups, maleimide groups, vinyl groups, (meth)acryloyl groups, ethynyl groups, styryl groups, and combinations thereof. A styryl group is particularly preferred because it has high reactivity and allows control of the reaction (reactions are difficult to occur over time, the resin can be stored, and a long product life can be ensured).
 アリーレンエーテル化合物における反応性不飽和結合は、分子構造の末端に又はそれに隣接して位置するのが、高い反応性を呈する点で好ましい。例えば、分子構造の末端に不飽和結合を有する官能基の例として1,2-ビニル基が挙げられるが、1,2-ビニル基は高い反応性を呈するが故にラジカル重合に利用可能な官能基として一般的である。対して、分子鎖中に存在するエチレン性不飽和結合(分子構造の末端に位置していないビニル基)の場合、その反応性は低下する。また、例外的に、不飽和結合にベンゼン環が隣接している場合(例えばスチリル基の場合)は高い反応性を有する。したがって、反応性不飽和結合の位置は、a)分子構造の末端(主鎖か側鎖かは問わない)であってもよいし、b)分子構造の末端(主鎖か側鎖かは問わない)にベンゼン環が位置する場合、末端のベンゼン環に隣接する位置であってもよい。例えば、アリーレンエーテル化合物は、分子構造の両末端に反応性不飽和結合としてスチリル基を有していてもよい。分子両末端にスチリル基を有するアリーレンエーテル化合物の製品例としては、三菱ガス化学株式会社製のOPE-2St-1200及びOPE-2St-2200が挙げられる(但し、これら製品のアリーレンエーテル化合物は重量平均分子量が30000未満である)。 The reactive unsaturated bond in the arylene ether compound is preferably located at or adjacent to the end of the molecular structure, since it exhibits high reactivity. For example, a 1,2-vinyl group is an example of a functional group having an unsaturated bond at the end of its molecular structure, and since the 1,2-vinyl group exhibits high reactivity, it can be used as a functional group for radical polymerization. It is common as On the other hand, in the case of ethylenically unsaturated bonds (vinyl groups not located at the ends of the molecular structure) present in the molecular chain, the reactivity decreases. Furthermore, exceptionally, when a benzene ring is adjacent to an unsaturated bond (for example, in the case of a styryl group), the reactivity is high. Therefore, the position of the reactive unsaturated bond may be a) the end of the molecular structure (regardless of whether it is the main chain or the side chain), or b) the end of the molecular structure (regardless of whether it is the main chain or the side chain). If a benzene ring is located at the position (not present), it may be located adjacent to the terminal benzene ring. For example, the arylene ether compound may have styryl groups as reactive unsaturated bonds at both ends of its molecular structure. Examples of products of arylene ether compounds having styryl groups at both ends of the molecule include OPE-2St-1200 and OPE-2St-2200 manufactured by Mitsubishi Gas Chemical Co., Ltd. (However, the arylene ether compounds of these products have a weight average molecular weight is less than 30,000).
 本発明の樹脂組成物が重量平均分子量30000以上のアリーレンエーテル化合物を含む場合、その含有量は、特に限定されないが、相溶性(剥離強度に関連性を有する)と誘電特性とを両立させる観点から、樹脂成分(固形分)の合計量100重量部に対して、10重量部以上90重量部以下が好ましく、より好ましくは15重量部以上80重量部以下、さらに好ましくは20重量部以上60重量部以下である。本明細書において、樹脂成分(固形分)の合計量100重量部には、ポリマーや樹脂のみならず、反応開始剤等、樹脂の一部を構成することになる添加剤の重量も算入されるものとし、有機フィラーは算入されないものとする。 When the resin composition of the present invention contains an arylene ether compound having a weight average molecular weight of 30,000 or more, the content is not particularly limited, but from the viewpoint of achieving both compatibility (related to peel strength) and dielectric properties. , preferably 10 parts by weight or more and 90 parts by weight or less, more preferably 15 parts by weight or more and 80 parts by weight or less, even more preferably 20 parts by weight or more and 60 parts by weight, based on 100 parts by weight of the total amount of resin components (solid content). It is as follows. In this specification, the total amount of resin components (solid content) of 100 parts by weight includes not only the polymer and resin but also the weight of additives such as reaction initiators that constitute a part of the resin. However, organic fillers are not included in the calculation.
 本発明の樹脂組成物は、熱又は紫外線により反応性を呈する反応性不飽和結合を分子中に有するスチレン系コポリマーを含むのが好ましい。スチレン系コポリマーは水添及び非水添のいずれであってもよい。すなわち、スチレン系コポリマーは、スチレン由来の部位を含む化合物であって、スチレン以外にもオレフィン等の重合可能な不飽和基を有する化合物由来の部位を含んでもよい重合体である。スチレン系コポリマーの重合可能な不飽和基を有する化合物由来の部位にさらに二重結合が存在する場合、二重結合部は水添されているものであってもよいし、水添されていないものであってもよい。スチレン系コポリマーの例としては、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、メタクリル酸エステル-ブタジエン-スチレン共重合体(MBS)、アクリロニトリル-アクリル酸エステル-スチレン共重合体(AAS)、アクリロニトリル-エチレン-スチレン共重合体(AES)、スチレン-ブタジエン共重合体(SBR)、スチレン-ブタジエン-スチレン共重合体(SBS)、スチレン-エチレン-ブタジエン-スチレン共重合体(SEBS)、スチレン・4-メチルスチレン・イソプレン・ブタジエンブロック共重合体、及びそれらの組合せが挙げられ、好ましくは、スチレン-ブタジエンブロック共重合体(SBR)、スチレン・4-メチルスチレン・イソプレン・ブタジエンブロック共重合体、及びそれらの組合せであり、特に好ましくはスチレン・4-メチルスチレン・イソプレン・ブタジエンブロック共重合体である。スチレン系コポリマーの重量平均分子量は、特に限定されないが、好ましくは40000以上400000以下、さらに好ましくは60000以上370000以下、特に好ましくは80000以上340000以下である。 The resin composition of the present invention preferably contains a styrenic copolymer having a reactive unsaturated bond in the molecule that exhibits reactivity with heat or ultraviolet light. The styrenic copolymer may be either hydrogenated or non-hydrogenated. That is, the styrenic copolymer is a compound containing a moiety derived from styrene, and may also contain a moiety derived from a compound having a polymerizable unsaturated group such as an olefin in addition to styrene. If a double bond is further present in a site derived from a compound having a polymerizable unsaturated group in the styrenic copolymer, the double bond may be hydrogenated or not hydrogenated. It may be. Examples of styrenic copolymers include acrylonitrile-butadiene-styrene copolymer (ABS), methacrylate-butadiene-styrene copolymer (MBS), acrylonitrile-acrylate-styrene copolymer (AAS), and acrylonitrile-butadiene-styrene copolymer (AAS). Ethylene-styrene copolymer (AES), styrene-butadiene copolymer (SBR), styrene-butadiene-styrene copolymer (SBS), styrene-ethylene-butadiene-styrene copolymer (SEBS), styrene-4- Examples include methylstyrene/isoprene/butadiene block copolymers, and combinations thereof, preferably styrene/butadiene block copolymers (SBR), styrene/4-methylstyrene/isoprene/butadiene block copolymers, and combinations thereof. Especially preferred is a styrene/4-methylstyrene/isoprene/butadiene block copolymer. The weight average molecular weight of the styrenic copolymer is not particularly limited, but is preferably 40,000 or more and 400,000 or less, more preferably 60,000 or more and 370,000 or less, particularly preferably 80,000 or more and 340,000 or less.
 本発明に用いられるスチレン系コポリマーは、熱又は紫外線により反応性を呈する反応性不飽和結合を分子中に有する。反応性不飽和結合の好ましい例としては、シアネート基、マレイミド基、末端ビニル基、(メタ)アクリロイル基、エチニル基、スチリル基、及びそれらの組合せが挙げられる。反応性が高く、かつ、反応の制御が可能(経時変化での反応が起こりにくく、樹脂の保管が可能で、製品寿命を長く確保できる)な点で、スチリル基が特に好ましい。 The styrenic copolymer used in the present invention has a reactive unsaturated bond in its molecule that becomes reactive with heat or ultraviolet light. Preferred examples of reactive unsaturated bonds include cyanate groups, maleimide groups, terminal vinyl groups, (meth)acryloyl groups, ethynyl groups, styryl groups, and combinations thereof. A styryl group is particularly preferred because it has high reactivity and allows control of the reaction (reactions are difficult to occur over time, the resin can be stored, and a long product life can be ensured).
 スチレン系コポリマーにおける反応性不飽和結合は、分子構造の末端に又はそれに隣接して位置するのが、高い反応性を呈する点で好ましい。例えば、分子構造の末端に不飽和結合を有する官能基の例として1,2-ビニル基が挙げられるが、1,2-ビニル基(末端ビニル基)は高い反応性を呈するが故にラジカル重合に利用可能な官能基として一般的である。よって、このような官能基を有するスチレン系コポリマーは、熱又は紫外線により反応性を呈する反応性不飽和結合を分子中に有するスチレン系コポリマーであるといえる。対して、分子鎖中に存在するエチレン性不飽和結合(分子構造の末端に位置していないビニル基)の場合、その反応性は低下する。よって、このような不飽和結合を有するスチレン系コポリマーは、熱又は紫外線により反応性を呈する反応性不飽和結合を分子中に有するスチレン系コポリマーであるとはいえない。分子構造の末端に不飽和結合を有しないスチレン系コポリマーの製品例としては、JSR株式会社製TR2003が挙げられる。また、例外的に、不飽和結合にベンゼン環が隣接している場合(例えばスチリル基の場合)は高い反応性を有するため、熱又は紫外線により反応性を呈する反応性不飽和結合を分子中に有するスチレン系コポリマーであるといえる。したがって、反応性不飽和結合の位置は、a)分子構造の末端(主鎖か側鎖かは問わない)であってもよいし、b)分子構造の末端(主鎖か側鎖かは問わない)にベンゼン環が位置する場合、末端のベンゼン環に隣接する位置であってもよい。反応性不飽和結合を有するスチレン系コポリマーの製品例としては、株式会社クラレ製セプトン(R)V9461(スチリル基を有する)、CRAY VALLEY社製Ricon(R)100、181及び184(1,2-ビニル基を有するスチレン-ブタジエン共重合体)、株式会社ダイセル製エポフレンドAT501及びCT310(1,2-ビニル基を有するスチレンブタジエンコポリマー)が挙げられる。なお、「熱又は紫外線により反応性を呈する」とは、本発明の樹脂組成物と組み合わせて好適に用いられる基材(例えばプリプレグ)を硬化させる程度の加熱条件又は紫外線照射条件で反応性を呈することを意味し、そのような条件における加熱温度は典型的には160~230℃程度である。 The reactive unsaturated bonds in the styrenic copolymer are preferably located at or adjacent to the ends of the molecular structure in view of exhibiting high reactivity. For example, a 1,2-vinyl group is an example of a functional group that has an unsaturated bond at the end of its molecular structure, but the 1,2-vinyl group (terminal vinyl group) is highly reactive and therefore difficult to radically polymerize. It is a common functional group that can be used. Therefore, a styrenic copolymer having such a functional group can be said to be a styrenic copolymer having a reactive unsaturated bond in its molecule that exhibits reactivity with heat or ultraviolet rays. On the other hand, in the case of ethylenically unsaturated bonds (vinyl groups not located at the ends of the molecular structure) present in the molecular chain, the reactivity decreases. Therefore, a styrenic copolymer having such an unsaturated bond cannot be said to be a styrenic copolymer having a reactive unsaturated bond in its molecule that exhibits reactivity with heat or ultraviolet rays. An example of a product of a styrene copolymer having no unsaturated bond at the end of its molecular structure is TR2003 manufactured by JSR Corporation. In addition, as an exception, when a benzene ring is adjacent to an unsaturated bond (for example, in the case of a styryl group), it has high reactivity. It can be said that it is a styrenic copolymer with Therefore, the position of the reactive unsaturated bond may be a) the end of the molecular structure (regardless of whether it is the main chain or the side chain), or b) the end of the molecular structure (regardless of whether it is the main chain or the side chain). If a benzene ring is located at the position (not present), it may be located adjacent to the terminal benzene ring. Examples of products of styrenic copolymers having reactive unsaturated bonds include Septon (R) V9461 (contains a styryl group) manufactured by Kuraray Co., Ltd., and Ricon (R) 100, 181 and 184 (1,2- Styrene-butadiene copolymers having vinyl groups), Epofriend AT501 and CT310 (styrene-butadiene copolymers having 1,2-vinyl groups) manufactured by Daicel Corporation. Note that "exhibiting reactivity with heat or ultraviolet light" means exhibiting reactivity under heating conditions or ultraviolet irradiation conditions that are sufficient to cure the base material (for example, prepreg) that is suitably used in combination with the resin composition of the present invention. This means that the heating temperature under such conditions is typically about 160 to 230°C.
 スチレン系コポリマーは、変性スチレンブタジエンを有するのが好ましい。あるいは、樹脂組成物が、変性スチレンブタジエンを有する追加のスチレン系コポリマーをさらに含むものであってもよい。この場合、追加のスチレン系コポリマーとしては、反応性不飽和結合を有する必要が無いこと以外は、上記同様のスチレン系コポリマーを用いることができる。すなわち、追加のスチレン系コポリマーは、(反応性不飽和結合を有するものであってもよいが)反応性不飽和結合を有しないものであることができる。変性スチレンブタジエンは、種々の官能基を導入して化学変性されたスチレンブタジエンであればよく、例えばアミン変性、ピリジン変性、カルボキシ変性等が挙げられるが、好ましくはアミン変性である。変性スチレンブタジエンを有するスチレン系コポリマーの例としては、水添スチレンブタジエンブロック共重合体であって、アミン変性品である旭化成株式会社製タフテック(R)MP10が挙げられる。また、変性していないスチレン系コポリマーの例としては、スチレンブタジエンブロック共重合体であるJSR株式会社製TR2003が挙げられる(但し、MP10やTR2003は、熱又は紫外線により反応性を呈する反応性不飽和結合を分子中に有するスチレン系コポリマーではない)。 Preferably, the styrenic copolymer has modified styrene butadiene. Alternatively, the resin composition may further include an additional styrenic copolymer with modified styrene butadiene. In this case, as the additional styrenic copolymer, the same styrenic copolymer described above can be used, except that it does not need to have a reactive unsaturated bond. That is, the additional styrenic copolymer can be one that does not have reactive unsaturated bonds (although it may have reactive unsaturated bonds). The modified styrene-butadiene may be any styrene-butadiene that has been chemically modified by introducing various functional groups, such as amine-modified, pyridine-modified, carboxy-modified, etc., but amine-modified is preferred. An example of a styrenic copolymer having modified styrene-butadiene includes Tuftec (R) MP10 manufactured by Asahi Kasei Corporation, which is a hydrogenated styrene-butadiene block copolymer and is an amine-modified product. An example of an unmodified styrene copolymer is TR2003 manufactured by JSR Corporation, which is a styrene-butadiene block copolymer. (not a styrenic copolymer with bonds in the molecule).
 本発明の樹脂組成物における熱又は紫外線により反応性を呈する反応性不飽和結合を有するスチレン系コポリマーの含有量は、特に限定されないが、相溶性と誘電特性とを両立させる観点から樹脂成分(固形分)の合計量100重量部に対して、20重量部以上99.5重量部以下が好ましく、より好ましくは30重量部以上90重量部以下、さらに好ましくは40重量部以上70重量部以下である。 The content of the styrenic copolymer having a reactive unsaturated bond that exhibits reactivity with heat or ultraviolet rays in the resin composition of the present invention is not particularly limited, but from the viewpoint of achieving both compatibility and dielectric properties, the resin component (solid) 20 parts by weight or more and 99.5 parts by weight or less, more preferably 30 parts by weight or more and 90 parts by weight or less, even more preferably 40 parts by weight or more and 70 parts by weight or less, based on 100 parts by weight of the total amount of .
 本発明の樹脂組成物における、重量平均分子量30000以上のアリーレンエーテル化合物、及び熱又は紫外線により反応性を呈する反応性不飽和結合を分子中に有するスチレン系コポリマーの合計含有量は、特に限定されないが、樹脂成分(固形分)の合計量100重量部に対して、30重量部以上99.5重量部以下が好ましく、より好ましくは40重量部以上90重量部以下、さらに好ましくは50重量部以上85重量部以下である。 In the resin composition of the present invention, the total content of the arylene ether compound having a weight average molecular weight of 30,000 or more and the styrenic copolymer having a reactive unsaturated bond in the molecule that exhibits reactivity with heat or ultraviolet rays is not particularly limited. , preferably 30 parts by weight or more and 99.5 parts by weight or less, more preferably 40 parts by weight or more and 90 parts by weight or less, even more preferably 50 parts by weight or more and 85 parts by weight, based on 100 parts by weight of the total amount of resin components (solid content). Parts by weight or less.
 本発明の樹脂組成物は、液晶ポリマー(LCP)で構成される有機フィラーを含む。液晶ポリマーをフィラーとして添加することで、優れた誘電特性を樹脂組成物に付与できるのみならず、低粗度表面に対する高い密着性を熱負荷後においても劣化しにくくすることができる。この熱劣化を抑制できる性能は、無機フィラーでは得られない利点である。しかも、液晶ポリマーで構成されるフィラーは、他の樹脂成分への分散性に優れている。例えば、ポリテトラフルオロエチレン(PTFE)製の有機フィラーは樹脂成分への分散は非常に困難であるが、液晶ポリマー製の有機フィラーはそのような欠点が無い点で有利である。有機フィラーは、液晶ポリマー粒子の形態であるのが好ましい。市販の液晶ポリマー粒子を使用することができ、例えば、パウダーグレードの液晶ポリマーとしてXYDAR(R)LF-31P(ENEOS株式会社製)を好ましく用いることができる。液晶ポリマー粒子の粒径は、有機フィラーとして樹脂組成物中に分散して所望の性能を発揮できるかぎり特に限定されないが、液晶ポリマー粒子の平均粒径D50が0.1~10μmであるのが好ましく、より好ましくは0.5~9μm、さらに好ましくは1~8μmである。液晶ポリマー粒子の平均粒径D50は、レーザー回折散乱式粒度分布測定装置により測定することができる。 The resin composition of the present invention includes an organic filler made of liquid crystal polymer (LCP). By adding a liquid crystal polymer as a filler, not only can excellent dielectric properties be imparted to the resin composition, but also high adhesion to low roughness surfaces can be prevented from deteriorating even after heat load. This ability to suppress thermal deterioration is an advantage that cannot be obtained with inorganic fillers. Furthermore, fillers made of liquid crystal polymers have excellent dispersibility in other resin components. For example, an organic filler made of polytetrafluoroethylene (PTFE) is very difficult to disperse in a resin component, but an organic filler made of a liquid crystal polymer is advantageous in that it does not have such drawbacks. Preferably, the organic filler is in the form of liquid crystal polymer particles. Commercially available liquid crystal polymer particles can be used, and for example, XYDAR (R) LF-31P (manufactured by ENEOS Corporation) can be preferably used as a powder grade liquid crystal polymer. The particle size of the liquid crystal polymer particles is not particularly limited as long as it can be dispersed in the resin composition as an organic filler and exhibit the desired performance, but it is preferable that the average particle size D50 of the liquid crystal polymer particles is 0.1 to 10 μm. , more preferably 0.5 to 9 μm, still more preferably 1 to 8 μm. The average particle diameter D50 of the liquid crystal polymer particles can be measured using a laser diffraction scattering particle size distribution analyzer.
 有機フィラーの含有量は、特に限定されないが、フィラー分散の容易性、樹脂組成物の流動性等の観点から、上述した樹脂成分(固形分)の合計量100重量部に対して、5重量部以上300重量部以下が好ましく、より好ましくは10重量部以上200重量部以下、さらに好ましくは15重量部以上200重量部以下、特に好ましくは15重量部以上150重量部以下、最も好ましくは25重量部以上75重量部以下である。 The content of the organic filler is not particularly limited, but from the viewpoint of ease of filler dispersion, fluidity of the resin composition, etc., the content of the organic filler is 5 parts by weight based on 100 parts by weight of the total amount of the resin components (solid content) mentioned above. 300 parts by weight or less, more preferably 10 parts by weight or more and 200 parts by weight or less, still more preferably 15 parts by weight or more and 200 parts by weight, particularly preferably 15 parts by weight or more and 150 parts by weight or less, most preferably 25 parts by weight. The amount is 75 parts by weight or less.
 有機フィラーは、周波数10GHzにおける誘電正接が0.001以下であることが好ましく、より好ましくは0.0009以下、さらに好ましくは0.0008以下である。誘電正接は低い方が好ましく、下限値は特に限定されないが、典型的には0.0001以上である。 The organic filler preferably has a dielectric loss tangent of 0.001 or less at a frequency of 10 GHz, more preferably 0.0009 or less, and still more preferably 0.0008 or less. The lower the dielectric loss tangent is, the more preferable it is, and the lower limit is not particularly limited, but is typically 0.0001 or more.
 本発明の樹脂組成物は、樹脂やポリマーに一般的に添加されるような添加剤を含んでいてもよい。添加剤の例としては、反応開始剤、反応促進剤、難燃剤、シランカップリング剤、分散剤、酸化防止剤等が挙げられる。 The resin composition of the present invention may contain additives commonly added to resins and polymers. Examples of additives include reaction initiators, reaction promoters, flame retardants, silane coupling agents, dispersants, antioxidants, and the like.
 樹脂付銅箔
 本発明の樹脂組成物は樹脂付銅箔の樹脂として用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、銅箔と、銅箔の少なくとも一方の面に設けられた樹脂組成物を含む樹脂層とを備えた、樹脂付銅箔が提供される。典型的には、樹脂組成物は樹脂層の形態であって、樹脂組成物を、銅箔に乾燥後の樹脂層の厚さが所定の値となるようにグラビアコート方式を用いて塗工し乾燥させ、樹脂付銅箔を得る。この塗工の方式については任意であるが、グラビアコート方式の他、ダイコート方式、ナイフコート方式等を採用することができる。その他、ドクターブレードやバーコーター等を使用して塗工することも可能である。
Resin-coated copper foil The resin composition of the present invention is preferably used as a resin for resin-coated copper foil. That is, according to a preferred embodiment of the present invention, a resin-coated copper foil is provided that includes a copper foil and a resin layer containing a resin composition provided on at least one surface of the copper foil. Typically, the resin composition is in the form of a resin layer, and the resin composition is applied to the copper foil using a gravure coating method so that the thickness of the resin layer after drying becomes a predetermined value. Dry to obtain resin-coated copper foil. The method of this coating is arbitrary, but in addition to the gravure coating method, a die coating method, a knife coating method, etc. can be adopted. In addition, it is also possible to apply using a doctor blade, bar coater, or the like.
 前述のとおり、本発明の樹脂組成物は、優れた誘電特性(例えば10GHzでの低い誘電正接)及び低粗度表面(例えば低粗度銅箔の表面)に対する高い密着性を有することのみならず、熱負荷後においても低粗度表面に対して安定して高い密着性を維持できる。したがって、樹脂付銅箔にはそのような樹脂組成物によってもたらされる各種利点を有する。例えば、樹脂付銅箔は、樹脂層が硬化された状態において、JIS C 6481-1996に準拠して測定される、樹脂層及び銅箔間の剥離強度(すなわち常態剥離強度)の下限値は、好ましくは0.5kgf/cm以上、より好ましくは0.8kgf/cm以上、さらに好ましくは1.0kgf/cm以上、特に好ましくは1.2kgf/cm以上である。剥離強度は高い方が良く、その上限値は特に限定されないが、典型的には2.0kgf/cm以下である。 As mentioned above, the resin composition of the present invention not only has excellent dielectric properties (e.g., low dielectric loss tangent at 10 GHz) and high adhesion to low-roughness surfaces (e.g., the surface of low-roughness copper foil). , it is possible to maintain stable high adhesion to low-roughness surfaces even after heat load. Therefore, the resin-coated copper foil has various advantages brought about by such a resin composition. For example, in a resin-coated copper foil, the lower limit of the peel strength between the resin layer and the copper foil (that is, the normal peel strength) measured in accordance with JIS C 6481-1996 when the resin layer is cured is as follows: Preferably it is 0.5 kgf/cm or more, more preferably 0.8 kgf/cm or more, still more preferably 1.0 kgf/cm or more, particularly preferably 1.2 kgf/cm or more. The higher the peel strength, the better, and its upper limit is not particularly limited, but is typically 2.0 kgf/cm or less.
 樹脂層の厚さは、特に限定されないが、剥離強度を確保するためには厚い方が好ましく、積層基板の厚さは薄い方が好ましいため、適切な厚さが存在する。樹脂層の厚さは、好ましくは1μm以上50μm以下、より好ましくは1.5μm以上30μm以下、特に好ましくは2μm以上20μm以下、最も好ましくは2.5μm以上10μm以下である。これらの範囲内であることにより、上述した本発明の諸特性をより効果的に実現でき、樹脂組成物の塗布により樹脂層の形成がしやすい。 The thickness of the resin layer is not particularly limited, but a thicker one is preferable in order to ensure peel strength, and a thinner thickness of the laminated substrate is preferable, so an appropriate thickness exists. The thickness of the resin layer is preferably 1 μm or more and 50 μm or less, more preferably 1.5 μm or more and 30 μm or less, particularly preferably 2 μm or more and 20 μm or less, and most preferably 2.5 μm or more and 10 μm or less. By falling within these ranges, the various properties of the present invention described above can be more effectively realized, and the resin layer can be easily formed by applying the resin composition.
 銅箔は、電解製箔又は圧延製箔されたままの金属箔(いわゆる生箔)であってもよいし、少なくともいずれか一方の面に表面処理が施された表面処理箔の形態であってもよい。表面処理は、金属箔の表面において何らかの性質(例えば防錆性、耐湿性、耐薬品性、耐酸性、耐熱性、及び基板との密着性)を向上ないし付与するために行われる各種の表面処理でありうる。表面処理は金属箔の片面に行われてもよいし、金属箔の両面に行われてもよい。銅箔に対して行われる表面処理の例としては、防錆処理、シラン処理、粗化処理、バリア形成処理等が挙げられる。 The copper foil may be an electrolytic foil or a rolled metal foil (so-called raw foil), or it may be in the form of a surface-treated foil that has been surface-treated on at least one side. Good too. Surface treatment is a variety of surface treatments performed to improve or impart certain properties to the surface of metal foil (for example, rust prevention, moisture resistance, chemical resistance, acid resistance, heat resistance, and adhesion to a substrate). It can be. The surface treatment may be performed on one side of the metal foil or on both sides of the metal foil. Examples of surface treatments performed on copper foil include rust prevention treatment, silane treatment, roughening treatment, barrier formation treatment, and the like.
 銅箔の樹脂層側の表面における、JIS B0601-2001に準拠して測定される十点平均粗さRzjisが2.0μm以下であるのが好ましく、より好ましくは1.5μm以下、さらに好ましくは1.0μm以下、特に好ましくは0.7μm以下、最も好ましくは0.5μm以下である。このような範囲内であると、高周波用途における伝送損失を望ましく低減できる。すなわち、高周波になるほど顕著に現れる銅箔の表皮効果によって増大しうる銅箔に起因する導体損失を低減して、伝送損失の更なる低減を実現することができる。銅箔の樹脂層側の表面における十点平均粗さRzjisの下限値は特に限定されないが、樹脂層との密着性向上及び耐熱性の観点からRzjisは0.01μm以上が好ましく、より好ましくは0.03μm以上、さらに好ましくは0.05μm以上である。 The ten-point average roughness Rzjis of the surface of the copper foil on the resin layer side measured in accordance with JIS B0601-2001 is preferably 2.0 μm or less, more preferably 1.5 μm or less, and even more preferably 1 .0 μm or less, particularly preferably 0.7 μm or less, and most preferably 0.5 μm or less. Within this range, transmission loss in high frequency applications can be desirably reduced. That is, it is possible to reduce the conductor loss caused by the copper foil, which can increase due to the skin effect of the copper foil, which becomes more pronounced as the frequency increases, and further reduce the transmission loss. The lower limit of the ten-point average roughness Rzjis on the surface of the copper foil on the resin layer side is not particularly limited, but from the viewpoint of improving adhesion with the resin layer and heat resistance, Rzjis is preferably 0.01 μm or more, more preferably 0. It is .03 μm or more, more preferably 0.05 μm or more.
 銅箔の厚さは特に限定されないが、0.1μm以上100μm以下であるのが好ましく、より好ましくは0.5μm以上70μm以下、さらに好ましくは1μm以上50μm以下、特に好ましくは1.5μm以上30μm以下、最も好ましくは2μm以上20μm以下である。これらの範囲内の厚さであると、微細な回路形成が可能との利点がある。もっとも、銅箔の厚さが例えば10μm以下となる場合等は、本発明の樹脂付銅箔は、ハンドリング性向上のために剥離層及びキャリアを備えたキャリア付銅箔の銅箔表面に樹脂層を形成したものであってもよい。 The thickness of the copper foil is not particularly limited, but is preferably 0.1 μm or more and 100 μm or less, more preferably 0.5 μm or more and 70 μm or less, even more preferably 1 μm or more and 50 μm or less, and particularly preferably 1.5 μm or more and 30 μm or less. , most preferably 2 μm or more and 20 μm or less. A thickness within these ranges has the advantage that fine circuitry can be formed. However, in cases where the thickness of the copper foil is, for example, 10 μm or less, the resin-coated copper foil of the present invention may be coated with a resin layer on the copper foil surface of the carrier-coated copper foil, which is provided with a release layer and a carrier to improve handling properties. It may also be formed by
 プリプレグ等の基材は、樹脂層との密着性を確保する観点から、分子中に反応性不飽和結合を有する樹脂を含むことが好ましく、また、樹脂層との相溶性の観点から、ポリフェニレンエーテル樹脂を含むことが好ましい。分子中に反応性不飽和結合を有する樹脂を含むこと、及びポリフェニレンエーテル樹脂を含むことの双方を満たす基材の市販例としては、パナソニック株式会社製のMEGTRON6シリーズ、MEGTRON7シリーズ、MEGTRON8シリーズ等が挙げられる。ここに例示したような低誘電率かつ低誘電正接の基材は、従来樹脂層ひいては低粗度銅箔との密着性の確保が難しかったが、本発明の樹脂組成物を用いることにより、十分な密着性を確保することができる。特に、熱負荷後においても低粗度銅箔に対して安定して高い密着性を維持できる。したがって、本発明の好ましい態様によれば、基材(例えばプリプレグ)と、該基材の片面又は両面に設けられる本発明の樹脂組成物を含む樹脂層(又は本発明の樹脂付銅箔)とを備えた積層体が提供される。 From the viewpoint of ensuring adhesion with the resin layer, the base material such as prepreg preferably contains a resin having a reactive unsaturated bond in the molecule, and from the viewpoint of compatibility with the resin layer, polyphenylene ether is preferably used. Preferably, it contains a resin. Commercially available examples of base materials that satisfy both the requirements of containing a resin having a reactive unsaturated bond in the molecule and containing a polyphenylene ether resin include the MEGTRON 6 series, MEGTRON 7 series, and MEGTRON 8 series manufactured by Panasonic Corporation. It will be done. Conventionally, it was difficult to ensure adhesion with a resin layer and even a low-roughness copper foil with a base material having a low dielectric constant and a low dielectric loss tangent as exemplified here, but by using the resin composition of the present invention, it is possible to achieve sufficient adhesion. It is possible to ensure good adhesion. In particular, stable high adhesion to low-roughness copper foil can be maintained even after heat load. Therefore, according to a preferred embodiment of the present invention, a base material (for example, prepreg) and a resin layer containing the resin composition of the present invention (or resin-coated copper foil of the present invention) provided on one or both sides of the base material. A laminate is provided.
 プリント配線板
 本発明の樹脂組成物ないし樹脂付銅箔はプリント配線板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記樹脂付銅箔を備えたプリント配線板、又は上記樹脂付銅箔を用いて作製されたプリント配線板が提供される。この場合、上記樹脂付銅箔の樹脂層は硬化されている。本態様によるプリント配線板は、絶縁樹脂層と、銅層とがこの順に積層された層構成を含んでなる。プリント配線板は公知の層構成が採用可能である。プリント配線板に関する具体例としては、プリプレグの片面又は両面に本発明の樹脂付銅箔を接着させ硬化した積層体とした上で回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。また、他の具体例としては、樹脂フィルム上に本発明の樹脂付銅箔を形成して回路を形成するフレキシブルプリント配線板、COF、TABテープ、ビルドアップ多層配線板、半導体集積回路上へ樹脂付銅箔の積層と回路形成を交互に繰りかえすダイレクト・ビルドアップ・オン・ウェハー等が挙げられる。特に、本発明の樹脂付銅箔は、ネットワーク機器における高周波デジタル通信用のプリント配線板用の絶縁層及び導体層として好ましく適用可能である。そのようなネットワーク機器の例としては、(i)基地局内サーバー、ルーター等、(ii)企業内ネットワーク、(iii)高速携帯通信の基幹システム等が挙げられる。
Printed Wiring Board The resin composition or resin-coated copper foil of the present invention is preferably used for producing a printed wiring board. That is, according to a preferred embodiment of the present invention, a printed wiring board including the resin-coated copper foil or a printed wiring board manufactured using the resin-coated copper foil is provided. In this case, the resin layer of the resin-coated copper foil is hardened. The printed wiring board according to this embodiment includes a layered structure in which an insulating resin layer and a copper layer are laminated in this order. A known layer structure can be used for the printed wiring board. Specific examples of printed wiring boards include single-sided or double-sided printed wiring boards in which the resin-coated copper foil of the present invention is adhered to one or both sides of a prepreg to form a cured laminate, and circuits are formed on the same, and multilayers made of these. Examples include printed wiring boards. Other specific examples include flexible printed wiring boards in which a circuit is formed by forming the resin-coated copper foil of the present invention on a resin film, COF, TAB tape, build-up multilayer wiring boards, and resin-coated copper foils on semiconductor integrated circuits. Examples include direct build-up on wafer, in which lamination of coated copper foil and circuit formation are alternately repeated. In particular, the resin-coated copper foil of the present invention can be preferably applied as an insulating layer and a conductive layer for printed wiring boards for high-frequency digital communications in network equipment. Examples of such network devices include (i) in-base station servers, routers, etc., (ii) in-company networks, and (iii) backbone systems for high-speed mobile communications.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be explained in more detail with reference to the following examples.
 例1~12
(1)樹脂ワニスの調製
 まず、樹脂ワニス用原料成分として、以下に示されるアリーレンエーテル化合物、スチレン系コポリマー、添加剤、有機フィラー及び無機フィラーを用意した。
<アリーレンエーテル化合物>
‐OPE-2St-1200(三菱ガス化学株式会社製、分子両末端にスチリル基を有するフェニレンエーテル化合物、数平均分子量約1200)
‐OPE-2St-2200(三菱ガス化学株式会社製、分子両末端にスチリル基を有するフェニレンエーテル化合物、数平均分子量約2200)
‐PME-82(三菱エンジニアリングプラスチックス株式会社製、分子中に無水マレイン酸構造を含むフェニレンエーテル化合物、重量平均分子量約56000)
<スチレン系コポリマー>
‐セプトン(R)V9461(株式会社クラレ製、スチリル基を有する水添スチレン・4-メチルスチレン・イソプレン・ブタジエンブロック共重合体、重量平均分子量約296000)
‐TR2003(JSR株式会社製、スチレンブタジエンブロック共重合体、重量平均分子量約95700)
‐タフテック(R)MP10(旭化成株式会社製、水添スチレンブタジエンブロック共重合体、アミン変性品、重量平均分子量約60000)
<添加剤(反応開始剤)>
‐パーブチルP(日油株式会社製、過酸化物)
<無機フィラー>
‐SC4050-MOT(株式会社アドマテックス製、シリカスラリー、平均粒径D50:1.0μm、表面ビニルシラン処理)
<有機フィラー>
‐XYDAR(R)LF-31P(ENEOS株式会社製、液晶ポリマー(LCP)粉末、平均粒径D50:5~7μm、10GHzにおける誘電正接:0.0007)
Examples 1 to 12
(1) Preparation of resin varnish First, the following arylene ether compound, styrene copolymer, additive, organic filler, and inorganic filler were prepared as raw materials for resin varnish.
<Arylene ether compound>
-OPE-2St-1200 (manufactured by Mitsubishi Gas Chemical Co., Ltd., phenylene ether compound having styryl groups at both ends of the molecule, number average molecular weight approximately 1200)
-OPE-2St-2200 (manufactured by Mitsubishi Gas Chemical Co., Ltd., phenylene ether compound having styryl groups at both ends of the molecule, number average molecular weight approximately 2200)
-PME-82 (manufactured by Mitsubishi Engineering Plastics Co., Ltd., a phenylene ether compound containing a maleic anhydride structure in the molecule, weight average molecular weight approximately 56,000)
<Styrenic copolymer>
- Septon (R) V9461 (manufactured by Kuraray Co., Ltd., hydrogenated styrene/4-methylstyrene/isoprene/butadiene block copolymer with styryl group, weight average molecular weight approximately 296,000)
-TR2003 (manufactured by JSR Corporation, styrene-butadiene block copolymer, weight average molecular weight approximately 95,700)
- Tuftec (R) MP10 (manufactured by Asahi Kasei Corporation, hydrogenated styrene-butadiene block copolymer, amine-modified product, weight average molecular weight approximately 60,000)
<Additive (reaction initiator)>
- Perbutyl P (manufactured by NOF Corporation, peroxide)
<Inorganic filler>
-SC4050-MOT (manufactured by Admatex Co., Ltd., silica slurry, average particle size D50: 1.0 μm, surface vinyl silane treatment)
<Organic filler>
-XYDAR (R) LF-31P (manufactured by ENEOS Corporation, liquid crystal polymer (LCP) powder, average particle size D50: 5 to 7 μm, dielectric loss tangent at 10 GHz: 0.0007)
 なお、上述したアリーレンエーテル化合物及びスチレン系コポリマーの数平均分子量及び重量平均分子量は、GPC(ゲル浸透クロマトグラフ)法を用いて以下の条件で測定して得られた値である。上記の各分子量はポリスチレン基準の相対値である。
・検出器:示差屈折率検出器RI(東ソー株式会社製、RI-8020、感度32)
・カラム:TSKgel GMHHR-M、2本(7.8mm×30cm、東ソー株式会社製)
・溶媒:クロロホルム
・流速:1.0mL/min
・カラム温度:40℃
・注入量:0.2mL
・標準試料:東ソー株式会社製、単分散ポリスチレン
・データ処理:株式会社東レリサーチセンター製、GPCデータ処理システム
The number average molecular weight and weight average molecular weight of the above-mentioned arylene ether compound and styrene copolymer are values obtained by measurement using GPC (gel permeation chromatography) method under the following conditions. The above molecular weights are relative values based on polystyrene.
・Detector: Differential refractive index detector RI (manufactured by Tosoh Corporation, RI-8020, sensitivity 32)
・Column: TSKgel GMH HR -M, 2 (7.8mm x 30cm, manufactured by Tosoh Corporation)
・Solvent: Chloroform ・Flow rate: 1.0mL/min
・Column temperature: 40℃
・Injection volume: 0.2mL
・Standard sample: Manufactured by Tosoh Corporation, monodisperse polystyrene ・Data processing: Manufactured by Toray Research Center Corporation, GPC data processing system
 表1及び2に示される配合比(重量比)で上記原料成分を丸型フラスコに測り取り、原料成分に由来する固形物濃度が表1及び2に示される値となるように混合溶媒を加えた。この混合溶媒は、メチルエチルケトン(MEK)及びトルエンを、表1及び2に示されるMEK比率(重量%)となるように混合したものである。原料成分と混合溶媒を入れた丸型フラスコに、マントルヒーター、撹拌羽及び還流冷却管付フラスコ蓋を設置し、撹拌をしながら60℃まで昇温した後、60℃で2時間撹拌を継続して原料成分を溶解ないし分散させた。撹拌後得られた樹脂ワニスを放冷した。こうして、表1及び2に示される固形分濃度の樹脂ワニスを得た。 Weigh out the above raw material components into a round flask at the blending ratio (weight ratio) shown in Tables 1 and 2, and add the mixed solvent so that the concentration of solids derived from the raw material components becomes the value shown in Tables 1 and 2. Ta. This mixed solvent is a mixture of methyl ethyl ketone (MEK) and toluene so that the MEK ratio (wt%) is shown in Tables 1 and 2. A mantle heater, a stirring blade, and a flask lid with a reflux condenser tube were installed in a round flask containing the raw material components and mixed solvent, and the temperature was raised to 60 °C while stirring, and stirring was continued at 60 °C for 2 hours. The raw material components were dissolved or dispersed. The resin varnish obtained after stirring was allowed to cool. In this way, resin varnishes having solid content concentrations shown in Tables 1 and 2 were obtained.
(2)電解銅箔の作製
 電解銅箔を以下の方法で作製した。硫酸銅溶液中で、陰極にチタン製の回転電極(表面粗さRa:0.20μm)、陽極に寸法安定性陽極(DSA)を用い、溶液温度45℃、電流密度55A/dmで電解し、原箔としての電解銅箔を作製した。この硫酸銅溶液の組成は、銅濃度80g/L、フリー硫酸濃度140g/L、ビス(3-スルホプロピル)ジスルフィド濃度30mg/L、ジアリルジメチルアンモニウムクロライド重合体濃度50mg/L、塩素濃度40mg/Lとした。原箔の電解液面側の表面に、粒子状突起を形成させた。粒子状突起の形成は、硫酸銅溶液(銅濃度:13g/L、フリー硫酸濃度55g/L、9-フェニルアクリジン濃度140mg/L、塩素濃度:35mg/L)中で、溶液温度30℃、電流密度50A/dmの条件で電解することにより行った。
(2) Production of electrolytic copper foil Electrolytic copper foil was produced by the following method. Electrolysis was carried out in a copper sulfate solution using a titanium rotating electrode (surface roughness Ra: 0.20 μm) as the cathode and a dimensionally stable anode (DSA) as the anode at a solution temperature of 45°C and a current density of 55A/ dm2 . , an electrolytic copper foil was produced as a raw foil. The composition of this copper sulfate solution is: copper concentration 80 g/L, free sulfuric acid concentration 140 g/L, bis(3-sulfopropyl) disulfide concentration 30 mg/L, diallyldimethylammonium chloride polymer concentration 50 mg/L, and chlorine concentration 40 mg/L. And so. Particulate protrusions were formed on the surface of the raw foil on the electrolyte side. The formation of particulate protrusions was performed in a copper sulfate solution (copper concentration: 13 g/L, free sulfuric acid concentration 55 g/L, 9-phenylacridine concentration 140 mg/L, chlorine concentration: 35 mg/L) at a solution temperature of 30°C and an electric current. This was carried out by electrolyzing at a density of 50 A/dm 2 .
 こうして得られた原箔の電解液面側に対して、以下に示される条件で、亜鉛-ニッケル被膜形成、クロメート層形成、及びシラン層形成を順次行った。
<亜鉛-ニッケル被膜形成>
・ピロリン酸カリウム濃度:80g/L
・亜鉛濃度:0.2g/L
・ニッケル濃度:2g/L
・液温:40℃
・電流密度:0.5A/dm
<クロメート層形成>
・クロム酸濃度:1g/L、pH11
・溶液温度:25℃
・電流密度:1A/dm
<シラン層形成>
・シランカップリング剤:3-アミノプロピルトリメトキシシラン(3g/Lの水溶液)
・液処理方法:シャワー処理
A zinc-nickel coating, a chromate layer, and a silane layer were sequentially formed on the electrolyte side of the raw foil obtained in this manner under the conditions shown below.
<Zinc-nickel film formation>
・Potassium pyrophosphate concentration: 80g/L
・Zinc concentration: 0.2g/L
・Nickel concentration: 2g/L
・Liquid temperature: 40℃
・Current density: 0.5A/ dm2
<Chromate layer formation>
・Chromic acid concentration: 1g/L, pH 11
・Solution temperature: 25℃
・Current density: 1A/dm 2
<Silane layer formation>
・Silane coupling agent: 3-aminopropyltrimethoxysilane (3 g/L aqueous solution)
・Liquid processing method: Shower processing
 この電解銅箔の表面処理面は、十点平均粗さRzjisが0.5μm(JIS B0601-2001準拠)であり、粒子状突起は、走査型電子顕微鏡画像による平均粒子径が100nmであり、粒子密度は205個/μmであった。表面処理面も含む電解銅箔の合計厚さは18μmであった。 The surface treated surface of this electrolytic copper foil has a ten-point average roughness Rzjis of 0.5 μm (according to JIS B0601-2001), and the particle-like protrusions have an average particle diameter of 100 nm as determined by a scanning electron microscope image. The density was 205 pieces/ μm2 . The total thickness of the electrolytic copper foil including the surface treated surface was 18 μm.
(3)樹脂フィルムの作製
 上記(1)で得られた樹脂ワニスを離型フィルム(AGC株式会社製「アフレックス(R)」)の表面にコンマ塗工機を用いて、乾燥後の樹脂の厚さが20μmとなるように塗布し、150℃で3分間オーブンにて乾燥させ、B-stage樹脂を得た。得られたB-stage樹脂から上記離型フィルムを剥がし、B-stage樹脂のみを2枚積層させ、200℃、90分間、20kgf/cmの条件下で真空プレス成形を施して、厚さ40μmの樹脂フィルムを得た。
(3) Preparation of resin film The resin varnish obtained in the above (1) is applied to the surface of a release film (AFLEX (R) manufactured by AGC Corporation) using a comma coater to coat the resin after drying. It was coated to a thickness of 20 μm and dried in an oven at 150° C. for 3 minutes to obtain a B-stage resin. The release film was peeled off from the obtained B-stage resin, two sheets of B-stage resin were laminated, and vacuum press molding was performed at 200° C. for 90 minutes at 20 kgf/cm 2 to a thickness of 40 μm. A resin film was obtained.
(4)片面積層基板の作製
 上記(1)で得られた樹脂ワニスを上記電解銅箔の表面にグラビア塗工機を用いて、乾燥後の樹脂の厚さが4μmとなるように塗布し、150℃、2分間オーブンにて乾燥させて、樹脂付銅箔を得た。複数枚のプリプレグ(パナソニック株式会社製、MEGTRON7シリーズ「R-5680」)を重ねて0.2mmの厚さとし、その上に、上記樹脂付銅箔を、樹脂がプリプレグに当接するように積層し、190℃、90分間、30kgf/cmの条件下で真空プレス成形を施して片面積層基板を得た。
(4) Preparation of single-sided layered board The resin varnish obtained in the above (1) is applied to the surface of the electrolytic copper foil using a gravure coater so that the thickness of the resin after drying is 4 μm, It was dried in an oven at 150°C for 2 minutes to obtain a resin-coated copper foil. A plurality of sheets of prepreg (manufactured by Panasonic Corporation, MEGTRON 7 series "R-5680") are stacked to a thickness of 0.2 mm, and the resin-coated copper foil is laminated thereon so that the resin is in contact with the prepreg, Vacuum press molding was performed at 190° C. for 90 minutes at 30 kgf/cm 2 to obtain a single-layered substrate.
(5)各種評価
 作製した樹脂フィルム及び片面積層基板について以下の評価を行った。
(5) Various evaluations The following evaluations were performed on the produced resin films and single-layered substrates.
<常態剥離強度>
 片面積層基板に配線幅10mm、配線厚さ18μmの銅配線をサブトラクティブ工法により形成し、JIS C 6481-1996に準拠して剥離強度(kgf/cm)を常温(例えば25℃)で測定した。測定は5回実施し、その平均値を剥離強度の値とした。なお、ここで測定される剥離強度は、プリプレグ/樹脂間の界面剥離、樹脂の凝集破壊、樹脂層内の相界面剥離、及び樹脂/銅箔間の界面剥離の4つの剥離モードが反映された値であり、その値が高いほどプリプレグ等の基材への密着性、樹脂層の強度、及び低粗度箔への樹脂の密着性に優れることを意味している。その結果、表1及び2に示されるように、例1~12のすべてにおいて、常態剥離強度が0.5kgf/cm以上であり、低粗度表面に対する高い密着性が確認された。
<Normal peel strength>
Copper wiring with a wiring width of 10 mm and a wiring thickness of 18 μm was formed on a single-layered board by a subtractive method, and the peel strength (kgf/cm) was measured at room temperature (for example, 25° C.) in accordance with JIS C 6481-1996. The measurement was performed five times, and the average value was taken as the peel strength value. The peel strength measured here reflects four peeling modes: prepreg/resin interface peeling, resin cohesive failure, phase interface peeling within the resin layer, and resin/copper foil interface peeling. The higher the value, the better the adhesion to a base material such as a prepreg, the strength of the resin layer, and the adhesion of the resin to a low-roughness foil. As a result, as shown in Tables 1 and 2, in all of Examples 1 to 12, the normal peel strength was 0.5 kgf/cm or more, confirming high adhesion to low roughness surfaces.
<耐熱剥離強度維持率>
 片面積層基板に配線幅10mm、配線厚さ18μmの銅配線をサブトラクティブ工法により形成した後に、288℃のはんだ浴に5分間浮かべて熱処理をしたこと以外は、上記常態剥離強度の測定と同様の手順により、熱後剥離強度(kgf/cm)を測定した。熱後剥離強度の値を上記常態剥離強度の値で除した値に、100を乗ずることにより、耐熱剥離強度維持率(%)を算出した。結果は表1及び2に示されるとおりであり、例1~7の樹脂組成物は耐熱剥離強度維持率が95%以上と、例8~12(比較例)よりも高く、熱負荷後も低粗度表面との高い密着性を安定的に維持できることが分かった。
<Heat-resistant peel strength maintenance rate>
The method was the same as the normal peel strength measurement described above, except that copper wiring with a wiring width of 10 mm and a wiring thickness of 18 μm was formed on a single-layered board by the subtractive method, and then heat-treated by floating it in a 288°C solder bath for 5 minutes. The post-heat peel strength (kgf/cm) was measured according to the procedure. The heat-resistant peel strength retention rate (%) was calculated by multiplying the value obtained by dividing the post-heat peel strength value by the normal peel strength value by 100. The results are shown in Tables 1 and 2. The resin compositions of Examples 1 to 7 had heat-resistant peel strength retention rates of 95% or more, higher than Examples 8 to 12 (comparative examples), and remained low even after heat load. It was found that high adhesion to rough surfaces could be stably maintained.
<誘電正接>
 樹脂フィルムについて、摂動式空洞共振器法により、10GHzにおける誘電正接を測定した。この測定は、樹脂フィルムを共振器のサンプルサイズに合わせて切断した後、測定装置(KEYCOM製共振器及びKEYSIGHT製ネットワークアナライザー)を用い、JIS R 1641に準拠して行った。結果は表1及び2に示されるとおりであった。
<Dielectric loss tangent>
The dielectric loss tangent of the resin film at 10 GHz was measured by the perturbation cavity resonator method. This measurement was performed in accordance with JIS R 1641 using a measuring device (a resonator manufactured by KEYCOM and a network analyzer manufactured by KEYSIGHT) after cutting the resin film according to the sample size of the resonator. The results were as shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000003

 

Claims (8)

  1.  重量平均分子量30000以上のアリーレンエーテル化合物、及び熱又は紫外線により反応性を呈する反応性不飽和結合を分子中に有するスチレン系コポリマーのうち少なくとも1種と、
     液晶ポリマーで構成される有機フィラーと、
    を含む、樹脂組成物。
    At least one of an arylene ether compound having a weight average molecular weight of 30,000 or more and a styrenic copolymer having a reactive unsaturated bond in the molecule that exhibits reactivity with heat or ultraviolet light;
    An organic filler composed of liquid crystal polymer,
    A resin composition containing.
  2.  前記反応性不飽和結合が、シアネート基、マレイミド基、末端ビニル基、(メタ)アクリロイル基、エチニル基、及びスチリル基からなる群から選択される少なくとも1種である、請求項1に記載の樹脂組成物。 The resin according to claim 1, wherein the reactive unsaturated bond is at least one selected from the group consisting of a cyanate group, a maleimide group, a terminal vinyl group, a (meth)acryloyl group, an ethynyl group, and a styryl group. Composition.
  3.  前記スチレン系コポリマーが、前記反応性不飽和結合として、スチリル基を有する、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the styrenic copolymer has a styryl group as the reactive unsaturated bond.
  4.  前記樹脂組成物が、前記アリーレンエーテル化合物及び前記スチレン系コポリマーの両方を含む、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the resin composition contains both the arylene ether compound and the styrenic copolymer.
  5.  前記有機フィラーの周波数10GHzにおける誘電正接が0.001以下である、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the organic filler has a dielectric loss tangent of 0.001 or less at a frequency of 10 GHz.
  6.  銅箔と、前記銅箔の少なくとも一方の表面に設けられた請求項1又は2に記載の樹脂組成物を含む樹脂層とを備えた、樹脂付銅箔。 A resin-coated copper foil comprising a copper foil and a resin layer containing the resin composition according to claim 1 and provided on at least one surface of the copper foil.
  7.  前記銅箔の前記樹脂層側の表面における、JIS B0601-2001に準拠して測定される十点平均粗さRzjisが2.0μm以下である、請求項6に記載の樹脂付銅箔。 The resin-coated copper foil according to claim 6, wherein the surface of the copper foil on the resin layer side has a ten-point average roughness Rzjis of 2.0 μm or less as measured in accordance with JIS B0601-2001.
  8.  請求項6に記載の樹脂付銅箔を用いて作製された、プリント配線板。

     
    A printed wiring board manufactured using the resin-coated copper foil according to claim 6.

PCT/JP2023/028105 2022-08-08 2023-08-01 Resin composition, copper foil with resin, and printed wiring board WO2024034463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022126603 2022-08-08
JP2022-126603 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024034463A1 true WO2024034463A1 (en) 2024-02-15

Family

ID=89851616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028105 WO2024034463A1 (en) 2022-08-08 2023-08-01 Resin composition, copper foil with resin, and printed wiring board

Country Status (2)

Country Link
TW (1) TW202411348A (en)
WO (1) WO2024034463A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192566A (en) * 1997-09-18 1999-04-06 Otsuka Chem Co Ltd Polystyrene resin pellet
JP2002502678A (en) * 1998-02-11 2002-01-29 アクシュネット カンパニー Golf ball containing liquid crystal polymer
JP2002069290A (en) * 2000-08-30 2002-03-08 Asahi Kasei Corp Heat-resistant member
JP2002121377A (en) * 2000-08-08 2002-04-23 Asahi Kasei Corp Resin composition excellent in impact resistance and molded product
JP2002317111A (en) * 2001-04-20 2002-10-31 Asahi Kasei Corp Polyphenylene ether resin composition
WO2005073264A1 (en) * 2004-01-30 2005-08-11 Nippon Steel Chemical Co., Ltd. Curable resin composition
JP2006232952A (en) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd Prepreg containing polyphenylene resin composition and laminate
US20140187674A1 (en) * 2012-12-28 2014-07-03 Samsung Electro-Mechanics Co., Ltd. Resin composition with enhanced heat-releasing properties, heat-releasing film, insulating film, and prepreg
WO2017150336A1 (en) * 2016-02-29 2017-09-08 ポリプラスチックス株式会社 Resin composition including liquid-crystal polymer particles, molded object obtained using same, and production processes therefor
CN107964203A (en) * 2017-12-26 2018-04-27 浙江华正新材料股份有限公司 A kind of low dielectric prepreg composition, copper-clad plate and preparation method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192566A (en) * 1997-09-18 1999-04-06 Otsuka Chem Co Ltd Polystyrene resin pellet
JP2002502678A (en) * 1998-02-11 2002-01-29 アクシュネット カンパニー Golf ball containing liquid crystal polymer
JP2002121377A (en) * 2000-08-08 2002-04-23 Asahi Kasei Corp Resin composition excellent in impact resistance and molded product
JP2002069290A (en) * 2000-08-30 2002-03-08 Asahi Kasei Corp Heat-resistant member
JP2002317111A (en) * 2001-04-20 2002-10-31 Asahi Kasei Corp Polyphenylene ether resin composition
WO2005073264A1 (en) * 2004-01-30 2005-08-11 Nippon Steel Chemical Co., Ltd. Curable resin composition
JP2006232952A (en) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd Prepreg containing polyphenylene resin composition and laminate
US20140187674A1 (en) * 2012-12-28 2014-07-03 Samsung Electro-Mechanics Co., Ltd. Resin composition with enhanced heat-releasing properties, heat-releasing film, insulating film, and prepreg
WO2017150336A1 (en) * 2016-02-29 2017-09-08 ポリプラスチックス株式会社 Resin composition including liquid-crystal polymer particles, molded object obtained using same, and production processes therefor
CN107964203A (en) * 2017-12-26 2018-04-27 浙江华正新材料股份有限公司 A kind of low dielectric prepreg composition, copper-clad plate and preparation method thereof

Also Published As

Publication number Publication date
TW202411348A (en) 2024-03-16

Similar Documents

Publication Publication Date Title
JP7166334B2 (en) copper clad laminate
KR102070047B1 (en) Copper foil with resin, copper clad laminate and printed wiring board
WO2006059750A1 (en) Curable resin composition
KR20200012762A (en) Resin composition
JP7137950B2 (en) Resin composition, resin-coated copper foil, printed wiring board, and method for treating resin-coated copper foil
KR20200012764A (en) Resin composition
CN111201277B (en) Resin composition for printed wiring board, copper foil with resin, copper-clad laminate, and printed wiring board
KR20020067627A (en) Thermosetting epoxy resin composition, its formed article and multilayer printed circuit board
WO2022172759A1 (en) Resin composition, copper foil with resin, and printed wiring board
JP2003283098A (en) Laminated material for manufacturing printed wiring board, laminate, copper foil with resin, printed wiring board and multilayer printed wiring board
WO2024034463A1 (en) Resin composition, copper foil with resin, and printed wiring board
KR20200012773A (en) Resin composition
JPH0579686B2 (en)
JP6853370B2 (en) Surface-treated copper foil and copper-clad laminate
WO2020230870A1 (en) Copper-clad laminated plate, resin-clad copper foil, and circuit substrate using said plate and foil
JP7325022B2 (en) Copper-clad laminates, resin-coated copper foils, and circuit boards using them
WO2021112134A1 (en) Low-dielectric layered product
JPH1060138A (en) Printed wiring board material
JP2007051225A (en) Resin composition with high dielectric constant
TWI838030B (en) Resin compositions and products thereof
WO2024009831A1 (en) Resin composition, prepreg, resin-including film, resin-including metal foil, metal-clad laminate, and wiring board
WO2021090730A1 (en) Resin composition and resin-attached copper foil
TW202421713A (en) Resin composition and its products
JP2024070466A (en) Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852434

Country of ref document: EP

Kind code of ref document: A1