WO2024034349A1 - Biomass grinding system and operating method for biomass grinding system - Google Patents

Biomass grinding system and operating method for biomass grinding system Download PDF

Info

Publication number
WO2024034349A1
WO2024034349A1 PCT/JP2023/026628 JP2023026628W WO2024034349A1 WO 2024034349 A1 WO2024034349 A1 WO 2024034349A1 JP 2023026628 W JP2023026628 W JP 2023026628W WO 2024034349 A1 WO2024034349 A1 WO 2024034349A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass fuel
biomass
boiler
supply path
air
Prior art date
Application number
PCT/JP2023/026628
Other languages
French (fr)
Japanese (ja)
Inventor
祐貴 木谷
寛貴 中島
聡太朗 山口
雅之 加藤
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Publication of WO2024034349A1 publication Critical patent/WO2024034349A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/30Destroying solid waste or transforming solid waste into something useful or harmless involving mechanical treatment
    • B09B3/35Shredding, crushing or cutting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/06Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for completing combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • F23K1/04Heating fuel prior to delivery to combustion apparatus

Definitions

  • the present disclosure relates to a biomass grinding system and a method of operating a biomass grinding system.
  • Patent Document 1 Conventionally, a device is known in which coal is pulverized in a mill and supplied to a boiler through a burner (for example, see Patent Document 1).
  • Patent Document 1 unburned materials are collected from the bottom of a boiler and put into a mill, and the pulverized unburned materials are sent to the boiler through a burner, thereby reusing the unburned materials as fuel.
  • Patent Document 1 uses only coal (pulverized coal fuel) as a fuel, and does not take into account the reduction in boiler efficiency when using biomass fuel or co-firing biomass fuel and pulverized coal fuel.
  • pulverized coal fuel obtained by pulverizing coal
  • the ash content in the fuel is lower than when only pulverized coal fuel is burned. Since the total amount is smaller, there is an advantage that the total amount of bottom ash deposited at the bottom of the boiler furnace is reduced.
  • the present disclosure has been made in view of these circumstances, and provides a biomass crushing system and a biomass crushing system that can improve boiler efficiency when generating steam in a boiler by burning biomass fuel in a combustion device.
  • the purpose is to provide a method for operating a grinding system.
  • the biomass crushing system includes a first crushing device that crushes biomass fuel, a boiler that burns the biomass fuel crushed by the first crushing device in a combustion device to generate steam, and a boiler that generates steam by burning the biomass fuel crushed by the first crushing device.
  • an air preheater that heats air with exhaust gas; a first air supply path that supplies the heated air heated by the air preheater to the first crushing device; a first branch supply path for branching the portion, and a first branch supply path for drying the unburned biomass fuel discharged from the boiler with the heated air supplied from the first branch supply path and supplying the dried biomass fuel to the combustion device again.
  • a resupply section A resupply section.
  • a method of operating a biomass crushing system includes: a first crusher that crushes biomass fuel; a boiler that burns the biomass fuel crushed by the first crusher in a combustion device to generate steam;
  • a method of operating a biomass crushing system comprising: a second crushing device for crushing the unburned biomass fuel discharged from the boiler, the method comprising: passing the unburned biomass fuel discharged from the boiler to the second crushing device;
  • the method includes a conveyance step of conveying the fuel, and a resupply step of again supplying the unburned biomass fuel crushed by the second crusher to the combustion device.
  • a biomass crushing system that can improve boiler efficiency when burning biomass fuel in a combustion device to generate steam in a boiler, and a method for operating the biomass crushing system.
  • FIG. 1 is a diagram showing a schematic configuration of a boiler system according to a first embodiment of the present disclosure. It is a flowchart which shows the start-up operation of the bottom ash processing equipment of a 1st embodiment. It is a flowchart which shows the stop operation of the bottom ash processing equipment of a 1st embodiment.
  • FIG. 2 is a diagram showing a schematic configuration of a boiler system according to a second embodiment of the present disclosure.
  • FIG. 3 is a diagram showing a schematic configuration of a boiler system according to a third embodiment of the present disclosure. It is a diagram showing a schematic configuration of a boiler system according to a fourth embodiment of the present disclosure. It is a diagram showing a schematic configuration of a boiler system according to a fifth embodiment of the present disclosure.
  • the boiler system 100 of this embodiment includes a biomass mill (first pulverizer) 10, a biomass fuel storage section 15, a boiler 20, an air preheater 30, and a bottom ash processing equipment ( re-supply section) 40, first air supply path 50, first branch supply path 51, second air supply path (non-heated air supply path) 60, second branch supply path 61, forced draft fan 70 , a primary ventilation fan 80 , and a control device 90 .
  • the boiler system 100 of this embodiment pulverizes biomass fuel stored in a biomass fuel storage section 15 in a biomass mill 10, and combusts the pulverized biomass fuel in a boiler 20 to generate steam.
  • the air preheater 30 heats the air supplied by the primary ventilation fan 80 using the exhaust gas G discharged from the boiler 20.
  • the heated air heated by the air preheater 30 is supplied to the biomass mill 10 via the first air supply path 50 and is also supplied to the bottom ash processing equipment 40 via the first branch supply path 51.
  • the bottom ash processing equipment 40 is a facility for pulverizing the bottom ash containing unburned biomass fuel discharged from the boiler 20 and supplying it to the boiler 20 again.
  • biomass fuel refers to renewable organic resources derived from living organisms, such as thinned wood, waste wood, driftwood, grass, waste, sludge, and recycled fuels made from these materials (pellets and chips). ), and is not limited to what is presented here. Since biomass fuel takes in carbon dioxide during the growth process of biomass, it is considered carbon neutral and does not emit carbon dioxide, which is a global warming gas, and various uses are being considered for its use.
  • the biomass mill 10 is a device that crushes biomass fuel stored in the biomass fuel storage section 15.
  • the biomass mill 10 for example, rotates a grinding table. Biomass fuel sandwiched between a crushing table and a plurality of crushing rollers is crushed.
  • the biomass mill 10 dries the biomass fuel using heated air supplied from the first air supply path 50 , classifies the biomass fuel to a predetermined particle size or less, and supplies the biomass fuel to the biomass fuel supply path 17 .
  • the biomass fuel having a predetermined particle size or less supplied to the biomass fuel supply path 17 is supplied to the boiler 20 .
  • the biomass mill 10 dries the pulverized biomass fuel by blowing pressurized air (primary air) into the biomass mill 10 by the primary ventilator 80 and transports it to the furnace 21 of the boiler 20. This is a so-called pressurized mill.
  • pressurized air primary air
  • the pressure inside the housing of the biomass mill 10 is higher than the outside (atmospheric) pressure.
  • the boiler 20 is a device that uses a combustion device 22 to combust the biomass fuel pulverized by the biomass mill 10, and exchanges the heat generated by this combustion with feed water and steam to generate superheated steam.
  • the boiler 20 includes a furnace 21 , a combustion device 22 , a superheater 23 , a reheater 24 , and a coal saver 25 .
  • the boiler 20 burns biomass fuel in a combustion device 22, and combines combustion gas generated in a furnace 21 with water and steam flowing through a heat exchanger (superheater 23, reheater 24, and economizer 25). Allow heat exchange between the two.
  • a combustion device 22 is provided in the middle of the furnace 21 in the height direction HD.
  • the combustion device 22 includes a plurality of burners 22a and a wind box 22b that supplies combustion air to the burners 22a.
  • FIG. 1 shows an example in which the biomass fuel supply path 17 is connected to one of the plurality of burners 22a, the biomass fuel supply path 17 may be branched and connected to each burner 22a.
  • the burner 22a above the burner 22a connected to the biomass fuel supply path 17 is connected to a second supply path 47, which will be described later.
  • the boiler system 100 shown in FIG. 1 includes a biomass mill 10 and another mill (not shown) different from the mill 41 described below.
  • a biomass mill 10 When co-combusting biomass fuel and pulverized coal fuel, at least one of the other mills pulverizes another solid fuel such as coal, which has a higher calorific value than the biomass fuel. Solid fuel pulverized by other mills is supplied to each burner 22a.
  • the boiler system 100 shown in FIG. may be an aspect.
  • the boiler system 100 may be a biomass fuel-only combustion system that includes one or more biomass mills 10 and a mill 41 and burns only biomass fuel.
  • a furnace bottom portion 21a is provided below the furnace 21 in the height direction HD.
  • the furnace bottom 21a is immersed in a conveyor 43 filled with a cooling medium such as water, and the inside of the furnace 21 is isolated from the outside air.
  • a cooling medium such as water
  • the bottom ash processing equipment 40 of this embodiment includes a wet conveyor 43 that cools unburned biomass fuel and combustion ash with a cooling medium.
  • the air preheater 30 is a device that heats air using exhaust gas G discharged from the furnace 21 of the boiler 20. As shown in FIG. 1, air is supplied to the air preheater 30 from a forced draft fan 70 and a primary draft fan 80, respectively. Further, the air preheater 30 is supplied with exhaust gas G discharged from the furnace 21 via the exhaust gas supply path 26, and heat exchanges with the air supplied from the forced draft fan 70 and the primary draft fan 80. be exposed.
  • the bottom ash processing equipment 40 is equipment for supplying unburned biomass fuel discharged from the boiler 20 to the combustion device 22 again.
  • the bottom ash processing equipment 40 dries unburned biomass fuel using heated air supplied from a first branch supply path 51 described below.
  • the bottom ash processing equipment 40 includes a mill 41, a storage section 42, a conveyor (unburned fuel conveyance section) 43, a silo 44, a blower 45, a first supply path 46, and a second supply path (unburnt fuel conveyance section). fuel supply path) 47.
  • the mill 41 is a device that pulverizes the bottom ash BA containing unburned biomass fuel discharged from the bottom 21a of the boiler 20.
  • the amount of unburned biomass fuel discharged from the furnace bottom 21a of the boiler 20 is about 1% to several percent of the total amount of biomass fuel supplied from the biomass fuel supply path 17 to the combustion device 22. Therefore, the mill 41 is smaller and requires less power than the biomass mill 10.
  • the amount of bottom ash BA that can be crushed by the mill 41 per unit time is sufficiently smaller (for example, 1/10 or less) than the amount of biomass fuel that can be crushed by the biomass mill 10 per unit time. Furthermore, the particle size of the unburned biomass fuel discharged from the mill 41 may be larger than the particle size of the biomass fuel discharged from the biomass mill 10.
  • the bottom ash BA pulverized by the mill 41 is guided to the silo 44 through a first supply path 46 .
  • the storage unit 42 is a device that stores bottom ash BA containing unburned biomass fuel that is conveyed by the conveyor 43.
  • the amount of bottom ash BA that the storage section 42 supplies to the mill 41 is controlled by a control device 90 .
  • the conveyor 43 is a device that conveys bottom ash BA containing unburned biomass fuel discharged from the bottom 21 a of the furnace 21 to the storage section 42 .
  • the silo 44 is a device that temporarily stores the bottom ash BA crushed by the mill 41.
  • the bottom ash BA crushed by the mill 41 is transported to the silo 44 by air supplied from the first branch supply path 51 and the second branch supply path 61, and the air flowing into the silo 44 is installed in the silo 44. It is separated from the pulverized bottom ash BA through the bag filter 44a and released into the atmosphere.
  • the bottom ash BA stored in the silo 44 is supplied to the combustion device 22 of the boiler 20 via the second supply path 47 when the control device 90 operates the blower 45 . Note that since the amount of bottom ash BA supplied from the storage section 42 to the mill 41 is controlled by the control device 90, it is also possible to supply it from the first supply path 46 to the combustion device 22 of the boiler 20 without going through the silo 44. It is possible.
  • the first air supply path 50 is a flow path that supplies heated air supplied from the primary ventilation fan 80 and heated by the air preheater 30 to the biomass mill 10.
  • the first air supply path 50 is provided with an opening/closing damper 50a and an adjusting damper 50b.
  • the control device 90 opens the opening/closing damper 50a and adjusts the opening degree of the adjustment damper 50b, thereby adjusting the flow rate of heated air guided to the biomass mill 10 via the first air supply path 50.
  • the first branch supply path 51 is a flow path that branches part of the heated air from the first air supply path 50 and supplies it to the mill 41.
  • the first branch supply path 51 branches part of the heated air from the first air supply path 50 and supplies it to the mill 41 to dry the unburned biomass fuel pulverized by the mill 41 .
  • the first branch supply path 51 is provided with an opening/closing damper 51a and an adjusting damper 51b.
  • the control device 90 opens the opening/closing damper 51a and adjusts the opening degree of the adjustment damper 51b, thereby adjusting the flow rate of heated air guided to the mill 41 via the first branch supply path 51.
  • the second air supply path 60 is a flow path that supplies unheated air (cold air) that is supplied from the primary ventilation fan 80 and is not heated by the air preheater 30 to the biomass mill 10.
  • the second air supply path 60 is provided with an opening/closing damper 60a and an adjusting damper 60b.
  • the control device 90 opens the opening/closing damper 60a and adjusts the opening degree of the adjustment damper 60b, thereby adjusting the flow rate of cold air guided to the biomass mill 10 via the second air supply path 60.
  • the second branch supply path 61 is a flow path that branches part of the cold air from the second air supply path 60 and supplies it to the mill 41.
  • the second branch supply path 61 is provided with an opening/closing damper 61a and an adjusting damper 61b.
  • the control device 90 opens the opening/closing damper 61a and adjusts the opening degree of the adjusting damper 61b, thereby adjusting the flow rate of cold air guided to the mill 41 via the second branch supply path 61.
  • the forced draft fan 70 is a device that forces air (outside air) into the combustion air supply path 71 and supplies it to the wind box 22b of the combustion device 22.
  • the air forced into the combustion air supply path 71 by the forced draft fan 70 is heated by the air preheater 30, and the heated air is supplied to the wind box 22b.
  • the primary ventilation fan 80 is a device that pushes air (outside air) into the first air supply path 50 and the second air supply path 60 and supplies it to the biomass mill 10. Furthermore, air (outside air) is forced into the first branch supply path 51 and the second branch supply path 61 and is supplied to the mill 41.
  • the control device 90 is a device that controls each part of the boiler system 100.
  • the control device 90 controls each part of the boiler system 100 by reading and executing a control program from a storage unit (not shown).
  • FIG. 2 is a flowchart showing the startup operation of the bottom ash processing equipment 40 of the first embodiment.
  • Each process shown in FIG. 2 is executed by the control device 90.
  • each part of the boiler system 100, including the biomass mill 10 and the boiler 20, except for the bottom ash processing equipment 40 shall be activated in advance.
  • step S101 the control device 90 controls the bottom ash processing equipment 40 to start the bottom ash processing equipment 40.
  • the control device 90 starts each part of the bottom ash processing equipment 40 including the mill 41, the conveyor 43, and the blower 45.
  • the bottom ash BA discharged from the bottom 21a of the furnace 21 is supplied to the storage section 42.
  • step S102 the control device 90 determines whether the storage amount of bottom ash BA stored in the storage section 42 is equal to or greater than a predetermined amount, and if YES, the process proceeds to step S103, and if NO If so, the determination in step S102 is repeated.
  • step S103 the control device 90 opens the opening/closing damper 61a, adjusts the opening degree of the adjustment damper 61b, and opens the second branch supply path 61.
  • the opening degree of the adjustment damper 61b is adjusted according to the target temperature inside the mill 41 and the required amount of air.
  • step S104 the control device 90 opens the opening/closing damper 51a, adjusts the opening degree of the adjustment damper 51b, and opens the first branch supply path 51.
  • the opening degree of the adjustment damper 51b is adjusted according to the target temperature inside the mill 41 and the required amount of air.
  • step S105 the control device 90 determines whether the inside of the mill 41 has reached the specified temperature, and if YES, the process proceeds to step S106, and if NO, the determination in step S105 is repeatedly executed.
  • step S106 the control device 90 starts supplying the bottom ash BA from the storage section 42 to the mill 41, thereby starting the pulverizing operation of the bottom ash BA by the mill 41.
  • the bottom ash BA pulverized by the mill 41 is supplied to the silo 44 via the first supply path 46 .
  • step S107 the control device 90 determines whether the boiler 20 has reached a predetermined boiler load at which bottom ash can be input, and if YES, the process proceeds to step S108, and if NO, the process proceeds to step S108. The determination in S107 is repeated.
  • step S108 the control device 90 operates the blower 45 and starts supplying the bottom ash BA to the boiler 20. As described above, the control device 90 starts up the bottom ash processing equipment 40.
  • FIG. 3 is a flowchart showing the stopping operation of the bottom ash processing equipment 40 of the first embodiment. Each process shown in FIG. 2 is executed by the control device 90.
  • step S201 the control device 90 stops the blower 45 and stops supplying the bottom ash BA to the boiler 20.
  • step S202 the control device 90 stops the supply of the bottom ash BA to the storage section 42 by the conveyor 43, and switches the discharge destination so that the bottom ash BA is discharged to an outside different from the storage section 42. Note that if there is no mechanism for discharging the bottom ash BA to the outside, steps S202 and S203 may be omitted, and the process may proceed to step S204 in the process of stopping the boiler 20.
  • step S203 the control device 90 determines whether the storage amount of bottom ash BA stored in the storage section 42 is less than a predetermined amount, and if YES, the process proceeds to step S204, and if NO, the process proceeds to step S204. If so, the determination in step S203 is repeated.
  • step S204 the control device 90 controls the supply amount of bottom ash BA from the storage section 42 to the mill 41 to a specified amount, which is a predetermined minimum amount.
  • step S205 the control device 90 sequentially closes the adjustment damper 51b and the opening/closing damper 51a, and blocks the first branch supply path 51. By blocking the first branch supply path 51, only cold air is supplied to the mill 41 from the second branch supply path 61.
  • step S206 the control device 90 determines whether the temperature inside the mill 41 has become lower than the specified temperature, and if YES, the process proceeds to step S207, and if NO, it repeatedly executes the determination in step S206.
  • step S207 the control device 90 stops supplying the bottom ash BA from the storage section 42 to the mill 41.
  • step S208 the control device 90 continues supplying cold air from the second branch supply path 61 to the inside of the mill 41 for a certain period of time, and performs a discharge process (purge process) of the bottom ash BA remaining in the mill 41. .
  • step S209 the control device 90 stops the grinding operation by the mill 41.
  • step S210 the control device 90 sequentially closes the adjustment damper 61b and the opening/closing damper 61a, and blocks the second branch supply path 61. As described above, the control device 90 stops the bottom ash processing equipment 40.
  • the biomass fuel pulverized by the biomass mill 10 is burned in the combustion device 22, and steam is generated in the boiler 20.
  • Air is heated by the air preheater 30 by the exhaust gas G discharged from the boiler 20, and the heated air is supplied to the biomass mill 10 via the first air supply path 50.
  • the unburned biomass fuel discharged from the boiler 20 is dried by the bottom ash processing equipment 40 using heated air supplied from the first branch supply path 51 and is supplied to the combustion device 22 again.
  • the temperature of the heated air (primary air) supplied to the biomass mill 10 is adjusted to take into account the ignitability of the biomass fuel. Even if it is set lower than when pulverizing the fuel, there is no need to significantly reduce the amount of heat recovered from the exhaust gas G in the air preheater 30. This is because a portion of the heated air is used to dry the unburned biomass fuel in the mill 41. Therefore, according to the boiler system 100 of the present embodiment, it is possible to improve the boiler efficiency when biomass fuel is combusted in the combustion device 22 and steam is generated in the boiler 20.
  • unburned biomass fuel discharged from the boiler 20 is conveyed to the mill 41 via the conveyor 43 and the storage section 42, and is pulverized by the mill 41.
  • the biomass fuel is combusted in the combustion device 22 by drying the unburned biomass fuel pulverized by the mill 41 with the heated air supplied from the first branch supply path 51.
  • the boiler efficiency when generating steam in the boiler 20 can be improved.
  • the unheated air supplied to the biomass mill 10 from the second air supply path 60 is mixed with the heated air supplied to the biomass mill 10 from the first air supply path 50.
  • the temperature of the mixture of unheated air and heated air (primary air) introduced into the biomass mill 10 is appropriately adjusted.
  • the unheated air supplied to the mill 41 from the second branch supply path 61 mixes with the heated air supplied to the mill 41 from the first branch supply path 51, and the unheated air guided into the inside of the mill 41.
  • the temperature of the mixture with heated air (primary air) is adjusted appropriately.
  • the combustion ash generated by the biomass fuel burned in the boiler 20 falls onto the conveyor 43 filled with a cooling medium, and can be cooled by the cooling medium.
  • the unburned biomass fuel comes into contact with the cooling medium on the conveyor 43 and contains the cooling medium, but is dried by heated air supplied from the first branch supply path 51 in the bottom ash processing equipment 40. Ru. Therefore, in the boiler 20 having the wet conveyor 43, unburned biomass fuel can be dried by effectively utilizing the heat recovered by the air preheater 30 from the exhaust gas discharged from the boiler 20.
  • the biomass fuel pulverized by the biomass mill 10 is burned in the combustion device 22, and steam is generated in the boiler 20.
  • Unburned biomass fuel discharged from the boiler 20 is conveyed to the mill 41 via the conveyor 43 and storage section 42, and is pulverized by the mill 41.
  • the unburned biomass fuel pulverized by the mill 41 is supplied again to the combustion device 22 by the bottom ash processing equipment 40.
  • unburned biomass fuel discharged from the boiler 20 is pulverized by the mill 41 and then supplied to the combustion device 22 again. It can be burned reliably.
  • the existing supply that supplies biomass fuel from the biomass mill 10 to the combustion device 22 is used. It does not affect the road.
  • the second supply path 47 of the bottom ash processing equipment 40 directly supplies unburned biomass fuel pulverized in the mill 41 to the combustion device 22, or the first supply path 46 directly supplies the unburned biomass fuel pulverized by the mill 41 to the combustion device 22.
  • the first supply path 46 of the bottom ash processing equipment 40A feeds the unburned biomass fuel pulverized in the mill 41 into the combustion device 22 with additives. 110. This additive is added to the furnace 21 of the boiler 20 in order to reduce ash adhesion and corrosion to the furnace 21 and heat transfer parts of the boiler 20 when biomass fuel is used. Ash etc. are used.
  • FIG. 4 is a diagram showing a schematic configuration of a boiler system 100A according to a second embodiment of the present disclosure.
  • the boiler system 100A includes an input section 110, a blower 120, and an additive supply path 130.
  • the boiler system 100A does not include the silo 44 and blower 45 of the boiler system 100 of the first embodiment.
  • the input unit 110 is a device that inputs an additive (for example, coal ash) to the combustion device 22.
  • the control device 90 operates the blower (additive charging device) 120 to supply the additive stored in the charging section 110 to the combustion device 22 via the additive supply path 130.
  • the additive supply path 130 is arranged to join the biomass fuel supply path 17.
  • the additive that has flowed from the additive supply path 130 into the biomass fuel supply path 17 is supplied to the burner 22a of the combustion device 22 together with the biomass fuel supplied from the biomass mill 10.
  • the boiler system 100 of the present embodiment by adding additives, it is possible to reduce ash adhesion and corrosion to the furnace 21 and heat transfer parts of the boiler 20 when biomass fuel is used. Further, the unburned biomass fuel pulverized by the mill 41 can be appropriately supplied to the combustion device 22 via the input section 110.
  • the supply route to the combustion device 22 dedicated to unburned biomass fuel pulverized by the mill 41 can be shared with the additive supply route 130, so there is no effect on the piping arrangement in the existing boiler equipment, and it can be easily modified. , additional installation is possible. Further, since the unburned biomass fuel can be burned in the burner 22a connected to the biomass fuel supply path 17, a unique combustion device for burning the unburned biomass fuel can be made unnecessary.
  • the second supply path 47 of the bottom ash processing equipment 40 transfers the unburned biomass fuel pulverized in the mill 41 to the burner to which the biomass fuel is supplied from the biomass fuel supply path 17.
  • the fuel was supplied to another burner 22a different from the burner 22a.
  • the second supply path 47 of the bottom ash processing equipment 40B joins the unburned biomass fuel pulverized in the mill 41 to the biomass fuel supply path 17. be. Note that, like the first embodiment, since the supply amount of bottom ash BA from the storage section 42 to the mill 41 is controlled by the control device 90, the bottom ash BA is pulverized by the mill 41 from the first supply path 46 without passing through the silo 44. It is also possible to merge the unburned biomass fuel into the biomass fuel supply path 17.
  • FIG. 5 is a diagram showing a schematic configuration of a boiler system 100B according to a third embodiment of the present disclosure.
  • the second supply path 47 of the bottom ash processing equipment 40B connects the unburned biomass fuel pulverized in the mill 41 to the biomass fuel supply path 17.
  • the control device 90 causes the bottom ash BA containing unburned biomass fuel stored in the silo 44 to join the biomass fuel supply path 17 from the second supply path 47 by operating the blower 45 .
  • the control device 90 controls the supply amount from the storage section 42 to the mill 41 to transfer the bottom ash BA containing unburned biomass fuel crushed in the mill 41 from the first supply path 46 to the biomass fuel. It is made to merge with the fuel supply path 17.
  • the second supply path 47 of the bottom ash processing equipment 40 directly supplies unburned biomass fuel pulverized in the mill 41 to the combustion device 22, or the first supply path 46 directly supplies the unburned biomass fuel pulverized by the mill 41 to the combustion device 22.
  • the first supply path 46 of the bottom ash processing equipment 40C guides the unburned biomass fuel pulverized in the mill 41 to the biomass fuel storage section 15. .
  • FIG. 6 is a diagram showing a schematic configuration of a boiler system 100C according to a fourth embodiment of the present disclosure.
  • the boiler system 100C is arranged such that the first supply path 46 of the bottom ash processing equipment 40C guides the unburned biomass fuel pulverized in the mill 41 to the biomass fuel storage section 15. ing.
  • the control device 90 operates the blower 45 to guide the bottom ash BA containing unburned biomass fuel stored in the silo 44 from the first supply path 46 to the biomass fuel storage section 15 .
  • the biomass fuel supply path 17 is connected in order to guide the unburned biomass fuel pulverized by the mill 41 to the biomass fuel storage section 15 that stores the biomass fuel pulverized by the biomass mill 10.
  • the control operation of the existing fuel supply system including the fuel supply system can be maintained without change.
  • the second supply path 47 of the bottom ash processing equipment 40 directly supplies unburned biomass fuel pulverized in the mill 41 to the combustion device 22.
  • the second supply path 47 of the bottom ash processing equipment 40D transports the unburned biomass fuel crushed in the mill 41 to the biomass fuel storage section 15. It leads to the biomass fuel conveyor (biomass fuel conveyance section) 18.
  • FIG. 7 is a diagram showing a schematic configuration of a boiler system 100D according to a fifth embodiment of the present disclosure.
  • the boiler system 100D includes a biomass fuel conveyor 18 that conveys biomass fuel to the biomass fuel storage section 15.
  • the boiler system 100D is arranged such that the second supply path 47 of the bottom ash processing equipment 40D guides the unburned biomass fuel pulverized in the mill 41 to the biomass fuel conveyor 18.
  • the control device 90 operates the blower 45 to guide the bottom ash BA containing unburned biomass fuel stored in the silo 44 from the second supply path 47 to the biomass fuel conveyor 18.
  • the bottom ash BA guided to the biomass fuel conveyor 18 is stored in the biomass fuel storage section 15 together with the biomass fuel.
  • the unburned biomass fuel pulverized by the mill 41 is guided to the biomass fuel conveyor 18 which conveys the biomass fuel to the biomass fuel storage section 15 where the biomass fuel pulverized by the biomass mill 10 is stored. , the control operation of the existing fuel supply system including the biomass fuel supply path 17 can be maintained without change.
  • a biomass crushing system (100) includes a first crusher (10) that crushes biomass fuel, and a combustion device that burns the biomass fuel crushed by the first crusher to generate steam.
  • a boiler (20) that generates air
  • an air preheater (30) that heats air with exhaust gas discharged from the boiler, and a first air supply that supplies the heated air heated by the air preheater to the first pulverizer.
  • a resupply section (40) is provided for drying the heated air supplied from the supply path and supplying the dried air to the combustion device again.
  • the biomass fuel pulverized by the first pulverizer is combusted in the combustion device, and steam is generated in the boiler.
  • Air is heated in the air preheater by exhaust gas discharged from the boiler, and the heated air is supplied to the first crushing device via the first air supply path.
  • the unburned biomass fuel discharged from the boiler is dried by the resupply section using heated air supplied from the first branch supply path, and is supplied again to the combustion device.
  • the temperature of the heated air (primary air) supplied to the first pulverizer is set lower than that of pulverized coal fuel in consideration of the ignitability of the biomass fuel. Even in such cases, it is possible to suppress a decrease in the amount of heat recovered from the exhaust gas in the air preheater. This is because part of the heated air is used to dry the unburned biomass fuel, so the heated air supplied to the first pulverizer prevents the inside of the first pulverizer from becoming too hot. It is. Therefore, according to the biomass crushing system according to the first aspect of the present disclosure, it is possible to improve the boiler efficiency when biomass fuel is burned in the combustion device and steam is generated in the boiler.
  • the biomass crushing system further includes the following configuration in the first aspect. That is, the resupply section includes a second crushing device (41) that crushes the unburned biomass fuel discharged from the boiler, and a second crusher (41) that crushes the unburned biomass fuel discharged from the boiler. an unburnt fuel conveying section (43) for conveying the unburned fuel to the first air supply passage, and the first branch supply passage branches a part of the heated air from the first air supply passage and supplies it to the second crushing device. Then, the unburnt biomass fuel pulverized by the second pulverizer is dried.
  • the resupply section includes a second crushing device (41) that crushes the unburned biomass fuel discharged from the boiler, and a second crusher (41) that crushes the unburned biomass fuel discharged from the boiler.
  • unburned biomass fuel discharged from the boiler is conveyed to the second crushing device by the unburned fuel conveying section, and is crushed by the second crushing device.
  • the biomass fuel is combusted by drying the unburned biomass fuel crushed by the second crushing device with the heated air supplied from the first branch supply path. Boiler efficiency can be improved when combustion is performed in the device and steam is generated in the boiler.
  • the biomass crushing system further includes the following configuration in the second aspect. That is, a second air supply path (60) supplies unheated air that is not heated by the air preheater to the first crushing device, and a part of the unheated air is branched from the second air supply path to A second branch supply path (61) for supplying to the second crushing device.
  • a second air supply path (60) supplies unheated air that is not heated by the air preheater to the first crushing device, and a part of the unheated air is branched from the second air supply path to A second branch supply path (61) for supplying to the second crushing device.
  • the unheated air supplied from the second air supply path to the first crushing device is replaced by the heated air supplied from the first air supply path to the first crushing device.
  • the temperature of the mixture (primary air) of unheated air and heated air that is mixed with the primary air and introduced into the first pulverizer is adjusted appropriately.
  • the unheated air supplied from the second branch supply path to the second crushing device is mixed with the heated air supplied from the first branch supply path to the second crushing device, and is guided into the second crushing device.
  • the temperature of the mixture of unheated air and heated air (primary air) is adjusted appropriately.
  • the biomass crushing system according to the fourth aspect of the present disclosure further includes the following configuration in any of the first to third aspects. That is, the boiler includes a wet unburned fuel conveying section (43) that cools the combustion ash of the biomass fuel with a cooling medium.
  • combustion ash generated by biomass fuel burned in the boiler can be cooled by a cooling medium in the wet unburned fuel conveyance section.
  • the unburned biomass fuel comes into contact with the cooling medium in the unburned fuel conveyance section, so that it contains the cooling medium, but in the resupply section, it is dried by heated air supplied from the first branch supply path. . Therefore, in a boiler having a wet unburned fuel conveyance section, unburned biomass fuel can be dried by effectively utilizing the heat recovered by the air preheater from the exhaust gas discharged from the boiler.
  • a biomass crushing system includes: a first crushing device that crushes biomass fuel; a boiler that generates steam by burning the biomass fuel crushed by the first crushing device in a combustion device; a second pulverizer that pulverizes the unburned biomass fuel discharged from the boiler; a transport section that conveys the unburned biomass fuel discharged from the boiler to the second pulverizer; and a second pulverizer. and a resupply section for supplying the unburned biomass fuel, which has been pulverized by the biomass fuel, to the combustion device again.
  • the biomass fuel crushed by the first crusher is burned in the combustion device, and steam is generated in the boiler.
  • Unburned biomass fuel discharged from the boiler is conveyed to the second crushing device by the unburned fuel conveying section, and is crushed by the second crushing device.
  • the unburned biomass fuel pulverized by the second pulverizer is again supplied to the combustion device by the resupply section.
  • unburned biomass fuel discharged from the boiler is pulverized by the second pulverizer and then supplied to the combustion device again. It can be reliably burned with a combustion device.
  • the biomass crushing system according to the sixth aspect of the present disclosure further includes the following configuration in either the second aspect, the third aspect, or the fifth aspect. That is, the resupply section has an unburned fuel supply path (47) that supplies the unburned biomass fuel crushed by the second crusher to the combustion device.
  • the biomass crushing system in order to directly supply the unburned biomass fuel crushed by the second crusher to the combustion device, the biomass fuel is transferred from the first crusher to the combustion device. There will be no impact on existing supply routes.
  • the biomass crushing system according to the seventh aspect of the present disclosure further includes the following configuration in either the second aspect, the third aspect, or the fifth aspect. That is, it includes an input section (110) for inputting additives into the combustion device, and the resupply section guides the unburned biomass fuel crushed by the second crushing device to the input section.
  • adhesion of combustion ash to the furnace of the boiler due to burning biomass fuel can be appropriately reduced by adding an additive.
  • the unburned biomass fuel pulverized by the second pulverizer can be appropriately supplied to the combustion device via the input section.
  • the supply route to the combustion device 22 dedicated to unburned biomass fuel pulverized by the mill 41 can be shared with the additive supply route 130, so there is no impact on the piping arrangement in the existing boiler equipment, and it can be easily modified. Additional installation is possible.
  • the unburned biomass fuel can be burned in the burner 22a connected to the biomass fuel supply path 17, a unique combustion device for burning the unburned biomass fuel can be made unnecessary.
  • the biomass crushing system further includes the following configuration in either the second aspect, the third aspect, or the fifth aspect. That is, the re-supply section includes a biomass fuel supply path (17) that supplies the biomass fuel crushed by the first crushing device to the combustion device, and the re-supply section supplies the unburned biomass crushed by the second crushing device. The fuel is merged into the biomass fuel supply path.
  • unburned biomass fuel pulverized by the second pulverizer is merged into an existing fuel supply path that supplies biomass fuel from the first pulverizer to the combustion device. Since there is no need to add a new burner for burning unburned biomass fuel to the combustion equipment, existing equipment can be easily modified or added.
  • the biomass crushing system further includes the following configuration in either the second aspect, the third aspect, or the fifth aspect. That is, the first pulverizer includes a biomass fuel storage section (15) that stores the biomass fuel pulverized, and the resupply section stores the unburned biomass fuel pulverized by the second pulverizer into the biomass fuel. Lead to fuel storage.
  • the control operation of the existing fuel supply system can be maintained without modification.
  • the biomass crushing system further includes the following configuration in the second aspect, third aspect, or fifth aspect. That is, the first crushing device includes a biomass fuel storage section (42) that stores the biomass fuel crushed by the first crushing device, and a biomass fuel conveyance section (43) that conveys the biomass fuel to the biomass fuel storage section, and The resupply section guides the unburned biomass fuel pulverized by the second pulverizer to the biomass fuel transport section.
  • the first crushing device includes a biomass fuel storage section (42) that stores the biomass fuel crushed by the first crushing device, and a biomass fuel conveyance section (43) that conveys the biomass fuel to the biomass fuel storage section, and
  • the resupply section guides the unburned biomass fuel pulverized by the second pulverizer to the biomass fuel transport section.
  • the unburned biomass fuel pulverized by the second pulverizer is sent to the biomass fuel transport section that transports the biomass fuel to the biomass fuel storage section that stores the biomass fuel. Therefore, the control operation of the existing fuel supply system can be maintained unchanged.
  • a method for operating a biomass pulverization system includes a first pulverizer that pulverizes biomass fuel, and a boiler that combusts the biomass fuel pulverized by the first pulverizer in a combustion device to generate steam.
  • a first pulverizer that pulverizes biomass fuel
  • a boiler that combusts the biomass fuel pulverized by the first pulverizer in a combustion device to generate steam.
  • an air preheater that heats air with exhaust gas discharged from the boiler; a first air supply path that supplies the heated air heated by the air preheater to the first pulverizer; and the first air supply.
  • a method of operating a biomass crushing system comprising: a first branch supply path for branching a part of the heated air from the boiler; The method includes a drying step of drying using the supplied heated air, and a resupply step of again supplying the unburnt biomass fuel dried in the drying step to the combustion device.
  • the biomass fuel crushed by the first crusher is burned in the combustion device, and steam is generated in the boiler.
  • Air is heated in the air preheater by exhaust gas discharged from the boiler, and the heated air is supplied to the first crushing device via the first air supply path.
  • Unburned biomass fuel discharged from the boiler is dried by heated air supplied from the first branch supply path in a drying process, and is again supplied to the combustion device in a resupply process.
  • the temperature of the heated air (primary air) supplied to the first pulverizer is set in consideration of the ignitability of the biomass fuel compared to that of pulverized coal fuel. Even if it is set low, there is no need to significantly reduce the amount of heat recovered from the exhaust gas in the air preheater. This is because a portion of the heated air is used to dry the unburned biomass fuel, so the heated air supplied to the first pulverizer prevents the first pulverizer from reaching an excessively high temperature. . Therefore, according to the operating method of the biomass crushing system according to the first aspect of the present disclosure, it is possible to improve the boiler efficiency when biomass fuel is burned in the combustion device and steam is generated in the boiler.
  • a method for operating a biomass pulverization system includes a first pulverizer that pulverizes biomass fuel, and a boiler that combusts the biomass fuel pulverized by the first pulverizer in a combustion device to generate steam. and a second pulverizer that pulverizes the unburned biomass fuel discharged from the boiler, the method of operating a biomass pulverization system comprising: and a resupply step of supplying the unburned biomass fuel crushed by the second crushing device to the combustion device again.
  • the biomass fuel crushed by the first crusher is burned in the combustion device, and steam is generated in the boiler.
  • Unburned biomass fuel discharged from the boiler is conveyed to the second pulverizer through a conveyance process, and is pulverized by the second pulverizer.
  • the unburned biomass fuel pulverized by the second pulverizer is again supplied to the combustion device in a re-supply step.
  • unburned biomass fuel discharged from the boiler is crushed by the second crusher and then supplied to the combustion device again. Biomass fuel can be reliably burned in a combustion device.
  • Biomass mill (first crushing device) 15 Biomass fuel storage section 17 Biomass fuel supply path 18 Biomass fuel conveyor 20 Boiler 21 Furnace 21a Furnace bottom 22 Combustion device 22a Burner 22b Wind box 23 Superheater 24 Reheater 25 Economizer 30 Air preheater 40, 40A, 40B, 40C, 40D Bottom ash processing equipment 41 Mill 42 Storage section 43 Conveyor 44 Silo 45 Blower 46 First supply path 47 Second supply path 50 First air supply path 50a, 51a, 60a, 61a Opening/closing damper 50b, 51b, 60b, 61b Adjustment damper 51 First branch supply passage 60 Second air supply passage 61 Second branch supply passage 70 Forced draft fan 71 Combustion air supply passage 80 Primary draft fan 90 Control device 100, 100A, 100B, 100C, 100D Boiler system 110 Input part 120 Blower 130 Additive supply path BA Hearth ash G Exhaust gas HD Height direction

Abstract

Provided is a boiler system (100) comprising: a biomass mill (10) that grinds a biomass fuel; a boiler (20) that combusts the biomass fuel ground by the biomass mill (10) in a combustion device (22) to generate vapor; an air preheater (30) that heats air by means of exhaust gas discharged from the boiler (20); a first air supply path (50) that supplies the heated air heated by the air preheater (30) to the biomass mill (10); a first branch supply path (51) that branches part of the heated air from the first air supply path (50); and a furnace bottom ash processing facility (40) for using the heated air supplied from the first branch supply path (51) to dry a non-combusted biomass fuel discharged from the boiler (20), and supplying the resultant to the combustion device (22) again.

Description

バイオマス粉砕システム、およびバイオマス粉砕システムの運転方法Biomass grinding system and how to operate the biomass grinding system
 本開示は、バイオマス粉砕システム、およびバイオマス粉砕システムの運転方法に関する。 The present disclosure relates to a biomass grinding system and a method of operating a biomass grinding system.
 従来、ミルで石炭を粉砕し、バーナを通じてボイラへ供給する装置が知られている(例えば、特許文献1参照)。特許文献1では、ボイラの底部から未燃焼物質を回収してミルに投入し、粉砕した未燃焼物質を、バーナを通じてボイラへ送ることで、未燃焼物質を再び燃料として利用する。 Conventionally, a device is known in which coal is pulverized in a mill and supplied to a boiler through a burner (for example, see Patent Document 1). In Patent Document 1, unburned materials are collected from the bottom of a boiler and put into a mill, and the pulverized unburned materials are sent to the boiler through a burner, thereby reusing the unburned materials as fuel.
特許第4861318号公報Patent No. 4861318
 しかしながら、特許文献1では、燃料として石炭(微粉炭燃料)のみを用いており、バイオマス燃料を用いる場合や、バイオマス燃料と微粉炭燃料を混焼する際のボイラ効率の低下を考慮したものではない。石炭を粉砕した微粉炭燃料を用いるように設計されたボイラにおいて、バイオマス燃料を用いる場合またはバイオマス燃料と微粉炭燃料を混焼させる場合、微粉炭燃料のみを燃焼させる場合に比べ、燃料中の灰分の総量が小さくなるため、ボイラの火炉の底部に堆積する炉底灰の総量が少なくなる利点がある。一方、バイオマス燃料またはバイオマス燃料と微粉炭燃料を混焼させる場合、炉底灰に含まれる未燃の燃料の総質量が多くなり、未燃の燃料が増加することによりボイラ効率が低下(未燃分損失が増加)してしまう。 However, Patent Document 1 uses only coal (pulverized coal fuel) as a fuel, and does not take into account the reduction in boiler efficiency when using biomass fuel or co-firing biomass fuel and pulverized coal fuel. In a boiler designed to use pulverized coal fuel obtained by pulverizing coal, when using biomass fuel or co-firing biomass fuel and pulverized coal fuel, the ash content in the fuel is lower than when only pulverized coal fuel is burned. Since the total amount is smaller, there is an advantage that the total amount of bottom ash deposited at the bottom of the boiler furnace is reduced. On the other hand, when biomass fuel or biomass fuel and pulverized coal fuel are co-fired, the total mass of unburned fuel contained in the bottom ash increases, and the boiler efficiency decreases due to the increase in unburned fuel (unburned (increased losses).
 また、粉砕装置において燃料を乾燥させるためにボイラの排ガスにより加熱された一次空気が利用されるが、バイオマス燃料は微粉炭燃料と比較し燃料中水分が少ないことから燃料を乾燥させるための熱量が微粉炭燃料より少なく、またバイオマス燃料の発火性を考慮して一次空気の温度を微粉炭燃料に比べて低く設定することがあり、この場合に排ガスからの熱回収量が減少してボイラ効率が低下(排ガス損失が増加)してしまう。 In addition, primary air heated by boiler exhaust gas is used to dry the fuel in the crusher, but biomass fuel has less moisture in the fuel than pulverized coal fuel, so the amount of heat required to dry the fuel is lower. The temperature of the primary air is sometimes set lower than that of pulverized coal fuel, and in consideration of the ignitability of biomass fuel, the amount of heat recovered from exhaust gas decreases and the boiler efficiency decreases. (exhaust gas loss increases).
 本開示は、このような事情に鑑みてなされたものであって、バイオマス燃料を燃焼装置で燃焼してボイラで蒸気を生成する際のボイラ効率を向上させることが可能なバイオマス粉砕システム、およびバイオマス粉砕システムの運転方法を提供することを目的とする。 The present disclosure has been made in view of these circumstances, and provides a biomass crushing system and a biomass crushing system that can improve boiler efficiency when generating steam in a boiler by burning biomass fuel in a combustion device. The purpose is to provide a method for operating a grinding system.
 上記課題を解決するために、本開示は以下の手段を採用する。
 本開示に係るバイオマス粉砕システムは、バイオマス燃料を粉砕する第1粉砕装置と、前記第1粉砕装置が粉砕した前記バイオマス燃料を燃焼装置で燃焼して蒸気を生成するボイラと、前記ボイラから排出される排ガスにより空気を加熱する空気予熱器と、前記空気予熱器により加熱された加熱空気を前記第1粉砕装置へ供給する第1空気供給路と、前記第1空気供給路から前記加熱空気の一部を分岐させる第1分岐供給路と、前記ボイラから排出される未燃の前記バイオマス燃料を前記第1分岐供給路から供給される前記加熱空気により乾燥させて前記燃焼装置へ再び供給するための再供給部と、を備える。
In order to solve the above problems, the present disclosure employs the following means.
The biomass crushing system according to the present disclosure includes a first crushing device that crushes biomass fuel, a boiler that burns the biomass fuel crushed by the first crushing device in a combustion device to generate steam, and a boiler that generates steam by burning the biomass fuel crushed by the first crushing device. an air preheater that heats air with exhaust gas; a first air supply path that supplies the heated air heated by the air preheater to the first crushing device; a first branch supply path for branching the portion, and a first branch supply path for drying the unburned biomass fuel discharged from the boiler with the heated air supplied from the first branch supply path and supplying the dried biomass fuel to the combustion device again. A resupply section.
 本開示に係るバイオマス粉砕システムの運転方法は、バイオマス燃料を粉砕する第1粉砕装置と、前記第1粉砕装置が粉砕した前記バイオマス燃料を燃焼装置で燃焼して蒸気を生成するボイラと、前記ボイラから排出される未燃の前記バイオマス燃料を粉砕する第2粉砕装置と、を備えるバイオマス粉砕システムの運転方法であって、前記ボイラから排出される未燃の前記バイオマス燃料を前記第2粉砕装置へ搬送する搬送工程と、前記第2粉砕装置が粉砕した未燃の前記バイオマス燃料を前記燃焼装置へ再び供給する再供給工程と、を備える。 A method of operating a biomass crushing system according to the present disclosure includes: a first crusher that crushes biomass fuel; a boiler that burns the biomass fuel crushed by the first crusher in a combustion device to generate steam; A method of operating a biomass crushing system comprising: a second crushing device for crushing the unburned biomass fuel discharged from the boiler, the method comprising: passing the unburned biomass fuel discharged from the boiler to the second crushing device; The method includes a conveyance step of conveying the fuel, and a resupply step of again supplying the unburned biomass fuel crushed by the second crusher to the combustion device.
 本開示によれば、バイオマス燃料を燃焼装置で燃焼してボイラで蒸気を生成する際のボイラ効率を向上させることが可能なバイオマス粉砕システム、およびバイオマス粉砕システムの運転方法を提供することができる。 According to the present disclosure, it is possible to provide a biomass crushing system that can improve boiler efficiency when burning biomass fuel in a combustion device to generate steam in a boiler, and a method for operating the biomass crushing system.
本開示の第1実施形態に係るボイラシステムの概略構成を示す図である。1 is a diagram showing a schematic configuration of a boiler system according to a first embodiment of the present disclosure. 第1実施形態の炉底灰処理設備の起動動作を示すフローチャートである。It is a flowchart which shows the start-up operation of the bottom ash processing equipment of a 1st embodiment. 第1実施形態の炉底灰処理設備の停止動作を示すフローチャートである。It is a flowchart which shows the stop operation of the bottom ash processing equipment of a 1st embodiment. 本開示の第2実施形態に係るボイラシステムの概略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of a boiler system according to a second embodiment of the present disclosure. 本開示の第3実施形態に係るボイラシステムの概略構成を示す図である。FIG. 3 is a diagram showing a schematic configuration of a boiler system according to a third embodiment of the present disclosure. 本開示の第4実施形態に係るボイラシステムの概略構成を示す図である。It is a diagram showing a schematic configuration of a boiler system according to a fourth embodiment of the present disclosure. 本開示の第5実施形態に係るボイラシステムの概略構成を示す図である。It is a diagram showing a schematic configuration of a boiler system according to a fifth embodiment of the present disclosure.
〔第1実施形態〕
 以下に、本開示の第1実施形態に係るボイラシステム(バイオマス粉砕システム)100について、図1を参照して説明する。図1に示すように、本実施形態のボイラシステム100は、バイオマスミル(第1粉砕装置)10と、バイオマス燃料貯蔵部15と、ボイラ20と、空気予熱器30と、炉底灰処理設備(再供給部)40と、第1空気供給路50と、第1分岐供給路51と、第2空気供給路(非加熱空気供給路)60と、第2分岐供給路61と、押込通風機70と、一次通風機80と、制御装置90と、を備える。
[First embodiment]
Below, a boiler system (biomass crushing system) 100 according to a first embodiment of the present disclosure will be described with reference to FIG. 1. As shown in FIG. 1, the boiler system 100 of this embodiment includes a biomass mill (first pulverizer) 10, a biomass fuel storage section 15, a boiler 20, an air preheater 30, and a bottom ash processing equipment ( re-supply section) 40, first air supply path 50, first branch supply path 51, second air supply path (non-heated air supply path) 60, second branch supply path 61, forced draft fan 70 , a primary ventilation fan 80 , and a control device 90 .
 本実施形態のボイラシステム100は、バイオマス燃料貯蔵部15に貯蔵されるバイオマス燃料をバイオマスミル10で粉砕し、粉砕したバイオマス燃料をボイラ20で燃焼させて蒸気を生成する。空気予熱器30は、ボイラ20から排出される排ガスGにより一次通風機80が供給する空気を加熱する。空気予熱器30により加熱された加熱空気は、第1空気供給路50を介してバイオマスミル10へ供給されるとともに、第1分岐供給路51を介して炉底灰処理設備40に供給される。炉底灰処理設備40は、ボイラ20から排出される未燃のバイオマス燃料を含む炉底灰を粉砕してボイラ20に再び供給するための設備である。 The boiler system 100 of this embodiment pulverizes biomass fuel stored in a biomass fuel storage section 15 in a biomass mill 10, and combusts the pulverized biomass fuel in a boiler 20 to generate steam. The air preheater 30 heats the air supplied by the primary ventilation fan 80 using the exhaust gas G discharged from the boiler 20. The heated air heated by the air preheater 30 is supplied to the biomass mill 10 via the first air supply path 50 and is also supplied to the bottom ash processing equipment 40 via the first branch supply path 51. The bottom ash processing equipment 40 is a facility for pulverizing the bottom ash containing unburned biomass fuel discharged from the boiler 20 and supplying it to the boiler 20 again.
 ここで、バイオマス燃料とは、再生可能な生物由来の有機性資源であり、例えば、間伐材、廃木材、流木、草類、廃棄物、汚泥、及びこれらを原料としたリサイクル燃料(ペレットやチップ)などであり、ここに提示したものに限定されることはない。バイオマス燃料は、バイオマスの成育過程において二酸化炭素を取り込むことから、地球温暖化ガスとなる二酸化炭素を排出しないカーボンニュートラルとされるため、その利用が種々検討されている。 Here, biomass fuel refers to renewable organic resources derived from living organisms, such as thinned wood, waste wood, driftwood, grass, waste, sludge, and recycled fuels made from these materials (pellets and chips). ), and is not limited to what is presented here. Since biomass fuel takes in carbon dioxide during the growth process of biomass, it is considered carbon neutral and does not emit carbon dioxide, which is a global warming gas, and various uses are being considered for its use.
 バイオマスミル10は、バイオマス燃料貯蔵部15に貯蔵されるバイオマス燃料を粉砕する装置である。バイオマスミル10は、例えば、粉砕テーブルを回転させ。粉砕テーブルと複数の粉砕ローラとの間に挟み込まれたバイオマス燃料を粉砕する。バイオマスミル10は、第1空気供給路50から供給される加熱空気によりバイオマス燃料を乾燥させつつ所定粒径以下に分級してバイオマス燃料供給路17へ供給する。バイオマス燃料供給路17に供給された所定粒径以下のバイオマス燃料は、ボイラ20に供給される。 The biomass mill 10 is a device that crushes biomass fuel stored in the biomass fuel storage section 15. The biomass mill 10, for example, rotates a grinding table. Biomass fuel sandwiched between a crushing table and a plurality of crushing rollers is crushed. The biomass mill 10 dries the biomass fuel using heated air supplied from the first air supply path 50 , classifies the biomass fuel to a predetermined particle size or less, and supplies the biomass fuel to the biomass fuel supply path 17 . The biomass fuel having a predetermined particle size or less supplied to the biomass fuel supply path 17 is supplied to the boiler 20 .
 本開示に係るバイオマスミル10は、一次通風機80によって加圧された空気(一次空気)をバイオマスミル10内に吹き込むことで、粉砕されたバイオマス燃料を乾燥しつつ、ボイラ20の火炉21まで搬送する、いわゆる加圧式のミルである。バイオマスミル10のハウジング内の圧力が、外部(大気)の圧力よりも高い圧力となっている。 The biomass mill 10 according to the present disclosure dries the pulverized biomass fuel by blowing pressurized air (primary air) into the biomass mill 10 by the primary ventilator 80 and transports it to the furnace 21 of the boiler 20. This is a so-called pressurized mill. The pressure inside the housing of the biomass mill 10 is higher than the outside (atmospheric) pressure.
 ボイラ20は、バイオマスミル10により粉砕したバイオマス燃料を燃焼装置22により燃焼させ、この燃焼により発生した熱を給水や蒸気と熱交換して過熱蒸気を生成する装置である。ボイラ20は、火炉21と、燃焼装置22と、過熱器23と、再熱器24と、節炭器25と、を有する。ボイラ20は、バイオマス燃料を燃焼装置22で燃焼させ、火炉21で発生した燃焼ガスと熱交換器(過熱器23,再熱器24,節炭器25)の内部を流通する給水や蒸気との間で熱交換をさせる。 The boiler 20 is a device that uses a combustion device 22 to combust the biomass fuel pulverized by the biomass mill 10, and exchanges the heat generated by this combustion with feed water and steam to generate superheated steam. The boiler 20 includes a furnace 21 , a combustion device 22 , a superheater 23 , a reheater 24 , and a coal saver 25 . The boiler 20 burns biomass fuel in a combustion device 22, and combines combustion gas generated in a furnace 21 with water and steam flowing through a heat exchanger (superheater 23, reheater 24, and economizer 25). Allow heat exchange between the two.
 火炉21の高さ方向HDの中段に、燃焼装置22が設けられている。燃焼装置22は、複数のバーナ22aと、バーナ22aへ燃焼用空気を供給する風箱22bとを有する。図1では、バイオマス燃料供給路17が複数のバーナ22aの1つに接続される例を示しているが、バイオマス燃料供給路17が各バーナ22aへ分岐して接続されるようにしてもよい。バイオマス燃料供給路17に接続されるバーナ22aの上方のバーナ22aは、後述する第2供給路47に接続される。 A combustion device 22 is provided in the middle of the furnace 21 in the height direction HD. The combustion device 22 includes a plurality of burners 22a and a wind box 22b that supplies combustion air to the burners 22a. Although FIG. 1 shows an example in which the biomass fuel supply path 17 is connected to one of the plurality of burners 22a, the biomass fuel supply path 17 may be branched and connected to each burner 22a. The burner 22a above the burner 22a connected to the biomass fuel supply path 17 is connected to a second supply path 47, which will be described later.
 図1では、バイオマス燃料供給路17に接続されるバーナ22aおよび第2供給路47に接続されるバーナ22aを除き、各バーナ22aが接続される配管の図示を省略している。図1に示すボイラシステム100は、バイオマスミル10および後述するミル41とは異なる他のミル(図示略)を備える。バイオマス燃料と微粉炭燃料を混焼させる場合は他のミルの少なくとも1つは、バイオマス燃料よりも発熱量の大きい石炭等の他の固体燃料を粉砕するものである。他のミルで粉砕された固体燃料は、各バーナ22aに供給される。 In FIG. 1, the piping to which each burner 22a is connected is omitted, except for the burner 22a connected to the biomass fuel supply path 17 and the burner 22a connected to the second supply path 47. The boiler system 100 shown in FIG. 1 includes a biomass mill 10 and another mill (not shown) different from the mill 41 described below. When co-combusting biomass fuel and pulverized coal fuel, at least one of the other mills pulverizes another solid fuel such as coal, which has a higher calorific value than the biomass fuel. Solid fuel pulverized by other mills is supplied to each burner 22a.
 図1に示すボイラシステム100は、バイオマスミル10およびミル41に加え、石炭等の他の固体燃料を粉砕する他のミルを備え、バイオマス燃料と微粉炭燃料を混焼させるものとしたが、他の態様であってもよい。例えば、ボイラシステム100として、1または複数のバイオマスミル10と、ミル41とを備え、バイオマス燃料のみを燃焼させるバイオマス燃料専焼のシステムとしてもよい。 In addition to the biomass mill 10 and the mill 41, the boiler system 100 shown in FIG. It may be an aspect. For example, the boiler system 100 may be a biomass fuel-only combustion system that includes one or more biomass mills 10 and a mill 41 and burns only biomass fuel.
 図1に示すように、火炉21の高さ方向HDの下方には、炉底部21aが設けられている。炉底部21aは、水等の冷却媒体で満たされているコンベア43に浸かっており、火炉21内部は外気と隔絶されている。火炉21に供給されたバイオマス燃料のうち燃焼装置22により燃焼しなかった未燃のバイオマス燃料や燃焼灰は、炉底部21aに落下して冷却媒体により冷却される。このように、本実施形態の炉底灰処理設備40は、冷却媒体で未燃のバイオマス燃料や燃焼灰を冷却する湿式のコンベア43を有する。 As shown in FIG. 1, a furnace bottom portion 21a is provided below the furnace 21 in the height direction HD. The furnace bottom 21a is immersed in a conveyor 43 filled with a cooling medium such as water, and the inside of the furnace 21 is isolated from the outside air. Of the biomass fuel supplied to the furnace 21, unburned biomass fuel and combustion ash that were not burned by the combustion device 22 fall to the furnace bottom 21a and are cooled by a cooling medium. As described above, the bottom ash processing equipment 40 of this embodiment includes a wet conveyor 43 that cools unburned biomass fuel and combustion ash with a cooling medium.
 空気予熱器30は、ボイラ20の火炉21から排出される排ガスGにより空気を加熱する装置である。図1に示すように、空気予熱器30には、押込通風機70および一次通風機80のそれぞれから空気が供給される。また、空気予熱器30には、火炉21から排出される排ガスGが排ガス供給路26を介して供給され、押込通風機70および一次通風機80のそれぞれから供給される空気との熱交換が行われる。 The air preheater 30 is a device that heats air using exhaust gas G discharged from the furnace 21 of the boiler 20. As shown in FIG. 1, air is supplied to the air preheater 30 from a forced draft fan 70 and a primary draft fan 80, respectively. Further, the air preheater 30 is supplied with exhaust gas G discharged from the furnace 21 via the exhaust gas supply path 26, and heat exchanges with the air supplied from the forced draft fan 70 and the primary draft fan 80. be exposed.
 炉底灰処理設備40は、ボイラ20から排出される未燃のバイオマス燃料を燃焼装置22へ再び供給するための設備である。炉底灰処理設備40は、後述する第1分岐供給路51から供給される加熱空気により未燃のバイオマス燃料を乾燥させる。炉底灰処理設備40は、ミル41と、貯蔵部42と、コンベア(未燃燃料搬送部)43と、サイロ44と、ブロワ45と、第1供給路46と、第2供給路(未燃燃料供給路)47と、を有する。 The bottom ash processing equipment 40 is equipment for supplying unburned biomass fuel discharged from the boiler 20 to the combustion device 22 again. The bottom ash processing equipment 40 dries unburned biomass fuel using heated air supplied from a first branch supply path 51 described below. The bottom ash processing equipment 40 includes a mill 41, a storage section 42, a conveyor (unburned fuel conveyance section) 43, a silo 44, a blower 45, a first supply path 46, and a second supply path (unburnt fuel conveyance section). fuel supply path) 47.
 ミル41は、ボイラ20の炉底部21aから排出される未燃のバイオマス燃料を含む炉底灰BAを粉砕する装置である。ボイラ20の炉底部21aから排出される未燃のバイオマス燃料の量は、バイオマス燃料供給路17から燃焼装置22へ供給されるバイオマス燃料の総量の1%から数%程度である。そのため、ミル41はバイオマスミル10に比べて小型かつ必要な動力が小さい。 The mill 41 is a device that pulverizes the bottom ash BA containing unburned biomass fuel discharged from the bottom 21a of the boiler 20. The amount of unburned biomass fuel discharged from the furnace bottom 21a of the boiler 20 is about 1% to several percent of the total amount of biomass fuel supplied from the biomass fuel supply path 17 to the combustion device 22. Therefore, the mill 41 is smaller and requires less power than the biomass mill 10.
 ミル41が単位時間当たりに粉砕可能な炉底灰BAの量は、バイオマスミル10が単位時間当たりに粉砕可能なバイオマス燃料の量よりも十分に少ない(例えば、1/10以下)。また、ミル41から排出される未燃のバイオマス燃料の粒径は、バイオマスミル10から排出されるバイオマス燃料の粒径よりも大きいものとしてもよい。ミル41で粉砕された炉底灰BAは、第1供給路46によりサイロ44へ導かれる。 The amount of bottom ash BA that can be crushed by the mill 41 per unit time is sufficiently smaller (for example, 1/10 or less) than the amount of biomass fuel that can be crushed by the biomass mill 10 per unit time. Furthermore, the particle size of the unburned biomass fuel discharged from the mill 41 may be larger than the particle size of the biomass fuel discharged from the biomass mill 10. The bottom ash BA pulverized by the mill 41 is guided to the silo 44 through a first supply path 46 .
 貯蔵部42は、コンベア43により搬送される未燃のバイオマス燃料を含む炉底灰BAを貯蔵する装置である。貯蔵部42がミル41に供給する炉底灰BAの供給量は、制御装置90により制御される。
 コンベア43は、火炉21の炉底部21aから排出される未燃のバイオマス燃料を含む炉底灰BAを、貯蔵部42へ搬送する装置である。
The storage unit 42 is a device that stores bottom ash BA containing unburned biomass fuel that is conveyed by the conveyor 43. The amount of bottom ash BA that the storage section 42 supplies to the mill 41 is controlled by a control device 90 .
The conveyor 43 is a device that conveys bottom ash BA containing unburned biomass fuel discharged from the bottom 21 a of the furnace 21 to the storage section 42 .
 サイロ44は、ミル41により粉砕された炉底灰BAを一時的に保管する装置である。ミル41により粉砕された炉底灰BAは第1分岐供給路51と、第2分岐供給路61から供給される空気によりサイロ44へ搬送され、サイロ44へ流入した空気はサイロ44に設置されるバグフィルタ44aを通して粉砕された炉底灰BAと分離され大気へ放出される。サイロ44に保管された炉底灰BAは、制御装置90がブロワ45を動作させることにより、第2供給路47を介してボイラ20の燃焼装置22へ供給される。なお、貯蔵部42からミル41への炉底灰BAの供給量が制御装置90によって制御されるため、サイロ44を介さずに第1供給路46からボイラ20の燃焼装置22へ供給することも可能である。 The silo 44 is a device that temporarily stores the bottom ash BA crushed by the mill 41. The bottom ash BA crushed by the mill 41 is transported to the silo 44 by air supplied from the first branch supply path 51 and the second branch supply path 61, and the air flowing into the silo 44 is installed in the silo 44. It is separated from the pulverized bottom ash BA through the bag filter 44a and released into the atmosphere. The bottom ash BA stored in the silo 44 is supplied to the combustion device 22 of the boiler 20 via the second supply path 47 when the control device 90 operates the blower 45 . Note that since the amount of bottom ash BA supplied from the storage section 42 to the mill 41 is controlled by the control device 90, it is also possible to supply it from the first supply path 46 to the combustion device 22 of the boiler 20 without going through the silo 44. It is possible.
 第1空気供給路50は、一次通風機80から供給され、空気予熱器30により加熱された加熱空気を、バイオマスミル10へ供給する流路である。第1空気供給路50には、開閉ダンパ50aと、調整ダンパ50bとが設けられている。制御装置90により、開閉ダンパ50aを開状態とし、調整ダンパ50bの開度を調整することにより、第1空気供給路50を介してバイオマスミル10へ導かれる加熱空気の流量が調整される。 The first air supply path 50 is a flow path that supplies heated air supplied from the primary ventilation fan 80 and heated by the air preheater 30 to the biomass mill 10. The first air supply path 50 is provided with an opening/closing damper 50a and an adjusting damper 50b. The control device 90 opens the opening/closing damper 50a and adjusts the opening degree of the adjustment damper 50b, thereby adjusting the flow rate of heated air guided to the biomass mill 10 via the first air supply path 50.
 第1分岐供給路51は、第1空気供給路50から加熱空気の一部を分岐させてミル41へ供給する流路である。第1分岐供給路51は、第1空気供給路50から加熱空気の一部を分岐させてミル41へ供給して、ミル41で粉砕された未燃のバイオマス燃料を乾燥させる。第1分岐供給路51には、開閉ダンパ51aと、調整ダンパ51bとが設けられている。制御装置90により、開閉ダンパ51aを開状態とし、調整ダンパ51bの開度を調整することにより、第1分岐供給路51を介してミル41へ導かれる加熱空気の流量が調整される。 The first branch supply path 51 is a flow path that branches part of the heated air from the first air supply path 50 and supplies it to the mill 41. The first branch supply path 51 branches part of the heated air from the first air supply path 50 and supplies it to the mill 41 to dry the unburned biomass fuel pulverized by the mill 41 . The first branch supply path 51 is provided with an opening/closing damper 51a and an adjusting damper 51b. The control device 90 opens the opening/closing damper 51a and adjusts the opening degree of the adjustment damper 51b, thereby adjusting the flow rate of heated air guided to the mill 41 via the first branch supply path 51.
 第2空気供給路60は、一次通風機80から供給され、空気予熱器30により加熱されない非加熱空気(冷空気)を、バイオマスミル10へ供給する流路である。第2空気供給路60には、開閉ダンパ60aと、調整ダンパ60bとが設けられている。制御装置90により、開閉ダンパ60aを開状態とし、調整ダンパ60bの開度を調整することにより、第2空気供給路60を介してバイオマスミル10へ導かれる冷空気の流量が調整される。 The second air supply path 60 is a flow path that supplies unheated air (cold air) that is supplied from the primary ventilation fan 80 and is not heated by the air preheater 30 to the biomass mill 10. The second air supply path 60 is provided with an opening/closing damper 60a and an adjusting damper 60b. The control device 90 opens the opening/closing damper 60a and adjusts the opening degree of the adjustment damper 60b, thereby adjusting the flow rate of cold air guided to the biomass mill 10 via the second air supply path 60.
 第2分岐供給路61は、第2空気供給路60から冷空気の一部を分岐させてミル41へ供給する流路である。第2分岐供給路61には、開閉ダンパ61aと、調整ダンパ61bとが設けられている。制御装置90により、開閉ダンパ61aを開状態とし、調整ダンパ61bの開度を調整することにより、第2分岐供給路61を介してミル41へ導かれる冷空気の流量が調整される。 The second branch supply path 61 is a flow path that branches part of the cold air from the second air supply path 60 and supplies it to the mill 41. The second branch supply path 61 is provided with an opening/closing damper 61a and an adjusting damper 61b. The control device 90 opens the opening/closing damper 61a and adjusts the opening degree of the adjusting damper 61b, thereby adjusting the flow rate of cold air guided to the mill 41 via the second branch supply path 61.
 押込通風機70は、空気(外気)を燃焼用空気供給路71へ押し込んで燃焼装置22の風箱22bへ供給する装置である。押込通風機70が燃焼用空気供給路71へ押し込んだ空気を空気予熱器30で加熱し、加熱された空気を風箱22bへ供給する。 The forced draft fan 70 is a device that forces air (outside air) into the combustion air supply path 71 and supplies it to the wind box 22b of the combustion device 22. The air forced into the combustion air supply path 71 by the forced draft fan 70 is heated by the air preheater 30, and the heated air is supplied to the wind box 22b.
 一次通風機80は、空気(外気)を第1空気供給路50および第2空気供給路60へ押し込んでバイオマスミル10へ供給する装置である。また、第1分岐供給路51および第2分岐供給路61へも空気(外気)を押し込んでミル41へ供給する。 The primary ventilation fan 80 is a device that pushes air (outside air) into the first air supply path 50 and the second air supply path 60 and supplies it to the biomass mill 10. Furthermore, air (outside air) is forced into the first branch supply path 51 and the second branch supply path 61 and is supplied to the mill 41.
 制御装置90は、ボイラシステム100の各部を制御する装置である。制御装置90は、記憶部(図示略)から制御プログラムを読み出して実行することにより、ボイラシステム100の各部を制御する。 The control device 90 is a device that controls each part of the boiler system 100. The control device 90 controls each part of the boiler system 100 by reading and executing a control program from a storage unit (not shown).
 次に、図2を参照して、炉底灰処理設備40の起動動作について説明する。図2は、第1実施形態の炉底灰処理設備40の起動動作を示すフローチャートである。図2に示す各処理は、制御装置90により実行される。なお、図2に示す処理を実行する際に、バイオマスミル10およびボイラ20を含む、炉底灰処理設備40を除くボイラシステム100の各部は、予め起動されているものとする。 Next, the startup operation of the bottom ash processing equipment 40 will be described with reference to FIG. 2. FIG. 2 is a flowchart showing the startup operation of the bottom ash processing equipment 40 of the first embodiment. Each process shown in FIG. 2 is executed by the control device 90. In addition, when performing the process shown in FIG. 2, each part of the boiler system 100, including the biomass mill 10 and the boiler 20, except for the bottom ash processing equipment 40, shall be activated in advance.
 ステップS101で、制御装置90は、炉底灰処理設備40を起動するよう炉底灰処理設備40を制御する。制御装置90は、ミル41、コンベア43と、ブロワ45とを含む炉底灰処理設備40の各部を起動させる。コンベア43が起動することにより、火炉21の炉底部21aから排出された炉底灰BAが貯蔵部42に供給される。 In step S101, the control device 90 controls the bottom ash processing equipment 40 to start the bottom ash processing equipment 40. The control device 90 starts each part of the bottom ash processing equipment 40 including the mill 41, the conveyor 43, and the blower 45. By starting the conveyor 43, the bottom ash BA discharged from the bottom 21a of the furnace 21 is supplied to the storage section 42.
 ステップS102で、制御装置90は、貯蔵部42に貯蔵される炉底灰BAの貯蔵量が予め定めた規定量以上であるかどうかを判断し、YESであればステップS103に処理を進め、NOであればステップS102の判断を繰り返し実行する。 In step S102, the control device 90 determines whether the storage amount of bottom ash BA stored in the storage section 42 is equal to or greater than a predetermined amount, and if YES, the process proceeds to step S103, and if NO If so, the determination in step S102 is repeated.
 ステップS103で、制御装置90は、開閉ダンパ61aを開状態とし、調整ダンパ61bの開度を調整し、第2分岐供給路61を開放する。調整ダンパ61bの開度は、ミル41の内部の目標温度や必要とされる空気量に応じて調整される。 In step S103, the control device 90 opens the opening/closing damper 61a, adjusts the opening degree of the adjustment damper 61b, and opens the second branch supply path 61. The opening degree of the adjustment damper 61b is adjusted according to the target temperature inside the mill 41 and the required amount of air.
 ステップS104で、制御装置90は、開閉ダンパ51aを開状態とし、調整ダンパ51bの開度を調整し、第1分岐供給路51を開放する。調整ダンパ51bの開度は、ミル41の内部の目標温度や必要とされる空気量に応じて調整される。 In step S104, the control device 90 opens the opening/closing damper 51a, adjusts the opening degree of the adjustment damper 51b, and opens the first branch supply path 51. The opening degree of the adjustment damper 51b is adjusted according to the target temperature inside the mill 41 and the required amount of air.
 ステップS105で、制御装置90は、ミル41の内部が規定温度に到達したかどうかを判断し、YESであればステップS106に処理を進め、NOであればステップS105の判断を繰り返し実行する。 In step S105, the control device 90 determines whether the inside of the mill 41 has reached the specified temperature, and if YES, the process proceeds to step S106, and if NO, the determination in step S105 is repeatedly executed.
 ステップS106で、制御装置90は、貯蔵部42からミル41への炉底灰BAの供給を開始することで、ミル41による炉底灰BAの粉砕動作を開始する。ミル41により粉砕された炉底灰BAは、第1供給路46を介してサイロ44へ供給される。 In step S106, the control device 90 starts supplying the bottom ash BA from the storage section 42 to the mill 41, thereby starting the pulverizing operation of the bottom ash BA by the mill 41. The bottom ash BA pulverized by the mill 41 is supplied to the silo 44 via the first supply path 46 .
 ステップS107で、制御装置90は、ボイラ20が、炉底灰が投入可能となる所定のボイラ負荷に到達したかどうかを判断し、YESであればステップS108へ処理を進め、NOであればステップS107の判断を繰り返す。
 ステップS108で、制御装置90は、ブロワ45を動作させ、ボイラ20への炉底灰BAの供給を開始する。
 以上により、制御装置90は、炉底灰処理設備40を起動させる。
In step S107, the control device 90 determines whether the boiler 20 has reached a predetermined boiler load at which bottom ash can be input, and if YES, the process proceeds to step S108, and if NO, the process proceeds to step S108. The determination in S107 is repeated.
In step S108, the control device 90 operates the blower 45 and starts supplying the bottom ash BA to the boiler 20.
As described above, the control device 90 starts up the bottom ash processing equipment 40.
 次に、図3を参照して、炉底灰処理設備40の停止動作について説明する。図3は、第1実施形態の炉底灰処理設備40の停止動作を示すフローチャートである。図2に示す各処理は、制御装置90により実行される。 Next, with reference to FIG. 3, the stopping operation of the bottom ash processing equipment 40 will be described. FIG. 3 is a flowchart showing the stopping operation of the bottom ash processing equipment 40 of the first embodiment. Each process shown in FIG. 2 is executed by the control device 90.
 ステップS201で、制御装置90は、ブロワ45を停止させ、ボイラ20への炉底灰BAの供給を停止する。
 ステップS202で、制御装置90は、コンベア43による貯蔵部42への炉底灰BAの供給を停止し、炉底灰BAを貯蔵部42とは異なる外部へ排出するよう排出先を切り替える。なお、炉底灰BAを外部へ排出する機構を持たない場合は、ステップS202およびステップS203の処理を省略して、ボイラ20の停止過程でステップS204に処理を進めるようにしても良い。
In step S201, the control device 90 stops the blower 45 and stops supplying the bottom ash BA to the boiler 20.
In step S202, the control device 90 stops the supply of the bottom ash BA to the storage section 42 by the conveyor 43, and switches the discharge destination so that the bottom ash BA is discharged to an outside different from the storage section 42. Note that if there is no mechanism for discharging the bottom ash BA to the outside, steps S202 and S203 may be omitted, and the process may proceed to step S204 in the process of stopping the boiler 20.
 ステップS203で、制御装置90は、貯蔵部42に貯蔵される炉底灰BAの貯蔵量が予め定めた規定量を下回るかどうかを判断し、YESであればステップS204に処理を進め、NOであればステップS203の判断を繰り返し実行する。 In step S203, the control device 90 determines whether the storage amount of bottom ash BA stored in the storage section 42 is less than a predetermined amount, and if YES, the process proceeds to step S204, and if NO, the process proceeds to step S204. If so, the determination in step S203 is repeated.
 ステップS204で、制御装置90は、貯蔵部42からミル41への炉底灰BAの供給量を、予め定めた最低の量である規定量まで低下させるよう制御する。 In step S204, the control device 90 controls the supply amount of bottom ash BA from the storage section 42 to the mill 41 to a specified amount, which is a predetermined minimum amount.
 ステップS205で、制御装置90は、調整ダンパ51bと開閉ダンパ51aを、順に閉状態とし、第1分岐供給路51を遮断する。第1分岐供給路51を遮断することにより、ミル41には、第2分岐供給路61から冷空気のみが供給される状態となる。 In step S205, the control device 90 sequentially closes the adjustment damper 51b and the opening/closing damper 51a, and blocks the first branch supply path 51. By blocking the first branch supply path 51, only cold air is supplied to the mill 41 from the second branch supply path 61.
 ステップS206で、制御装置90は、ミル41の内部が規定温度未満となったかどうかを判断し、YESであればステップS207に処理を進め、NOであればステップS206の判断を繰り返し実行する。 In step S206, the control device 90 determines whether the temperature inside the mill 41 has become lower than the specified temperature, and if YES, the process proceeds to step S207, and if NO, it repeatedly executes the determination in step S206.
 ステップS207で、制御装置90は、貯蔵部42からミル41への炉底灰BAの供給を停止する。
 ステップS208で、制御装置90は、第2分岐供給路61からミル41の内部への冷空気の供給を一定時間継続し、ミル41に残存する炉底灰BAの排出処理(パージ処理)を行う。
In step S207, the control device 90 stops supplying the bottom ash BA from the storage section 42 to the mill 41.
In step S208, the control device 90 continues supplying cold air from the second branch supply path 61 to the inside of the mill 41 for a certain period of time, and performs a discharge process (purge process) of the bottom ash BA remaining in the mill 41. .
 ステップS209で、制御装置90は、ミル41による粉砕動作を停止させる。
 ステップS210で、制御装置90は、調整ダンパ61bと開閉ダンパ61aを、順に閉状態とし、第2分岐供給路61を遮断する。
 以上により、制御装置90は、炉底灰処理設備40を停止させる。
In step S209, the control device 90 stops the grinding operation by the mill 41.
In step S210, the control device 90 sequentially closes the adjustment damper 61b and the opening/closing damper 61a, and blocks the second branch supply path 61.
As described above, the control device 90 stops the bottom ash processing equipment 40.
 以上で説明した本実施形態のボイラシステム100が奏する作用および効果について説明する。
 本実施形態のボイラシステム100によれば、バイオマスミル10が粉砕したバイオマス燃料が燃焼装置22で燃焼し、ボイラ20で蒸気が生成される。ボイラ20から排出される排ガスGにより空気予熱器30で空気が加熱され、加熱された加熱空気が第1空気供給路50を介してバイオマスミル10へ供給される。ボイラ20から排出される未燃のバイオマス燃料は、炉底灰処理設備40により、第1分岐供給路51から供給される加熱空気により乾燥されて燃焼装置22へ再び供給される。
The operations and effects of the boiler system 100 of this embodiment described above will be explained.
According to the boiler system 100 of this embodiment, the biomass fuel pulverized by the biomass mill 10 is burned in the combustion device 22, and steam is generated in the boiler 20. Air is heated by the air preheater 30 by the exhaust gas G discharged from the boiler 20, and the heated air is supplied to the biomass mill 10 via the first air supply path 50. The unburned biomass fuel discharged from the boiler 20 is dried by the bottom ash processing equipment 40 using heated air supplied from the first branch supply path 51 and is supplied to the combustion device 22 again.
 本実施形態のボイラシステム100によれば、バイオマスミル10でバイオマスを粉砕する際に、バイオマス燃料の発火性を考慮してバイオマスミル10へ供給される加熱空気(一次空気)の温度を、微粉炭燃料を粉砕する場合と比べて低く設定する場合であっても、空気予熱器30における排ガスGからの熱回収量を大きく下げる必要がない。これは、加熱空気の一部がミル41における未燃のバイオマス燃料の乾燥に用いられるからである。そのため、本実施形態のボイラシステム100によれば、バイオマス燃料を燃焼装置22で燃焼してボイラ20で蒸気を生成する際のボイラ効率を向上させることができる。 According to the boiler system 100 of the present embodiment, when pulverizing biomass in the biomass mill 10, the temperature of the heated air (primary air) supplied to the biomass mill 10 is adjusted to take into account the ignitability of the biomass fuel. Even if it is set lower than when pulverizing the fuel, there is no need to significantly reduce the amount of heat recovered from the exhaust gas G in the air preheater 30. This is because a portion of the heated air is used to dry the unburned biomass fuel in the mill 41. Therefore, according to the boiler system 100 of the present embodiment, it is possible to improve the boiler efficiency when biomass fuel is combusted in the combustion device 22 and steam is generated in the boiler 20.
 また、本実施形態のボイラシステム100によれば、ボイラ20から排出される未燃のバイオマス燃料が、コンベア43と貯蔵部42を介してミル41に搬送され、ミル41により粉砕される。本実施形態のボイラシステム100によれば、ミル41により粉砕された未燃のバイオマス燃料を第1分岐供給路51から供給される加熱空気により乾燥させることにより、バイオマス燃料を燃焼装置22で燃焼してボイラ20で蒸気を生成する際のボイラ効率を向上させることができる。 Furthermore, according to the boiler system 100 of the present embodiment, unburned biomass fuel discharged from the boiler 20 is conveyed to the mill 41 via the conveyor 43 and the storage section 42, and is pulverized by the mill 41. According to the boiler system 100 of this embodiment, the biomass fuel is combusted in the combustion device 22 by drying the unburned biomass fuel pulverized by the mill 41 with the heated air supplied from the first branch supply path 51. Thus, the boiler efficiency when generating steam in the boiler 20 can be improved.
 また、本実施形態のボイラシステム100によれば、第2空気供給路60からバイオマスミル10へ供給される非加熱空気が、第1空気供給路50からバイオマスミル10へ供給される加熱空気と混合し、バイオマスミル10の内部へ導かれる非加熱空気と加熱空気との混合気(一次空気)の温度が適切に調整される。また、第2分岐供給路61からミル41へ供給される非加熱空気が、第1分岐供給路51からミル41へ供給される加熱空気と混合し、ミル41の内部へ導かれる非加熱空気と加熱空気との混合気(一次空気)の温度が適切に調整される。 Moreover, according to the boiler system 100 of this embodiment, the unheated air supplied to the biomass mill 10 from the second air supply path 60 is mixed with the heated air supplied to the biomass mill 10 from the first air supply path 50. However, the temperature of the mixture of unheated air and heated air (primary air) introduced into the biomass mill 10 is appropriately adjusted. Further, the unheated air supplied to the mill 41 from the second branch supply path 61 mixes with the heated air supplied to the mill 41 from the first branch supply path 51, and the unheated air guided into the inside of the mill 41. The temperature of the mixture with heated air (primary air) is adjusted appropriately.
 また、本実施形態のボイラシステム100によれば、ボイラ20で燃焼したバイオマス燃料により生成される燃焼灰は冷却媒体で満たされているコンベア43に落下し、冷却媒体により冷却することができる。未燃のバイオマス燃料は、コンベア43で冷却媒体と接触することにより冷却媒体を含んだものとなるが、炉底灰処理設備40において、第1分岐供給路51から供給される加熱空気により乾燥される。そのため、湿式のコンベア43を有するボイラ20において、ボイラ20から排出される排ガスから空気予熱器30で回収した熱を有効に利用して未燃のバイオマス燃料を乾燥させることができる。 Furthermore, according to the boiler system 100 of the present embodiment, the combustion ash generated by the biomass fuel burned in the boiler 20 falls onto the conveyor 43 filled with a cooling medium, and can be cooled by the cooling medium. The unburned biomass fuel comes into contact with the cooling medium on the conveyor 43 and contains the cooling medium, but is dried by heated air supplied from the first branch supply path 51 in the bottom ash processing equipment 40. Ru. Therefore, in the boiler 20 having the wet conveyor 43, unburned biomass fuel can be dried by effectively utilizing the heat recovered by the air preheater 30 from the exhaust gas discharged from the boiler 20.
 また、本実施形態のボイラシステム100によれば、バイオマスミル10が粉砕したバイオマス燃料が燃焼装置22で燃焼し、ボイラ20で蒸気が生成される。ボイラ20から排出される未燃のバイオマス燃料がコンベア43と貯蔵部42を介してミル41に搬送され、ミル41により粉砕される。ミル41により粉砕された未燃のバイオマス燃料は、炉底灰処理設備40により燃焼装置22へ再び供給される。本実施形態のボイラシステム100によれば、ボイラ20から排出される未燃のバイオマス燃料をミル41により粉砕してから燃焼装置22へ再び供給することにより、未燃のバイオマス燃料を燃焼装置22で確実に燃焼させることができる。 Furthermore, according to the boiler system 100 of the present embodiment, the biomass fuel pulverized by the biomass mill 10 is burned in the combustion device 22, and steam is generated in the boiler 20. Unburned biomass fuel discharged from the boiler 20 is conveyed to the mill 41 via the conveyor 43 and storage section 42, and is pulverized by the mill 41. The unburned biomass fuel pulverized by the mill 41 is supplied again to the combustion device 22 by the bottom ash processing equipment 40. According to the boiler system 100 of the present embodiment, unburned biomass fuel discharged from the boiler 20 is pulverized by the mill 41 and then supplied to the combustion device 22 again. It can be burned reliably.
 本実施形態のボイラシステム100によれば、ミル41で粉砕された未燃のバイオマス燃料を燃焼装置22へ直接的に供給するため、バイオマスミル10から燃焼装置22へバイオマス燃料を供給する既存の供給路に影響を与えることがない。 According to the boiler system 100 of the present embodiment, in order to directly supply the unburned biomass fuel pulverized by the mill 41 to the combustion device 22, the existing supply that supplies biomass fuel from the biomass mill 10 to the combustion device 22 is used. It does not affect the road.
〔第2実施形態〕
 次に、本開示の第2実施形態に係るボイラシステム100Aについて説明する。本実施形態は、第1実施形態の変形例であり、以下で特に説明する場合を除き、第1実施形態と同様であるものとし、以下での説明を省略する。
[Second embodiment]
Next, a boiler system 100A according to a second embodiment of the present disclosure will be described. This embodiment is a modification of the first embodiment, and is the same as the first embodiment except when specifically explained below, and the explanation below will be omitted.
 第1実施形態のボイラシステム100は、炉底灰処理設備40の第2供給路47が、ミル41で粉砕された未燃のバイオマス燃料を燃焼装置22へ直接的に供給、または第1供給路46が、ミル41で粉砕された未燃のバイオマス燃料を燃焼装置22へ直接的に供給するものであった。それに対して、本実施形態のボイラシステム100Aは、炉底灰処理設備40Aの第1供給路46が、ミル41で粉砕された未燃のバイオマス燃料を、燃焼装置22へ添加剤を投入する投入部110へ導くものである。この添加剤は、バイオマス燃料を使用する際に、ボイラ20の火炉21や伝熱部への灰付着や腐食を軽減するために、ボイラ20の火炉21に投入されるものであり、例えば、石炭灰などが用いられる。 In the boiler system 100 of the first embodiment, the second supply path 47 of the bottom ash processing equipment 40 directly supplies unburned biomass fuel pulverized in the mill 41 to the combustion device 22, or the first supply path 46 directly supplies the unburned biomass fuel pulverized by the mill 41 to the combustion device 22. On the other hand, in the boiler system 100A of the present embodiment, the first supply path 46 of the bottom ash processing equipment 40A feeds the unburned biomass fuel pulverized in the mill 41 into the combustion device 22 with additives. 110. This additive is added to the furnace 21 of the boiler 20 in order to reduce ash adhesion and corrosion to the furnace 21 and heat transfer parts of the boiler 20 when biomass fuel is used. Ash etc. are used.
 図4は、本開示の第2実施形態に係るボイラシステム100Aの概略構成を示す図である。図4に示すように、ボイラシステム100Aは、投入部110と、ブロワ120と、添加剤供給路130と、を備える。一方、ボイラシステム100Aは、第1実施形態のボイラシステム100のサイロ44およびブロワ45を備えない。 FIG. 4 is a diagram showing a schematic configuration of a boiler system 100A according to a second embodiment of the present disclosure. As shown in FIG. 4, the boiler system 100A includes an input section 110, a blower 120, and an additive supply path 130. On the other hand, the boiler system 100A does not include the silo 44 and blower 45 of the boiler system 100 of the first embodiment.
 投入部110は、燃焼装置22へ添加剤(例えば、石炭灰)を投入する装置である。制御装置90は、ブロワ(添加剤投入装置)120を動作させることにより、投入部110に貯蔵される添加剤を、添加剤供給路130を介して燃焼装置22へ供給する。図4に示すように、本実施形態では、添加剤供給路130が、バイオマス燃料供給路17に合流するように配置されている。添加剤供給路130からバイオマス燃料供給路17に合流した添加剤は、バイオマスミル10から供給されるバイオマス燃料とともに、燃焼装置22のバーナ22aに供給される。 The input unit 110 is a device that inputs an additive (for example, coal ash) to the combustion device 22. The control device 90 operates the blower (additive charging device) 120 to supply the additive stored in the charging section 110 to the combustion device 22 via the additive supply path 130. As shown in FIG. 4, in this embodiment, the additive supply path 130 is arranged to join the biomass fuel supply path 17. The additive that has flowed from the additive supply path 130 into the biomass fuel supply path 17 is supplied to the burner 22a of the combustion device 22 together with the biomass fuel supplied from the biomass mill 10.
 本実施形態のボイラシステム100によれば、バイオマス燃料を使用する際のボイラ20の火炉21や伝熱部への灰付着や腐食を、添加剤を投入することにより軽減することができる。また、ミル41で粉砕された未燃のバイオマス燃料を、投入部110を介して燃焼装置22へ適切に供給することができる。 According to the boiler system 100 of the present embodiment, by adding additives, it is possible to reduce ash adhesion and corrosion to the furnace 21 and heat transfer parts of the boiler 20 when biomass fuel is used. Further, the unburned biomass fuel pulverized by the mill 41 can be appropriately supplied to the combustion device 22 via the input section 110.
 本実施形態ではミル41粉砕された未燃のバイオマス燃料専用の燃焼装置22への供給経路を添加剤供給路130と共有できるため、既存ボイラ設備内の配管配置への影響がなく、容易に改造、追設が可能となる。また、バイオマス燃料供給路17に接続されたバーナ22aにて未燃バイオマス燃料を燃焼させることができるため、未燃バイオマス燃料燃焼用の独自の燃焼装置が不要とすることができる。 In this embodiment, the supply route to the combustion device 22 dedicated to unburned biomass fuel pulverized by the mill 41 can be shared with the additive supply route 130, so there is no effect on the piping arrangement in the existing boiler equipment, and it can be easily modified. , additional installation is possible. Further, since the unburned biomass fuel can be burned in the burner 22a connected to the biomass fuel supply path 17, a unique combustion device for burning the unburned biomass fuel can be made unnecessary.
〔第3実施形態〕
 次に、本開示の第3実施形態に係るボイラシステム100Bについて説明する。本実施形態は、第1実施形態の変形例であり、以下で特に説明する場合を除き、第1実施形態と同様であるものとし、以下での説明を省略する。
[Third embodiment]
Next, a boiler system 100B according to a third embodiment of the present disclosure will be described. This embodiment is a modification of the first embodiment, and is the same as the first embodiment except when specifically explained below, and the explanation below will be omitted.
 第1実施形態のボイラシステム100は、炉底灰処理設備40の第2供給路47が、ミル41で粉砕された未燃のバイオマス燃料を、バイオマス燃料供給路17からバイオマス燃料が供給されるバーナ22aとは異なる他のバーナ22aに供給するものであった。それに対して、本実施形態のボイラシステム100Bは、炉底灰処理設備40Bの第2供給路47が、ミル41で粉砕された未燃のバイオマス燃料を、バイオマス燃料供給路17に合流させるものである。なお、第1実施形態同様に貯蔵部42からミル41への炉底灰BAの供給量が制御装置90によって制御されるため、サイロ44を介さずに第1供給路46からミル41で粉砕された未燃のバイオマス燃料を、バイオマス燃料供給路17に合流することも可能である。 In the boiler system 100 of the first embodiment, the second supply path 47 of the bottom ash processing equipment 40 transfers the unburned biomass fuel pulverized in the mill 41 to the burner to which the biomass fuel is supplied from the biomass fuel supply path 17. The fuel was supplied to another burner 22a different from the burner 22a. In contrast, in the boiler system 100B of the present embodiment, the second supply path 47 of the bottom ash processing equipment 40B joins the unburned biomass fuel pulverized in the mill 41 to the biomass fuel supply path 17. be. Note that, like the first embodiment, since the supply amount of bottom ash BA from the storage section 42 to the mill 41 is controlled by the control device 90, the bottom ash BA is pulverized by the mill 41 from the first supply path 46 without passing through the silo 44. It is also possible to merge the unburned biomass fuel into the biomass fuel supply path 17.
 図5は、本開示の第3実施形態に係るボイラシステム100Bの概略構成を示す図である。図5に示すように、本実施形態のボイラシステム100Bは、炉底灰処理設備40Bの第2供給路47が、ミル41で粉砕された未燃のバイオマス燃料を、バイオマス燃料供給路17に合流させるように配置されている。制御装置90は、ブロワ45を動作させることにより、サイロ44に貯蔵される未燃のバイオマス燃料を含む炉底灰BAを、第2供給路47からバイオマス燃料供給路17に合流させる。または、制御装置90は、貯蔵部42からミル41への供給量を制御することにより、ミル41にて粉砕された未燃のバイオマス燃料を含む炉底灰BAを、第1供給路46からバイオマス燃料供給路17に合流させる。 FIG. 5 is a diagram showing a schematic configuration of a boiler system 100B according to a third embodiment of the present disclosure. As shown in FIG. 5, in the boiler system 100B of this embodiment, the second supply path 47 of the bottom ash processing equipment 40B connects the unburned biomass fuel pulverized in the mill 41 to the biomass fuel supply path 17. It is arranged so that The control device 90 causes the bottom ash BA containing unburned biomass fuel stored in the silo 44 to join the biomass fuel supply path 17 from the second supply path 47 by operating the blower 45 . Alternatively, the control device 90 controls the supply amount from the storage section 42 to the mill 41 to transfer the bottom ash BA containing unburned biomass fuel crushed in the mill 41 from the first supply path 46 to the biomass fuel. It is made to merge with the fuel supply path 17.
 本実施形態のボイラシステム100Bによれば、ミル41で粉砕された未燃のバイオマス燃料を、バイオマスミル10から燃焼装置22へバイオマス燃料を供給する既存のバイオマス燃料供給路17へ合流させるため、第1実施形態のボイラシステム100のように未燃のバイオマス燃料を燃焼させるバーナ22aを燃焼装置22に新たに追加する必要がないため、既存設備に対して容易に改造や追設が可能となる。 According to the boiler system 100B of this embodiment, in order to make the unburned biomass fuel pulverized in the mill 41 join the existing biomass fuel supply path 17 that supplies biomass fuel from the biomass mill 10 to the combustion device 22, Unlike the boiler system 100 of the first embodiment, there is no need to newly add a burner 22a that burns unburned biomass fuel to the combustion device 22, so that existing equipment can be easily modified or added.
〔第4実施形態〕
 次に、本開示の第4実施形態に係るボイラシステム100Cについて説明する。本実施形態は、第1実施形態の変形例であり、以下で特に説明する場合を除き、第1実施形態と同様であるものとし、以下での説明を省略する。
[Fourth embodiment]
Next, a boiler system 100C according to a fourth embodiment of the present disclosure will be described. This embodiment is a modification of the first embodiment, and is the same as the first embodiment except when specifically explained below, and the explanation below will be omitted.
 第1実施形態のボイラシステム100は、炉底灰処理設備40の第2供給路47が、ミル41で粉砕された未燃のバイオマス燃料を燃焼装置22へ直接的に供給、または第1供給路46が、ミル41で粉砕された未燃のバイオマス燃料を燃焼装置22へ直接的に供給するものであった。それに対して、本実施形態のボイラシステム100Cは、炉底灰処理設備40Cの第1供給路46が、ミル41で粉砕された未燃のバイオマス燃料を、バイオマス燃料貯蔵部15へ導くものである。 In the boiler system 100 of the first embodiment, the second supply path 47 of the bottom ash processing equipment 40 directly supplies unburned biomass fuel pulverized in the mill 41 to the combustion device 22, or the first supply path 46 directly supplies the unburned biomass fuel pulverized by the mill 41 to the combustion device 22. In contrast, in the boiler system 100C of the present embodiment, the first supply path 46 of the bottom ash processing equipment 40C guides the unburned biomass fuel pulverized in the mill 41 to the biomass fuel storage section 15. .
 図6は、本開示の第4実施形態に係るボイラシステム100Cの概略構成を示す図である。図6に示すように、ボイラシステム100Cは、炉底灰処理設備40Cの第1供給路46が、ミル41で粉砕された未燃のバイオマス燃料を、バイオマス燃料貯蔵部15へ導くように配置されている。制御装置90は、ブロワ45を動作させることにより、サイロ44に貯蔵される未燃のバイオマス燃料を含む炉底灰BAを、第1供給路46からバイオマス燃料貯蔵部15へ導く。 FIG. 6 is a diagram showing a schematic configuration of a boiler system 100C according to a fourth embodiment of the present disclosure. As shown in FIG. 6, the boiler system 100C is arranged such that the first supply path 46 of the bottom ash processing equipment 40C guides the unburned biomass fuel pulverized in the mill 41 to the biomass fuel storage section 15. ing. The control device 90 operates the blower 45 to guide the bottom ash BA containing unburned biomass fuel stored in the silo 44 from the first supply path 46 to the biomass fuel storage section 15 .
 本実施形態のボイラシステム100Cによれば、ミル41で粉砕された未燃のバイオマス燃料を、バイオマスミル10が粉砕するバイオマス燃料を貯蔵するバイオマス燃料貯蔵部15に導くため、バイオマス燃料供給路17を含む既存の燃料供給系統の制御動作を変更せずに維持することができる。 According to the boiler system 100C of the present embodiment, the biomass fuel supply path 17 is connected in order to guide the unburned biomass fuel pulverized by the mill 41 to the biomass fuel storage section 15 that stores the biomass fuel pulverized by the biomass mill 10. The control operation of the existing fuel supply system including the fuel supply system can be maintained without change.
〔第5実施形態〕
 次に、本開示の第5実施形態に係るボイラシステム100Dについて説明する。本実施形態は、第1実施形態の変形例であり、以下で特に説明する場合を除き、第1実施形態と同様であるものとし、以下での説明を省略する。
[Fifth embodiment]
Next, a boiler system 100D according to a fifth embodiment of the present disclosure will be described. This embodiment is a modification of the first embodiment, and is the same as the first embodiment except when specifically explained below, and the explanation below will be omitted.
 第1実施形態のボイラシステム100は、炉底灰処理設備40の第2供給路47が、ミル41で粉砕された未燃のバイオマス燃料を燃焼装置22へ直接的に供給するものであった。それに対して、本実施形態のボイラシステム100Dは、炉底灰処理設備40Dの第2供給路47が、ミル41で粉砕された未燃のバイオマス燃料を、バイオマス燃料貯蔵部15へバイオマス燃料を搬送するバイオマス燃料コンベア(バイオマス燃料搬送部)18へ導くものである。 In the boiler system 100 of the first embodiment, the second supply path 47 of the bottom ash processing equipment 40 directly supplies unburned biomass fuel pulverized in the mill 41 to the combustion device 22. In contrast, in the boiler system 100D of the present embodiment, the second supply path 47 of the bottom ash processing equipment 40D transports the unburned biomass fuel crushed in the mill 41 to the biomass fuel storage section 15. It leads to the biomass fuel conveyor (biomass fuel conveyance section) 18.
 図7は、本開示の第5実施形態に係るボイラシステム100Dの概略構成を示す図である。図7に示すように、ボイラシステム100Dは、バイオマス燃料をバイオマス燃料貯蔵部15へ搬送するバイオマス燃料コンベア18を備える。ボイラシステム100Dは、炉底灰処理設備40Dの第2供給路47が、ミル41で粉砕された未燃のバイオマス燃料を、バイオマス燃料コンベア18へ導くように配置されている。 FIG. 7 is a diagram showing a schematic configuration of a boiler system 100D according to a fifth embodiment of the present disclosure. As shown in FIG. 7, the boiler system 100D includes a biomass fuel conveyor 18 that conveys biomass fuel to the biomass fuel storage section 15. The boiler system 100D is arranged such that the second supply path 47 of the bottom ash processing equipment 40D guides the unburned biomass fuel pulverized in the mill 41 to the biomass fuel conveyor 18.
 制御装置90は、ブロワ45を動作させることにより、サイロ44に貯蔵される未燃のバイオマス燃料を含む炉底灰BAを、第2供給路47からバイオマス燃料コンベア18へ導く。バイオマス燃料コンベア18へ導かれた炉底灰BAは、バイオマス燃料とともにバイオマス燃料貯蔵部15に貯蔵される。 The control device 90 operates the blower 45 to guide the bottom ash BA containing unburned biomass fuel stored in the silo 44 from the second supply path 47 to the biomass fuel conveyor 18. The bottom ash BA guided to the biomass fuel conveyor 18 is stored in the biomass fuel storage section 15 together with the biomass fuel.
 本実施形態のボイラシステム100Dによれば、ミル41で粉砕された未燃のバイオマス燃料を、バイオマスミル10が粉砕するバイオマス燃料を貯蔵するバイオマス燃料貯蔵部15へ搬送するバイオマス燃料コンベア18に導くため、バイオマス燃料供給路17を含む既存の燃料供給系統の制御動作を変更せずに維持することができる。 According to the boiler system 100D of the present embodiment, the unburned biomass fuel pulverized by the mill 41 is guided to the biomass fuel conveyor 18 which conveys the biomass fuel to the biomass fuel storage section 15 where the biomass fuel pulverized by the biomass mill 10 is stored. , the control operation of the existing fuel supply system including the biomass fuel supply path 17 can be maintained without change.
 以上説明した各実施形態に記載のバイオマス粉砕システムは例えば以下のように把握される。
 本開示の第1態様に係るバイオマス粉砕システム(100)は、バイオマス燃料を粉砕する第1粉砕装置(10)と、前記第1粉砕装置が粉砕した前記バイオマス燃料を燃焼装置で燃焼して蒸気を生成するボイラ(20)と、前記ボイラから排出される排ガスにより空気を加熱する空気予熱器(30)と、前記空気予熱器により加熱された加熱空気を前記第1粉砕装置へ供給する第1空気供給路(50)と、前記第1空気供給路から前記加熱空気の一部を分岐させる第1分岐供給路(51)と、前記ボイラから排出される未燃の前記バイオマス燃料を前記第1分岐供給路から供給される前記加熱空気により乾燥させて前記燃焼装置へ再び供給するための再供給部(40)と、を備える。
The biomass crushing system described in each embodiment described above can be understood, for example, as follows.
A biomass crushing system (100) according to a first aspect of the present disclosure includes a first crusher (10) that crushes biomass fuel, and a combustion device that burns the biomass fuel crushed by the first crusher to generate steam. a boiler (20) that generates air, an air preheater (30) that heats air with exhaust gas discharged from the boiler, and a first air supply that supplies the heated air heated by the air preheater to the first pulverizer. a supply path (50); a first branch supply path (51) that branches a portion of the heated air from the first air supply path; and a first branch supply path (51) that branches part of the heated air from the first air supply path; A resupply section (40) is provided for drying the heated air supplied from the supply path and supplying the dried air to the combustion device again.
 本開示の第1態様に係るバイオマス粉砕システムによれば、第1粉砕装置が粉砕したバイオマス燃料が燃焼装置で燃焼し、ボイラで蒸気が生成される。ボイラから排出される排ガスにより空気予熱器で空気が加熱され、加熱された加熱空気が第1空気供給路を介して第1粉砕装置へ供給される。ボイラから排出される未燃のバイオマス燃料は、再供給部により、第1分岐供給路から供給される加熱空気により乾燥されて燃焼装置へ再び供給される。 According to the biomass pulverization system according to the first aspect of the present disclosure, the biomass fuel pulverized by the first pulverizer is combusted in the combustion device, and steam is generated in the boiler. Air is heated in the air preheater by exhaust gas discharged from the boiler, and the heated air is supplied to the first crushing device via the first air supply path. The unburned biomass fuel discharged from the boiler is dried by the resupply section using heated air supplied from the first branch supply path, and is supplied again to the combustion device.
 本開示の第1態様に係るバイオマス粉砕システムによれば、バイオマス燃料の発火性を考慮して第1粉砕装置へ供給される加熱空気(一次空気)の温度を微粉炭燃料に比べて低く設定する場合であっても、空気予熱器における排ガスからの熱回収量の低下を抑制できる。これは、加熱空気の一部が未燃のバイオマス燃料の乾燥に用いられるため、第1粉砕装置へ供給される加熱空気により第1粉砕装置の内部が過度に高温となることが抑制されるからである。そのため、本開示の第1態様に係るバイオマス粉砕システムによれば、バイオマス燃料を燃焼装置で燃焼してボイラで蒸気を生成する際のボイラ効率を向上させることができる。 According to the biomass pulverization system according to the first aspect of the present disclosure, the temperature of the heated air (primary air) supplied to the first pulverizer is set lower than that of pulverized coal fuel in consideration of the ignitability of the biomass fuel. Even in such cases, it is possible to suppress a decrease in the amount of heat recovered from the exhaust gas in the air preheater. This is because part of the heated air is used to dry the unburned biomass fuel, so the heated air supplied to the first pulverizer prevents the inside of the first pulverizer from becoming too hot. It is. Therefore, according to the biomass crushing system according to the first aspect of the present disclosure, it is possible to improve the boiler efficiency when biomass fuel is burned in the combustion device and steam is generated in the boiler.
 本開示の第2態様に係るバイオマス粉砕システムは、第1態様において、更に以下の構成を備える。すなわち、前記再供給部は、前記ボイラから排出される未燃の前記バイオマス燃料を粉砕する第2粉砕装置(41)と、前記ボイラから排出される未燃の前記バイオマス燃料を前記第2粉砕装置へ搬送する未燃燃料搬送部(43)と、を有し、前記第1分岐供給路は、前記第1空気供給路から前記加熱空気の一部を分岐させて前記第2粉砕装置へ供給して、前記第2粉砕装置で粉砕された未燃の前記バイオマス燃料を乾燥させる。 The biomass crushing system according to the second aspect of the present disclosure further includes the following configuration in the first aspect. That is, the resupply section includes a second crushing device (41) that crushes the unburned biomass fuel discharged from the boiler, and a second crusher (41) that crushes the unburned biomass fuel discharged from the boiler. an unburnt fuel conveying section (43) for conveying the unburned fuel to the first air supply passage, and the first branch supply passage branches a part of the heated air from the first air supply passage and supplies it to the second crushing device. Then, the unburnt biomass fuel pulverized by the second pulverizer is dried.
 本開示の第2態様に係るバイオマス粉砕システムによれば、ボイラから排出される未燃のバイオマス燃料が未燃燃料搬送部により第2粉砕装置に搬送され、第2粉砕装置により粉砕される。本開示の第2態様に係るバイオマス粉砕システムによれば、第2粉砕装置により粉砕された未燃のバイオマス燃料を第1分岐供給路から供給される加熱空気により乾燥させることにより、バイオマス燃料を燃焼装置で燃焼してボイラで蒸気を生成する際のボイラ効率を向上させることができる。 According to the biomass crushing system according to the second aspect of the present disclosure, unburned biomass fuel discharged from the boiler is conveyed to the second crushing device by the unburned fuel conveying section, and is crushed by the second crushing device. According to the biomass crushing system according to the second aspect of the present disclosure, the biomass fuel is combusted by drying the unburned biomass fuel crushed by the second crushing device with the heated air supplied from the first branch supply path. Boiler efficiency can be improved when combustion is performed in the device and steam is generated in the boiler.
 本開示の第3態様に係るバイオマス粉砕システムは、第2態様において、更に以下の構成を備える。すなわち、前記空気予熱器により加熱されない非加熱空気を前記第1粉砕装置へ供給する第2空気供給路(60)と、前記第2空気供給路から前記非加熱空気の一部を分岐させて前記第2粉砕装置へ供給する第2分岐供給路(61)と、を備える。 The biomass crushing system according to the third aspect of the present disclosure further includes the following configuration in the second aspect. That is, a second air supply path (60) supplies unheated air that is not heated by the air preheater to the first crushing device, and a part of the unheated air is branched from the second air supply path to A second branch supply path (61) for supplying to the second crushing device.
 本開示の第3態様に係るバイオマス粉砕システムによれば、第2空気供給路から第1粉砕装置へ供給される非加熱空気が、第1空気供給路から第1粉砕装置へ供給される加熱空気と混合し、第1粉砕装置の内部へ導かれる非加熱空気と加熱空気との混合気(一次空気)の温度が適切に調整される。また、第2分岐供給路から第2粉砕装置へ供給される非加熱空気が、第1分岐供給路から第2粉砕装置へ供給される加熱空気と混合し、第2粉砕装置の内部へ導かれる非加熱空気と加熱空気との混合気(一次空気)の温度が適切に調整される。 According to the biomass crushing system according to the third aspect of the present disclosure, the unheated air supplied from the second air supply path to the first crushing device is replaced by the heated air supplied from the first air supply path to the first crushing device. The temperature of the mixture (primary air) of unheated air and heated air that is mixed with the primary air and introduced into the first pulverizer is adjusted appropriately. Further, the unheated air supplied from the second branch supply path to the second crushing device is mixed with the heated air supplied from the first branch supply path to the second crushing device, and is guided into the second crushing device. The temperature of the mixture of unheated air and heated air (primary air) is adjusted appropriately.
 本開示の第4態様に係るバイオマス粉砕システムは、第1態様から第3態様のいずれかにおいて、更に以下の構成を備える。すなわち、前記ボイラは、冷却媒体で前記バイオマス燃料の燃焼灰を冷却する湿式の未燃燃料搬送部(43)を有する。 The biomass crushing system according to the fourth aspect of the present disclosure further includes the following configuration in any of the first to third aspects. That is, the boiler includes a wet unburned fuel conveying section (43) that cools the combustion ash of the biomass fuel with a cooling medium.
 本開示の第4態様に係るバイオマス粉砕システムによれば、ボイラで燃焼したバイオマス燃料により生成される燃焼灰を湿式の未燃燃料搬送部で冷却媒体により冷却することできる。未燃のバイオマス燃料は、未燃燃料搬送部で冷却媒体と接触することにより冷却媒体を含んだものとなるが、再供給部において、第1分岐供給路から供給される加熱空気により乾燥される。そのため、湿式の未燃燃料搬送部を有するボイラにおいて、ボイラから排出される排ガスから空気予熱器で回収した熱を有効に利用して未燃のバイオマス燃料を乾燥させることができる。 According to the biomass crushing system according to the fourth aspect of the present disclosure, combustion ash generated by biomass fuel burned in the boiler can be cooled by a cooling medium in the wet unburned fuel conveyance section. The unburned biomass fuel comes into contact with the cooling medium in the unburned fuel conveyance section, so that it contains the cooling medium, but in the resupply section, it is dried by heated air supplied from the first branch supply path. . Therefore, in a boiler having a wet unburned fuel conveyance section, unburned biomass fuel can be dried by effectively utilizing the heat recovered by the air preheater from the exhaust gas discharged from the boiler.
 本開示の第5態様に係るバイオマス粉砕システムは、バイオマス燃料を粉砕する第1粉砕装置と、前記第1粉砕装置が粉砕した前記バイオマス燃料を燃焼装置で燃焼して蒸気を生成するボイラと、前記ボイラから排出される未燃の前記バイオマス燃料を粉砕する第2粉砕装置と、前記ボイラから排出される未燃の前記バイオマス燃料を前記第2粉砕装置へ搬送する搬送部と、前記第2粉砕装置が粉砕した未燃の前記バイオマス燃料を前記燃焼装置へ再び供給するための再供給部と、を備える。 A biomass crushing system according to a fifth aspect of the present disclosure includes: a first crushing device that crushes biomass fuel; a boiler that generates steam by burning the biomass fuel crushed by the first crushing device in a combustion device; a second pulverizer that pulverizes the unburned biomass fuel discharged from the boiler; a transport section that conveys the unburned biomass fuel discharged from the boiler to the second pulverizer; and a second pulverizer. and a resupply section for supplying the unburned biomass fuel, which has been pulverized by the biomass fuel, to the combustion device again.
 本開示の第5態様に係るバイオマス粉砕システムによれば、第1粉砕装置が粉砕したバイオマス燃料が燃焼装置で燃焼し、ボイラで蒸気が生成される。ボイラから排出される未燃のバイオマス燃料が未燃燃料搬送部により第2粉砕装置に搬送され、第2粉砕装置により粉砕される。第2粉砕装置により粉砕された未燃のバイオマス燃料は、再供給部により燃焼装置へ再び供給される。本開示の第5態様に係るバイオマス粉砕システムによれば、ボイラから排出される未燃のバイオマス燃料を第2粉砕装置により粉砕してから燃焼装置へ再び供給することにより、未燃のバイオマス燃料を燃焼装置で確実に燃焼させることができる。 According to the biomass crushing system according to the fifth aspect of the present disclosure, the biomass fuel crushed by the first crusher is burned in the combustion device, and steam is generated in the boiler. Unburned biomass fuel discharged from the boiler is conveyed to the second crushing device by the unburned fuel conveying section, and is crushed by the second crushing device. The unburned biomass fuel pulverized by the second pulverizer is again supplied to the combustion device by the resupply section. According to the biomass pulverization system according to the fifth aspect of the present disclosure, unburned biomass fuel discharged from the boiler is pulverized by the second pulverizer and then supplied to the combustion device again. It can be reliably burned with a combustion device.
 本開示の第6態様に係るバイオマス粉砕システムは、第2態様、第3態様または第5態様のいずれかにおいて、更に以下の構成を備える。すなわち、前記再供給部は、前記第2粉砕装置で粉砕された未燃の前記バイオマス燃料を前記燃焼装置へ供給する未燃燃料供給路(47)を有する。 The biomass crushing system according to the sixth aspect of the present disclosure further includes the following configuration in either the second aspect, the third aspect, or the fifth aspect. That is, the resupply section has an unburned fuel supply path (47) that supplies the unburned biomass fuel crushed by the second crusher to the combustion device.
 本開示の第6態様に係るバイオマス粉砕システムによれば、第2粉砕装置で粉砕された未燃のバイオマス燃料を燃焼装置へ直接的に供給するため、第1粉砕装置から燃焼装置へバイオマス燃料を供給する既存の供給路に影響を与えることがない。 According to the biomass crushing system according to the sixth aspect of the present disclosure, in order to directly supply the unburned biomass fuel crushed by the second crusher to the combustion device, the biomass fuel is transferred from the first crusher to the combustion device. There will be no impact on existing supply routes.
 本開示の第7態様に係るバイオマス粉砕システムは、第2態様、第3態様または第5態様のいずれかにおいて、更に以下の構成を備える。すなわち、前記燃焼装置へ添加剤を投入する投入部(110)を備え、前記再供給部は、前記第2粉砕装置で粉砕された未燃の前記バイオマス燃料を前記投入部へ導く。 The biomass crushing system according to the seventh aspect of the present disclosure further includes the following configuration in either the second aspect, the third aspect, or the fifth aspect. That is, it includes an input section (110) for inputting additives into the combustion device, and the resupply section guides the unburned biomass fuel crushed by the second crushing device to the input section.
 本開示の第7態様に係るバイオマス粉砕システムによれば、バイオマス燃料を燃焼させることによるボイラの火炉への燃焼灰の付着を、添加剤を投入することにより適切に軽減することができる。また、第2粉砕装置で粉砕された未燃のバイオマス燃料を、投入部を介して燃焼装置へ適切に供給することができる。本形態ではミル41粉砕された未燃のバイオマス燃料専用の燃焼装置22への供給経路を添加剤供給路130と共有できるため、既存ボイラ設備内の配管配置への影響がなく、容易に改造、追設が可能となる。
またバイオマス燃料供給路17に接続されたバーナ22aにて未燃バイオマス燃料を燃焼させることができるため、未燃バイオマス燃料燃焼用の独自の燃焼装置が不要とすることができる。
According to the biomass crushing system according to the seventh aspect of the present disclosure, adhesion of combustion ash to the furnace of the boiler due to burning biomass fuel can be appropriately reduced by adding an additive. Further, the unburned biomass fuel pulverized by the second pulverizer can be appropriately supplied to the combustion device via the input section. In this embodiment, the supply route to the combustion device 22 dedicated to unburned biomass fuel pulverized by the mill 41 can be shared with the additive supply route 130, so there is no impact on the piping arrangement in the existing boiler equipment, and it can be easily modified. Additional installation is possible.
Moreover, since the unburned biomass fuel can be burned in the burner 22a connected to the biomass fuel supply path 17, a unique combustion device for burning the unburned biomass fuel can be made unnecessary.
 本開示の第8態様に係るバイオマス粉砕システムは、第2態様、第3態様または第5態様のいずれかにおいて、更に以下の構成を備える。すなわち、前記第1粉砕装置が粉砕した前記バイオマス燃料を前記燃焼装置へ供給するバイオマス燃料供給路(17)を備え、前記再供給部は、前記第2粉砕装置で粉砕された未燃の前記バイオマス燃料を前記バイオマス燃料供給路へ合流させる。 The biomass crushing system according to the eighth aspect of the present disclosure further includes the following configuration in either the second aspect, the third aspect, or the fifth aspect. That is, the re-supply section includes a biomass fuel supply path (17) that supplies the biomass fuel crushed by the first crushing device to the combustion device, and the re-supply section supplies the unburned biomass crushed by the second crushing device. The fuel is merged into the biomass fuel supply path.
 本開示の第8態様に係るバイオマス粉砕システムによれば、第2粉砕装置で粉砕された未燃のバイオマス燃料を、第1粉砕装置から燃焼装置へバイオマス燃料を供給する既存の燃料供給路へ合流させるため、未燃のバイオマス燃料を燃焼させるバーナを燃焼装置に新たに追加する必要がないため、既存設備に対して容易に改造や追設が可能となる。 According to the biomass pulverization system according to the eighth aspect of the present disclosure, unburned biomass fuel pulverized by the second pulverizer is merged into an existing fuel supply path that supplies biomass fuel from the first pulverizer to the combustion device. Since there is no need to add a new burner for burning unburned biomass fuel to the combustion equipment, existing equipment can be easily modified or added.
 本開示の第9態様に係るバイオマス粉砕システムは、第2態様、第3態様または第5態様のいずれかにおいて、更に以下の構成を備える。すなわち、前記第1粉砕装置が粉砕する前記バイオマス燃料を貯蔵するバイオマス燃料貯蔵部(15)を備え、前記再供給部は、前記第2粉砕装置で粉砕された未燃の前記バイオマス燃料を前記バイオマス燃料貯蔵部へ導く。 The biomass crushing system according to the ninth aspect of the present disclosure further includes the following configuration in either the second aspect, the third aspect, or the fifth aspect. That is, the first pulverizer includes a biomass fuel storage section (15) that stores the biomass fuel pulverized, and the resupply section stores the unburned biomass fuel pulverized by the second pulverizer into the biomass fuel. Lead to fuel storage.
 本開示の第9態様に係るバイオマス粉砕システムによれば、第2粉砕装置で粉砕された未燃のバイオマス燃料を、第1粉砕装置が粉砕するバイオマス燃料を貯蔵するバイオマス燃料貯蔵部に導くため、既存の燃料供給系統の制御動作を変更せずに維持することができる。 According to the biomass pulverization system according to the ninth aspect of the present disclosure, in order to guide the unburned biomass fuel pulverized by the second pulverizer to the biomass fuel storage section that stores the biomass fuel pulverized by the first pulverizer, The control operation of the existing fuel supply system can be maintained without modification.
 本開示の第10態様に係るバイオマス粉砕システムは、第2態様、第3態様、または第5態様において、更に以下の構成を備える。すなわち、前記第1粉砕装置が粉砕する前記バイオマス燃料を貯蔵するバイオマス燃料貯蔵部(42)と、前記バイオマス燃料貯蔵部へ前記バイオマス燃料を搬送するバイオマス燃料搬送部(43)と、を備え、前記再供給部は、前記第2粉砕装置で粉砕された未燃の前記バイオマス燃料を前記バイオマス燃料搬送部へ導く。 The biomass crushing system according to the tenth aspect of the present disclosure further includes the following configuration in the second aspect, third aspect, or fifth aspect. That is, the first crushing device includes a biomass fuel storage section (42) that stores the biomass fuel crushed by the first crushing device, and a biomass fuel conveyance section (43) that conveys the biomass fuel to the biomass fuel storage section, and The resupply section guides the unburned biomass fuel pulverized by the second pulverizer to the biomass fuel transport section.
 本開示の第10態様に係るバイオマス粉砕システムによれば、第2粉砕装置で粉砕された未燃のバイオマス燃料を、バイオマス燃料を貯蔵するバイオマス燃料貯蔵部へバイオマス燃料を搬送するバイオマス燃料搬送部に導くため、既存の燃料供給系統の制御動作を変更せずに維持することができる。 According to the biomass pulverization system according to the tenth aspect of the present disclosure, the unburned biomass fuel pulverized by the second pulverizer is sent to the biomass fuel transport section that transports the biomass fuel to the biomass fuel storage section that stores the biomass fuel. Therefore, the control operation of the existing fuel supply system can be maintained unchanged.
 本開示の第11態様に係るバイオマス粉砕システムの運転方法は、バイオマス燃料を粉砕する第1粉砕装置と、前記第1粉砕装置が粉砕した前記バイオマス燃料を燃焼装置で燃焼して蒸気を生成するボイラと、前記ボイラから排出される排ガスにより空気を加熱する空気予熱器と、前記空気予熱器により加熱された加熱空気を前記第1粉砕装置へ供給する第1空気供給路と、前記第1空気供給路から前記加熱空気の一部を分岐させる第1分岐供給路と、を備えるバイオマス粉砕システムの運転方法であって、前記ボイラから排出される未燃の前記バイオマス燃料を前記第1分岐供給路から供給される前記加熱空気により乾燥させる乾燥工程と、前記乾燥工程により乾燥させた未燃の前記バイオマス燃料を前記燃焼装置へ再び供給する再供給工程と、を備える。 A method for operating a biomass pulverization system according to an eleventh aspect of the present disclosure includes a first pulverizer that pulverizes biomass fuel, and a boiler that combusts the biomass fuel pulverized by the first pulverizer in a combustion device to generate steam. an air preheater that heats air with exhaust gas discharged from the boiler; a first air supply path that supplies the heated air heated by the air preheater to the first pulverizer; and the first air supply. A method of operating a biomass crushing system comprising: a first branch supply path for branching a part of the heated air from the boiler; The method includes a drying step of drying using the supplied heated air, and a resupply step of again supplying the unburnt biomass fuel dried in the drying step to the combustion device.
 本開示の第11態様に係るバイオマス粉砕システムの運転方法によれば、第1粉砕装置が粉砕したバイオマス燃料が燃焼装置で燃焼し、ボイラで蒸気が生成される。ボイラから排出される排ガスにより空気予熱器で空気が加熱され、加熱された加熱空気が第1空気供給路を介して第1粉砕装置へ供給される。ボイラから排出される未燃のバイオマス燃料は、乾燥工程により第1分岐供給路から供給される加熱空気により乾燥され、再供給工程により燃焼装置へ再び供給される。 According to the operating method of the biomass crushing system according to the eleventh aspect of the present disclosure, the biomass fuel crushed by the first crusher is burned in the combustion device, and steam is generated in the boiler. Air is heated in the air preheater by exhaust gas discharged from the boiler, and the heated air is supplied to the first crushing device via the first air supply path. Unburned biomass fuel discharged from the boiler is dried by heated air supplied from the first branch supply path in a drying process, and is again supplied to the combustion device in a resupply process.
 本開示の第11態様に係るバイオマス粉砕システムの運転方法によれば、バイオマス燃料の発火性を考慮して第1粉砕装置へ供給される加熱空気(一次空気)の温度を微粉炭燃料に比べて低く設定する場合であっても、空気予熱器における排ガスからの熱回収量を大きく下げる必要がない。これは、加熱空気の一部が未燃のバイオマス燃料の乾燥に用いられるため、第1粉砕装置へ供給される加熱空気により第1粉砕装置が過度に高温となることが抑制されるからである。そのため、本開示の第1態様に係るバイオマス粉砕システムの運転方法によれば、バイオマス燃料を燃焼装置で燃焼してボイラで蒸気を生成する際のボイラ効率を向上させることができる。 According to the operating method of a biomass pulverization system according to the eleventh aspect of the present disclosure, the temperature of the heated air (primary air) supplied to the first pulverizer is set in consideration of the ignitability of the biomass fuel compared to that of pulverized coal fuel. Even if it is set low, there is no need to significantly reduce the amount of heat recovered from the exhaust gas in the air preheater. This is because a portion of the heated air is used to dry the unburned biomass fuel, so the heated air supplied to the first pulverizer prevents the first pulverizer from reaching an excessively high temperature. . Therefore, according to the operating method of the biomass crushing system according to the first aspect of the present disclosure, it is possible to improve the boiler efficiency when biomass fuel is burned in the combustion device and steam is generated in the boiler.
 本開示の第12態様に係るバイオマス粉砕システムの運転方法は、バイオマス燃料を粉砕する第1粉砕装置と、前記第1粉砕装置が粉砕した前記バイオマス燃料を燃焼装置で燃焼して蒸気を生成するボイラと、前記ボイラから排出される未燃の前記バイオマス燃料を粉砕する第2粉砕装置と、を備えるバイオマス粉砕システムの運転方法であって、前記ボイラから排出される未燃の前記バイオマス燃料を前記第2粉砕装置へ搬送する搬送工程と、前記第2粉砕装置が粉砕した未燃の前記バイオマス燃料を前記燃焼装置へ再び供給する再供給工程と、を備える。 A method for operating a biomass pulverization system according to a twelfth aspect of the present disclosure includes a first pulverizer that pulverizes biomass fuel, and a boiler that combusts the biomass fuel pulverized by the first pulverizer in a combustion device to generate steam. and a second pulverizer that pulverizes the unburned biomass fuel discharged from the boiler, the method of operating a biomass pulverization system comprising: and a resupply step of supplying the unburned biomass fuel crushed by the second crushing device to the combustion device again.
 本開示の第12態様に係るバイオマス粉砕システムの運転方法によれば、第1粉砕装置が粉砕したバイオマス燃料が燃焼装置で燃焼し、ボイラで蒸気が生成される。ボイラから排出される未燃のバイオマス燃料が搬送工程により第2粉砕装置に搬送され、第2粉砕装置により粉砕される。第2粉砕装置により粉砕された未燃のバイオマス燃料は、再供給工程により燃焼装置へ再び供給される。本開示の第11態様に係るバイオマス粉砕システムの運転方法によれば、ボイラから排出される未燃のバイオマス燃料を第2粉砕装置により粉砕してから燃焼装置へ再び供給することにより、未燃のバイオマス燃料を燃焼装置で確実に燃焼させることができる。 According to the method of operating a biomass crushing system according to the twelfth aspect of the present disclosure, the biomass fuel crushed by the first crusher is burned in the combustion device, and steam is generated in the boiler. Unburned biomass fuel discharged from the boiler is conveyed to the second pulverizer through a conveyance process, and is pulverized by the second pulverizer. The unburned biomass fuel pulverized by the second pulverizer is again supplied to the combustion device in a re-supply step. According to the method of operating a biomass crushing system according to the eleventh aspect of the present disclosure, unburned biomass fuel discharged from the boiler is crushed by the second crusher and then supplied to the combustion device again. Biomass fuel can be reliably burned in a combustion device.
10   バイオマスミル(第1粉砕装置)
15   バイオマス燃料貯蔵部
17   バイオマス燃料供給路
18   バイオマス燃料コンベア
20   ボイラ
21   火炉
21a  炉底部
22   燃焼装置
22a  バーナ
22b  風箱
23   過熱器
24   再熱器
25   節炭器
30   空気予熱器
40,40A,40B,40C,40D 炉底灰処理設備
41   ミル
42   貯蔵部
43   コンベア
44   サイロ
45   ブロワ
46   第1供給路
47   第2供給路
50   第1空気供給路
50a,51a,60a,61a 開閉ダンパ
50b,51b,60b,61b 調整ダンパ
51   第1分岐供給路
60   第2空気供給路
61   第2分岐供給路
70   押込通風機
71   燃焼用空気供給路
80   一次通風機
90   制御装置
100,100A,100B,100C,100D ボイラシステム
110  投入部
120  ブロワ
130  添加材供給路
BA   炉底灰
G    排ガス
HD   高さ方向
10 Biomass mill (first crushing device)
15 Biomass fuel storage section 17 Biomass fuel supply path 18 Biomass fuel conveyor 20 Boiler 21 Furnace 21a Furnace bottom 22 Combustion device 22a Burner 22b Wind box 23 Superheater 24 Reheater 25 Economizer 30 Air preheater 40, 40A, 40B, 40C, 40D Bottom ash processing equipment 41 Mill 42 Storage section 43 Conveyor 44 Silo 45 Blower 46 First supply path 47 Second supply path 50 First air supply path 50a, 51a, 60a, 61a Opening/ closing damper 50b, 51b, 60b, 61b Adjustment damper 51 First branch supply passage 60 Second air supply passage 61 Second branch supply passage 70 Forced draft fan 71 Combustion air supply passage 80 Primary draft fan 90 Control device 100, 100A, 100B, 100C, 100D Boiler system 110 Input part 120 Blower 130 Additive supply path BA Hearth ash G Exhaust gas HD Height direction

Claims (12)

  1.  バイオマス燃料を粉砕する第1粉砕装置と、
     前記第1粉砕装置が粉砕した前記バイオマス燃料を燃焼装置で燃焼して蒸気を生成するボイラと、
     前記ボイラから排出される排ガスにより空気を加熱する空気予熱器と、
     前記空気予熱器により加熱された加熱空気を前記第1粉砕装置へ供給する第1空気供給路と、
     前記第1空気供給路から前記加熱空気の一部を分岐させる第1分岐供給路と、
     前記ボイラから排出される未燃の前記バイオマス燃料を前記第1分岐供給路から供給される前記加熱空気により乾燥させて前記燃焼装置へ再び供給するための再供給部と、を備えるバイオマス粉砕システム。
    a first crusher that crushes biomass fuel;
    a boiler that generates steam by burning the biomass fuel crushed by the first crushing device in a combustion device;
    an air preheater that heats air with exhaust gas discharged from the boiler;
    a first air supply path that supplies heated air heated by the air preheater to the first pulverizer;
    a first branch supply path that branches part of the heated air from the first air supply path;
    A biomass pulverization system comprising: a resupply section for drying the unburned biomass fuel discharged from the boiler with the heated air supplied from the first branch supply path and supplying the dried biomass fuel to the combustion device again.
  2.  前記再供給部は、
     前記ボイラから排出される未燃の前記バイオマス燃料を粉砕する第2粉砕装置と、
     前記ボイラから排出される未燃の前記バイオマス燃料を前記第2粉砕装置へ搬送する未燃燃料搬送部と、を有し、
     前記第1分岐供給路は、前記第1空気供給路から前記加熱空気の一部を分岐させて前記第2粉砕装置へ供給して、前記第2粉砕装置で粉砕された未燃の前記バイオマス燃料を乾燥させる請求項1に記載のバイオマス粉砕システム。
    The resupply section includes:
    a second crushing device that crushes the unburned biomass fuel discharged from the boiler;
    an unburned fuel transport unit that transports the unburned biomass fuel discharged from the boiler to the second crushing device,
    The first branch supply path branches part of the heated air from the first air supply path and supplies it to the second pulverizer, and the unburnt biomass fuel is pulverized by the second pulverizer. The biomass grinding system according to claim 1, which dries the biomass grinding system.
  3.  前記空気予熱器により加熱されない非加熱空気を前記第1粉砕装置へ供給する第2空気供給路と、
     前記第2空気供給路から前記非加熱空気の一部を分岐させて前記第2粉砕装置へ供給する第2分岐供給路と、を備える請求項2に記載のバイオマス粉砕システム。
    a second air supply path that supplies unheated air that is not heated by the air preheater to the first crushing device;
    The biomass pulverization system according to claim 2, further comprising a second branch supply path that branches part of the unheated air from the second air supply path and supplies the branched air to the second pulverizer.
  4.  前記ボイラは、冷却媒体で前記バイオマス燃料の燃焼灰を冷却する湿式の未燃燃料搬送部を有する請求項1から請求項3のいずれか一項に記載のバイオマス粉砕システム。 The biomass pulverization system according to any one of claims 1 to 3, wherein the boiler includes a wet unburned fuel conveying section that cools the combustion ash of the biomass fuel with a cooling medium.
  5.  バイオマス燃料を粉砕する第1粉砕装置と、
     前記第1粉砕装置が粉砕した前記バイオマス燃料を燃焼装置で燃焼して蒸気を生成するボイラと、
     前記ボイラから排出される未燃の前記バイオマス燃料を粉砕する第2粉砕装置と、
     前記ボイラから排出される未燃の前記バイオマス燃料を前記第2粉砕装置へ搬送する未燃燃料搬送部と、
     前記第2粉砕装置が粉砕した未燃の前記バイオマス燃料を前記燃焼装置へ再び供給するための再供給部と、を備えるバイオマス粉砕システム。
    a first crusher that crushes biomass fuel;
    a boiler that generates steam by burning the biomass fuel crushed by the first crushing device in a combustion device;
    a second crushing device that crushes the unburned biomass fuel discharged from the boiler;
    an unburned fuel transport unit that transports the unburned biomass fuel discharged from the boiler to the second pulverizer;
    A biomass crushing system comprising: a resupply unit for supplying the unburned biomass fuel crushed by the second crusher to the combustion device again.
  6.  前記再供給部は、前記第2粉砕装置で粉砕された未燃の前記バイオマス燃料を前記燃焼装置へ供給する未燃燃料供給路を有する請求項2、請求項3または請求項5のいずれか一項に記載のバイオマス粉砕システム。 Any one of claims 2, 3, and 5, wherein the resupply section has an unburned fuel supply path that supplies the unburned biomass fuel pulverized by the second pulverizer to the combustion device. The biomass grinding system described in section.
  7.  前記燃焼装置へ添加剤を投入する投入部を備え、
     前記再供給部は、前記第2粉砕装置で粉砕された未燃の前記バイオマス燃料を前記投入部へ導く請求項2、請求項3または請求項5のいずれか一項に記載のバイオマス粉砕システム。
    comprising an input section for inputting an additive into the combustion device,
    The biomass crushing system according to any one of claims 2, 3, and 5, wherein the resupply unit guides the unburned biomass fuel crushed by the second crusher to the input unit.
  8.  前記第1粉砕装置が粉砕した前記バイオマス燃料を前記燃焼装置へ供給するバイオマス燃料供給路を備え、
     前記再供給部は、前記第2粉砕装置で粉砕された未燃の前記バイオマス燃料を前記バイオマス燃料供給路へ合流させる請求項2、請求項3または請求項5のいずれか一項に記載のバイオマス粉砕システム。
    comprising a biomass fuel supply path for supplying the biomass fuel crushed by the first crushing device to the combustion device,
    The biomass according to any one of claims 2, 3, and 5, wherein the re-supply unit merges the unburned biomass fuel crushed by the second crusher into the biomass fuel supply path. Grinding system.
  9.  前記第1粉砕装置が粉砕する前記バイオマス燃料を貯蔵するバイオマス燃料貯蔵部を備え、
     前記再供給部は、前記第2粉砕装置で粉砕された未燃の前記バイオマス燃料を前記バイオマス燃料貯蔵部へ導く請求項2、請求項3または請求項5のいずれか一項に記載のバイオマス粉砕システム。
    a biomass fuel storage section for storing the biomass fuel crushed by the first crushing device;
    The biomass pulverization according to claim 2, wherein the resupply section guides the unburned biomass fuel pulverized by the second pulverizer to the biomass fuel storage section. system.
  10.  前記第1粉砕装置が粉砕する前記バイオマス燃料を貯蔵するバイオマス燃料貯蔵部と、
     前記バイオマス燃料貯蔵部へ前記バイオマス燃料を搬送するバイオマス燃料搬送部と、を備え、
     前記再供給部は、前記第2粉砕装置で粉砕された未燃の前記バイオマス燃料を前記バイオマス燃料搬送部へ導く請求項2、請求項3または請求項5のいずれか一項に記載のバイオマス粉砕システム。
    a biomass fuel storage section that stores the biomass fuel crushed by the first crushing device;
    a biomass fuel transport unit that transports the biomass fuel to the biomass fuel storage unit,
    The biomass pulverizer according to claim 2, wherein the resupply section guides the unburned biomass fuel pulverized by the second pulverizer to the biomass fuel transport section. system.
  11.  バイオマス燃料を粉砕する第1粉砕装置と、前記第1粉砕装置が粉砕した前記バイオマス燃料を燃焼装置で燃焼して蒸気を生成するボイラと、前記ボイラから排出される排ガスにより空気を加熱する空気予熱器と、前記空気予熱器により加熱された加熱空気を前記第1粉砕装置へ供給する第1空気供給路と、前記第1空気供給路から前記加熱空気の一部を分岐させる第1分岐供給路と、を備えるバイオマス粉砕システムの運転方法であって、
     前記ボイラから排出される未燃の前記バイオマス燃料を前記第1分岐供給路から供給される前記加熱空気により乾燥させる乾燥工程と、
     前記乾燥工程により乾燥させた未燃の前記バイオマス燃料を前記燃焼装置へ再び供給する再供給工程と、を備えるバイオマス粉砕システムの運転方法。
    a first crushing device that crushes biomass fuel; a boiler that generates steam by burning the biomass fuel crushed by the first crushing device in a combustion device; and air preheating that heats air with exhaust gas discharged from the boiler. a first air supply path that supplies the heated air heated by the air preheater to the first crushing device; and a first branch supply path that branches part of the heated air from the first air supply path. A method of operating a biomass crushing system comprising:
    a drying step of drying the unburned biomass fuel discharged from the boiler with the heated air supplied from the first branch supply path;
    A method for operating a biomass pulverization system, comprising: a resupply step of again supplying the unburnt biomass fuel dried in the drying step to the combustion device.
  12.  バイオマス燃料を粉砕する第1粉砕装置と、前記第1粉砕装置が粉砕した前記バイオマス燃料を燃焼装置で燃焼して蒸気を生成するボイラと、前記ボイラから排出される未燃の前記バイオマス燃料を粉砕する第2粉砕装置と、を備えるバイオマス粉砕システムの運転方法であって、
     前記ボイラから排出される未燃の前記バイオマス燃料を前記第2粉砕装置へ搬送する搬送工程と、
     前記第2粉砕装置が粉砕した未燃の前記バイオマス燃料を前記燃焼装置へ再び供給する再供給工程と、を備えるバイオマス粉砕システムの運転方法。
     
    a first crusher that crushes biomass fuel; a boiler that burns the biomass fuel crushed by the first crusher to generate steam in a combustion device; and crushes the unburned biomass fuel discharged from the boiler. A method of operating a biomass crushing system comprising: a second crushing device;
    a conveyance step of conveying the unburned biomass fuel discharged from the boiler to the second crushing device;
    A method of operating a biomass crushing system, comprising: a resupply step of again supplying the unburnt biomass fuel crushed by the second crusher to the combustion device.
PCT/JP2023/026628 2022-08-09 2023-07-20 Biomass grinding system and operating method for biomass grinding system WO2024034349A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022126798A JP2024024168A (en) 2022-08-09 2022-08-09 Biomass grinding system and how to operate the biomass grinding system
JP2022-126798 2022-08-09

Publications (1)

Publication Number Publication Date
WO2024034349A1 true WO2024034349A1 (en) 2024-02-15

Family

ID=89851438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026628 WO2024034349A1 (en) 2022-08-09 2023-07-20 Biomass grinding system and operating method for biomass grinding system

Country Status (2)

Country Link
JP (1) JP2024024168A (en)
WO (1) WO2024034349A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291531A (en) * 2004-03-31 2005-10-20 Babcock Hitachi Kk Combustion method and equipment of biomass fuel
JP2010519493A (en) * 2007-02-20 2010-06-03 マガルディ リチェルケ エ ブレヴェッティ ソシエタ ア レスポンサビリタ リミタータ Plant and method for dry recovery / cooling of heavy ash and combustion control of residues with high unburnt content
JP2012132602A (en) * 2010-12-20 2012-07-12 Mitsubishi Heavy Ind Ltd Biomass and coal mixed-firing system
JP2016095113A (en) * 2014-11-17 2016-05-26 三菱日立パワーシステムズ株式会社 boiler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291531A (en) * 2004-03-31 2005-10-20 Babcock Hitachi Kk Combustion method and equipment of biomass fuel
JP2010519493A (en) * 2007-02-20 2010-06-03 マガルディ リチェルケ エ ブレヴェッティ ソシエタ ア レスポンサビリタ リミタータ Plant and method for dry recovery / cooling of heavy ash and combustion control of residues with high unburnt content
JP2012132602A (en) * 2010-12-20 2012-07-12 Mitsubishi Heavy Ind Ltd Biomass and coal mixed-firing system
JP2016095113A (en) * 2014-11-17 2016-05-26 三菱日立パワーシステムズ株式会社 boiler

Also Published As

Publication number Publication date
JP2024024168A (en) 2024-02-22

Similar Documents

Publication Publication Date Title
KR101428831B1 (en) Plant and method for dry extracting / cooling heavy ashes and for controlling the combustion of high unburnt content residues
KR100927875B1 (en) Coal Drying System Using Exhaust Gas as Sealant
CN102889607B (en) Direct fired pulverizing system of smoke drying lignite coal fan mill
JP2009091496A (en) Apparatus for converting sludge into fuel
CN102889608B (en) Direct fired pulverizing system of smoke pre-drying lignite fan mill
JP2005291539A (en) Preparatory treatment of biomass fuel, mixed combustion method, and mixed combustion device
CZ278704B6 (en) Process and apparatus for combined combustion of coal
CN100504167C (en) Wet sludge drying and incinerating treatment method employing circulating fluidized bed with particle dryer
JP4367768B2 (en) Biomass fuel combustion method and apparatus
WO2008120109A1 (en) Method and plant for manufacturing cement clinker
US6325001B1 (en) Process to improve boiler operation by supplemental firing with thermally beneficiated low rank coal
JP2014037897A (en) Biomass feed device and boiler system
Chernyavskii et al. Experience in Converting TPP-210A Boilers with 300 MW Power Units to Burning Gas Coal at the Tripillya Thermal Power Plant
WO2024034349A1 (en) Biomass grinding system and operating method for biomass grinding system
AU2018202163B2 (en) Method for operating a steam generator
CN202132965U (en) Fuel-gas drying direct-firing pulverizing system with lignite-fired fanlike coal pulverizer
JP2012078017A (en) Biomass storage unit, and pretreatment unit
CN104359107A (en) Superheated steam drying powder making type coal-fired boiler machine unit
CN113446616A (en) Power generation system and method for directly burning and coupling biomass briquette fuel by using standby coal mill
JP7178814B2 (en) Stoker type waste power generation system and method for stabilizing waste power generation amount
JP2016145706A (en) Pulverized coal firing boiler facility
JP2014037896A (en) Boiler system
CN104315509B (en) Superheat steam drying powder process type coal-burning boiler unit
CN204739580U (en) Superheated steam drying powder process type coal fired boiler unit and power generation system
Chernyavskyi et al. CONVERTING SLOVIANSKA TPP WITH THE CENTRAL COAL PULVERIZING PLANT FROM ANTHRACITE TO SUB-BITUMINOUS COAL.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852325

Country of ref document: EP

Kind code of ref document: A1