JP2014037896A - Boiler system - Google Patents

Boiler system Download PDF

Info

Publication number
JP2014037896A
JP2014037896A JP2012178958A JP2012178958A JP2014037896A JP 2014037896 A JP2014037896 A JP 2014037896A JP 2012178958 A JP2012178958 A JP 2012178958A JP 2012178958 A JP2012178958 A JP 2012178958A JP 2014037896 A JP2014037896 A JP 2014037896A
Authority
JP
Japan
Prior art keywords
biomass
exhaust gas
unit
pipe
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012178958A
Other languages
Japanese (ja)
Inventor
Takuichiro Daimaru
卓一郎 大丸
Kenichi Arima
謙一 有馬
Shinji Matsumoto
慎治 松本
Keiji Takeno
計二 武野
Katsuhiko Shinoda
克彦 篠田
Norichika Kai
徳親 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012178958A priority Critical patent/JP2014037896A/en
Publication of JP2014037896A publication Critical patent/JP2014037896A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Abstract

PROBLEM TO BE SOLVED: To provide a boiler system that more efficiently pulverizes biomass, allows the biomass to be easily combusted and can enhance utilization efficiency of a boiler.SOLUTION: The boiler system includes: a boiler body for combusting fuel; an economizer disposed in a path of an exhaust gas exhausted from the boiler body; an air heater disposed downstream from the economizer in the path of the exhaust gas; and a biomass supply unit for supplying biomass as fuel to the boiler body. The biomass supply unit comprises: pulverization means for pulverizing the biomass; a preprocessing unit for supplying the biomass to the pulverization means; and heating means that causes a part of the exhaust gas flowing between the economizer and the air heater to branch off and heats the biomass by performing heat exchange between a branched branch exhaust gas and the biomass present in at least one of the pulverization means and the preprocessing unit.

Description

本発明は、バイオマスを燃料とするボイラシステムに関する。   The present invention relates to a boiler system using biomass as fuel.

近年、地球温暖化の観点からCO2排出の削減が推進されている。特に、発電用ボイラ等の燃焼設備においては、燃料として石炭や重油等の化石燃料が用いられることが多いが、この化石燃料は、CO2排出の問題から地球温暖化の原因となり、地球環境保全の見地からその使用が規制されつつある。また化石燃料の枯渇化の観点からもこれに代替するエネルギ資源の開発、実用化が求められている。そこで、化石燃料の代替として、バイオマスを用いた燃料の利用促進が図られている。バイオマスとは、光合成に起因する有機物であって、木質類、草木類、農作物類、厨芥類等のバイオマスがある。このバイオマスを燃料化処理することにより、バイオマスをエネルギ源又は工業原料として有効に利用することができる。 In recent years, CO 2 emission reduction has been promoted from the viewpoint of global warming. In particular, fossil fuels such as coal and heavy oil are often used as fuel in combustion facilities such as power generation boilers, but these fossil fuels cause global warming due to the problem of CO 2 emissions, and protect the global environment. Its use is being regulated from the viewpoint of In addition, from the viewpoint of depletion of fossil fuels, the development and commercialization of alternative energy resources are required. Therefore, as an alternative to fossil fuels, the use of fuel using biomass has been promoted. Biomass is an organic substance resulting from photosynthesis, and includes biomass such as wood, vegetation, crops, and moss. By converting this biomass into a fuel, the biomass can be effectively used as an energy source or an industrial raw material.

再生可能エネルギであるバイオマスの高効率利用の観点から、バイオマスを燃料として用いることが行われている。燃料として用いる方法の一つに、バイオマス固形物を粉砕して微粉化し、微粉炭焚きボイラに供給して燃料として用いるものがある。これは、石炭とバイオマスとをそれぞれを単独で粉砕する単独粉砕方式と、石炭とバイオマスとを混合してから粉砕する混合粉砕方式とが知られている。何れの方式においても、バイオマス固形物を粉砕するためのバイオマス粉砕装置が必要であるが、従来の石炭焚きボイラで用いられている既設ミルを用いようとした場合、既設ミルの能力制約から石炭に対する混焼率は最大でも5cal%程度に留まっていた。また、特許文献1及び特許文献2に記載されているように、バイオマスを炭化させた後、燃料として用いるものもある。   From the viewpoint of highly efficient use of biomass, which is renewable energy, biomass is used as a fuel. One of the methods used as fuel is a method in which biomass solids are pulverized and pulverized and supplied to a pulverized coal-fired boiler for use as fuel. This is known as a single pulverization method in which coal and biomass are separately pulverized, and a mixed pulverization method in which coal and biomass are mixed and then pulverized. In any method, a biomass pulverization apparatus for pulverizing biomass solids is required. However, when an existing mill used in a conventional coal-fired boiler is used, due to capacity limitations of the existing mill, The mixed firing rate remained at about 5 cal% at the maximum. In addition, as described in Patent Document 1 and Patent Document 2, there are some which are used as fuel after carbonizing biomass.

特許文献1には、ごみ焼却炉の廃熱を利用して、木質系バイオマスを炭化する装置が記載されている。また、特許文献1には、400℃から700℃で炭化することが一般的であることが記載され、炭化条件の一例として、500℃から600℃程度の範囲で炭化することが記載されている。特許文献2には、バイオマスを炭化させるシャフト型熱分解炉内にある炭化物の一部を燃焼させて熱分解用ガスとするために酸素含有ガスを投入して、炉頂から排出される熱分解ガス及び熱分解タールの温度を300から600℃に制御する装置が記載されている。また、特許文献2には、バイオマスを炭化させるシャフト型熱分解炉に炉外で生成された1000から1200℃の熱分解用ガスを供給し、炉頂から排出される熱分解ガス及び熱分解タールの温度を300から600℃に制御する装置が記載されている。   Patent Document 1 describes an apparatus for carbonizing woody biomass using waste heat from a waste incinerator. Patent Document 1 describes that carbonization is generally performed at 400 ° C. to 700 ° C., and describes that carbonization is performed in a range of about 500 ° C. to 600 ° C. as an example of carbonization conditions. . Patent Document 2 discloses a thermal decomposition in which an oxygen-containing gas is introduced to burn a part of carbide in a shaft-type pyrolysis furnace that carbonizes biomass into a pyrolysis gas and is discharged from the top of the furnace. An apparatus for controlling the temperature of the gas and pyrolysis tar from 300 to 600 ° C. is described. Further, in Patent Document 2, a pyrolysis gas and pyrolysis tar discharged from the top of the furnace are supplied to a shaft-type pyrolysis furnace for carbonizing biomass by supplying a pyrolysis gas generated at 1000 to 1200 ° C. outside the furnace. An apparatus is described which controls the temperature of 300 to 600 ° C.

特開2007−91889号公報JP 2007-91889 A 特許第4855539号公報Japanese Patent No. 4855539

しかしながら、従来技術の石炭粉砕装置を用いて木質系バイオマス原料を粉砕する場合、以下のような問題がある。木質バイオマス特にチップ状のものは石炭に比し、比重が小さいためローラーミルにより粉砕するとミル内部でローラとテーブルの間に噛みこみにくいため粉砕量が減少する。また木質バイオマスは圧縮性がありテーブルライナに噛み込まれ粉砕する場合、圧力が伝わらず粉砕しにくい、という問題がある。また、木質系バイオマス原料は、その水分含有量が高く、かつ繊維質のため、ローラとテーブルライナに挟まれ押しつぶされた場合、粉砕された微粉がお互いに絡んで分離しにくい性質がある。このため従来技術の石炭ミルで粉砕しても粉砕された粗粒と微粉が固まり移動しにくいため、過粉砕され、石炭粉砕に対し大幅に粉砕量が低下し、消費動力が増加する。石炭と混粉砕しても、一般的に5%が木質バイオマスの混合限度であり、それ以上混合粉砕率を上げると微粉粒度が低下し、ボイラでの燃焼効率が悪化する。また、ミル動力が増加するためミル容量を下げて運転する必要がある。   However, when the woody biomass raw material is pulverized using a conventional coal pulverizer, there are the following problems. Woody biomass, especially chips, have a smaller specific gravity than coal, and when pulverized by a roller mill, the amount of pulverization decreases because it is difficult to bite between the roller and the table inside the mill. Moreover, there is a problem that woody biomass is compressible and is not easily pulverized because the pressure is not transmitted when pulverized by being bitten into a table liner. Further, the woody biomass raw material has a high moisture content and is fibrous, so that when it is sandwiched between a roller and a table liner and crushed, the pulverized fine powder is entangled with each other and is difficult to separate. For this reason, even if it grind | pulverizes with a coal mill of a prior art, since the grind | pulverized coarse particle and fine powder are hard to move, it is excessively grind | pulverized and a grinding | pulverization amount falls significantly with respect to coal grinding | pulverization, and power consumption increases. Even if it is mixed and ground with coal, generally 5% is the mixing limit of woody biomass. If the mixing and grinding rate is increased further, the particle size of the fine powder is lowered and the combustion efficiency in the boiler is deteriorated. Further, since the mill power increases, it is necessary to operate with a reduced mill capacity.

これに対して、特許文献1及び特許文献2のように、バイオマスを炭化することで、脆化させ、粉砕しやすくすることができる。しかしながら、炭化後のバイオマスの熱量やボイラの効率化の点で改良の余地がある。   On the other hand, like patent document 1 and patent document 2, by carbonizing biomass, it can embrittle and can make it easy to grind | pulverize. However, there is room for improvement in terms of the amount of heat of the biomass after carbonization and the efficiency of the boiler.

本発明は、上記に鑑みてなされたものであって、バイオマスをより効率よく粉砕させることができ、燃焼させやすくすることができ、ボイラの利用効率を高くすることができるボイラシステムを提供することにある。   The present invention has been made in view of the above, and provides a boiler system that can pulverize biomass more efficiently, facilitate combustion, and increase boiler utilization efficiency. It is in.

上述した課題を解決し、目的を達成するために、本発明は、燃料を燃焼させるボイラ本体と、前記ボイラ本体から排出される排ガスの経路に配置された節炭器と、前記排ガスの経路の前記節炭器よりも下流側に配置されたエアヒータと、前記ボイラ本体に前記燃料としてバイオマスを供給するバイオマス供給ユニットと、を有し、前記バイオマス供給ユニットは、前記バイオマスを粉砕する粉砕手段と、前記粉砕手段に前記バイオマスを供給する前処理ユニットと、前記節炭器と前記エアヒータとの間を流れる排ガスの一部を分岐し、当該分岐した分岐排ガスと、前記粉砕手段及び前記前処理ユニットの少なくとも一方にあるバイオマスとの間で熱交換を行うことで当該バイオマスを加熱する加熱手段と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a boiler main body for burning fuel, a economizer disposed in a path for exhaust gas discharged from the boiler body, and a path for the exhaust gas. An air heater disposed downstream of the economizer, and a biomass supply unit that supplies biomass as the fuel to the boiler body, the biomass supply unit, pulverizing means for pulverizing the biomass; A pretreatment unit for supplying the biomass to the pulverizing means, a part of the exhaust gas flowing between the economizer and the air heater, the branched branched exhaust gas, and the pulverizing means and the pretreatment unit And heating means for heating the biomass by exchanging heat with the biomass in at least one.

ここで、前記前処理ユニットは、バイオマスを貯蔵するバイオマス貯蔵タンクと、前記バイオマス貯蔵タンクにバイオマスを供給する貯蔵前供給手段と、前記バイオマス貯蔵タンクに貯蔵されたバイオマスを前記粉砕手段に供給する貯蔵後供給手段と、を備え、前記加熱手段は、前記貯蔵前供給手段、前記バイオマス貯蔵タンク及び前記貯蔵後供給手段のいずれかにあるバイオマスを加熱することが好ましい。   Here, the pretreatment unit includes a biomass storage tank that stores biomass, a pre-storage supply unit that supplies the biomass to the biomass storage tank, and a storage that supplies the biomass stored in the biomass storage tank to the pulverization unit And a post-supply unit, wherein the heating unit heats the biomass in any of the pre-storage supply unit, the biomass storage tank, and the post-storage supply unit.

また、前記加熱手段は、前記貯蔵後供給手段により前記粉砕手段に向けて搬送されているバイオマスを加熱することが好ましい。   Moreover, it is preferable that the said heating means heats the biomass conveyed toward the said crushing means by the said supply means after the storage.

また、前記前処理ユニットは、前記貯蔵後供給手段によって搬送される加熱された前記バイオマスを冷却する冷却手段を備えることが好ましい。   Moreover, it is preferable that the said pre-processing unit is provided with the cooling means which cools the said heated biomass conveyed by the said supply means after a storage.

また、前記前処理ユニットは、前記加熱手段が前記バイオマスを加熱する領域の終端に前記粉砕手段が隣接して配置されることが好ましい。   Moreover, it is preferable that the said pre-processing unit arrange | positions the said grinding | pulverization means adjacent to the terminal of the area | region where the said heating means heats the said biomass.

また、前記加熱手段は、バイオマスの搬送経路の外周を覆うカバー部と、前記カバー部に前記分岐排ガスを供給する加熱源とを有し、前記加熱源により前記カバー部の内部に前記分岐排ガスを供給することで、前記バイオマスを加熱することが好ましい。   In addition, the heating means includes a cover portion that covers an outer periphery of a biomass transport path, and a heating source that supplies the branched exhaust gas to the cover portion, and the branched exhaust gas is supplied into the cover portion by the heating source. It is preferable to heat the biomass by supplying it.

また、前記加熱手段は、前記分岐排ガスを前記バイオマスの搬送方向とは反対の方向に流すことが好ましい。   Moreover, it is preferable that the said heating means flows the said branch waste gas in the direction opposite to the conveyance direction of the said biomass.

また、前記加熱手段は、前記分岐排ガスにより前記バイオマスが貯蔵されている領域を含む領域を間接加熱することが好ましい。   Moreover, it is preferable that the said heating means indirectly heats the area | region including the area | region where the said biomass is stored with the said branch waste gas.

また、前記粉砕手段は、前記バイオマスを一方向から他方向に搬送しつつ、粉砕する機構であり、前記加熱手段は、前記粉砕手段で粉砕されるバイオマスを加熱することが好ましい。   Moreover, it is preferable that the said grinding | pulverization means is a mechanism which grind | pulverizes, conveying the said biomass from one direction to another direction, and the said heating means heats the biomass grind | pulverized by the said grinding | pulverization means.

また、前記粉砕手段は、さらに石炭が供給され、前記石炭及び前記バイオマスを粉砕し、前記ボイラ本体に供給することが好ましい。   Moreover, it is preferable that the said grinding | pulverization means is further supplied with coal, grind | pulverizes the said coal and the said biomass, and supplies it to the said boiler main body.

また、前記加熱手段は、案内する前記分岐排ガスの温度を検出する温度検出部と、前記排ガスの流通経路において、前記分岐排ガスを分岐した位置よりも下流側で分岐した温度調整用排ガスを供給する温度調整機構と、前記温度検出部の検出結果に基づいて、前記温度調整機構で前記分岐排ガスに供給する前記温度調整用排ガスの量を調整する制御部と、をさらに有することが好ましい。   In addition, the heating means supplies a temperature detection unit that detects the temperature of the branched exhaust gas to be guided and a temperature adjustment exhaust gas that is branched downstream of the branch exhaust gas in the distribution path of the exhaust gas. It is preferable to further include a temperature adjustment mechanism and a control unit that adjusts the amount of the temperature adjustment exhaust gas supplied to the branched exhaust gas by the temperature adjustment mechanism based on the detection result of the temperature detection unit.

また、前記分岐排ガスは、前記節炭器と前記エアヒータとの間から分岐される位置での温度が250℃以上400℃以下であることが好ましい。   Moreover, it is preferable that the temperature at the position where the branched exhaust gas is branched from between the economizer and the air heater is 250 ° C. or higher and 400 ° C. or lower.

また、前記加熱手段は、前記バイオマスを250℃以上400℃以下に加熱することが好ましい。   Moreover, it is preferable that the said heating means heats the said biomass to 250 degreeC or more and 400 degrees C or less.

また、前記加熱手段は、前記バイオマスを加熱している領域から排出される空気を、前記ボイラ本体に供給することが好ましい。   Moreover, it is preferable that the said heating means supplies the air discharged | emitted from the area | region which is heating the said biomass to the said boiler main body.

本発明は、ボイラから排出される排ガスのうち、節炭器とエアヒータとの間を流れる排ガスの一部を分岐した分岐排ガスを用いてバイオマスを加熱することで、バイオマスを粉砕しやすい状態までバイオマスを炭化させることができ、バイオマスをより効率よく粉砕しやすくでき、燃焼させやすくすることができるという効果を奏する。また、分岐排ガスを用いることで、バイオマスの熱量の低減を抑制しつつ、炭化させることができるという効果を奏する。また、分岐排ガスを用いるため、ボイラから排出される熱を効率よく利用することができるという効果を奏する。   In the present invention, the biomass is heated to a state where the biomass is easily pulverized by heating the biomass using the branched exhaust gas that is a part of the exhaust gas flowing between the economizer and the air heater among the exhaust gas discharged from the boiler. Can be carbonized, biomass can be easily pulverized more efficiently, and can be easily burned. Moreover, there exists an effect that it can carbonize, suppressing the reduction of the calorie | heat amount of biomass by using branch waste gas. Moreover, since the branched exhaust gas is used, there is an effect that the heat exhausted from the boiler can be efficiently used.

図1は、発電システムの一実施形態の概略構成を示す模式図である。FIG. 1 is a schematic diagram illustrating a schematic configuration of an embodiment of a power generation system. 図2は、前処理ユニットの概略構成の一部を示す模式図である。FIG. 2 is a schematic diagram illustrating a part of the schematic configuration of the preprocessing unit. 図3は、バイオマスの温度と、各成分の割合との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the temperature of biomass and the ratio of each component. 図4は、粉砕動力比と所定粒径までの粉砕時間との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the grinding power ratio and the grinding time to a predetermined particle size. 図5は、前処理ユニットの他の実施形態の一部を示す模式図である。FIG. 5 is a schematic diagram showing a part of another embodiment of the pretreatment unit. 図6は、前処理ユニットの他の実施形態の概略構成の一部を示す断面図である。FIG. 6 is a cross-sectional view showing a part of a schematic configuration of another embodiment of the pretreatment unit. 図7は、前処理ユニットの他の実施形態の一部を示す模式図である。FIG. 7 is a schematic diagram showing a part of another embodiment of the pretreatment unit. 図8は、前処理ユニットの他の実施形態の一部を示す模式図である。FIG. 8 is a schematic diagram showing a part of another embodiment of the pretreatment unit. 図9は、前処理ユニットの他の実施形態の一部の概略構成を示す模式図である。FIG. 9 is a schematic diagram showing a schematic configuration of a part of another embodiment of the preprocessing unit. 図10は、発電システムの他の実施形態の概略構成を示す模式図である。FIG. 10 is a schematic diagram illustrating a schematic configuration of another embodiment of the power generation system. 図11は、発電システムの他の実施形態の概略構成を示す模式図である。FIG. 11 is a schematic diagram illustrating a schematic configuration of another embodiment of the power generation system. 図12は、発電システムの他の実施形態の概略構成を示す模式図である。FIG. 12 is a schematic diagram illustrating a schematic configuration of another embodiment of the power generation system.

以下に添付図面を参照して、本発明に係るボイラシステムを発電システムに用いた場合の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではない。本発明に係るボイラシステムは、ボイラに供給する燃料としてバイオマスを用いる各種ボイラシステムに用いることができる。本発明に係るボイラシステムは、例えば、ボイラで発生させた熱で水を加熱し、お湯を供給する給湯システムに用いることができる。本発明に係るボイラシステムは、ボイラで発生させた熱を機械的エネルギ、つまり駆動力に変換する駆動システムに用いることもできる。   Exemplary embodiments of a boiler system according to the present invention will be described below in detail with reference to the accompanying drawings. In addition, this invention is not limited by this embodiment. The boiler system which concerns on this invention can be used for the various boiler systems which use biomass as a fuel supplied to a boiler. The boiler system which concerns on this invention can be used for the hot-water supply system which heats water with the heat generated with the boiler, and supplies hot water, for example. The boiler system according to the present invention can also be used in a drive system that converts heat generated in the boiler into mechanical energy, that is, drive force.

図1は、発電システムの一実施形態の概略構成を示す模式図である。図1に示す発電システム10は、バイオマスを粉砕した微粉体と石炭や油等の化石燃料とを燃料として併用して燃焼させ、この燃焼により発生した熱を回収し、回収した熱で発電を行うことが可能な発電システムである。   FIG. 1 is a schematic diagram illustrating a schematic configuration of an embodiment of a power generation system. A power generation system 10 shown in FIG. 1 uses a fine powder obtained by pulverizing biomass and a fossil fuel such as coal or oil as a fuel for combustion, collects heat generated by the combustion, and generates electricity using the recovered heat. It is a power generation system that can.

図1に示す発電システム10は、バイオマスを供給するバイオマス供給装置11と、化石燃料を供給する化石燃料供給装置12と、バイオマス供給装置11から供給されたバイオマスと化石燃料供給装置12から供給された化石燃料とを燃焼することで発生した熱を回収するボイラ30と、ボイラ30で発生させた熱を用いて発電を行う発電装置60とを有する。なお、本実施形態の発電システム10は、一部の機構がバイオマス供給装置11と化石燃料供給装置12との両方に用いられる。具体的には、発電システム10は、一部の機構がバイオマスと化石燃料を混合して同時に処理を行い、バイオマスと化石燃料とを混合した状態でボイラ30に供給している。   A power generation system 10 shown in FIG. 1 is supplied from a biomass supply device 11 that supplies biomass, a fossil fuel supply device 12 that supplies fossil fuel, and biomass supplied from the biomass supply device 11 and fossil fuel supply device 12. It has the boiler 30 which collect | recovers the heat which generate | occur | produced by burning a fossil fuel, and the electric power generating apparatus 60 which produces electric power using the heat generated with the boiler 30. In the power generation system 10 of the present embodiment, a part of the mechanism is used for both the biomass supply device 11 and the fossil fuel supply device 12. Specifically, in the power generation system 10, some mechanisms mix and process biomass and fossil fuel, and supply the boiler 30 in a mixed state with biomass and fossil fuel.

ここで、バイオマスとは、再生可能な生物由来の有機性資源であって、化石資源を除いたものと定義する。例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ、及びこれらを原料としたリサイクル燃料(ペレットやチップ)等であり、ここに提示したものに限定されることはない。   Here, biomass is defined as organic resources derived from renewable organisms, excluding fossil resources. For example, thinned wood, waste wood, driftwood, grass, waste, sludge, tires, and recycled fuel (pellets and chips) using these as raw materials are not limited to those presented here.

バイオマス供給装置11は、バイオマスを好適に炭化できる温度の範囲で加熱した後、粉砕し、粉砕したバイオマスをボイラ30に供給する装置であり、前処理ユニット19と、空気供給配管21と、粉砕装置(ミル)26と、供給配管28と、加熱手段100とを有する。なお、加熱手段100については後述する。   The biomass supply apparatus 11 is an apparatus that supplies biomass that has been pulverized and pulverized after being heated in a temperature range in which the biomass can be suitably carbonized, to the boiler 30, and includes a pretreatment unit 19, an air supply pipe 21, and a pulverizer. (Mill) 26, supply pipe 28, and heating means 100. The heating unit 100 will be described later.

前処理ユニット19は、バイオマスに前処理を行った後、粉砕装置26に供給するユニットであり、貯蔵サイロ20と、払い出しコンベア22と、搬送コンベア23と、バイオマス貯蔵タンク24と、フィーダ25と、配管80と、冷却手段101と、を有する。貯蔵サイロ20は、所定量のバイオマスを貯留可能な装置である。貯蔵サイロ20は、貯留させているバイオマス140を所定の量ずつ払い出しコンベア22に供給する。払い出しコンベア22と搬送コンベア23は、ともにバイオマス140を搬送する搬送機構である。なお、本実施形態では、コンベアとしたが、バイオマス140の搬送機構としては、種々の機構を用いることができる。払い出しコンベア22は、貯蔵サイロ20から供給されたバイオマス140を搬送コンベア23に搬送する。搬送コンベア23は、払い出しコンベア22から供給されたバイオマス140をバイオマス貯蔵タンク24に供給する。   The pretreatment unit 19 is a unit that pretreats the biomass and then supplies it to the crushing device 26. The storage silo 20, the dispensing conveyor 22, the transfer conveyor 23, the biomass storage tank 24, the feeder 25, A pipe 80 and cooling means 101 are provided. The storage silo 20 is a device that can store a predetermined amount of biomass. The storage silo 20 supplies the stored biomass 140 to the delivery conveyor 22 by a predetermined amount. The payout conveyor 22 and the transfer conveyor 23 are both transfer mechanisms that transfer the biomass 140. In addition, although it was set as the conveyor in this embodiment, as a conveyance mechanism of biomass 140, various mechanisms can be used. The payout conveyor 22 transports the biomass 140 supplied from the storage silo 20 to the transport conveyor 23. The conveyor 23 supplies the biomass 140 supplied from the payout conveyor 22 to the biomass storage tank 24.

バイオマス貯蔵タンク24は、搬送コンベア23から供給されたバイオマス140を一時的に貯留する。バイオマス貯蔵タンク24は、貯留しているバイオマス140をフィーダ25に供給する。フィーダ25は、バイオマス貯蔵タンク24から供給されたバイオマス140を搬送し、粉砕装置26に供給する。加熱手段100は、フィーダ25を通過するバイオマス140を加熱して炭化バイオマス142とする機構である。なお、フィーダ25の構成については後ほど説明する。   The biomass storage tank 24 temporarily stores the biomass 140 supplied from the transport conveyor 23. The biomass storage tank 24 supplies the stored biomass 140 to the feeder 25. The feeder 25 conveys the biomass 140 supplied from the biomass storage tank 24 and supplies it to the crushing device 26. The heating means 100 is a mechanism that heats the biomass 140 that passes through the feeder 25 to obtain carbonized biomass 142. The configuration of the feeder 25 will be described later.

配管80は、フィーダ25と粉砕装置26とを接続する配管であり、フィーダ25から排出された炭化バイオマス142を粉砕装置26に搬送する。本実施形態では、フィーダ25と配管80の両方が前処理ユニット19の貯蔵後供給手段となる。なお、前処理ユニット19は、配管80で炭化バイオマス142を搬送させる機構として種々の機構を用いることができる。前処理ユニット19は、例えば、配管内にスクリューを配置し、当該スクリューを回転させることで、炭化バイオマス142を搬送させてもよい。また、前処理ユニット19は、配管80内にフィーダ25から粉砕装置26に向かう流れの空気を流すことで炭化バイオマス142を搬送してもよい。   The pipe 80 is a pipe connecting the feeder 25 and the crushing device 26, and conveys the carbonized biomass 142 discharged from the feeder 25 to the crushing device 26. In the present embodiment, both the feeder 25 and the pipe 80 serve as post-storage supply means of the pretreatment unit 19. The pretreatment unit 19 can use various mechanisms as a mechanism for transporting the carbonized biomass 142 through the pipe 80. For example, the pretreatment unit 19 may transport the carbonized biomass 142 by arranging a screw in the pipe and rotating the screw. Further, the pretreatment unit 19 may convey the carbonized biomass 142 by flowing air flowing from the feeder 25 toward the crushing device 26 in the pipe 80.

冷却手段101は、配管80に配置されており、フィーダ25から粉砕装置26に向かう炭化バイオマス142を冷却する。前処理ユニット19は、加熱手段100で加熱され粉砕装置26に供給される炭化バイオマス142を冷却することで、炭化されたバイオマスの状態を安定させることができ、配管80内を安定して搬送することができ、粉砕装置26での処理も安定して行うことができる。   The cooling means 101 is disposed in the pipe 80 and cools the carbonized biomass 142 from the feeder 25 toward the crushing device 26. The pretreatment unit 19 can stabilize the state of the carbonized biomass by cooling the carbonized biomass 142 that is heated by the heating means 100 and supplied to the pulverization device 26, and stably transports the inside of the pipe 80. In addition, the processing in the crusher 26 can be performed stably.

バイオマス供給装置11の構成の説明を続ける。空気供給配管21は、バイオマス供給装置11及び化石燃料供給装置12に空気を供給する配管である。空気供給配管21は、ボイラ30の空気を供給させる各部と接続され、空気148が供給される。また、空気供給配管21は、粉砕装置26と石炭粉砕装置252a、252bに接続され、それぞれに空気148を供給する。また、空気供給配管21は、粉砕装置26と接続される配管にバルブ70が設けられ、石炭粉砕装置252aと接続される配管にバルブ72が設けられ、石炭粉砕装置252bと接続される配管にバルブ74が設けられている。このバルブ70、72、74の開閉及び開度を調整することで、各部に供給する空気148の量を調整することができる。   The description of the configuration of the biomass supply apparatus 11 will be continued. The air supply pipe 21 is a pipe that supplies air to the biomass supply apparatus 11 and the fossil fuel supply apparatus 12. The air supply pipe 21 is connected to each part for supplying air of the boiler 30 and supplied with air 148. The air supply pipe 21 is connected to the pulverizer 26 and the coal pulverizers 252a and 252b, and supplies air 148 to each. Further, the air supply pipe 21 is provided with a valve 70 in a pipe connected to the pulverizer 26, a valve 72 is provided in a pipe connected to the coal pulverizer 252a, and a valve connected to a pipe connected to the coal pulverizer 252b. 74 is provided. By adjusting the opening / closing and opening of the valves 70, 72, 74, the amount of air 148 supplied to each part can be adjusted.

粉砕装置26は、バイオマス及び石炭を粉砕する粉砕装置(本実施形態の粉砕手段)であり、フィーダ25から供給された炭化バイオマス142とホッパ251cから供給された石炭を微粉144に粉砕する。また、粉砕装置26には、空気供給配管21が接続されており、空気供給配管21から供給される空気148の力で粉砕した微粉144を搬送させる。つまり、粉砕装置26で粉砕されたバイオマス及び石炭は、空気搬送により、供給配管28に供給する。供給配管28は、粉砕装置26から供給された微粉144及び空気148をボイラ30のバイオマスと化石燃料とで兼用の燃焼バーナ34に供給する。なお、発電システム10は、空気供給配管21から供給配管28にも空気148を供給するようにしてもよい。この場合、供給される空気148は、一次空気となる。   The pulverizing device 26 is a pulverizing device (pulverizing means of the present embodiment) for pulverizing biomass and coal, and pulverizes the carbonized biomass 142 supplied from the feeder 25 and the coal supplied from the hopper 251c into fine powder 144. In addition, the air supply pipe 21 is connected to the pulverizer 26, and the fine powder 144 pulverized by the force of the air 148 supplied from the air supply pipe 21 is conveyed. That is, the biomass and coal pulverized by the pulverizer 26 are supplied to the supply pipe 28 by air conveyance. The supply pipe 28 supplies the fine powder 144 and the air 148 supplied from the pulverizer 26 to the combustion burner 34 that uses both biomass and fossil fuel in the boiler 30. The power generation system 10 may supply air 148 from the air supply pipe 21 to the supply pipe 28 as well. In this case, the supplied air 148 is primary air.

次に、化石燃料供給装置12は、ボイラ30に石炭を供給する装置である。化石燃料供給装置12は、石炭250を受け入れるホッパ251a、251b、251cと、ホッパ251a、251bに対応して配置された石炭粉砕装置252a、252bと、石炭粉砕装置252a、252bにて得られた微粉炭149を燃焼バーナ33に供給する配管253と、を備える。ホッパ251a、251bは、石炭を貯留し、貯留した石炭を石炭粉砕装置252a、252bに供給する。石炭粉砕装置252a、252bは、石炭を粉砕する機構である。石炭粉砕装置252a、252bは、上述したように空気供給配管21と接続されており、空気供給配管21から供給される空気148を用いて、装置内の石炭を攪拌しつつ、粉砕する。また、石炭粉砕装置252a、252bは、粉砕され所定以下の粒度となった石炭の粉体を空気148で装置上側に吹き上げることで、配管253に排出する。図1に示す石炭粉砕装置252a、252bは、縦型のミルを示したが、種々の機構の粉砕装置を用いることができる。例えば、チューブミルを用いることができる。また、石炭粉砕装置252aは、粉砕装置26と同じ構成としてもよいし、異なる構成としてもよい。また、本実施形態では、ホッパと石炭粉砕装置との組合せを2つ示したが、ホッパと石炭粉砕装置との組合せの数は、任意の数とすればよい。ホッパ251cは、上述したように、粉砕装置26に石炭を供給する。粉砕装置25は、ホッパ251cから供給された石炭をバイオマスとともに粉砕する。   Next, the fossil fuel supply device 12 is a device that supplies coal to the boiler 30. The fossil fuel supply device 12 includes hoppers 251a, 251b, and 251c that receive coal 250, coal pulverizers 252a and 252b that are disposed corresponding to the hoppers 251a and 251b, and fine powder obtained by the coal pulverizers 252a and 252b. And a pipe 253 for supplying the charcoal 149 to the combustion burner 33. The hoppers 251a and 251b store coal and supply the stored coal to the coal crushers 252a and 252b. The coal pulverizers 252a and 252b are mechanisms for pulverizing coal. The coal pulverizers 252a and 252b are connected to the air supply pipe 21 as described above, and use the air 148 supplied from the air supply pipe 21 to pulverize the coal in the apparatus while stirring. Further, the coal pulverizers 252a and 252b discharge the coal powder, which has been pulverized to a predetermined particle size or less, to the upper side of the device with air 148 and discharge it to the pipe 253. The coal pulverizers 252a and 252b shown in FIG. 1 are vertical mills, but pulverizers having various mechanisms can be used. For example, a tube mill can be used. The coal pulverizer 252a may have the same configuration as the pulverizer 26 or a different configuration. In the present embodiment, two combinations of the hopper and the coal pulverizer are shown. However, the number of combinations of the hopper and the coal pulverizer may be an arbitrary number. The hopper 251c supplies coal to the crusher 26 as described above. The pulverizer 25 pulverizes the coal supplied from the hopper 251c with biomass.

次に、ボイラ30は、コンベンショナルボイラであって、バイオマスと化石燃料とを燃焼可能なボイラ本体31を有している。このボイラ本体31は、中空形状をなして鉛直方向に設置され、このボイラ本体31を構成する火炉壁の下部に燃焼装置32が設けられている。この燃焼装置32は、火炉壁に装着された複数の化石燃料用の燃焼バーナ33と、複数のバイオマスと化石燃料とで兼用の燃焼バーナ34とを有している。バイオマスと化石燃料とで兼用の燃焼バーナ34とは、バイオマスと化石燃料が混在した燃料が噴射されるバーナである。本実施形態にて、化石燃料用の燃焼バーナ33は、周方向に沿って4個若しくは8個配設されたものが上下方向に3から6段配置されている。一方、バイオマスと化石燃料とで兼用の燃焼バーナ34は、複数の化石燃料用の燃焼バーナ33の下方であって、周方向に沿って4個若しくは8個配設されたものが上下方向に1段配置されている。なお、化石燃料用の燃焼バーナ33とバイオマスと化石燃料とで兼用の燃焼バーナ34の配置関係は上下逆であってもよい。また、各燃焼バーナ33、34にて、周方向の数は4個に限るものではなく、段数も4段や1段に限るものではない。さらに、各燃焼バーナ33、34を対向するように配置してもよい。   Next, the boiler 30 is a conventional boiler, and has a boiler body 31 capable of burning biomass and fossil fuel. The boiler main body 31 has a hollow shape and is installed in the vertical direction, and a combustion device 32 is provided at the lower part of the furnace wall constituting the boiler main body 31. The combustion apparatus 32 includes a plurality of fossil fuel combustion burners 33 mounted on the furnace wall, and a plurality of biomass and fossil fuel combustion burners 34. The combustion burner 34 that is used for both biomass and fossil fuel is a burner into which fuel in which biomass and fossil fuel are mixed is injected. In the present embodiment, four or eight fossil fuel combustion burners 33 are arranged along the circumferential direction, and are arranged in three to six stages in the vertical direction. On the other hand, the combustion burner 34 that is used for both biomass and fossil fuel is one below the plurality of fossil fuel combustion burners 33, and four or eight disposed along the circumferential direction. It is arranged in stages. The arrangement relationship of the combustion burner 33 for fossil fuel and the combustion burner 34 for both biomass and fossil fuel may be reversed. In each combustion burner 33, 34, the number in the circumferential direction is not limited to four, and the number of stages is not limited to four or one stage. Furthermore, you may arrange | position so that each combustion burner 33 and 34 may oppose.

化石燃料用の燃焼バーナ33は、上述したように、化石燃料供給装置12の配管253a、253bと連結されている。なお、燃料バーナ33は、化石燃料として、石炭ではなく、燃料油または燃料ガスを供給する供給装置と接続されていてもよい。つまり、燃料バーナ33は、化石燃料として燃料油または燃料ガスが供給されてもよい。一方、バイオマスと化石燃料とで兼用の燃焼バーナ34は、バイオマス供給装置11からの供給配管28が連結されている。バイオマス供給装置11の粉砕装置26は、バイオマスに加え、上述したようにホッパ251cから供給された石炭も粉砕する。これにより、供給配管28には、バイオマスと石炭が混合した微粉144が供給される。   As described above, the fossil fuel combustion burner 33 is connected to the pipes 253a and 253b of the fossil fuel supply device 12. The fuel burner 33 may be connected to a supply device that supplies fuel oil or fuel gas instead of coal as fossil fuel. That is, the fuel burner 33 may be supplied with fuel oil or fuel gas as fossil fuel. On the other hand, a combustion burner 34 that is used for both biomass and fossil fuel is connected to a supply pipe 28 from the biomass supply device 11. The crushing device 26 of the biomass supply device 11 crushes the coal supplied from the hopper 251c as described above in addition to the biomass. Thereby, fine powder 144 in which biomass and coal are mixed is supplied to the supply pipe 28.

燃焼装置32は、各燃焼バーナ33、34に燃焼用空気を供給可能な空気供給配管39を有しており、この空気供給配管39は、基端部に送風機40が装着され、先端部がボイラ本体31の外周側に設けられた風箱41に連結されている。そのため、この風箱41に供給された空気を各燃焼バーナ33、34に供給することができる。また、ボイラ本体31には、加熱手段100の配管108が接続されている。この点については後述する。   The combustion device 32 has an air supply pipe 39 that can supply combustion air to the combustion burners 33, 34. The air supply pipe 39 is provided with a blower 40 at the base end, and the tip is a boiler. It is connected to an air box 41 provided on the outer peripheral side of the main body 31. Therefore, the air supplied to the wind box 41 can be supplied to the combustion burners 33 and 34. The boiler body 31 is connected to a pipe 108 of the heating means 100. This point will be described later.

ボイラ本体31は、上部に煙道42が連結されており、この煙道42に、対流伝熱部として排ガスの熱を回収するための、過熱器43、44、再熱器45、46、節炭器(エコノマイザ、ECO)47、48、49が設けられており、ボイラ本体31での燃焼で発生した排ガスと水との間で熱交換が行われる。   The boiler body 31 has a flue 42 connected to the upper portion thereof, and the superheaters 43 and 44, the reheaters 45 and 46, and the nodes for recovering the heat of the exhaust gas as a convection heat transfer section are connected to the flue 42. Charcoal units (economizers, ECO) 47, 48, and 49 are provided, and heat exchange is performed between the exhaust gas generated by combustion in the boiler body 31 and water.

煙道42は、その下流側に熱交換を行った排ガスが排出される排ガス配管50が連結されている。この排ガス配管50は、空気供給配管39との間にエアヒータ(空気予熱器、AH)51が設けられ、空気供給配管39を流れる空気と、排ガス配管50を流れる排ガスとの間で熱交換を行い、燃焼バーナ33、34に供給する燃焼用空気を200から300℃の範囲に昇温することが望ましい。   The flue 42 is connected to an exhaust gas pipe 50 through which the exhaust gas subjected to heat exchange is discharged downstream. The exhaust gas pipe 50 is provided with an air heater (air preheater, AH) 51 between the air supply pipe 39 and performs heat exchange between the air flowing through the air supply pipe 39 and the exhaust gas flowing through the exhaust gas pipe 50. It is desirable to raise the temperature of the combustion air supplied to the combustion burners 33 and 34 to a range of 200 to 300 ° C.

また、空気供給配管39は、エアヒータ51より下流側の位置から分岐して、空気供給配管21が設けられている。この空気供給配管21は、塵や埃等の粒子状物質を除去可能な除塵装置52と、高温空気を昇圧可能なブロア53が装着されており、エアヒータ51で200から300℃に加熱した空気をバイオマス供給装置11の供給配管28に供給することができる。   The air supply pipe 39 is branched from a position downstream of the air heater 51, and the air supply pipe 21 is provided. The air supply pipe 21 is equipped with a dust removing device 52 capable of removing particulate matter such as dust and dust, and a blower 53 capable of boosting high-temperature air. Air heated by the air heater 51 from 200 to 300 ° C. It can be supplied to the supply pipe 28 of the biomass supply apparatus 11.

なお、排ガス配管50は、エアヒータ51より上流側に位置して、選択還元型触媒(SCR)54が設けられ、エアヒータ51より下流側に位置して、電気集塵器(EP)55、誘引送風機56、脱硫装置57が設けられ、下流端部に煙突58が設けられている。   The exhaust gas pipe 50 is located upstream of the air heater 51 and is provided with a selective reduction catalyst (SCR) 54. The exhaust gas pipe 50 is located downstream of the air heater 51 and has an electric dust collector (EP) 55, an induction blower. 56, a desulfurization device 57 is provided, and a chimney 58 is provided at the downstream end.

発電装置60は、熱エネルギを電気に変換する変換機構である。配管ユニット62は、ボイラ30の過熱器43、44、再熱器45、46と、発電装置60とを接続する配管であり、過熱器43、44、再熱器45、46で過熱された蒸気を発電装置60に送り、発電装置60で熱交換した蒸気を過熱器43、44、再熱器45、46に送る。発電装置60は、過熱器43、44、再熱器45、46で過熱された蒸気から取り出した熱エネルギを電気に変換する。例えば、発電装置60は、タービンを有し、過熱蒸気のエネルギを利用してタービンを回転させ、電力を取り出す。   The power generation device 60 is a conversion mechanism that converts thermal energy into electricity. The piping unit 62 is a pipe that connects the superheaters 43 and 44 and the reheaters 45 and 46 of the boiler 30 to the power generation device 60, and steam that is superheated by the superheaters 43 and 44 and the reheaters 45 and 46. Is sent to the power generator 60, and the steam exchanged by the power generator 60 is sent to the superheaters 43 and 44 and the reheaters 45 and 46. The power generation device 60 converts thermal energy extracted from the steam superheated by the superheaters 43 and 44 and the reheaters 45 and 46 into electricity. For example, the power generation device 60 includes a turbine, rotates the turbine using the energy of superheated steam, and extracts electric power.

以上より、発電システム10は、ボイラ30にて、送風機40を駆動して空気を吸引すると、この空気は、空気供給配管39を通してエアヒータ51で加熱された後に風箱41を介して各燃焼バーナ33、34に供給される。また、化石燃料としての微粉炭は、配管253を通して化石燃料用の燃焼バーナ33に供給される。また、バイオマス供給装置11から供給されたバイオマス及びホッパ251cから供給された石炭は、供給配管28を通してバイオマスと化石燃料とで兼用の燃焼バーナ34に供給される。   As described above, when the power generation system 10 drives the blower 40 and sucks air in the boiler 30, the air is heated by the air heater 51 through the air supply pipe 39 and then each combustion burner 33 through the wind box 41. , 34. Further, pulverized coal as fossil fuel is supplied to the combustion burner 33 for fossil fuel through the pipe 253. Further, the biomass supplied from the biomass supply device 11 and the coal supplied from the hopper 251 c are supplied to the combined combustion burner 34 using biomass and fossil fuel through the supply pipe 28.

すると、化石燃料用の燃焼バーナ33は、燃焼用空気と化石燃料をボイラ本体31に噴射すると同時に着火し、また、バイオマスと化石燃料とで兼用の燃焼バーナ34は、燃焼用空気とバイオマスの微粉体と石炭の微粉体をボイラ本体31に噴射すると同時に着火する。このボイラ本体31では、燃焼用空気、化石燃料、バイオマスが燃焼して火炎が生じる。ボイラ本体31内の下部で火炎が生じると、燃焼ガスがこのボイラ本体31内を上昇し、煙道42に排出される。   Then, the combustion burner 33 for fossil fuel is ignited at the same time as the combustion air and fossil fuel are injected into the boiler main body 31, and the combustion burner 34 which is combined with biomass and fossil fuel is pulverized with combustion air and biomass. The body and coal fine powder are injected into the boiler body 31 and ignited simultaneously. In the boiler body 31, combustion air, fossil fuel, and biomass are burned to generate a flame. When a flame is generated in the lower part of the boiler body 31, the combustion gas rises in the boiler body 31 and is discharged to the flue 42.

このとき、図示しない給水ポンプから供給された水は、節炭器47、48、49によって予熱された後、図示しない蒸気ドラムに供給され火炉壁の各水管(図示せず)に供給される間に加熱されて飽和蒸気となり、図示しない蒸気ドラムに送り込まれる。さらに、図示しない蒸気ドラムの飽和蒸気は過熱器43、44に導入され、燃焼ガスによって過熱される。過熱器43、44で生成された過熱蒸気は、配管ユニット62を通過して発電装置60に供給される。また、発電装置60での膨張過程の中途で取り出した蒸気は、配管ユニット62を通過して再熱器45、46に導入され、再度過熱されて配管ユニット62を通過して発電装置60に戻される。なお、ボイラ本体31をドラム型(蒸気ドラム)として説明したが、この構造に限定されるものではない。   At this time, while water supplied from a water supply pump (not shown) is preheated by the economizers 47, 48, and 49, it is supplied to a steam drum (not shown) and supplied to each water pipe (not shown) on the furnace wall. Is heated to become saturated steam and fed into a steam drum (not shown). Further, saturated steam of a steam drum (not shown) is introduced into the superheaters 43 and 44 and is heated by the combustion gas. The superheated steam generated by the superheaters 43 and 44 passes through the piping unit 62 and is supplied to the power generation device 60. Further, the steam taken out in the middle of the expansion process in the power generation device 60 passes through the piping unit 62 and is introduced into the reheaters 45 and 46, is overheated again, passes through the piping unit 62, and returns to the power generation device 60. It is. In addition, although the boiler main body 31 was demonstrated as a drum type | mold (steam drum), it is not limited to this structure.

その後、煙道42の節炭器47、48、49を通過した排ガスは、排ガス配管50にて、選択還元型触媒54でNOx等の有害物質が除去され、電気集塵器55で粒子状物質が除去され、脱硫装置57により硫黄分が除去された後、煙突58から大気中に排出される。   Thereafter, the exhaust gas that has passed through the economizers 47, 48, and 49 of the flue 42 is removed of harmful substances such as NOx by the selective reduction catalyst 54 in the exhaust gas pipe 50, and the particulate matter is removed by the electric dust collector 55. Is removed, and the sulfur content is removed by the desulfurization device 57 and then discharged from the chimney 58 to the atmosphere.

次に、図1から図4を用いて、バイオマス供給装置11の構成についてより詳細に説明する。バイオマス供給装置11は、上述したように、前処理ユニット19と、空気供給配管21と、粉砕装置(ミル)26と、供給配管28と、加熱手段100と、制御部130と、を有する。以下では、前処理ユニット19のフィーダ25と、加熱手段100ついて説明する。   Next, the configuration of the biomass supply apparatus 11 will be described in more detail with reference to FIGS. 1 to 4. As described above, the biomass supply apparatus 11 includes the pretreatment unit 19, the air supply pipe 21, the pulverizer (mill) 26, the supply pipe 28, the heating unit 100, and the control unit 130. Hereinafter, the feeder 25 of the pretreatment unit 19 and the heating unit 100 will be described.

まず、図2を用いて、前処理ユニットのフィーダ25について説明する。ここで、図2は、前処理ユニットの一部を示す模式図である。フィーダ25は、キルン104を有する。キルン104は、配管80と接続されており、バイオマス貯蔵タンク24から供給されるバイオマスを配管80まで加熱しつつ案内する窯である。また、フィーダ25は、キルン104と配管80との間に開閉弁を設けてもよい。フィーダ25は、開閉弁を設け、当該開閉弁の開閉を切り換えることで、キルン104内を通過したバイオマスを配管80に供給するか否かを切り換える。なお、フィーダ25によるキルン104内のバイオマスの搬送方法は特に限定されない。例えば、フィーダ25は、ベルト搬送機構やスクリュー機構をキルン104内に設け、ベルト搬送機構やスクリュー機構を駆動させることでバイオマスを搬送してもよい。   First, the feeder 25 of the preprocessing unit will be described with reference to FIG. Here, FIG. 2 is a schematic diagram showing a part of the preprocessing unit. The feeder 25 has a kiln 104. The kiln 104 is connected to the pipe 80 and is a kiln that guides the biomass supplied from the biomass storage tank 24 while heating it to the pipe 80. Further, the feeder 25 may be provided with an on-off valve between the kiln 104 and the pipe 80. The feeder 25 is provided with an open / close valve, and switches between opening and closing of the open / close valve to switch whether the biomass that has passed through the kiln 104 is supplied to the pipe 80. In addition, the conveyance method of the biomass in the kiln 104 by the feeder 25 is not specifically limited. For example, the feeder 25 may convey biomass by providing a belt conveyance mechanism or a screw mechanism in the kiln 104 and driving the belt conveyance mechanism or the screw mechanism.

加熱手段100は、配管106と、配管108と、配管112と、フレアスタック114と、ガス再循環ファン(Gas Recirculating Fan)116と、配管117と、バルブ118と、配管120と、ガス再循環ファン122とを有する。なお、加熱手段100は、これらに加え、温度を検出する検出部や、流量を検出する検出部、バルブ等も備えている。   The heating means 100 includes a pipe 106, a pipe 108, a pipe 112, a flare stack 114, a gas recirculating fan 116, a pipe 117, a valve 118, a pipe 120, and a gas recirculation fan. 122. In addition to the above, the heating unit 100 includes a detection unit that detects temperature, a detection unit that detects a flow rate, a valve, and the like.

配管106は、一方の端部が、節炭器47とエアヒータ51との間の煙道42または排ガス配管50と接続しており、他方の端部のフィーダ25のキルン104のバイオマスの搬送方向の下流側端部と接続している。配管106には、ガス再循環ファン116が配置されており、ガス再循環ファン116により、煙道42または排ガス配管50からフィーダ25に向けて分岐排ガス131を流す。分岐排ガス131は、煙道42または排ガス配管50の配管106が接続している部分周辺を流れる排ガスの一部である。   One end of the pipe 106 is connected to the flue 42 or the exhaust gas pipe 50 between the economizer 47 and the air heater 51, and the other end of the feeder 25 in the kiln 104 in the direction of biomass transfer. Connected to the downstream end. A gas recirculation fan 116 is disposed in the pipe 106, and the branch exhaust gas 131 flows from the flue 42 or the exhaust gas pipe 50 toward the feeder 25 by the gas recirculation fan 116. The branched exhaust gas 131 is a part of the exhaust gas that flows around the part where the flue 42 or the pipe 106 of the exhaust gas pipe 50 is connected.

次に、配管108は、一方の端部がキルン104のバイオマスの搬送方向の上流側端部と接続し、他方の端部がボイラ本体31と接続している。配管108は、ボイラ本体31の燃焼ガスの流れ方向において上流側の端部、具体的にはボイラ本体31の下端の近傍に接続されている。配管108は、フィーダ25から排出される空気、具体的には、バイオマスが加熱されることで発生する熱分解ガス132を含む空気をボイラ本体31に案内する。   Next, one end of the pipe 108 is connected to the upstream end of the kiln 104 in the biomass transport direction, and the other end is connected to the boiler body 31. The pipe 108 is connected to an upstream end in the combustion gas flow direction of the boiler body 31, specifically, near the lower end of the boiler body 31. The pipe 108 guides the air discharged from the feeder 25, specifically, the air containing the pyrolysis gas 132 generated by heating the biomass to the boiler body 31.

配管112は、配管108の分岐管であり、一方の端部が配管108に接続し、他方の端部がフレアスタック114と接続している。配管112は、配管108を流れる熱分解ガス132をフレアスタック114に供給する。フレアスタック114は、ボイラトリップ時に熱分解ガス132を燃焼させる燃焼装置である。つまり、フレアスタック114は、発電システム10でボイラを提示しているとき(ボイラ本体31での燃焼が実行されていない時)に熱分解ガス132が供給され、熱分解ガス132の可燃成分を燃焼させる。なお、発電システム10は、配管112と配管108との接続部に流路を切り換える弁を設けることで、熱分解ガス132をボイラ本体31に供給するか、フレアスタック114に供給するかを切り換えることができる。また、配管112と配管108にそれぞれバルブを設けてもよい。発電システム10は、ボイラトリップしているか否かで、配管108を流れる熱分解ガス132をボイラ本体31に供給するかフレアスタック114に供給するかを切り換える。   The pipe 112 is a branch pipe of the pipe 108 and has one end connected to the pipe 108 and the other end connected to the flare stack 114. The pipe 112 supplies the pyrolysis gas 132 flowing through the pipe 108 to the flare stack 114. The flare stack 114 is a combustion device that burns the pyrolysis gas 132 when the boiler trips. That is, the flare stack 114 is supplied with the pyrolysis gas 132 when the power generation system 10 is presenting the boiler (when the combustion in the boiler body 31 is not executed), and burns the combustible components of the pyrolysis gas 132. Let The power generation system 10 switches between supplying the pyrolysis gas 132 to the boiler body 31 or the flare stack 114 by providing a valve for switching the flow path at the connection portion between the pipe 112 and the pipe 108. Can do. Moreover, you may provide a valve in the piping 112 and the piping 108, respectively. The power generation system 10 switches whether the pyrolysis gas 132 flowing through the pipe 108 is supplied to the boiler body 31 or the flare stack 114 depending on whether or not the boiler is tripped.

配管117は、配管106の分岐管であり、一方の端部が配管106に接続し、他方の端部が配管108と接続している。配管117は、配管108の配管112との接続部とボイラ本体31との接続部との間に接続されている。つまり、配管117は、熱分解ガス132の流れ方向において、配管112との分岐位置よりも下流側で、ボイラ本体31よりも上流側となる位置に配置されている。配管117は、分岐排ガス131の一部を配管108に供給することができる。バルブ118は、配管117に設けられている。バルブ118は、開閉を切り換えることで、配管108に供給する分岐排ガス131の流量を調整することができる。   The pipe 117 is a branch pipe of the pipe 106 and has one end connected to the pipe 106 and the other end connected to the pipe 108. The pipe 117 is connected between a connection part of the pipe 108 with the pipe 112 and a connection part with the boiler body 31. That is, the pipe 117 is disposed at a position downstream of the branching position with the pipe 112 and upstream of the boiler body 31 in the flow direction of the pyrolysis gas 132. The pipe 117 can supply a part of the branched exhaust gas 131 to the pipe 108. The valve 118 is provided in the pipe 117. The valve 118 can adjust the flow rate of the branched exhaust gas 131 supplied to the pipe 108 by switching between opening and closing.

配管120は、一方の端部が排ガス配管50と接続し、他方の端部が配管106と接続している。配管120は、排ガス配管50の電気集塵機55の下流側で誘引送風機56の上流側となる位置に接続している。また、配管120は、配管106の配管117との接続部よりも下流側で、フィーダ25との接続よりも上流側となる位置に接続している。配管120には、ガス再循環ファン122が配置されており、ガス再循環ファン122により、排ガス配管50からフィーダ25に向けて排ガス136を流す。排ガス136は、排ガス配管50の配管106が接続している部分周辺を流れる排ガスの一部である。なお、排ガス136は、分岐排ガス131を取得する位置よりも下流側となる排ガス配管50から取得される排ガスである。このため、排ガス136は、分岐排ガス131よりも低温のガスとなる。加熱手段100は、配管120から配管106に供給する排ガス136の量を調整することで、配管106からフィーダ25に供給する分岐排ガス131の温度を調整することができる。   The pipe 120 has one end connected to the exhaust gas pipe 50 and the other end connected to the pipe 106. The pipe 120 is connected to a position on the downstream side of the electric dust collector 55 of the exhaust gas pipe 50 and on the upstream side of the induction blower 56. Further, the pipe 120 is connected to a position downstream of the connection portion of the pipe 106 with the pipe 117 and upstream of the connection with the feeder 25. A gas recirculation fan 122 is disposed in the pipe 120, and the exhaust gas 136 flows from the exhaust gas pipe 50 toward the feeder 25 by the gas recirculation fan 122. The exhaust gas 136 is a part of the exhaust gas flowing around the portion where the pipe 106 of the exhaust gas pipe 50 is connected. The exhaust gas 136 is exhaust gas acquired from the exhaust gas pipe 50 on the downstream side of the position where the branch exhaust gas 131 is acquired. For this reason, the exhaust gas 136 is a lower temperature gas than the branched exhaust gas 131. The heating unit 100 can adjust the temperature of the branched exhaust gas 131 supplied from the pipe 106 to the feeder 25 by adjusting the amount of the exhaust gas 136 supplied from the pipe 120 to the pipe 106.

制御部130は、加熱手段100の各部、具体的には、ガス再循環ファン116、122、バルブ118の動作を制御し、フィーダ25に供給する分岐排ガス131の流量、温度や、ボイラ本体に供給する熱分解ガス132の流量、温度を調整する。また、制御部130は、各部の動作を制御することで、配管106で煙道42から分岐する排ガス(分岐排ガス131)の量を調整する。   The control unit 130 controls the operation of each part of the heating means 100, specifically, the gas recirculation fans 116 and 122 and the valve 118, and supplies the flow rate and temperature of the branched exhaust gas 131 supplied to the feeder 25 and the boiler body. The flow rate and temperature of the pyrolysis gas 132 to be adjusted are adjusted. Moreover, the control part 130 adjusts the quantity of the waste gas (branch waste gas 131) branched from the flue 42 by the piping 106 by controlling the operation | movement of each part.

加熱手段100は、以上のような構成であり、配管106により、キルン104のバイオマスを保持、搬送している領域に分岐排ガス131を直接供給する。また、キルン104を通過した分岐排ガス131は、熱分解ガス132として配管108から排出される。これにより、加熱手段100は、分岐排ガス131でキルン104にあるバイオマスを直接加熱により加熱することができ、キルン104にあるバイオマス140を炭化バイオマス142とすることができる。また、加熱手段100は、節炭器47とエアヒータ51との間の煙道42または排ガス配管50を流れる排ガスを分岐して分岐排ガス131とし、分岐排ガス131をバイオマスの加熱源として用いることで、バイオマスを好適に炭化することができる。このように、バイオマス供給装置11は、加熱手段100でバイオマスを加熱し、炭化させることでバイオマスを粉砕しやすくすることができる。   The heating means 100 is configured as described above, and the branched exhaust gas 131 is directly supplied to a region where the biomass in the kiln 104 is held and transported by the pipe 106. Further, the branched exhaust gas 131 that has passed through the kiln 104 is discharged from the pipe 108 as the pyrolysis gas 132. Thereby, the heating means 100 can heat the biomass in the kiln 104 with the branched exhaust gas 131 by direct heating, and the biomass 140 in the kiln 104 can be made into the carbonized biomass 142. In addition, the heating unit 100 branches the exhaust gas flowing through the flue 42 or the exhaust gas pipe 50 between the economizer 47 and the air heater 51 into the branched exhaust gas 131, and uses the branched exhaust gas 131 as a biomass heating source. Biomass can be suitably carbonized. Thus, the biomass supply apparatus 11 can make it easy to grind | pulverize biomass by heating biomass by the heating means 100 and carbonizing it.

また、加熱手段100は、バイオマスの加熱時に発生するタール分等の不要な物質を配管108でボイラ本体31に案内することで、ボイラ本体31で燃焼させることができる。これにより、不要な物質がフィーダ25内や炭化バイオマス142に付着してバイオマス供給装置11に残留することを抑制することができる。   Moreover, the heating means 100 can be made to burn with the boiler main body 31 by guiding unnecessary substances, such as a tar content generated at the time of heating biomass, to the boiler main body 31 through the pipe 108. Thereby, it can suppress that an unnecessary substance adheres in the feeder 25 and the carbonized biomass 142, and remains in the biomass supply apparatus 11. FIG.

また、加熱手段100は、バイオマスの搬送方向と反対の方向に分岐排ガスを供給すること(搬送方向と排ガスの流れ方向が逆方向となる向きで分岐排ガスを供給すること)、つまり向流式供給することで、キルン104の搬送方向終端側(出口側)に分岐排ガスの最も高温な部分を吹き付けることができる。これにより、バイオマス140をより確実に炭化することができる。なお、本実施形態では、搬送方向と排ガスの流れ方向が逆方向となる向きで供給したが、これには限定されない。例えば、バイオマスの搬送方向と並向な方向に排ガスを供給してもよい。排ガスを並向となる方向で供給することで、分岐排ガスの流れによりバイオマスを搬送することができる。   Further, the heating means 100 supplies the branched exhaust gas in a direction opposite to the biomass transport direction (supplies the branched exhaust gas in a direction in which the transport direction and the exhaust gas flow direction are opposite to each other), that is, countercurrent supply. By doing so, the hottest portion of the branched exhaust gas can be sprayed on the end side (exit side) of the kiln 104 in the conveyance direction. Thereby, the biomass 140 can be carbonized more reliably. In addition, in this embodiment, although it supplied in the direction from which a conveyance direction and the flow direction of waste gas become a reverse direction, it is not limited to this. For example, the exhaust gas may be supplied in a direction parallel to the biomass transport direction. By supplying exhaust gas in a parallel direction, biomass can be conveyed by the flow of branched exhaust gas.

バイオマス供給装置11は、以上のような構成であり、加熱手段100によりフィーダ25を流れるバイオマス140を加熱する。また、バイオマス供給装置11は、制御部130が、加熱手段100の各部の動作を制御することで、排出されるバイオマス140の温度を、一定範囲、具体的には、バイオマスが好適に炭化する所定の温度範囲まで加熱することができる。   The biomass supply apparatus 11 is configured as described above, and heats the biomass 140 flowing through the feeder 25 by the heating means 100. Moreover, the biomass supply apparatus 11 controls the operation | movement of each part of the heating means 100, and the biomass supply apparatus 11 sets the temperature of the biomass 140 discharged | emitted to the fixed range, specifically, the biomass suitably carbonizes. It is possible to heat to the temperature range.

ここで、バイオマスが好適に炭化する所定の温度範囲は、250℃以上400℃以下とすることが好ましい。ここで、図3は、バイオマスの温度と、各成分の割合との関係を示すグラフであり、図4は、粉砕動力比と所定粒径までの粉砕時間との関係を示すグラフである。図3は、縦軸を重量割合[%]とし、バイオマスを各温度に加熱した場合(加熱前、150℃、200℃、250℃、300℃)の各成分の重量割合の関係を示している。また、図4は、縦軸をミル(粉砕装置)における所定粒径までの推定粉砕動力比をとし、横軸をボールミル(粉砕装置)での所定粒径までの粉砕時間[s]とした。なお、図3には、木質ペレットAを、生の状態(加熱前)、150℃、200℃、250℃、300℃の加熱した状態にした場合の、推定粉砕動力比と、ボールミル(粉砕装置)での所定粒径までの粉砕時間との関係を計測した結果を示す。また、図4には、比較のため、加熱していない木質チップA、木質チップB、木質ペレットBのそれぞれについても推定粉砕動力比と、ボールミル(粉砕装置)での所定粒径までの粉砕時間との関係を計測した結果も示す。   Here, the predetermined temperature range in which the biomass is suitably carbonized is preferably 250 ° C. or more and 400 ° C. or less. Here, FIG. 3 is a graph showing the relationship between the biomass temperature and the ratio of each component, and FIG. 4 is a graph showing the relationship between the pulverization power ratio and the pulverization time up to a predetermined particle size. FIG. 3 shows the relationship of the weight ratio of each component when the vertical axis is the weight ratio [%] and the biomass is heated to each temperature (before heating, 150 ° C., 200 ° C., 250 ° C., 300 ° C.). . In FIG. 4, the vertical axis represents the estimated pulverization power ratio up to a predetermined particle size in the mill (pulverizer), and the horizontal axis represents the pulverization time [s] to the predetermined particle size in the ball mill (pulverizer). FIG. 3 shows an estimated pulverization power ratio and a ball mill (pulverizer) when the wood pellet A is heated to a raw state (before heating), 150 ° C., 200 ° C., 250 ° C., and 300 ° C. The result of having measured the relationship with the grinding | pulverization time to the predetermined particle size in ()) is shown. For comparison, FIG. 4 also shows an estimated pulverization power ratio and a pulverization time to a predetermined particle size in a ball mill (pulverizer) for each of the unheated wood chip A, wood chip B, and wood pellet B. The result of measuring the relationship with is also shown.

バイオマスは、図3に示すように、加熱される温度により、成分の割合が変化し、一定の温度を超えるとガス成分やタールが析出される。また、バイオマスは、高い温度に加熱するほど、もろくなる。具体的には、木質ペレットを加熱するとボールミル(粉砕装置)での所定粒径までの粉砕時間が加熱していない木質ペレットの粉砕時間よりも短くなる。さらに、木質ペレットを加熱する温度を高くすると粉砕時間がさらに短くなる。例えば、図4に示すように、木質ペレットAは、150℃に加熱するとボールミル(粉砕装置)での所定粒径までの粉砕時間が加熱していない木質ペレットBの粉砕時間よりも短くなる。さらに、木質ペレットAを200℃、250℃と加熱する温度を高くすると粉砕時間がさらに短くなる。ここで、ミル(粉砕装置)における所定粒径までの推定粉砕動力比は、粉砕時間に比例するため、粉砕時間が短くなることで、粉砕に必要な動力も少なくなる。   As shown in FIG. 3, in biomass, the proportion of components changes depending on the temperature at which it is heated, and when it exceeds a certain temperature, gas components and tar are deposited. In addition, the biomass becomes brittle as it is heated to a higher temperature. Specifically, when wood pellets are heated, the grinding time to a predetermined particle size in a ball mill (grinding device) becomes shorter than the grinding time of wood pellets that are not heated. Furthermore, if the temperature at which the wood pellets are heated is increased, the pulverization time is further shortened. For example, as shown in FIG. 4, when the wood pellet A is heated to 150 ° C., the pulverization time up to a predetermined particle size in a ball mill (pulverization apparatus) becomes shorter than the pulverization time of the wood pellet B that is not heated. Furthermore, if the temperature at which the wood pellet A is heated to 200 ° C. and 250 ° C. is increased, the pulverization time is further shortened. Here, since the estimated pulverization power ratio up to a predetermined particle size in the mill (pulverization apparatus) is proportional to the pulverization time, the pulverization time is shortened, so that the power required for pulverization is also reduced.

以上より、バイオマスは、温度を高くするほど粉砕しやすくなる。しかしながら、バイオマスは温度が高くなりすぎると、バイオマスに含まれる可燃成分がガスとして排出されてしまい、バイオマスの熱量が低減してしまう。ここで、バイオマスを好適に炭化できる温度とは、熱量の低減を抑制しつつ、バイオマスが粉砕しやすくなる温度であり、バイオマスの種類によって異なる温度範囲、温度となる。ここで、バイオマスは、温度範囲を250℃以上400℃以下とすることで、熱量の低減を抑制し(具体的には、排出されるガス成分、タール成分を20%から50%以下に抑え、つまり多くても50%以下に抑え)つつ、粉砕にかかる時間を石炭と同程度以下の時間とすることができる。つまり、加熱手段100は、上記範囲に加熱することで、バイオマスの熱量の低減を抑制しつつ、粉砕しやすくすることができる。   As mentioned above, biomass becomes easy to grind, so that temperature is raised. However, if the temperature of the biomass becomes too high, combustible components contained in the biomass are discharged as gas, and the amount of heat of the biomass is reduced. Here, the temperature at which the biomass can be suitably carbonized is a temperature at which the biomass is easily pulverized while suppressing a reduction in the amount of heat, and is a temperature range and temperature that vary depending on the type of biomass. Here, the biomass has a temperature range of 250 ° C. or more and 400 ° C. or less, thereby suppressing a reduction in the amount of heat (specifically, the discharged gas component and tar component are suppressed to 20% to 50% or less, In other words, the time required for the pulverization can be set to be equal to or less than that of coal while being suppressed to 50% or less at most. That is, the heating means 100 can be easily pulverized while suppressing the reduction in the amount of heat of biomass by heating to the above range.

以上の関係に基づいて、加熱手段100は、バイオマス140がもろくなり、かつ、熱量の低下も抑制することができる温度である、好適に炭化する所定の温度範囲でバイオマス140を加熱する。なお、図3及び図4に示す例では、加熱手段100は、バイオマス140を250℃から400℃の間の温度に加熱する。これにより、加熱手段100は、熱量の低減影響を抑制しつつ、バイオマスを粉砕しやすくすることができる。バイオマス供給装置11は、バイオマスを粉砕しやすい状態にして、フィーダ25の排出口から粉砕装置26に排出(供給)する。粉砕装置26に搬送されたバイオマスは、粉砕装置26で粉砕される。この際に、粉砕装置26には、前処理ユニット19及び加熱手段100で炭化された炭化バイオマス142で供給されるため、少ない動力、かつ短時間で所定の粒径に粉砕することができる。バイオマス供給装置11は、バイオマスの粉砕性が向上することによりA/C(バイオマス粉砕量あたりの空気量)を適切に下げることができ、粉砕装置26で粉砕した後、ボイラ本体31でダイレクトに燃焼させることが可能となる。これにより、ビンシステムを用いなくても、安定燃焼を実現できる。   Based on the above relationship, the heating means 100 heats the biomass 140 within a predetermined temperature range in which the biomass 140 becomes brittle and can be suitably carbonized, which is a temperature at which the amount of heat can be suppressed. In the example shown in FIGS. 3 and 4, the heating unit 100 heats the biomass 140 to a temperature between 250 ° C. and 400 ° C. Thereby, the heating means 100 can make it easy to pulverize biomass while suppressing the effect of reducing the amount of heat. The biomass supply device 11 makes the biomass easy to pulverize and discharges (supplies) the biomass from the discharge port of the feeder 25 to the pulverization device 26. The biomass conveyed to the pulverizing device 26 is pulverized by the pulverizing device 26. At this time, since the pulverizing apparatus 26 is supplied with the carbonized biomass 142 carbonized by the pretreatment unit 19 and the heating means 100, it can be pulverized to a predetermined particle size in a short time with less power. The biomass supply device 11 can appropriately reduce A / C (the amount of air per biomass pulverization amount) by improving the pulverization ability of the biomass, and after directly pulverizing with the pulverization device 26, it is directly combusted with the boiler body 31. It becomes possible to make it. Thus, stable combustion can be realized without using a bin system.

バイオマス供給装置11は、加熱源として分岐排ガス131を用いることで、発電システム10で発生する熱を有効に利用することができる。これにより、発電システム10は、装置全体での熱の利用効率を高くすることができる。   The biomass supply apparatus 11 can effectively use the heat generated in the power generation system 10 by using the branched exhaust gas 131 as a heating source. Thereby, the electric power generation system 10 can make high the utilization efficiency of the heat in the whole apparatus.

バイオマス供給装置11は、加熱源として分岐排ガス131を用いることで、バイオマス140を好適に炭化させることができる。つまり、排ガスの流れ方向において、節炭器47の配置領域の上流側端部から、エアヒータ51の配置領域の上流側の端部までの間を流れる排ガスを分岐した分岐排ガス131でバイオマス140を加熱することで、上述したバイオマスが好適に炭化する所定の温度範囲に加熱することができる。なお、一般的には、節炭器の出口における排ガスの温度は、350℃程度となる。これにより、バイオマス供給装置11は、簡単にバイオマスを好適に炭化することができる。また、バイオマス供給装置11は、加熱源として分岐排ガス131を用いることで、酸素の割合が少ないガスでバイオマスを加熱することができる。これによりバイオマスを高温で加熱しても発火しにくい状態にすることができる。ここで、バイオマス供給装置11は、分岐排ガス131の温度を250℃以上400℃以下とすることが好ましい。分岐排ガス131の温度を上記範囲とすることで分岐排ガス131によってバイオマスを好適に炭化することができる。なお、分岐排ガス131は、節炭器47の配置領域の上流側端部から、エアヒータ51の配置領域の上流側の端部までの間にある排ガスを用いることで、基本的に上記範囲の温度とすることができる。   The biomass supply apparatus 11 can suitably carbonize the biomass 140 by using the branched exhaust gas 131 as a heating source. That is, in the flow direction of the exhaust gas, the biomass 140 is heated by the branched exhaust gas 131 that branches the exhaust gas flowing between the upstream end portion of the arrangement region of the economizer 47 and the upstream end portion of the arrangement region of the air heater 51. By doing, it can heat to the predetermined | prescribed temperature range in which the biomass mentioned above carbonizes suitably. In general, the temperature of the exhaust gas at the outlet of the economizer is about 350 ° C. Thereby, the biomass supply apparatus 11 can carbonize biomass suitably easily. Moreover, the biomass supply apparatus 11 can heat biomass with gas with a low oxygen ratio by using the branched exhaust gas 131 as a heating source. Thereby, even if biomass is heated at high temperature, it can be made into the state which is hard to ignite. Here, the biomass supply apparatus 11 preferably sets the temperature of the branched exhaust gas 131 to 250 ° C. or more and 400 ° C. or less. By setting the temperature of the branched exhaust gas 131 within the above range, the biomass can be suitably carbonized by the branched exhaust gas 131. The branch exhaust gas 131 basically uses the exhaust gas between the upstream end of the arrangement region of the economizer 47 and the upstream end of the arrangement region of the air heater 51, so that the temperature within the above range is basically used. It can be.

本実施形態のバイオマス供給装置11の加熱手段100は、さらに配管120及びガス再循環ファン122を設けることで分岐排ガス131の温度を調整することができる。これにより、より確実にバイオマスを好適に炭化することができる。また、加熱手段100は、分岐排ガス131の温度が調整できることで、バイオマス種類に応じて、フィーダ25に供給する分岐排ガス131の温度を調整することができる。これにより、バイオマス種類に応じた適正な加熱温度に調整することができる。   The heating unit 100 of the biomass supply apparatus 11 of the present embodiment can further adjust the temperature of the branched exhaust gas 131 by providing the pipe 120 and the gas recirculation fan 122. Thereby, biomass can be more suitably carbonized more reliably. Moreover, the heating means 100 can adjust the temperature of the branch exhaust gas 131 supplied to the feeder 25 according to the biomass type because the temperature of the branch exhaust gas 131 can be adjusted. Thereby, it can adjust to the appropriate heating temperature according to biomass kind.

バイオマス供給装置11は、配管108を設け、バイオマス140の加熱時に生じた熱分解ガス132をボイラ本体31に案内することで、熱分解ガス132を燃焼させることができる。これにより、バイオマス140の炭化時に発生した可燃成分を好適に燃焼させることができ、発電システム10の全体での熱の利用効率を高くすることができる。また、熱分解ガス132を燃やすことで、上述したように、炭化時に生じるタール等がバイオマス供給装置11内に残留することを抑制することができる。これによりタールがバイオマスに付着して、バイオマスの搬送効率が低下したり、前処理ユニット19の各部に付着したりすることを抑制することができる。以上より、前処理ユニット19及びバイオマス供給装置11は、効率よくバイオマスを粉砕することができる。さらに、発生したタールを適切にボイラ本体31で燃焼させることで、装置へのタールの付着を抑制することができ、装置のメンテナンス等も簡単にすることができる。なお、配管108は、本実施形態のようにボイラ本体31の底部か、燃焼バーナ33、34が配置されている位置に接続されることが好ましい。   The biomass supply apparatus 11 can combust the pyrolysis gas 132 by providing the pipe 108 and guiding the pyrolysis gas 132 generated when the biomass 140 is heated to the boiler body 31. Thereby, the combustible component generated at the time of carbonization of the biomass 140 can be suitably combusted, and the heat utilization efficiency of the entire power generation system 10 can be increased. Moreover, by burning the pyrolysis gas 132, as described above, it is possible to suppress tar or the like generated during carbonization from remaining in the biomass supply apparatus 11. Thereby, tar can adhere to biomass and it can suppress that the conveyance efficiency of biomass falls or it adheres to each part of pretreatment unit 19. From the above, the pretreatment unit 19 and the biomass supply apparatus 11 can efficiently pulverize biomass. Furthermore, by appropriately burning the generated tar in the boiler main body 31, it is possible to suppress the adhesion of tar to the apparatus, and to simplify the maintenance of the apparatus. The pipe 108 is preferably connected to the bottom of the boiler body 31 or a position where the combustion burners 33 and 34 are arranged as in this embodiment.

バイオマス供給装置11は、配管117を設け、分岐排ガス131の一部を配管108に供給することで、配管108内の温度が低下することを抑制することができる。これにより、配管108内で、熱分解ガス132内のタール分が固化、液化することを抑制でき、配管108内に付着することを抑制することができる。以上より、装置のメンテナンスを簡単にすることができる。   The biomass supply apparatus 11 can suppress the temperature in the pipe 108 from decreasing by providing the pipe 117 and supplying a part of the branched exhaust gas 131 to the pipe 108. Thereby, it can suppress that the tar part in the pyrolysis gas 132 solidifies and liquefies in the piping 108, and can suppress adhering in the piping 108. As described above, the maintenance of the apparatus can be simplified.

また、加熱手段100で、バイオマス140を分岐排ガス131で加熱することで、バイオマス140を乾燥させることができる。これにより、前処理ユニット19は、粉砕装置26への投入時には、バイオマスを乾燥した状態にすることができ、粉砕装置26での乾燥を省略することができる。これにより、粉砕装置26に供給する空気として種々の空気を用いることができ、常温の空気も用いることができる。   Moreover, the biomass 140 can be dried by heating the biomass 140 with the branched exhaust gas 131 by the heating means 100. Thereby, the pretreatment unit 19 can put the biomass in a dry state when it is put into the crushing device 26, and can omit the drying in the crushing device 26. Thereby, various air can be used as the air supplied to the pulverizer 26, and air at normal temperature can also be used.

バイオマス供給装置11は、バイオマスの搬送方向において、加熱手段100でバイオマスを加熱する位置よりも下流側でかつ粉砕装置26よりも上流側に冷却装置101を配置することで、炭化バイオマス142の取り扱いを容易にすることができる。具体的には、炭化バイオマス142を低い温度にすることで、より安定した状態とすることができる。なお、冷却装置101は、設けることが好ましいがなくてもよい。また、加熱手段100は、上記効果を得ることができるため、配管106、108に加え、加熱手段100の各配管を設けることが好ましいがなくてもよい。   The biomass supply device 11 arranges the cooling device 101 downstream from the position where the biomass is heated by the heating means 100 and upstream from the crushing device 26 in the biomass transport direction, thereby handling the carbonized biomass 142. Can be easily. Specifically, a more stable state can be achieved by setting the carbonized biomass 142 to a low temperature. Note that the cooling device 101 is not necessarily provided. In addition, since the heating unit 100 can obtain the above-described effect, it is not necessary to provide each piping of the heating unit 100 in addition to the piping 106 and 108.

ここで、バイオマス供給装置11では、バイオマスの加熱手段100として、フィーダ25であるキルン104の内部に分岐排ガス131を通過させることでバイオマスを直接加熱したが、本発明はこれに限定されない、加熱手段は、貯蔵サイロ20から排出されてから粉砕装置26で粉砕が完了するまでの間にバイオマスを加熱し炭化させていればよい。なお、バイオマス供給装置11は、粉砕を開始する前のバイオマスを加熱し炭化することが好ましい。バイオマス供給装置11は、例えば、前処理ユニット19の搬送コンベア23、バイオマス貯蔵タンク24、フィーダ25の少なくとも一箇所にあるバイオマスを加熱することが好ましい。また、バイオマスの加熱方法は、直接加熱に限定されず、間接加熱により加熱してもよい。また、バイオマスを搬送する機構としては、本実施形態のキルン(例えばロータリーキルン)に限定されず、スクリューフィーダ、スチームチューブドライヤなどを、種々の機構を用いることができる。以下、図5から図9を用いてバイオマス供給装置の他の実施形態について説明する。   Here, in the biomass supply apparatus 11, the biomass is directly heated by passing the branched exhaust gas 131 through the kiln 104 as the feeder 25 as the biomass heating unit 100, but the present invention is not limited to this, the heating unit The biomass may be heated and carbonized after being discharged from the storage silo 20 until the pulverization apparatus 26 completes the pulverization. In addition, it is preferable that the biomass supply apparatus 11 heats and carbonizes the biomass before starting a grinding | pulverization. It is preferable that the biomass supply apparatus 11 heats the biomass in at least one place of the transport conveyor 23, the biomass storage tank 24, and the feeder 25 of the pretreatment unit 19, for example. Moreover, the heating method of biomass is not limited to direct heating, You may heat by indirect heating. Moreover, as a mechanism which conveys biomass, it is not limited to the kiln (for example, rotary kiln) of this embodiment, A screw feeder, a steam tube dryer, etc. can use various mechanisms. Hereinafter, another embodiment of the biomass supply apparatus will be described with reference to FIGS.

図5及び図6を用いて、バイオマス供給装置の他の実施形態について説明する。図5及び図6は、バイオマス供給装置160の前処理ユニット161のうちフィーダ162の周辺部を示している。ここで、図5は、前処理ユニットの概略構成の一部を示す模式図であり、図6は、前処理ユニットの概略構成の一部を示す断面図である。ここで、図5及び図6に示すバイオマス供給装置160は、前処理ユニット161のフィーダ162、加熱手段163の一部の構成を除いて他の構成は、バイオマス供給装置11と同様の構成である。そこで、図5及び図6では、バイオマス供給装置11と同様の構成については、同一の符号を付してその説明を省略し、以下、バイオマス供給装置160に特有の点を説明する。バイオマス供給装置160は、前処理ユニット161と、加熱手段163と、制御部130と、温度検出部164と、を有する。また、前処理ユニット161は、図5に示すように、バイオマス貯蔵タンク24と、フィーダ162と、を備える。なお、バイオマス供給装置160は、図5および図6に示す構成以外にも貯蔵サイロ20、払い出しコンベア22等、バイオマス供給装置11と同様の構成の各部を備えている。バイオマス供給装置160もフィーダ162と配管80が貯蔵後供給手段となる。   Another embodiment of the biomass supply apparatus will be described with reference to FIGS. 5 and 6. 5 and 6 show a peripheral portion of the feeder 162 in the pretreatment unit 161 of the biomass supply apparatus 160. FIG. Here, FIG. 5 is a schematic diagram showing a part of the schematic configuration of the preprocessing unit, and FIG. 6 is a cross-sectional view showing a part of the schematic configuration of the preprocessing unit. Here, the biomass supply apparatus 160 shown in FIGS. 5 and 6 has the same configuration as the biomass supply apparatus 11 except for some configurations of the feeder 162 and the heating means 163 of the pretreatment unit 161. . Therefore, in FIG. 5 and FIG. 6, the same components as those of the biomass supply apparatus 11 are denoted by the same reference numerals, and the description thereof is omitted. Hereinafter, points unique to the biomass supply apparatus 160 will be described. The biomass supply device 160 includes a pretreatment unit 161, a heating unit 163, a control unit 130, and a temperature detection unit 164. In addition, the pretreatment unit 161 includes a biomass storage tank 24 and a feeder 162, as shown in FIG. In addition, the biomass supply apparatus 160 is provided with each part of the structure similar to the biomass supply apparatus 11, such as the storage silo 20 and the delivery conveyor 22, besides the structure shown in FIG. 5 and FIG. In the biomass supply device 160, the feeder 162 and the pipe 80 serve as supply means after storage.

フィーダ162は、バイオマス貯蔵タンク24と、配管80との間に配置されたスクリューフィーダであり、回転する2本の回転部167と、2本の回転部167の外周を覆い、バイオマスを保持する案内管168と、回転部167を回転させる駆動源169と、を有する。回転部167は、外周にねじ溝が形成されたスクリューであり、回転することで、一方向にバイオマスを搬送する。また、回転部167は、中空の形状である。また、案内管168は、内部に回転部167が収納された管路であり、バイオマスを回転部167の周囲に保持している。また、駆動源169は、回転部167を回転させる駆動源であり、モータ等で構成されている。   The feeder 162 is a screw feeder that is disposed between the biomass storage tank 24 and the pipe 80, covers the outer periphery of the two rotating parts 167 that rotate, and the two rotating parts 167, and guides the biomass. It has a tube 168 and a drive source 169 that rotates the rotating part 167. The rotating unit 167 is a screw having a screw groove formed on the outer periphery, and conveys biomass in one direction by rotating. The rotating part 167 has a hollow shape. The guide tube 168 is a conduit in which the rotating unit 167 is housed, and holds the biomass around the rotating unit 167. The drive source 169 is a drive source that rotates the rotating unit 167, and includes a motor or the like.

加熱手段163は、ジャケット165と、伝熱配管166と、配管106と、配管108と、ガス再循環ファン116と、を有し、フィーダ162により搬送されるバイオマスを加熱する。ジャケット165は、案内管168の外周に接して配置された中空の部材である。ジャケット165は、案内管168のバイオマス140が保持される領域の外周を覆うように配置されている。なお、本実施形態では、案内管168の上面以外を覆うように配置されている。伝熱配管166は、回転部167の中空部分に挿入して配置された配管である。   The heating means 163 includes a jacket 165, a heat transfer pipe 166, a pipe 106, a pipe 108, and a gas recirculation fan 116, and heats the biomass conveyed by the feeder 162. The jacket 165 is a hollow member disposed in contact with the outer periphery of the guide tube 168. The jacket 165 is disposed so as to cover the outer periphery of the region where the biomass 140 of the guide tube 168 is held. In the present embodiment, the guide tube 168 is disposed so as to cover other than the upper surface. The heat transfer pipe 166 is a pipe arranged by being inserted into the hollow portion of the rotating portion 167.

次に、配管106は、一方の端部が、上述したように煙道42または排ガス配管50の節炭器47の配置領域の上流側端部から、エアヒータ51の配置領域の上流側の端部までの間と接続しており、他方の端部が分岐管106a、106bに分岐している。分岐管106aは、伝熱配管166と接続している。分岐管106bは、ジャケット165と接続している。また、配管106には、ガス再循環ファン116が設けられている。次に、配管108は、一方の端部が、ボイラ本体31と接続し、他方の端部が分岐管108a、108bに分岐している。分岐管108aは、伝熱配管166と接続している。分岐管108bは、ジャケット165と接続している。   Next, as for the piping 106, one edge part is an upstream edge part of the arrangement | positioning area of the air heater 51 from the upstream edge part of the arrangement | positioning area of the economizer 47 of the flue 42 or the exhaust gas piping 50 as mentioned above. The other end is branched into branch pipes 106a and 106b. The branch pipe 106 a is connected to the heat transfer pipe 166. The branch pipe 106 b is connected to the jacket 165. The pipe 106 is provided with a gas recirculation fan 116. Next, the pipe 108 has one end connected to the boiler body 31 and the other end branched to the branch pipes 108a and 108b. The branch pipe 108 a is connected to the heat transfer pipe 166. The branch pipe 108 b is connected to the jacket 165.

加熱手段163は、以上のような構成であり、分岐排ガス131を配管106、分岐管106a、106bを介して、ジャケット165、伝熱配管166に供給する。ジャケット165、伝熱配管166は、供給される排ガスの熱により加熱された状態となり、供給された熱をフィーダ162の内部にあるバイオマスに伝える。加熱手段163は、このようにして、フィーダ162により搬送されるバイオマスを加熱する。また、ジャケット165、伝熱配管166を通過した分岐排ガス131は、加熱されたバイオマスから発生したタール分やガス成分が含まれ熱分解ガス132となる。熱分解ガス132は、分岐管108a、108b及び配管108を通って、ボイラ本体31に供給される。ボイラ本体31に供給された熱分解ガス132は、ボイラ30で燃焼される。これにより、ボイラ30でバイオマスをより効率よく燃焼できる状態とする。   The heating means 163 is configured as described above, and supplies the branched exhaust gas 131 to the jacket 165 and the heat transfer pipe 166 through the pipe 106 and the branch pipes 106a and 106b. The jacket 165 and the heat transfer pipe 166 are heated by the heat of the supplied exhaust gas, and transmit the supplied heat to the biomass inside the feeder 162. The heating means 163 heats the biomass conveyed by the feeder 162 in this way. Further, the branched exhaust gas 131 that has passed through the jacket 165 and the heat transfer pipe 166 contains tar components and gas components generated from the heated biomass and becomes a pyrolysis gas 132. The pyrolysis gas 132 is supplied to the boiler body 31 through the branch pipes 108 a and 108 b and the pipe 108. The pyrolysis gas 132 supplied to the boiler body 31 is burned in the boiler 30. Thereby, it is set as the state which can burn biomass more efficiently with the boiler 30. FIG.

温度検出部164は、フィーダ162のバイオマス140の排出口の近傍の雰囲気、あるいはバイオマス自身の温度を計測する手段である。温度検出部164は、計測したバイオマス140の温度を制御部130に送る。   The temperature detection unit 164 is a means for measuring the atmosphere in the vicinity of the outlet of the biomass 140 of the feeder 162 or the temperature of the biomass itself. The temperature detection unit 164 sends the measured temperature of the biomass 140 to the control unit 130.

制御部130は、温度検出部164での計測結果に基づいて、フィーダ162及び加熱手段163の動作を制御する。また、制御部130は、その他、各種機構の動作を制御する。   The control unit 130 controls the operation of the feeder 162 and the heating unit 163 based on the measurement result of the temperature detection unit 164. In addition, the control unit 130 controls operations of various other mechanisms.

バイオマス供給装置160は、以上のような構成であり、加熱手段163によりフィーダ162を流れるバイオマス140を加熱する。また、バイオマス供給装置160は、制御部130が、温度検出部164での温度の計測結果に基づいて、加熱手段163の動作を制御し、バイオマス140の温度を制御することで、排出されるバイオマス140の温度を、一定範囲、具体的には、バイオマスを好適に炭化できる温度の範囲とすることができる。またバイオマス供給装置160のようにバイオマスを搬送する機構としてスクリューフィーダを用いた場合も、加熱手段163でバイオマス供給装置11と同様に加熱することで、同様の効果を得ることができる。   The biomass supply device 160 is configured as described above, and heats the biomass 140 flowing through the feeder 162 by the heating means 163. Moreover, the biomass supply apparatus 160 controls the operation | movement of the heating means 163 based on the temperature measurement result in the temperature detection part 164, and the biomass discharged | emitted by the control part 130 controlling the temperature of the biomass 140. The temperature of 140 can be set within a certain range, specifically, a temperature range in which the biomass can be suitably carbonized. Moreover, also when using a screw feeder as a mechanism which conveys biomass like the biomass supply apparatus 160, the same effect can be acquired by heating similarly to the biomass supply apparatus 11 with the heating means 163. FIG.

また、制御部130は、温度検出部164の計測結果に基づいて、フィーダ25の出口の近傍のバイオマスが好適に炭化できる温度の範囲となるように、加熱手段163の加熱動作を制御する。具体的には、加熱手段163による加熱量(例えば、排ガスの供給量)を制御する。制御部130は、フィーダ162によるバイオマスの搬送動作、フィーダ162によるバイオマスの搬送速度等も合わせて制御してもよい。なお、バイオマスの搬送速度は、回転部の回転速度、回転部のスクリューの角度の変更により制御する。また、制御部130は、目標とするバイオマスの温度と、そのバイオマスの温度のときに温度検出部164で計測される温度との関係を予め実験等で算出しておき、算出した結果と温度検出部164で計測される温度とに基づいて、各部の動作を制御することが好ましい。これにより、バイオマスを好適に炭化できる温度の範囲で適切に加熱することができる。なお、温度検出部164により温度計測位置は、本実施形態のように加熱手段が配置されている領域の出口の近傍とすることが好ましいが、本発明はこれに限定されない。また、温度検出部164を設けずに、設定した条件に基づいて加熱動作を制御し、バイオマスを好適に炭化できる温度の範囲に加熱するようにしてもよい。   Further, the control unit 130 controls the heating operation of the heating unit 163 so that the biomass in the vicinity of the outlet of the feeder 25 can be suitably carbonized based on the measurement result of the temperature detection unit 164. Specifically, the heating amount by the heating means 163 (for example, the supply amount of exhaust gas) is controlled. The control unit 130 may also control the biomass conveying operation by the feeder 162, the biomass conveying speed by the feeder 162, and the like. The biomass conveyance speed is controlled by changing the rotation speed of the rotating unit and the angle of the screw of the rotating unit. Further, the control unit 130 calculates in advance an experiment or the like the relationship between the target biomass temperature and the temperature measured by the temperature detection unit 164 at the biomass temperature, and the calculated result and the temperature detection It is preferable to control the operation of each unit based on the temperature measured by the unit 164. Thereby, it can heat appropriately in the temperature range which can carbonize biomass suitably. In addition, although it is preferable that the temperature measurement position by the temperature detection part 164 is the vicinity of the exit of the area | region where the heating means is arrange | positioned like this embodiment, this invention is not limited to this. Further, without providing the temperature detection unit 164, the heating operation may be controlled based on the set conditions, and the biomass may be heated to a temperature range in which the biomass can be suitably carbonized.

次に、図7を用いて、他の実施形態のバイオマス供給装置について説明する。ここで、図7は、前処理ユニットの他の実施形態の一部を示す模式図である。ここで、図7に示すバイオマス供給装置170は、加熱手段172の構成を除いて他の構成は、バイオマス供給装置11と同様の構成である。そこで、バイオマス供給装置11と同様の構成については、同一の符号を付してその説明を省略し、以下、バイオマス供給装置170に特有の点を説明する。図7に示すバイオマス供給装置170は、バイオマス貯蔵タンク24とフィーダ25と配管80とを含む前処理ユニット171と、加熱手段172と、を有する。なお、バイオマス供給装置170は、このほかにもバイオマス供給装置11と同様に、粉砕装置、温度検出部、制御部等を備える。前処理ユニット171も、貯蔵サイロや搬送コンベアを有する。フィーダ25は、キルン104を有する。キルン104は、バイオマス貯蔵タンク24から供給されるバイオマスを配管80まで加熱しつつ案内する窯である。   Next, the biomass supply apparatus of other embodiment is demonstrated using FIG. Here, FIG. 7 is a schematic diagram showing a part of another embodiment of the pretreatment unit. Here, the biomass supply apparatus 170 shown in FIG. 7 has the same configuration as the biomass supply apparatus 11 except for the configuration of the heating means 172. Then, about the structure similar to the biomass supply apparatus 11, the same code | symbol is attached | subjected and the description is abbreviate | omitted, and the point peculiar to the biomass supply apparatus 170 is demonstrated hereafter. A biomass supply apparatus 170 illustrated in FIG. 7 includes a pretreatment unit 171 including a biomass storage tank 24, a feeder 25, and a pipe 80, and a heating unit 172. In addition, the biomass supply apparatus 170 includes a pulverizer, a temperature detection unit, a control unit, and the like in addition to the biomass supply apparatus 11. The pretreatment unit 171 also has a storage silo and a conveyor. The feeder 25 has a kiln 104. The kiln 104 is a kiln that guides the biomass supplied from the biomass storage tank 24 while heating it to the pipe 80.

加熱手段172は、複数の分割ジャケット173aと、配管174と、配管176と、バルブ177と、を有する。なお、加熱手段172は、加熱手段100の配管106と配管108との間に複数の分割ジャケット173aと、配管174と、配管176と、バルブ177と、を配置した構成である。したがって、加熱手段172は、加熱手段100が備える各部を備えており、フィーダ25の周辺部の構成が加熱手段100と異なる。   The heating means 172 includes a plurality of divided jackets 173a, a pipe 174, a pipe 176, and a valve 177. The heating unit 172 has a configuration in which a plurality of divided jackets 173a, a pipe 174, a pipe 176, and a valve 177 are arranged between the pipe 106 and the pipe 108 of the heating unit 100. Therefore, the heating unit 172 includes each unit included in the heating unit 100, and the configuration of the peripheral portion of the feeder 25 is different from that of the heating unit 100.

分割ジャケット173aは、キルン104の外周を覆うように配置された中空部材である。なお、分割ジャケット173aは、バイオマスの搬送方向において、キルン104を複数に分割した各領域に配置されている。配管174は、一方の端部が、配管106と接続しており、他方の端部が複数の分岐管174aと接続している。複数の分岐管174aは、それぞれ別々の分割ジャケット173aと接続している。つまり、加熱手段172は、配管106のバイオマスを加熱する領域側の端部に配管174が設けられている。次に、配管176は、一方の端部が、配管108と接続し、他方の端部が複数の分岐管176aと接続している。つまり、加熱手段172は、配管108のバイオマスを加熱する領域側の端部に配管174が設けられている。複数の分岐管176aは、それぞれ別々の分割ジャケット173aと接続している。バルブ177は、ぞれぞれの分岐管174aに設けられており、開閉することで、分割ジャケット173aに排ガスを供給するか否かを切り換える。また、バルブ177は、開閉することで、夫々の分岐管に供給する排ガスの配分(流量)を調整することもできる。   The division jacket 173a is a hollow member arranged to cover the outer periphery of the kiln 104. In addition, the division | segmentation jacket 173a is arrange | positioned in each area | region which divided | segmented the kiln 104 into plurality in the conveyance direction of biomass. One end of the pipe 174 is connected to the pipe 106, and the other end is connected to the plurality of branch pipes 174a. The plurality of branch pipes 174a are connected to the respective divided jackets 173a. In other words, the heating means 172 is provided with the pipe 174 at the end of the pipe 106 on the region side where the biomass is heated. Next, the pipe 176 has one end connected to the pipe 108 and the other end connected to the plurality of branch pipes 176a. That is, the heating means 172 is provided with the pipe 174 at the end of the pipe 108 on the region side where the biomass is heated. The plurality of branch pipes 176a are connected to the respective divided jackets 173a. The valve 177 is provided in each of the branch pipes 174a, and switches whether to supply exhaust gas to the split jacket 173a by opening and closing. The valve 177 can be opened and closed to adjust the distribution (flow rate) of the exhaust gas supplied to each branch pipe.

加熱手段172は、以上のような構成であり、配管174及び分岐管174aにより、分割ジャケット173aのそれぞれに分岐排ガス131を供給する。また、分割ジャケット173aに供給された排ガスは、配管176及び分岐管176aから排出される。これにより、加熱手段172は、分割ジャケット173aを加熱し、分割ジャケット173aを介して、キルン104にあるバイオマスを間接加熱により加熱することができる。なお、この場合もバイオマスは、好適に炭化できる温度の範囲に加熱する。また、加熱手段172は、各バルブ177の開閉を切り換えることで、分割ジャケット173aの加熱状態を個別に調整することができる。また、加熱手段172は、本実施形態のように、バイオマス140をキルン104内で加熱することで生じる熱分解ガスを配管176に流入させる構成とすることが好ましい。具体的には、キルン104から配管176に向けてのみガスを流すことができる逆支弁付き配管を設けてもよいし、分割ジャケット173aとキルン104との接続部にキルン104から配管176に向けてのみガスを流すことができる逆支弁を設けてもよい。   The heating means 172 is configured as described above, and supplies the branched exhaust gas 131 to each of the split jackets 173a through the pipe 174 and the branch pipe 174a. Further, the exhaust gas supplied to the split jacket 173a is discharged from the pipe 176 and the branch pipe 176a. Thereby, the heating means 172 can heat the split jacket 173a and heat the biomass in the kiln 104 by indirect heating via the split jacket 173a. In this case as well, the biomass is heated to a temperature range that can be suitably carbonized. Further, the heating means 172 can individually adjust the heating state of the split jacket 173a by switching between opening and closing of the valves 177. Moreover, it is preferable that the heating unit 172 has a configuration in which pyrolysis gas generated by heating the biomass 140 in the kiln 104 flows into the pipe 176 as in the present embodiment. Specifically, a pipe with a reverse valve that allows gas to flow only from the kiln 104 toward the pipe 176 may be provided, or a connection portion between the split jacket 173a and the kiln 104 toward the pipe 176 from the kiln 104. You may provide the reverse branch valve which can only flow gas.

次に、図8を用いて、他の実施形態のバイオマス供給装置について説明する。ここで、図8は、前処理ユニットの他の実施形態の一部を示す模式図である。ここで、図8に示すバイオマス供給装置180は、前処理ユニット181の搬送コンベア23に加熱手段182を設けた点を除いて他の構成は、バイオマス供給装置11と同様の構成である。そこで、バイオマス供給装置11と同様の構成については、同一の符号を付してその説明を省略し、以下、バイオマス供給装置180に特有の点を説明する。図8に示すバイオマス供給装置180は、前処理ユニット181と、加熱手段182とを有する。なお、前処理ユニット181は、このほかにも前処理ユニット19と同様に、バイオマス貯蔵タンク、フィーダ、温度検出部、制御部等を備える。また、搬送コンベア23は、前処理ユニット19の搬送コンベア23と同様の構成である。   Next, the biomass supply apparatus of other embodiment is demonstrated using FIG. Here, FIG. 8 is a schematic diagram showing a part of another embodiment of the pretreatment unit. Here, the biomass supply apparatus 180 shown in FIG. 8 has the same configuration as the biomass supply apparatus 11 except that the heating means 182 is provided on the transport conveyor 23 of the pretreatment unit 181. Then, about the structure similar to the biomass supply apparatus 11, the same code | symbol is attached | subjected and the description is abbreviate | omitted, and the point peculiar to the biomass supply apparatus 180 is demonstrated hereafter. A biomass supply apparatus 180 illustrated in FIG. 8 includes a pretreatment unit 181 and a heating unit 182. The pretreatment unit 181 includes a biomass storage tank, a feeder, a temperature detection unit, a control unit, and the like in addition to the pretreatment unit 19 in addition to this. Further, the transport conveyor 23 has the same configuration as the transport conveyor 23 of the pretreatment unit 19.

加熱手段182は、複数の分割ジャケット183aと、配管184と、配管186と、バルブ187と、を有する。なお、加熱手段182は、加熱手段100の配管106と配管108との間に複数の分割ジャケット183aと、配管184と、配管186と、バルブ187と、を配置した構成である。したがって、加熱手段182は、加熱手段100が備える各部を備えている。加熱手段182は、加熱する対象がフィーダ25内のバイオマスから搬送コンベア23内のバイオマスとなった点と、加熱する対象の周辺部の構成が加熱手段100と異なる。   The heating unit 182 includes a plurality of divided jackets 183 a, a pipe 184, a pipe 186, and a valve 187. The heating unit 182 has a configuration in which a plurality of divided jackets 183 a, a pipe 184, a pipe 186, and a valve 187 are arranged between the pipe 106 and the pipe 108 of the heating unit 100. Therefore, the heating unit 182 includes each unit included in the heating unit 100. The heating means 182 differs from the heating means 100 in that the object to be heated is changed from the biomass in the feeder 25 to the biomass in the transport conveyor 23 and the configuration of the periphery of the object to be heated.

分割ジャケット183aは、搬送コンベア23の外周を覆うように配置された中空部材である。なお、分割ジャケット183aは、バイオマスの搬送方向において、搬送コンベア23を複数に分割した各領域に配置されている。配管184は、一方の端部が、配管106と接続しており、他方の端部が複数の分岐管184aと接続している。複数の分岐管184aは、それぞれ別々の分割ジャケット183aと接続している。次に、配管186は、一方の端部が、配管108と接続し、他方の端部が複数の分岐管186aと接続している。複数の分岐管186aは、それぞれ別々の分割ジャケット183aと接続している。バルブ187は、ぞれぞれの分岐管184aに設けられており、開閉することで、分割ジャケット183aに排ガスを供給するか否かを切り換える。   The division jacket 183a is a hollow member disposed so as to cover the outer periphery of the transport conveyor 23. In addition, the division | segmentation jacket 183a is arrange | positioned in each area | region which divided | segmented the conveyance conveyor 23 into multiple in the conveyance direction of biomass. The pipe 184 has one end connected to the pipe 106 and the other end connected to the plurality of branch pipes 184a. The plurality of branch pipes 184a are respectively connected to separate division jackets 183a. Next, the pipe 186 has one end connected to the pipe 108 and the other end connected to the plurality of branch pipes 186a. The plurality of branch pipes 186a are connected to the respective divided jackets 183a. The valve 187 is provided in each of the branch pipes 184a, and switches whether to supply exhaust gas to the split jacket 183a by opening and closing.

加熱手段182は、以上のような構成であり、配管106、配管184及び分岐管184aにより、分割ジャケット183aのそれぞれに分岐排ガス131を供給する。また、分割ジャケット183aに供給された排ガスは、配管186及び分岐管186aから排出される。これにより、加熱手段182は、分割ジャケット183aを加熱し、分割ジャケット183aを介して、搬送コンベア23にあるバイオマスを間接加熱により加熱することができる。なお、この場合もバイオマスは、好適に炭化できる温度の範囲に加熱する。前処理ユニット181のように、搬送コンベア23により搬送されているバイオマスを好適に炭化できる温度の範囲に加熱することでも、上記と同様の効果を得ることができる。また、加熱手段182は、各バルブ187の開閉を切り換えることで、分割ジャケット183aの加熱状態を個別に調整することができる。また、上記実施形態では、間接加熱によりバイオマスを加熱したが、搬送コンベア23により搬送されるバイオマスも直接加熱により加熱するようにしてもよい。また、搬送コンベア23は、ワイヤーメッシュコンベアベルトを用いることが好ましい。これにより、バイオマスをより加熱しやすくすることができる。なお、本実施形態では、搬送コンベア23に対して鉛直方向下側から排ガスを供給したが、これに限定されない。加熱手段は、鉛直方向上側から鉛直方向下側に流れるように搬送コンベア23に分岐排ガス131を供給してもよい。また、加熱手段182も配管186、分岐管186aジャケット183aを通過した分岐排ガス131に、バイオマスが加熱されることで生じる熱分解ガスが加えられた熱分解ガス132を配管108に供給する。   The heating means 182 is configured as described above, and the branched exhaust gas 131 is supplied to each of the split jackets 183a through the pipe 106, the pipe 184, and the branch pipe 184a. Further, the exhaust gas supplied to the split jacket 183a is discharged from the pipe 186 and the branch pipe 186a. Thereby, the heating means 182 can heat the division jacket 183a and heat the biomass in the transport conveyor 23 by indirect heating via the division jacket 183a. In this case as well, the biomass is heated to a temperature range that can be suitably carbonized. The effect similar to the above can also be obtained by heating the biomass being conveyed by the conveyer 23 to a temperature range that can be suitably carbonized like the pretreatment unit 181. Further, the heating means 182 can individually adjust the heating state of the divided jacket 183a by switching the opening and closing of the valves 187. Moreover, in the said embodiment, although biomass was heated by indirect heating, you may make it also heat the biomass conveyed by the conveyance conveyor 23 by direct heating. Moreover, it is preferable to use a wire mesh conveyor belt for the conveyance conveyor 23. Thereby, biomass can be made easier to heat. In the present embodiment, the exhaust gas is supplied to the conveyor 23 from the lower side in the vertical direction, but the present invention is not limited to this. The heating means may supply the branched exhaust gas 131 to the transport conveyor 23 so as to flow from the vertical upper side to the vertical lower side. The heating means 182 also supplies the pipe 108 with a pyrolysis gas 132 obtained by adding a pyrolysis gas generated by heating biomass to the branch exhaust gas 131 that has passed through the pipe 186 and the branch pipe 186a jacket 183a.

次に、図9を用いて、他の実施形態のバイオマス供給装置について説明する。ここで、図9は、前処理ユニットの他の実施形態の一部を示す模式図である。ここで、図9に示すバイオマス供給装置220は、加熱手段222の構成を除いて他の構成は、バイオマス供給装置11と同様の構成である。そこで、バイオマス供給装置11と同様の構成については、同一の符号を付してその説明を省略し、以下、バイオマス供給装置220に特有の点を説明する。図12に示すバイオマス供給装置220は、前処理ユニット221と加熱手段222とを有する。前処理ユニット221は、バイオマス貯蔵タンク24と、フィーダ25と、を有する。なお、前処理ユニット221は、このほかにも前処理ユニット19と同様に、搬送コンベアや、制御部等を備える。   Next, the biomass supply apparatus of other embodiment is demonstrated using FIG. Here, FIG. 9 is a schematic diagram showing a part of another embodiment of the preprocessing unit. Here, the biomass supply apparatus 220 shown in FIG. 9 has the same configuration as the biomass supply apparatus 11 except for the configuration of the heating means 222. Then, about the structure similar to the biomass supply apparatus 11, the same code | symbol is attached | subjected and the description is abbreviate | omitted, and the point peculiar to the biomass supply apparatus 220 is demonstrated hereafter. A biomass supply apparatus 220 illustrated in FIG. 12 includes a pretreatment unit 221 and a heating unit 222. The pretreatment unit 221 includes a biomass storage tank 24 and a feeder 25. In addition, the preprocessing unit 221 includes a conveyor, a control unit, and the like in addition to the preprocessing unit 19.

加熱手段222は、配管106と、配管108とを有する。なお、加熱手段222は、これらに加え、バルブ等も備えている。配管106は、一方の端部が、排ガスが流れる煙道42または排ガスの節炭器47の配置領域の上流側端部から、エアヒータ51の配置領域の上流側の端部までの間と接続しており、他方の端部がバイオマス貯蔵タンク24の鉛直方向下側の端部と接続している。次に、配管108は、一方の端部が、ボイラ本体31と接続し、他方の端部がバイオマス貯蔵タンク24の鉛直方向上側の端部と接続している。加熱手段222は、以上のような構成であり、配管106により、バイオマス貯蔵タンク24のバイオマスを貯蔵している領域に排ガスを直接供給する。また、バイオマス貯蔵タンク24に供給された排ガスは、配管108から排出される。これにより、加熱手段222は、バイオマス貯蔵タンク24にあるバイオマスを直接加熱により加熱することができる。なお、この場合もバイオマスは、好適に炭化できる温度の範囲に加熱する。前処理ユニット221のように、バイオマス貯蔵タンク24にあるバイオマスを直接加熱により加熱することでも、バイオマスを粉砕しやすくすることができ、かつ、不要な物質が排出されることを抑制することができる。なお、前処理ユニット221では、バイオマス貯蔵タンク24の鉛直方向下側から分岐排ガスを供給したが、分岐排ガスを鉛直方向上側の端部近傍から供給しても良い。また、前処理ユニット221では、バイオマス貯蔵タンク24に貯蔵されているバイオマスを直接加熱により加熱したが、本発明はこれに限定されず、間接加熱により加熱してもよい。   The heating unit 222 includes a pipe 106 and a pipe 108. The heating means 222 includes a valve and the like in addition to these. One end of the pipe 106 is connected from the upstream end of the arrangement area of the flue 42 through which the exhaust gas flows or the exhaust gas economizer 47 to the upstream end of the arrangement area of the air heater 51. The other end is connected to the lower end of the biomass storage tank 24 in the vertical direction. Next, one end of the pipe 108 is connected to the boiler main body 31, and the other end is connected to the upper end of the biomass storage tank 24 in the vertical direction. The heating means 222 is configured as described above, and the exhaust gas is directly supplied to the biomass storage tank 24 in the region where the biomass is stored by the pipe 106. Further, the exhaust gas supplied to the biomass storage tank 24 is discharged from the pipe 108. Thereby, the heating means 222 can heat the biomass in the biomass storage tank 24 by direct heating. In this case as well, the biomass is heated to a temperature range that can be suitably carbonized. As in the pretreatment unit 221, the biomass in the biomass storage tank 24 can be heated directly by heating, so that the biomass can be easily pulverized and unnecessary substances can be prevented from being discharged. . In the pretreatment unit 221, the branched exhaust gas is supplied from the lower side in the vertical direction of the biomass storage tank 24. However, the branched exhaust gas may be supplied from the vicinity of the upper end in the vertical direction. In the pretreatment unit 221, the biomass stored in the biomass storage tank 24 is heated by direct heating. However, the present invention is not limited to this, and may be heated by indirect heating.

また、バイオマスを搬送する雰囲気には、不活性ガスを供給することが好ましい。このように不活性ガス雰囲気とすることで、バイオマスが搬送経路で必要以上に反応することを抑制することができ、燃焼が発生する恐れを低減することができる。なお、不活性ガスとは、通常の空気よりも燃焼が発生しにくいガスである。例えば、酸素濃度が10%以下のガスである。   Moreover, it is preferable to supply inert gas to the atmosphere which conveys biomass. Thus, by setting it as inert gas atmosphere, it can suppress that biomass reacts more than needed by a conveyance path | route, and can reduce a possibility that combustion generate | occur | produces. The inert gas is a gas that is less likely to burn than normal air. For example, a gas having an oxygen concentration of 10% or less.

また、上記実施形態で説明した加熱手段は、それぞれ単体で設けてもよいが、複数の加熱手段を1つのバイオマス供給装置に設けてもよい。このように、複数個所で加熱を行うことで、より適切に適正温度に加熱することが可能となり、バイオマスを好適に炭化できる温度の範囲で加熱することができる。   Moreover, although the heating means demonstrated by the said embodiment may each be provided individually, you may provide several heating means in one biomass supply apparatus. In this way, by heating at a plurality of locations, it becomes possible to more appropriately heat to an appropriate temperature, and it is possible to heat the biomass within a temperature range that can be suitably carbonized.

また、搬送コンベア23にあるバイオマスを加熱する加熱手段を設けることに代えてあるいは加えて、払い出しコンベア22にあるバイオマスを加熱する加熱手段を設けてもよい。   Further, instead of or in addition to providing a heating means for heating the biomass on the conveyor 23, a heating means for heating the biomass on the payout conveyor 22 may be provided.

次に、図10を用いて、他の実施形態のボイラシステムについて説明する。ここで、図10は、発電システムの他の実施形態の概略構成を示す模式図である。図10に示す発電システム310は、バイオマスを供給する経路と石炭を供給する経路とが別々に分離している発電システムである。図10に示す発電システム310は、ホッパ251cを設けていない点以外は、発電システム10と同様である。発電システム10と同様の構成の部分については、説明を省略し、発電システム310に特有の点を説明する。   Next, the boiler system of other embodiment is demonstrated using FIG. Here, FIG. 10 is a schematic diagram showing a schematic configuration of another embodiment of the power generation system. A power generation system 310 illustrated in FIG. 10 is a power generation system in which a path for supplying biomass and a path for supplying coal are separated separately. The power generation system 310 illustrated in FIG. 10 is the same as the power generation system 10 except that the hopper 251c is not provided. The description of the same configuration as that of the power generation system 10 will be omitted, and points unique to the power generation system 310 will be described.

発電システム310は、バイオマスを供給するバイオマス供給装置311と、化石燃料を供給する化石燃料供給装置312と、バイオマス供給装置311から供給されたバイオマスと化石燃料供給装置312から供給された化石燃料とを燃焼することで発生した熱を回収するボイラ330と、ボイラ330で発生させた熱を用いて発電を行う発電装置60とを有する。発電システム310は、化石燃料供給装置312がバイオマス(炭化バイオマス)を粉砕する粉砕装置26に石炭を供給するホッパ251cを備えていない。つまり、発電システム310は、石炭とバイオマスを別々の経路でボイラ330に供給する。   The power generation system 310 includes a biomass supply device 311 that supplies biomass, a fossil fuel supply device 312 that supplies fossil fuel, biomass supplied from the biomass supply device 311, and fossil fuel supplied from the fossil fuel supply device 312. It has the boiler 330 which collect | recovers the heat which generate | occur | produced by burning, and the electric power generating apparatus 60 which produces electric power using the heat generated with the boiler 330. FIG. The power generation system 310 does not include a hopper 251c that supplies coal to the crushing device 26 that crushes biomass (carbonized biomass) by the fossil fuel supply device 312. That is, the power generation system 310 supplies coal and biomass to the boiler 330 through different paths.

バイオマス供給装置311は、前処理ユニット19で処理され、配管80を通過した炭化バイオマス142が粉砕装置26に供給される。粉砕装置26は、供給された炭化バイオマス142を粉砕し、微粉145として供給配管28に供給する。本実施形態の粉砕装置26は、ホッパ251cから石炭が供給されないため、微粉145は炭化バイオマス142を粉砕した微粉となる。   The biomass supply device 311 is processed by the pretreatment unit 19, and the carbonized biomass 142 that has passed through the pipe 80 is supplied to the crushing device 26. The crushing device 26 crushes the supplied carbonized biomass 142 and supplies the carbonized biomass 142 as fine powder 145 to the supply pipe 28. In the pulverization apparatus 26 of the present embodiment, since coal is not supplied from the hopper 251c, the fine powder 145 is fine powder obtained by pulverizing the carbonized biomass 142.

ボイラ330は、バイオマスと化石燃料とで兼用の燃焼バーナ34に換えて、バイオマス用の燃焼バーナ334がボイラ本体31に配置されている。バイオマス用の燃焼バーナ334は、炭化され微粒されたバイオマスで構成される微粉145が供給される。ボイラ本体31は、バイオマス用の燃焼バーナ334から噴射された微粉145を燃焼させる。   In the boiler 330, a biomass combustion burner 334 is disposed in the boiler body 31 in place of the combustion burner 34 that is combined with biomass and fossil fuel. The combustion burner 334 for biomass is supplied with fine powder 145 composed of carbonized and finely divided biomass. The boiler body 31 burns the fine powder 145 injected from the combustion burner 334 for biomass.

発電システム310は、以上のように、バイオマス供給装置311からボイラ本体31に供給する燃料をバイオマスのみで構成しても、つまり、粉砕装置26で石炭とバイオマスを混合して粉砕しない構成でも、発電システム10と同様の効果を得ることができる。つまり、発電システム310は、加熱手段100でバイオマスを熱量が低減していない状態で粉砕しやすく加工することができる。これにより、バイオマスのみを粉砕する場合も粉砕に必要な動力、粉砕時間を短くすることができる。   As described above, the power generation system 310 can generate power even if the fuel supplied from the biomass supply device 311 to the boiler body 31 is composed of only biomass, that is, even if the pulverization device 26 does not mix and pulverize coal and biomass. An effect similar to that of the system 10 can be obtained. That is, the power generation system 310 can easily process the biomass with the heating unit 100 in a state where the amount of heat is not reduced. Thereby, also when grind | pulverizing only biomass, the motive power and grinding | pulverization time required for a grinding | pulverization can be shortened.

次に、図11を用いて、他の実施形態のボイラシステムについて説明する。ここで、図11は、発電システムの他の実施形態の概略構成を示す模式図である。図11に示す発電システム410は、バイオマス供給装置411のフィーダ25と粉砕装置420との関係及び粉砕装置420の構成以外は、発電システム310と同様である。発電システム310と同様の構成の部分については、説明を省略し、発電システム410に特有の点を説明する。   Next, the boiler system of other embodiment is demonstrated using FIG. Here, FIG. 11 is a schematic diagram showing a schematic configuration of another embodiment of the power generation system. The power generation system 410 illustrated in FIG. 11 is the same as the power generation system 310 except for the relationship between the feeder 25 of the biomass supply apparatus 411 and the pulverizer 420 and the configuration of the pulverizer 420. The description of the same configuration as that of the power generation system 310 will be omitted, and points unique to the power generation system 410 will be described.

発電システム410は、バイオマスを供給するバイオマス供給装置411と、化石燃料を供給する化石燃料供給装置312と、バイオマス供給装置311から供給されたバイオマスと化石燃料供給装置312から供給された化石燃料とを燃焼することで発生した熱を回収するボイラ330と、ボイラ330で発生させた熱を用いて発電を行う発電装置60とを有する。   The power generation system 410 includes a biomass supply device 411 that supplies biomass, a fossil fuel supply device 312 that supplies fossil fuel, biomass supplied from the biomass supply device 311, and fossil fuel supplied from the fossil fuel supply device 312. It has the boiler 330 which collect | recovers the heat which generate | occur | produced by burning, and the electric power generating apparatus 60 which produces electric power using the heat generated with the boiler 330. FIG.

バイオマス供給装置411は、前処理ユニット419と、空気供給配管21と、粉砕装置(ミル)420と、供給配管28と、加熱手段100とを有する。前処理ユニット419は、バイオマスに前処理を行った後、粉砕装置420に供給するユニットであり、貯蔵サイロ20と、払い出しコンベア22と、搬送コンベア23と、バイオマス貯蔵タンク24と、フィーダ25と、を有する。前処理ユニット419は、フィーダ25が粉砕装置420に隣接して配置されている。フィーダ25は、排出した炭化バイオマス142をそのまま粉砕装置420に供給する。つまり、バイオマス供給装置411は、フィーダ25と粉砕装置420とが近接しており、間に冷却手段101が配置されていない。   The biomass supply apparatus 411 includes a pretreatment unit 419, an air supply pipe 21, a pulverizer (mill) 420, a supply pipe 28, and a heating unit 100. The pretreatment unit 419 is a unit that performs pretreatment on the biomass and then supplies the biomass to the crusher 420. The storage silo 20, the dispensing conveyor 22, the transport conveyor 23, the biomass storage tank 24, the feeder 25, Have In the pretreatment unit 419, the feeder 25 is disposed adjacent to the crushing device 420. The feeder 25 supplies the discharged carbonized biomass 142 to the crusher 420 as it is. That is, in the biomass supply apparatus 411, the feeder 25 and the pulverization apparatus 420 are close to each other, and the cooling unit 101 is not disposed therebetween.

粉砕装置420は、チューブミルであり、フィーダ25に隣接して配置されている。粉砕装置420は、炭化バイオマス142が投入される投入口と炭化バイオマス142が排出される排出口を有し、投入口から投入された炭化バイオマス142を粉砕しつつ、排出口に向けて搬送することで、排出口に到達した炭化バイオマス142を微粉145とする。粉砕装置420は、排出口が供給配管28と接続されており、微粉145を供給配管28に供給する。また、粉砕装置420は、空気供給配管21と接続されている。粉砕装置420は、空気供給配管21から供給される空気148で、炭化バイオマス142を搬送する。また、粉砕装置420は、空気148を微粉145と共に供給配管28に供給することで、供給配管28の微粉145をボイラ本体31に向けて搬送させることができる。   The crusher 420 is a tube mill and is disposed adjacent to the feeder 25. The crushing device 420 has an input port into which the carbonized biomass 142 is input and an exhaust port from which the carbonized biomass 142 is discharged, and conveys the carbonized biomass 142 input from the input port toward the discharge port while crushing. Thus, the carbonized biomass 142 that has reached the discharge port is defined as fine powder 145. The crusher 420 has a discharge port connected to the supply pipe 28 and supplies fine powder 145 to the supply pipe 28. The crusher 420 is connected to the air supply pipe 21. The pulverizer 420 conveys the carbonized biomass 142 with air 148 supplied from the air supply pipe 21. In addition, the pulverizer 420 can feed the fine powder 145 in the supply pipe 28 toward the boiler body 31 by supplying the air 148 together with the fine powder 145 to the supply pipe 28.

発電システム410は、以上のように、フィーダ25と粉砕装置420とを隣接して配置させることで、冷却手段や搬送機構(配管80)を省略することができる。これにより、装置構成を簡単にすることができる。また、フィーダ25と粉砕装置420とを隣接させることで、フィーダ25から排出された炭化バイオマス142の状態が変化する前に粉砕することができる。これにより、炭化バイオマス142を冷却しなくても安定してバイオマスを処理することができる。なお、発電システム410は、フィーダ25と粉砕装置420とを隣接させたが、バイオマスを加熱し、炭化させる処理を行う領域と粉砕装置420とを隣接させればよい。つまりフィーダ25よりも搬送方向下流側に加熱手段による加熱領域を設け、バイオマスを加熱し炭化する場合、その位置に隣接して粉砕装置420を設けることで、同様の効果を得ることができる。   As described above, the power generation system 410 can omit the cooling unit and the transport mechanism (pipe 80) by arranging the feeder 25 and the pulverizer 420 adjacent to each other. Thereby, the apparatus configuration can be simplified. Moreover, it can grind | pulverize before the state of the carbonized biomass 142 discharged | emitted from the feeder 25 changes by making the feeder 25 and the grinding | pulverization apparatus 420 adjoin. Thereby, even if it does not cool carbonized biomass 142, biomass can be processed stably. In the power generation system 410, the feeder 25 and the pulverization apparatus 420 are adjacent to each other. However, the region where the biomass is heated and carbonized may be adjacent to the pulverization apparatus 420. That is, when a heating region by a heating unit is provided downstream of the feeder 25 in the conveying direction and the biomass is heated and carbonized, the same effect can be obtained by providing the pulverizer 420 adjacent to the position.

また、発電システム410は、粉砕装置420としてチューブミルを用いることで、粉砕装置420の設置高さを低くすることができる。これにより、搬送する機構を設けなくても、フィーダ25から排出される炭化バイオマス142を好適に粉砕装置420に投入することができる。また、フィーダを設置するための土台を高くする等の工事も少なくまたは実施しないで、実現することができる。   In addition, the power generation system 410 can reduce the installation height of the crusher 420 by using a tube mill as the crusher 420. Thereby, the carbonized biomass 142 discharged from the feeder 25 can be suitably put into the crushing device 420 without providing a mechanism for transporting. In addition, it can be realized with little or no construction such as raising the foundation for installing the feeder.

なお、上記実施形態では、前処理ユニットに含まれる各部にあるバイオマスを加熱手段で加熱する構成としたがこれに限定されない。発電システム(ボイラシステム)は、粉砕手段(粉砕装置)で粉砕しているバイオマスを加熱手段で加熱するようにしてもよい。つまり、バイオマスを加熱しつつ粉砕するようにしてもよい。   In addition, in the said embodiment, although it was set as the structure which heats the biomass in each part contained in a pre-processing unit with a heating means, it is not limited to this. The power generation system (boiler system) may heat the biomass pulverized by the pulverizing means (pulverizing apparatus) with the heating means. In other words, the biomass may be pulverized while being heated.

以下、図12を用いて、粉砕手段(粉砕装置)で粉砕しているバイオマスを加熱手段で加熱する場合について説明する。ここで、図12は、発電システムの他の実施形態の概略構成を示す模式図である。図12に示す発電システム510は、バイオマス供給装置511の構成以外は、発電システム310と同様である。発電システム310と同様の構成の部分については、説明を省略し、発電システム510に特有の点を説明する。   Hereinafter, the case where the biomass pulverized by the pulverizing means (pulverizing apparatus) is heated by the heating means will be described with reference to FIG. Here, FIG. 12 is a schematic diagram illustrating a schematic configuration of another embodiment of the power generation system. A power generation system 510 illustrated in FIG. 12 is the same as the power generation system 310 except for the configuration of the biomass supply apparatus 511. The description of the same configuration as that of the power generation system 310 will be omitted, and points unique to the power generation system 510 will be described.

発電システム510は、バイオマスを供給するバイオマス供給装置511と、化石燃料を供給する化石燃料供給装置312と、バイオマス供給装置311から供給されたバイオマスと化石燃料供給装置312から供給された化石燃料とを燃焼することで発生した熱を回収するボイラ330と、ボイラ330で発生させた熱を用いて発電を行う発電装置60とを有する。   The power generation system 510 includes a biomass supply device 511 that supplies biomass, a fossil fuel supply device 312 that supplies fossil fuel, biomass supplied from the biomass supply device 311, and fossil fuel supplied from the fossil fuel supply device 312. It has the boiler 330 which collect | recovers the heat which generate | occur | produced by burning, and the electric power generating apparatus 60 which produces electric power using the heat generated with the boiler 330. FIG.

バイオマス供給装置511は、前処理ユニット519と、配管522と、空気供給配管21と、粉砕装置(ミル)520と、供給配管28と、加熱手段524とを有する。前処理ユニット519は、バイオマスを粉砕装置26に供給するユニットであり、貯蔵サイロ20と、払い出しコンベア22と、搬送コンベア23と、バイオマス貯蔵タンク24と、を有する。前処理ユニット519は、バイオマス貯蔵タンク24から直接、粉砕装置520にバイオマス142を供給する。つまり、本実施形態のバイオマス供給装置511は、前処理ユニット519でバイオマス140の炭化の処理を行わない。   The biomass supply apparatus 511 includes a pretreatment unit 519, a pipe 522, an air supply pipe 21, a pulverizer (mill) 520, a supply pipe 28, and a heating unit 524. The pretreatment unit 519 is a unit that supplies biomass to the crushing device 26, and includes a storage silo 20, a discharge conveyor 22, a transfer conveyor 23, and a biomass storage tank 24. The pretreatment unit 519 supplies the biomass 142 directly from the biomass storage tank 24 to the pulverizer 520. That is, the biomass supply apparatus 511 of the present embodiment does not perform carbonization of the biomass 140 in the pretreatment unit 519.

粉砕装置520は、チューブミルであり、バイオマス貯蔵タンク24の鉛直方向下側に配置されている。粉砕装置520は、バイオマス140が投入される投入口と微粉145が排出される排出口を有する。粉砕装置420は、排出口が配管522と接続されており、微粉145を配管522に供給する。配管522と空気供給配管21とは、供給配管28に接続されている。バイオマス供給装置511は、配管522から微粉145を供給し、空気供給配管21から空気を供給することで、供給配管28内にボイラ本体31に向かう微粉145と空気148の混合流れを作ることができる。   The pulverizer 520 is a tube mill and is disposed on the lower side in the vertical direction of the biomass storage tank 24. The pulverizer 520 has an input port through which the biomass 140 is input and an output port through which the fine powder 145 is discharged. The crushing device 420 has a discharge port connected to the pipe 522 and supplies fine powder 145 to the pipe 522. The pipe 522 and the air supply pipe 21 are connected to the supply pipe 28. The biomass supply device 511 can supply the fine powder 145 from the pipe 522 and supply air from the air supply pipe 21, thereby creating a mixed flow of the fine powder 145 and air 148 toward the boiler body 31 in the supply pipe 28. .

加熱手段524は、粉砕装置520で搬送されるバイオマスを加熱し、炭化させる。加熱手段524は、配管106と配管108とが粉砕装置520に接続されている。加熱手段524は、配管106から粉砕装置520に分岐排ガス131を供給し、粉砕装置520内のバイオマス140を加熱する。また、加熱手段524は、粉砕装置520を通過し、バイオマス140が加熱されることで生成されたタール分やガス分を含む熱分解ガス132を配管108で排出する。   The heating means 524 heats and carbonizes the biomass conveyed by the pulverizer 520. In the heating unit 524, the pipe 106 and the pipe 108 are connected to the pulverizer 520. The heating unit 524 supplies the branched exhaust gas 131 from the pipe 106 to the pulverizer 520 and heats the biomass 140 in the pulverizer 520. The heating means 524 passes through the pulverizing apparatus 520 and discharges the pyrolysis gas 132 containing tar and gas generated by heating the biomass 140 through the pipe 108.

粉砕装置520は、投入口から投入されたバイオマス140を粉砕しつつ、排出口に向けて搬送する。また粉砕装置520は、投入されたバイオマス140が加熱手段524により加熱され、炭化される。これにより、粉砕装置520は、内部に貯留されたバイオマスの炭化と粉砕を同時に進めることができ、排出口に到達したバイオマス140を微粉145とする。   The pulverizer 520 pulverizes the biomass 140 input from the inlet, and conveys it toward the outlet. In the pulverizer 520, the input biomass 140 is heated by the heating means 524 and carbonized. Thereby, the pulverizer 520 can simultaneously carbonize and pulverize the biomass stored therein, and the biomass 140 that has reached the discharge port is made into fine powder 145.

発電システム510は、以上のように、粉砕装置520にあるバイオマスを加熱手段で加熱することでも、加熱手段524で分岐排ガス131を用いてバイオマスを加熱することで、発電システム10と同様の効果を得ることができる。つまり、発電システム510は、粉砕装置520にあるバイオマスを、加熱手段524でバイオマスを熱量が低減していない状態で粉砕しやすく加工することができる。   As described above, the power generation system 510 has the same effect as that of the power generation system 10 by heating the biomass in the pulverizer 520 with the heating means, or by heating the biomass using the branched exhaust gas 131 with the heating means 524. Can be obtained. That is, the power generation system 510 can easily process the biomass in the pulverizer 520 with the heating unit 524 in a state where the biomass is not reduced in calorie.

10 発電システム
11、160、170、180、310、410、510 バイオマス供給装置
12 化石燃料供給装置
19 前処理ユニット
20 貯蔵サイロ
21 空気供給配管(空気供給系)
22 払い出しコンベア
23 搬送コンベア
24 バイオマス貯蔵タンク
25 フィーダ
26 粉砕装置(ミル)
28 供給配管
30 ボイラ
31 ボイラ本体
32 燃焼装置
33 燃焼バーナ(化石燃料用の燃焼バーナ)
34 燃焼バーナ(バイオマスと化石燃料とで兼用の燃焼バーナ)
39 空気供給配管
42 煙道
51 エアヒータ
52 除塵装置
53 ブロア
60 発電装置
62 配管ユニット
100、163 加熱手段
104 キルン
106、108、117 配管
106a、106b、108a、108b 分岐管
116、122 ガス再循環ファン
118 バルブ
120 配管
130、130a 制御部
131 分岐排ガス
132 熱分解ガス
140 バイオマス
142 炭化バイオマス
144 微粉
148 空気
149 微粉炭
164 温度検出部
165 ジャケット
166 伝熱配管
167 回転部
168 案内管
169 駆動源
250 石炭
251a、251b、251c ホッパ
252a、252b 石炭粉砕装置
253 配管
DESCRIPTION OF SYMBOLS 10 Electric power generation system 11, 160, 170, 180, 310, 410, 510 Biomass supply apparatus 12 Fossil fuel supply apparatus 19 Pretreatment unit 20 Storage silo 21 Air supply piping (air supply system)
22 Dispensing conveyor 23 Conveying conveyor 24 Biomass storage tank 25 Feeder 26 Crusher (mill)
28 Supply piping 30 Boiler 31 Boiler body 32 Combustion device 33 Combustion burner (combustion burner for fossil fuel)
34 Combustion burner (combustion burner combined with biomass and fossil fuel)
39 Air supply piping 42 Flue 51 Air heater 52 Dust removal device 53 Blower 60 Power generation device 62 Piping unit 100, 163 Heating means 104 Kiln 106, 108, 117 Piping 106a, 106b, 108a, 108b Branch pipe 116, 122 Gas recirculation fan 118 Valve 120 Piping 130, 130a Control unit 131 Branched exhaust gas 132 Pyrolysis gas 140 Biomass 142 Carbonized biomass 144 Fine powder 148 Air 149 Pulverized coal 164 Temperature detection unit 165 Jacket 166 Heat transfer piping 167 Rotating unit 168 Guide tube 169 Drive source 250 Coal 251a 251b, 251c Hopper 252a, 252b Coal crusher 253 Piping

Claims (14)

燃料を燃焼させるボイラ本体と、
前記ボイラ本体から排出される排ガスの経路に配置された節炭器と、
前記排ガスの経路の前記節炭器よりも下流側に配置されたエアヒータと、
前記ボイラ本体に前記燃料としてバイオマスを供給するバイオマス供給ユニットと、を有し、
前記バイオマス供給ユニットは、前記バイオマスを粉砕する粉砕手段と、前記粉砕手段に前記バイオマスを供給する前処理ユニットと、前記節炭器と前記エアヒータとの間を流れる排ガスの一部を分岐し、当該分岐した分岐排ガスと、前記粉砕手段及び前記前処理ユニットの少なくとも一方にあるバイオマスとの間で熱交換を行うことで当該バイオマスを加熱する加熱手段と、を備えることを特徴とするボイラシステム。
A boiler body for burning fuel;
A economizer disposed in the path of exhaust gas discharged from the boiler body,
An air heater disposed downstream of the economizer in the exhaust gas path;
A biomass supply unit that supplies biomass as the fuel to the boiler body,
The biomass supply unit branches a part of the exhaust gas flowing between the pulverizing means for pulverizing the biomass, a pretreatment unit for supplying the biomass to the pulverizing means, the economizer and the air heater, A boiler system comprising: a branched flue gas and a heating means for heating the biomass by exchanging heat between the pulverizing means and the biomass in at least one of the pretreatment unit.
前記前処理ユニットは、
バイオマスを貯蔵するバイオマス貯蔵タンクと、
前記バイオマス貯蔵タンクにバイオマスを供給する貯蔵前供給手段と、
前記バイオマス貯蔵タンクに貯蔵されたバイオマスを前記粉砕手段に供給する貯蔵後供給手段と、を備え、
前記加熱手段は、前記貯蔵前供給手段、前記バイオマス貯蔵タンク及び前記貯蔵後供給手段のいずれかにあるバイオマスを加熱することを特徴とする請求項1に記載のボイラシステム。
The pretreatment unit is
A biomass storage tank for storing biomass;
Supply means before storage for supplying biomass to the biomass storage tank;
A post-storage supply means for supplying the biomass stored in the biomass storage tank to the pulverization means,
The boiler system according to claim 1, wherein the heating unit heats the biomass in any of the supply unit before storage, the biomass storage tank, and the supply unit after storage.
前記加熱手段は、前記貯蔵後供給手段により前記粉砕手段に向けて搬送されているバイオマスを加熱することを特徴とする請求項2に記載のボイラシステム。   The boiler system according to claim 2, wherein the heating unit heats the biomass conveyed toward the pulverizing unit by the supply unit after storage. 前記前処理ユニットは、前記貯蔵後供給手段によって搬送される加熱された前記バイオマスを冷却する冷却手段を備えることを特徴とする請求項3に記載のボイラシステム。   The boiler system according to claim 3, wherein the pretreatment unit includes a cooling unit that cools the heated biomass conveyed by the supply unit after storage. 前記前処理ユニットは、前記加熱手段が前記バイオマスを加熱する領域の終端に前記粉砕手段が隣接して配置されることを特徴とする請求項3に記載のボイラシステム。   4. The boiler system according to claim 3, wherein the pretreatment unit has the crushing unit disposed adjacent to an end of a region where the heating unit heats the biomass. 前記加熱手段は、バイオマスの搬送経路の外周を覆うカバー部と、前記カバー部に前記分岐排ガスを供給する加熱源とを有し、
前記加熱源により前記カバー部の内部に前記分岐排ガスを供給することで、前記バイオマスを加熱することを特徴とする請求項3から5のいずれか一項に記載のボイラシステム。
The heating means includes a cover portion that covers an outer periphery of a biomass conveyance path, and a heating source that supplies the branched exhaust gas to the cover portion,
The boiler system according to any one of claims 3 to 5, wherein the biomass is heated by supplying the branched exhaust gas into the cover portion by the heating source.
前記加熱手段は、前記分岐排ガスを前記バイオマスの搬送方向とは反対の方向に流すことを特徴とする請求項6に記載のボイラシステム。   The boiler system according to claim 6, wherein the heating unit causes the branched exhaust gas to flow in a direction opposite to a conveying direction of the biomass. 前記加熱手段は、前記分岐排ガスにより前記バイオマスが貯蔵されている領域を含む領域を加熱することを特徴とする請求項2から7のいずれか一項に記載のボイラシステム。   The boiler system according to any one of claims 2 to 7, wherein the heating unit heats a region including a region where the biomass is stored by the branched exhaust gas. 前記粉砕手段は、前記バイオマスを一方向から他方向に搬送しつつ、粉砕する機構であり、
前記加熱手段は、前記粉砕手段で粉砕されるバイオマスを加熱することを特徴とする請求項1に記載のボイラシステム。
The pulverizing means is a mechanism for pulverizing while conveying the biomass from one direction to the other direction,
The boiler system according to claim 1, wherein the heating unit heats the biomass pulverized by the pulverizing unit.
前記粉砕手段は、さらに石炭が供給され、前記石炭及び前記バイオマスを粉砕し、前記ボイラ本体に供給することを特徴とする請求項1から8のいずれか一項に記載のボイラシステム。   The boiler system according to any one of claims 1 to 8, wherein the pulverizing unit is further supplied with coal, pulverizes the coal and the biomass, and supplies the coal and the biomass to the boiler body. 前記加熱手段は、案内する前記分岐排ガスの温度を検出する温度検出部と、
前記排ガスの流通経路において、前記分岐排ガスを分岐した位置よりも下流側で分岐した温度調整用排ガスを供給する温度調整機構と、
前記温度検出部の検出結果に基づいて、前記温度調整機構で前記分岐排ガスに供給する前記温度調整用排ガスの量を調整する制御部と、をさらに有することを特徴とする請求項1から10のいずれか一項に記載のボイラシステム。
The heating means includes a temperature detection unit that detects the temperature of the branched exhaust gas to be guided,
A temperature adjusting mechanism for supplying temperature adjusting exhaust gas branched downstream of the branch exhaust gas in the distribution path of the exhaust gas;
The control unit according to claim 1, further comprising: a control unit that adjusts an amount of the temperature adjustment exhaust gas supplied to the branch exhaust gas by the temperature adjustment mechanism based on a detection result of the temperature detection unit. The boiler system as described in any one of Claims.
前記分岐排ガスは、前記節炭器と前記エアヒータとの間から分岐される位置での温度が250℃以上400℃以下であることを特徴とする請求項1から11のいずれか一項に記載のボイラシステム。   The temperature at a position where the branched exhaust gas is branched from between the economizer and the air heater is 250 ° C or higher and 400 ° C or lower, according to any one of claims 1 to 11. Boiler system. 前記加熱手段は、前記バイオマスを250℃以上400℃以下に加熱することを特徴とする請求項1から12のいずれか一項に記載のボイラシステム。   The boiler system according to any one of claims 1 to 12, wherein the heating unit heats the biomass to 250 ° C to 400 ° C. 前記加熱手段は、前記バイオマスを加熱している領域から排出される空気を、前記ボイラ本体に供給することを特徴とする請求項1から13のいずれか一項に記載のボイラシステム。
The boiler system according to any one of claims 1 to 13, wherein the heating unit supplies air discharged from an area where the biomass is heated to the boiler body.
JP2012178958A 2012-08-10 2012-08-10 Boiler system Pending JP2014037896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012178958A JP2014037896A (en) 2012-08-10 2012-08-10 Boiler system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012178958A JP2014037896A (en) 2012-08-10 2012-08-10 Boiler system

Publications (1)

Publication Number Publication Date
JP2014037896A true JP2014037896A (en) 2014-02-27

Family

ID=50286171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012178958A Pending JP2014037896A (en) 2012-08-10 2012-08-10 Boiler system

Country Status (1)

Country Link
JP (1) JP2014037896A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107876188A (en) * 2017-12-25 2018-04-06 南通理工学院 One kind machining uses solid waste processing equipment for pulverizing
JP2019032111A (en) * 2017-08-08 2019-02-28 三菱日立パワーシステムズ株式会社 Boiler system, and power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019032111A (en) * 2017-08-08 2019-02-28 三菱日立パワーシステムズ株式会社 Boiler system, and power generation system
CN107876188A (en) * 2017-12-25 2018-04-06 南通理工学院 One kind machining uses solid waste processing equipment for pulverizing

Similar Documents

Publication Publication Date Title
JP4576365B2 (en) Coal / biomass mixed combustion system and mixed combustion method
JP5216783B2 (en) Plant and method for dry recovery / cooling of heavy ash and combustion control of residues with high unburnt content
JP2004347241A (en) Coal-organic matter fuel mixture grinding device
JP2014037897A (en) Biomass feed device and boiler system
JP5566867B2 (en) Biomass / coal mixed combustion system and biomass / coal mixed combustion method
JP6180218B2 (en) Solid fuel combustion equipment
WO2020105629A1 (en) Pulverized coal drying system for coal pulverizer and pulverized coal drying method therefor, and pulverized coal drying program, coal pulverizer, and gasification combined cycle facility
JP2005291539A (en) Preparatory treatment of biomass fuel, mixed combustion method, and mixed combustion device
WO2008120109A1 (en) Method and plant for manufacturing cement clinker
EP2657469A1 (en) Biomass fuelled power production system
JP2013088033A (en) Biomass pretreatment unit, and biomass and coal mixed-firing system
JP2012078018A (en) Pretreatment unit
JP2012078017A (en) Biomass storage unit, and pretreatment unit
JP2014037896A (en) Boiler system
JP6280857B2 (en) boiler
KR102588781B1 (en) Solid fuel pulverizer and power plant provided with the same, and method for pulverizing solid fuel
KR102169127B1 (en) Stoker type incinerator equipped with waste pre-dryer and bicone type waste compressing and crushing apparatus
JP2012078019A (en) Biomass storage unit and pretreatment unit
JP7341669B2 (en) Solid fuel crushing device, power plant equipped with the same, and solid fuel crushing method
JP2016145706A (en) Pulverized coal firing boiler facility
WO2024034349A1 (en) Biomass grinding system and operating method for biomass grinding system
JP2020085338A (en) Solid fuel supply device and method, crusher, and boiler
JP2012093008A (en) Pulverized coal thermal power generation facility
KR102166297B1 (en) Stoker type incinerator equipped with waste pre-dryer and waste incinerationg method using the same
TWI837404B (en) A method for reducing the emission of contaminants by a furnace, a furnace and a non-transitory computer readable medium