JP4576365B2 - Coal / biomass mixed combustion system and mixed combustion method - Google Patents

Coal / biomass mixed combustion system and mixed combustion method Download PDF

Info

Publication number
JP4576365B2
JP4576365B2 JP2006265032A JP2006265032A JP4576365B2 JP 4576365 B2 JP4576365 B2 JP 4576365B2 JP 2006265032 A JP2006265032 A JP 2006265032A JP 2006265032 A JP2006265032 A JP 2006265032A JP 4576365 B2 JP4576365 B2 JP 4576365B2
Authority
JP
Japan
Prior art keywords
biomass
coal
fuel supply
supply nozzle
pulverizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006265032A
Other languages
Japanese (ja)
Other versions
JP2008082651A (en
Inventor
慎治 松本
次男 山本
和宏 堂本
雅彦 谷口
良茂 植松
博久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006265032A priority Critical patent/JP4576365B2/en
Publication of JP2008082651A publication Critical patent/JP2008082651A/en
Application granted granted Critical
Publication of JP4576365B2 publication Critical patent/JP4576365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combustion Of Fluid Fuel (AREA)
  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)

Description

本発明は、竪型粉砕機を用いて石炭を粉砕した石炭粉体、及び木屑等のバイオマスを粉砕したバイオマス粉体を燃料とする混焼ボイラを備えた石炭・バイオマス混焼システム及び混焼方法に関し、特にバイオマスの性状変動に対して燃料供給の信頼性が高く、安定的な運転を可能とした石炭・バイオマス混焼システム及び混焼方法に関する。   The present invention relates to a coal / biomass co-firing system and a co-firing method provided with a co-fired boiler using coal powder obtained by pulverizing coal using a vertical pulverizer and biomass powder obtained by pulverizing biomass such as wood chips. The present invention relates to a coal / biomass co-firing system and a co-firing method capable of stable operation with high fuel supply reliability against changes in the properties of biomass.

近年、発電燃料としてコスト的に石炭火力が見直されつつあり、さらに電気事業者に新エネルギー等から発電される電気を一定割合以上利用することを義務づける法規制(RPS法)への対応のために、新エネルギー等(バイオマス(動植物に由来する有機物)発電等)の普及が図られている。
また、CO発生量の抑制から、ひいてはCO排出権取引に利用可能であることから、バイオマスの利用促進が図られている。
In recent years, coal-fired thermal power has been reviewed as a fuel for power generation, and in addition to complying with laws and regulations (RPS law) that require electric utilities to use electricity generated from new energy, etc. over a certain percentage The spread of new energy (biomass (organic matter derived from animals and plants) power generation, etc.) is being promoted.
Further, the amount of CO 2 produced inhibition, since it is available to turn CO 2 emissions trading, biomass utilization promotion is achieved.

バイオマス発電システムには、石炭とバイオマスとを混合して燃焼させる石炭・バイオマス混焼技術があり、この混焼技術には、石炭とバイオマスとをそれぞれを単独で粉砕する単独粉砕方式と、石炭とバイオマスとを混合してから粉砕する混合粉砕方式とが知られている。   The biomass power generation system has a coal-biomass co-firing technology in which coal and biomass are mixed and burned. This co-firing technology includes a single pulverization method in which coal and biomass are pulverized independently, and coal and biomass. A mixing and pulverizing method is known in which pulverized particles are mixed and then pulverized.

前者の単独粉砕方式としては、特許文献1で示されている技術が知られており、図9に示すように、供給管310より粉砕テーブル312上に木質原料を供給し、粉砕ローラ314で粉砕し、被粉砕物は粉砕テーブル312の外周に排出し、テーブル312外周下方から噴出される空気流316によって上方に搬送されて、被粉砕物を微粉と粗粉に分級されるものが知られている。この方法は、空気流の流量と粉砕テーブルの直径を最適な関係に設定することにより、従来の石炭用粉砕機を木質原料の粉砕機として有効利用することが可能となっている。   As the former single pulverization method, the technique disclosed in Patent Document 1 is known. As shown in FIG. 9, the wood material is supplied onto the pulverization table 312 from the supply pipe 310 and pulverized by the pulverization roller 314. It is known that the object to be crushed is discharged to the outer periphery of the pulverizing table 312 and conveyed upward by an air flow 316 ejected from the lower periphery of the table 312 to classify the object to be pulverized into fine powder and coarse powder. Yes. This method makes it possible to effectively use a conventional coal pulverizer as a wood raw material pulverizer by setting the flow rate of the air flow and the diameter of the pulverization table in an optimal relationship.

後者の混合粉砕方式としては、特許文献2、3で示されている技術が知られている。一般的な混合粉砕方式を図10に示す。搬送車両101により受入ホッパ102に集積されたバイオマスはバイオマス貯蔵タンク103に一時貯留され、このバイオマス貯蔵タンク103から定量供給される。バイオマス貯蔵タンク103から供給されたバイオマス燃料は、石炭サイロ104から定量供給された石炭と混合され、混合燃料105は燃料ホッパ106に投入される。燃料ホッパ106から粉砕機107内に投入された混合燃料105は、該粉砕機107にて粉砕された後に混合粉体燃料としてボイラ火炉108に供給される。
ボイラ火炉108の炉本体110には、燃料供給ノズル111と、これに共働するバーナ(不図示)が配設されている。また、炉内には加熱器、蒸発器、節炭器等にあたる伝熱管112が設置されている。そして、炉内に供給された混合粉体燃料の燃焼により発生する燃焼排ガスは、伝熱管112を加熱して煙道へ送られる。炉本体110の炉出口に設けた煙道の途中には空気加熱器(AH)113が配置され、空気加熱器113を通った燃焼排ガスは、灰捕集装置等の排ガス処理設備を経て大気放出される。また、粉砕機107には、空気加熱器113で加熱した熱空気を供給して被粉砕物を乾燥させるようにしている。
As the latter mixing and pulverization method, techniques shown in Patent Documents 2 and 3 are known. A general mixing and grinding method is shown in FIG. Biomass accumulated in the receiving hopper 102 by the transport vehicle 101 is temporarily stored in the biomass storage tank 103 and is quantitatively supplied from the biomass storage tank 103. The biomass fuel supplied from the biomass storage tank 103 is mixed with the coal supplied in a fixed amount from the coal silo 104, and the mixed fuel 105 is put into the fuel hopper 106. The mixed fuel 105 charged into the pulverizer 107 from the fuel hopper 106 is pulverized by the pulverizer 107 and then supplied to the boiler furnace 108 as a mixed powder fuel.
The furnace main body 110 of the boiler furnace 108 is provided with a fuel supply nozzle 111 and a burner (not shown) that cooperates therewith. Further, a heat transfer tube 112 corresponding to a heater, an evaporator, a economizer, or the like is installed in the furnace. The combustion exhaust gas generated by the combustion of the mixed powder fuel supplied into the furnace heats the heat transfer tube 112 and is sent to the flue. An air heater (AH) 113 is disposed in the middle of the flue provided at the furnace outlet of the furnace body 110, and the combustion exhaust gas passing through the air heater 113 is released into the atmosphere through an exhaust gas treatment facility such as an ash collector. Is done. Further, hot air heated by the air heater 113 is supplied to the pulverizer 107 to dry the object to be crushed.

このような混合粉砕方式では、バイオマスの混合率は石炭に対して粉砕機容量制限から3wt%程度が上限とされている。これは、竪型粉砕機にて、木屑と石炭を混合粉砕した場合、回転テーブル上における炭層厚み増加等によりミルトリップ(動力上限)に至るためである。木屑は石炭のように脆性材料でないために、竪型粉砕機の圧力・剪断力では破砕が難しく、内部滞留木屑や石炭が増加し、回転テーブル上の炭層厚みが通常の石炭粉砕運転状態に比べて大幅に増加し、粉砕機の運転動力の大幅増加につながる。図11に従来の粉砕ミルで混合粉砕した場合のミル特性図を示す。図11(a)に木屑・廃木材混合率とミル動力比の関係、(b)に木屑・廃木材混合率と微粉度の関係を示す。木屑等を入熱量比5%置換して混合粉砕を行っただけで、ミル動力は+70%増加した。通常の既設石炭ミルの駆動源負荷は70%の余裕は採っておらず、このミル動力増加は即ちミルトリップに至ることを示す。このように、木屑等の混合率を上げるとミル動力が大幅に上昇し、また、微粉度は低減する。尚、微粉度とは粉砕された粒子の細かさの度合いを示し、微粉度が高いと粒径が小さい粒子が多いことをあらわす。従って、木屑等の混合率を上げると粉砕物の粒径が大きくなることがわかる。   In such a mixed pulverization method, the mixing rate of biomass is set to an upper limit of about 3 wt% with respect to coal due to the limitation of the pulverizer capacity. This is because when wood dust and coal are mixed and pulverized by a vertical pulverizer, a mill trip (power upper limit) is reached due to an increase in the thickness of the coal layer on the rotary table. Since wood waste is not a brittle material like coal, it is difficult to crush with the pressure and shearing force of the vertical crusher, the amount of internal stagnant wood waste and coal increases, and the thickness of the coal bed on the rotary table is compared to the normal coal grinding operation state. Greatly increase the operating power of the crusher. FIG. 11 shows a mill characteristic diagram when mixed and pulverized by a conventional pulverizing mill. FIG. 11A shows the relationship between the wood chip / waste wood mixing rate and the mill power ratio, and FIG. 11B shows the relationship between the wood waste / waste wood mixing rate and the fineness. The mill power increased by + 70% simply by mixing and grinding wood chips and the like with a heat input ratio of 5%. The drive load of a normal existing coal mill does not allow a 70% margin, indicating that this increase in mill power leads to a mill trip. As described above, when the mixing ratio of wood chips and the like is increased, the mill power is significantly increased and the fineness is reduced. The fineness indicates the degree of fineness of the pulverized particles, and a high fineness indicates that there are many particles having a small particle size. Therefore, it can be seen that the particle size of the pulverized material increases when the mixing ratio of wood chips and the like is increased.

特開2005−113125号公報JP-A-2005-113125 特開2004−347241号JP 2004-347241 A 特許第3712691号公報Japanese Patent No. 3712691

混合粉砕方式の問題点として、弾塑性材料であるバイオマス燃料は石炭の粉砕に比べて粉砕が困難であり、混合粉砕を行う場合には粉砕機動力などが大幅に増加したり、粉砕物の粒径が大きくなるという問題がある。
さらに、燃料とするバイオマス種類や性状の僅かな変動でも粉砕機の運転状態が変動し、燃料供給量に支障を来たし、延いては混焼ボイラの運転にも影響を及ぼすという問題もある。
一方、単独粉砕方式は、バイオマスを粉砕対象とした構造、運転方法を有する粉砕機を新たに設置する必要がありコスト高となる。また、石炭粉砕機をバイオマスの単独運転に活用する場合、処理容量が石炭粉砕容量の約25%程度となるため、複数の粉砕ミルを設置したり、大容量の石炭粉砕機を設置する必要が生じる。
The problem with the mixed pulverization method is that biomass fuel, which is an elastoplastic material, is difficult to pulverize compared to coal pulverization. There is a problem that the diameter increases.
In addition, even a slight change in the type and properties of the biomass used as fuel causes the operation state of the pulverizer to fluctuate, which hinders the amount of fuel supplied and, in turn, affects the operation of the mixed-fired boiler.
On the other hand, in the single pulverization method, it is necessary to newly install a pulverizer having a structure and operation method for using biomass as a pulverization target, which increases costs. In addition, when the coal pulverizer is used for biomass single operation, the processing capacity is about 25% of the coal pulverization capacity, so it is necessary to install a plurality of pulverization mills or a large-capacity coal pulverizer. Arise.

従って、本発明は上記従来技術の問題点に鑑み、バイオマスの性状変動に対して燃料供給の信頼性が高く、竪型粉砕機及び混焼ボイラの安定運転を可能とした石炭・バイオマス混焼システム及び混焼方法を提供することを目的とする。   Therefore, in view of the above-mentioned problems of the prior art, the present invention provides a coal / biomass co-firing system and co-firing with high reliability of fuel supply against changes in the properties of biomass and enabling stable operation of vertical pulverizers and co-firing boilers. It aims to provide a method.

そこで、本発明はかかる課題を解決するために、モータにより回転駆動する粉砕テーブル上に載置された固体燃料を、前記テーブルの回転と連動して作動するローラにより押圧して粉砕する複数の竪型粉砕機(以下粉砕機という)と、高さ方向に複数段の燃料供給ノズルが配設されたボイラ火炉とを備え、前記夫々の粉砕機により得られた粉体燃料が、対応する前記各段の燃料供給ノズルに供給される石炭・バイオマス混焼システムであって、
石炭専用粉砕若しくは石炭とバイオマスの混合粉砕(以下混合粉砕された粉砕物も含めて石炭粉砕物という)を行う粉砕機(以下第2の粉砕機という)とは別に、バイオマスを単独で粉砕する粉砕機(以下第1の粉砕機という)を設けるとともに、前記第1の粉砕機にバイオマスを供給する供給上流側に、前記バイオマスの含水率を検出するセンサを設け、
該センサの検出値に基づいて高さ方向に複数段の燃料供給ノズルより対応する段の燃料供給ノズルを選択するように構成したコントローラを具えたことを特徴とする。
In order the present invention is to solve the above problems, the solid fuel placed on grinding table rotated by a motor, a plurality of the ground by pressing by a roller which operates in conjunction with the rotation of the table vertical type crusher (hereinafter referred grinder), and a height direction in the boiler furnace in which the fuel supply nozzle in a plurality of stages are arranged, pulverized fuel obtained by a pulverizer of the respective is corresponding each a coal-biomass co-firing system that will be supplied to the fuel supply nozzle of the stage,
Separately pulverizing biomass separately from pulverizer (hereinafter referred to as second pulverizer) that performs dedicated pulverization of coal or mixed pulverization of coal and biomass (hereinafter also referred to as pulverized coal including mixed pulverized product). And a sensor for detecting the moisture content of the biomass on the supply upstream side for supplying biomass to the first pulverizer,
And a controller configured to select a corresponding fuel supply nozzle from a plurality of fuel supply nozzles in a height direction based on a detection value of the sensor .

好ましくは前記コントローラは、バイオマスの含水率が高い場合には、バイオマス粉砕物をボイラ火炉の下段側の燃料供給ノズルに供給し、該燃料供給ノズルの上段側に位置する他の燃料供給ノズルに前記石炭粉砕物を供給し、Preferably, when the moisture content of the biomass is high, the controller supplies the pulverized biomass to the fuel supply nozzle on the lower stage side of the boiler furnace, and supplies the fuel supply nozzle to the other fuel supply nozzle located on the upper stage side of the fuel supply nozzle. Supplying coal pulverized material,
一方、バイオマスの含水率が低い場合には、バイオマス粉砕物をボイラ火炉の上段側の燃料供給ノズルに供給し、該燃料供給ノズルより下段側に位置する他の燃料供給ノズルに前記石炭粉砕物を供給し、該ボイラ火炉内でバイオマス粉砕物と石炭粉砕物とを別途の段の燃料供給ノズルに供給して燃焼させるコントローラであるのがよい。On the other hand, when the moisture content of the biomass is low, the biomass pulverized product is supplied to the upper fuel supply nozzle of the boiler furnace, and the coal pulverized product is supplied to another fuel supply nozzle located on the lower side of the fuel supply nozzle. The controller may be configured to supply and burn the biomass pulverized material and the coal pulverized material to a separate fuel supply nozzle in the boiler furnace.

本発明によれば、バイオマスを単独で粉砕する第1の粉砕機を専用系統として設けることで、他の混合粉砕機でのバイオマス混合率を大幅に低減することができる。従って、バイオマス種類、性状の変動が混合粉砕機に与える影響を最小限に抑え、ボイラを運用する上での安定性、信頼性が格段に向上する。また、混合粉砕機におけるバイオマス混合率を小さくできることから、ミル動力の大幅な増大を防止するとともに粉砕物の小粒径化が可能となる。   According to the present invention, by providing the first pulverizer for pulverizing biomass alone as a dedicated system, the biomass mixing rate in other mixed pulverizers can be greatly reduced. Therefore, the influence which fluctuation | variation of biomass kind and a property has on a mixing grinder is minimized, and stability and reliability in operating a boiler are remarkably improved. Further, since the biomass mixing ratio in the mixing and grinding machine can be reduced, it is possible to prevent a significant increase in mill power and to reduce the particle size of the pulverized product.

さらに、前記燃料供給ノズルが前記ボイラ火炉の高さ方向に複数段設けられ、前記第1の粉砕機により得られるバイオマス粉体の粒径(バイオマスの含水率)に基づいて、該バイオマス粉体を供給する燃料供給ノズルを選択する制御手段を備えたことを特徴とする。
本発明では、バイオマス粉体をボイラ火炉へ投入する高さ位置を任意に設定可能としている。難粉砕性のバイオマスを燃料とする場合、粉砕機出口におけるバイオマス粒径が比較的大きくなるため、ボイラ火炉下方の燃料供給ノズルからバイオマス粉体を供給することにより滞留時間を大きく取れる。容易に微粉砕可能なバイオマスの場合には、中段若しくは上段側の燃料供給ノズルから供給するようにしてもよい。このように、受け入れるバイオマスの粉砕性に応じて粉砕機の適正運用が可能となるため、粉体燃料の完全燃焼が図られ、未燃損失を低減することができる。
Further, the fuel supply nozzle is provided in a plurality of stages in the height direction of the boiler furnace, and the biomass powder is obtained on the basis of the particle size (moisture content of biomass) of the biomass powder obtained by the first pulverizer. Control means for selecting a fuel supply nozzle to be supplied is provided.
In the present invention, the height position at which the biomass powder is charged into the boiler furnace can be arbitrarily set. When using hard-pulverizable biomass as fuel, the biomass particle size at the crusher outlet becomes relatively large, so that the residence time can be increased by supplying biomass powder from the fuel supply nozzle below the boiler furnace. In the case of biomass that can be easily pulverized, it may be supplied from a fuel supply nozzle on the middle or upper side. As described above, since the pulverizer can be appropriately operated according to the pulverization property of the biomass to be received, complete combustion of the pulverized fuel can be achieved and unburned loss can be reduced.

さらにまた、前記第1の粉砕機に供給するバイオマスの含水率若(平均粒径)を検出する検出手段を設け、該検出手段の検出値に基づいて前記制御手段により前記燃料供給ノズルを選択するようにしたことを特徴とする。
粉砕前のバイオマス含水率は粉砕後の粒径に大きく影響するものである。すなわち、含水率の大きいバイオマスは粉砕後の粒径が大きくなり、同様に、粉砕前のバイオマスの平均長さが大きいと粉砕後の粒径も大きくなる。従って、粉砕前のバイオマスの含水率を検出することにより、容易に粉砕物の粒径を推定することができる。ここで、バイオマスの平均粒径とは、一次破砕したバイオマスチップの短辺における平均長さをいう。
Furthermore, a detection means for detecting the moisture content of the biomass supplied to the first pulverizer (average particle diameter) is provided, and the fuel supply nozzle is selected by the control means based on the detection value of the detection means. It is characterized by doing so.
Biomass moisture content before pulverization is to greatly affect the particle size after grinding. That is, biomass having a high water content has a large particle size after pulverization, and similarly, if the average length of biomass before pulverization is large, the particle size after pulverization also increases. Therefore, by detecting the moisture content of the biomass before pulverization, it is possible to estimate the particle size of the readily pulverized. Here, the average particle diameter of the biomass refers to the average length at the short side of the primary crushed biomass chip.

また、モータにより回転駆動する粉砕テーブル上に載置された固体燃料を、前記テーブルの回転と連動して作動するローラにより押圧して粉砕する複数の竪型粉砕機(以下粉砕機という)と、高さ方向に複数段の燃料供給ノズルが配設されたボイラ火炉とを用意し、前記夫々の粉砕機より得られた粉体燃料が、対応する前記各段の燃料供給ノズルに供給するようにした石炭・バイオマス混焼方法であって、石炭専用粉砕若しくは石炭とバイオマスの混合粉砕を行う粉砕機(以下第2の粉砕機という)とは別に、バイオマスを単独で粉砕する粉砕機(以下第1の粉砕機という)を設けるとともに、前記第1の粉砕機にバイオマスを供給する供給上流側に、前記バイオマスの含水率を検出するセンサを設け、該センサの検出値に基づいて高さ方向に複数段の燃料供給ノズルより対応する段の燃料供給ノズルを選択して、前記ボイラ火炉内でバイオマス粉砕物と石炭粉砕物とを別途の段の燃料供給ノズルに供給して燃焼させることを特徴とする。 Also, a plurality of vertical pulverizers (hereinafter referred to as pulverizers) for pressing and pulverizing the solid fuel placed on the pulverization table that is rotationally driven by a motor by a roller that operates in conjunction with the rotation of the table, A boiler furnace having a plurality of stages of fuel supply nozzles arranged in the height direction is prepared so that the pulverized fuel obtained from each of the pulverizers is supplied to the corresponding fuel supply nozzles of the respective stages. In addition to a pulverizer for exclusive coal pulverization or mixed pulverization of coal and biomass (hereinafter referred to as a second pulverizer), a pulverizer for pulverizing biomass alone (hereinafter referred to as a first pulverizer). Provided with a sensor for detecting the moisture content of the biomass on the upstream side of supplying the biomass to the first pulverizer, and the height direction based on the detection value of the sensor Select fueling nozzle of stages corresponding the fuel supply nozzle in a plurality of stages, and wherein the feeding and burning the pulverized biomass and coal pulverized in a separate stage fuel supply nozzle in the boiler furnace To do.

さらに、前記バイオマスの含水率が高い場合には、バイオマス粉砕物をボイラ火炉の下段側の燃料供給ノズルに供給し、該燃料供給ノズルの上段側に位置する他の燃料供給ノズルに前記石炭粉砕物を供給し、一方、バイオマスの含水率が低い場合には、バイオマス粉砕物をボイラ火炉の上段側の燃料供給ノズルに供給し、該燃料供給ノズルより下段側に位置する他の燃料供給ノズルに前記石炭粉砕物を供給し、該ボイラ火炉内でバイオマス粉砕物と石炭粉砕物とを別途の段の燃料供給ノズルに供給して燃焼させるのがよい。 Further, when the moisture content of the biomass is high, the biomass pulverized product is supplied to the fuel supply nozzle on the lower stage side of the boiler furnace, and the pulverized coal product is supplied to another fuel supply nozzle located on the upper stage side of the fuel supply nozzle. On the other hand, when the moisture content of the biomass is low, the biomass pulverized product is supplied to the fuel supply nozzle on the upper stage side of the boiler furnace, and the other fuel supply nozzle located on the lower stage side of the fuel supply nozzle The coal pulverized product is supplied, and the biomass pulverized product and the coal pulverized product are supplied to a fuel supply nozzle in a separate stage and burned in the boiler furnace.

以上記載のごとく本発明によれば、石炭専用粉砕若しくは石炭とバイオマスの混合粉砕を行う第2の粉砕機とは別に、バイオマス粉砕用の第1の粉砕機を設けることにより、第2の粉砕機でのバイオマス混合率を大幅に低減することができ、バイオマス種類、性状の変動が与える影響を最小限に抑え、ボイラを運用する上での安定性、信頼性が格段に向上する。また、混合粉砕機におけるバイオマス混合率を小さくできることから、ミル動力の大幅な増大を防止するとともに粉砕物の小粒径化が可能となる。
さらに、バイオマス粉体のボイラへの投入高さを任意に設定できる構成としたため、受け入れるバイオマスの粉砕性に応じて、適正な粉砕機の運用が可能となる。
As described above, according to the present invention, the second pulverizer is provided by providing the first pulverizer for pulverizing biomass separately from the second pulverizer that performs pulverization exclusively for coal or mixed pulverization of coal and biomass. Can greatly reduce the biomass mixing ratio in the plant, minimizing the effects of changes in biomass type and properties, and greatly improving the stability and reliability of boiler operation. Further, since the biomass mixing ratio in the mixing and grinding machine can be reduced, it is possible to prevent a significant increase in mill power and to reduce the particle size of the pulverized product.
In addition, since the biomass powder can be arbitrarily set to the boiler, the proper pulverizer can be operated according to the pulverizability of the biomass to be received.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明が適用されるシステムの全体構成図、図2は竪型粉砕機の概略構成を示す側断面図、図3は粉砕機の運用パターンを説明する図、図4は本発明の実施例に係るシステムの全体構成図、図5はバイオマス含水率に対する粉砕機出口の粒径を示すグラフ、図6、7は燃料供給ノズルから供給する入熱量比を説明する図、図8は旋回流を形成するノズル配置を示す平断面図である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
1 is an overall configuration diagram of a system to which the present invention is applied , FIG. 2 is a side sectional view showing a schematic configuration of a vertical pulverizer, FIG. 3 is a diagram for explaining an operation pattern of the pulverizer, and FIG. overall configuration diagram of a system according to an embodiment, FIG. 5 is a graph showing the particle size of the grinder outlet for biomass moisture content, FIGS. 6 and 7 diagram for explaining the amount of heat input ratio supplied from the fuel supply nozzle, Figure 8 is turning It is a plane sectional view showing nozzle arrangement which forms a flow.

図1に示すように本発明が適用されるシステムは、必要に応じて所定粒径以下まで一次破砕(粗破砕)された石炭10が貯蔵される石炭貯蔵設備1と、同様に粗破砕、乾燥されたバイオマス11が貯蔵されるバイオマス貯蔵設備2と、石炭10若しくはバイオマス11が供給されるホッパ4a〜4cを備えた竪型粉砕機3a〜3cと、該竪型粉砕機3a〜3cにて得られた粉体燃料が供給されるボイラ火炉5と、を備える。
竪型粉砕機3a〜3cは複数台設けられ、バイオマス貯蔵設備2から供給されたバイオマス11を粉砕する第1の粉砕機3aと、石炭貯蔵設備1から供給された石炭10を粉砕する第2の粉砕機3b、3cと、からなる。第1、第2の竪型粉砕機は何れも一台又は複数台から構成されるが、好適には一台の第1の粉砕機3aと、複数台の第2の粉砕機3b、3cにより構成するとよい。また、既存の微粉炭炊きボイラシステムに適用する場合には、予備機として設置した竪型粉砕機を第1の粉砕機3aとしてもよい。
As shown in FIG. 1, the system to which the present invention is applied includes a coal storage facility 1 that stores coal 10 that has been primarily crushed (coarsely crushed) to a predetermined particle size or less as necessary, as well as coarsely crushed and dried. Obtained by the biomass storage facility 2 for storing the produced biomass 11, the vertical pulverizers 3a to 3c having the hoppers 4a to 4c to which the coal 10 or the biomass 11 is supplied, and the vertical pulverizers 3a to 3c A boiler furnace 5 to which the supplied pulverized fuel is supplied.
A plurality of vertical crushers 3a to 3c are provided, a first crusher 3a that crushes biomass 11 supplied from biomass storage facility 2, and a second that crushes coal 10 supplied from coal storage facility 1. And crushers 3b and 3c. Each of the first and second vertical crushers is composed of one or a plurality of units, but preferably includes one first crusher 3a and a plurality of second crushers 3b and 3c. Configure. Moreover, when applying to the existing pulverized coal cooking boiler system, the vertical crusher installed as a spare machine is good also as the 1st grinder 3a.

バイオマス粉砕機(第1の粉砕機)3aと石炭粉砕機(第2の粉砕機)3b、3cは同様の構成を有する。竪型粉砕機3(3a〜3c)の具体的構成について図2を参照して説明する。
円筒型をしたハウジング31の下部には、略円形台状の粉砕テーブル32が備えられ、その粉砕テーブル32は、ハウジング31の下部に設置されたモータ36によって駆動され減速機を介して低速で回転するように構成されている。粉砕テーブル32の外周縁部には被粉砕物が粉砕テーブル32上で所定の厚さの堆積層を形成できるようにダムリング33が立設されている。さらに、粉砕テーブル32の外周部の上面に円周方向に等間隔で位置する部位に、油圧あるいはスプリング等で荷重を付加して、粉砕テーブル32の回転と連動して回転しながら被粉砕物に押圧力を作用せしめて被粉砕物を粉砕する粉砕ローラ34が設けられている。
粉砕ローラ34は、ローラアームの端部を中心に回動可能に支持され、前記油圧あるいはスプリング等の荷重を調整することで、被粉砕物を押付ける押圧力を制御している。
The biomass pulverizer (first pulverizer) 3a and the coal pulverizers (second pulverizer) 3b and 3c have the same configuration. A specific configuration of the vertical crusher 3 (3a to 3c) will be described with reference to FIG.
A substantially circular trapezoidal crushing table 32 is provided at the lower part of the cylindrical housing 31. The crushing table 32 is driven by a motor 36 installed at the lower part of the housing 31 and rotates at a low speed via a speed reducer. Is configured to do. A dam ring 33 is erected on the outer peripheral edge of the crushing table 32 so that the object to be crushed can form a deposited layer having a predetermined thickness on the crushing table 32. Further, a load is applied to the upper surface of the outer peripheral portion of the pulverizing table 32 at equal intervals in the circumferential direction by hydraulic pressure or a spring or the like, and the object to be pulverized while rotating in conjunction with the rotation of the pulverizing table 32. A crushing roller 34 that crushes the object to be crushed by applying a pressing force is provided.
The crushing roller 34 is supported so as to be rotatable around the end of the roller arm, and controls the pressing force for pressing the object to be crushed by adjusting the load such as the hydraulic pressure or the spring.

ホッパ4から供給管41を介して粉砕テーブル32の中央部に供給された被粉砕物は、粉砕テーブル32上において遠心力によって外周方向に移動して、粉砕レース37と粉砕ローラ34との間にかみこまれ、粉砕されるようになっている。尚、バイオマス供給管41には、供給量を検出する供給量検出部42が設けられ、供給量が監視されている。
ハウジング31の下部には、燃焼後の排ガスの一部15が、排ガス循環ブロワ7によって排ガス再循環路16を通って導かれている。粉砕後の粉体は、この排ガスによって乾燥される。ハウジング31の上部に搬送された粉体のうち粗いものは重力で粉砕テーブル32上に落下して再度粉砕される。ハウジング31の上部には、固定式分級機あるいは回転式分級機35が設けられ、再度分級される。所定の粒径より小さい微粉は吹き上げ気流によって搬出され、ボイラ火炉5に搬送される。分級機35を貫通しなかった所定粒径より大きい粗粉は、粉砕テーブル32上に落下して再度粉砕される。
The material to be crushed supplied from the hopper 4 through the supply pipe 41 to the central portion of the pulverizing table 32 moves on the pulverizing table 32 in the outer peripheral direction by centrifugal force, and between the pulverizing race 37 and the pulverizing roller 34. It is bitten and crushed. The biomass supply pipe 41 is provided with a supply amount detection unit 42 for detecting the supply amount, and the supply amount is monitored.
A part 15 of the exhaust gas after combustion is guided to the lower part of the housing 31 through the exhaust gas recirculation path 16 by the exhaust gas circulation blower 7. The pulverized powder is dried by the exhaust gas. Of the powder conveyed to the upper part of the housing 31, the coarse powder falls on the crushing table 32 by gravity and is pulverized again. A fixed classifier or a rotary classifier 35 is provided on the upper portion of the housing 31 and is classified again. Fine powder having a particle size smaller than the predetermined particle size is carried out by a blown-up air stream and conveyed to the boiler furnace 5. Coarse powder larger than the predetermined particle size that has not penetrated the classifier 35 falls on the crushing table 32 and is pulverized again.

図1に示すように、ボイラ火炉5の炉本体51には、高さ方向に複数段設けられた燃料供給ノズル52a〜52cと、空気ノズル及びこれらのノズルに共働するバーナ(不図示)が配設されている。炉内には加熱器、蒸発器、節炭器等にあたる伝熱管群53が設置されている。炉内に供給された粉体燃料の燃焼により発生する燃焼排ガスは、伝熱管群53を加熱して煙道へ送られる。炉本体51の炉出口に設けた煙道の途中には空気加熱器6が配置され、煙道内の燃焼排ガスは誘引ファンで引かれて空気加熱器、灰捕集装置を経て煙突から大気放出される。空気加熱器6によって外気13を加熱した高温空気14は石炭粉砕機3b、3cに供給され、石炭の乾燥に用いられる。ボイラ火炉5の出口から一部分岐させた燃焼排ガス15は、誘引ファン7により燃焼排ガス供給路16を介してバイオマス粉砕機3aに供給され、バイオマスの乾燥に用いられる。   As shown in FIG. 1, the furnace main body 51 of the boiler furnace 5 includes fuel supply nozzles 52a to 52c provided in a plurality of stages in the height direction, air nozzles, and burners (not shown) that cooperate with these nozzles. It is arranged. A heat transfer tube group 53 corresponding to a heater, an evaporator, a economizer, or the like is installed in the furnace. The combustion exhaust gas generated by the combustion of the pulverized fuel supplied into the furnace heats the heat transfer tube group 53 and is sent to the flue. An air heater 6 is arranged in the middle of the flue provided at the furnace outlet of the furnace main body 51, and the combustion exhaust gas in the flue is drawn by an induction fan and released into the atmosphere from the chimney through the air heater and the ash collector. The The high-temperature air 14 obtained by heating the outside air 13 with the air heater 6 is supplied to the coal pulverizers 3b and 3c and used for drying the coal. The combustion exhaust gas 15 partially branched from the outlet of the boiler furnace 5 is supplied to the biomass pulverizer 3a by the induction fan 7 via the combustion exhaust gas supply path 16, and is used for drying the biomass.

本実施例にて、燃料供給ノズル52a〜52cは粉砕機3a〜3cに対応して設けられ、夫々独立した供給配管により接続されている。同一高さに複数の燃料供給ノズルが設置される場合は、該同一高さに位置する燃料供給ノズルは全て一台の粉砕機に接続されることが好ましい。例えば、バイオマス粉砕機3aにより得られたバイオマス粉体は燃料供給ノズル52aより炉内に供給され、石炭粉砕機3b、3cにより得られた石炭粉体は、高さ位置の異なる燃料供給ノズル52b、52cより炉内に供給される。
夫々の燃料供給ノズルから別々に炉内に供給されたバイオマス粉体及び石炭粉体は、炉内で混合して燃焼される。
In this embodiment, the fuel supply nozzles 52a to 52c are provided corresponding to the pulverizers 3a to 3c, and are connected by independent supply pipes. When a plurality of fuel supply nozzles are installed at the same height, it is preferable that all the fuel supply nozzles positioned at the same height are connected to one pulverizer. For example, the biomass powder obtained by the biomass pulverizer 3a is supplied into the furnace from the fuel supply nozzle 52a, and the coal powder obtained by the coal pulverizers 3b and 3c is different from the fuel supply nozzle 52b, It is supplied into the furnace from 52c.
Biomass powder and coal powder separately supplied into the furnace from each fuel supply nozzle are mixed and burned in the furnace.

また別の本発明が適用されるシステムとして、第1の粉砕機であるバイオマス粉砕機3aとは別に、第2の粉砕機である混合粉砕機3b、3cにバイオマスと石炭を供給し、混合粉砕する構成とする。バイオマス粉砕機3aにて得られたバイオマス粉体は燃料供給ノズル52aよりボイラ火炉5内に供給し、混合粉砕機3b、3cにて得られた石炭・バイオマス混合粉体は燃料供給ノズル52b、52cより炉内に供給し、これらを炉内で混合して燃焼させる。 As another system to which the present invention is applied, separately from the biomass pulverizer 3a as the first pulverizer, biomass and coal are supplied to the mixed pulverizers 3b and 3c as the second pulverizer, and mixed and pulverized. The configuration is as follows. The biomass powder obtained by the biomass pulverizer 3a is supplied into the boiler furnace 5 from the fuel supply nozzle 52a, and the coal / biomass mixed powder obtained by the mixed pulverizers 3b and 3c is supplied by the fuel supply nozzles 52b and 52c. More, it is supplied into the furnace, and these are mixed and burned in the furnace.

図3に、6台の粉砕機A〜Fを設置した場合の運用例を示す。図3(a)は従来例として石炭ボイラの場合、(b)は本発明が適用されるシステムとして混焼ボイラにて、石炭、バイオマス単独粉砕を夫々用いた場合、(c)は本発明が適用されるシステムとして混焼ボイラにて、混合粉砕とバイオマス単独粉砕を用いた場合、(d)は比較例として混焼ボイラにて混合粉砕を用いた場合、(e)は比較例として混焼ボイラにて、予備機を使用した混合粉砕を用いた場合である。
従来の石炭ボイラの場合を図3(a)に示す。これによれば、5台の粉砕機A〜Eで石炭を粉砕し、夫々の粉砕機から得られる石炭粉体をボイラ本体51の燃料供給ノズルから炉内に供給する。このとき、粉砕機Fは予備機として用いられる。ボイラ本体51に供給する全熱量を100とすると、5台の粉砕機にて均等に入熱量を分配することとなり、一台の粉砕機当たりの所要入熱量比は20となる。この入熱量が得られるように粉砕機への石炭供給量を設定する。
FIG. 3 shows an operation example when six pulverizers A to F are installed. 3A is a coal boiler as a conventional example, FIG. 3B is a mixed-fired boiler as a system to which the present invention is applied , and coal and biomass pulverization are respectively used, and FIG. When mixed pulverization and biomass single pulverization are used in a mixed combustion boiler as a system to be used, (d) is a mixed combustion boiler as a comparative example, (e) is a mixed combustion boiler as a comparative example, This is a case of using mixed grinding using a spare machine.
The case of the conventional coal boiler is shown to Fig.3 (a). According to this, coal is pulverized by five pulverizers A to E, and the coal powder obtained from each pulverizer is supplied from the fuel supply nozzle of the boiler body 51 into the furnace. At this time, the grinder F is used as a spare machine. Assuming that the total heat supplied to the boiler body 51 is 100, the heat input is evenly distributed by five pulverizers, and the required heat input ratio per pulverizer is 20. The amount of coal supplied to the pulverizer is set so that this heat input is obtained.

これに対して石炭・バイオマス混焼ボイラの場合を図3(b)〜(e)に示す。
図3(b)に示すように、本発明が適用されるシステムでは粉砕機Fをバイオマス単独粉砕に用い、5台の粉砕機A〜Eを石炭単独粉砕に用いるようにしたため、ボイラに供給する全熱量100に対して、入熱量比(石炭入熱量/バイオマス入熱量)は、粉砕機A〜Eでは19/0、粉砕機Fでは0/5となる。この入熱量比が得られるように粉砕機への石炭、バイオマス供給量を設定することとなる。
また、図3(c)に示すように、本発明が適用されるシステムでは粉砕機A〜Eを石炭とバイオマスの混合粉砕に用い、粉砕機Fをバイオマス単独粉砕に用いるようにしてもよい。このようにバイオマス専用の粉砕機Fを設け、粉砕機A〜Eの5台の粉砕機を混合粉砕に用いることにより、混合粉砕機A〜Eには入熱量比が19/0.2となるようにバイオマスを混合すればよく、一台当たりのバイオマス混合率を低減することができる。従って、動力の大幅な増大を回避し、安定した運転が可能となる。
On the other hand, the case of a coal / biomass co-fired boiler is shown in FIGS.
As shown in FIG. 3B, in the system to which the present invention is applied , the pulverizer F is used for biomass single pulverization, and the five pulverizers A to E are used for coal single pulverization. The heat input ratio (coal heat input / biomass heat input) is 19/0 for the pulverizers A to E and 0/5 for the pulverizer F with respect to the total heat amount 100. The amount of coal and biomass supplied to the pulverizer is set so that this heat input ratio can be obtained.
Further, as shown in FIG. 3 (c), the system the present invention is applied to pulverizer A~E used mixing and grinding of the coal and biomass, the grinder F may be used in the biomass alone grinding. Thus, by providing the pulverizer F dedicated to biomass and using the five pulverizers A to E for mixing and pulverization, the heat input ratio of the mixed pulverizers A to E is 19 / 0.2. As long as biomass is mixed, the biomass mixing rate per unit can be reduced. Therefore, a significant increase in power can be avoided and stable operation can be achieved.

一方、バイオマス単独粉砕を具備せず、粉砕機A〜E、Fにてバイオマス、石炭の混合粉砕を行う場合につき図3(d)、(e)に示す。
(d)は比較例としてバイオマス粉砕機を具備せず、且つ予備機を使用しない例、(e)は比較例としてバイオマス粉砕機を具備せず、且つ予備機も混合粉砕に使用した例である。(d)に示す比較例ではバイオマス粉砕機を具備しないため、粉砕機A〜Eには入熱量比が19/1となるように石炭、バイオマスを供給する。また、(e)に示す比較例では、粉砕機A〜Fにはボイラへの入熱量比が15.8/0.8となるように石炭、バイオマスを夫々供給することとなる。このように、バイオマス粉砕機を設置しない場合は混合粉砕機におけるバイオマスの混合率が高くなり、動力が大幅に増加するとともに得られる粉砕物の粒径が大きくなる。
このように本発明が適用されるシステムによれば、石炭粉砕若しくは混合粉砕を行う第2の粉砕機とは別に、バイオマスを単独で粉砕する第1の粉砕機を専用系統として設けることで、バイオマスの種類、性状の変動に関わらず、安定して燃料を供給することができ、ボイラを運用する上での安定性、信頼性が格段に向上することとなる。
On the other hand, FIG. 3D and FIG. 3E show cases where biomass and coal are mixed and pulverized by the pulverizers A to E and F without the biomass single pulverization.
(D) is an example in which a biomass pulverizer is not provided as a comparative example and a spare machine is not used, and (e) is an example in which a biomass pulverizer is not provided as a comparative example and a spare machine is also used for mixing and pulverization. . Since the comparative example shown in (d) does not include a biomass grinder, coal and biomass are supplied to the grinders A to E so that the heat input ratio is 19/1. In the comparative example shown in (e), coal and biomass are respectively supplied to the pulverizers A to F so that the ratio of heat input to the boiler is 15.8 / 0.8. Thus, when a biomass pulverizer is not installed, the mixing rate of biomass in the mixing pulverizer becomes high, the power is greatly increased, and the particle size of the obtained pulverized product becomes large.
As described above, according to the system to which the present invention is applied, the first pulverizer that pulverizes the biomass independently is provided as a dedicated system separately from the second pulverizer that performs coal pulverization or mixed pulverization. Regardless of the type and properties of the fuel, the fuel can be stably supplied, and the stability and reliability in operating the boiler are remarkably improved.

図2に本実施例に係るバイオマス混焼システムの全体構成図を示す。以下、前記本発明が適用されるシステムと同様の構成についてはその詳細な説明を省略する。
同図に示すように、本実施例に係るシステムは、石炭貯蔵設備1と、バイオマス貯蔵設備2と、ホッパ4a〜4fを備えた竪型粉砕機3a〜3fと、ボイラ火炉5とを備える。ここでは一例として6台の竪型粉砕機を備えた構成につき説明するが、粉砕機の設置数は限定されない。
本実施例は、石炭貯蔵設備1からホッパ4a〜4fへ石炭10を供給する石炭供給ライン18と、バイオマス貯蔵設備2からホッパ4a〜4fへバイオマス11を供給するバイオマス供給ライン19と、を備える。石炭供給ライン18上にはバルブ21a〜21fが、バイオマス供給ライン19上にはバルブ22a〜22fが設けられている。これらのバルブの開閉制御は制御装置8により行われ、一台のホッパに対して石炭10若しくはバイオマス11の何れか一方のみ供給されるように制御される。
It shows an overall configuration diagram of a biomass co-firing system of the present embodiment in FIG. Hereinafter, detailed description of the same configuration as the system to which the present invention is applied will be omitted.
As shown in the drawing, the system according to the present embodiment includes a coal storage facility 1, and biomass storage facilities 2, a vertical grinder 3a~3f having a hopper 4a-4f, and a boiler furnace 5. Here, a configuration including six vertical crushers will be described as an example, but the number of crushers installed is not limited.
The present embodiment includes a coal supply line 18 that supplies the coal 10 from the coal storage facility 1 to the hoppers 4a to 4f, and a biomass supply line 19 that supplies the biomass 11 from the biomass storage facility 2 to the hoppers 4a to 4f. Valves 21 a to 21 f are provided on the coal supply line 18, and valves 22 a to 22 f are provided on the biomass supply line 19. The opening / closing control of these valves is performed by the control device 8 so that only one of the coal 10 and the biomass 11 is supplied to one hopper.

ボイラ火炉5の側壁には、高さ方向に複数段の燃料供給ノズル52a〜52fが設置される。該燃料供給ノズル52a〜52fは、一台の粉砕機に対して一段の燃料供給ノズルが対応している。粉砕機で得られた石炭粉体若しくはバイオマス粉体は、供給配管を介して夫々の燃料供給ノズルに接続される。
本実施例では、バイオマス粉砕機のボイラ火炉5への投入高さをバイオマス粉体の粒径に応じて任意に設定可能としている。好適には、バイオマス含水率若しくは平均長さに基づいてバイオマス粉体を供給する燃料供給ノズルの高さ位置を選択できるように構成する。
例えば、難粉砕性で微粉砕に大きな動力を要するバイオマス11を混焼する場合、粉砕機出口のバイオマス粒径が比較的大きくなることから火炉滞留時間を大きく取れる最下段の燃料供給ノズルに連結した粉砕機を、バイオマス粉砕用の第1の粉砕機として使用し、他の粉砕機を石炭粉砕用の第2の粉砕機として使用する。
一方、容易に微粉砕が可能なバイオマス11を混焼する場合は、中段若しくは下段の燃料供給ノズルに連結した粉砕機をバイオマス粉砕用の第1の粉砕機とする。これにより受け入れるバイオマスの粉砕性に応じて、粉砕機の適正な運用が可能となる。
A plurality of stages of fuel supply nozzles 52 a to 52 f are installed on the side wall of the boiler furnace 5 in the height direction. The fuel supply nozzles 52a to 52f correspond to a single fuel supply nozzle for one pulverizer. The coal powder or biomass powder obtained by the pulverizer is connected to each fuel supply nozzle via a supply pipe.
In the present embodiment, the input height of the biomass pulverizer to the boiler furnace 5 can be arbitrarily set according to the particle size of the biomass powder. Preferably, the height position of the fuel supply nozzle that supplies biomass powder is selected based on the biomass moisture content or average length.
For example, when biomass 11 that is difficult to grind and requires a large amount of power for fine grinding is mixed, the biomass particle size at the outlet of the grinder becomes relatively large, so that the grinding is connected to the lowest fuel supply nozzle that can take a large furnace residence time. The machine is used as the first pulverizer for biomass pulverization and the other pulverizer is used as the second pulverizer for coal pulverization.
On the other hand, when the biomass 11 that can be easily pulverized is co-fired, the pulverizer connected to the middle or lower fuel supply nozzle is used as the first pulverizer for biomass pulverization. Thereby, according to the grindability of the biomass to accept, proper operation of a grinder becomes possible.

上記したように、バイオマス粉体の投入高さの選択は、バイオマス粉体の粒径に基づいて行われる。バイオマス粉体の粒径は、粉砕前のバイオマス含水率から推定できる。
図4には一例として、粉砕機の上流側にバイオマスの含水率を検出するための湿度センサ9を設けている。バイオマスの含水率と粉砕物の粒径の関係を図5に示す。同図に示すように、バイオマスの含水率が高くなるほど難破砕性となり、粉砕物の粒径は大きくなる。従って、湿度センサ9により粉砕前のバイオマスの含水率を検出して、該含水率に応じて制御装置8によりバルブ21a〜21f、22a〜22fを切り替え制御し、所定高さの燃料供給ノズルに連結する粉砕機にバイオマスが供給されるようにする。
As described above, the selection of the input height of the biomass powder is performed based on the particle size of the biomass powder. The particle size of the biomass powder can biomass moisture content or we estimate before pulverization.
In FIG. 4, as an example, a humidity sensor 9 for detecting the moisture content of biomass is provided on the upstream side of the pulverizer. The relationship between the moisture content of biomass and the particle size of the pulverized product is shown in FIG. As shown in the figure, the higher the moisture content of the biomass, the harder it becomes and the particle size of the pulverized product becomes larger. Accordingly, the moisture content of the biomass before pulverization is detected by the humidity sensor 9, and the valves 21a to 21f and 22a to 22f are switched and controlled by the control device 8 according to the moisture content, and connected to the fuel supply nozzle of a predetermined height. The biomass is supplied to the grinding machine.

例えば、湿度センサ9にて検出したバイオマスの含水率が高い場合には、粉砕機で得られるバイオマス粉体の粒径は大きくなる。従って、図6に示すように下段側の燃料供給ノズル52aに接続される粉砕機3aにバイオマス11が供給されるように、制御装置8によりバルブの開閉を制御する。そして、粉砕機B〜F(3b〜3f)には入熱量比が(19/0)となるような石炭を供給し、粉砕機A(3a)には入熱量比が(0/5)となるようなバイオマスを供給する。
含水率が低い場合には、図7に示されるように中段若しくは上段側の燃料供給ノズル52fに接続される粉砕機3fにバイオマスを供給する。そして、粉砕機A〜E(3a〜3e)には入熱量比が(19/0)となるような石炭を供給し、粉砕機F(3f)には入熱量比が(0/5)となるようなバイオマスを供給する。
同様に、上記した湿度センサ9の代替として、バイオマス11の平均長さを検出する検出センサを設けてもよい。ここで、バイオマス11の平均長さとは、一次破砕したバイオマスチップの長辺の平均長さをいう。
For example, when the moisture content of the biomass detected by the humidity sensor 9 is high, the particle size of the biomass powder obtained by the pulverizer becomes large. Thus, as the biomass 11 is fed to the crusher 3a connected to the lower side of the fuel supply nozzle 52a as shown in FIG. 6, the control unit 8 controls the opening and closing of the valve. Then, coal is supplied to the pulverizers B to F (3b to 3f) so that the heat input ratio is (19/0), and the pulverizer A (3a) has a heat input ratio of (0/5). To supply such biomass.
When the moisture content is low, biomass is supplied to the pulverizer 3f connected to the middle or upper fuel supply nozzle 52f as shown in FIG. Then, coal is supplied to the pulverizers A to E (3a to 3e) so that the heat input ratio is (19/0), and the heat input ratio is (0/5) to the pulverizer F (3f). To supply such biomass.
Similarly, a detection sensor for detecting the average length of the biomass 11 may be provided as an alternative to the humidity sensor 9 described above. Here, the average length of the biomass 11 refers to the average length of the long sides of the primary crushed biomass chip.

さらに、上記した実施例において、図8に示すようにボイラ火炉5の燃料供給ノズル52a〜52fを、炉内の仮想円に対して接線方向に供給し、炉内に旋回流62を形成するように構成してもよい。
これにより、バイオマス粉体の滞留時間が長くなり炉内での燃焼が促進され、未燃損失を低減することができる。
Further, in the above-described embodiment, as shown in FIG. 8, the fuel supply nozzles 52a to 52f of the boiler furnace 5 are supplied in a tangential direction with respect to the virtual circle in the furnace so as to form the swirl flow 62 in the furnace. You may comprise.
Thereby, the residence time of biomass powder becomes long, combustion in a furnace is accelerated | stimulated, and unburned loss can be reduced.

本発明の石炭・バイオマス混焼システム及び混焼方法によれば、石炭の単独粉砕若しくは石炭とバイオマスの混合粉砕を行う第2の粉砕機とは別に、バイオマスの単独粉砕を行う第1の粉砕機を設ける構成としたため、バイオマス性状の変動にかかわらず安定した運転を行うことができ、且つ粉砕機動力を抑えて微粉化可能であるため、既存の設備へ適用する際にも有益である。   According to the coal / biomass mixed combustion system and the mixed combustion method of the present invention, a first pulverizer that performs single pulverization of biomass is provided separately from a second pulverizer that performs single pulverization of coal or mixed pulverization of coal and biomass. Because of the configuration, stable operation can be performed regardless of changes in biomass properties, and the pulverizer power can be suppressed and pulverization can be performed, which is beneficial when applied to existing facilities.

本発明が適用されるシステムの全体構成図である。 1 is an overall configuration diagram of a system to which the present invention is applied . 竪型粉砕機の概略構成を示す側断面図である。It is a sectional side view which shows schematic structure of a vertical crusher. 粉砕機の運用パターンを説明する図で、(a)は従来例として石炭ボイラの場合、(b)は本発明が適用されるシステムとして混焼ボイラにて、石炭、バイオマス単独粉砕を夫々用いた場合、(c)は本発明が適用されるシステムとして混焼ボイラにて、混合粉砕とバイオマス単独粉砕を用いた場合、(d)は比較例として混焼ボイラにて混合粉砕を用いた場合、(e)は比較例として混焼ボイラにて、予備機を使用した混合粉砕を用いた場合である。It is a figure explaining the operation pattern of a pulverizer, (a) is a case of a coal boiler as a conventional example, (b) is a case where coal and biomass pulverization are respectively used in a mixed-fired boiler as a system to which the present invention is applied. (C) is a mixed-fired boiler as a system to which the present invention is applied , when mixed pulverization and single biomass pulverization are used, (d) is a comparative example when mixed pulverization is used in a mixed-fired boiler, (e) Is a case where mixed pulverization using a spare machine is used in a mixed-fired boiler as a comparative example. 本発明の実施例に係るシステムの全体構成図である。It is an overall configuration diagram of a system according to an embodiment of the present invention. バイオマス含水率に対する粉砕機出口の粒径を示すグラフである。It is a graph which shows the particle size of the grinder exit with respect to biomass moisture content. 燃料供給ノズルから供給する入熱量比を説明する図で、(a)は平面図、(b)は側面図である。It is a figure explaining the heat input amount ratio supplied from a fuel supply nozzle, (a) is a top view, (b) is a side view. 図6とは別の入熱量比の例を示す図である。It is a figure which shows the example of the heat input ratio different from FIG. 旋回流を形成するノズル配置を示す平断面図である。It is a plane sectional view showing nozzle arrangement which forms a swirl flow. 従来の単独粉砕方式の粉砕機を示す側断面図である。It is side sectional drawing which shows the conventional grinder of a single grinding | pulverization system. 従来の混焼システムを示す全体構成図である。It is a whole block diagram which shows the conventional mixed combustion system. 混合粉砕時のミル特性変化を示し、木屑混合比を0〜15%(入熱量比)まで増加した場合(横軸)、(a)は粉砕機動力比、(b)は微粉度を示すグラフである。A graph showing mill characteristics during mixing and pulverization, and when the wood chip mixing ratio is increased to 0 to 15% (heat input ratio) (horizontal axis), (a) is a pulverizer power ratio, and (b) is a graph showing fineness. It is.

1 石炭貯蔵設備
2 バイオマス貯蔵設備
3、3a〜3f 竪型粉砕機
4、4a〜4f ホッパ
5 ボイラ火炉
7 排ガス循環ブロワ
8 制御装置
9 湿度センサ
10 石炭
11 バイオマス
18 石炭供給ライン
19 バイオマス供給ライン
21a〜21f 石炭供給バルブ
22a〜22f バイオマス供給バルブ
32 粉砕テーブル
34 粉砕ローラ
51 炉本体
52a〜52f 燃料供給ノズル
DESCRIPTION OF SYMBOLS 1 Coal storage facility 2 Biomass storage facility 3, 3a-3f Vertical crusher 4, 4a-4f Hopper 5 Boiler furnace 7 Exhaust gas circulation blower 8 Controller 9 Humidity sensor 10 Coal 11 Biomass 18 Coal supply line 19 Biomass supply line 21a 21f Coal supply valve 22a-22f Biomass supply valve 32 Grinding table 34 Grinding roller 51 Furnace body 52a-52f Fuel supply nozzle

Claims (4)

モータにより回転駆動する粉砕テーブル上に載置された固体燃料を、前記テーブルの回転と連動して作動するローラにより押圧して粉砕する複数の竪型粉砕機(以下粉砕機という)と、高さ方向に複数段の燃料供給ノズルが配設されたボイラ火炉とを備え、
前記夫々の粉砕機により得られた粉体燃料が、対応する前記各段の燃料供給ノズルに供給される石炭・バイオマス混焼システムであって、
石炭専用粉砕若しくは石炭とバイオマスの混合粉砕(以下混合粉砕された粉砕物も含めて石炭粉砕物という)を行う粉砕機(以下第2の粉砕機という)とは別に、バイオマスを単独で粉砕する粉砕機(以下第1の粉砕機という)を設けるとともに、
前記第1の粉砕機にバイオマスを供給する供給上流側に、前記バイオマスの含水率を検出するセンサを設け、
該センサの検出値に基づいて高さ方向に複数段の燃料供給ノズルより対応する段の燃料供給ノズルを選択するように構成したコントローラを具えたことを特徴とする石炭・バイオマス混焼システム。
The solid fuel placed on grinding table rotated by a motor, a plurality of vertical pulverizing machine for grinding by pressing by a roller which operates in conjunction with the rotation of the table (referred to hereinafter grinder), height A boiler furnace in which a plurality of fuel supply nozzles are arranged in the direction,
The pulverized fuel obtained by a pulverizer each is a corresponding said coal-biomass co-combustion system that will be supplied to the fuel supply nozzle in each stage,
Separately pulverizing biomass separately from pulverizer (hereinafter referred to as second pulverizer) that performs dedicated pulverization of coal or mixed pulverization of coal and biomass (hereinafter also referred to as pulverized coal including mixed pulverized product). A machine (hereinafter referred to as the first crusher),
On the supply upstream side for supplying biomass to the first crusher, a sensor for detecting the moisture content of the biomass is provided,
A coal / biomass co-firing system comprising a controller configured to select a corresponding fuel supply nozzle from a plurality of fuel supply nozzles in a height direction based on a detection value of the sensor .
前記コントローラは、バイオマスの含水率が高い場合には、バイオマス粉砕物をボイラ火炉の下段側の燃料供給ノズルに供給し、該燃料供給ノズルの上段側に位置する他の燃料供給ノズルに前記石炭粉砕物を供給し、
一方、バイオマスの含水率が低い場合には、バイオマス粉砕物をボイラ火炉の上段側の燃料供給ノズルに供給し、該燃料供給ノズルより下段側に位置する他の燃料供給ノズルに前記石炭粉砕物を供給し、該ボイラ火炉内でバイオマス粉砕物と石炭粉砕物とを別途の段の燃料供給ノズルに供給して燃焼させるコントローラであることを特徴とする請求項1記載の石炭・バイオマス混焼システム。
When the moisture content of the biomass is high, the controller supplies the pulverized biomass to a fuel supply nozzle on the lower side of the boiler furnace, and pulverizes the coal to another fuel supply nozzle located on the upper side of the fuel supply nozzle. Supply things,
On the other hand, when the moisture content of the biomass is low, the biomass pulverized product is supplied to the upper fuel supply nozzle of the boiler furnace, and the coal pulverized product is supplied to another fuel supply nozzle located on the lower side of the fuel supply nozzle. 2. The coal / biomass mixed combustion system according to claim 1, wherein the system is a controller for supplying and burning the pulverized biomass and the pulverized coal to a separate fuel supply nozzle in the boiler furnace .
モータにより回転駆動する粉砕テーブル上に載置された固体燃料を、前記テーブルの回転と連動して作動するローラにより押圧して粉砕する複数の竪型粉砕機(以下粉砕機という)と、高さ方向に複数段の燃料供給ノズルが配設されたボイラ火炉とを用意し、
前記夫々の粉砕機より得られた粉体燃料が、対応する前記各段の燃料供給ノズルに供給するようにした石炭・バイオマス混焼方法であって、
石炭専用粉砕若しくは石炭とバイオマスの混合粉砕を行う粉砕機(以下第2の粉砕機という)とは別に、バイオマスを単独で粉砕する粉砕機(以下第1の粉砕機という)を設けるとともに、
前記第1の粉砕機にバイオマスを供給する供給上流側に、前記バイオマスの含水率を検出するセンサを設け、
該センサの検出値に基づいて高さ方向に複数段の燃料供給ノズルより対応する段の燃料供給ノズルを選択して、前記ボイラ火炉内でバイオマス粉砕物と石炭粉砕物とを別途の段の燃料供給ノズルに供給して燃焼させることを特徴とする石炭・バイオマス混焼方法。
A plurality of vertical pulverizers (hereinafter referred to as pulverizers) that press and pulverize solid fuel placed on a pulverization table that is rotationally driven by a motor by means of a roller that operates in conjunction with the rotation of the table; Prepare a boiler furnace with multiple stages of fuel supply nozzles in the direction,
The pulverized fuel obtained from each of the pulverizers is a coal / biomass mixed combustion method in which the fuel is supplied to the corresponding fuel supply nozzle of each stage,
In addition to a pulverizer (hereinafter referred to as a second pulverizer) that performs dedicated coal pulverization or mixed pulverization of coal and biomass, a pulverizer that pulverizes biomass alone (hereinafter referred to as a first pulverizer) is provided.
On the supply upstream side for supplying biomass to the first crusher, a sensor for detecting the moisture content of the biomass is provided,
Based on the detection value of the sensor, a corresponding stage fuel supply nozzle is selected from a plurality of stages of fuel supply nozzles in the height direction, and the biomass pulverized product and the coal pulverized product are separated into fuel in separate stages in the boiler furnace. coal, biomass co-combustion way to, characterized in that feeding and burning a supply nozzle.
バイオマスの含水率が高い場合には、バイオマス粉砕物をボイラ火炉の下段側の燃料供給ノズルに供給し、該燃料供給ノズルの上段側に位置する他の燃料供給ノズルに前記石炭粉砕物を供給し、
一方、バイオマスの含水率が低い場合には、バイオマス粉砕物をボイラ火炉の上段側の燃料供給ノズルに供給し、該燃料供給ノズルより下段側に位置する他の燃料供給ノズルに前記石炭粉砕物を供給し、該ボイラ火炉内でバイオマス粉砕物と石炭粉砕物とを別途の段の燃料供給ノズルに供給して燃焼させることを特徴とする請求項3記載の石炭・バイオマス混焼方法。
When the moisture content of the biomass is high, the pulverized biomass is supplied to the fuel supply nozzle on the lower side of the boiler furnace, and the pulverized coal is supplied to another fuel supply nozzle located on the upper side of the fuel supply nozzle. ,
On the other hand, when the moisture content of the biomass is low, the biomass pulverized product is supplied to the upper fuel supply nozzle of the boiler furnace, and the coal pulverized product is supplied to another fuel supply nozzle located on the lower side of the fuel supply nozzle. 4. The coal / biomass mixed combustion method according to claim 3 , wherein the biomass pulverized product and the coal pulverized product are supplied to a separate fuel supply nozzle and burned in the boiler furnace .
JP2006265032A 2006-09-28 2006-09-28 Coal / biomass mixed combustion system and mixed combustion method Active JP4576365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006265032A JP4576365B2 (en) 2006-09-28 2006-09-28 Coal / biomass mixed combustion system and mixed combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006265032A JP4576365B2 (en) 2006-09-28 2006-09-28 Coal / biomass mixed combustion system and mixed combustion method

Publications (2)

Publication Number Publication Date
JP2008082651A JP2008082651A (en) 2008-04-10
JP4576365B2 true JP4576365B2 (en) 2010-11-04

Family

ID=39353700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006265032A Active JP4576365B2 (en) 2006-09-28 2006-09-28 Coal / biomass mixed combustion system and mixed combustion method

Country Status (1)

Country Link
JP (1) JP4576365B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4801552B2 (en) * 2006-09-28 2011-10-26 三菱重工業株式会社 Biomass crusher and control method thereof
JP5051721B2 (en) * 2008-05-16 2012-10-17 川崎重工業株式会社 Biomass mixed combustion pulverized coal fired boiler
JP5432554B2 (en) 2009-03-25 2014-03-05 一般財団法人電力中央研究所 Gasification system
JP2011144943A (en) * 2010-01-12 2011-07-28 Ube Machinery Corporation Ltd Comminution system
JP5645468B2 (en) 2010-05-14 2014-12-24 三菱重工業株式会社 Biomass crusher and biomass / coal co-firing system
JP5713597B2 (en) * 2010-07-20 2015-05-07 三菱日立パワーシステムズ株式会社 Vertical crusher and coal / biomass fired boiler plant equipped with the same
JP5442564B2 (en) * 2010-09-06 2014-03-12 株式会社神戸製鋼所 Pulverized coal combustion method and pulverized coal combustion apparatus
JP5511619B2 (en) * 2010-10-08 2014-06-04 三菱重工業株式会社 Biomass crusher and biomass / coal co-firing system
JP5496055B2 (en) * 2010-10-26 2014-05-21 三菱重工業株式会社 Biomass pellet crusher and biomass / coal co-firing system
JP5682252B2 (en) * 2010-11-22 2015-03-11 株式会社Ihi Coal / biomass co-firing equipment
JP5566867B2 (en) * 2010-11-25 2014-08-06 三菱重工業株式会社 Biomass / coal mixed combustion system and biomass / coal mixed combustion method
JP2012115738A (en) * 2010-11-30 2012-06-21 Ihi Corp Biomass mill
JP2012177485A (en) * 2011-02-25 2012-09-13 Daio Paper Corp Operation method of coal boiler and boiler facility
JP6081341B2 (en) * 2013-10-25 2017-02-15 三菱日立パワーシステムズ株式会社 boiler
CN104421954A (en) * 2013-11-22 2015-03-18 柳州市润澄针织有限公司 Boiler
JP6171893B2 (en) * 2013-11-26 2017-08-02 株式会社Ihi Coal fired biomass biomass burning method and equipment
JP6841597B2 (en) * 2016-02-01 2021-03-10 三菱パワー株式会社 Boiler and fuel supply method to boiler
CN106979532A (en) * 2017-03-31 2017-07-25 高安市成兴实业有限公司 Direct-fired coal dust supply system
JP6896564B2 (en) * 2017-08-25 2021-06-30 三菱パワー株式会社 Operation method of fuel supply piping structure, fuel crushing supply system equipped with this, and fuel supply piping structure
JP2021167674A (en) * 2018-05-17 2021-10-21 三菱パワー株式会社 Biomass bunker, and boiler plant comprising the same
CN109827187A (en) * 2019-03-21 2019-05-31 天津泰杰环保科技有限公司 A kind of coal-biomass fuel coupling combustion charging gear and application method
JP7426864B2 (en) * 2020-03-18 2024-02-02 株式会社Ihi検査計測 Method for predicting and evaluating combustion ash adhesion in coal-fired boilers
AU2021311157B2 (en) * 2020-07-20 2023-12-14 Ihi Corporation Crushing apparatus and method for purging crushed material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814505A (en) * 1994-06-24 1996-01-19 Babcock Hitachi Kk Method and apparatus for burning low nox of boiler
JP2003130308A (en) * 2001-10-30 2003-05-08 Hitachi Ltd Solid fuel combustion method and facility
JP2004347241A (en) * 2003-05-22 2004-12-09 Mitsubishi Heavy Ind Ltd Coal-organic matter fuel mixture grinding device
JP2004347270A (en) * 2003-05-23 2004-12-09 Mitsubishi Heavy Ind Ltd Combustion device and method
JP2005113125A (en) * 2003-09-17 2005-04-28 Ube Ind Ltd Production process of woody fuel
JP2005291539A (en) * 2004-03-31 2005-10-20 Babcock Hitachi Kk Preparatory treatment of biomass fuel, mixed combustion method, and mixed combustion device
JP3712691B2 (en) * 2002-05-15 2005-11-02 三菱重工業株式会社 Operation method of coal wood waste mixing and grinding equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814505A (en) * 1994-06-24 1996-01-19 Babcock Hitachi Kk Method and apparatus for burning low nox of boiler
JP2003130308A (en) * 2001-10-30 2003-05-08 Hitachi Ltd Solid fuel combustion method and facility
JP3712691B2 (en) * 2002-05-15 2005-11-02 三菱重工業株式会社 Operation method of coal wood waste mixing and grinding equipment
JP2004347241A (en) * 2003-05-22 2004-12-09 Mitsubishi Heavy Ind Ltd Coal-organic matter fuel mixture grinding device
JP2004347270A (en) * 2003-05-23 2004-12-09 Mitsubishi Heavy Ind Ltd Combustion device and method
JP2005113125A (en) * 2003-09-17 2005-04-28 Ube Ind Ltd Production process of woody fuel
JP2005291539A (en) * 2004-03-31 2005-10-20 Babcock Hitachi Kk Preparatory treatment of biomass fuel, mixed combustion method, and mixed combustion device

Also Published As

Publication number Publication date
JP2008082651A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP4576365B2 (en) Coal / biomass mixed combustion system and mixed combustion method
JP5645468B2 (en) Biomass crusher and biomass / coal co-firing system
JP4939145B2 (en) Biomass crusher and control method thereof
WO2011145575A1 (en) Biomass pulverizing device and biomass • coal co-combustion system
JP5594941B2 (en) Biomass crusher and control method of the apparatus
JP4801552B2 (en) Biomass crusher and control method thereof
JP5566867B2 (en) Biomass / coal mixed combustion system and biomass / coal mixed combustion method
JP5645482B2 (en) Biomass crusher and biomass / coal co-firing system
JP2014037897A (en) Biomass feed device and boiler system
JP2020116536A (en) Solid fuel crushing device and electric power generating plant comprising the same as well as control method for solid fuel crushing device
JP7475876B2 (en) Emission device, solid fuel pulverizer, boiler system, and method for operating the emission device
JP2011144943A (en) Comminution system
JP2023095072A (en) Discharge device, solid fuel crushing device and control method of discharge device
CN111558432B (en) Solid fuel pulverizer, power generation facility provided with same, and solid fuel pulverizing method
JP7341669B2 (en) Solid fuel crushing device, power plant equipped with the same, and solid fuel crushing method
JP7423204B2 (en) Grinding equipment, boiler system, and method of operating the grinding equipment
KR102292355B1 (en) Solid fuel supply apparatus, solid fuel supply method, pulverizer and boiler
JP2011251223A (en) Biomass crusher and biomass-coal co-firing system
JP7258581B2 (en) Crusher, boiler system and method of operating the crusher
JP2022041973A (en) Device, power generation plant, method for controlling device, program, power generation plant system, and method for controlling power generation plant system
JP2020116537A (en) Solid fuel crushing device and electric power generating plant comprising the same as well as control method for solid fuel crushing device
JP2014037896A (en) Boiler system
JP2015105812A (en) Apparatus and method for pulverizing solid fuel
WO2022045345A1 (en) Device, power generation plant, method for controlling device, program, power generation plant system, and method for controlling power generation plant system
JP3231422U (en) Discharge device and solid fuel crusher

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R151 Written notification of patent or utility model registration

Ref document number: 4576365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350