WO2024034208A1 - 酸性次亜塩素酸水製造装置、及び酸性次亜塩素酸水の製造方法 - Google Patents

酸性次亜塩素酸水製造装置、及び酸性次亜塩素酸水の製造方法 Download PDF

Info

Publication number
WO2024034208A1
WO2024034208A1 PCT/JP2023/017740 JP2023017740W WO2024034208A1 WO 2024034208 A1 WO2024034208 A1 WO 2024034208A1 JP 2023017740 W JP2023017740 W JP 2023017740W WO 2024034208 A1 WO2024034208 A1 WO 2024034208A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
water
piping
pipe
ion exchange
Prior art date
Application number
PCT/JP2023/017740
Other languages
English (en)
French (fr)
Inventor
直人 望月
隆馬 田中
聡洋 齋藤
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2023548660A priority Critical patent/JP7368658B1/ja
Publication of WO2024034208A1 publication Critical patent/WO2024034208A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/07Processes using organic exchangers in the weakly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/14Controlling or regulating
    • B01J47/15Controlling or regulating for obtaining a solution having a fixed pH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/06Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/53Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for cationic exchangers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/04Hypochlorous acid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange

Definitions

  • the present invention relates to an apparatus and method for efficiently producing weakly acidic hypochlorous acid water using an aqueous solution of hypochlorite as a raw material.
  • hypochlorites such as sodium hypochlorite
  • hypochlorites are used as disinfectants in a wide range of fields. It is known that the bactericidal effect varies greatly depending on the pH of the solution.
  • hypochlorous acid in this case, even if hypochlorite is obtained by dissolving it, the next It is called chlorite water (or aqueous solution).
  • hypochlorous acid in this case, even if hypochlorite is obtained by dissolving it, the next It is called chlorite water (or aqueous solution).
  • the bactericidal effect of hypochlorous acid is said to be about 80 times that of hypochlorite ion.
  • hypochlorous acid water with a pH of about 3.5 to 6.5 is attracting attention because it exists mainly as hypochlorous acid (HClO), and is used in medical, dental, agricultural, and food processing industries. It is used as a disinfectant in various fields. In recent years, it has come to be used for sterilization purposes in public facilities such as nursing care facilities, educational facilities, and commercial facilities, as well as in general households, and its consumption is increasing year by year.
  • HEO hypochlorous acid
  • One method for producing such weakly acidic hypochlorous acid water is to pass an aqueous solution of hypochlorite through a container (column) filled with a weakly acidic ion exchange resin.
  • a method and apparatus for producing an aqueous chlorous acid solution have been proposed (see, for example, Patent Document 1).
  • ion exchange columns are used in various fields such as purification of water and the above-mentioned pH adjustment.
  • one ion exchange column cannot perform ion exchange indefinitely, so ion exchange resins that have undergone a certain amount of ion exchange (reaching flow-through exchange capacity) should be replaced with new ones, and used ones should be replaced with new ones. , it is necessary to discard or regenerate.
  • a common method for regenerating weakly acidic ion exchange resins is to flow an acid aqueous solution, and a strong acid aqueous solution such as hydrochloric acid is commonly used due to its regeneration efficiency.
  • regenerate the ion exchange resin there is a method of removing the entire column from the device and flowing a strong acid aqueous solution in another location, but it is also possible to regenerate the ion exchange resin by installing multiple ion exchange columns in the device and performing ion exchange treatment on one column. However, there is also a method of regenerating the ion exchange resin in another ion exchange column.
  • it is an object of the present invention to provide a manufacturing device in which there is little possibility that a sodium hypochlorite aqueous solution and a strong acid aqueous solution will mix, and which has as few structural members as possible ( low device cost).
  • the following manufacturing apparatus is provided to solve the above problem.
  • the present invention a sodium hypochlorite aqueous solution storage tank (A); A strong acid aqueous solution storage tank (B), A plurality of (n) ion exchange columns (C 1 to C n ) filled with a weakly acidic cation exchange resin, a recovered liquid storage tank (D) that stores the ion-exchanged chemical liquid;
  • Chemical solution supply piping (E A-1 to E A-n ) that supplies a chemical solution from the sodium hypochlorite aqueous solution storage tank (A) to each ion exchange column (C 1 to C n );
  • Acid supply piping (E B -1 to E B-n ) that supplies a strong acid aqueous solution from the strong acid aqueous solution storage tank (B) to each ion exchange column (C 1 to C n );
  • Water supply piping (E F-1 to E F -n ) that supplies water from the water supply source (F) to each ion exchange column (C 1 to C n ),
  • each of these supply pipes is connected to each ion exchange column (C 1 to C n ) is connected to the supply port of And the said confluence is between either the chemical solution supply piping (E A-1 to E A-n ) or the acid supply piping (E B-1 to E B-n ) and the water supply piping (E F-1 to E F -n). -n ), and the remaining acid supply pipes (E B-1 to E B-n ) or chemical solution supply pipes (E A-1 to E A-n ) join downstream of the merging point.
  • each pipe (G/H 1 to G/H n ) is connected to the outlet of each ion exchange column (C 1 to C n ), and each pipe is connected to the recovered liquid storage tank (D). It is branched into treated chemical liquid transfer piping (G 1 to G n ) for transferring the ion-exchanged chemical liquid and waste liquid piping (H 1 to H n ) for transferring the liquid to be disposed of.
  • the processed chemical liquid transfer pipes (G 1 to G n ) after the branching are merged to form a single processed chemical liquid transfer pipe (G), and the processed chemical liquid transfer pipe (G ) is an acidic hypochlorous acid water production apparatus in which a water supply pipe (I) that supplies water from a water supply source (F) is further joined.
  • acidic hypochlorous acid water can be produced efficiently and with high productivity without requiring excessive equipment manufacturing costs and greatly reducing the risk of accidentally generating chlorine. can do.
  • FIG. 2 is a schematic diagram showing an embodiment of the production apparatus of the present invention in which there are two ion exchange columns.
  • the present invention relates to an apparatus for producing acidic hypochlorous acid water from a sodium hypochlorite aqueous solution by a so-called ion exchange method. Therefore, the manufacturing apparatus of the present invention includes a sodium hypochlorite aqueous solution storage tank (A) for storing the sodium hypochlorite aqueous solution used as the raw material, and a weakly acidic cation for exchanging sodium ions into hydrogen ions. It has an ion exchange column (C) filled with exchange resin.
  • A sodium hypochlorite aqueous solution storage tank
  • C ion exchange column
  • the sodium hypochlorite aqueous solution to be treated any known aqueous solution can be used without any particular restriction, and it is commercially available for various purposes, so you can use it, but considering production efficiency, it is better to have a higher concentration.
  • the available chlorine concentration is preferably 0.5% by mass or more, preferably 0.8% by mass or more, and preferably 1.0% by mass or more.
  • it depends on the use of the produced acidic hypochlorous acid water it is preferable to use one with a low sodium chloride content, and one with a sodium chloride concentration of 1/3 or less of the effective chlorine concentration [mass%] (generally low-salt hypochlorous acid water). 1/6 or less (generally called special grade sodium hypochlorite for water use) is preferable.
  • the weakly acidic cation exchange resin to be filled in the ion exchange column any known one can be used without any particular restriction, but one having a carboxyl group as an ion exchange group is preferred. Further, the weakly acidic cation exchange resin may be of any type, such as porous type, gel type, or macroporous type. The reason why a weakly acidic cation exchange resin is used as the cation exchange resin is to prevent the pH of the acidic hypochlorous acid water obtained by treatment (flow) from becoming too low.
  • the production apparatus of the present invention has a plurality of (n) ion exchange columns in order to perform the ion exchange reaction and the regeneration of the ion exchange resin in one apparatus without having to remove the ion exchange column from the apparatus.
  • n is an integer of 2 or more.
  • the manufacturing apparatus of the present invention will be described in more detail with reference to the drawings, in the case where the number of ion exchange columns (C) is two. Note that even when the number of ion exchange columns (C) is three or more, the basic configuration of piping etc. and the method of use are the same, except that the number of branches and merging increases according to the number of columns.
  • chemical solution supply piping ( E A ) is provided.
  • the piping may be two completely independent systems from the beginning, but as shown in the embodiment shown in Fig. 1, one chemical liquid supply system extends from the sodium hypochlorite aqueous solution storage tank (A).
  • the pipe is branched in the middle to form two chemical solution supply pipes (E A-1 , E A-2 ), which serve as the first ion exchange column (C 1 ) and the second ion exchange column (C 2 ), respectively. It is preferable to connect it to.
  • a pump for boosting the pressure is provided in the supply system piping such as the chemical liquid supply piping, but by branching one piping in the middle in this way, one pump can be installed before the branching.
  • on-off valves (VA -1, VA-2 ) are installed downstream of the branched portion, so that the supply of chemical solutions to each ion exchange column can be controlled. .
  • the piping is also provided with another on-off valve (V C-1 ) before the connection to the column.
  • This opening/closing valve ( VC-1 ) is linked with a liquid level gauge (K 1 ) installed in the column, and has the role of controlling the liquid level in the column to be constant (opening/closing control). or opening control).
  • K 1 liquid level gauge
  • Many weakly acidic cation exchange resins have a large volume change between acid and salt forms, so even when the volume expands, the entire amount of filled cation exchange resin remains below the liquid level. It is intended to control the
  • the on-off valve (V A-1 ) is opened, the on-off valve (V A-2 ) is closed, and the branched Among the pipes, only the chemical liquid supply pipe (E A-1 ) connected to the first ion exchange column (C 1 ) side is configured to allow the chemical liquid to pass through.
  • the chemical solution (acidic hypochlorous acid water) treated in the ion exchange column (C 1 ) is transferred from the outlet of the ion exchange column (C 1 ) to the recovered liquid storage tank (D) through piping.
  • the piping is a piping (G/H 1 ) that is shared with a piping for flowing waste liquid (described later) at the outlet of the ion exchange column (C 1 ); It branches into a treated chemical liquid transfer pipe (G 1 ) and a waste liquid pipe (described later).
  • the acidic hypochlorous acid water obtained by the ion exchange treatment is of course flowed to the treated chemical liquid transfer pipe (G 1 ) side.
  • the treated chemical liquid transfer pipe (G 1 ) merges with the treated chemical liquid transfer pipe (G 2 ) from the other ion exchange column (C 2 ), and becomes one processed chemical liquid transfer pipe (G). After that, it is connected to the collected liquid storage tank (D).
  • a metering pump is provided in the shared pipe (G/H 1 ) to control the amount of liquid flowing through the column.
  • a water supply pipe (I) that supplies water from a water supply source (F) joins the treated chemical liquid transfer pipe (G). As shown in the figure, the water supply pipes (I) are joined after the treated chemical liquid transfer pipes (G 1 , G 2 ) are combined to form a single pipe.
  • the piping (I) can be made into one piece.
  • Tap water, ion-exchange water, distilled water, ultra-pure water, etc. can be used as the water to be supplied, but from the perspective of the balance between impurity content and economical efficiency, ion-exchange water is recommended, and ultra-pure water is recommended if storage stability is more important. Preferably, pure water is used.
  • the water supply source (F) may be selected according to the type of water to be supplied. For example, if ion-exchanged water is used, an ion-exchanged water production device or one produced using the same device can be used. You can use an ion-exchanged water storage tank that stores ion-exchanged water. Similarly, in the case of ultrapure water, an ultrapure water production device or an ultrapure water storage tank can be employed.
  • the manufacturing apparatus of the present invention may include a water supply source (F) as one of its constituent members, or may be connected to a water supply source (F) provided as a constituent member outside the manufacturing apparatus.
  • the dilution ratio can be determined as appropriate, but it should be approximately 0.03 to 0.5% by mass in terms of effective chlorine concentration.
  • the effective chlorine concentration of sodium hypochlorite or acidic hypochlorous acid means the concentration calculated by converting the oxidizing power of hypochlorous acid into chlorine equivalent, and the concentration is equimolar to the hypochlorous acid it contains. It is expressed as the mass concentration of chlorine molecules.
  • the effective chlorine concentration refers to a value measured by iodometric titration.
  • the proportion of the salt type of the weakly acidic cation exchange resin in the ion exchange column (C 1 ) gradually increases. Therefore, the pH of the liquid discharged from the column increases.
  • the pH of the liquid to be treated discharged from the column exceeds a predetermined value (reaches a breakthrough point)
  • the passage of the aqueous sodium hypochlorite solution is stopped.
  • the pH can be easily determined by installing a pH meter (J 1 ) near the column outlet.
  • the breakthrough point can be set as appropriate, and approximately any pH of 6.5 or less can be selected, and pH 3.5 The following are preferred.
  • the liquid flow is stopped when the breakthrough point is reached by not only stopping the liquid feeding pump (metering pump) but also by closing the on-off valve ( VA-1 ).
  • the manufacturing apparatus of the present invention is equipped with a plurality of ion exchange columns, even after the treatment in the first ion exchange column (C 1 ) reaches its limit, the flow path of the chemical solution is transferred to the second ion exchange column (C 2 ) . ) side, acidic hypochlorous acid water can be manufactured continuously over time. That is, after closing the on-off valve (V A-1 ), the on-off valve (V A -2 ) may be opened so that the aqueous sodium hypochlorite solution flows toward the chemical supply pipe (E A -2 ). This allows the ion exchange treatment to be continued in the same way using the ion exchange column (C 2 ).
  • a weakly acidic cation exchange resin that has reached its breakthrough point can be treated by passing a strong acid aqueous solution such as hydrochloric acid through it to return the salt-formed cation exchange groups to the acid form. Can be played.
  • the strong acid aqueous solution is passed through by switching piping (channels) without replacing columns or the like.
  • the production apparatus of the present invention includes acid supply piping (E B-1 , E B- 2 ) that supplies a strong acid aqueous solution from a strong acid aqueous solution storage tank (B) to each ion exchange column (C 1 , C 2 ). ing.
  • this acid supply piping may also be two completely independent systems from the beginning, but as in the embodiment shown in FIG. 1, one piping extending from the strong acid aqueous solution storage tank (B) It is preferable to branch in the middle so as to connect to each ion exchange column.
  • the production apparatus of the present invention has a water supply pipe ( EF- 1 ).
  • a water supply pipe EF- 1 .
  • one piping (E F ) branches in the middle, and each piping (E F-1 , E F-2 ) is configured to go to each column. There is.
  • the water supply pipe (E F-1 ) merges with the chemical solution supply pipe (E A-1 ) and the acid supply pipe (E B-1 ) in the middle, and connects the chemical solution supply pipe, the acid supply pipe, and the water supply pipe in one line.
  • a pipe (E 1 ) also serves as a supply pipe, and this is connected to the supply port of the ion exchange column (C 1 ).
  • the device structure is improved by providing one route for liquid to flow into the ion exchange column and one route for discharging the liquid (one pipe).
  • the flow path of the liquid flowing into the column can always be kept constant.
  • V C-1 the on-off valve used for liquid level control downstream of the part where all these pipes join, there is no need to provide each pipe individually. can be simplified.
  • the above-mentioned merging is performed by merging either the chemical solution supply pipe (E A-1 ) or the acid supply pipe (E B-1 ) with the water supply pipe (E F-1 ), The remaining acid supply pipe (E B-1 ) or chemical solution supply pipe (E A-1 ) is arranged downstream of the merging part.
  • sodium hypochlorite aqueous solution (or strong acid aqueous solution) may remain in the pipes, there is a risk of chlorine gas being generated if the strong acid aqueous solution (or sodium hypochlorite aqueous solution) is flowed even after the pipes have been washed with water.
  • strong acid aqueous solution or sodium hypochlorite aqueous solution
  • the configuration of the supply piping in the manufacturing apparatus of the present invention as described above can minimize the risk of chlorine gas generation while simplifying the apparatus structure as much as possible.
  • the waste liquid piping (H) Since the liquid coming out of the column outlet during the water washing becomes waste liquid, it is necessary to flow it to the waste liquid piping (H) instead of flowing to the recovered liquid storage tank (D). Furthermore, from a safety perspective, the waste liquid should be divided into hypochlorous acid waste liquid (waste liquid from the water washing process before the column regeneration process described above) and acidic waste liquid (waste liquid from the column regeneration process and subsequent water wash process described below). It is preferable to configure the piping so that these can flow separately so that they can be disposed of separately.
  • the piping (G/H 1 ) connected to the outlet of the ion exchange column (C 1 ) consists of two systems: an acid waste liquid piping (H B-1 ) and a hypochlorite waste liquid piping (H A-1 ). It branches into a waste liquid pipe (H 1 ) and a treated chemical liquid transfer pipe (G 1 ).
  • the acid waste liquid pipe (H B-1 ) is first branched from the pipe (G/H 1 ) connected to the outlet of the ion exchange column (C 1 ), and then the branch Downstream from the section, it branches into a treated chemical liquid transfer piping (G 1 ) and a hypogastric waste liquid piping (H A-1 ).
  • each of these branched pipes is provided with an on-off valve so as to control the inflow of liquid into the pipe.
  • the strong acid aqueous solution used here may be one that can regenerate (return to acid form) the weakly acidic cation exchange resin, and may be appropriately selected from known ones. It is common to use a solution diluted with water to about 1.0 mol/L.
  • a residual liquid of the strong acid aqueous solution used remains in the ion exchange column (C 1 ) after completion of regeneration. Therefore, before passing the sodium hypochlorite aqueous solution, water is flowed through the water supply pipe (E F-1 ) again to wash the inside. This waste liquid from washing is also flowed into the acid waste liquid piping (H B-1 ) as an acid waste liquid.
  • the completion timing of the water washing and regeneration can be easily determined by, for example, monitoring the pH of the liquid discharged from the ion exchange column (C 1 ) using the pH meter (J 1 ).
  • the ion exchange column (C 1 ) that has been subjected to the above regeneration operation can be used again to produce acidic hypochlorous acid water, and the second ion exchange column (C 2 ) can be used to produce acidic hypochlorous acid water. After reaching this point, open and close each on-off valve to switch the flow path so that the sodium hypochlorite aqueous solution is passed through the first ion exchange column (C 1 ) again to perform ion exchange treatment. good.
  • the weakly acidic cation exchange resin can be regenerated by the same method as described above.
  • each waste liquid from the hypochlorite waste liquid piping ( HA ) and the acidic waste liquid piping (H B ) may be directly connected to waste liquid treatment equipment and treated there, or once treated in a chemidrum, etc.
  • the chemidrum, etc. may be stored in a facility with waste liquid treatment equipment.
  • the waste liquid may be treated by appropriately selecting a known method.
  • the water supply source for washing each ion exchange column with water and the water supply source for diluting the acidic hypochlorous acid water are the same, but different sources may be used as needed. You can prepare it. For example, it may be configured to use methods such as using ion-exchanged water for washing and using ultrapure water for dilution.
  • each storage tank, piping, on-off valve, column, and other members is made of resin, and in particular, a material with high durability against hypochlorous acid such as vinyl chloride, polypropylene, polyethylene, AS resin, ABS resin, PFA, and PTFE is preferable.
  • a material with high durability against hypochlorous acid such as vinyl chloride, polypropylene, polyethylene, AS resin, ABS resin, PFA, and PTFE is preferable.
  • it may have an exterior made of FRP or metal.
  • pipes made of resin can provide sufficient strength, but in order to obtain strength, each storage tank and column is preferably made of a structural material such as FRP, metal, or tempered glass, and coated with resin on the inner surface.
  • the acidic hypochlorous acid water to be produced by the production apparatus of the present invention has better storage stability when metal (ions) are not mixed therein.
  • the inner surface of the manufacturing device is preferably made of resin.
  • the water supply piping (E F-1 , E F-2 ) upstream of the on-off valves (V F-1 , V F-2 ) is filled with sodium hypochlorite or a strong acid aqueous solution. Although these do not come into contact with each other, from the viewpoint of preventing the above-mentioned metal from being mixed in, it is preferable that the inner surface of this is also made of resin.
  • the acidic hypochlorous acid water production apparatus according to aspect 1 of the present invention, a sodium hypochlorite aqueous solution storage tank (A); A strong acid aqueous solution storage tank (B), A plurality of (n) ion exchange columns (C 1 to C n ) filled with a weakly acidic cation exchange resin, a recovered liquid storage tank (D) that stores the ion-exchanged chemical liquid;
  • Chemical solution supply piping (E A-1 to E A-n ) that supplies a chemical solution from the sodium hypochlorite aqueous solution storage tank (A) to each ion exchange column (C 1 to C n );
  • Acid supply piping (E B -1 to E B-n ) that supplies a strong acid aqueous solution from the strong acid aqueous solution storage tank (B) to each ion exchange column (C 1 to C n );
  • Water supply piping (E F-1 to E F -n ) that supplies water from the
  • each of these supply pipes is connected to each ion exchange column (C 1 to C n ) is connected to the supply port of And the said confluence is between either the chemical solution supply piping (E A-1 to E A-n ) or the acid supply piping (E B-1 to E B-n ) and the water supply piping (E F-1 to E F -n). -n ), and the remaining acid supply pipes (E B-1 to E B-n ) or chemical solution supply pipes (E A-1 to E A-n ) join downstream of the merging point.
  • each pipe (G/H 1 to G/H n ) is connected to the outlet of each ion exchange column (C 1 to C n ), and each pipe is connected to the recovered liquid storage tank (D). It is branched into treated chemical liquid transfer piping (G 1 to G n ) for transferring the ion-exchanged chemical liquid and waste liquid piping (H 1 to H n ) for transferring the liquid to be disposed of.
  • the processed chemical liquid transfer pipes (G 1 to G n ) after the branching are merged to form a single processed chemical liquid transfer pipe (G), and the processed chemical liquid transfer pipe (G ) is characterized in that a water supply pipe (I) that supplies water from a water supply source (F) further merges with the water supply pipe (I).
  • the waste liquid piping (H 1 to H n ) is an acidic waste liquid piping (H B ) for transferring acidic waste liquid.
  • H B acidic waste liquid piping
  • hypochlorous acid waste liquid piping H A-1 to H A-n ) for transferring hypochlorous acid waste liquid.
  • the acidic hypochlorous acid water production apparatus is the same as Aspect 2 described above , in which each pipe (G/H 1 ⁇ G/H n ), acidic waste liquid piping (H B-1 ⁇ H B-n ) branches first, and then, downstream of the branch, treated chemical liquid transfer piping (G 1 ⁇ G n ) and the Hypochloreum waste liquid piping (H A-1 to H A-n ).
  • the acidic hypochlorous acid water production device is provided in any one of Aspects 1 to 4 described above, wherein the water supply source (F) is an ion exchange water storage tank, an ion exchange water production device, or It is characterized by being a pure water storage tank or an ultrapure water production device.
  • the water supply source (F) is an ion exchange water storage tank, an ion exchange water production device, or It is characterized by being a pure water storage tank or an ultrapure water production device.
  • the method for producing acidic hypochlorous acid water according to Aspect 6 of the present invention is characterized by using the acidic hypochlorous acid water production apparatus according to any one of Aspects 1 to 5 described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本発明の一態様は、複数のイオン交換カラムを備え、イオン交換法により次亜塩素酸ナトリウム水溶液から弱酸性次亜塩素酸水を製造する装置において、カラムの再生に用いる強酸水溶液と次亜塩素酸ナトリウム水溶液とが誤って混合され塩素ガスが発生してしまうリスクを低減しつつ、構成部材を少なくして装置コストを抑制する。本発明の一態様に係る酸性次亜塩素酸水製造装置は、原料である次亜塩素酸ナトリウム水溶液を供給する薬液供給配管(EA-1~EA-n)、カラム再生のための強酸水溶液を供給する酸供給配管(EB-1~EB-n)、および内部洗浄のための水を供給する水供給配管(EF-1~EF-n)の全てを合流させて兼用のn本の配管(E~E)とした後にカラム(C~C)へと接続すると共に、当該合流は、薬液供給配管又は酸供給配管のいずれか一方と水供給配管とが合流し、その合流部よりも下流で、残る酸供給配管又は薬液供給配管が合流する順序とすることを特徴とする。また排出側の配管(G/H~G/H)は、酸系廃液配管(HB-1~HB-n)を分枝させ、それより下流で次亜系廃液配管(HA-1~HA-n)と処理済薬液移送配管(G~G)とに分枝させることが好ましい。

Description

酸性次亜塩素酸水製造装置、及び酸性次亜塩素酸水の製造方法
 本発明は、次亜塩素酸塩の水溶液を原料とし、弱酸性次亜塩素酸水を効率的に製造する装置及び方法に係る。
 次亜塩素酸塩、例えば次亜塩素酸ナトリウムの水溶液は、幅広い分野で殺菌剤として用いられている。殺菌効果はその溶液のpHにより大きく変動することが知られている。
 次亜塩素酸ナトリウム水溶液を一般的に殺菌剤として使用される50~100ppmまでそのまま希釈しても、そのpHは8.5~9.5程度までしか下がらない。このようなアルカリ性条件下では大半が次亜塩素酸イオン(OCl)の状態になっており、殺菌効果が低い。また、次亜塩素酸ナトリウムのpHが高く皮膚を強く刺激するため、人体や家畜には直接使用できない。殺菌効果を高めるためには、pHを酸性側に調整し、次亜塩素酸(HClO)の状態に変化させる必要がある(この場合、次亜塩素酸塩を溶解して得ていても、次亜塩素酸水(ないしは水溶液)と呼称される)。次亜塩素酸の殺菌効果は、次亜塩素酸イオンの約80倍と言われている。
 次亜塩素酸(HClO)としての存在形態が主であるという点から、pHが3.5~6.5程度の次亜塩素酸水が注目を集めており、医療、歯科、農業、食品加工等、様々な分野における殺菌剤として使用されている。そして、近年では介護施設、教育施設、商業施設等の公共施設や、一般家庭における殺菌の用途に使用されるようになり、その消費量は年々増加している。
 このような弱酸性の次亜塩素酸水を製造する方法の一つとして、弱酸性イオン交換樹脂を充填した容器(カラム)に次亜塩素酸塩の水溶液を通液させることにより、弱酸性次亜塩素酸水溶液を製造する方法及び装置が提案されている(例えば特許文献1参照)。
 ところで、イオン交換カラムは水などの精製や、上記のようなpH調整など様々な分野で用いられている。ここで、一つのイオン交換カラムが無限にイオン交換を行うことは当然ながらできず、一定程度イオン交換が進んだ(貫流交換容量に達した)イオン交換樹脂は新品に取り換え、使用済みのものは、破棄あるいは再生を行う必要がある。弱酸性イオン交換樹脂の再生は酸水溶液を流す方法が一般的であり、その再生効率から塩酸などの強酸水溶液が汎用される。
 当該イオン交換樹脂の再生は、装置からカラムごと取り外してしまい、別の場所で強酸水溶液を流す方法もあるが、装置に複数のイオン交換カラムを備えておき、一つのカラムではイオン交換処理を実施しながら、別のイオン交換カラムではイオン交換樹脂の再生を行うという方法もある。
国際公開第2011/136091号
清水博 著、「イオン交換樹脂 応用I 概説(その2)」、電気化学会発行、電気化学および工業物理化学、第33巻第3号、昭和40年、p243-246
 上記の一つの装置に複数のイオン交換カラムを備えさせ、あるカラムではイオン交換処理を実施しつつ、他のカラムでは再生処理を行う方法は、カラム取り外しや移送の手間がない点で生産性に優れている。
 しかしながら、次亜塩素酸ナトリウム水溶液を強い酸性にすると、分子状の塩素(Cl)が生じる。そのため、一つの装置で次亜塩素酸ナトリウムと強酸とを同時に多量に扱うことにはリスクがあった。
 そこで本発明は、次亜塩素酸ナトリウム水溶液と強酸水溶液とが混ざってしまう恐れが小さく、かつ、できるだけ構成部材の少ない(=装置コストの小さい)製造装置を提供することを目的とする。
 上記課題を解決するものとして、以下の製造装置が提供される。
 即ち本発明は、
 次亜塩素酸ナトリウム水溶液貯留槽(A)と、
 強酸水溶液貯留槽(B)と、
 弱酸性陽イオン交換樹脂を充填した、複数(n本)のイオン交換カラム(C~C)と、
 イオン交換処理された薬液を貯留する回収液貯留槽(D)と、
 前記次亜塩素酸ナトリウム水溶液貯留槽(A)から、各イオン交換カラム(C~C)へ薬液を供給する薬液供給配管(EA-1~EA-n)と、
 前記強酸水溶液貯留槽(B)から、各イオン交換カラム(C~C)へ強酸水溶液を供給する酸供給配管(EB-1~EB-n)と、
 水供給源(F)から、各イオン交換カラム(C~C)へ水を供給する水供給配管(EF-1~EF-n)とを備え、
 前記薬液供給配管(EA-1~EA-n)、酸供給配管(EB-1~EB-n)および水供給配管(EF-1~EF-n)は、途中で合流して、各一本で薬液供給配管、酸供給配管および水供給配管を兼用するn本の供給配管(E~E)となり、これら供給配管各自が各イオン交換カラム(C~C)の供給口へと接続しており、
 かつ当該合流は、薬液供給配管(EA-1~EA-n)又は酸供給配管(EB-1~EB-n)のいずれか一方と水供給配管(EF-1~EF-n)とが合流し、その合流部よりも下流で、残る酸供給配管(EB-1~EB-n)又は薬液供給配管(EA-1~EA-n)が合流する順序となっており、
 さらに各イオン交換カラム(C~C)の排出口に接続した各一本の配管(G/H~G/H)を備え、この各配管は、前記回収液貯留槽(D)へイオン交換処理された薬液を移送するための処理済薬液移送配管(G~G)と、廃棄処理される液体を移送するための廃液配管(H~H)とに分枝しており、
 当該分枝後の各処理済薬液移送配管(G~G)は合流して一本の処理済薬液移送配管(G)となっており、かつ当該合流後の処理済薬液移送配管(G)には、水供給源(F)からの水を供給する水供給配管(I)がさらに合流している、酸性次亜塩素酸水製造装置である。
 本発明の製造装置を用いれば、過大な装置製造コストを要さず、かつ誤って塩素を発生させてしまう危険を大幅に低減しつつ、効率的に生産性良く酸性次亜塩素酸水を製造することができる。
イオン交換カラムが2本である場合の、本発明の製造装置の一実施態様を示す模式図である。
 本発明は、いわゆるイオン交換法により次亜塩素酸ナトリウム水溶液から、酸性次亜塩素酸水を製造する装置に係る。したがって本発明の製造装置は、この原料となる次亜塩素酸ナトリウム水溶液を貯留するための次亜塩素酸ナトリウム水溶液貯留槽(A)と、ナトリウムイオンを水素イオンへ交換するための弱酸性陽イオン交換樹脂が充填されるイオン交換カラム(C)とを持つ。
 処理する次亜塩素酸ナトリウム水溶液としては公知のものを特に制限なく使用でき、各種用途向けに市販されているからそれらを使用すればよいが、製造効率を考慮すると濃度が高い方がよく、具体的には、有効塩素濃度が0.5質量%以上のものが好ましく、同0.8質量%以上のものが好ましく、1.0質量%以上のものが好ましい。また製造した酸性次亜塩素酸水の用途にもよるが、塩化ナトリウム含有量の少ないものが好ましく、塩化ナトリウム濃度が有効塩素濃度[質量%]の1/3以下のもの(一般に低食塩次亜塩素酸ナトリウムと呼ばれる)が好ましく、1/6以下のもの(一般に水道用特級次亜塩素酸ナトリウムと呼ばれる)がより好ましい。
 イオン交換カラムに充填される弱酸性陽イオン交換樹脂も公知のものを特に制限なく使用できるが、イオン交換基としてカルボキシル基を有するものが好適である。さらに当該弱酸性陽イオン交換樹脂としては、ポーラス型、ゲル型、マクロポーラス型などのいずれのタイプでもよい。陽イオン交換樹脂として弱酸性陽イオン交換樹脂を用いるのは、処理(通液)して得られる酸性次亜塩素酸水のpHが低くなり過ぎないようにするためである。
 そして本発明の製造装置は、イオン交換反応とイオン交換樹脂の再生とを、イオン交換カラムの装置からの取り外しなどを伴うことなく一つの装置で行うために、複数(n本)のイオン交換カラムを有する。ここで、nは2以上の整数である。
 以下、イオン交換カラム(C)の数が2本である場合について、図面を参照して本発明の製造装置をさらに詳しく説明する。なおイオン交換カラム(C)の数が3本以上の場合でも分枝や合流の数がカラムの本数に応じて増えるだけで、基本的な配管等の構成や使用方法は同様である。
 図1においては、次亜塩素酸ナトリウム水溶液貯留槽(A)から二本のイオン交換カラム(C及びC)へ、次亜塩素酸ナトリウム水溶液(薬液)を移送するための薬液供給配管(E)が設けられている。当該配管は最初から2本の完全に独立した系統となっていてもよいが、この図1に示す態様のように、次亜塩素酸ナトリウム水溶液貯留槽(A)から伸びた1本の薬液供給配管を途中で分枝させ2本の薬液供給配管(EA-1、EA-2)とし、これらが各々第一のイオン交換カラム(C)及び第二のイオン交換カラム(C)へと接続する態様とする方が好ましい。図示した態様では、薬液供給配管などの供給系配管には昇圧用のポンプを設けているが、このように一本の配管を途中で分枝させることにより、当該分枝前に一つのポンプを設けるだけで済み、装置コスト削減が図れる。また図1の態様では、当該分枝部分より下流に、各々開閉弁(VA-1、A-2)が設置され、各イオン交換カラムへの薬液供給の制御を行えるようになっている。
 また当該配管には、カラムへの接続部手前にもう一つ開閉弁(VC-1)を設けている。この開閉弁(VC-1)はカラムに設けた液面計(K)と連動させて、カラム内の液面高さが一定になるように制御する役割を持たせている(開閉制御ないしは開度制御)。弱酸性陽イオン交換樹脂は酸型と塩型とでその体積を大きく変化させるものも多いため、体積が膨張した際にも、充填された陽イオン交換樹脂の全量が液面より下となるように制御するためのものである。
 以下では、まず第一のイオン交換カラム(C)でイオン交換処理が行われる状況について説明する。第一のイオン交換カラム(C)でイオン交換処理を行う際には、前記開閉弁(VA-1)を開けるとともに、開閉弁(VA-2)は閉じておき、前記分枝した配管のうち、第一のイオン交換カラム(C)側へ接続する薬液供給配管(EA-1)のみが薬液を通すようにする。薬液供給量は適宜決定でき、例えば空間速度SV[1/h]が0.1~20程度、好ましくは3~15程度となる量とすることができる。なお、空間速度SVとは、弱酸性陽イオン交換樹脂の充填層体積をV[L]、処理液の通液速度をR[L/h]としたとき、SV=R/Vとして算出される。
 薬液がイオン交換カラム(C)に供給されると、そこに充填された弱酸性陽イオン交換樹脂によって次亜塩素酸ナトリウム水溶液貯中のナトリウムイオンの一部が水素イオンへと交換され、通過した(イオン交換処理された)薬液の液性が酸性へ、即ち、酸性次亜塩素酸水へと変換される。
 上記イオン交換カラム(C)で処理された薬液(酸性次亜塩素酸水)は、該イオン交換カラム(C)の排出口から、配管を通じて回収液貯留槽(D)へと移送される。本発明の製造装置では、当該配管は、イオン交換カラム(C)の排出口では廃液(後述する)を流すための配管と共用される配管(G/H)となっており、途中で処理済薬液移送配管(G)と廃液配管(後述する)とに分枝している。上記イオン交換処理により得られた酸性次亜塩素酸水はむろん、処理済薬液移送配管(G)側に流す。
 また当該処理済薬液移送配管(G)は、他方のイオン交換カラム(C)からの処理済薬液移送配管(G)と合流し、一本の処理済薬液移送配管(G)となった後に回収液貯留槽(D)へとつながっている。
 また図示した態様では、当該共用配管(G/H)に定量ポンプを設け、カラム内を流れる液量の制御を行っている。
 ここでイオン交換処理の効率を考慮すると、イオン交換カラム(C)へ通す次亜塩素酸ナトリウム水溶液は濃厚な方が好ましいが、イオン交換処理された薬液の貯留(保存)に際しては、保存安定性が良くなることから処理済薬液の濃度が低い方が好ましい。そのため本発明の製造装置においては、上記処理済薬液移送配管(G)の途中に、水供給源(F)からの水を供給する水供給配管(I)が合流している。なお図示するように当該水供給配管(I)の合流は、各処理済薬液移送配管(G、G)が合流して一本の配管となった後に行わせており、これにより水供給配管(I)を一本のものとできる。
 供給する水としては、水道水、イオン交換水、蒸留水、超純水などが使用できるが、不純物量と経済性のバランスの観点からはイオン交換水、保存安定性をより重視するならば超純水を使用することが好ましい。
 従って、水供給源(F)としては、ここで供給する水の種類に応じたものを採用すればよく、例えばイオン交換水とするのであれば、イオン交換水製造装置、もしくは同装置で製造したイオン交換水をためておくイオン交換水貯留槽を使用できる。同様に超純水の場合には、超純水製造装置ないしは超純水貯留槽を採用できる。本発明の製造装置は、その構成部材の1つとして水供給源(F)を備えてもよく、製造装置外部の構成部材として設けられた水供給源(F)に接続されていてもよい。
 また希釈倍率は適宜決定できるが、概ね有効塩素濃度で0.03~0.5質量%となるようにすればよい。なおここで、次亜塩素酸ナトリウムや酸性次亜塩素酸の有効塩素濃度とは、次亜塩素酸の酸化力を相当する塩素に換算した濃度を意味し、含有する次亜塩素酸と等モル量の塩素分子の質量濃度で表される。本発明においてこの有効塩素濃度は、ヨウ素滴定法で測定した値を指す。
 上記次亜塩素酸ナトリウム水溶液の通液(イオン交換処理)に伴い、イオン交換カラム(C)内の弱酸性陽イオン交換樹脂は、徐々に塩型の割合が増えていく。そのため、カラムからの排出液のpHは上昇していく。そしてカラムから排出される被処理液のpHが所定の値を超えた(破過点に到達した)際には、次亜塩素酸ナトリウム水溶液の通液を停止する。当該pHは、カラム出口付近にpHメータ(J)を設置することで容易に把握できる。製造目的物とする酸性次亜塩素酸水の目的pH範囲に応じて、どこを破過点とするかは適宜設定すればよく、概ねpH6.5以下の任意のpHを選択でき、pH3.5以下が好ましい。
 破過点に到達した際の通液の停止は、送液ポンプ(定量ポンプ)を停止することに加え、前記開閉弁(VA-1)を閉塞することにより行う。
 本発明の製造装置は複数のイオン交換カラムを備えるため、第一のイオン交換カラム(C)での処理が限界に達した後も、薬液の流路を第二のイオン交換カラム(C)側へ切り替えることで、時間的に連続して酸性次亜塩素酸水の製造を行うことができる。即ち、上記開閉弁(VA-1)を閉じた後、次亜塩素酸ナトリウム水溶液が薬液供給配管(EA-2)側へ流れるように開閉弁(VA-2)を開けばよい。これによりイオン交換カラム(C)で同様にイオン交換処理が継続できる。
 他方、破過点に到達した(貫流交換容量に達した)弱酸性陽イオン交換樹脂は、塩酸などの強酸水溶液を通液し、塩型になった陽イオン交換基を酸型に戻すことで再生できる。本発明の製造装置では、当該強酸水溶液の通液をカラムの交換などを行うことなく、配管(流路)の切り替えで行うようにしている。
 即ち本発明の製造装置は、強酸水溶液貯留槽(B)から、各イオン交換カラム(C、C)へ強酸水溶液を供給する酸供給配管(EB-1、EB-2)を備えている。なおこの酸供給配管も、最初から2本の完全に独立した系統となっていてもよいが、図1に示す態様のように、強酸水溶液貯留槽(B)から伸びた1本の配管を、各々のイオン交換カラムへ接続するように、途中で分枝する態様とすることが好ましい。
 ところで、次亜塩素酸ナトリウム水溶液の通液を停止しただけのイオン交換カラム(C)内には、該次亜塩素酸ナトリウム水溶液の残液が存在する。そこへ上記再生のための強酸水溶液を流すと系内が強い酸性となり、塩素ガス発生のリスクが高まる。
 そこで本発明の製造装置は、イオン交換カラム(C)の内部を水洗できるように、水供給源(F)から、イオン交換カラム(C)へ水を供給する水供給配管(EF-1)を備える。なお当該水供給配管も図示した態様では、一本の配管(E)が途中で分枝し、各々の配管(EF-1、EF-2)が各カラムへ向かうように構成している。
 当該水供給配管(EF-1)は、前記薬液供給配管(EA-1)および酸供給配管(EB-1)と途中で合流して一本で薬液供給配管、酸供給配管および水供給配管を兼用する配管(E)となり、これがイオン交換カラム(C)の供給口へと接続している。
 前述したカラム排出口側での配管を1本とすることと合わせ、イオン交換カラムへ液体が流れ込む経路、および排出される経路を、各々1カ所(1本の配管)とすることで、装置構造を簡単にできるとともに、カラム内に流す液体の流路を常に一定とできる。また図示したように、液面制御に用いる開閉弁(VC-1)を、これら配管がすべて合流した部分よりも下流に設けることにより、各配管に個々に設ける必要がなくなり、ここでも装置構造の簡略化が図れる。
 そして本発明の製造装置では、上記合流は、薬液供給配管(EA-1)又は酸供給配管(EB-1)のいずれか一方と水供給配管(EF-1)とが合流し、その合流部よりも下流で、残る酸供給配管(EB-1)又は薬液供給配管(EA-1)が合流する順序となっている。
 各供給配管の合流順序を上記順とすることで、イオン交換カラム(C)の水洗のために水を流した際に、水供給配管(EF-1)の合流部より下流の配管内も同時水洗ができ、よって塩素ガス発生リスクを確実に低減できる。即ち、先に薬液供給配管(EA-1)と酸供給配管(EB-1)とが合流する場合、水供給配管(EF-1)合流部より上流では、水洗を行った後でも配管内に次亜塩素酸ナトリウム水溶液(または強酸水溶液)が残存しうるため、配管内の水洗後であっても、強酸水溶液(または次亜塩素酸ナトリウム水溶液)を流すと塩素ガスが発生するリスクがあるが、合流順を上記順にすることで、そのような状態の発生を防ぎうる。
 換言すれば、上記のような本発明の製造装置における供給配管の構成は、装置構造を可能な限り簡潔にしつつ、塩素ガス発生のリスクを最大限低減できるものである。
 上記水洗の際にカラム排出口からでてくる液は廃液となるため、回収液貯留槽(D)へは流さず、廃液配管(H)へ流す必要がある。さらに安全性の観点から、廃液は次亜塩素酸系廃液(上記のカラム再生処理前の水洗の際の廃液)と酸系廃液(後述するカラム再生処理時およびその後の水洗の際の廃液)とに分けて廃棄できるよう、これらを別々に流せるような配管構成とすることが好ましい。
 イオン交換カラム(C)の排出口に接続した配管(G/H)は、酸系廃液配管(HB-1)と次亜系廃液配管(HA-1)との2系統からなる廃液配管(H)、及び処理済薬液移送配管(G)に分枝する。図1に示した態様では、イオン交換カラム(C)の排出口に接続した配管(G/H)から、まず酸系廃液配管(HB-1)が分枝し、ついで当該分枝部よりも下流で、処理済薬液移送配管(G)と次亜系廃液配管(HA-1)とに分枝している。この順で分枝させることにより、流路切り替え時に配管内で次亜塩素酸系の液と酸系の液が混じってしまうおそれを低減でき、安全性の観点で好ましい。またこれら分枝後の配管には、各々、当該配管への液の流入を制御できるように開閉弁を設けておく。
 なおこれら酸系廃液配管(HB-1)および次亜系廃液配管(HA-1)も、その先で第二のイオン交換カラム(C)からの廃液配管(HB-2、HA-2)と各々合流して、各一本の酸系廃液配管(H)、および次亜系廃液配管(H)となるようにしている。
 また次亜塩素酸ナトリウム水溶液と強酸性水溶液が同時に同じカラムないしは配管に供給されてしまうことがないよう、あるいは仮に供給されてしまった場合には即座に中止できるよう、そのような状態を感知した際には各開閉弁を強制的に開閉する安全機構を備えることも好ましい(図示しない)。
 さらには、万が一塩素ガスが発生してしまった場合を考慮し、除害装置に繋がった系内圧力の調整機構を備えることが好ましい(これも図示しない)。
 このような構成をもつ本発明の製造装置における弱酸性陽イオン交換樹脂の再生手順を簡単に説明する。まずカラムへの供給側では、前記の通り薬液供給配管(EA-1)の開閉弁(VA-1)を閉じた後、水供給配管(EF-1)の開閉弁(VF-1)を開けて水を流し、合流部より下流の供給配管内およびイオン交換カラム(C)内を水洗する。この際、排出側では酸系廃液配管(HB-1)および処理済薬液移送配管(G)の開閉弁は閉じておき、カラム排出口から流れ出す液体は次亜系廃液配管(HA-1)へ向かうようにする。
 水洗が完了した後、水供給配管(EF-1)の開閉弁(VF-1)を閉じ、酸供給配管(EB-1)の開閉弁(VB-1)を開けてイオン交換カラム(C)に強酸水溶液を流し、弱酸性陽イオン交換樹脂の再生を行う。この際の排出液は酸系廃液として酸系廃液配管(HB-1)側に流れるようにする。即ち、酸系廃液配管の開閉弁を開け、処理済薬液移送配管(G)の開閉弁と次亜系廃液配管(HA-1)の開閉弁は閉じておく。
 ここで用いる強酸水溶液は、弱酸性陽イオン交換樹脂を再生する(酸型に戻す)ことができるものであればよく、公知のものから適宜選択して使用すればよいが、塩酸などの無機強酸を1.0mol/L程度に水希釈したものを使用するのが一般的である。
 再生が完了したイオン交換カラム(C)内には、用いた強酸水溶液の残液が存在する。そこで、次亜塩素酸ナトリウム水溶液の通液を行う前に、再度、前記水供給配管(EF-1)を通じて水を流し、内部の水洗を行う。この水洗時の廃液も酸系廃液として、前記酸系廃液配管(HB-1)へと流す。
 なお上記水洗や再生の完了タイミングは、イオン交換カラム(C)から排出されてくる液のpHを、例えば前記pHメータ(J)でモニターすること等で容易に把握できる。
 また分枝する前の共用配管(G/H)に定量ポンプを設けることで、イオン交換処理~再生のどの段階でも、ひとつのポンプで液量制御が可能となる。
 上記再生のための操作を行ったイオン交換カラム(C)は、再び酸性次亜塩素酸水の製造に使用することが可能であり、前記第二のイオン交換カラム(C)が破過点に到達した後に、再度この第一のイオン交換カラム(C)に次亜塩素酸ナトリウム水溶液を通液してイオン交換処理を行うように各開閉弁の開閉を行って流路を切り替えればよい。そして第二のイオン交換カラム(C)側は、上述したのと同一の方法により弱酸性陽イオン交換樹脂の再生を行うことができる。
 なおイオン交換カラムに次亜塩素酸ナトリウム水溶液を通液している間でも、カラムから排出される液のpHが所望の範囲から外れている場合など、製品として回収するのが望ましくない場合があり得る。そのような液は、廃液として前記次亜系廃液配管(H)へと流せばよい。例えば、次亜塩素酸ナトリウム水溶液の通液開始直後はpHがかなり低い場合があり、そのようなものは廃棄することも選択肢の一つである。
 また、次亜系廃液配管(H)、酸系廃液配管(H)からの各廃液は、これら配管を直接廃液処理設備に接続しておいてそこで処理してもよいし、いったんケミドラム等に貯留し、当該ケミドラム等を廃液処理設備のある施設に運んでもよい。廃液の処理方法は、公知の方法を適宜選択して行えばよい。
 さらに図示した態様では、各イオン交換カラムを水洗するための水の供給源と、酸性次亜塩素酸水を希釈するための水の供給源は同一であるが、必要に応じて異なる供給源を用意してもよい。例えば、水洗にはイオン交換水を用い、希釈には超純水を用いる等の方法をとれる構成としてもよい。
 本発明の製造装置は、上記のように腐食性の高い次亜塩素酸系の水溶液や強酸水溶液を通液するから、各貯留槽、配管、開閉弁、カラムその他の部材は、その接触面(内面)が樹脂製であることが好ましく、とりわけ、塩化ビニル、ポリプロピレン、ポリエチレン、AS樹脂、ABS樹脂、PFA、PTFEなどの次亜塩素酸に対して耐久性の高い材質が好ましい。むろん強度を高めるため、FRPや金属による外装を有していてもよい。特に配管は樹脂製でも十分な強度が得られるが、各貯留槽やカラムは強度を得るため、FRPや金属、強化ガラス等の構造材で形成したものの内面を樹脂コーティングしたものが好適である。
 また本発明の製造装置で製造する対象の酸性次亜塩素酸水は、金属(のイオン)が混入していない方が保存安定性が良好である。この点でも、製造装置の内面は樹脂製であることが好ましい。なお通常の使用であれば前記水供給配管(EF-1、EF-2)のうち開閉弁(VF-1、VF-2)よりも上流部は次亜塩素酸ナトリウムや強酸水溶液が接触することはないが、上記金属の混入を防止するという観点から、これも内面は樹脂製であることが好ましい。
 (まとめ)
 上記の説明から明らかなように、本発明の態様1に係る酸性次亜塩素酸水製造装置は、
 次亜塩素酸ナトリウム水溶液貯留槽(A)と、
 強酸水溶液貯留槽(B)と、
 弱酸性陽イオン交換樹脂を充填した、複数(n本)のイオン交換カラム(C~C)と、
 イオン交換処理された薬液を貯留する回収液貯留槽(D)と、
 前記次亜塩素酸ナトリウム水溶液貯留槽(A)から、各イオン交換カラム(C~C)へ薬液を供給する薬液供給配管(EA-1~EA-n)と、
 前記強酸水溶液貯留槽(B)から、各イオン交換カラム(C~C)へ強酸水溶液を供給する酸供給配管(EB-1~EB-n)と、
 水供給源(F)から、各イオン交換カラム(C~C)へ水を供給する水供給配管(EF-1~EF-n)とを備え、
 前記薬液供給配管(EA-1~EA-n)、酸供給配管(EB-1~EB-n)および水供給配管(EF-1~EF-n)は、途中で合流して、各一本で薬液供給配管、酸供給配管および水供給配管を兼用するn本の供給配管(E~E)となり、これら供給配管各自が各イオン交換カラム(C~C)の供給口へと接続しており、
 かつ当該合流は、薬液供給配管(EA-1~EA-n)又は酸供給配管(EB-1~EB-n)のいずれか一方と水供給配管(EF-1~EF-n)とが合流し、その合流部よりも下流で、残る酸供給配管(EB-1~EB-n)又は薬液供給配管(EA-1~EA-n)が合流する順序となっており、
 さらに各イオン交換カラム(C~C)の排出口に接続した各一本の配管(G/H~G/H)を備え、この各配管は、前記回収液貯留槽(D)へイオン交換処理された薬液を移送するための処理済薬液移送配管(G~G)と、廃棄処理される液体を移送するための廃液配管(H~H)とに分枝しており、
 当該分枝後の各処理済薬液移送配管(G~G)は合流して一本の処理済薬液移送配管(G)となっており、かつ当該合流後の処理済薬液移送配管(G)には、水供給源(F)からの水を供給する水供給配管(I)がさらに合流していることを特徴とする。
 本発明の態様2に係る酸性次亜塩素酸水製造装置は、上述の態様1において、前記廃液配管(H~H)は、酸系廃液を移送するための酸系廃液配管(HB-1~HB-n)と、次亜塩素酸系の廃液を移送するための次亜系廃液配管(HA-1~HA-n)との2系統からなることを特徴とする。
 本発明の態様3に係る酸性次亜塩素酸水製造装置は、上述の態様2において、各イオン交換カラム(C~C)の排出口に接続した各一本の配管(G/H~G/H)から、まず酸系廃液配管(HB-1~HB-n)が分枝し、ついで当該分枝部よりも下流で、処理済薬液移送配管(G~G)と次亜系廃液配管(HA-1~HA-n)とに分枝するという順序で各配管が分枝していることを特徴とする。
 本発明の態様4に係る酸性次亜塩素酸水製造装置は、上述の態様2又は3において、前記分枝後の各酸系廃液配管(HB-1~HB-n)、および各次亜系廃液配管(HA-1~HA-n)は各々合流して、各一本の酸系廃液配管(H)、および次亜系廃液配管(H)となっていることを特徴とする。
 本発明の態様5に係る酸性次亜塩素酸水製造装置は、上述の態様1乃至4いずれか一態様において、水供給源(F)が、イオン交換水貯留槽、イオン交換水製造装置、超純水貯留槽または超純水製造装置であることを特徴とする。
 本発明の態様6に係る酸性次亜塩素酸水の製造方法は、上述の態様1乃至5いずれか一態様に係る酸性次亜塩素酸水製造装置を用いることを特徴とする。
(A):次亜塩素酸ナトリウム水溶液貯留槽
(B):強酸水溶液貯留槽
(C、C):イオン交換カラム
(D):回収液貯留槽
(E、EA-1、EA-2):薬液供給配管
(E、EB-1、EB-2):酸供給配管
(E、EF-1、EF-2):水給配管
(F):水供給源
(G/H、G/H):処理済薬液移送配管兼廃液配管
(G、G、G):処理済薬液移送配管
(H、HB-1、HB-2):酸系廃液配管
(H、HA-1、HA-2):次亜系廃液配管
(J、J):pHメータ
(K、K):液面計
(VA-1、VA-2、VB-1、VB-2、VC-1、VC-2、VF-1、VF-2):開閉弁

 

Claims (6)

  1.  次亜塩素酸ナトリウム水溶液貯留槽(A)と、
     強酸水溶液貯留槽(B)と、
     弱酸性陽イオン交換樹脂を充填した、複数(n本)のイオン交換カラム(C~C)と、
     イオン交換処理された薬液を貯留する回収液貯留槽(D)と、
     前記次亜塩素酸ナトリウム水溶液貯留槽(A)から、各イオン交換カラム(C~C)へ薬液を供給する薬液供給配管(EA-1~EA-n)と、
     前記強酸水溶液貯留槽(B)から、各イオン交換カラム(C~C)へ強酸水溶液を供給する酸供給配管(EB-1~EB-n)と、
     水供給源(F)から、各イオン交換カラム(C~C)へ水を供給する水供給配管(EF-1~EF-n)とを備え、
     前記薬液供給配管(EA-1~EA-n)、酸供給配管(EB-1~EB-n)および水供給配管(EF-1~EF-n)は、途中で合流して、各一本で薬液供給配管、酸供給配管および水供給配管を兼用するn本の供給配管(E~E)となり、これら供給配管各自が各イオン交換カラム(C~C)の供給口へと接続しており、
     かつ当該合流は、薬液供給配管(EA-1~EA-n)又は酸供給配管(EB-1~EB-n)のいずれか一方と水供給配管(EF-1~EF-n)とが合流し、その合流部よりも下流で、残る酸供給配管(EB-1~EB-n)又は薬液供給配管(EA-1~EA-n)が合流する順序となっており、
     さらに各イオン交換カラム(C~C)の排出口に接続した各一本の配管(G/H~G/H)を備え、この各配管は、前記回収液貯留槽(D)へイオン交換処理された薬液を移送するための処理済薬液移送配管(G~G)と、廃棄処理される液体を移送するための廃液配管(H~H)とに分枝しており、
     当該分枝後の各処理済薬液移送配管(G~G)は合流して一本の処理済薬液移送配管(G)となっており、かつ当該合流後の処理済薬液移送配管(G)には、水供給源(F)からの水を供給する水供給配管(I)がさらに合流している、酸性次亜塩素酸水製造装置。
  2.  前記廃液配管(H~H)は、酸系廃液を移送するための酸系廃液配管(HB-1~HB-n)と、次亜塩素酸系の廃液を移送するための次亜系廃液配管(HA-1~HA-n)との2系統からなる、請求項1記載の酸性次亜塩素酸水製造装置。
  3.  各イオン交換カラム(C~C)の排出口に接続した各一本の配管(G/H~G/H)から、まず酸系廃液配管(HB-1~HB-n)が分枝し、ついで当該分枝部よりも下流で、処理済薬液移送配管(G~G)と次亜系廃液配管(HA-1~HA-n)とに分枝するという順序で各配管が分枝している、請求項2記載の酸性次亜塩素酸水製造装置。
  4.  前記分枝後の各酸系廃液配管(HB-1~HB-n)、および各次亜系廃液配管(HA-1~HA-n)は各々合流して、各一本の酸系廃液配管(H)、および次亜系廃液配管(H)となっている、請求項2又は3いずれか記載の酸性次亜塩素酸水製造装置。
  5.  水供給源(F)が、イオン交換水貯留槽、イオン交換水製造装置、超純水貯留槽または超純水製造装置である、請求項1乃至3いずれか記載の酸性次亜塩素酸水製造装置。
  6.  請求項1乃至3いずれか記載の酸性次亜塩素酸水製造装置を用いる酸性次亜塩素酸水の製造方法。

     
PCT/JP2023/017740 2022-08-08 2023-05-11 酸性次亜塩素酸水製造装置、及び酸性次亜塩素酸水の製造方法 WO2024034208A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023548660A JP7368658B1 (ja) 2022-08-08 2023-05-11 酸性次亜塩素酸水製造装置、及び酸性次亜塩素酸水の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022126016 2022-08-08
JP2022-126016 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024034208A1 true WO2024034208A1 (ja) 2024-02-15

Family

ID=89851457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017740 WO2024034208A1 (ja) 2022-08-08 2023-05-11 酸性次亜塩素酸水製造装置、及び酸性次亜塩素酸水の製造方法

Country Status (2)

Country Link
TW (1) TWI832766B (ja)
WO (1) WO2024034208A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160150223A (ko) * 2015-06-19 2016-12-29 주식회사 이모스 차아염소산 수용액의 제조장치
CN111020621A (zh) * 2019-12-30 2020-04-17 肇庆钜晨化工有限公司 一种用于制备消毒用弱次氯酸水溶液的装置及方法
JP2020117422A (ja) * 2019-01-25 2020-08-06 株式会社トクヤマデンタル 弱酸性次亜塩素酸水の製造方法
WO2021090916A1 (ja) * 2019-11-08 2021-05-14 稔 寺田 次亜塩素酸水溶液の調製方法及び弱酸性陽イオン交換体の再生処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160150223A (ko) * 2015-06-19 2016-12-29 주식회사 이모스 차아염소산 수용액의 제조장치
JP2020117422A (ja) * 2019-01-25 2020-08-06 株式会社トクヤマデンタル 弱酸性次亜塩素酸水の製造方法
WO2021090916A1 (ja) * 2019-11-08 2021-05-14 稔 寺田 次亜塩素酸水溶液の調製方法及び弱酸性陽イオン交換体の再生処理方法
CN111020621A (zh) * 2019-12-30 2020-04-17 肇庆钜晨化工有限公司 一种用于制备消毒用弱次氯酸水溶液的装置及方法

Also Published As

Publication number Publication date
TWI832766B (zh) 2024-02-11
TW202406836A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
US8658043B2 (en) Water treatment system and method
US9701548B2 (en) Electrochemical water softening system
CA2545580C (en) Water treatment system and method
US6059941A (en) Apparatus for generating a sterilizing solution
US7083733B2 (en) Water treatment system and method
JP4978098B2 (ja) 電気脱イオン装置
US20150027890A1 (en) Performance enhancement of electrochemical deionization devices by pre-treatment with cation exchange resins
US20240076208A1 (en) Multi-Sequence Water Softener System and Method
US20190270653A1 (en) Ultrapure water production method and ultrapure water production system
JP5670383B2 (ja) 透析用水供給装置、及び、透析用水供給方法
WO2024034208A1 (ja) 酸性次亜塩素酸水製造装置、及び酸性次亜塩素酸水の製造方法
JP7368658B1 (ja) 酸性次亜塩素酸水製造装置、及び酸性次亜塩素酸水の製造方法
JP2008068198A (ja) 電気脱イオン装置
JP7368657B1 (ja) 酸性次亜塩素酸水の製造装置
WO2024009609A1 (ja) 酸性次亜塩素酸水の製造装置
KR20160150223A (ko) 차아염소산 수용액의 제조장치
WO2007057940A1 (en) Water disinfecting apparatus and method
JP2008516761A (ja) イオン交換器及びイオン交換設備の衛生的な操作のための方法
JP2007511350A (ja) 水処理システム及び方法
JP2017018849A (ja) 水処理システム
JP2022125844A (ja) 尿素処理装置及び処理方法
JP2017018851A (ja) 水処理システム
JP2017012968A (ja) 水処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852193

Country of ref document: EP

Kind code of ref document: A1