WO2024034195A1 - Conductive film and method for manufacturing conductive film - Google Patents

Conductive film and method for manufacturing conductive film Download PDF

Info

Publication number
WO2024034195A1
WO2024034195A1 PCT/JP2023/016256 JP2023016256W WO2024034195A1 WO 2024034195 A1 WO2024034195 A1 WO 2024034195A1 JP 2023016256 W JP2023016256 W JP 2023016256W WO 2024034195 A1 WO2024034195 A1 WO 2024034195A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
conductive
less
die
young
Prior art date
Application number
PCT/JP2023/016256
Other languages
French (fr)
Japanese (ja)
Inventor
宏行 野中
一喜 中村
治 丹羽
恭資 丸山
Original Assignee
グンゼ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グンゼ株式会社 filed Critical グンゼ株式会社
Publication of WO2024034195A1 publication Critical patent/WO2024034195A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • the present invention relates to a conductive film and a method for manufacturing the conductive film.
  • Patent Document 1 JP 2019-179732A discloses a conductive film.
  • This conductive film contains a crystalline olefin resin, a thermoplastic elastomer, and a conductive filler.
  • the conductive film may contain an olefin resin from the viewpoints of moldability, chemical resistance, etc. Furthermore, in order to increase the conductivity of the conductive film, it is necessary to include a relatively large amount of conductive filler (for example, conductive carbon filler) in the conductive film. However, a conductive film containing an olefin resin and a relatively large amount of conductive filler is soft and easily deformed, and therefore is not necessarily easy to handle.
  • conductive filler for example, conductive carbon filler
  • the present invention was made to solve such problems, and its purpose is to provide a conductive film that is relatively easy to handle, and a method for manufacturing the conductive film.
  • a conductive film according to an aspect of the present invention includes an olefin resin and a conductive filler.
  • the surface resistivity of this conductive film is 10,000 ⁇ / ⁇ or less.
  • Young's modulus in at least one of MD (Machine Direction) and TD (Traverse Direction) is 1200 MPa or more.
  • the Young's modulus in at least one of MD (Machine Direction) and TD (Traverse Direction) is 1200 MPa or more. Therefore, since this conductive film has a relatively high Young's modulus in at least one of MD and TD, deformation of the conductive film during use is suppressed. As a result, with this conductive film, the handling properties of the conductive film can be improved.
  • Young's modulus in both MD and TD may be 1200 MPa or more.
  • Young's modulus in both MD and TD is 1200 MPa or more. Therefore, since this conductive film has relatively high Young's modulus in both MD and TD, deformation of the conductive film during use is suppressed. As a result, with this conductive film, the handling properties of the conductive film can be improved.
  • the conductive filler may include conductive carbon filler.
  • this conductive film may have a tear strength of 30 kN/m or more.
  • this conductive film tear strength is relatively high, so tearing of the conductive film during use can be suppressed. As a result, with this conductive film, the handling properties of the conductive film can be improved.
  • the weight percent concentration of the conductive filler may be 20 wt% or more and 50 wt% or less.
  • the concentration of the conductive filler is sufficiently high, the electrical resistance value of the conductive film can be suppressed.
  • a method for manufacturing a conductive film according to another aspect of the present invention includes a step of manufacturing a molten material by heating and melting a material containing an olefin resin and a conductive filler, a step of extruding the molten material through a die, and a step of extruding the molten material through a die.
  • the method includes the steps of drawing the molten material extruded from the die at a predetermined speed, and cooling the molten material by contacting the molten material extruded from the die with a cooling roll to produce a conductive film.
  • the predetermined speed is 3 m/min or more and 15 m/min or less.
  • the temperature of the cooling roll is 50°C or higher and 120°C or lower.
  • the surface resistivity of the conductive film is 10000 ⁇ / ⁇ or less.
  • the Young's modulus of the conductive film in at least one of MD and TD is 1200 MPa or more.
  • the drawing speed of the molten material extruded from the die is slow to some extent, and the temperature of the cooling roll is high to some extent.
  • the molten material is gradually cooled, and a conductive film with relatively high crystallinity can be produced.
  • a conductive film with high crystallinity suppresses deformation of the conductive film during use.
  • the handleability of the conductive film can be improved.
  • the present invention it is possible to provide a conductive film that is relatively easy to handle, and a method for manufacturing the conductive film.
  • FIG. 1 is a diagram schematically showing a cross section of a conductive film according to Embodiment 1.
  • FIG. FIG. 1 is a diagram schematically showing the configuration of a conductive film manufacturing apparatus.
  • FIG. 3 is a diagram schematically showing a cross section of a conductive film according to a second embodiment.
  • FIG. 3 is a diagram schematically showing a T-die included in a conductive film manufacturing apparatus according to a second embodiment.
  • FIG. 2 is a diagram schematically showing the shape of a sample used for measuring tear strength.
  • this embodiment according to one aspect of the present invention will be described in detail using the drawings.
  • the same reference numerals are attached to the same or corresponding parts in the drawings, and the description thereof will not be repeated.
  • each drawing is schematically drawn with objects omitted or exaggerated as appropriate for ease of understanding.
  • FIG. 1 is a diagram schematically showing a cross section of a conductive film 10 according to the first embodiment. As shown in FIG. 1, the conductive film 10 is a single layer film. The thickness of the conductive film 10 is, for example, 25 ⁇ m or more and 100 ⁇ m or less.
  • the conductive film 10 is used, for example, as a charging film or an antistatic film for copying machines and printers, and various other functional films for electrical/electronic equipment and parts. Note that the conductive film 10 may or may not be subjected to surface processing such as corona, plasma, coating, or sputtering.
  • the conductive film 10 contains an olefin resin and a conductive carbon filler. Note that the conductive film 10 may further contain some or all of additives such as a dispersant, an antioxidant, an anti-blocking agent, and an ultraviolet inhibitor.
  • additives such as a dispersant, an antioxidant, an anti-blocking agent, and an ultraviolet inhibitor.
  • olefin resins include polypropylene, polymethylpentene, and cyclic polyolefin.
  • polypropylene include homopolypropylene, random polypropylene, block polypropylene, polypropylene having a long chain branched structure, and acid-modified polypropylene.
  • the cyclic polyolefin contains a cyclic olefin component as a copolymerization component, and is not particularly limited as long as it is a polyolefin resin containing a cyclic olefin component in its main chain.
  • cyclic polyolefins include addition polymers of cyclic olefins or hydrogenated products thereof, addition copolymers of cyclic olefins and ⁇ -olefins, or hydrogenated products thereof.
  • the cyclic polyolefin includes those obtained by grafting and/or copolymerizing the above-mentioned polymer with an unsaturated compound having a hydrophilic group.
  • Examples of polar groups include carboxyl groups, acid anhydride groups, epoxy groups, amino groups, amide groups, ester groups, hydroxyl groups, sulfo groups, phosphono groups, and phosphino groups.
  • Examples of unsaturated compounds having polar groups include , (meth)acrylic acid, maleic acid, maleic anhydride, itaconic anhydride, glycidyl (meth)acrylate, alkyl (meth)acrylate (1 to 10 carbon atoms) ester, alkyl maleate (1 to 10 carbon atoms) ester , (meth)acrylamide and 2-hydroxyethyl (meth)acrylate, etc., preferably carboxyl group, acid anhydride group, epoxy group, amino group, amide group, ester group, hydroxyl group, sulfo group, Examples include phosphono and phosphino groups.
  • As the cyclic olefin resin an addition copolymer of a cyclic olefin
  • Examples of conductive carbon fillers include graphite, carbon black (acetylene black, Ketjen black, furnace black, channel black, thermal lamp black, etc.), carbon nanotubes, and mixtures thereof.
  • Examples of forms of conductive carbon filler include powder and fiber.
  • Examples of powdered conductive carbon fillers include carbon black and graphite.
  • Examples of fibrous conductive carbon fillers include nanotubes and carbon fibers.
  • the conductive film 10 contains an olefin resin. Furthermore, the conductive film 10 contains a relatively large amount of conductive carbon filler in order to improve conductivity. For example, the weight percent concentration of the conductive carbon filler in the conductive film 10 is 20 wt% or more and 50 wt% or less. However, in general, a conductive film containing an olefin resin and a relatively large amount of conductive carbon filler is soft and easily deformed, and thus tends not to be necessarily easy to handle.
  • the present inventors have discovered that it is possible to manufacture a conductive film 10 with good handling properties by devising a manufacturing method as described below.
  • the conductive film 10 according to the first embodiment achieves good handling properties, and specifically has the following characteristics.
  • the surface resistivity of the conductive film 10 according to the first embodiment is 10,000 ⁇ / ⁇ or less, preferably 6,000 ⁇ / ⁇ or less, more preferably 4,500 ⁇ / ⁇ or less, and more preferably 3,500 ⁇ / ⁇ . . That is, the conductive film 10 has sufficient conductivity.
  • the Young's modulus of the conductive film 10 in at least one of MD (Machine Direction) and TD (Traverse Direction) is 1200 MPa or more, preferably 1300 MPa or more, more preferably 1500 MPa or more, and more preferably 1600 MPa. That's all. Further, it is more preferable that the Young's modulus of the conductive film 10 in both MD and TD is 1200 MPa or more. Since the conductive film 10 has relatively high elasticity in at least one of the MD and TD, deformation of the conductive film 10 during use is suppressed. As a result, according to the conductive film 10, the handleability of the conductive film can be improved.
  • the tear strength of the conductive film 10 in at least one of the MD and TD is 30 kN/m or more, preferably 40 kN/m or more, more preferably 80 kN/m or more, and even more preferably 110 kN/m. That's all. Since the conductive film 10 has a relatively high tear strength, tearing of the conductive film 10 during use can be suppressed. As a result, according to the conductive film 10, the handleability of the conductive film can be improved.
  • FIG. 2 is a diagram schematically showing the configuration of a manufacturing apparatus 20 for the conductive film 10. As shown in FIG. 2, the manufacturing apparatus 20 includes a T-die 200, cast rolls 210, 220, and a take-up roll 230.
  • the T-die 200 is configured to produce a molten material by heating and melting a material containing an olefin resin and a conductive carbon filler, and extrude the molten material.
  • Cast rolls 210, 220 are configured to cool the extruded molten material and send it downstream.
  • the winding roll 230 is configured to pull and wind up the molten material cooled by the cast rolls 210 and 220 at a predetermined speed.
  • a rolled body of the conductive film 10 is manufactured through a manufacturing process in the manufacturing apparatus 20.
  • the temperature of the cast roll 210 is 50°C or higher and 120°C or lower, preferably 80°C or higher and 120°C or lower.
  • the predetermined speed at which the molten material is pulled by the winding roll 230 is 3 m/min or more and 15 m/min or less, preferably 9 m/min or more and 13 m/min or less.
  • the drawing speed of the molten material extruded from the T-die 200 is slow to some extent, and the temperature of the cast roll 210 is high to some extent.
  • the molten material is gradually cooled, and the conductive film 10 with relatively high crystallinity can be manufactured.
  • the highly crystalline conductive film 10 deformation of the conductive film 10 during use is suppressed.
  • the handleability of the conductive film can be improved.
  • the Young's modulus in at least one of the MD and TD is 1200 MPa or more. Therefore, since the conductive film 10 has relatively high elasticity in at least one of the MD and TD, deformation of the conductive film 10 during use is suppressed. As a result, according to the conductive film 10, the handleability of the conductive film can be improved.
  • the conductive film 10 according to the first embodiment was a single layer film.
  • the conductive film 10A according to the second embodiment is not a single layer film but includes a plurality of layers.
  • differences from the conductive film 10 according to the first embodiment described above will be mainly explained.
  • FIG. 3 is a diagram schematically showing a cross section of a conductive film 10A according to the second embodiment.
  • the conductive film 10A includes a first layer 100A, a second layer 110A, and an intermediate layer 120A sandwiched between the first layer 100A and the second layer 110A.
  • the thickness of the conductive film 10A is, for example, 25 ⁇ m or more and 100 ⁇ m or less.
  • the first layer 100A and the second layer 110A each contain, for example, an olefin resin and a conductive carbon filler. Regarding each of the olefin resin and the conductive carbon filler, the same ones listed in Embodiment 1 above can be applied. Further, each of the first layer 100A and the second layer 110A may further contain some or all of additives such as a dispersant, an antioxidant, an anti-blocking agent, and an ultraviolet inhibitor.
  • additives such as a dispersant, an antioxidant, an anti-blocking agent, and an ultraviolet inhibitor.
  • the intermediate layer 120A includes, for example, a resin having higher flexibility than the olefin resin contained in each of the first layer 100A and the second layer 110A, and a conductive carbon filler.
  • a resin having higher flexibility than the olefin resin contained in the first layer 100A and the second layer 110A include LDPE (Low Density Polyethylene) and LLDPE (Linear Low Density Polyethylene).
  • the intermediate layer 120A may further contain some or all of additives such as a dispersant, an antioxidant, an anti-blocking agent, and an ultraviolet inhibitor, and at least one of other resins.
  • the surface resistivity of the conductive film 10A according to the second embodiment is 10000 ⁇ / ⁇ or less, preferably 6000 ⁇ / ⁇ or less, more preferably 4500 ⁇ / ⁇ or less, and more preferably 3500 ⁇ / ⁇ . . That is, the conductive film 10A has sufficient conductivity.
  • the Young's modulus of the conductive film 10A in at least one of the MD and TD is 1200 MPa or more, preferably 1300 MPa or more, more preferably 1500 MPa or more, and even more preferably 1600 MPa or more. Further, it is more preferable that the Young's modulus of the conductive film 10A in both MD and TD is 1200 MPa or more. Since the conductive film 10A has relatively high elasticity in at least one of the MD and TD, deformation of the conductive film 10A during use is suppressed. As a result, according to the conductive film 10A, the handleability of the conductive film can be improved.
  • the tear strength of the conductive film 10A in at least one of the MD and TD is 30 kN/m or more, preferably 40 kN/m or more, more preferably 80 kN/m or more, and even more preferably 110 kN/m. That's all.
  • the tear strength is relatively high, so that tearing of the conductive film 10A during use can be suppressed.
  • the handleability of the conductive film can be improved.
  • the apparatus for manufacturing conductive film 10A according to the second embodiment differs from the apparatus for manufacturing conductive film 10 20 (FIG. 2) according to the first embodiment described above in the structure of T-die 200.
  • FIG. 4 is a diagram schematically showing a T-die 200A included in a manufacturing apparatus for a conductive film 10A according to the second embodiment.
  • the T-die 200A includes a T-die main body 201 and raw material input parts 240, 250, and 260.
  • Raw materials for forming the first layer 100A are inputted into the raw material input section 240.
  • an olefin resin and a conductive carbon filler are charged into the raw material input section 240.
  • Raw materials for forming the second layer 110A are charged into the raw material input section 260.
  • an olefin resin and a conductive carbon filler are charged into the raw material input section 260.
  • Raw materials for forming the intermediate layer 120A are charged into the raw material input section 250.
  • a resin having higher flexibility than the olefin resin contained in each of the first layer 100A and the second layer 110A for example, LDPE
  • a conductive carbon filler are input into the raw material input section 250. be done.
  • the T-die main body 201 co-extrudes the raw materials input through the raw material input parts 240, 250, and 260, and fuses together the melts of the raw materials input to each raw material input part to form one integral piece. It is configured to produce a molten film (molten material).
  • the molten material coextruded by T-die body 201 is cooled by cast rolls 210, 220 (FIG. 2) and pulled by take-up roll 230, thereby manufacturing conductive film 10A.
  • the conductive film 10A is manufactured by, for example, laminating the first layer 100A, the intermediate layer 120A, and the second layer 110A using a manufacturing apparatus including the T-die 200A.
  • the temperature of the cast roll 210 is, for example, 50°C or more and 120°C or less, preferably 80°C or more and 120°C or less.
  • the predetermined speed at which the molten material is pulled by the take-up roll 230 is 3 m/min or more and 15 m/min or less, preferably 3 m/min or more and 12 m/min or less.
  • the drawing speed of the molten material extruded from the T-die 200A is slow to some extent, and the temperature of the cast roll 210 is high to some extent.
  • the molten material is gradually cooled, and the conductive film 10A with relatively high crystallinity can be manufactured.
  • the highly crystalline conductive film 10A deformation of the conductive film 10A during use is suppressed.
  • the handleability of the conductive film can be improved.
  • the Young's modulus in at least one of the MD and TD is 1200 MPa or more. Therefore, since the conductive film 10A has relatively high elasticity in at least one of the MD and TD, deformation of the conductive film 10A during use is suppressed. As a result, according to the conductive film 10A, the handleability of the conductive film can be improved.
  • the conductive film 10 may further contain at least one of LDPE and LLDPE.
  • the conductive film 10 according to the first embodiment is a single-layer film
  • the conductive film 10A according to the second embodiment is a three-layer film
  • the layer structure of the conductive film is limited to this. Not done.
  • the conductive film may be a two-layer film, or may be a four-layer film or more. Any layer structure may be used as long as the surface resistivity is 10,000 ⁇ / ⁇ and the Young's modulus in at least one of MD and TD is 1,200 MPa or more.
  • Each conductive film of Examples 1-7 was manufactured using the manufacturing apparatus 20 shown in FIG. 2.
  • Each of PP A, PP B, PP C, and PP D shown below is polypropylene and has different melting points. Specifically, the melting point of PP A is "167.2", the melting point of PP B is "156.2”, the melting point of PP C is “158.5”, and the melting point of PP D is "161.0". Further, CB a was acetylene black, and CB b was furnace black.
  • the melting point was measured by differential scanning calorimetry (DSC) measurement for each resin in accordance with "JIS K 7122-2012 Method for measuring heat of transition of plastics," with the peak top of the endothermic peak taken as the melting point. In addition, if two peaks were observed, the higher temperature side was taken as the melting point.
  • DSC differential scanning calorimetry
  • the conductive film of Example 1 was manufactured by heating and melting PP B and CB a and extrusion molding.
  • Each of the conductive films of Examples 2-4 was manufactured by heating and melting PP B and CB b and extrusion molding.
  • the conductive film of Example 5 was manufactured by heating and melting PPC and CBa and extrusion molding.
  • the conductive film of Example 6 was manufactured by heating and melting PP D and CB a and extrusion molding.
  • the conductive film of Example 7 was manufactured by heating and melting PP B, LDPE, and CB a and extrusion molding.
  • the conductive film of Example 8 was manufactured using a manufacturing apparatus including the T-die 200A shown in FIG. 4 (other than the T-die 200 has the configuration of the manufacturing apparatus 20 shown in FIG. 2). Specifically, the conductive film of Example 8 was manufactured by coextrusion. Each of the first and second layers of the conductive film of Example 8 was formed using PP B and CB a. The intermediate layer of the conductive film of Example 8 was formed with PP B, LDPE and CB a.
  • the weight percent concentration (wt%) of the filler, the layer structure of the conductive film, the total thickness of the conductive film ( ⁇ m), and the drawing speed by the winding roll 230 (m/min) ) and the temperature (°C) of the cast roll (cooling roll) 210 were as shown in Table 1 below.
  • Comparative example The conductive films of Comparative Examples 1 and 2 were manufactured using the manufacturing apparatus 20 shown in FIG. 2.
  • a conductive film of Comparative Example 1 was manufactured by heating and melting LDPE and CB a and extrusion molding.
  • a conductive film of Comparative Example 2 was manufactured by heating and melting PP A and CB a and extrusion molding.
  • the tear strength in MD was measured for each of the conductive films of Examples 1-8 and Comparative Examples 1 and 2. Specifically, the tear strength of each conductive film was measured by a method based on JIS K 6732.
  • FIG. 5 is a diagram schematically showing the shape of a test piece (sample) used for measuring tear strength.
  • tear strength right angle tear strength was measured.
  • the test piece cut out as shown in FIG. 5 is accurately attached to a tensile testing machine with the axial direction of the test piece matching the grip direction of the testing machine.
  • an Autograph Shiadzu precision universal testing machine Autograph AG-X 500N was used.
  • the test speed was 200 mm/min, and the strength at the time of cutting the test piece was measured.
  • each of the conductive films of Examples 1-8 had a higher Young's modulus and higher tear strength than each of the conductive films of Comparative Examples 1 and 2. Further, in each of the conductive films of Examples 1-8, the surface resistivity was 10000 ⁇ / ⁇ or less, and the Young's modulus in at least one of the MD and TD was 1200 MPa or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Conductive Materials (AREA)

Abstract

This conductive film comprises an olefin resin and a conductive filler. The conductive film has a surface resistivity of 10000 Ω/□ or less. Young's modulus in at least one of the machine direction (MD) and the transverse direction (TD) of the conductive film is 1200 MPa or higher.

Description

導電性フィルム、及び、導電性フィルムの製造方法Conductive film and method for manufacturing the conductive film
 本発明は、導電性フィルム、及び、導電性フィルムの製造方法に関する。 The present invention relates to a conductive film and a method for manufacturing the conductive film.
 特開2019-179732号公報(特許文献1)は、導電性フィルムを開示する。この導電性フィルムは、結晶性オレフィン系樹脂と、熱可塑性エラストマーと、導電性フィラーとを含んでいる。 JP 2019-179732A (Patent Document 1) discloses a conductive film. This conductive film contains a crystalline olefin resin, a thermoplastic elastomer, and a conductive filler.
特開2019-179732号公報JP 2019-179732 Publication
 上記特許文献1に開示されている導電性フィルムのように、成形加工性及び耐薬品性等の観点から、導電性フィルムにはオレフィン系樹脂が含まれる場合がある。また、導電性フィルムにおける導電性を高めるためには、導電性フィルムに比較的多量の導電性フィラー(例えば、導電性炭素フィラー)を含める必要がある。しかしながら、オレフィン系樹脂と比較的多量の導電性フィラーとを含む導電性フィルムは、柔らかく変形しやすいため、必ずしも取扱い性が良くない。 Like the conductive film disclosed in Patent Document 1, the conductive film may contain an olefin resin from the viewpoints of moldability, chemical resistance, etc. Furthermore, in order to increase the conductivity of the conductive film, it is necessary to include a relatively large amount of conductive filler (for example, conductive carbon filler) in the conductive film. However, a conductive film containing an olefin resin and a relatively large amount of conductive filler is soft and easily deformed, and therefore is not necessarily easy to handle.
 本発明は、このような問題を解決するためになされたものであって、その目的は、比較的取扱い性が良い導電性フィルム、及び、当該導電性フィルムの製造方法を提供することである。 The present invention was made to solve such problems, and its purpose is to provide a conductive film that is relatively easy to handle, and a method for manufacturing the conductive film.
 本発明のある局面に従う導電性フィルムは、オレフィン系樹脂と、導電性フィラーとを含む。この導電性フィルムの表面抵抗率は、10000Ω/□以下である。この導電性フィルムにおいて、MD(Machine Direction)及びTD(Traverse Direction)の少なくとも一方におけるヤング率は、1200MPa以上である。 A conductive film according to an aspect of the present invention includes an olefin resin and a conductive filler. The surface resistivity of this conductive film is 10,000Ω/□ or less. In this conductive film, Young's modulus in at least one of MD (Machine Direction) and TD (Traverse Direction) is 1200 MPa or more.
 この導電性フィルムにおいては、MD(Machine Direction)及びTD(Traverse Direction)の少なくとも一方におけるヤング率が1200MPa以上である。したがって、この導電性フィルムによれば、MD及びTDの少なくとも一方におけるヤング率が比較的高いため、使用時における導電性フィルムの変形が抑制される。その結果、この導電性フィルムによれば、導電性フィルムの取扱い性を改善することができる。 In this conductive film, the Young's modulus in at least one of MD (Machine Direction) and TD (Traverse Direction) is 1200 MPa or more. Therefore, since this conductive film has a relatively high Young's modulus in at least one of MD and TD, deformation of the conductive film during use is suppressed. As a result, with this conductive film, the handling properties of the conductive film can be improved.
 この導電性フィルムにおいては、MD及びTDの両方におけるヤング率が1200MPa以上であってもよい。 In this conductive film, Young's modulus in both MD and TD may be 1200 MPa or more.
 この導電性フィルムにおいては、MD及びTDの両方におけるヤング率が1200MPa以上である。したがって、この導電性フィルムによれば、MD及びTDの両方におけるヤング率が比較的高いため、使用時における導電性フィルムの変形が抑制される。その結果、この導電性フィルムによれば、導電性フィルムの取扱い性を改善することができる。 In this conductive film, Young's modulus in both MD and TD is 1200 MPa or more. Therefore, since this conductive film has relatively high Young's modulus in both MD and TD, deformation of the conductive film during use is suppressed. As a result, with this conductive film, the handling properties of the conductive film can be improved.
 この導電性フィルムにおいて、導電性フィラーは、導電性炭素フィラーを含んでもよい。 In this conductive film, the conductive filler may include conductive carbon filler.
 また、この導電性フィルムにおいては、引裂強度が30kN/m以上であってもよい。 Furthermore, this conductive film may have a tear strength of 30 kN/m or more.
 この導電性フィルムによれば、引裂強度が比較的高いため、使用時における導電性フィルムの破れを抑制することができる。その結果、この導電性フィルムによれば、導電性フィルムの取扱い性を改善することができる。 According to this conductive film, tear strength is relatively high, so tearing of the conductive film during use can be suppressed. As a result, with this conductive film, the handling properties of the conductive film can be improved.
 また、この導電性フィルムにおいて、導電性フィラーの重量パーセント濃度は、20wt%以上、50wt%以下であってもよい。 Furthermore, in this conductive film, the weight percent concentration of the conductive filler may be 20 wt% or more and 50 wt% or less.
 この導電性フィルムによれば、導電性フィラーの濃度が十分に高いため、導電性フィルムの電気抵抗値を抑制することができる。 According to this conductive film, since the concentration of the conductive filler is sufficiently high, the electrical resistance value of the conductive film can be suppressed.
 本発明の他の局面に従う導電性フィルムの製造方法は、オレフィン系樹脂と導電性フィラーとを含む材料を加熱溶融することによって溶融材料を製造するステップと、溶融材料をダイから押し出すステップと、ダイから押し出された溶融材料を所定速度で引くステップと、ダイから押し出された溶融材料を冷却ロールに接触させることによって溶融材料を冷却し導電性フィルムを製造するステップとを含む。上記所定速度は、3m/分以上、15m/分以下である。冷却ロールの温度は、50℃以上、120℃以下である。導電性フィルムの表面抵抗率は、10000Ω/□以下である。導電性フィルムのMD及びTDの少なくとも一方におけるヤング率は、1200MPa以上である。 A method for manufacturing a conductive film according to another aspect of the present invention includes a step of manufacturing a molten material by heating and melting a material containing an olefin resin and a conductive filler, a step of extruding the molten material through a die, and a step of extruding the molten material through a die. The method includes the steps of drawing the molten material extruded from the die at a predetermined speed, and cooling the molten material by contacting the molten material extruded from the die with a cooling roll to produce a conductive film. The predetermined speed is 3 m/min or more and 15 m/min or less. The temperature of the cooling roll is 50°C or higher and 120°C or lower. The surface resistivity of the conductive film is 10000Ω/□ or less. The Young's modulus of the conductive film in at least one of MD and TD is 1200 MPa or more.
 この導電性フィルムの製造方法においては、ダイから押し出された溶融材料の引速がある程度遅く、冷却ロールの温度がある程度高い。その結果、この導電性フィルムの製造方法によれば、溶融材料の冷却が徐々に行なわれ、比較的結晶性の高い導電性フィルムを製造することができる。結晶性の高い導電性フィルムによれば、使用時における導電性フィルムの変形が抑制される。その結果、この製造方法によって製造された導電性フィルムによれば、導電性フィルムの取扱い性を改善することができる。 In this method for producing a conductive film, the drawing speed of the molten material extruded from the die is slow to some extent, and the temperature of the cooling roll is high to some extent. As a result, according to this method for producing a conductive film, the molten material is gradually cooled, and a conductive film with relatively high crystallinity can be produced. A conductive film with high crystallinity suppresses deformation of the conductive film during use. As a result, according to the conductive film manufactured by this manufacturing method, the handleability of the conductive film can be improved.
 本発明によれば、比較的取扱い性が良い導電性フィルム、及び、当該導電性フィルムの製造方法を提供することができる。 According to the present invention, it is possible to provide a conductive film that is relatively easy to handle, and a method for manufacturing the conductive film.
実施の形態1に従う導電性フィルムの断面を模式的に示す図である。1 is a diagram schematically showing a cross section of a conductive film according to Embodiment 1. FIG. 導電性フィルムの製造装置の構成を模式的に示す図である。FIG. 1 is a diagram schematically showing the configuration of a conductive film manufacturing apparatus. 実施の形態2に従う導電性フィルムの断面を模式的に示す図である。FIG. 3 is a diagram schematically showing a cross section of a conductive film according to a second embodiment. 実施の形態2に従う導電性フィルムの製造装置に含まれるTダイを模式的に示す図である。FIG. 3 is a diagram schematically showing a T-die included in a conductive film manufacturing apparatus according to a second embodiment. 引裂強度の測定に用いられる試料の形状を模式的に示す図である。FIG. 2 is a diagram schematically showing the shape of a sample used for measuring tear strength.
 以下、本発明の一側面に係る実施の形態(以下、「本実施の形態」とも称する。)について、図面を用いて詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。また、各図面は、理解の容易のために、適宜対象を省略又は誇張して模式的に描かれている。 Hereinafter, an embodiment (hereinafter also referred to as "this embodiment") according to one aspect of the present invention will be described in detail using the drawings. In addition, the same reference numerals are attached to the same or corresponding parts in the drawings, and the description thereof will not be repeated. Further, each drawing is schematically drawn with objects omitted or exaggerated as appropriate for ease of understanding.
 [1.実施の形態1]
 <1-1.導電性フィルムの構成>
 図1は、本実施の形態1に従う導電性フィルム10の断面を模式的に示す図である。図1に示されるように、導電性フィルム10は、単層フィルムである。導電性フィルム10の厚みは、例えば、25μm以上、100μm以下である。
[1. Embodiment 1]
<1-1. Structure of conductive film>
FIG. 1 is a diagram schematically showing a cross section of a conductive film 10 according to the first embodiment. As shown in FIG. 1, the conductive film 10 is a single layer film. The thickness of the conductive film 10 is, for example, 25 μm or more and 100 μm or less.
 導電性フィルム10は、例えば、複写機やプリンタ等の帯電フィルムや除電フィルム、その他電気・電子機器や部品用の各種機能性フィルムとして用いられる。なお、導電性フィルム10には、コロナ、プラズマ、コーティング又はスパッタリング等の表面加工が施されていてもよいし、施されていなくてもよい。 The conductive film 10 is used, for example, as a charging film or an antistatic film for copying machines and printers, and various other functional films for electrical/electronic equipment and parts. Note that the conductive film 10 may or may not be subjected to surface processing such as corona, plasma, coating, or sputtering.
 導電性フィルム10は、オレフィン系樹脂と、導電性炭素フィラーとを含んでいる。なお、導電性フィルム10においては、分散剤、酸化防止剤、アンチブロッキング剤及び紫外線防止剤等の添加剤の一部又は全部がさらに含まれていてもよい。オレフィン系樹脂の一例としては、ポリプロピレン、ポリメチルペンテン及び環状ポリオレフィンが挙げられる。ポリプロピレンの一例としては、ホモポリプロピレン、ランダムポリプロピレン、ブロックポリプロピレン、長鎖分岐構造を有するポリプロピレン及び酸変性ポリプロピレンが挙げられる。 The conductive film 10 contains an olefin resin and a conductive carbon filler. Note that the conductive film 10 may further contain some or all of additives such as a dispersant, an antioxidant, an anti-blocking agent, and an ultraviolet inhibitor. Examples of olefin resins include polypropylene, polymethylpentene, and cyclic polyolefin. Examples of polypropylene include homopolypropylene, random polypropylene, block polypropylene, polypropylene having a long chain branched structure, and acid-modified polypropylene.
 環状ポリオレフィン(環状オレフィン系樹脂)は、環状オレフィン成分を共重合成分として含むものであり、環状オレフィン成分を主鎖に含むポリオレフィン系樹脂であれば特に限定されない。環状ポリオレフィンの一例としては、環状オレフィンの付加重合体又はその水素添加物、環状オレフィンとα-オレフィンの付加共重合体又はその水素添加物等が挙げられる。また、環状ポリオレフィンとしては、上記重合体に、さらに親水基を有する不飽和化合物をグラフト及び/又は共重合したものが含まれる。 The cyclic polyolefin (cyclic olefin resin) contains a cyclic olefin component as a copolymerization component, and is not particularly limited as long as it is a polyolefin resin containing a cyclic olefin component in its main chain. Examples of cyclic polyolefins include addition polymers of cyclic olefins or hydrogenated products thereof, addition copolymers of cyclic olefins and α-olefins, or hydrogenated products thereof. Further, the cyclic polyolefin includes those obtained by grafting and/or copolymerizing the above-mentioned polymer with an unsaturated compound having a hydrophilic group.
 極性基としては、カルボキシル基、酸無水物基、エポキシ基、アミノ基、アミド基、エステル基、ヒドロキシル基、スルホ基、ホスホノ基及びホスフィノ基等が挙げられ、極性基を有する不飽和化合物としては、(メタ)アクリル酸、マレイン酸、無水マレイン酸、無水イタコン酸、グリシジル(メタ)アクリレート、(メタ)アクリル酸アルキル(炭素数1~10)エステル、マレイン酸アルキル(炭素数1~10)エステル、(メタ)アクリルアミド及び(メタ)アクリル酸-2-ヒドロキシエチル等が挙げられ、好ましくは、カルボキシル基、酸無水物基、エポキシ基、アミノ基、アミド基、エステル基、ヒドロキシル基、スルホ基、ホスホノ基及びホスフィノ基が挙げられる。環状オレフィン系樹脂としては、環状オレフィンとα-オレフィンの付加共重合体又はその水素添加物が好ましい。 Examples of polar groups include carboxyl groups, acid anhydride groups, epoxy groups, amino groups, amide groups, ester groups, hydroxyl groups, sulfo groups, phosphono groups, and phosphino groups. Examples of unsaturated compounds having polar groups include , (meth)acrylic acid, maleic acid, maleic anhydride, itaconic anhydride, glycidyl (meth)acrylate, alkyl (meth)acrylate (1 to 10 carbon atoms) ester, alkyl maleate (1 to 10 carbon atoms) ester , (meth)acrylamide and 2-hydroxyethyl (meth)acrylate, etc., preferably carboxyl group, acid anhydride group, epoxy group, amino group, amide group, ester group, hydroxyl group, sulfo group, Examples include phosphono and phosphino groups. As the cyclic olefin resin, an addition copolymer of a cyclic olefin and an α-olefin or a hydrogenated product thereof is preferable.
 導電性炭素フィラーの一例としては、例えば、黒鉛(グラファイト)、カーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)、カーボンナノチューブ及びこれらの混合物が挙げられる。導電性炭素フィラーの形状の一例としては、粉末及び繊維が挙げられる。粉末状の導電性炭素フィラーの一例としては、カーボンブラック及び黒鉛が挙げられる。また、繊維状の導電性炭素フィラーの一例としては、ナノチューブ及び炭素繊維が挙げられる。 Examples of conductive carbon fillers include graphite, carbon black (acetylene black, Ketjen black, furnace black, channel black, thermal lamp black, etc.), carbon nanotubes, and mixtures thereof. Examples of forms of conductive carbon filler include powder and fiber. Examples of powdered conductive carbon fillers include carbon black and graphite. Examples of fibrous conductive carbon fillers include nanotubes and carbon fibers.
 成形加工性及び耐薬品性等の観点から、導電性フィルム10にはオレフィン系樹脂が含まれている。また、導電性フィルム10においては、導電性を高めるために、比較的多量の導電性炭素フィラーが含まれている。例えば、導電性フィルム10における導電性炭素フィラーの重量パーセント濃度は、20wt%以上、50wt%以下である。しかしながら、一般的に、オレフィン系樹脂と比較的多量の導電性炭素フィラーとを含む導電性フィルムは、柔らかく変形しやすいため、必ずしも取扱い性が良くない傾向がある。 From the viewpoints of moldability, chemical resistance, etc., the conductive film 10 contains an olefin resin. Furthermore, the conductive film 10 contains a relatively large amount of conductive carbon filler in order to improve conductivity. For example, the weight percent concentration of the conductive carbon filler in the conductive film 10 is 20 wt% or more and 50 wt% or less. However, in general, a conductive film containing an olefin resin and a relatively large amount of conductive carbon filler is soft and easily deformed, and thus tends not to be necessarily easy to handle.
 本発明者(ら)は、後述するように製造方法に工夫を施すことによって、良好な取扱い性を有する導電性フィルム10の製造が可能であることを見出した。本実施の形態1に従う導電性フィルム10は、良好な取扱い性を実現しており、具体的には以下のような特徴を有する。 The present inventors have discovered that it is possible to manufacture a conductive film 10 with good handling properties by devising a manufacturing method as described below. The conductive film 10 according to the first embodiment achieves good handling properties, and specifically has the following characteristics.
 本実施の形態1に従う導電性フィルム10の表面抵抗率は、10000Ω/□以下であり、好ましくは6000Ω/□以下であり、さらに好ましくは4500Ω/□以下であり、より好ましくは3500Ω/□である。すなわち、導電性フィルム10は、十分な導電性を有する。 The surface resistivity of the conductive film 10 according to the first embodiment is 10,000 Ω/□ or less, preferably 6,000 Ω/□ or less, more preferably 4,500 Ω/□ or less, and more preferably 3,500 Ω/□. . That is, the conductive film 10 has sufficient conductivity.
 また、導電性フィルム10のMD(Machine Direction)及びTD(Traverse Direction)の少なくとも一方におけるヤング率は、1200MPa以上であり、好ましくは1300MPa以上であり、さらに好ましくは1500MPa以上であり、より好ましくは1600MPa以上である。また、導電性フィルム10のMD及びTDの両方におけるヤング率が1200MPa以上であることがより好ましい。導電性フィルム10によれば、MD及びTDの少なくとも一方における弾性が比較的高いため、使用時における導電性フィルム10の変形が抑制される。その結果、導電性フィルム10によれば、導電性フィルムの取扱い性を改善することができる。 Further, the Young's modulus of the conductive film 10 in at least one of MD (Machine Direction) and TD (Traverse Direction) is 1200 MPa or more, preferably 1300 MPa or more, more preferably 1500 MPa or more, and more preferably 1600 MPa. That's all. Further, it is more preferable that the Young's modulus of the conductive film 10 in both MD and TD is 1200 MPa or more. Since the conductive film 10 has relatively high elasticity in at least one of the MD and TD, deformation of the conductive film 10 during use is suppressed. As a result, according to the conductive film 10, the handleability of the conductive film can be improved.
 また、導電性フィルム10のMD及びTDの少なくとも一方における引裂強度は、30kN/m以上であり、好ましくは40kN/m以上であり、さらに好ましくは80kN/m以上であり、より好ましくは110kN/m以上である。導電性フィルム10によれば、引裂強度が比較的高いため、使用時における導電性フィルム10の破れを抑制することができる。その結果、導電性フィルム10によれば、導電性フィルムの取扱い性を改善することができる。 The tear strength of the conductive film 10 in at least one of the MD and TD is 30 kN/m or more, preferably 40 kN/m or more, more preferably 80 kN/m or more, and even more preferably 110 kN/m. That's all. Since the conductive film 10 has a relatively high tear strength, tearing of the conductive film 10 during use can be suppressed. As a result, according to the conductive film 10, the handleability of the conductive film can be improved.
 <1-2.導電性フィルムの製造方法>
 図2は、導電性フィルム10の製造装置20の構成を模式的に示す図である。図2に示されるように、製造装置20は、Tダイ200と、キャストロール210,220と、巻取りロール230とを含んでいる。
<1-2. Manufacturing method of conductive film>
FIG. 2 is a diagram schematically showing the configuration of a manufacturing apparatus 20 for the conductive film 10. As shown in FIG. 2, the manufacturing apparatus 20 includes a T-die 200, cast rolls 210, 220, and a take-up roll 230.
 Tダイ200は、オレフィン系樹脂と導電性炭素フィラーとを含む材料を加熱溶融することによって溶融材料を製造し、溶融材料を押し出すように構成されている。キャストロール210,220は、押し出された溶融材料を冷却するとともに、下流へ送るように構成されている。巻取りロール230は、キャストロール210,220によって冷却された溶融材料を所定速度で引いて巻き取るように構成されている。製造装置20における製造工程を経て導電性フィルム10の巻取体が製造される。 The T-die 200 is configured to produce a molten material by heating and melting a material containing an olefin resin and a conductive carbon filler, and extrude the molten material. Cast rolls 210, 220 are configured to cool the extruded molten material and send it downstream. The winding roll 230 is configured to pull and wind up the molten material cooled by the cast rolls 210 and 220 at a predetermined speed. A rolled body of the conductive film 10 is manufactured through a manufacturing process in the manufacturing apparatus 20.
 例えば、キャストロール210の温度は、50℃以上、120℃以下であり、好ましくは80℃以上、120℃以下である。また、例えば、巻取りロール230によって溶融材料を引く所定速度は、3m/分以上、15m/分以下であり、好ましくは9m/分以上、13m/分以下である。 For example, the temperature of the cast roll 210 is 50°C or higher and 120°C or lower, preferably 80°C or higher and 120°C or lower. Further, for example, the predetermined speed at which the molten material is pulled by the winding roll 230 is 3 m/min or more and 15 m/min or less, preferably 9 m/min or more and 13 m/min or less.
 製造装置20においては、Tダイ200から押し出された溶融材料の引速がある程度遅く、キャストロール210の温度がある程度高い。その結果、製造装置20によれば、溶融材料の冷却が徐々に行なわれ、比較的結晶性の高い導電性フィルム10を製造することができる。結晶性の高い導電性フィルム10によれば、使用時における導電性フィルム10の変形が抑制される。その結果、製造装置20によって製造された導電性フィルム10によれば、導電性フィルムの取扱い性を改善することができる。 In the manufacturing apparatus 20, the drawing speed of the molten material extruded from the T-die 200 is slow to some extent, and the temperature of the cast roll 210 is high to some extent. As a result, according to the manufacturing apparatus 20, the molten material is gradually cooled, and the conductive film 10 with relatively high crystallinity can be manufactured. According to the highly crystalline conductive film 10, deformation of the conductive film 10 during use is suppressed. As a result, according to the conductive film 10 manufactured by the manufacturing apparatus 20, the handleability of the conductive film can be improved.
 <1-3.特徴>
 以上のように、本実施の形態1に従う導電性フィルム10においては、MD及びTDの少なくとも一方におけるヤング率が1200MPa以上である。したがって、導電性フィルム10によれば、MD及びTDの少なくとも一方における弾性が比較的高いため、使用時における導電性フィルム10の変形が抑制される。その結果、導電性フィルム10によれば、導電性フィルムの取扱い性を改善することができる。
<1-3. Features>
As described above, in the conductive film 10 according to the first embodiment, the Young's modulus in at least one of the MD and TD is 1200 MPa or more. Therefore, since the conductive film 10 has relatively high elasticity in at least one of the MD and TD, deformation of the conductive film 10 during use is suppressed. As a result, according to the conductive film 10, the handleability of the conductive film can be improved.
 [2.実施の形態2]
 上記実施の形態1に従う導電性フィルム10は、単層フィルムであった。しかしながら、本実施の形態2に従う導電性フィルム10Aは、単層フィルムではなく、複数の層を含んでいる。以下では、上記実施の形態1に従う導電性フィルム10と異なる点を中心に説明する。
[2. Embodiment 2]
The conductive film 10 according to the first embodiment was a single layer film. However, the conductive film 10A according to the second embodiment is not a single layer film but includes a plurality of layers. Hereinafter, differences from the conductive film 10 according to the first embodiment described above will be mainly explained.
 <2-1.導電性フィルムの構成>
 図3は、本実施の形態2に従う導電性フィルム10Aの断面を模式的に示す図である。図3に示されるように、導電性フィルム10Aは、第1層100Aと、第2層110Aと、第1層100A及び第2層110Aによって挟まれた中間層120Aとを含んでいる。導電性フィルム10Aの厚みは、例えば、25μm以上、100μm以下である。
<2-1. Structure of conductive film>
FIG. 3 is a diagram schematically showing a cross section of a conductive film 10A according to the second embodiment. As shown in FIG. 3, the conductive film 10A includes a first layer 100A, a second layer 110A, and an intermediate layer 120A sandwiched between the first layer 100A and the second layer 110A. The thickness of the conductive film 10A is, for example, 25 μm or more and 100 μm or less.
 第1層100A及び第2層110Aの各々は、例えば、オレフィン系樹脂と、導電性炭素フィラーとを含んでいる。オレフィン系樹脂及び導電性炭素フィラーの各々に関しては、上記実施の形態1において列挙したものと同一のものを適用することができる。また、第1層100A及び第2層110Aの各々においては、分散剤、酸化防止剤、アンチブロッキング剤及び紫外線防止剤等の添加剤の一部又は全部がさらに含まれていてもよい。 The first layer 100A and the second layer 110A each contain, for example, an olefin resin and a conductive carbon filler. Regarding each of the olefin resin and the conductive carbon filler, the same ones listed in Embodiment 1 above can be applied. Further, each of the first layer 100A and the second layer 110A may further contain some or all of additives such as a dispersant, an antioxidant, an anti-blocking agent, and an ultraviolet inhibitor.
 中間層120Aは、例えば、第1層100A及び第2層110Aの各々に含まれているオレフィン系樹脂よりも高い柔軟性を有する樹脂と、導電性炭素フィラーとを含んでいる。導電性炭素フィラーに関しては、上記実施の形態1において列挙したものと同一のものを適用することができる。第1層100A及び第2層110Aに含まれているオレフィン系樹脂よりも高い柔軟性を有する樹脂の一例としては、例えば、LDPE(Low Density Polyethylene)及びLLDPE(Linear Low Density Polyethylene)が挙げられる。中間層120Aにおいては、分散剤、酸化防止剤、アンチブロッキング剤及び紫外線防止剤等の添加剤の一部又は全部、並びに、他の樹脂の少なくとも一方がさらに含まれていてもよい。 The intermediate layer 120A includes, for example, a resin having higher flexibility than the olefin resin contained in each of the first layer 100A and the second layer 110A, and a conductive carbon filler. Regarding the conductive carbon filler, the same ones listed in Embodiment 1 above can be applied. Examples of resins having higher flexibility than the olefin resin contained in the first layer 100A and the second layer 110A include LDPE (Low Density Polyethylene) and LLDPE (Linear Low Density Polyethylene). The intermediate layer 120A may further contain some or all of additives such as a dispersant, an antioxidant, an anti-blocking agent, and an ultraviolet inhibitor, and at least one of other resins.
 本実施の形態2に従う導電性フィルム10Aの表面抵抗率は、10000Ω/□以下であり、好ましくは6000Ω/□以下であり、さらに好ましくは4500Ω/□以下であり、より好ましくは3500Ω/□である。すなわち、導電性フィルム10Aは、十分な導電性を有する。 The surface resistivity of the conductive film 10A according to the second embodiment is 10000 Ω/□ or less, preferably 6000 Ω/□ or less, more preferably 4500 Ω/□ or less, and more preferably 3500 Ω/□. . That is, the conductive film 10A has sufficient conductivity.
 また、導電性フィルム10AのMD及びTDの少なくとも一方におけるヤング率は、1200MPa以上であり、好ましくは1300MPa以上であり、さらに好ましくは1500MPa以上であり、より好ましくは1600MPa以上である。また、導電性フィルム10AのMD及びTDの両方におけるヤング率が1200MPa以上であることがより好ましい。導電性フィルム10Aによれば、MD及びTDの少なくとも一方における弾性が比較的高いため、使用時における導電性フィルム10Aの変形が抑制される。その結果、導電性フィルム10Aによれば、導電性フィルムの取扱い性を改善することができる。 Furthermore, the Young's modulus of the conductive film 10A in at least one of the MD and TD is 1200 MPa or more, preferably 1300 MPa or more, more preferably 1500 MPa or more, and even more preferably 1600 MPa or more. Further, it is more preferable that the Young's modulus of the conductive film 10A in both MD and TD is 1200 MPa or more. Since the conductive film 10A has relatively high elasticity in at least one of the MD and TD, deformation of the conductive film 10A during use is suppressed. As a result, according to the conductive film 10A, the handleability of the conductive film can be improved.
 また、導電性フィルム10AのMD及びTDの少なくとも一方における引裂強度は、30kN/m以上であり、好ましくは40kN/m以上であり、さらに好ましくは80kN/m以上であり、より好ましくは110kN/m以上である。導電性フィルム10Aによれば、引裂強度が比較的高いため、使用時における導電性フィルム10Aの破れを抑制することができる。その結果、導電性フィルム10Aによれば、導電性フィルムの取扱い性を改善することができる。 The tear strength of the conductive film 10A in at least one of the MD and TD is 30 kN/m or more, preferably 40 kN/m or more, more preferably 80 kN/m or more, and even more preferably 110 kN/m. That's all. According to the conductive film 10A, the tear strength is relatively high, so that tearing of the conductive film 10A during use can be suppressed. As a result, according to the conductive film 10A, the handleability of the conductive film can be improved.
 <2-2.導電性フィルムの製造方法>
 本実施の形態2に従う導電性フィルム10Aの製造装置は、上記実施の形態1に従う導電性フィルム10の製造装置20(図2)と比較して、Tダイ200の構造が異なる。
<2-2. Manufacturing method of conductive film>
The apparatus for manufacturing conductive film 10A according to the second embodiment differs from the apparatus for manufacturing conductive film 10 20 (FIG. 2) according to the first embodiment described above in the structure of T-die 200.
 図4は、本実施の形態2に従う導電性フィルム10Aの製造装置に含まれるTダイ200Aを模式的に示す図である。図4に示されるように、Tダイ200Aは、Tダイ本体201と、原料投入部240,250,260とを含んでいる。 FIG. 4 is a diagram schematically showing a T-die 200A included in a manufacturing apparatus for a conductive film 10A according to the second embodiment. As shown in FIG. 4, the T-die 200A includes a T-die main body 201 and raw material input parts 240, 250, and 260.
 原料投入部240には、第1層100Aを形成するための原料が投入される。原料投入部240には、例えば、オレフィン系樹脂と、導電性炭素フィラーとが投入される。原料投入部260には、第2層110Aを形成するための原料が投入される。原料投入部260には、例えば、オレフィン系樹脂と、導電性炭素フィラーとが投入される。原料投入部250には、中間層120Aを形成するための原料が投入される。原料投入部250には、例えば、第1層100A及び第2層110Aの各々に含まれているオレフィン系樹脂よりも高い柔軟性を有する樹脂(例えば、LDPE)と、導電性炭素フィラーとが投入される。 Raw materials for forming the first layer 100A are inputted into the raw material input section 240. For example, an olefin resin and a conductive carbon filler are charged into the raw material input section 240. Raw materials for forming the second layer 110A are charged into the raw material input section 260. For example, an olefin resin and a conductive carbon filler are charged into the raw material input section 260. Raw materials for forming the intermediate layer 120A are charged into the raw material input section 250. For example, a resin having higher flexibility than the olefin resin contained in each of the first layer 100A and the second layer 110A (for example, LDPE) and a conductive carbon filler are input into the raw material input section 250. be done.
 Tダイ本体201は、原料投入部240,250,260を介して投入された原料を共押出しすることによって、各原料投入部に投入された原料の溶融物同士を融着させて1枚の一体化したフィルム(溶融材料)とするように構成されている。Tダイ本体201によって共押出しされた溶融材料が、キャストロール210,220(図2)によって冷却され、巻取りロール230によって引かれることによって導電性フィルム10Aが製造される。このように、導電性フィルム10Aは、例えば、Tダイ200Aを含む製造装置によって、第1層100A、中間層120A及び第2層110Aが積層されることによって製造される。 The T-die main body 201 co-extrudes the raw materials input through the raw material input parts 240, 250, and 260, and fuses together the melts of the raw materials input to each raw material input part to form one integral piece. It is configured to produce a molten film (molten material). The molten material coextruded by T-die body 201 is cooled by cast rolls 210, 220 (FIG. 2) and pulled by take-up roll 230, thereby manufacturing conductive film 10A. In this way, the conductive film 10A is manufactured by, for example, laminating the first layer 100A, the intermediate layer 120A, and the second layer 110A using a manufacturing apparatus including the T-die 200A.
 なお、Tダイ200Aを含む製造装置において、例えば、キャストロール210の温度は、50℃以上、120℃以下であり、好ましくは80℃以上、120℃以下である。また、例えば、巻取りロール230によって溶融材料を引く所定速度は、3m/分以上、15m/分以下であり、好ましくは3m/分以上、12m/分以下である。 In addition, in the manufacturing apparatus including the T-die 200A, the temperature of the cast roll 210 is, for example, 50°C or more and 120°C or less, preferably 80°C or more and 120°C or less. Further, for example, the predetermined speed at which the molten material is pulled by the take-up roll 230 is 3 m/min or more and 15 m/min or less, preferably 3 m/min or more and 12 m/min or less.
 この製造装置においては、Tダイ200Aから押し出された溶融材料の引速がある程度遅く、キャストロール210の温度がある程度高い。その結果、この製造装置によれば、溶融材料の冷却が徐々に行なわれ、比較的結晶性の高い導電性フィルム10Aを製造することができる。結晶性の高い導電性フィルム10Aによれば、使用時における導電性フィルム10Aの変形が抑制される。その結果、この製造装置によって製造された導電性フィルム10Aによれば、導電性フィルムの取扱い性を改善することができる。 In this manufacturing apparatus, the drawing speed of the molten material extruded from the T-die 200A is slow to some extent, and the temperature of the cast roll 210 is high to some extent. As a result, according to this manufacturing apparatus, the molten material is gradually cooled, and the conductive film 10A with relatively high crystallinity can be manufactured. According to the highly crystalline conductive film 10A, deformation of the conductive film 10A during use is suppressed. As a result, according to the conductive film 10A manufactured by this manufacturing apparatus, the handleability of the conductive film can be improved.
 <2-3.特徴>
 以上のように、本実施の形態2に従う導電性フィルム10Aにおいては、MD及びTDの少なくとも一方におけるヤング率が1200MPa以上である。したがって、導電性フィルム10Aによれば、MD及びTDの少なくとも一方における弾性が比較的高いため、使用時における導電性フィルム10Aの変形が抑制される。その結果、導電性フィルム10Aによれば、導電性フィルムの取扱い性を改善することができる。
<2-3. Features>
As described above, in the conductive film 10A according to the second embodiment, the Young's modulus in at least one of the MD and TD is 1200 MPa or more. Therefore, since the conductive film 10A has relatively high elasticity in at least one of the MD and TD, deformation of the conductive film 10A during use is suppressed. As a result, according to the conductive film 10A, the handleability of the conductive film can be improved.
 [3.他の実施の形態]
 上記実施の形態の思想は、以上で説明された実施の形態に限定されない。以下、上記実施の形態の思想を適用できる他の実施の形態の一例について説明する。
[3. Other embodiments]
The idea of the above embodiments is not limited to the embodiments described above. Hereinafter, an example of another embodiment to which the idea of the above embodiment can be applied will be described.
 <3-1>
 上記実施の形態1において、導電性フィルム10には、LDPE及びLLDPEの少なくとも一方がさらに含まれていてもよい。
<3-1>
In the first embodiment, the conductive film 10 may further contain at least one of LDPE and LLDPE.
 <3-2>
 また、上記実施の形態1に従う導電性フィルム10は単層のフィルムであり、上記実施の形態2に従う導電性フィルム10Aは3層のフィルムであったが、導電性フィルムの層構成はこれに限定されない。導電性フィルムは、2層のフィルムであってもよいし、4層以上のフィルムであってもよい。表面抵抗率が10000Ω/□であり、かつ、MD及びTDの少なくとも一方におけるヤング率が1200MPa以上である限り、層構成はどのような構成であってもよい。
<3-2>
Further, although the conductive film 10 according to the first embodiment is a single-layer film, and the conductive film 10A according to the second embodiment is a three-layer film, the layer structure of the conductive film is limited to this. Not done. The conductive film may be a two-layer film, or may be a four-layer film or more. Any layer structure may be used as long as the surface resistivity is 10,000 Ω/□ and the Young's modulus in at least one of MD and TD is 1,200 MPa or more.
 以上、本発明の実施の形態について例示的に説明した。すなわち、例示的な説明のために、詳細な説明及び添付の図面が開示された。よって、詳細な説明及び添付の図面に記載された構成要素の中には、課題解決のために必須でない構成要素が含まれることがある。したがって、それらの必須でない構成要素が詳細な説明及び添付の図面に記載されているからといって、それらの必須でない構成要素が必須であると直ちに認定されるべきではない。 The embodiments of the present invention have been exemplarily described above. That is, the detailed description and accompanying drawings have been disclosed for purposes of illustration. Therefore, some of the components described in the detailed description and the attached drawings may not be essential for solving the problem. Therefore, just because non-essential components are described in the detailed description and accompanying drawings, such non-essential components should not be immediately identified as essential.
 また、上記実施の形態は、あらゆる点において本発明の例示にすぎない。上記実施の形態は、本発明の範囲内において、種々の改良や変更が可能である。すなわち、本発明の実施にあたっては、実施の形態に応じて具体的構成を適宜採用することができる。 Furthermore, the above embodiments are merely illustrative of the present invention in all respects. Various improvements and changes can be made to the above embodiments within the scope of the present invention. That is, in implementing the present invention, specific configurations can be adopted as appropriate depending on the embodiment.
 以下、本発明の実施例について説明する。なお、本発明は以下の実施例に限定されない。 Examples of the present invention will be described below. Note that the present invention is not limited to the following examples.
 [1.実施例]
 図2に示される製造装置20を用いて実施例1-7の各導電性フィルムを製造した。以下に示す、PP A、PP B、PP C、及び、PP Dの各々は、ポリプロピレンであり、互いに融点が異なる。具体的には、PP Aの融点は「167.2」であり、PP Bの融点は「156.2」であり、PP Cの融点は「158.5」であり、PP Dの融点は「161.0」であった。また、CB aはアセチレンブラックであり、CB bはファーネスブラックであった。
[1. Example]
Each conductive film of Examples 1-7 was manufactured using the manufacturing apparatus 20 shown in FIG. 2. Each of PP A, PP B, PP C, and PP D shown below is polypropylene and has different melting points. Specifically, the melting point of PP A is "167.2", the melting point of PP B is "156.2", the melting point of PP C is "158.5", and the melting point of PP D is "161.0". Further, CB a was acetylene black, and CB b was furnace black.
 なお、融点の測定方法は、樹脂のそれぞれにおいて「JIS K 7122-2012 プラスチックの転移熱測定方法」に準じて、示差走査熱量(DSC)測定にて吸熱ピークのピークトップを融点とした。また、ピークが2つ見られる場合はより高温側を融点とした。 The melting point was measured by differential scanning calorimetry (DSC) measurement for each resin in accordance with "JIS K 7122-2012 Method for measuring heat of transition of plastics," with the peak top of the endothermic peak taken as the melting point. In addition, if two peaks were observed, the higher temperature side was taken as the melting point.
 実施例1の導電性フィルムは、PP B及びCB aを加熱溶融し押出成形を行なうことによって製造された。実施例2-4の各々の導電性フィルムは、PP B及びCB bを加熱溶融し押出成形を行なうことによって製造された。実施例5の導電性フィルムは、PP C及びCB aを加熱溶融し押出成形を行なうことによって製造された。実施例6の導電性フィルムは、PP D及びCB aを加熱溶融し押出成形を行なうことによって製造された。実施例7の導電性フィルムは、PP B、LDPE及びCB aを加熱溶融し押出成形を行なうことによって製造された。 The conductive film of Example 1 was manufactured by heating and melting PP B and CB a and extrusion molding. Each of the conductive films of Examples 2-4 was manufactured by heating and melting PP B and CB b and extrusion molding. The conductive film of Example 5 was manufactured by heating and melting PPC and CBa and extrusion molding. The conductive film of Example 6 was manufactured by heating and melting PP D and CB a and extrusion molding. The conductive film of Example 7 was manufactured by heating and melting PP B, LDPE, and CB a and extrusion molding.
 図4に示されるTダイ200Aを含む製造装置(Tダイ200以外は図2に示される製造装置20の構成を有する。)を用いて実施例8の導電性フィルムを製造した。具体的には、共押出しによって実施例8の導電性フィルムを製造した。PP B及びCB aによって、実施例8の導電性フィルムの第1層及び第2層の各々を形成した。PP B、LDPE及びCB aによって、実施例8の導電性フィルムの中間層を形成した。 The conductive film of Example 8 was manufactured using a manufacturing apparatus including the T-die 200A shown in FIG. 4 (other than the T-die 200 has the configuration of the manufacturing apparatus 20 shown in FIG. 2). Specifically, the conductive film of Example 8 was manufactured by coextrusion. Each of the first and second layers of the conductive film of Example 8 was formed using PP B and CB a. The intermediate layer of the conductive film of Example 8 was formed with PP B, LDPE and CB a.
 実施例1-8の各導電性フィルムにおける、フィラーの重量パーセント濃度(wt%)、導電性フィルムの層構成、導電性フィルムの総厚み(μm)、巻取りロール230による引速(m/分)、及び、キャストロール(冷却ロール)210の温度(℃)の各々は、以下の表1に示す通りであった。 In each conductive film of Examples 1-8, the weight percent concentration (wt%) of the filler, the layer structure of the conductive film, the total thickness of the conductive film (μm), and the drawing speed by the winding roll 230 (m/min) ) and the temperature (°C) of the cast roll (cooling roll) 210 were as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [2.比較例]
 図2に示される製造装置20を用いて比較例1,2の各導電性フィルムを製造した。LDPE及びCB aを加熱溶融し押出成形を行なうことによって、比較例1の導電性フィルムを製造した。PP A及びCB aを加熱溶融し押出成形を行なうことによって、比較例2の導電性フィルムを製造した。
[2. Comparative example]
The conductive films of Comparative Examples 1 and 2 were manufactured using the manufacturing apparatus 20 shown in FIG. 2. A conductive film of Comparative Example 1 was manufactured by heating and melting LDPE and CB a and extrusion molding. A conductive film of Comparative Example 2 was manufactured by heating and melting PP A and CB a and extrusion molding.
 比較例1,2の各導電性フィルムにおける、フィラーの重量パーセント濃度(wt%)、導電性フィルムの層構成、導電性フィルムの総厚み(μm)、巻取りロール230による引速(m/分)、及び、キャストロール(冷却ロール)210の温度(℃)の各々は、以下の表2に示す通りであった。 In each conductive film of Comparative Examples 1 and 2, the weight percent concentration (wt%) of the filler, the layer structure of the conductive film, the total thickness of the conductive film (μm), and the drawing speed by the winding roll 230 (m/min) ) and the temperature (°C) of the cast roll (cooling roll) 210 were as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [3.各種測定]
 <3-1.表面抵抗率の測定>
 実施例1-8及び比較例1,2の各導電性フィルムについて、表面抵抗率を測定した。具体的には、以下の方法で各導電性フィルムの表面抵抗を測定した。30mm角に試験片を切り出し、日東精工アナリテック社製簡易型低抵抗計ロレスタAX MCP-T370を用いて表面抵抗を測定した。プローブとしては、PSPプローブMCP-TP06P RMH112を用いた。低抵抗計で測定した抵抗値(Ω)に補正係数(4.532)を掛けた数値を表面抵抗率(Ω/□)とした。
[3. Various measurements]
<3-1. Measurement of surface resistivity>
The surface resistivity of each of the conductive films of Examples 1-8 and Comparative Examples 1 and 2 was measured. Specifically, the surface resistance of each conductive film was measured by the following method. A test piece was cut into a 30 mm square, and the surface resistance was measured using a simple low resistance meter Loresta AX MCP-T370 manufactured by Nitto Seiko Analytech. As a probe, PSP probe MCP-TP06P RMH112 was used. The value obtained by multiplying the resistance value (Ω) measured with a low resistance meter by the correction coefficient (4.532) was defined as the surface resistivity (Ω/□).
 <3-2.ヤング率の測定>
 実施例1-8及び比較例1,2の各導電性フィルムについて、MD及びTDの各々のヤング率を測定した。JIS K 6732に準拠した方法によって試料が2%伸びた際の引張応力を測定し、当該引張応力を0.02で除算することによってヤング率を得た。なお、試料の寸法は、幅が10mmであり、長さが100mmであった。具体的な測定は、オートグラフ(島津精密万能試験機 オートグラフ AG-X 500N)を用いて行なった。その際の引張スピードは200mm/分、チャートスピードは200mm/分、つかみ間隔は40mmであった。
<3-2. Measurement of Young's modulus>
For each of the conductive films of Examples 1-8 and Comparative Examples 1 and 2, Young's modulus in MD and TD was measured. The tensile stress when the sample was elongated by 2% was measured by a method based on JIS K 6732, and the Young's modulus was obtained by dividing the tensile stress by 0.02. Note that the dimensions of the sample were 10 mm in width and 100 mm in length. Specific measurements were performed using an autograph (Shimadzu precision universal testing machine Autograph AG-X 500N). The tensile speed at that time was 200 mm/min, the chart speed was 200 mm/min, and the grip interval was 40 mm.
 <3-3.引裂強度の測定>
 実施例1-8及び比較例1,2の各導電性フィルムについて、MDにおける引裂強度を測定した。具体的には、JIS K 6732に準拠した方法で各導電性フィルムの引裂強度を測定した。
<3-3. Measurement of tear strength>
The tear strength in MD was measured for each of the conductive films of Examples 1-8 and Comparative Examples 1 and 2. Specifically, the tear strength of each conductive film was measured by a method based on JIS K 6732.
 図5は、引裂強度の測定に用いられる試験片(試料)の形状を模式的に示す図である。引裂強度の測定においては、直角型引裂強さが測定された。具体的には、図5に示されるように切り出された試験片を引張試験機に試験片の軸方向と試験機のつかみ具方向とを一致させて正確に取り付ける。測定器としては、オートグラフ(島津精密万能試験機 オートグラフ AG-X 500N)が用いられた。試験速度は200mm/分とされ、試験片切断時の強さが測定された。 FIG. 5 is a diagram schematically showing the shape of a test piece (sample) used for measuring tear strength. In measuring tear strength, right angle tear strength was measured. Specifically, the test piece cut out as shown in FIG. 5 is accurately attached to a tensile testing machine with the axial direction of the test piece matching the grip direction of the testing machine. As the measuring instrument, an Autograph (Shimadzu precision universal testing machine Autograph AG-X 500N) was used. The test speed was 200 mm/min, and the strength at the time of cutting the test piece was measured.
 [4.測定結果]
 各種測定の結果は、以下の表3に示す通りであった。
[4. Measurement result]
The results of various measurements were as shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示される通り、実施例1-8の各導電性フィルムにおいては、比較例1,2の各導電性フィルムよりも高いヤング率及び高い引裂強度が得られた。また、実施例1-8の各導電性フィルムにおいては、表面抵抗率が10000Ω/□以下であり、MD及びTDの少なくとも一方におけるヤング率が1200MPa以上であった。 As shown in Table 3, each of the conductive films of Examples 1-8 had a higher Young's modulus and higher tear strength than each of the conductive films of Comparative Examples 1 and 2. Further, in each of the conductive films of Examples 1-8, the surface resistivity was 10000 Ω/□ or less, and the Young's modulus in at least one of the MD and TD was 1200 MPa or more.
 10,10A 導電性フィルム、20 製造装置、100A 第1層、110A 第2層、120A 中間層、200,200A Tダイ、201 Tダイ本体、210,220 キャストロール、230 巻取りロール、240,250,260 原料投入部。

 
10, 10A Conductive film, 20 Manufacturing equipment, 100A 1st layer, 110A 2nd layer, 120A Intermediate layer, 200, 200A T-die, 201 T-die body, 210, 220 Cast roll, 230 Take-up roll, 240, 250 , 260 Raw material input section.

Claims (6)

  1.  オレフィン系樹脂と、
     導電性フィラーとを含み、
     表面抵抗率が10000Ω/□以下であり、
     MD(Machine Direction)及びTD(Traverse Direction)の少なくとも一方におけるヤング率が1200MPa以上である、導電性フィルム。
    Olefin resin and
    containing a conductive filler,
    The surface resistivity is 10000Ω/□ or less,
    A conductive film having a Young's modulus of 1200 MPa or more in at least one of MD (Machine Direction) and TD (Traverse Direction).
  2.  MD及びTDの両方におけるヤング率が1200MPa以上である、請求項1に記載の導電性フィルム。 The conductive film according to claim 1, having a Young's modulus of 1200 MPa or more in both MD and TD.
  3.  前記導電性フィラーは、導電性炭素フィラーを含む、請求項1又は請求項2に記載の導電性フィルム。 The conductive film according to claim 1 or 2, wherein the conductive filler includes a conductive carbon filler.
  4.  引裂強度が30kN/m以上である、請求項1又は請求項2に記載の導電性フィルム。 The conductive film according to claim 1 or claim 2, which has a tear strength of 30 kN/m or more.
  5.  前記導電性フィルムにおける前記導電性フィラーの重量パーセント濃度は、20wt%以上、50wt%以下である、請求項1又は請求項2に記載の導電性フィルム。 The conductive film according to claim 1 or 2, wherein a weight percent concentration of the conductive filler in the conductive film is 20 wt% or more and 50 wt% or less.
  6.  オレフィン系樹脂と導電性フィラーとを含む材料を加熱溶融することによって溶融材料を製造するステップと、
     前記溶融材料をダイから押し出すステップと、
     前記ダイから押し出された前記溶融材料を所定速度で引くステップと、
     前記ダイから押し出された前記溶融材料を冷却ロールに接触させることによって前記溶融材料を冷却し導電性フィルムを製造するステップとを含み、
     前記所定速度は、3m/分以上、15m/分以下であり、
     前記冷却ロールの温度は、50℃以上、120℃以下であり、
     前記導電性フィルムの表面抵抗率は、10000Ω/□以下であり、
     前記導電性フィルムのMD及びTDの少なくとも一方におけるヤング率は、1200MPa以上である、導電性フィルムの製造方法。

     
    producing a molten material by heating and melting a material containing an olefin resin and a conductive filler;
    extruding the molten material through a die;
    drawing the molten material extruded from the die at a predetermined speed;
    cooling the molten material extruded from the die by contacting a cooling roll to produce a conductive film;
    The predetermined speed is 3 m/min or more and 15 m/min or less,
    The temperature of the cooling roll is 50°C or more and 120°C or less,
    The surface resistivity of the conductive film is 10000Ω/□ or less,
    A method for producing a conductive film, wherein the conductive film has a Young's modulus in at least one of MD and TD of 1200 MPa or more.

PCT/JP2023/016256 2022-08-09 2023-04-25 Conductive film and method for manufacturing conductive film WO2024034195A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-126849 2022-08-09
JP2022126849A JP2024024196A (en) 2022-08-09 2022-08-09 Conductive film, and manufacturing method of conductive film

Publications (1)

Publication Number Publication Date
WO2024034195A1 true WO2024034195A1 (en) 2024-02-15

Family

ID=89851497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016256 WO2024034195A1 (en) 2022-08-09 2023-04-25 Conductive film and method for manufacturing conductive film

Country Status (2)

Country Link
JP (1) JP2024024196A (en)
WO (1) WO2024034195A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001105545A (en) * 1999-10-13 2001-04-17 Kureha Chem Ind Co Ltd Conductive stretched multi-layer film and its production method
JP2005232227A (en) * 2004-02-17 2005-09-02 Tosoh Corp Polyethylene resin composition, film comprising the same and its laminate
JP2007246607A (en) * 2006-03-14 2007-09-27 Kureha Corp Film, seamless belt, conductive film, conductive seamless belt and manufacturing process of them
JP2012097201A (en) * 2010-11-02 2012-05-24 Tosoh Corp Polyethylene resin composition
WO2012137828A1 (en) * 2011-04-04 2012-10-11 株式会社ダイセル Photocurable composition, conductive composite film, and manufacturing method for same
JP2012204292A (en) * 2011-03-28 2012-10-22 Daicel Corp Conductive film and manufacturing method thereof
WO2017104482A1 (en) * 2015-12-16 2017-06-22 三菱瓦斯化学株式会社 Resin composition, film using same and carrier tape
JP2021004329A (en) * 2019-06-27 2021-01-14 グンゼ株式会社 Winding body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001105545A (en) * 1999-10-13 2001-04-17 Kureha Chem Ind Co Ltd Conductive stretched multi-layer film and its production method
JP2005232227A (en) * 2004-02-17 2005-09-02 Tosoh Corp Polyethylene resin composition, film comprising the same and its laminate
JP2007246607A (en) * 2006-03-14 2007-09-27 Kureha Corp Film, seamless belt, conductive film, conductive seamless belt and manufacturing process of them
JP2012097201A (en) * 2010-11-02 2012-05-24 Tosoh Corp Polyethylene resin composition
JP2012204292A (en) * 2011-03-28 2012-10-22 Daicel Corp Conductive film and manufacturing method thereof
WO2012137828A1 (en) * 2011-04-04 2012-10-11 株式会社ダイセル Photocurable composition, conductive composite film, and manufacturing method for same
WO2017104482A1 (en) * 2015-12-16 2017-06-22 三菱瓦斯化学株式会社 Resin composition, film using same and carrier tape
JP2021004329A (en) * 2019-06-27 2021-01-14 グンゼ株式会社 Winding body

Also Published As

Publication number Publication date
JP2024024196A (en) 2024-02-22

Similar Documents

Publication Publication Date Title
JP6137328B2 (en) Polypropylene film and release film
KR101818899B1 (en) Polymer compositions and extrusion coated articles
KR20240058955A (en) Biaxially oriented polypropylene film
JP2023017015A (en) biaxially oriented polypropylene film
CN110546190B (en) Polyolefin film and use thereof
JP2006518785A (en) Polypropylene composition
JP6506556B2 (en) Self-adhesive surface protection film
KR20190111975A (en) Biaxially oriented polypropylene-based film
JP2011173658A (en) Polypropylene laminated film and package using the same
WO2018180164A1 (en) Biaxially oriented polypropylene film
JP7372129B2 (en) Polypropylene multilayer sheet and its manufacturing method
JP2005297544A (en) Polypropylene type laminated film and package using it
JP6508383B2 (en) Self-adhesive surface protection film
JP2017125184A (en) Polypropylene film and mold release film
WO2024034195A1 (en) Conductive film and method for manufacturing conductive film
JP2018204001A (en) Polyolefin film and mold release film
US8613998B2 (en) Film arrangement
JP2008036844A (en) Multilayered polyolefinic heat-shrinkable film
WO2024057827A1 (en) Electroconductive film
WO2024004307A1 (en) Electrically conductive film
JP2024006459A (en) conductive film
JP7428044B2 (en) piezoelectric sheet
JP2023019592A (en) stretched polyethylene film
CN116330787A (en) Packaging film
JPH0427544A (en) Synthetic paper and manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852181

Country of ref document: EP

Kind code of ref document: A1