WO2018180164A1 - Biaxially oriented polypropylene film - Google Patents

Biaxially oriented polypropylene film Download PDF

Info

Publication number
WO2018180164A1
WO2018180164A1 PCT/JP2018/007729 JP2018007729W WO2018180164A1 WO 2018180164 A1 WO2018180164 A1 WO 2018180164A1 JP 2018007729 W JP2018007729 W JP 2018007729W WO 2018180164 A1 WO2018180164 A1 WO 2018180164A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
biaxially oriented
oriented polypropylene
polypropylene resin
polypropylene
Prior art date
Application number
PCT/JP2018/007729
Other languages
French (fr)
Japanese (ja)
Inventor
理 木下
山田 浩司
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2019509039A priority Critical patent/JP7205462B2/en
Publication of WO2018180164A1 publication Critical patent/WO2018180164A1/en
Priority to JP2022085530A priority patent/JP7298751B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a biaxially oriented polypropylene film.
  • it is related with the biaxially oriented polypropylene film excellent in heat resistance and hand cutting property.
  • stretched films of polypropylene resin have been widely used in a wide range of applications such as packaging of food and various products, electrical insulation, and surface protection films.
  • the conventional polypropylene film has a high tear strength, and the hand tearability when the bag is opened after the bag is made is not sufficient.
  • the present invention has been aimed at providing a biaxially oriented polypropylene film having higher heat resistance and hand cutting properties.
  • the inventors of the present invention have made it possible to further reduce the tear strength even if the biaxially oriented polypropylene film is excellent in heat resistance at high temperatures, and have a predetermined tear strength in a specific direction.
  • the inventors have found that the above-mentioned problems can be solved and the present invention has been completed.
  • the present invention that has solved the above problems is a biaxially oriented polypropylene film having the following characteristics (a) to (c).
  • A It consists of the resin composition which has a polypropylene resin as a main component.
  • B Tear strength (N / mm) ⁇ (0.014 ⁇ film thickness ( ⁇ m) +0.35) or less in the width direction or longitudinal direction of the film.
  • C The heat shrinkage rate at 150 ° C. in the width direction and the longitudinal direction of the film is 7% or less.
  • the tensile modulus in the longitudinal direction in the width direction and the longitudinal direction of the film is preferably 2.0 GPa or more, and the tensile modulus in the direction in which the tensile modulus is large is preferably 4.0 GPa or more. It is.
  • the impact strength is 0.6 J or more.
  • the haze value of the film is preferably 5% or less.
  • the biaxially oriented polypropylene film of the present invention has a low thermal shrinkage at 150 ° C. and high thermal dimensional stability. Therefore, heat loss wrinkles are small, and since it is hard to break, it is excellent in film processability. In addition, since the tear strength in the lateral direction of the film is small, the film has excellent hand tearability when the packaging bag is opened.
  • the biaxially oriented polypropylene film of the present invention is composed of a resin composition containing as a main component the following polypropylene resin.
  • Polypropylene resin refers to a homopolymer of propylene and a copolymer of propylene and ethylene and / or ⁇ -olefin.
  • the copolymerization amount of ethylene and / or ⁇ -olefin having 4 or more carbon atoms is preferably 0.5 mol% or less.
  • the polypropylene resin composition is preferably a polypropylene resin (A) satisfying the following conditions, or a mixture of the polypropylene resin (A) and the polypropylene resin (B).
  • the characteristics of the polypropylene resin (A) and the polypropylene resin (B) are as follows.
  • the polypropylene resin (A) is a polypropylene resin that satisfies the following conditions 1) to 4). 1) The lower limit of the mesopentad fraction is 96%. 2) The upper limit of the amount of copolymerization monomers other than propylene is 0.1 mol%. 3) The mass average molecular weight (Mw) / number average molecular weight (Mn) is 3.0 or more and 5.4 or less. 4) The melt flow rate (MFR) measured at 230 ° C. and 2.16 kgf is 6.2 g / 10 min or more and 9.0 g / 10 min or less.
  • the polypropylene resin (B) is a polypropylene resin that satisfies the following conditions 1) to 4). 1) The lower limit of the mesopentad fraction is 96%. 2) The upper limit of the amount of copolymerization monomers other than propylene is 0.1 mol%. 3) The mass average molecular weight (Mw) / number average molecular weight (Mn) is 3.0 or more and 5.4 or less. 4) The melt flow rate (MFR) measured at 230 ° C. and 2.16 kgf is 9.2 g / 10 min or more.
  • the mixing ratio of the polypropylene resin (A) and the polypropylene resin (B) is preferably 85/15 to 65/35 (wt%) by weight.
  • the mixing ratio of the polypropylene resin (B) is 15% by weight or more, the orientation in the width direction or the longitudinal direction of the film tends to increase, and the tear strength tends to decrease.
  • the mixing ratio of the polypropylene resin (B) is 35% by weight or less, for example, a problem that the film is broken in the stretching process hardly occurs, and it becomes easy to produce a biaxially oriented film. Further details will be described below.
  • the polypropylene resin (A) is composed of propylene and ethylene and / or ⁇ -olefin having 4 or more carbon atoms, and 0.5 mol% or less of ethylene and / or ⁇ -olefin having 4 or more carbon atoms with respect to the entire olefin monomer. It is preferable that the polymer is copolymerized so that The copolymerization component is preferably 0.3 mol% or less, more preferably 0.1 mol% or less, and most preferably a complete homopolypropylene resin containing no copolymerization component.
  • the mesopentad fraction ([mmmm]%) measured by 13C-NMR, which is an index of stereoregularity of the polypropylene resin (A), is preferably 96 to 99.5%. More preferably, it is 97% or more, and more preferably 98% or more. If the mesopentad ratio of the polypropylene resin (A) is small, the tear strength may be insufficient. 99.5% is a realistic upper limit.
  • Mw / Mn which is an index of molecular weight distribution, is preferably 3.0 to 5.4 in the polypropylene resin (A). More preferably, it is 3.0 to 5.0, still more preferably 3.2 to 4.5, and particularly preferably 3.3 to 4.0.
  • Mw / Mn of the resin (A) does not exceed 5.4.
  • Mw / Mn When Mw / Mn becomes too large, the high molecular weight component increases, and the tear strength tends to increase, and the tensile modulus (Young's modulus) in the width direction (TD) tends to decrease.
  • Mw / Mn of the polypropylene resin (A) is less than 3.0, film formation becomes difficult.
  • Mw means a mass average molecular weight
  • Mn means a number average molecular weight.
  • the polypropylene resin (A) has a mass average molecular weight (Mw) of preferably 180,000 to 500,000.
  • Mw mass average molecular weight
  • the lower limit of Mw is more preferably 190,000, still more preferably 200,000, and the upper limit of more preferable Mw is 320,000, more preferably 300,000, particularly preferably 250,000.
  • the number average molecular weight (Mn) of the polypropylene resin (A) is preferably 20,000 to 200,000.
  • the lower limit of Mn is more preferably 30,000, more preferably 40,000, particularly preferably 50,000, and the upper limit of Mn is more preferably 80,000, still more preferably 70,000, particularly preferably 60,000. is there.
  • the melt flow rate (MFR; 230 ° C., 2.16 kgf) of the polypropylene resin (A) at this time is preferably 6.2 g / 10 min to 10.0 g / 10 min.
  • the lower limit of the MFR of the polypropylene resin (A) is more preferably 6.5 g / 10 minutes, further preferably 7 g / 10 minutes, and particularly preferably 7.5 g / 10 minutes.
  • the upper limit of the MFR of the polypropylene resin is more preferably 9 g / 10 minutes, further preferably 8.5 g / 10 minutes, and particularly preferably 8.2 g / 10 minutes.
  • melt flow rate MFR; 230 ° C., 2.16 kgf
  • the degree of orientation of the film generated by stretching becomes strong, so the rigidity of the film, particularly the tensile in the width direction (TD).
  • the elastic modulus Youngng's modulus
  • the tear strength decreases.
  • the thermal contraction rate at a high temperature can be further reduced.
  • the melt flow rate (MFR; 230 ° C., 2.16 kgf) is 9.0 g / 10 min or less, it is easy to form a film without breaking.
  • the lower limit of the amount of the component having a molecular weight of 100,000 or less is preferably 35% by mass, more preferably 38% by mass, Preferably it is 40 mass%, Especially preferably, it is 41 mass%, Most preferably, it is 42 mass%.
  • the upper limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, still more preferably 58% by mass, and particularly preferably 56% by mass. And most preferably 55% by weight.
  • the molecular weight distribution of the polypropylene resin (A) is such that components with different molecular weights are polymerized in a series of plants in multiple stages, components with different molecular weights are blended offline using a kneader, or catalysts with different performances are blended. Thus, it is possible to adjust by polymerizing or using a catalyst capable of realizing a desired molecular weight distribution.
  • the polypropylene resin (B) is composed of propylene, ethylene and / or ⁇ -olefin having 4 or more carbon atoms, and 0.5 mol% or less of ethylene and / or ⁇ -olefin having 4 or more carbon atoms with respect to the entire olefin monomer. It is preferable that the polymer is copolymerized so that The copolymerization component is preferably 0.3 mol% or less, more preferably 0.1 mol% or less, and most preferably a complete homopolypropylene resin containing no copolymerization component.
  • ethylene and / or ⁇ -olefin having 4 or more carbon atoms is 0.5 mol% or less, crystallinity and rigidity may be further improved, and tear strength may be further decreased.
  • Such a resin may be used after being improved from the blend.
  • the mesopentad fraction ([mmmm]%) measured by 13 C-NMR, which is an index of stereoregularity of the polypropylene resin (B), is preferably 96 to 99.5%. More preferably, it is 97% or more, and more preferably 98% or more.
  • the mesopentad ratio of the polypropylene of the polypropylene resin (B) is large, the elastic modulus becomes high and the tear strength becomes smaller. 99.5% is a realistic upper limit.
  • Mw / Mn which is an index of molecular weight distribution, is preferably 3.0 to 5.4 in the polypropylene resin (B). More preferably, it is 3.0 to 5.0, still more preferably 3.2 to 4.5, and particularly preferably 3.3 to 4.0. If the Mw / Mn of the polypropylene resin (B) is smaller than 5.4, if the Mw / Mn is not increased too much, the high molecular weight component is decreased, and the tear strength may be decreased, or the width direction (TD). The tensile elastic modulus (Young's modulus) of the steel tends to increase. When the Mw / Mn of the polypropylene resin (B) is less than 3.0, film formation becomes difficult. Mw means mass average molecular weight, and Mn means number average molecular weight.
  • the mass average molecular weight (Mw) of the polypropylene resin (B) is preferably 180,000 to 500,000.
  • the lower limit of Mw is more preferably 190,000, still more preferably 200,000, and the upper limit of more preferable Mw is 320,000, more preferably 300,000, particularly preferably 250,000.
  • the number average molecular weight (Mn) of the polypropylene resin (B) is preferably 20,000 to 200,000.
  • the lower limit of Mn is more preferably 30,000, still more preferably 40,000, and the upper limit of Mn is more preferably 70,000, still more preferably 60,000, particularly preferably 50,000.
  • the melt flow rate (MFR; 230 ° C., 2.16 kgf) of the polypropylene resin (B) is preferably 9.2 g / 10 min or more.
  • the lower limit of the MFR of the polypropylene resin (B) is more preferably 9.5 g / 10 minutes, further preferably 10 g / 10 minutes, and particularly preferably 11 g / 10 minutes.
  • the upper limit of the MFR of the polypropylene resin is more preferably 15 g / 10 minutes, further preferably 13 g / 10 minutes, and particularly preferably 12 g / 10 minutes.
  • melt flow rate MFR; 230 ° C., 2.16 kgf
  • MFR melt flow rate
  • 230 ° C., 2.16 kgf degree of orientation of the film generated by stretching in the width direction
  • TD width direction
  • the tear strength of the film is further increased.
  • the heat resistance of the film, particularly the thermal shrinkage at 150 ° C. in the width direction (TD) is reduced.
  • the lower limit of the amount of the component having a molecular weight of 100,000 or less is preferably 50% by mass, more preferably 52% by mass, More preferably, it is 55 mass%.
  • the upper limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, and further preferably 58% by mass.
  • the mixture of the polypropylene resin (A) and the polypropylene resin (B) preferably satisfies the following conditions 1) to 4) and is a polypropylene resin.
  • the lower limit of the mesopentad fraction is 96%.
  • the upper limit of the amount of copolymerization monomers other than propylene is 0.1 mol%.
  • the mass average molecular weight (Mw) / number average molecular weight (Mn) is 3.0 or more and 5.4 or less.
  • the melt flow rate (MFR) measured at 230 ° C. and 2.16 kgf is 6.5 g / 10 min or more and 9.0 g / 10 min or less.
  • the molecular weight distribution of the polypropylene resin (A) and the polypropylene resin (B) is such that different molecular weight components are polymerized in a series of plants in multiple stages, different molecular weight components are blended offline in a kneader, and different performance is achieved. It is possible to adjust by blending and polymerizing the catalyst having the same or by using a catalyst capable of realizing a desired molecular weight distribution.
  • the polypropylene resin (A) and the polypropylene resin (B) used in the present invention are obtained by polymerizing propylene as a raw material using a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst. Among these, in order to eliminate the heterogeneous bond, it is preferable to use a Ziegler-Natta catalyst and a catalyst capable of polymerization with high stereoregularity.
  • a polymerization method of propylene a known method may be employed.
  • a method of polymerizing in an inert solvent such as hexane, heptane, toluene, xylene, a method of polymerizing in a liquid monomer, a catalyst for a gas monomer And a method of polymerizing in a gas phase state, or a method of polymerizing these in combination.
  • the resin composition constituting the biaxially oriented polypropylene film may contain additives and other resins in addition to the polypropylene resin.
  • the content of additives and other resins in the resin composition is preferably 20% by weight or less.
  • the additive include an antioxidant, an ultraviolet absorber, a nucleating agent, an adhesive, an antifogging agent, a flame retardant, and an inorganic or organic filler.
  • other resins include polypropylene resins other than the polypropylene resin used in the present invention, random copolymers of propylene and ethylene and / or ⁇ -olefins having 4 or more carbon atoms, and various elastomers.
  • the biaxially oriented polypropylene film of the present invention is formed by melting and extruding a resin composition containing a polypropylene resin as a main component with an extruder to form an unstretched sheet, and stretching and heat-treating the unstretched sheet by a predetermined method. Can be obtained.
  • the unstretched sheet can be obtained by using a plurality of extruders, feed blocks, and multi-manifolds.
  • the melt extrusion temperature is preferably about 200 to 280 ° C.
  • the chill roll surface temperature is preferably 25 to 35 ° C, more preferably 27 to 33 ° C.
  • the film is stretched in the machine direction (MD) with a stretching roll at 120 to 165 ° C., and then stretched in the width direction (TD) direction. Furthermore, heat fixation is performed while relaxing.
  • MD machine direction
  • TD width direction
  • the biaxial polypropylene film thus obtained can be subjected to corona discharge, plasma treatment, flame treatment, etc., if necessary, and then wound with a winder to obtain a film roll.
  • the lower limit of the draw ratio in the machine direction (MD) is preferably 3 times, more preferably 3.5 times, and even more preferably 4.0 times. If it is less than the above, film thickness unevenness may occur.
  • the upper limit of the draw ratio in the machine direction (MD) is preferably 7 times, more preferably 6 times. If the above is exceeded, it may be difficult to carry out stretching in the width direction (TD).
  • the lower limit of the stretching temperature in the machine direction (MD) is preferably 120 ° C, more preferably 125 ° C, and further preferably 130 ° C. If it is less than the above, the mechanical load may increase, the thickness unevenness may increase, or the film surface may be roughened.
  • Longitudinal direction (the upper limit of the stretching temperature of MD is preferably 160 ° C., more preferably 155 ° C., and further preferably 150 ° C. A higher temperature is preferable for lowering the thermal shrinkage, It may adhere and become unable to stretch, or surface roughness may occur.
  • the lower limit of the draw ratio in the width direction (TD) is preferably 8 times, more preferably 10 times. If it is less than the above, the orientation in the width direction (TD) is less likely to increase the orientation in the transverse direction of the film, and the tear strength is difficult to decrease.
  • the upper limit of the width direction (TD) stretch ratio is preferably 12 times. If the above is exceeded, the thermal shrinkage rate may be increased or the film may be broken during stretching.
  • the polypyropylene resin composition constituting the film is a mixture of a polypropylene resin (A) and a polypropylene resin (B)
  • the width direction (TD) orientation is not greatly increased even if the width direction (TD) stretch ratio is not so large. It tends to grow.
  • the preheating temperature in the width direction (TD) stretching is preferably set to 15 to 35 ° C. higher than the machine direction (MD) stretching temperature in order to quickly raise the film temperature in the vicinity of the stretching temperature.
  • the stretching in the width direction (TD) is performed at a higher temperature than the conventional biaxially oriented polypropylene film.
  • the lower limit of the stretching temperature in the width direction (TD) is preferably 155 ° C, more preferably 157 ° C, further preferably 158 ° C, and particularly preferably 160 ° C. If it is less than the above, it may break without being sufficiently softened, or the thermal shrinkage rate may be increased.
  • the upper limit of the width direction (TD) stretching temperature is preferably 170 ° C, more preferably 168 ° C, and further preferably 163 ° C. In order to lower the thermal shrinkage rate, it is preferable that the temperature is higher. However, if the temperature is higher than the above, the low molecular component is melted and recrystallized to lower the orientation, and the surface may be roughened or the film may be whitened.
  • the stretched film is heat-set.
  • the heat setting can be performed at a higher temperature than the conventional biaxially oriented polypropylene film.
  • the lower limit of the heat setting temperature is preferably 165 ° C, more preferably 166 ° C. If it is less than the above, the thermal shrinkage rate may increase. In addition, a long time treatment is required to lower the heat shrinkage rate, and productivity may be inferior.
  • the upper limit of the heat setting temperature is preferably 176 ° C, more preferably 175 ° C. When the above is exceeded, the low molecular component may melt and recrystallize, and the surface roughness or the film may be whitened.
  • the lower limit of the width direction (TD) relaxation rate is preferably 2%, more preferably 3%. If it is less than the above, the thermal shrinkage rate may increase.
  • the upper limit of the width direction (TD) relaxation rate is preferably 10%, more preferably 8%. When the above is exceeded, the thickness unevenness may increase.
  • the film produced in the above process can be once wound into a roll and then annealed offline.
  • the lower limit of the offline annealing temperature is preferably 160 ° C, more preferably 162 ° C, and even more preferably 163 ° C. If it is less than the above, the effect of annealing may not be obtained.
  • the upper limit of the offline annealing temperature is preferably 175 ° C., more preferably 174 ° C., and further preferably 173 ° C. When the above is exceeded, the transparency may decrease, or the thickness unevenness may increase.
  • the lower limit of the offline annealing time is preferably 0.1 minutes, more preferably 0.5 minutes, and even more preferably 1 minute. If it is less than the above, the effect of annealing may not be obtained.
  • the upper limit of the offline annealing time is preferably 30 minutes, more preferably 25 minutes, and further preferably 20 minutes. When the above is exceeded, productivity may be reduced.
  • the lower limit of the plane orientation coefficient of the biaxially oriented polypropylene film of the present invention is preferably 0.011, more preferably 0.012, and even more preferably 0.013. Within the above range, the heat resistance and rigidity of the film tend to increase.
  • the biaxially oriented polypropylene film of the present invention has a crystal orientation, and its direction and degree have a great influence on film properties.
  • the degree of crystal orientation can be expressed by using the plane orientation coefficient as an index, and can be within the above range by controlling the molecular structure of the polypropylene resin and the process and conditions in film production.
  • the total thickness of the biaxially oriented polypropylene film of the present invention is preferably 9 to 200 ⁇ m, more preferably 10 to 150 ⁇ m, further preferably 12 to 100 ⁇ m, and particularly preferably 12 to 80 ⁇ m.
  • the tear strength (N / mm) of the biaxially oriented polypropylene film of the present invention is in the range of 0.014 ⁇ film thickness ( ⁇ m) +0.35 or less in the width direction (TD) or the longitudinal direction (MD). Necessary, and if it exceeds 0.014 ⁇ film thickness ( ⁇ m) +0.35, when the film is torn in each direction, a sense of great resistance is felt in the tearability expected according to each film thickness. And can easily cut the film by hand.
  • the range is preferably 0.014 ⁇ film thickness ( ⁇ m) +0.30 or less, more preferably 0.014 ⁇ film thickness ( ⁇ m) +0.28 or less.
  • the tear strength (N / mm) of the biaxially oriented polypropylene film of the present invention is preferably in the range of 0.014 ⁇ film thickness ( ⁇ m) +0.35 or less, particularly in the width direction (TD).
  • the tear strength (N / mm) of the biaxially oriented polypropylene film of the present invention is preferably in the range of 4.0 or less in the width direction (TD) or the longitudinal direction (MD). More preferably, it is 3.5 or less.
  • the thermal shrinkage in the width direction (TD) at 150 ° C. is preferably 0.2 to 7.5%, more preferably 0.3 to 7%, 4 to 6% is more preferable, and 0.5 to 5% is particularly preferable. If the heat shrinkage ratio is in the above range, it can be said that the film is particularly excellent in heat resistance. For example, heat loss wrinkles during processing into a bag-made product can be reduced. Therefore, it can be used in applications that may be exposed to high temperatures. If the heat shrinkage rate at 150 ° C is up to about 1.5%, for example, it is possible to increase the low molecular weight component, adjust the stretching conditions and heat setting conditions. It is preferable to do so.
  • the thermal shrinkage in the longitudinal direction at 150 ° C. is preferably 0.2 to 7%, more preferably 0.3 to 6%. If the heat shrinkage rate is in the above range, it can be said that the film has excellent heat resistance. For example, heat loss wrinkles during processing into a bag-made product can be reduced. for that reason. It can also be used in applications that may be exposed to high temperatures. If the thermal shrinkage at 150 ° C. is up to about 1.5%, for example, it is possible to increase the low molecular weight component, adjust the stretching conditions and the heat setting conditions, but in order to lower it below, anneal offline. It is preferable to perform the treatment.
  • the lower limit of the impact resistance (room temperature, 25 ° C.) of the biaxially oriented polypropylene film of the present invention is preferably 0.4 J, more preferably 0.5 J. Within the above range, the film has sufficient toughness and does not break during handling.
  • the upper limit of impact resistance is preferably 1.5 J, more preferably 1.3 J from a practical aspect. For example, impact resistance tends to decrease when the total molecular weight is low when there are many low molecular weight components, when the total molecular weight is low, or when the molecular weight of the high molecular weight components is low. These components can be adjusted to be within the range.
  • the tensile elastic modulus in the width direction and the longitudinal direction of the biaxially oriented polypropylene film of the invention is 2.0 GPa or more, and the tensile elastic modulus in the direction in which the tensile elastic modulus is large is 4.0 GPa or more.
  • the tensile modulus in the width direction (TD) of the biaxially oriented polypropylene film of the present invention is preferably 4.5 to 8 GPa, more preferably 4.6 to 7.5 GPa, and 4.7 to 7 GPa. Is more preferable, and 4.8 to 6.5 GPa is particularly preferable. If the tensile modulus in the transverse direction is in the above range, it is possible to form a film that is difficult to break.
  • the tensile modulus in the machine direction (MD) of the biaxially oriented polypropylene film of the present invention is preferably 1.8 to 4 GPa, more preferably 2.1 to 3.7 GPa, and 2.2 to 3 More preferably, it is 5 GPa, and 2.3 to 3.4 GPa is particularly preferable.
  • the difficulty in bending of the biaxially oriented polypropylene film of the present invention was evaluated by the value detected by the load cell (ring crush measurement method) by holding the film in a ring shape and compressing it, and the width direction (TD). And / or its value in the machine direction (MD) is preferably 120 g or more. The measuring method will be described later.
  • the haze of the biaxially oriented polypropylene film of the present invention is preferably 5% or less, more preferably 0.2 to 5%, still more preferably 0.3 to 4.5%, and particularly preferably 0.4 to 4%. If it is within the above range, it may be easy to use in applications requiring transparency. For example, when the stretching temperature and heat setting temperature are too high, the haze tends to be worse when the cooling roll (CR) temperature is high and the stretching speed of the stretched raw sheet is slow, or when there are too many low molecular weight components. By doing so, it can be within the above range. A method for measuring haze will be described later.
  • the dynamic friction coefficient of the biaxially oriented polypropylene film of the present invention is preferably 0.5 or less, more preferably 0.45 or less, and particularly preferably 0.40 or less.
  • the dynamic friction coefficient is 0.5 or less, the film can be smoothly unwound from the roll film, and printing is easy. A method for measuring the dynamic friction coefficient will be described later.
  • the biaxially oriented polypropylene film of the invention may be provided with a separate surface layer.
  • a propylene homopolymer or a copolymer of propylene and ethylene and / or an ⁇ -olefin having 4 or more carbon atoms is used as the polypropylene resin to be used.
  • a propylene homopolymer or a copolymer of propylene and ethylene and / or an ⁇ -olefin having 4 or more carbon atoms is used.
  • the ⁇ -olefin having 4 or more carbon atoms include 1-butene, 1-hexene, 4-methyl / 1-pentene, 1-octene and the like.
  • Examples of the ⁇ -olefin having 4 or more carbon atoms include 1-butene, 1-hexene, 4-methyl / 1-pentene, 1-octene and the like.
  • polar maleic acid or the like may be used as other copolymer components.
  • the total amount of ethylene, ⁇ -olefin having 4 or more carbon atoms, and other copolymerization components is preferably 8.0 mol% or less. If the copolymerization exceeds 8.0 mol%, the film may be whitened to have a poor appearance, or may become sticky and film formation may be difficult. Moreover, you may use these resin in mixture of 2 or more types. In the case of mixing, each resin may be copolymerized in excess of 8.0 mol%, but ethylene, ⁇ -olefin having 4 or more carbon atoms, and other copolymerization components in the mixture are in total. It is preferable that it is 8.0 mol% or less.
  • the polypropylene resin used in the surface layer is obtained by polymerizing propylene as a raw material using a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst.
  • a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst.
  • a polymerization method of propylene a known method may be employed.
  • a method of polymerizing in an inert solvent such as hexane, heptane, toluene, xylene, a method of polymerizing in a liquid monomer, a catalyst for a gas monomer And a method of polymerizing in a gas phase state, or a method of polymerizing these in combination.
  • the surface layer may contain additives and other resins in addition to the polypropylene resin.
  • the additive include an antioxidant, an ultraviolet absorber, a nucleating agent, an adhesive, an antifogging agent, a flame retardant, and an inorganic or organic filler.
  • other resins include polypropylene resins other than the polypropylene resin used in the present invention, random copolymers of propylene and ethylene and / or ⁇ -olefins having 4 or more carbon atoms, and various elastomers.
  • an antiblocking agent contained in the surface layer.
  • an anti-blocking agent it can be used by appropriately selecting from inorganic anti-blocking agents such as silica, calcium carbonate, kaolin and zeolite, and organic anti-blocking agents such as acrylic, polymethacrylic and polystyrene. can do. Among these, it is particularly preferable to use silica.
  • the average particle diameter of the antiblocking agent is preferably 1.0 to 2.0 ⁇ m, more preferably 1.0 to 1.5 ⁇ m.
  • the anti-blocking agent is preferably 0.5% by mass or less in the surface layer.
  • the measurement method of the average particle diameter here is a method in which a photograph is taken with a scanning electron microscope, the ferret diameter in the horizontal direction is measured using an image analyzer, and the average value is displayed.
  • the surface layer has a wetting tension of 38 mN / m or more.
  • the wetting tension is 38 mN / m or more, the adhesion to the printing ink and the adhesive is improved.
  • the wetting tension is more preferably 16 Log ⁇ or more.
  • additives such as antistatic agents and surfactants. However, since it has the effect of reducing the surface resistivity, corona treatment, flame treatment And the like, and the like.
  • the thickness ratio between the surface layer and the biaxially oriented polypropylene film of the present invention is preferably 0.01 to 0.5, and preferably 0.03 to 0.4 for the surface layer / biaxially oriented polypropylene film. More preferably, it is 0.05 to 0.3. When the surface layer / biaxially oriented polypropylene film exceeds 0.5, the shrinkage rate tends to increase. Further, the thickness of the biaxially oriented polypropylene film is preferably from 50 to 99%, more preferably from 60 to 97%, particularly preferably from 70 to 95% with respect to the total film thickness. The remaining portion is a surface layer or a surface layer and other layers (for example, a C layer).
  • the substantial thickness of the surface layer is preferably 0.5 to 4 ⁇ m, more preferably 1 to 3.5 ⁇ m, and even more preferably 1.5 to 3 ⁇ m.
  • it may be a two-layer film having one biaxially oriented polypropylene film and one surface layer, it may have a structure of three or more layers.
  • a bilayer structure of biaxially oriented polypropylene film / surface layer is preferred.
  • it may be a three-layer structure of surface layer / biaxially oriented polypropylene film / surface layer, / biaxially oriented polypropylene film / intermediate layer (C) / surface layer, or a multilayer structure of more.
  • the composition may be different as long as each layer satisfies the characteristics.
  • the resin composition for the base layer for example, a mixture of the polypropylene resin (A) and the polypropylene resin (B)
  • the polypropylene resin for the surface layer are respectively used by different extruders. It can be obtained by melt extruding to form a laminated unstretched sheet, stretching the unstretched sheet by a predetermined method, and heat-treating it.
  • the biaxially oriented polypropylene film of the present invention can be used for labeling as well as food packaging used for standing pouches and the like.
  • the transverse direction becomes the hand cutting direction, and thus the lateral tear strength is important.
  • a lower tear strength results in a film with better hand tearability.
  • the measuring method of the film physical property obtained by the Example and the comparative example is as follows.
  • the mesopentad fraction ([mmmm]%) was measured using 13C-NMR.
  • the mesopentad fraction was calculated according to the method described in “Zambelli et al., Macromolecules, Vol. 6, 925 (1973)”.
  • the 13C-NMR measurement was performed at 110 ° C. by using “AVANCE 500” manufactured by BRUKER, and dissolving 200 mg of a sample in an 8: 2 (volume ratio) mixture of o-dichlorobenzene and heavy benzene at 135 ° C.
  • the number average molecular weight (Mn), the mass average molecular weight (Mw), and the molecular weight distribution are respectively represented by the molecular number (N i ) of the molecular weight (M i ) at each elution position of the GPC curve obtained through the molecular weight calibration curve. It is defined by an expression.
  • each of the base layer (A) and the surface layer (B) was measured by cutting a cross section of a biaxially stretched laminated polypropylene film solidified with a modified urethane resin with a microtome and observing with a differential interference microscope. .
  • Thermal shrinkage (%) Based on JIS Z1712, it measured by the following method. The film was cut into a width of 20 mm and a length of 200 mm in each of the MD direction and the TD direction, suspended in a hot air oven at 150 ° C. and heated for 5 minutes. The length after heating was measured, and the thermal contraction rate was determined by the ratio of the contracted length to the original length.
  • Ring crash (g) Using a digital ring crush tester (manufactured by Tester Sangyo Co., Ltd.), prepare a film sample size of 12.7 mm x 152 mm, set an attachment spacer on the sample table in accordance with the thickness of the film sample, and MD, TD direction In each, insert a film sample along the circumference. At 23 ° C., the compressed plate is moved down at a speed of 12 mm / min. The maximum load at the time of compression with was used as a ring crush measurement value.
  • a digital ring crush tester manufactured by Tester Sangyo Co., Ltd.
  • the wetting tension To determine the wetting tension, observe the liquid film of the test mixture in a bright place, and perform the liquid film after 3 seconds. It is wet that it keeps the state when applied for 3 seconds or more without tearing the liquid film. If the wetting is maintained for 3 seconds or more, the process proceeds to the liquid mixture having the next highest surface tension. Conversely, if the liquid film is broken in 3 seconds or less, the process proceeds to the next liquid mixture having the lower surface tension. Repeat this procedure and select a mixture that can wet the surface of the specimen accurately in 3 seconds. 3) Use a new cotton swab for each test. Brushes or wire bars are washed with methanol and dried after each use because residual liquid changes composition and surface tension by evaporation. 4) Perform an operation of selecting a mixed solution that can wet the surface of the test piece in 3 seconds at least three times. The surface tension of the mixture thus selected is reported as the wetting tension of the film.
  • Tear strength (N / mm) The average tear strength measured according to JIS K7128 trouser tear method was taken as the tear strength.
  • the adhesive was obtained by mixing 17.9% by mass of a main agent (manufactured by Toyo Morton, TM329), 17.9% by mass of a curing agent (CAT8B, manufactured by Toyo Morton) and 64.2% by mass of ethyl acetate.
  • An ether adhesive was used, and a non-stretched polypropylene film (Pyrene (registered trademark) CTP1128, thickness 30 ⁇ m) manufactured by Toyobo Co., Ltd. was used as the sealant film.
  • Example 1 In the base material layer, 79% by weight of the polypropylene homopolymer PP-1 shown in Table 1 and 20% by weight of the polypropylene homopolymer PP-2 and antistatic agent (stearyl diethanolamine stearate (Matsumoto Yushi Co., Ltd. KYM- 4K)) mixed with 1% by weight was used. Further, 3000 ppm of silica particles having an average particle diameter of 1 ⁇ m was added to this mixture. This mixture was melted at 250 ° C. using a 60 mm extruder, the raw resin was coextruded from a T-die into a sheet shape, cooled and solidified with a 30 ° C. cooling roll, and then 4. in the longitudinal direction (MD) at 135 ° C.
  • MD longitudinal direction
  • both ends in the film width direction are sandwiched between clips, preheated at 175 ° C., stretched 8.2 times in the width direction (TD) at 160 ° C., and relaxed by 6.7% in the width direction (TD). And heat-fixed at 170 ° C.
  • the film-forming conditions at this time were set as film-forming conditions a and are shown in Table 2.
  • Example 2 A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the film thickness was changed as shown in Table 1.
  • Table 3 shows the physical properties of the obtained film.
  • Example 4 The mixed raw material used for the base material layer (A) is a 60 mm extruder, and the mixed raw material used for the surface layer (B) is a 65 mm extruder.
  • MD longitudinal direction
  • the film was stretched 4.5 times in the longitudinal direction (MD) at 135 ° C.
  • both ends in the film width direction are sandwiched between clips, preheated at 175 ° C., stretched 8.2 times in the width direction (TD) at 160 ° C., and relaxed by 6.7% in the width direction (TD). And heat-fixed at 170 ° C.
  • a biaxially oriented laminated polypropylene film according to the present invention in which the base material layer (A) and the surface layer (B) were laminated one by one was obtained by film formation under the film production condition a shown in Table 2 and winding with a winder. .
  • the surface of the surface layer (B) of the obtained biaxially oriented polypropylene film is subjected to corona treatment using a corona treatment machine manufactured by Sophthal Corona & Plasma GmbH under the condition of applied current value: 0.75A. After the application, the one wound with a winder was used as the biaxially oriented polypropylene film of the present invention.
  • Table 3 shows the physical properties of the obtained film.
  • Example 5 A mixture of 79% by weight of polypropylene homopolymer PP-1 and 20% by weight of polypropylene homopolymer PP-2 shown in Table 1 is 99% by weight of polypropylene resin PP-1 and a transverse direction (TD) draw ratio of 10%.
  • TD transverse direction
  • a biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the ratio was changed to 0.0.
  • Table 3 shows the physical properties of the obtained film. The film forming conditions at this time were set as film forming conditions b and are shown in Table 2.
  • Table 1 shows a mixture of 79% by weight of polypropylene homopolymer PP-1 and 20% by weight of polypropylene homopolymer PP-2, 59% by weight of polypropylene homopolymer PP-1 and polypropylene homopolymer PP-2.
  • a biaxially oriented polypropylene film was formed in the same manner as in Example 1 except that the mixture was changed to a 40 wt% mixture.
  • Example 3 (Comparative Example 3) Example 1 except that a mixture of 79% by weight of polypropylene homopolymer PP-1 and 20% by weight of polypropylene homopolymer PP-2 shown in Table 1 was changed to 99% by weight of polypropylene resin PP-3. Similarly, a biaxially oriented polypropylene film was obtained. The physical properties of the obtained film are as shown in Table 4.
  • the biaxially oriented polypropylene films obtained in Examples 1 to 5 had a small tear strength in the width direction (TD) and a small heat shrinkage rate.
  • the films obtained in Comparative Examples 1 and 3 had a high tear strength in the width direction (TD).
  • no film could be formed.
  • the films obtained in Comparative Examples 4, 5, and 6 had a large tear strength in the width direction (TD) and a large heat shrinkage rate in the width direction (TD) and the machine direction (MD).
  • the biaxially oriented polypropylene film of the present invention can be used for labeling as well as food packaging used for standing pouches and the like.
  • the transverse direction becomes the hand cutting direction, and thus the lateral tear strength is important.
  • a lower tear strength results in a film with better hand tearability.

Abstract

Provided is a biaxially oriented polypropylene film having higher heat resistance and tearability by hand. The biaxially oriented polypropylene-based film has the following features (a) to (c). (a) To comprise a resin composition comprising a polypropylene-based resin as a main component. (b) To satisfy [transverse-direction or machine-direction tear strength (N/mm) of the film]≤[(0.014×(film thickness (μm)))+0.35]. (c) To have a 150°C heat shrinkage of 7% or less.

Description

二軸配向ポリプロピレンフィルムBiaxially oriented polypropylene film
 本発明は、二軸配向ポリプロピレンフィルムに関する。詳細には、耐熱性及び手切れ性に優れる二軸配向ポリプロピレンフィルムに関する。 The present invention relates to a biaxially oriented polypropylene film. In detail, it is related with the biaxially oriented polypropylene film excellent in heat resistance and hand cutting property.
 従来、ポリプロピレン樹脂の延伸フィルムは、食品や様々な商品の包装用、電気絶縁用、表面保護フィルム等、広範囲な用途で汎用的に用いられていた。
 しかし、従来のポリプロピレンフィルムは引裂き強度が大きく、製袋した後開封する際の手切れ性も十分ではなかった。
Conventionally, stretched films of polypropylene resin have been widely used in a wide range of applications such as packaging of food and various products, electrical insulation, and surface protection films.
However, the conventional polypropylene film has a high tear strength, and the hand tearability when the bag is opened after the bag is made is not sufficient.
 本発明は、上記の事情に鑑み、より高い耐熱性と手切れ性を有する二軸配向ポリプロピレンフィルムの提供を課題として掲げた。 In view of the above circumstances, the present invention has been aimed at providing a biaxially oriented polypropylene film having higher heat resistance and hand cutting properties.
 本発明者らは鋭意検討した結果、二軸配向ポリプロピレンフィルムにおいて、高温での耐熱性に優れたものであっても、引裂強度をより低減することを可能とし、かつ特定方向の引裂強度を所定の値とすることができ、かつ、上記課題を解決することを見いだし、本発明を完成するに至った。 As a result of intensive studies, the inventors of the present invention have made it possible to further reduce the tear strength even if the biaxially oriented polypropylene film is excellent in heat resistance at high temperatures, and have a predetermined tear strength in a specific direction. The inventors have found that the above-mentioned problems can be solved and the present invention has been completed.
 上記課題を解決し得た本発明は、下記(a)~(c)の特徴を有する二軸配向ポリプロピレンフィルムである。
(a)ポリプロピレン系樹脂を主成分とする樹脂組成物からなる。
(b)フィルムの幅方向あるいは縦方向における引裂強度(N/mm)≦(0.014×フィルム厚み(μm)+0.35)以下である。
(c)フィルムの幅方向及び縦方向における150℃における熱収縮率が7%以下である。
The present invention that has solved the above problems is a biaxially oriented polypropylene film having the following characteristics (a) to (c).
(A) It consists of the resin composition which has a polypropylene resin as a main component.
(B) Tear strength (N / mm) ≦ (0.014 × film thickness (μm) +0.35) or less in the width direction or longitudinal direction of the film.
(C) The heat shrinkage rate at 150 ° C. in the width direction and the longitudinal direction of the film is 7% or less.
 この場合において、前記フィルムの幅方向及び縦方向における縦方向の引張弾性率が2.0GPa以上であり、かつ前記引張弾性率の大きい方向での引張弾性率が4.0GPa以上であることが好適である。 In this case, the tensile modulus in the longitudinal direction in the width direction and the longitudinal direction of the film is preferably 2.0 GPa or more, and the tensile modulus in the direction in which the tensile modulus is large is preferably 4.0 GPa or more. It is.
 この場合において、衝撃強度が0.6J以上であることが好適である。 In this case, it is preferable that the impact strength is 0.6 J or more.
 この場合において、前記フィルムのヘイズ値が5%以下であることが好適である。 In this case, the haze value of the film is preferably 5% or less.
 本発明の二軸配向ポリプロピレンフィルムは、150℃での熱収縮率が小さく、高い熱寸法安定を有する。そのため、熱負けシワが小さく、折れにくいためフィルム加工性に優れる。それに加え、フィルムの横方向の引裂強度が小さいため、包装袋を開封する際のフィルムの手切れ性にも優れる。 The biaxially oriented polypropylene film of the present invention has a low thermal shrinkage at 150 ° C. and high thermal dimensional stability. Therefore, heat loss wrinkles are small, and since it is hard to break, it is excellent in film processability. In addition, since the tear strength in the lateral direction of the film is small, the film has excellent hand tearability when the packaging bag is opened.
(ポリプロピレン系樹脂組成物)
 本発明の二軸配向ポリプロピレンフィルムは、下記ポリプロピレン系樹脂を主成分とする樹脂組成物からなる。ポリプロピレン系樹脂はプロピレンの単独重合体、プロピレンとエチレン及び/又はα-オレフィンとの共重合体をいう。エチレン及び/又は炭素数4以上のα-オレフィンの共重合量は0.5mol%以下が好ましい。
 このとき、ポリプロピレン樹脂組成物は、下記の条件を満たすポリプロピレン樹脂(A)又は、ポリプロピレン樹脂(A)及びポリプロピレン樹脂(B)の混合物であることが好ましい。ポリプロピレン樹脂(A)及びポリプロピレン樹脂(B)の特徴は以下のとおりである。
 ポリプロピレン樹脂(A)は下記1)~4)の条件を満たす及びポリプロピレン系樹脂である。
1)メソペンタッド分率の下限が96%である。
2)プロピレン以外の共重合モノマー量の上限が0.1mol%である。
3)質量平均分子量(Mw)/数平均分子量(Mn)が3.0以上、5.4以下である。4)230℃、2.16kgfで測定されるメルトフローレート(MFR)が6.2g/10min以上、9.0g/10min以下である。
(Polypropylene resin composition)
The biaxially oriented polypropylene film of the present invention is composed of a resin composition containing as a main component the following polypropylene resin. Polypropylene resin refers to a homopolymer of propylene and a copolymer of propylene and ethylene and / or α-olefin. The copolymerization amount of ethylene and / or α-olefin having 4 or more carbon atoms is preferably 0.5 mol% or less.
At this time, the polypropylene resin composition is preferably a polypropylene resin (A) satisfying the following conditions, or a mixture of the polypropylene resin (A) and the polypropylene resin (B). The characteristics of the polypropylene resin (A) and the polypropylene resin (B) are as follows.
The polypropylene resin (A) is a polypropylene resin that satisfies the following conditions 1) to 4).
1) The lower limit of the mesopentad fraction is 96%.
2) The upper limit of the amount of copolymerization monomers other than propylene is 0.1 mol%.
3) The mass average molecular weight (Mw) / number average molecular weight (Mn) is 3.0 or more and 5.4 or less. 4) The melt flow rate (MFR) measured at 230 ° C. and 2.16 kgf is 6.2 g / 10 min or more and 9.0 g / 10 min or less.
 ポリプロピレン樹脂(B)は下記1)~4)の条件を満たす及びポリプロピレン系樹脂である。
1)メソペンタッド分率の下限が96%である。
2)プロピレン以外の共重合モノマー量の上限が0.1mol%である。
3)質量平均分子量(Mw)/数平均分子量(Mn)が3.0以上、5.4以下である。4)230℃、2.16kgfで測定されるメルトフローレート(MFR)が9.2g/10min以上である。
The polypropylene resin (B) is a polypropylene resin that satisfies the following conditions 1) to 4).
1) The lower limit of the mesopentad fraction is 96%.
2) The upper limit of the amount of copolymerization monomers other than propylene is 0.1 mol%.
3) The mass average molecular weight (Mw) / number average molecular weight (Mn) is 3.0 or more and 5.4 or less. 4) The melt flow rate (MFR) measured at 230 ° C. and 2.16 kgf is 9.2 g / 10 min or more.
 ポリプロピレン樹脂(A)及びポリプロピレン樹脂(B)の混合の割合は重量比率で85/15~65/35(重量%)であることが好ましい。ポリプロピレン樹脂(B)の混合割合が15重量%以上であると、フィルムの幅方向あるいは縦方向の配向が大きくなりやすく、引裂強度が低下しやすい。ポリプロピレン樹脂(B)の混合割合が35重量%以下であると、例えば延伸工程でフィルムが破断するなどの問題が生じにくく、二軸配向フィルムを製造することが容易になる。
 さらに下記で詳細に説明する。
The mixing ratio of the polypropylene resin (A) and the polypropylene resin (B) is preferably 85/15 to 65/35 (wt%) by weight. When the mixing ratio of the polypropylene resin (B) is 15% by weight or more, the orientation in the width direction or the longitudinal direction of the film tends to increase, and the tear strength tends to decrease. When the mixing ratio of the polypropylene resin (B) is 35% by weight or less, for example, a problem that the film is broken in the stretching process hardly occurs, and it becomes easy to produce a biaxially oriented film.
Further details will be described below.
(ポリプロピレン樹脂(A))
 ポリプロピレン樹脂(A)は、プロピレンとエチレンおよび/または炭素数4以上のα-オレフィンを、オレフィン単量体全体に対して、エチレンおよび/または炭素数4以上のα-オレフィンが0.5mol%以下となるように共重合した重合体であるのが好ましい。共重合成分は0.3モル%以下が好ましく、0.1mol%以下がより好ましく、共重合成分を含まない完全ホモポリプロピレン樹脂が最も好ましい。
 エチレンおよび/または炭素数4以上のα-オレフィンは、0.5mol%を超えて共重合すると、結晶性や剛性が低下し過ぎて、引裂強度が大きくなることがある。この様な樹脂をブレンドして用いても良い。
(Polypropylene resin (A))
The polypropylene resin (A) is composed of propylene and ethylene and / or α-olefin having 4 or more carbon atoms, and 0.5 mol% or less of ethylene and / or α-olefin having 4 or more carbon atoms with respect to the entire olefin monomer. It is preferable that the polymer is copolymerized so that The copolymerization component is preferably 0.3 mol% or less, more preferably 0.1 mol% or less, and most preferably a complete homopolypropylene resin containing no copolymerization component.
When ethylene and / or an α-olefin having 4 or more carbon atoms is copolymerized in excess of 0.5 mol%, the crystallinity and rigidity may be excessively lowered, and the tear strength may be increased. You may blend and use such resin.
 ポリプロピレン樹脂(A)の立体規則性の指標である13C-NMRで測定されるメソペンタッド分率([mmmm]%)は、96~99.5%であることが好ましい。より好ましくは、97%以上であり、さらに好ましくは98%以上である。ポリプロピレン樹脂(A)のメソペンタッド率が小さいと、引裂強度が不充分となるおそれがある。99.5%が現実的な上限である。 The mesopentad fraction ([mmmm]%) measured by 13C-NMR, which is an index of stereoregularity of the polypropylene resin (A), is preferably 96 to 99.5%. More preferably, it is 97% or more, and more preferably 98% or more. If the mesopentad ratio of the polypropylene resin (A) is small, the tear strength may be insufficient. 99.5% is a realistic upper limit.
 また、分子量分布の指標であるMw/Mnは、ポリプロピレン樹脂(A)では3.0~5.4が好ましい。より好ましくは3.0~5.0、さらに好ましくは3.2~4.5であり、特に好ましくは3.3~4.0である。
 高分子量成分が存在すると、高分子量成分が低分子量成分の結晶化を促進する面があるが、分子同士の絡み合いが強くなり、結晶性が高くても引裂強度が大きくなる傾向もあるため、ポリプロピレン樹脂(A)のMw/Mnが5.4を超えないようにするのが好ましい。Mw/Mnが大きくなりすぎると高分子量成分が多くなり、引裂強度が大きくなる場合があったり、幅方向(TD)の引張弾性率(ヤング率)が小さくなる場合がある傾向にある。ポリプロピレン樹脂(A)のMw/Mnが3.0未満であると、製膜が困難になる、Mwは質量平均分子量を意味し、Mnは数平均分子量を意味する。
Further, Mw / Mn, which is an index of molecular weight distribution, is preferably 3.0 to 5.4 in the polypropylene resin (A). More preferably, it is 3.0 to 5.0, still more preferably 3.2 to 4.5, and particularly preferably 3.3 to 4.0.
When a high molecular weight component is present, the high molecular weight component promotes the crystallization of the low molecular weight component, but the entanglement between molecules becomes strong, and even if the crystallinity is high, the tear strength tends to increase. It is preferable that Mw / Mn of the resin (A) does not exceed 5.4. When Mw / Mn becomes too large, the high molecular weight component increases, and the tear strength tends to increase, and the tensile modulus (Young's modulus) in the width direction (TD) tends to decrease. When the Mw / Mn of the polypropylene resin (A) is less than 3.0, film formation becomes difficult. Mw means a mass average molecular weight, and Mn means a number average molecular weight.
 ポリプロピレン樹脂(A)質量平均分子量(Mw)は、180,000~500,000が好ましい。より好ましいMwの下限は190,000、さらに好ましくは200,000であり、より好ましいMwの上限は320,000、さらに好ましくは300,000、特に好ましくは250,000である。 The polypropylene resin (A) has a mass average molecular weight (Mw) of preferably 180,000 to 500,000. The lower limit of Mw is more preferably 190,000, still more preferably 200,000, and the upper limit of more preferable Mw is 320,000, more preferably 300,000, particularly preferably 250,000.
 ポリプロピレン樹脂(A)の数平均分子量(Mn)は、20,000~200,000が好ましい。より好ましいMnの下限は30,000、さらに好ましくは40,000、特に好ましくは50,000であり、より好ましいMnの上限は80,000、さらに好ましくは70,000、特に好ましくは60,000である。 The number average molecular weight (Mn) of the polypropylene resin (A) is preferably 20,000 to 200,000. The lower limit of Mn is more preferably 30,000, more preferably 40,000, particularly preferably 50,000, and the upper limit of Mn is more preferably 80,000, still more preferably 70,000, particularly preferably 60,000. is there.
 このときのポリプロピレン樹脂(A)のメルトフローレート(MFR;230℃、2.16kgf)が6.2g/10分~10.0g/10分であることが好ましい。
 ポリプロピレン樹脂(A)のMFRの下限は、6.5g/10分であることがより好ましく、7g/10分であることがさらに好ましく、7.5g/10分であることが特に好ましい。ポリプロピレン樹脂のMFRの上限は、9g/10分であることがより好ましく、8.5g/10分であることがさらに好ましく、8.2g/10分であることが特に好ましい。
 メルトフローレート(MFR;230℃、2.16kgf)が6.2g/10分以上であると、延伸により生じるフィルムの配向の程度が強くなるため、フィルムの剛性、特に幅方向(TD)の引張弾性率(ヤング率)が高くなるとともに、引裂強度が低下する。さらに、高温での熱収縮率もより小さくすることができる。また、メルトフローレート(MFR;230℃、2.16kgf)が9.0g/10分以下であると破断なく製膜を行いやすい。
The melt flow rate (MFR; 230 ° C., 2.16 kgf) of the polypropylene resin (A) at this time is preferably 6.2 g / 10 min to 10.0 g / 10 min.
The lower limit of the MFR of the polypropylene resin (A) is more preferably 6.5 g / 10 minutes, further preferably 7 g / 10 minutes, and particularly preferably 7.5 g / 10 minutes. The upper limit of the MFR of the polypropylene resin is more preferably 9 g / 10 minutes, further preferably 8.5 g / 10 minutes, and particularly preferably 8.2 g / 10 minutes.
When the melt flow rate (MFR; 230 ° C., 2.16 kgf) is 6.2 g / 10 min or more, the degree of orientation of the film generated by stretching becomes strong, so the rigidity of the film, particularly the tensile in the width direction (TD). As the elastic modulus (Young's modulus) increases, the tear strength decreases. Furthermore, the thermal contraction rate at a high temperature can be further reduced. Further, when the melt flow rate (MFR; 230 ° C., 2.16 kgf) is 9.0 g / 10 min or less, it is easy to form a film without breaking.
 ポリプロピレン樹脂(A)のゲルパーミエーションクロマトグラフィー(GPC)積算カーブを測定した場合、分子量10万以下の成分の量の下限は好ましくは35質量%であり、より好ましくは38質量%であり、さらに好ましくは40質量%であり、特に好ましくは41質量%であり、最も好ましくは42質量%である。
 一方、GPC積算カーブでの分子量10万以下の成分の量の上限は好ましくは65質量%であり、より好ましくは60質量%であり、さらに好ましくは58質量%であり、特に好ましくは56質量%であり、最も好ましくは55質量%である。上記範囲であると延伸が容易となったり、厚み斑が小さくなったり、延伸温度や熱固定温度が上げられやすく引裂強度をより低く抑えることができる。
 なお、ポリプロピレン樹脂(A)の分子量分布は、異なる分子量の成分を多段階に一連のプラントで重合したり、異なる分子量の成分をオフラインで混錬機でブレンドしたり、異なる性能をもつ触媒をブレンドして重合したり、所望の分子量分布を実現できる触媒を用いたりすることで調整することが可能である。
When the gel permeation chromatography (GPC) integration curve of the polypropylene resin (A) is measured, the lower limit of the amount of the component having a molecular weight of 100,000 or less is preferably 35% by mass, more preferably 38% by mass, Preferably it is 40 mass%, Especially preferably, it is 41 mass%, Most preferably, it is 42 mass%.
On the other hand, the upper limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, still more preferably 58% by mass, and particularly preferably 56% by mass. And most preferably 55% by weight. Within the above range, stretching can be facilitated, thickness spots can be reduced, stretching temperature and heat setting temperature can be easily increased, and tear strength can be further reduced.
The molecular weight distribution of the polypropylene resin (A) is such that components with different molecular weights are polymerized in a series of plants in multiple stages, components with different molecular weights are blended offline using a kneader, or catalysts with different performances are blended. Thus, it is possible to adjust by polymerizing or using a catalyst capable of realizing a desired molecular weight distribution.
(ポリプロピレン樹脂(B))
 ポリプロピレン樹脂(B)は、プロピレンとエチレンおよび/または炭素数4以上のα-オレフィンを、オレフィン単量体全体に対して、エチレンおよび/または炭素数4以上のα-オレフィンが0.5mol%以下となるように共重合した重合体であるのが好ましい。共重合成分は0.3mol%以下が好ましく、0.1mol%以下がより好ましく、共重合成分を含まない完全ホモポリプロピレン樹脂が最も好ましい。
 エチレンおよび/または炭素数4以上のα-オレフィンは、0.5mol%以下であると、結晶性や剛性がより向上し、引裂強度がより低下することがある。この様な樹脂をブレンより向上ドして用いても良い。
(Polypropylene resin (B))
The polypropylene resin (B) is composed of propylene, ethylene and / or α-olefin having 4 or more carbon atoms, and 0.5 mol% or less of ethylene and / or α-olefin having 4 or more carbon atoms with respect to the entire olefin monomer. It is preferable that the polymer is copolymerized so that The copolymerization component is preferably 0.3 mol% or less, more preferably 0.1 mol% or less, and most preferably a complete homopolypropylene resin containing no copolymerization component.
When ethylene and / or α-olefin having 4 or more carbon atoms is 0.5 mol% or less, crystallinity and rigidity may be further improved, and tear strength may be further decreased. Such a resin may be used after being improved from the blend.
 ポリプロピレン樹脂(B)の立体規則性の指標である13C-NMRで測定されるメソペンタッド分率([mmmm]%)は、96~99.5%であることが好ましい。より好ましくは、97%以上であり、さらに好ましくは98%以上である。ポリプロピレン樹脂(B)のポリプロピレンのメソペンタッド率が大きいと、弾性率が高くなり、引裂強度がより小さくなる。99.5%が現実的な上限である。 The mesopentad fraction ([mmmm]%) measured by 13 C-NMR, which is an index of stereoregularity of the polypropylene resin (B), is preferably 96 to 99.5%. More preferably, it is 97% or more, and more preferably 98% or more. When the mesopentad ratio of the polypropylene of the polypropylene resin (B) is large, the elastic modulus becomes high and the tear strength becomes smaller. 99.5% is a realistic upper limit.
 また、分子量分布の指標であるMw/Mnは、ポリプロピレン樹脂(B)では3.0~5.4が好ましい。より好ましくは3.0~5.0、さらに好ましくは3.2~4.5であり、特に好ましくは3.3~4.0である。
 ポリプロピレン樹脂(B)のMw/Mnが5.4をより小さいと、Mw/Mnが大きくなりすぎずると高分子量成分が少なくなり、引裂強度がより小さくなる場合があったり、幅方向(TD)の引張弾性率(ヤング率)が大きくなる場合がある傾向にある。ポリプロピレン樹脂(B)のMw/Mnが3.0未満であると、製膜が困難になる。Mwは質量平均分子量を意味し、Mnは数平均分子量を意味する。
Further, Mw / Mn, which is an index of molecular weight distribution, is preferably 3.0 to 5.4 in the polypropylene resin (B). More preferably, it is 3.0 to 5.0, still more preferably 3.2 to 4.5, and particularly preferably 3.3 to 4.0.
If the Mw / Mn of the polypropylene resin (B) is smaller than 5.4, if the Mw / Mn is not increased too much, the high molecular weight component is decreased, and the tear strength may be decreased, or the width direction (TD). The tensile elastic modulus (Young's modulus) of the steel tends to increase. When the Mw / Mn of the polypropylene resin (B) is less than 3.0, film formation becomes difficult. Mw means mass average molecular weight, and Mn means number average molecular weight.
 ポリプロピレン樹脂(B)の質量平均分子量(Mw)は、180,000~500,000が好ましい。より好ましいMwの下限は190,000、さらに好ましくは200,000であり、より好ましいMwの上限は320,000、さらに好ましくは300,000、特に好ましくは250,000である。 The mass average molecular weight (Mw) of the polypropylene resin (B) is preferably 180,000 to 500,000. The lower limit of Mw is more preferably 190,000, still more preferably 200,000, and the upper limit of more preferable Mw is 320,000, more preferably 300,000, particularly preferably 250,000.
 ポリプロピレン樹脂(B)の数平均分子量(Mn)は、20,000~200,000が好ましい。より好ましいMnの下限は30,000、さらに好ましくは40,000であり、より好ましいMnの上限は70,000、さらに好ましくは60,000、特に好ましくは50,000である。 The number average molecular weight (Mn) of the polypropylene resin (B) is preferably 20,000 to 200,000. The lower limit of Mn is more preferably 30,000, still more preferably 40,000, and the upper limit of Mn is more preferably 70,000, still more preferably 60,000, particularly preferably 50,000.
 このときのポリプロピレン樹脂(B)のメルトフローレート(MFR;230℃、2.16kgf)が9.2g/10分以上であることが好ましい。
 ポリプロピレン樹脂(B)のMFRの下限は、9.5g/10分であることがより好ましく、10g/10分であることがさらに好ましく、11g/10分であることが特に好ましい。ポリプロピレン樹脂のMFRの上限は、15g/10分であることがより好ましく、13g/10分であることがさらに好ましく、12g/10分であることが特に好ましい。
 メルトフローレート(MFR;230℃、2.16kgf)が9.2g/10分以上であると、幅方向(TD)の延伸により生じるフィルムの配向の程度が強くなるため、フィルムの引裂強度をより小さくすることができる。さらに、フィルムの耐熱性、特に幅方向(TD)の150℃における熱収縮引率が小さくなる。
At this time, the melt flow rate (MFR; 230 ° C., 2.16 kgf) of the polypropylene resin (B) is preferably 9.2 g / 10 min or more.
The lower limit of the MFR of the polypropylene resin (B) is more preferably 9.5 g / 10 minutes, further preferably 10 g / 10 minutes, and particularly preferably 11 g / 10 minutes. The upper limit of the MFR of the polypropylene resin is more preferably 15 g / 10 minutes, further preferably 13 g / 10 minutes, and particularly preferably 12 g / 10 minutes.
When the melt flow rate (MFR; 230 ° C., 2.16 kgf) is 9.2 g / 10 min or more, the degree of orientation of the film generated by stretching in the width direction (TD) becomes strong, so the tear strength of the film is further increased. Can be small. Furthermore, the heat resistance of the film, particularly the thermal shrinkage at 150 ° C. in the width direction (TD) is reduced.
 ポリプロピレン樹脂(B)をのゲルパーミエーションクロマトグラフィー(GPC)積算カーブを測定した場合、分子量10万以下の成分の量の下限は好ましくは50質量%であり、より好ましくは52質量%であり、さらに好ましくは55質量%である。
 一方、GPC積算カーブでの分子量10万以下の成分の量の上限は好ましくは65質量%であり、より好ましくは60質量%であり、さらに好ましくは58質量%である。上記範囲であると延伸が容易となったり、厚み斑が小さくなったり、延伸温度や熱固定温度が上げられやすく引裂強度をより低く抑えることができる。
When the gel permeation chromatography (GPC) integration curve of the polypropylene resin (B) is measured, the lower limit of the amount of the component having a molecular weight of 100,000 or less is preferably 50% by mass, more preferably 52% by mass, More preferably, it is 55 mass%.
On the other hand, the upper limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, and further preferably 58% by mass. Within the above range, stretching can be facilitated, thickness spots can be reduced, stretching temperature and heat setting temperature can be easily increased, and tear strength can be further reduced.
 ポリプロピレン樹脂(A)とポリプロピレン樹脂(B)の混合物は下記1)~4)の条件を満たす及びポリプロピレン樹脂であることが好ましい。
1)メソペンタッド分率の下限が96%である。
2)プロピレン以外の共重合モノマー量の上限が0.1mol%である。
3)質量平均分子量(Mw)/数平均分子量(Mn)が3.0以上、5.4以下である。4)230℃、2.16kgfで測定されるメルトフローレート(MFR)が6.5g/10min以上、9.0g/10min以下である。
The mixture of the polypropylene resin (A) and the polypropylene resin (B) preferably satisfies the following conditions 1) to 4) and is a polypropylene resin.
1) The lower limit of the mesopentad fraction is 96%.
2) The upper limit of the amount of copolymerization monomers other than propylene is 0.1 mol%.
3) The mass average molecular weight (Mw) / number average molecular weight (Mn) is 3.0 or more and 5.4 or less. 4) The melt flow rate (MFR) measured at 230 ° C. and 2.16 kgf is 6.5 g / 10 min or more and 9.0 g / 10 min or less.
 ポリプロピレン樹脂(A)及びポリプロピレン樹脂(B)の分子量分布は、異なる分子量の成分を多段階に一連のプラントで重合したり、異なる分子量の成分をオフラインで混錬機でブレンドしたり、異なる性能をもつ触媒をブレンドして重合したり、所望の分子量分布を実現できる触媒を用いたりすることで調整することが可能である。 The molecular weight distribution of the polypropylene resin (A) and the polypropylene resin (B) is such that different molecular weight components are polymerized in a series of plants in multiple stages, different molecular weight components are blended offline in a kneader, and different performance is achieved. It is possible to adjust by blending and polymerizing the catalyst having the same or by using a catalyst capable of realizing a desired molecular weight distribution.
 本発明で用いるポリプロピレン樹脂(A)及びポリプロピレン樹脂(B)は、チーグラー・ナッタ触媒やメタロセン触媒等の公知の触媒を用いて、原料のプロピレンを重合させることにより得られる。中でも、異種結合をなくすためにはチーグラー・ナッタ触媒を用い、立体規則性の高い重合が可能な触媒を用いることが好ましい。
 プロピレンの重合方法としては、公知の方法を採用すればよく、例えば、ヘキサン、ヘプタン、トルエン、キシレン等の不活性溶剤中で重合する方法、液状のモノマー中で重合する方法、気体のモノマーに触媒を添加し、気相状態で重合する方法、または、これらを組み合わせて重合する方法等が挙げられる。
The polypropylene resin (A) and the polypropylene resin (B) used in the present invention are obtained by polymerizing propylene as a raw material using a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst. Among these, in order to eliminate the heterogeneous bond, it is preferable to use a Ziegler-Natta catalyst and a catalyst capable of polymerization with high stereoregularity.
As a polymerization method of propylene, a known method may be employed. For example, a method of polymerizing in an inert solvent such as hexane, heptane, toluene, xylene, a method of polymerizing in a liquid monomer, a catalyst for a gas monomer And a method of polymerizing in a gas phase state, or a method of polymerizing these in combination.
 二軸配向ポリプロピレン系フィルムを構成する樹脂組成物には、ポリプロピレン系樹脂以外にも、添加剤やその他の樹脂を含有させてもよい。添加剤やその他の樹脂の樹脂組成物中の含有量は20重量%以下とするのがよい。
 添加剤としては、例えば、酸化防止剤、紫外線吸収剤、造核剤、粘着剤、防曇剤、難燃剤、無機または有機の充填剤等が挙げられる。
 その他の樹脂としては、本発明で用いられるポリプロピレン樹脂以外のポリプロピレン樹脂、プロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとのランダム共重合体や、各種エラストマー等が挙げられる。これらは、多段の反応器を用いて逐次重合するか、ポリプロピレン樹脂とヘンシェルミキサーでブレンドするか、事前に溶融混錬機を用いて作製したマスターペレットを所定の濃度になるようにポリプロピレンで希釈するか、予め全量を溶融混練して使用してもよい。
The resin composition constituting the biaxially oriented polypropylene film may contain additives and other resins in addition to the polypropylene resin. The content of additives and other resins in the resin composition is preferably 20% by weight or less.
Examples of the additive include an antioxidant, an ultraviolet absorber, a nucleating agent, an adhesive, an antifogging agent, a flame retardant, and an inorganic or organic filler.
Examples of other resins include polypropylene resins other than the polypropylene resin used in the present invention, random copolymers of propylene and ethylene and / or α-olefins having 4 or more carbon atoms, and various elastomers. These are sequentially polymerized using a multistage reactor, blended with a polypropylene resin and a Henschel mixer, or master pellets prepared in advance using a melt kneader are diluted with polypropylene to a predetermined concentration. Alternatively, the whole amount may be melt kneaded in advance.
(二軸配向ポリプロピレンフィルムの製造方法)
 本発明の二軸配向ポリプロピレンフィルムは、ポリプロピレン樹脂を主成分とする樹脂組成物を押出機により溶融押し出しして未延伸シートを形成し、その未延伸シートを所定の方法により、延伸して熱処理することによって得ることができる。
 未延伸シートは、複数の押出機やフィードブロック、マルチマニホールドを用いることで得られる。溶融押出し温度は200~280℃程度が好ましい。
(Production method of biaxially oriented polypropylene film)
The biaxially oriented polypropylene film of the present invention is formed by melting and extruding a resin composition containing a polypropylene resin as a main component with an extruder to form an unstretched sheet, and stretching and heat-treating the unstretched sheet by a predetermined method. Can be obtained.
The unstretched sheet can be obtained by using a plurality of extruders, feed blocks, and multi-manifolds. The melt extrusion temperature is preferably about 200 to 280 ° C.
 チルロール表面温度は25~35℃が好ましく、27~33℃がより好ましい。次いで、120~165℃の延伸ロールでフィルムを縦方向(MD)に延伸し、引き続き幅方向(TD)方向に延伸を行う。さらに、リラックスを施しながら、熱固定を行う。こうして得られた二軸ポリプロピレンフィルムに、必要に応じて、コロナ放電、プラズマ処理、火炎処理等を施した後、ワインダーで巻き取ることによりフィルムロールを得ることができる。 The chill roll surface temperature is preferably 25 to 35 ° C, more preferably 27 to 33 ° C. Next, the film is stretched in the machine direction (MD) with a stretching roll at 120 to 165 ° C., and then stretched in the width direction (TD) direction. Furthermore, heat fixation is performed while relaxing. The biaxial polypropylene film thus obtained can be subjected to corona discharge, plasma treatment, flame treatment, etc., if necessary, and then wound with a winder to obtain a film roll.
 縦方向(MD)の延伸倍率の下限は、好ましくは3倍であり、より好ましくは3.5倍であり、さらに好ましくは4.0倍である。上記未満であると膜厚ムラとなることがある。縦方向(MD)の延伸倍率の上限は好ましくは7倍であり、より好ましくは6倍である。上記を超えると引き続き行う幅方向(TD)延伸がしにくくなることがある。
 縦方向(MD)の延伸温度の下限は好ましくは120℃であり、より好ましくは125℃であり、さらに好ましくは130℃である。上記未満であると機械的負荷が大きくなったり、厚みムラが大きくなったり、フィルムの表面荒れが起こることがある。縦方向(MDの延伸温度の上限は好ましくは160℃であり、より好ましくは155℃であり、さらに好ましくは150℃である。温度が高い方が熱収縮率の低下には好ましいが、ロールに付着し延伸できなくなったり、表面荒れが起こることがある。
The lower limit of the draw ratio in the machine direction (MD) is preferably 3 times, more preferably 3.5 times, and even more preferably 4.0 times. If it is less than the above, film thickness unevenness may occur. The upper limit of the draw ratio in the machine direction (MD) is preferably 7 times, more preferably 6 times. If the above is exceeded, it may be difficult to carry out stretching in the width direction (TD).
The lower limit of the stretching temperature in the machine direction (MD) is preferably 120 ° C, more preferably 125 ° C, and further preferably 130 ° C. If it is less than the above, the mechanical load may increase, the thickness unevenness may increase, or the film surface may be roughened. Longitudinal direction (the upper limit of the stretching temperature of MD is preferably 160 ° C., more preferably 155 ° C., and further preferably 150 ° C. A higher temperature is preferable for lowering the thermal shrinkage, It may adhere and become unable to stretch, or surface roughness may occur.
 幅方向(TD)の延伸倍率の下限は好ましくは8倍であり、より好ましくは10倍である。上記未満であると幅方向(TD)の配向がフィルムの横方向の配向が大きくなりにくく、引裂強度が低下しにくい。幅方向(TD)延伸倍率の上限は好ましくは12倍である。上記を超えると熱収縮率が高くなったり、延伸時に破断することがある。フィルムを構成するポリピロピレン樹脂組成物がポリプロピレン樹脂(A)及びポリプロピレン樹脂(B)の混合物であるときは、幅方向(TD)延伸倍率はそれほど大きくしなくても、幅方向(TD)の配向が大きくなる傾向にある。
 幅方向(TD)延伸での予熱温度は速やかに延伸温度付近にフィルム温度を上げるため、好ましくは縦方向(MD)延伸温度より15~35℃高く設定する。幅方向(TD)の延伸では従来の二軸配向ポリプロピレンフィルムより高温で行う。
 幅方向(TD)の延伸温度の下限は好ましくは155℃であり、より好ましくは157℃であり、さらに好ましくは158℃、特に好ましくは160℃である。上記未満であると充分に軟化せずに破断したり、熱収縮率が高くなることがある。幅方向(TD)延伸温度の上限は好ましくは170℃であり、より好ましくは168℃であり、さらに好ましくは163℃である。熱収縮率を低くするためには温度は高い方が好ましいが、上記を超えると低分子成分が融解、再結晶化して配向が低下するだけでなく、表面荒れやフィルムが白化することがある。
The lower limit of the draw ratio in the width direction (TD) is preferably 8 times, more preferably 10 times. If it is less than the above, the orientation in the width direction (TD) is less likely to increase the orientation in the transverse direction of the film, and the tear strength is difficult to decrease. The upper limit of the width direction (TD) stretch ratio is preferably 12 times. If the above is exceeded, the thermal shrinkage rate may be increased or the film may be broken during stretching. When the polypyropylene resin composition constituting the film is a mixture of a polypropylene resin (A) and a polypropylene resin (B), the width direction (TD) orientation is not greatly increased even if the width direction (TD) stretch ratio is not so large. It tends to grow.
The preheating temperature in the width direction (TD) stretching is preferably set to 15 to 35 ° C. higher than the machine direction (MD) stretching temperature in order to quickly raise the film temperature in the vicinity of the stretching temperature. The stretching in the width direction (TD) is performed at a higher temperature than the conventional biaxially oriented polypropylene film.
The lower limit of the stretching temperature in the width direction (TD) is preferably 155 ° C, more preferably 157 ° C, further preferably 158 ° C, and particularly preferably 160 ° C. If it is less than the above, it may break without being sufficiently softened, or the thermal shrinkage rate may be increased. The upper limit of the width direction (TD) stretching temperature is preferably 170 ° C, more preferably 168 ° C, and further preferably 163 ° C. In order to lower the thermal shrinkage rate, it is preferable that the temperature is higher. However, if the temperature is higher than the above, the low molecular component is melted and recrystallized to lower the orientation, and the surface may be roughened or the film may be whitened.
 延伸後のフィルムは熱固定される。熱固定は従来の二軸配向ポリプロピレンフィルムより高温で行うことが可能である。熱固定温度の下限は好ましくは165℃であり、より好ましくは166℃である。上記未満であると熱収縮率が高くなることがある。また、熱収縮率を低くするために長時間の処理が必要になり、生産性が劣ることがある。熱固定温度の上限は好ましくは176℃であり、より好ましくは175℃である。上記を超えると低分子成分が融解、再結晶化して表面荒れやフィルムが白化することがある。 The stretched film is heat-set. The heat setting can be performed at a higher temperature than the conventional biaxially oriented polypropylene film. The lower limit of the heat setting temperature is preferably 165 ° C, more preferably 166 ° C. If it is less than the above, the thermal shrinkage rate may increase. In addition, a long time treatment is required to lower the heat shrinkage rate, and productivity may be inferior. The upper limit of the heat setting temperature is preferably 176 ° C, more preferably 175 ° C. When the above is exceeded, the low molecular component may melt and recrystallize, and the surface roughness or the film may be whitened.
 熱固定時にはリラックス(緩和)させることが好ましい。幅方向(TD)緩和率の下限は好ましくは2%であり、より好ましくは3%である。上記未満であると熱収縮率が高くなることがある。幅方向(TD)緩和率の上限は好ましくは10%であり、より好ましくは8%である。上記を超えると厚みムラが大きくなることがある。 時 に は It is preferable to relax when relaxing. The lower limit of the width direction (TD) relaxation rate is preferably 2%, more preferably 3%. If it is less than the above, the thermal shrinkage rate may increase. The upper limit of the width direction (TD) relaxation rate is preferably 10%, more preferably 8%. When the above is exceeded, the thickness unevenness may increase.
 さらに、熱収縮率を低下させるために、上記の工程で製造されたフィルムを一旦ロール状に巻き取った後、オフラインでアニールさせることもできる。オフラインアニールの温度の下限は好ましくは160℃であり、より好ましくは162℃であり、さらに好ましくは163℃である。上記未満であるとアニールの効果が得られないことがある。オフラインアニール温度の上限は好ましくは175℃であり、より好ましくは174℃であり、さらに好ましくは173℃である。上記を超えると透明性が低下したり、厚みムラが大きくなったりすることがある。 Furthermore, in order to reduce the thermal shrinkage rate, the film produced in the above process can be once wound into a roll and then annealed offline. The lower limit of the offline annealing temperature is preferably 160 ° C, more preferably 162 ° C, and even more preferably 163 ° C. If it is less than the above, the effect of annealing may not be obtained. The upper limit of the offline annealing temperature is preferably 175 ° C., more preferably 174 ° C., and further preferably 173 ° C. When the above is exceeded, the transparency may decrease, or the thickness unevenness may increase.
 オフラインアニール時間の下限は好ましくは0.1分であり、より好ましくは0.5分であり、さらに好ましくは1分である。上記未満であるとアニールの効果が得られないことがある。オフラインアニール時間の上限は好ましくは30分であり、より好ましくは25分であり、さらに好ましくは20分である。上記を超えると生産性が低下することがある。 The lower limit of the offline annealing time is preferably 0.1 minutes, more preferably 0.5 minutes, and even more preferably 1 minute. If it is less than the above, the effect of annealing may not be obtained. The upper limit of the offline annealing time is preferably 30 minutes, more preferably 25 minutes, and further preferably 20 minutes. When the above is exceeded, productivity may be reduced.
 本発明の二軸配向ポリプロピレンフィルムの面配向係数の下限は、0.011が好ましく、0.012がより好ましく、0.013がさらに好ましい。上記範囲であると、フィルムの耐熱性、剛性を大きくなりやすい。
 本発明の二軸配向ポリプロピレンフィルムは、結晶配向を有し、その方向や程度がフィルム物性に大きな影響を及ぼす。結晶配向の程度は面配向係数を指標として表すことができ、ポリプロピレン系樹脂の分子構造や、フィルム製造におけるプロセスや条件を制御することで上記の範囲内とすることが出来る。
The lower limit of the plane orientation coefficient of the biaxially oriented polypropylene film of the present invention is preferably 0.011, more preferably 0.012, and even more preferably 0.013. Within the above range, the heat resistance and rigidity of the film tend to increase.
The biaxially oriented polypropylene film of the present invention has a crystal orientation, and its direction and degree have a great influence on film properties. The degree of crystal orientation can be expressed by using the plane orientation coefficient as an index, and can be within the above range by controlling the molecular structure of the polypropylene resin and the process and conditions in film production.
(二軸配向ポリプロピレンフィルム)
 本発明の二軸配向ポリプロピレンフィルム全体の厚みは9~200μmが好ましく、10~150μmがより好ましく、12~100μmがさらに好ましく、12~80μmが特に好ましい。
(Biaxially oriented polypropylene film)
The total thickness of the biaxially oriented polypropylene film of the present invention is preferably 9 to 200 μm, more preferably 10 to 150 μm, further preferably 12 to 100 μm, and particularly preferably 12 to 80 μm.
 本発明の二軸配向ポリプロピレンフィルムの引裂強度(N/mm)は、幅方向(TD)あるいは縦方向(MD)において、0.014×フィルム厚み(μm)+0.35以下の範囲であることが必要であり、0.014×フィルム厚み(μm)+0.35を超えると、それぞれの方向にフィルムを引裂く際に、それぞれのフィルム厚みに応じて期待される引裂きやすさに大きな抵抗感を感じることなく、容易にフィルムを手で切ることが出来る。好ましくは0.014×フィルム厚み(μm)+0.30以下の範囲であり、より好ましくは0.014×フィルム厚み(μm)+0.28以下の範囲である。この範囲であると、従来の二軸配向ポリプロピレン系フィルムよりも引裂きやすさに大きな抵抗感を感じることがない。
 本発明の二軸配向ポリプロピレンフィルムの引裂強度(N/mm)は、特に幅方向(TD)において、0.014×フィルム厚み(μm)+0.35以下の範囲であることが好ましい。
The tear strength (N / mm) of the biaxially oriented polypropylene film of the present invention is in the range of 0.014 × film thickness (μm) +0.35 or less in the width direction (TD) or the longitudinal direction (MD). Necessary, and if it exceeds 0.014 × film thickness (μm) +0.35, when the film is torn in each direction, a sense of great resistance is felt in the tearability expected according to each film thickness. And can easily cut the film by hand. The range is preferably 0.014 × film thickness (μm) +0.30 or less, more preferably 0.014 × film thickness (μm) +0.28 or less. Within this range, there is no greater sense of resistance to tearing than conventional biaxially oriented polypropylene films.
The tear strength (N / mm) of the biaxially oriented polypropylene film of the present invention is preferably in the range of 0.014 × film thickness (μm) +0.35 or less, particularly in the width direction (TD).
 本発明の二軸配向ポリプロピレンフィルムの引裂強度(N/mm)は、幅方向(TD)あるいは縦方向(MD)において、4.0以下の範囲であることが好ましい。より好ましくは3.5以下である。 The tear strength (N / mm) of the biaxially oriented polypropylene film of the present invention is preferably in the range of 4.0 or less in the width direction (TD) or the longitudinal direction (MD). More preferably, it is 3.5 or less.
 本発明の二軸配向ポリプロピレンフィルムにおいては、150℃での幅方向(TD)の熱収縮率は0.2~7.5%であることが好ましく、0.3~7%がより好ましく、0.4~6%がさらに好ましく、0.5~5%が特に好ましい。熱収縮率が上記範囲であれば、特に耐熱性に優れたフィルムということができ、例えば、製袋品への加工時の熱負けシワを低減することができる。そのため、高温にさらされる可能性のある用途でも使用できる。150℃熱収縮率は1.5%程度までなら、例えば低分子量成分を多くする、延伸条件、熱固定条件を調整することで可能であるが、それ以下に下げるには、オフラインでアニール処理をすること等が好ましい。 In the biaxially oriented polypropylene film of the present invention, the thermal shrinkage in the width direction (TD) at 150 ° C. is preferably 0.2 to 7.5%, more preferably 0.3 to 7%, 4 to 6% is more preferable, and 0.5 to 5% is particularly preferable. If the heat shrinkage ratio is in the above range, it can be said that the film is particularly excellent in heat resistance. For example, heat loss wrinkles during processing into a bag-made product can be reduced. Therefore, it can be used in applications that may be exposed to high temperatures. If the heat shrinkage rate at 150 ° C is up to about 1.5%, for example, it is possible to increase the low molecular weight component, adjust the stretching conditions and heat setting conditions. It is preferable to do so.
 本発明の二軸配向ポリプロピレンフィルムにおいては、150℃での縦方向の熱収縮率は0.2~7%であることが好ましく、0.3~6%がより好ましい。熱収縮率が上記範囲であれば、耐熱性に優れたフィルムということができ、例えば、製袋品への加工時の熱負けシワを低減することができる。
 そのため。高温にさらされる可能性のある用途でも使用できる。なお、150℃熱収縮率は1.5%程度までなら、例えば低分子量成分を多くする、延伸条件、熱固定条件を調整することで可能であるが、それ以下に下げるには、オフラインでアニール処理をすること等が好ましい。
In the biaxially oriented polypropylene film of the present invention, the thermal shrinkage in the longitudinal direction at 150 ° C. is preferably 0.2 to 7%, more preferably 0.3 to 6%. If the heat shrinkage rate is in the above range, it can be said that the film has excellent heat resistance. For example, heat loss wrinkles during processing into a bag-made product can be reduced.
for that reason. It can also be used in applications that may be exposed to high temperatures. If the thermal shrinkage at 150 ° C. is up to about 1.5%, for example, it is possible to increase the low molecular weight component, adjust the stretching conditions and the heat setting conditions, but in order to lower it below, anneal offline. It is preferable to perform the treatment.
 本発明の二軸配向ポリプロプレンフィルムの耐衝撃性(室温、25℃)の下限は好ましくは0.4Jであり、より好ましくは0.5Jである。上記範囲であるとフィルムとして十分な強靱性があり、取り扱い時に破断したりすることがない。耐衝撃性の上限は現実的な面から好ましくは1.5Jであり、より好ましくは1.3Jである。耐衝撃性は例えば低分子量成分が多い場合全体での分子量が低い場合、高分子量成分が少ない場合や高分子量成分の分子量が低い場合に耐衝撃性が低下する傾向となるため、用途に合わせてこれら成分を調整して範囲内とすることが出来る。 The lower limit of the impact resistance (room temperature, 25 ° C.) of the biaxially oriented polypropylene film of the present invention is preferably 0.4 J, more preferably 0.5 J. Within the above range, the film has sufficient toughness and does not break during handling. The upper limit of impact resistance is preferably 1.5 J, more preferably 1.3 J from a practical aspect. For example, impact resistance tends to decrease when the total molecular weight is low when there are many low molecular weight components, when the total molecular weight is low, or when the molecular weight of the high molecular weight components is low. These components can be adjusted to be within the range.
 発明の二軸配向ポリプロピレンフィルムの幅方向及び縦方向における引張弾性率が2.0GPa以上、かつ前記引張弾性率の大きい方向での引張弾性率が4.0GPa以上であることが好ましい。 It is preferable that the tensile elastic modulus in the width direction and the longitudinal direction of the biaxially oriented polypropylene film of the invention is 2.0 GPa or more, and the tensile elastic modulus in the direction in which the tensile elastic modulus is large is 4.0 GPa or more.
 本発明の二軸配向ポリプロピレンフィルムの幅方向(TD)の引張弾性率は、4.5~8GPaであることが好ましく、4.6~7.5GPaであることがより好ましく、4.7~7GPaであることがさらに好ましく、4.8~6.5GPaが特に好ましい。横方向の引張弾性率が上記範囲であれば、折れにくいフィルムにすることが可能となる。 The tensile modulus in the width direction (TD) of the biaxially oriented polypropylene film of the present invention is preferably 4.5 to 8 GPa, more preferably 4.6 to 7.5 GPa, and 4.7 to 7 GPa. Is more preferable, and 4.8 to 6.5 GPa is particularly preferable. If the tensile modulus in the transverse direction is in the above range, it is possible to form a film that is difficult to break.
 本発明の二軸配向ポリプロピレンフィルムの縦方向(MD)の引張弾性率は、1.8~4GPaであることが好ましく、2.1~3.7GPaであることがより好ましく、2.2~3.5GPaであることがさらに好ましく、2.3~3.4GPaが特に好ましい。 The tensile modulus in the machine direction (MD) of the biaxially oriented polypropylene film of the present invention is preferably 1.8 to 4 GPa, more preferably 2.1 to 3.7 GPa, and 2.2 to 3 More preferably, it is 5 GPa, and 2.3 to 3.4 GPa is particularly preferable.
 本発明の二軸配向ポリプロピレンフィルムの折れにくさは、フィルムをリング状にホールドして圧縮し、その抗力をロードセルで検出される値で評価した(リングクラッシュ測定法)が、幅方向(TD)及び/又は縦方向(MD)におけるその値は120g以上であることが好ましい。測定方法は後述する。 The difficulty in bending of the biaxially oriented polypropylene film of the present invention was evaluated by the value detected by the load cell (ring crush measurement method) by holding the film in a ring shape and compressing it, and the width direction (TD). And / or its value in the machine direction (MD) is preferably 120 g or more. The measuring method will be described later.
 本発明の二軸配向ポリプロピレンフィルムのヘイズは、5%以下が好ましく、0.2~5%がより好ましく、0.3~4.5%がさらに好ましく、0.4~4%が特に好ましい。上記範囲であると透明が要求される用途で使いやすくなることがある。ヘイズは例えば延伸温度、熱固定温度が高すぎる場合、冷却ロール(CR)温度が高く延伸原反シートの冷却速度が遅い場合、低分子量成分が多すぎる場合に悪くなる傾向があり、これらを調節することで上記の範囲内とすることが出来る。ヘイズの測定方法は後述する。 The haze of the biaxially oriented polypropylene film of the present invention is preferably 5% or less, more preferably 0.2 to 5%, still more preferably 0.3 to 4.5%, and particularly preferably 0.4 to 4%. If it is within the above range, it may be easy to use in applications requiring transparency. For example, when the stretching temperature and heat setting temperature are too high, the haze tends to be worse when the cooling roll (CR) temperature is high and the stretching speed of the stretched raw sheet is slow, or when there are too many low molecular weight components. By doing so, it can be within the above range. A method for measuring haze will be described later.
 本発明の二軸配向ポリプロピレンフィルムの動摩擦係数は、0.5以下であることが好ましく、0.45以下であるのがより好ましく、0.40以下が特にこのましい。動摩擦係数は、0.5以下であるとロールフィルムからのフィルムの巻き出しがスムーズに行え、印刷加工しやすい。動摩擦係数の測定方法は後述する。 The dynamic friction coefficient of the biaxially oriented polypropylene film of the present invention is preferably 0.5 or less, more preferably 0.45 or less, and particularly preferably 0.40 or less. When the dynamic friction coefficient is 0.5 or less, the film can be smoothly unwound from the roll film, and printing is easy. A method for measuring the dynamic friction coefficient will be described later.
(表面層)
 発明の二軸配向ポリプロピレンフィルムには、別途表面層を設けてもよく、使用するポリプロピレン樹脂として、プロピレン単独重合体、あるいはプロピレンとエチレンおよび/または炭素数4以上のα-オレフィンの共重合体を用いることができる。炭素数4以上のα-オレフィンとしては、1-ブテン、1-ヘキセン、4-メチル・1-ペンテン、1-オクテンなどが挙げられる。
 炭素数4以上のα-オレフィンとしては、1-ブテン、1-ヘキセン、4-メチル・1-ペンテン、1-オクテンなどが挙げられる。その他の共重合成分として、極性を有するマレイン酸等を使用しても良い。
 エチレンや炭素数4以上のα-オレフィン、及びその他の共重合成分は合計で8.0mol%以下であることが好ましい。8.0mol%を超えて共重合すると、フィルムが白化して外観不良となったり、粘着性が生じて製膜が困難となったりする場合がある。
 また、これらの樹脂を2種以上を混合して用いても良い。混合する場合、個々の樹脂は8.0mol%を超えて共重合されたものであっても良いが、混合物中のエチレン、炭素数4以上のα-オレフィン、及びその他の共重合成分は合計で8.0mol%以下であることが好ましい。
(Surface layer)
The biaxially oriented polypropylene film of the invention may be provided with a separate surface layer. As the polypropylene resin to be used, a propylene homopolymer or a copolymer of propylene and ethylene and / or an α-olefin having 4 or more carbon atoms is used. Can be used. Examples of the α-olefin having 4 or more carbon atoms include 1-butene, 1-hexene, 4-methyl / 1-pentene, 1-octene and the like.
Examples of the α-olefin having 4 or more carbon atoms include 1-butene, 1-hexene, 4-methyl / 1-pentene, 1-octene and the like. As other copolymer components, polar maleic acid or the like may be used.
The total amount of ethylene, α-olefin having 4 or more carbon atoms, and other copolymerization components is preferably 8.0 mol% or less. If the copolymerization exceeds 8.0 mol%, the film may be whitened to have a poor appearance, or may become sticky and film formation may be difficult.
Moreover, you may use these resin in mixture of 2 or more types. In the case of mixing, each resin may be copolymerized in excess of 8.0 mol%, but ethylene, α-olefin having 4 or more carbon atoms, and other copolymerization components in the mixture are in total. It is preferable that it is 8.0 mol% or less.
 表面層で用いるポリプロピレン樹脂は、チーグラー・ナッタ触媒やメタロセン触媒等の公知の触媒を用いて、原料のプロピレンを重合させることにより得られる。中でも、異種結合をなくすためにはチーグラー・ナッタ触媒を用い、立体規則性の高い重合が可能な触媒を用いることが好ましい。
 プロピレンの重合方法としては、公知の方法を採用すればよく、例えば、ヘキサン、ヘプタン、トルエン、キシレン等の不活性溶剤中で重合する方法、液状のモノマー中で重合する方法、気体のモノマーに触媒を添加し、気相状態で重合する方法、または、これらを組み合わせて重合する方法等が挙げられる。
The polypropylene resin used in the surface layer is obtained by polymerizing propylene as a raw material using a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst. Among these, in order to eliminate the heterogeneous bond, it is preferable to use a Ziegler-Natta catalyst and a catalyst capable of polymerization with high stereoregularity.
As a polymerization method of propylene, a known method may be employed. For example, a method of polymerizing in an inert solvent such as hexane, heptane, toluene, xylene, a method of polymerizing in a liquid monomer, a catalyst for a gas monomer And a method of polymerizing in a gas phase state, or a method of polymerizing these in combination.
 表面層には、ポリプロピレン樹脂以外にも、添加剤やその他の樹脂を含有させてもよい。添加剤としては、例えば、酸化防止剤、紫外線吸収剤、造核剤、粘着剤、防曇剤、難燃剤、無機または有機の充填剤等が挙げられる。
 その他の樹脂としては、本発明で用いられるポリプロピレン樹脂以外のポリプロピレン系樹脂、プロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとのランダム共重合体や、各種エラストマー等が挙げられる。これらは、多段の反応器を用いて逐次重合するか、ポリプロピレン樹脂とヘンシェルミキサーでブレンドするか、事前に溶融混錬機を用いて作製したマスターペレットを所定の濃度になるようにポリプロピレンで希釈するか、予め全量を溶融混練して使用してもよい。
 表面層に含有するアンチブロッキング剤を配合するのも好適な方法である。
 アンチブロッキング剤としては、シリカ、炭酸カルシウム、カオリン、ゼオライト等の無機系のアンチブロッキング剤やアクリル系、ポリメタアクリル系、ポリスチレン系等の有機系アンチブロッキング剤等の中から、適宜選択して使用することができる。これらの中でも、シリカを用いるのが特に好ましい。
 アンチブロッキング剤の好ましい平均粒子径は1.0~2.0μmであり、より好ましくは1.0~1.5μmである。
 アンチブロッキング剤は、表面層中に0.5質量%以下とすることが好ましい。ここでいう平均粒径の測定法は、走査電子顕微鏡で写真撮影し、イメージアナライザー装置を用いて水平方向のフェレ径を測定し、その平均値で表示したものである。
The surface layer may contain additives and other resins in addition to the polypropylene resin. Examples of the additive include an antioxidant, an ultraviolet absorber, a nucleating agent, an adhesive, an antifogging agent, a flame retardant, and an inorganic or organic filler.
Examples of other resins include polypropylene resins other than the polypropylene resin used in the present invention, random copolymers of propylene and ethylene and / or α-olefins having 4 or more carbon atoms, and various elastomers. These are sequentially polymerized using a multistage reactor, blended with a polypropylene resin and a Henschel mixer, or master pellets prepared in advance using a melt kneader are diluted with polypropylene to a predetermined concentration. Alternatively, the whole amount may be melt kneaded in advance.
It is also a suitable method to mix an antiblocking agent contained in the surface layer.
As an anti-blocking agent, it can be used by appropriately selecting from inorganic anti-blocking agents such as silica, calcium carbonate, kaolin and zeolite, and organic anti-blocking agents such as acrylic, polymethacrylic and polystyrene. can do. Among these, it is particularly preferable to use silica.
The average particle diameter of the antiblocking agent is preferably 1.0 to 2.0 μm, more preferably 1.0 to 1.5 μm.
The anti-blocking agent is preferably 0.5% by mass or less in the surface layer. The measurement method of the average particle diameter here is a method in which a photograph is taken with a scanning electron microscope, the ferret diameter in the horizontal direction is measured using an image analyzer, and the average value is displayed.
 表面層の表面の濡れ張力が38mN/m以上であることが好ましい。
濡れ張力は38mN/m以上であると、印刷インキや接着剤との密着性が向上する。
濡れ張力は16LogΩ以上であるのがより好ましい。濡れ張力は38mN/m以上とするには、帯電防止剤や界面活性剤などの添加剤を使用することが通常行われているが、表面固有抵抗を下げる効果があるため、コロナ処理、火炎処理などの表面処理を行うことが挙げられる。
It is preferable that the surface layer has a wetting tension of 38 mN / m or more.
When the wetting tension is 38 mN / m or more, the adhesion to the printing ink and the adhesive is improved.
The wetting tension is more preferably 16 LogΩ or more. In order to increase the wetting tension to 38 mN / m or more, it is usual to use additives such as antistatic agents and surfactants. However, since it has the effect of reducing the surface resistivity, corona treatment, flame treatment And the like, and the like.
 表面層と本発明の二軸配向ポリプロピレンフィルムとの厚みの比率としては、表面層/二軸配向ポリプロピレンフィルムが0.01~0.5であることが好ましく、0.03~0.4であることがより好ましく、0.05~0.3であることがさらに好ましい。表面層/二軸配向ポリプロピレンフィルムが0.5を超えると、収縮率が大きくなる傾向を示す。また、フィルム全体の厚みに対する二軸配向ポリプロピレンフィルムの厚みは50~99%であることが好ましく、さらに好ましくは60~97%、特に好ましくは70~95%である。残部は、表面層または表面層とその他の層(例えばC層)となる。表面層の実質的な厚みは、0.5~4μmが好ましく、1~3.5μmがより好ましく、1.5~3μmがさらに好ましい。
 二軸配向ポリプロピレンフィルムと表面層とを1層ずつ有する2層構造のフィルムであってもよいが3層以上の構成としてもよい。好ましいのは二軸配向ポリプロピレンフィルム/表面層の2層構造である。また、表面層/二軸配向ポリプロピレンフィルム/表面層、/二軸配向ポリプロピレンフィルム/中間層(C)/表面層の3層構造やそれ以上の多層構造であってもよい。
 なお、表面層が複数ある場合、それぞれの層がその特性を満たすものであれば、組成は異なっていてもよい。
 表面層を設ける場合は、基材層用の樹脂組成物(例えば、ポリプロピレン系樹脂(A)とポリプロピレン系樹脂(B)の混合物)と表面層用のポリプロピレン系樹脂をそれぞれ、別の押出機により溶融押し出しして積層された未延伸シートを形成し、その未延伸シートを所定の方法により、延伸して熱処理することによって得ることができる。
The thickness ratio between the surface layer and the biaxially oriented polypropylene film of the present invention is preferably 0.01 to 0.5, and preferably 0.03 to 0.4 for the surface layer / biaxially oriented polypropylene film. More preferably, it is 0.05 to 0.3. When the surface layer / biaxially oriented polypropylene film exceeds 0.5, the shrinkage rate tends to increase. Further, the thickness of the biaxially oriented polypropylene film is preferably from 50 to 99%, more preferably from 60 to 97%, particularly preferably from 70 to 95% with respect to the total film thickness. The remaining portion is a surface layer or a surface layer and other layers (for example, a C layer). The substantial thickness of the surface layer is preferably 0.5 to 4 μm, more preferably 1 to 3.5 μm, and even more preferably 1.5 to 3 μm.
Although it may be a two-layer film having one biaxially oriented polypropylene film and one surface layer, it may have a structure of three or more layers. A bilayer structure of biaxially oriented polypropylene film / surface layer is preferred. Further, it may be a three-layer structure of surface layer / biaxially oriented polypropylene film / surface layer, / biaxially oriented polypropylene film / intermediate layer (C) / surface layer, or a multilayer structure of more.
In addition, when there are a plurality of surface layers, the composition may be different as long as each layer satisfies the characteristics.
When the surface layer is provided, the resin composition for the base layer (for example, a mixture of the polypropylene resin (A) and the polypropylene resin (B)) and the polypropylene resin for the surface layer are respectively used by different extruders. It can be obtained by melt extruding to form a laminated unstretched sheet, stretching the unstretched sheet by a predetermined method, and heat-treating it.
(用途)
 本発明の二軸配向ポリプロピレン系フィルムは、スタンディングパウチなどに使用される食品包装用はもちろんのこと、ラベル用途等にも使用可能である。製袋工程にて、機械の流れ方向と直行する方向で折り曲げて、製袋する際には、横方向が手切れ方向となるため、横方向の引裂強度が重要となる。引裂強度の低い方が、手切れ性が良好なフィルムとなる。
(Use)
The biaxially oriented polypropylene film of the present invention can be used for labeling as well as food packaging used for standing pouches and the like. In the bag making process, when the bag is folded in the direction perpendicular to the machine flow direction and the bag is made, the transverse direction becomes the hand cutting direction, and thus the lateral tear strength is important. A lower tear strength results in a film with better hand tearability.
 以下、実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲で変更実施する場合は、本発明に含まれる。なお、実施例および比較例で得られたフィルム物性の測定方法は、以下の通りである。 Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and modifications and implementations without departing from the spirit of the present invention are included in the present invention. In addition, the measuring method of the film physical property obtained by the Example and the comparative example is as follows.
1)立体規則性
 メソペンタッド分率([mmmm]%)の測定は、13C-NMRを用いて行った。メソペンタッド分率は、「Zambelliら、Macromolecules,第6巻,925頁(1973)」に記載の方法に従って算出した。13C-NMR測定は、BRUKER社製「AVANCE500」を用い、試料200mgをo-ジクロロベンゼンと重ベンゼンの8:2(体積比)の混合液に135℃で溶解し、110℃で行った。
1) Stereoregularity The mesopentad fraction ([mmmm]%) was measured using 13C-NMR. The mesopentad fraction was calculated according to the method described in “Zambelli et al., Macromolecules, Vol. 6, 925 (1973)”. The 13C-NMR measurement was performed at 110 ° C. by using “AVANCE 500” manufactured by BRUKER, and dissolving 200 mg of a sample in an 8: 2 (volume ratio) mixture of o-dichlorobenzene and heavy benzene at 135 ° C.
2)メルトフローレート(MFR;g/10分)
 JIS K7210に準拠し、温度230℃、荷重2.16kgfで測定した。樹脂はペレット(パウダー)をそのまま必要量量り取り用いた。フィルムは必要量切り出した後、約5mm角にカットしたサンプルを用いた。
2) Melt flow rate (MFR; g / 10 min)
According to JIS K7210, the temperature was 230 ° C. and the load was 2.16 kgf. The required amount of pellet (powder) was used as the resin. After the required amount of the film was cut out, a sample cut into about 5 mm square was used.
3)分子量および分子量分布
 分子量および分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて単分散ポリスチレン基準により求めた。GPC測定での使用カラム、溶媒等の測定条件は以下のとおりである。
溶媒:1,2,4-トリクロロベンゼン
カラム:TSKgel GMHHR-H(20)HT×3
流量:1.0ml/min
検出器:RI
測定温度:140℃
3) Molecular weight and molecular weight distribution The molecular weight and molecular weight distribution were determined on the basis of monodisperse polystyrene using gel permeation chromatography (GPC). The measurement conditions such as the column used and the solvent in GPC measurement are as follows.
Solvent: 1,2,4-trichlorobenzene Column: TSKgel GMHHR-H (20) HT × 3
Flow rate: 1.0 ml / min
Detector: RI
Measurement temperature: 140 ° C
 数平均分子量(Mn)、質量平均分子量(Mw)、分子量分布は、それぞれ、分子量校正曲線を介して得られたGPC曲線の各溶出位置の分子量(M)の分子数(N)により次式で定義される。
数平均分子量:Mn=Σ(N・M)/ΣNi
質量平均分子量:Mw=Σ(N・M )/Σ(N・M
分子量分布:Mw/Mn
 ベースラインが明確でないときは、標準物質の溶出ピークに最も近い高分子量側の溶出ピークの高分子量側のすそ野の最も低い位置までの範囲でベースラインを設定することとした。
The number average molecular weight (Mn), the mass average molecular weight (Mw), and the molecular weight distribution are respectively represented by the molecular number (N i ) of the molecular weight (M i ) at each elution position of the GPC curve obtained through the molecular weight calibration curve. It is defined by an expression.
Number average molecular weight: Mn = Σ (N i · M i ) / ΣNi
Mass average molecular weight: Mw = Σ (N i · M i 2 ) / Σ (N i · M i )
Molecular weight distribution: Mw / Mn
When the baseline was not clear, the baseline was set in the range from the elution peak closest to the elution peak of the standard substance to the lowest position of the bottom of the high molecular weight side.
4)厚み
 基材層(A)と表面層(B)各層の厚みは、二軸延伸積層ポリプロピレンフィルムを変性ウレタン樹脂で固めたものの断面をミクロトームで切り出し、微分干渉顕微鏡で観察して、測定した。
4) Thickness The thickness of each of the base layer (A) and the surface layer (B) was measured by cutting a cross section of a biaxially stretched laminated polypropylene film solidified with a modified urethane resin with a microtome and observing with a differential interference microscope. .
5)熱収縮率(%)
 JIS Z1712に準拠して、以下の方法で測定した。フィルムを、MD方向とTD方向のそれぞれにおいて、幅20mm、長さ200mmにカットし、150℃の熱風オーブン中に吊して5分間加熱した。加熱後の長さを測定し、元の長さに対する収縮した長さの割合で熱収縮率を求めた。
5) Thermal shrinkage (%)
Based on JIS Z1712, it measured by the following method. The film was cut into a width of 20 mm and a length of 200 mm in each of the MD direction and the TD direction, suspended in a hot air oven at 150 ° C. and heated for 5 minutes. The length after heating was measured, and the thermal contraction rate was determined by the ratio of the contracted length to the original length.
6)引張弾性率(ヤング率(単位:GPa))
 JIS K7127に準拠してフィルムのMD方向およびTD方向の引張弾性率を23℃にて、下記条件で測定した。
 測定機器:島津製作所、オートグラフ ASS-100NJ
 サンプルサイズ:幅15mm×長さ200mm
 クロスヘッド速度:200mm/min
 チャック間距離:100mm
 弾性率測定の歪範囲:0.1~0.6%
6) Tensile modulus (Young's modulus (unit: GPa))
Based on JIS K7127, the tensile elastic modulus in the MD direction and TD direction of the film was measured at 23 ° C. under the following conditions.
Measuring equipment: Shimadzu Corporation, Autograph ASS-100NJ
Sample size: width 15mm x length 200mm
Crosshead speed: 200mm / min
Distance between chucks: 100mm
Elasticity measurement strain range: 0.1-0.6%
7)リングクラッシュ(g)
 デジタル式リングクラッシュテスター(テスター産業社製)で、フィルムサンプルサイズ12.7mm×152mmを準備し、試料テーブルの上に、フィルムサンプルの厚みに合わせて、アタッチメントのスペーサーをセットし、MD、TD方向それぞれで、フィルムサンプルを円周に添って差し込む。23℃にて、圧縮版を下降速度 12mm/min.で圧縮した際の最大荷重をリングクラッシュ測定値とした。
7) Ring crash (g)
Using a digital ring crush tester (manufactured by Tester Sangyo Co., Ltd.), prepare a film sample size of 12.7 mm x 152 mm, set an attachment spacer on the sample table in accordance with the thickness of the film sample, and MD, TD direction In each, insert a film sample along the circumference. At 23 ° C., the compressed plate is moved down at a speed of 12 mm / min. The maximum load at the time of compression with was used as a ring crush measurement value.
8)ヘイズ(単位:%)
 JIS K7105に従って測定した。
8) Haze (Unit:%)
It measured according to JIS K7105.
9)動摩擦係数
 JIS K7125に準拠して、フィルムのコロナ処理を実施した面同士を重ね合わせ、23℃で測定した。
9) Coefficient of dynamic friction According to JIS K7125, the surfaces of the film subjected to corona treatment were overlapped and measured at 23 ° C.
10)屈折率、面配向係数
 JIS K7142-1996 5.1(A法)により、アタゴ製アッベ屈折計を用いて測定した。MD、TD方向に沿った屈折率をそれぞれNx、Nyとし、厚み方向の屈折率をNzとした。面配向係数(ΔP)は、(Nx+Ny)/2-Nzで求めた。
10) Refractive index and plane orientation coefficient Measured using an Atago Abbe refractometer according to JIS K7142-1996 5.1 (Method A). The refractive indexes along the MD and TD directions were Nx and Ny, respectively, and the refractive index in the thickness direction was Nz. The plane orientation coefficient (ΔP) was determined by (Nx + Ny) / 2−Nz.
12)表面固有抵抗値(LogΩ)
 JIS K6911に準拠し、フィルムを23℃、24時間エージング後、フィルムのコロナ処理面を測定した。
12) Surface resistivity (LogΩ)
In accordance with JIS K6911, the film was aged at 23 ° C. for 24 hours, and then the corona-treated surface of the film was measured.
13)濡れ張力(mN/m)
 JIS K6768-1999に順じて、フィルムを23℃、相対湿度 50%で24時間エージング後、下記手順でフィルムのコロナ処理面を測定した。
1)測定は,温度23℃,相対湿度50%の標準試験室雰囲気(JIS K7100参照)で行う。
2)試験片をハンドコータ(4.1)の基板の上に置き,試験片の上に試験用混合液を数滴滴下して,直ちにワイヤバーを引いて広げる。綿棒又はブラシを使用して試験用混合液を広げる場合は,液体は少なくとも 6cm2以上の面積に速やかに広げる。液体の量は,たまりを作らないで,薄層を形成する程度にする。濡れ張力の判定は,試験用混合液の液膜を明るいところで観察し,3 秒後の液膜の状態で行う。液膜破れを生じないで,3秒以上,塗布されたときの状態を保っているのは,ぬれていることになる。濡れが3秒以上保つ場合は,さらに,次に表面張力の高い混合液に進み,また逆に、3秒以下で液膜が破れる場合は,次の表面張力の低い混合液に進む。この操作を繰り返し,試験片の表面を正確に、3秒間で濡らすことができる混合液を選ぶ。
3)各々の試験には,新しい綿棒を使用する。ブラシ又はワイヤバーは,残留する液体が蒸発によって組成及び表面張力を変化させるので,使用ごとにメタノールで洗浄し,乾燥させる。
4)試験片の表面を3秒間でぬらすことができる混合液を選ぶ操作を少なくとも3回行う。このようにして選ばれた混合液の表面張力をフィルムの濡れ張力として報告する。
13) Wetting tension (mN / m)
In accordance with JIS K6768-1999, the film was aged for 24 hours at 23 ° C. and 50% relative humidity, and then the corona-treated surface of the film was measured according to the following procedure.
1) Measurement is performed in a standard test room atmosphere (see JIS K7100) at a temperature of 23 ° C. and a relative humidity of 50%.
2) Place the test piece on the substrate of the hand coater (4.1), drop a few drops of the test mixture on the test piece and immediately pull the wire bar to spread. If the test mixture is spread using a cotton swab or brush, the liquid should be spread quickly over an area of at least 6 cm2. The amount of liquid should be such that a thin layer is formed without creating a pool. To determine the wetting tension, observe the liquid film of the test mixture in a bright place, and perform the liquid film after 3 seconds. It is wet that it keeps the state when applied for 3 seconds or more without tearing the liquid film. If the wetting is maintained for 3 seconds or more, the process proceeds to the liquid mixture having the next highest surface tension. Conversely, if the liquid film is broken in 3 seconds or less, the process proceeds to the next liquid mixture having the lower surface tension. Repeat this procedure and select a mixture that can wet the surface of the specimen accurately in 3 seconds.
3) Use a new cotton swab for each test. Brushes or wire bars are washed with methanol and dried after each use because residual liquid changes composition and surface tension by evaporation.
4) Perform an operation of selecting a mixed solution that can wet the surface of the test piece in 3 seconds at least three times. The surface tension of the mixture thus selected is reported as the wetting tension of the film.
14)引裂強度(N/mm)
 JIS K7128 トラウザー引裂法に従って測定した平均引裂強さを引裂強度とした。
14) Tear strength (N / mm)
The average tear strength measured according to JIS K7128 trouser tear method was taken as the tear strength.
15)製袋品の手切れ性
1)シーラントフィルムとのラミネートフィルムの作成
 連続式のドライラミネート機を用いて以下の様に行った。
 実施例、比較例で得られた二軸配向ポリプロピレンフィルムのコロナ面に接着剤を乾燥時塗布量が3.0g/m2となるようにグラビアコートした後、乾燥ゾーンに導き80℃、5秒で乾燥した。引き続き下流側に設けられたロール間でシーラントフィルムと貼り合わせた(ロール圧力0.2MP、ロール温度:60℃)。得られたラミネートフィルムは巻き取った状態で40℃、3日間のエージング処理を行った。
 なお、接着剤は主剤(東洋モートン社製、TM329)17.9質量%、硬化剤(東洋モートン社製、CAT8B)17.9質量%および酢酸エチル64.2質量%を混合して得られたエーテル系接着剤を使用し、シーラントフィルムは東洋紡社製無延伸ポリプロピレンフィルム(パイレン(登録商標)CT P1128、厚み30μm)を使用した。
2)製袋品の作成
 ラミネートフィルムの流れ方向に、2つ折後、120℃、1kg、1秒の条件で3方ヒートシールし、幅200mm、長さ200mmの製袋品を作成した。
3)手切れ性の評価
 製袋品に横方向にノッチを入れて、横方向に手で引裂いた際の抵抗感の有無を評価者10人で実施した。抵抗感のあると回答した人数を評価項目として用いた。各3回ずつ評価した。
 0人・・・・・◎:手切れ性に優れる。
 1~5人・・・○:手切れ性が良好。
 6~9人・・・△:手切れ性に劣る。
 10人・・・・×:手切れ性がない。
15) Hand cutting ability of bag-made products 1) Preparation of laminate film with sealant film This was carried out as follows using a continuous dry laminating machine.
The corona surface of the biaxially oriented polypropylene film obtained in Examples and Comparative Examples was gravure coated with an adhesive so that the coating amount upon drying was 3.0 g / m 2, then led to the drying zone at 80 ° C. for 5 seconds. Dried. Subsequently, it was bonded to a sealant film between rolls provided on the downstream side (roll pressure 0.2 MP, roll temperature: 60 ° C.). The obtained laminate film was subjected to an aging treatment at 40 ° C. for 3 days while being wound up.
The adhesive was obtained by mixing 17.9% by mass of a main agent (manufactured by Toyo Morton, TM329), 17.9% by mass of a curing agent (CAT8B, manufactured by Toyo Morton) and 64.2% by mass of ethyl acetate. An ether adhesive was used, and a non-stretched polypropylene film (Pyrene (registered trademark) CTP1128, thickness 30 μm) manufactured by Toyobo Co., Ltd. was used as the sealant film.
2) Production of bag-made product After folding in the flow direction of the laminate film, it was heat-sealed in three directions under the conditions of 120 ° C., 1 kg, and 1 second to produce a bag-made product having a width of 200 mm and a length of 200 mm.
3) Evaluation of hand cutting property A notch was made in the lateral direction of the bag-made product, and the presence or absence of resistance when tearing by hand in the lateral direction was carried out by 10 evaluators. The number of people who answered that there was resistance was used as an evaluation item. Each was evaluated three times.
0: ◎: Excellent hand cutting performance.
1 to 5 people: ○: Good hand cutting.
6 to 9 people △: Inferior to hand cutting.
10 people ······ ×: There is no hand cutting.
(実施例1)
 基材層には、表1に示すポリプロピレン単独重合体PP-1を79重量%とポリプロピレン単独重合体PP-2を20重量%と耐電防止剤(ステアリルジエタノールアミンステアレート(松本油脂(株) KYM-4K))を1重量%を混合したものを用いた。さらに、この混合物に平均粒子径が1μmのシリカ粒子を3000ppm添加した。
 この混合物を60mm押出機を用いて、原料樹脂を250℃で溶融し、Tダイからシート状に共押し出しし、30℃の冷却ロールで冷却固化した後、135℃縦方向(MD)に4.5倍に延伸した。次いでテンター内で、フィルム幅方向両端をクリップで挟み、175℃で予熱後、160℃で幅方向(TD)に8.2倍に延伸し、幅方向(TD)に6.7%緩和させながら、170℃で熱固定した。このときの製膜条件を製膜条件aとし、表2に示した。
 得られた二軸配向ポリプロピレンフィルムの片側表面側にソフタル・コロナ・アンド・プラズマGmbH社製のコロナ処理機を用いて、印加電流値:0.75Aの条件で、コロナ処理を施した後、ワインダーで巻き取ったものを本発明の二軸配向ポリプロピレンフィルムとした。得られたフィルムの物性は、表3に示すとおりである。
Example 1
In the base material layer, 79% by weight of the polypropylene homopolymer PP-1 shown in Table 1 and 20% by weight of the polypropylene homopolymer PP-2 and antistatic agent (stearyl diethanolamine stearate (Matsumoto Yushi Co., Ltd. KYM- 4K)) mixed with 1% by weight was used. Further, 3000 ppm of silica particles having an average particle diameter of 1 μm was added to this mixture.
This mixture was melted at 250 ° C. using a 60 mm extruder, the raw resin was coextruded from a T-die into a sheet shape, cooled and solidified with a 30 ° C. cooling roll, and then 4. in the longitudinal direction (MD) at 135 ° C. Stretched 5 times. Next, in the tenter, both ends in the film width direction are sandwiched between clips, preheated at 175 ° C., stretched 8.2 times in the width direction (TD) at 160 ° C., and relaxed by 6.7% in the width direction (TD). And heat-fixed at 170 ° C. The film-forming conditions at this time were set as film-forming conditions a and are shown in Table 2.
After the corona treatment was performed on the surface of one side of the obtained biaxially oriented polypropylene film using a corona treatment machine manufactured by Sophtal Corona & Plasma GmbH under the condition of an applied current value of 0.75 A, a winder The biaxially oriented polypropylene film of the present invention was taken up in Table 3 shows the physical properties of the obtained film.
(実施例2、3)
 表1に示すとおりフィルム厚みを変更した以外は、実施例1と同様にして二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性は、表3に示すとおりである。
(Examples 2 and 3)
A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the film thickness was changed as shown in Table 1. Table 3 shows the physical properties of the obtained film.
(実施例4)
  基材層(A)に使用する混合原料は60mm押出機、表面層(B)に使用する混合原料は65mm押出機を用いて、それぞれ原料樹脂を250℃で溶融し、Tダイからシート状に共押し出しし、30℃の冷却ロールで冷却固化した後、135℃縦方向(MD)に4.5倍に延伸した。次いでテンター内で、フィルム幅方向両端をクリップで挟み、175℃で予熱後、160℃で幅方向(TD)に8.2倍に延伸し、幅方向(TD)に6.7%緩和させながら、170℃で熱固定した。表2に示す製膜条件aで製膜し、ワインダーで巻き取って、基材層(A)と表面層(B)が1層ずつ積層された本発明の二軸配向積層ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの表面層(B)の表面側にソフタル・コロナ・アンド・プラズマGmbH社製のコロナ処理機を用いて、印加電流値:0.75Aの条件で、コロナ処理を施した後、ワインダーで巻き取ったものを本発明の二軸配向ポリプロピレンフィルムとした。得られたフィルムの物性は、表3に示すとおりである。
Example 4
The mixed raw material used for the base material layer (A) is a 60 mm extruder, and the mixed raw material used for the surface layer (B) is a 65 mm extruder. After co-extrusion and cooling and solidifying with a 30 ° C. cooling roll, the film was stretched 4.5 times in the longitudinal direction (MD) at 135 ° C. Next, in the tenter, both ends in the film width direction are sandwiched between clips, preheated at 175 ° C., stretched 8.2 times in the width direction (TD) at 160 ° C., and relaxed by 6.7% in the width direction (TD). And heat-fixed at 170 ° C. A biaxially oriented laminated polypropylene film according to the present invention in which the base material layer (A) and the surface layer (B) were laminated one by one was obtained by film formation under the film production condition a shown in Table 2 and winding with a winder. . The surface of the surface layer (B) of the obtained biaxially oriented polypropylene film is subjected to corona treatment using a corona treatment machine manufactured by Sophthal Corona & Plasma GmbH under the condition of applied current value: 0.75A. After the application, the one wound with a winder was used as the biaxially oriented polypropylene film of the present invention. Table 3 shows the physical properties of the obtained film.
(実施例5)
 表1に示すポリプロピレン単独重合体PP-1を79重量%とポリプロピレン単独重合体PP-2と20重量%の混合物をポリプロピレン樹脂PP-1を99重量%に、横方向(TD)延伸倍率を10.0倍に変更した以外は、実施例1と同様にして二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性は、表3に示すとおりである。このときの製膜条件を製膜条件bとし、表2に示した。
(Example 5)
A mixture of 79% by weight of polypropylene homopolymer PP-1 and 20% by weight of polypropylene homopolymer PP-2 shown in Table 1 is 99% by weight of polypropylene resin PP-1 and a transverse direction (TD) draw ratio of 10%. A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the ratio was changed to 0.0. Table 3 shows the physical properties of the obtained film. The film forming conditions at this time were set as film forming conditions b and are shown in Table 2.
(比較例1)
 表1に示すポリプロピレン単独重合体PP-1を79重量%とポリプロピレン単独重合体PP-2と20重量%の混合物を、表1に示すポリプロピレン樹脂PP-1を99重量%に変更した以外は、実施例1と同様にして二軸配向ポリプロピレンフィルムを得た。
得られたフィルムの物性は、表4に示すとおりである。
(Comparative Example 1)
A mixture of 79% by weight of the polypropylene homopolymer PP-1 shown in Table 1 and 20% by weight of the polypropylene homopolymer PP-2 was changed to 99% by weight of the polypropylene resin PP-1 shown in Table 1. A biaxially oriented polypropylene film was obtained in the same manner as in Example 1.
The physical properties of the obtained film are as shown in Table 4.
(比較例2)
表1に示すポリプロピレン単独重合体PP-1を79重量%とポリプロピレン単独重合体PP-2と20重量%の混合物を、ポリプロピレン単独重合体PP-1を59重量%とポリプロピレン単独重合体PP-2と40重量%の混合物に変更した以外は、実施例1と同様にして二軸配向ポリプロピレンフィルム製膜したが、破断して製膜することが出来なかった。
(Comparative Example 2)
Table 1 shows a mixture of 79% by weight of polypropylene homopolymer PP-1 and 20% by weight of polypropylene homopolymer PP-2, 59% by weight of polypropylene homopolymer PP-1 and polypropylene homopolymer PP-2. A biaxially oriented polypropylene film was formed in the same manner as in Example 1 except that the mixture was changed to a 40 wt% mixture.
(比較例3)
 表1に示すポリプロピレン単独重合体PP-1を79重量%とポリプロピレン単独重合体PP-2と20重量%の混合物を、ポリプロピレン樹脂PP-3を99重量%に変更した以外は、実施例1と同様にして二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性は、表4に示すとおりである。
(Comparative Example 3)
Example 1 except that a mixture of 79% by weight of polypropylene homopolymer PP-1 and 20% by weight of polypropylene homopolymer PP-2 shown in Table 1 was changed to 99% by weight of polypropylene resin PP-3. Similarly, a biaxially oriented polypropylene film was obtained. The physical properties of the obtained film are as shown in Table 4.
(比較例4)
 表1に示すポリプロピレン単独重合体PP-1を79重量%とポリプロピレン単独重合体PP-2と20重量%の混合物を、ポリプロピレン樹脂PP-4を99重量%に変更し、縦方向延伸温度を125℃、幅方向延伸予熱温度を170℃、幅方向延伸温度を158℃、熱固定温度を165℃に変更した以外は、実施例1と同様にして二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性は、表4に示すとおりである。このときの製膜条件を製膜条件cとし、表2に示した。
(Comparative Example 4)
The mixture of 79% by weight of polypropylene homopolymer PP-1 and 20% by weight of polypropylene homopolymer PP-2 shown in Table 1 was changed to 99% by weight of polypropylene resin PP-4, and the longitudinal stretching temperature was 125%. A biaxially oriented polypropylene film was obtained in the same manner as in Example 1 except that the temperature in the width direction was preheated to 170 ° C, the width direction stretching temperature was changed to 158 ° C, and the heat setting temperature was changed to 165 ° C. The physical properties of the obtained film are as shown in Table 4. The film forming conditions at this time were set as film forming conditions c and are shown in Table 2.
(比較例5、6)
 表1に示すとおりフィルム厚みを変更した以外は、比較例3と同様にして二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性は、表4に示すとおりである。
(Comparative Examples 5 and 6)
A biaxially oriented polypropylene film was obtained in the same manner as in Comparative Example 3 except that the film thickness was changed as shown in Table 1. The physical properties of the obtained film are as shown in Table 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~5で得られた二軸配向ポリプロピレンフィルムは、幅方向(TD)の引裂強度は小さく、熱収縮率が小さかった。
 それに対して、比較例1、3で得られたフィルムは、幅方向(TD)の引裂強度が大きかった。
 比較例2では製膜ができなかった。
 比較例4、5、6で得られたフィルムは、幅方向(TD)及び縦方向(MD)において、幅方向(TD)の引裂強度も大きく、熱収縮率が大きかった。
The biaxially oriented polypropylene films obtained in Examples 1 to 5 had a small tear strength in the width direction (TD) and a small heat shrinkage rate.
In contrast, the films obtained in Comparative Examples 1 and 3 had a high tear strength in the width direction (TD).
In Comparative Example 2, no film could be formed.
The films obtained in Comparative Examples 4, 5, and 6 had a large tear strength in the width direction (TD) and a large heat shrinkage rate in the width direction (TD) and the machine direction (MD).
 本発明の二軸配向ポリプロピレン系フィルムは、スタンディングパウチなどに使用される食品包装用はもちろんのこと、ラベル用途等にも使用可能である。製袋工程にて、機械の流れ方向と直行する方向で折り曲げて、製袋する際には、横方向が手切れ方向となるため、横方向の引裂強度が重要となる。引裂強度の低い方が、手切れ性が良好なフィルムとなる。 The biaxially oriented polypropylene film of the present invention can be used for labeling as well as food packaging used for standing pouches and the like. In the bag making process, when the bag is folded in the direction perpendicular to the machine flow direction and the bag is made, the transverse direction becomes the hand cutting direction, and thus the lateral tear strength is important. A lower tear strength results in a film with better hand tearability.

Claims (4)

  1.  下記(a)~(c)の特徴を有する二軸配向ポリプロピレンフィルム。
    (a)ポリプロピレン系樹脂を主成分とする樹脂組成物からなる。
    (b)フィルムの幅方向あるいは縦方向における引裂強度(N/mm)≦(0.014×フィルム厚み(μm)+0.35)である。
    (c)フィルムの幅方向及び縦方向における150℃における熱収縮率が7%以下である。
    A biaxially oriented polypropylene film having the following characteristics (a) to (c).
    (A) It consists of the resin composition which has a polypropylene resin as a main component.
    (B) Tear strength (N / mm) ≦ (0.014 × film thickness (μm) +0.35) in the width direction or longitudinal direction of the film.
    (C) The heat shrinkage rate at 150 ° C. in the width direction and the longitudinal direction of the film is 7% or less.
  2.  フィルムの幅方向及び縦方向における引張弾性率が2.0GPa以上、かつ前記引張弾性率の大きい方向での引張弾性率が4.0GPa以上である請求項1に記載の二軸配向ポリプロピレンフィルム。 2. The biaxially oriented polypropylene film according to claim 1, wherein a tensile elastic modulus in a width direction and a longitudinal direction of the film is 2.0 GPa or more and a tensile elastic modulus in a direction in which the tensile elastic modulus is large is 4.0 GPa or more.
  3.  衝撃強度が0.6J以上である、請求項1あるいは2に記載の二軸配向ポリプロピレンフィルム。 The biaxially oriented polypropylene film according to claim 1 or 2, having an impact strength of 0.6 J or more.
  4.  ヘイズが5%以下である、請求項1~3のいずれかに記載の二軸配向ポリプロピレンフィルム。 The biaxially oriented polypropylene film according to any one of claims 1 to 3, wherein the haze is 5% or less.
PCT/JP2018/007729 2017-03-28 2018-03-01 Biaxially oriented polypropylene film WO2018180164A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019509039A JP7205462B2 (en) 2017-03-28 2018-03-01 biaxially oriented polypropylene film
JP2022085530A JP7298751B2 (en) 2017-03-28 2022-05-25 biaxially oriented polypropylene film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-062981 2017-03-28
JP2017062981 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018180164A1 true WO2018180164A1 (en) 2018-10-04

Family

ID=63674855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007729 WO2018180164A1 (en) 2017-03-28 2018-03-01 Biaxially oriented polypropylene film

Country Status (3)

Country Link
JP (2) JP7205462B2 (en)
TW (1) TWI781149B (en)
WO (1) WO2018180164A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113226704A (en) * 2018-12-28 2021-08-06 东洋纺株式会社 Biaxially oriented polypropylene film
WO2021256347A1 (en) * 2020-06-17 2021-12-23 東洋紡株式会社 Biaxially-oriented polypropylene film
WO2021261312A1 (en) * 2020-06-25 2021-12-30 東洋紡株式会社 Biaxially-oriented polypropylene film
US20220081521A1 (en) * 2018-12-28 2022-03-17 Toyobo Co., Ltd. Biaxially oriented polypropylene film
WO2023234417A1 (en) * 2022-06-02 2023-12-07 東洋紡株式会社 Mold release film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08300470A (en) * 1995-04-28 1996-11-19 Tokuyama Corp Biaxially stretched polypropylene film
JPH11254522A (en) * 1998-03-11 1999-09-21 Tokuyama Corp Polypropylene film
JP2001040112A (en) * 1999-07-27 2001-02-13 Toray Ind Inc Easily tearable biaxial orientation polypropylene film
JP2001171056A (en) * 1999-12-15 2001-06-26 Daicel Chem Ind Ltd Polypropylene-based film
JP2001302723A (en) * 2000-02-14 2001-10-31 Idemitsu Petrochem Co Ltd Propylenic polymer and film-shaped molded article
JP2014051656A (en) * 2012-08-09 2014-03-20 Toyobo Co Ltd Polypropylene film for in-mold label
JP2014055283A (en) * 2012-06-29 2014-03-27 Toyobo Co Ltd Stretched polypropylene film
WO2014104089A1 (en) * 2012-12-25 2014-07-03 東洋紡株式会社 Biaxially stretched polypropylene film
WO2015012324A1 (en) * 2013-07-23 2015-01-29 東洋紡株式会社 Stretched polypropylene film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006578A1 (en) * 2014-07-09 2016-01-14 東レ株式会社 Polypropylene film and release film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08300470A (en) * 1995-04-28 1996-11-19 Tokuyama Corp Biaxially stretched polypropylene film
JPH11254522A (en) * 1998-03-11 1999-09-21 Tokuyama Corp Polypropylene film
JP2001040112A (en) * 1999-07-27 2001-02-13 Toray Ind Inc Easily tearable biaxial orientation polypropylene film
JP2001171056A (en) * 1999-12-15 2001-06-26 Daicel Chem Ind Ltd Polypropylene-based film
JP2001302723A (en) * 2000-02-14 2001-10-31 Idemitsu Petrochem Co Ltd Propylenic polymer and film-shaped molded article
JP2014055283A (en) * 2012-06-29 2014-03-27 Toyobo Co Ltd Stretched polypropylene film
JP2014051656A (en) * 2012-08-09 2014-03-20 Toyobo Co Ltd Polypropylene film for in-mold label
WO2014104089A1 (en) * 2012-12-25 2014-07-03 東洋紡株式会社 Biaxially stretched polypropylene film
WO2015012324A1 (en) * 2013-07-23 2015-01-29 東洋紡株式会社 Stretched polypropylene film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113226704A (en) * 2018-12-28 2021-08-06 东洋纺株式会社 Biaxially oriented polypropylene film
US20220081521A1 (en) * 2018-12-28 2022-03-17 Toyobo Co., Ltd. Biaxially oriented polypropylene film
CN113226704B (en) * 2018-12-28 2023-04-18 东洋纺株式会社 Biaxially oriented polypropylene film
WO2021256347A1 (en) * 2020-06-17 2021-12-23 東洋紡株式会社 Biaxially-oriented polypropylene film
JP7040681B1 (en) * 2020-06-17 2022-03-23 東洋紡株式会社 Biaxially oriented polypropylene film
WO2021261312A1 (en) * 2020-06-25 2021-12-30 東洋紡株式会社 Biaxially-oriented polypropylene film
JPWO2021261312A1 (en) * 2020-06-25 2021-12-30
JP2022122963A (en) * 2020-06-25 2022-08-23 東洋紡株式会社 biaxially oriented polypropylene film
JP7164054B2 (en) 2020-06-25 2022-11-01 東洋紡株式会社 biaxially oriented polypropylene film
JP7255733B2 (en) 2020-06-25 2023-04-11 東洋紡株式会社 biaxially oriented polypropylene film
WO2023234417A1 (en) * 2022-06-02 2023-12-07 東洋紡株式会社 Mold release film

Also Published As

Publication number Publication date
JPWO2018180164A1 (en) 2020-02-06
JP7298751B2 (en) 2023-06-27
JP7205462B2 (en) 2023-01-17
JP2022111158A (en) 2022-07-29
TWI781149B (en) 2022-10-21
TW201842032A (en) 2018-12-01

Similar Documents

Publication Publication Date Title
JP7459919B2 (en) Biaxially oriented laminated polypropylene film
TWI773665B (en) Biaxially oriented polypropylene film
JP2018141122A (en) Biaxially oriented polypropylene film
JP7298751B2 (en) biaxially oriented polypropylene film
JP7409459B2 (en) Polypropylene laminated film
JP2013503756A (en) Multilayer polypropylene film and method for producing and using the same
JP2022033172A (en) Method of producing biaxially oriented polypropylene-based film
WO2019244708A1 (en) Polypropylene-based multilayer film
JP6500699B2 (en) Stretched film
JP7040681B1 (en) Biaxially oriented polypropylene film
WO2021256348A1 (en) Biaxially-oriented polypropylene film
JP4260978B2 (en) Polypropylene resin composition for stretched film
US20230212362A1 (en) Biaxially oriented polypropylene film
JP2024049096A (en) Biaxially oriented polypropylene film, food packaging and food packaging
WO2021256349A1 (en) Biaxially-oriented polypropylene film
JP2023013959A (en) Biaxially oriented laminated polypropylene film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509039

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775423

Country of ref document: EP

Kind code of ref document: A1