WO2015012324A1 - Stretched polypropylene film - Google Patents

Stretched polypropylene film Download PDF

Info

Publication number
WO2015012324A1
WO2015012324A1 PCT/JP2014/069485 JP2014069485W WO2015012324A1 WO 2015012324 A1 WO2015012324 A1 WO 2015012324A1 JP 2014069485 W JP2014069485 W JP 2014069485W WO 2015012324 A1 WO2015012324 A1 WO 2015012324A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
fusion
less
stretched
heat
Prior art date
Application number
PCT/JP2014/069485
Other languages
French (fr)
Japanese (ja)
Inventor
山田 浩司
理 木下
多賀 敦
健一 船城
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020167001650A priority Critical patent/KR102352439B1/en
Priority to JP2015528316A priority patent/JP6477472B2/en
Publication of WO2015012324A1 publication Critical patent/WO2015012324A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene

Definitions

  • the present invention relates to a stretched polypropylene film. More specifically, the present invention relates to a stretched polypropylene film excellent in heat resistance and mechanical properties, which can be suitably used in various fields where dimensional stability at high temperature and high rigidity are required.
  • stretched polypropylene films have been widely used for a wide range of applications such as packaging for food and various products, electrical insulation, and surface protection films.
  • the conventional polypropylene film has a shrinkage rate of several tens of percent at 150 ° C., and has low heat resistance and low rigidity as compared with a polyethylene terephthalate (PET) film or the like.
  • PET polyethylene terephthalate
  • Patent Documents 1 to 3 have difficulty in stretchability and inferior mechanical properties such as impact resistance.
  • an object of the present invention is to provide a stretched polypropylene film having a low shrinkage comparable to that of a polyethylene terephthalate (PET) film at 150 ° C. and having high rigidity.
  • PET polyethylene terephthalate
  • the stretched polypropylene film of the present invention is a stretched film using a propylene polymer that satisfies the following requirements (a) to (c), and satisfies the following requirements (d) and (e): Features.
  • (C) The melt flow rate (MFR) is 0.5 g / 10 min or more and 20 g / 10 min or less.
  • (D) The half-value width of the maximum peak when the scattering intensity of the 110 plane of the ⁇ -type crystal of polypropylene measured by the wide angle X-ray scattering method is plotted against the azimuth is 30 degrees or less.
  • (E) The melting endothermic peak area (total heat of fusion) measured at a heating rate of 20 ° C./min using a differential scanning calorimeter is 115 J / g or more and an area of 150 ° C. or less (150 ° C. heat of fusion) ) To the total heat of fusion (150 ° C. heat of fusion / total heat of fusion) is 0.12 or less.
  • a stretched film is a film having an orientation stretched by a method such as uniaxial, simultaneous biaxial, and sequential biaxial, industrially, and the degree of orientation is, for example, wide-angle X-ray diffraction or small-angle X-ray. It can be estimated from scattering, refractive index, and the like.
  • the degree of orientation of the stretched film is defined by wide-angle X-ray diffraction.
  • the long-period size obtained from the long-period scattering peak in the main orientation direction measured by the small-angle X-ray scattering method is 40 nm or more.
  • a film stretched at least uniaxially and having a thickness of 3 to 100 ⁇ m is preferable.
  • the thermal shrinkage rate in the TD direction at 150 ° C. and the thermal shrinkage rate in the MD direction at 150 ° C. are both 10% or less.
  • the haze of the film is 6% or less.
  • the stretched polypropylene film of the present invention a low shrinkage rate and a high rigidity comparable to that of a polyethylene terephthalate (PET) film can be exhibited at 150 ° C., and thus thinning is possible. Furthermore, since the stretched polypropylene film of the present invention can maintain various physical properties even when exposed to an environment of 150 ° C. or higher, it should be used in a high-temperature environment that has not been considered with conventional polypropylene films. And can be preferably applied in a wide range of applications. For example, the stretched polypropylene film of the present invention is used as a base material layer, and a heat seal layer or a gas barrier layer is laminated on the surface layer, so that it can be used for various packaging applications.
  • PET polyethylene terephthalate
  • the heat sealing strength is improved by setting the heat sealing temperature high, so that the line speed in bag making processing is increased. Can improve productivity. Furthermore, the amount of deformation of the bag can also be suppressed when high-temperature processing such as retort is performed after bag making.
  • the present invention relates to a stretched polypropylene film excellent in dimensional stability at high temperatures and mechanical properties.
  • the characteristics of the stretched polypropylene film of the present invention are as follows: (1) The stretched polypropylene film of the present invention is a stretched film using a propylene polymer that satisfies the following requirements (a) to (c), and the following requirements ( d) and (e) are satisfied. (A) Mesopentad fraction is 96% or more. (B) The content of comonomer other than propylene is 0.5 mol% or less. (C) The melt flow rate (MFR) is 0.5 g / 10 min or more and 20 g / 10 min or less.
  • (D) The half-value width of the maximum peak when the scattering intensity of the 110 plane of the ⁇ -type crystal of polypropylene measured by the wide angle X-ray scattering method is plotted against the azimuth is 30 degrees or less.
  • (E) The melting endothermic peak area (total heat of fusion) measured at a heating rate of 20 ° C./min using a differential scanning calorimeter is 115 J / g or more and an area of 150 ° C. or less (150 ° C. heat of fusion) ) To the total heat of fusion (150 ° C. heat of fusion / total heat of fusion) is 0.12 or less.
  • required from the long period scattering peak of the main orientation direction measured by a small angle X-ray scattering method is 40 nm or more, (3) Furthermore, it is preferable that the film is a film stretched at least uniaxially with a thickness of 3 to 100 ⁇ m, (4) Furthermore, it is preferable that the thermal shrinkage rate in the TD direction at 150 ° C. and the thermal shrinkage rate in the MD direction at 150 ° C. are both 10% or less, (5) Further, it is preferable that the haze is 6% or less.
  • the polypropylene resin used in the present invention is not particularly limited, and for example, a propylene homopolymer or a copolymer with ethylene and / or an ⁇ -olefin having 4 or more carbon atoms can be used.
  • a propylene homopolymer substantially free of comonomer is preferable, and even when the comonomer is contained, the amount of comonomer is 0.5 mol% or less.
  • the upper limit of the comonomer amount is preferably 0.3 mol%, more preferably 0.1 mol%. When it is in the above range, the crystallinity may be improved, and the thermal shrinkage at high temperatures may be reduced.
  • a comonomer may be contained as long as it is a trace amount within a range in which the crystallinity is not significantly reduced.
  • the polypropylene resin constituting the film is more preferably a propylene homopolymer obtained only from a propylene monomer, and even the propylene homopolymer is most preferably free of heterogeneous bonds such as head-to-head bonds. .
  • the lower limit of the mesopentad fraction measured by 13 C-NMR, which is an index of stereoregularity of the polypropylene resin constituting the film, is 96%.
  • the lower limit of the mesopentad fraction is preferably 96.5%, more preferably 97%.
  • the upper limit of the mesopentad fraction is preferably 99.8%, more preferably 99.6%, still more preferably 99.5%. In the above range, realistic production may be easy.
  • the lower limit of the meso average chain length of the polypropylene resin constituting the film is preferably 100, more preferably 120, and still more preferably 130. When it is in the above range, the crystallinity may be improved, and the thermal shrinkage at high temperatures may be reduced.
  • the upper limit of the meso average chain length is preferably 5000 from a practical aspect.
  • the lower limit of the xylene-soluble content of the polypropylene resin constituting the film is preferably 0.1% by mass from a practical aspect.
  • the upper limit of the xylene-soluble content is preferably 7% by mass, more preferably 6% by mass, and further preferably 5% by mass. When it is in the above range, the crystallinity may be improved, and the thermal shrinkage at high temperatures may be reduced.
  • the lower limit of the melt flow rate (MFR) (230 ° C., 2.16 kgf) of the polypropylene resin is 0.5 g / 10 minutes.
  • the lower limit of the MFR is preferably 1.0 g / 10 minutes, more preferably 1.3 g / 10 minutes, still more preferably 1.5 g / 10 minutes, still more preferably 2.0 g / 10 minutes. Yes, particularly preferably 4.0 g / 10 min, and preferably 6.0 g / 10 min.
  • the mechanical load is small, and extrusion and stretching may be easy.
  • the upper limit of MFR is 20 g / 10 minutes, preferably 17 g / 10 minutes, more preferably 16 g / 10 minutes, and further preferably 15 g / 10 minutes.
  • stretching may be easy, thickness unevenness may be reduced, and the stretching temperature and heat setting temperature may be easily increased, resulting in a lower thermal shrinkage rate.
  • the lower limit of the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) of the polypropylene resin constituting the film is preferably 20000, more preferably 22000, still more preferably 24000, Preferably it is 26000, and most preferably 27000.
  • Mn number average molecular weight measured by gel permeation chromatography
  • the upper limit of Mn is preferably 200000, more preferably 170000, still more preferably 160000, and particularly preferably 150,000.
  • the effects of the present application such as a low heat shrinkage rate at high temperature, which is an effect of a low molecular weight substance, may be easily obtained, or stretching may be facilitated.
  • the lower limit of the mass average molecular weight (Mw) measured by GPC of the polypropylene resin constituting the film is preferably 180000, more preferably 200000, still more preferably 230,000, still more preferably 240000, particularly Preferably it is 250,000, and most preferably 270000.
  • Mw mass average molecular weight measured by GPC of the polypropylene resin constituting the film.
  • the polypropylene resin used in the present invention preferably has the following characteristics. That is, when the gel permeation chromatography (GPC) integration curve of the polypropylene resin constituting the film is measured, the lower limit of the amount of the component having a molecular weight of 100,000 or less is preferably 35% by mass, more preferably 38% by mass. Yes, more preferably 40% by mass, particularly preferably 41% by mass, and most preferably 42% by mass. Within the above range, the effects of the present application such as a low heat shrinkage rate at a high temperature, which is an effect of a low molecular weight substance, may be easily obtained, and stretching may be facilitated.
  • GPC gel permeation chromatography
  • the upper limit of the amount of a component having a molecular weight of 100,000 or less in the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, still more preferably 58% by mass, and particularly preferably 56% by mass. Most preferably, it is 55 mass%.
  • stretching may be easy, thickness unevenness may be reduced, and the stretching temperature and heat setting temperature may be easily increased, resulting in a low thermal shrinkage rate.
  • the lower limit of mass average molecular weight (Mw) / number average molecular weight (Mn), which is generally an indicator of the breadth of molecular weight distribution, is preferably 4, more preferably 4.5. Yes, more preferably 5, particularly preferably 5.5, and most preferably 6.
  • the upper limit of Mw / Mn is preferably 30, more preferably 25, still more preferably 22, particularly preferably 21, and most preferably 20. When Mw / Mn is in the above range, realistic production is easy.
  • the molecular weight distribution of polypropylene is such that components with different molecular weights are polymerized in a series of plants in multiple stages, components with different molecular weights are blended offline in a kneader, or catalysts with different performances are blended for polymerization. Or by using a catalyst capable of realizing a desired molecular weight distribution.
  • the stretched polypropylene film in the present invention is characterized by its structure, particularly the orientation of the film.
  • the stretched polypropylene film generally has a crystal orientation, and its direction and degree greatly affect the physical properties of the film.
  • the degree of crystal orientation varies depending on the molecular structure of the polypropylene used and the process and conditions in film production.
  • the orientation direction of the stretched polypropylene film can be determined by measuring the azimuth angle dependency of the scattering peak derived from the crystal by making X-rays incident perpendicular to the film surface by wide-angle X-ray diffraction method. it can.
  • the stretched polypropylene film typically has a monoclinic ⁇ -type crystal structure.
  • the ⁇ -type crystal has a strong orientation mainly in one axis when the azimuth angle dependence of the scattering intensity of 110 planes (plane spacing: 6.65 ⁇ ) is measured by wide-angle X-ray diffraction. That is, when the scattering intensity derived from the 110 plane of the ⁇ -type crystal is plotted against the azimuth angle, the strongest peak is observed in the direction perpendicular to the orientation of the molecular axis.
  • the degree of orientation is defined by the half width of the maximum peak.
  • FIG. 1 shows the full width at half maximum of the main peak (maximum peak) of the azimuth angle dependency of the 110 plane.
  • the half-value width of the maximum peak when plotting the scattering intensity of the 110 plane measured by the wide-angle X-ray scattering method against the azimuth is 30 degrees or less.
  • the upper limit of the half width is preferably 29 degrees, more preferably 28 degrees.
  • the FWHM of the azimuth angle dependence of the scattering intensity derived from the 110 plane is larger than the above range, the orientation is not sufficient, and the heat resistance and rigidity are not sufficient.
  • the lower limit of the FWHM of the azimuth angle dependence of the scattering intensity derived from the 110 plane is preferably 5 degrees, more preferably 7 degrees, and even more preferably 8 degrees. If the full width at half maximum of the 110 plane is smaller than the above range, impact resistance may be lowered and orientation cracks may occur.
  • the half width defined in the present invention is preferably measured using X-rays with high parallelism, and radiant light is preferably used.
  • X-ray generation source used for wide-angle X-ray diffraction measurement
  • a general apparatus such as a tube type or a rotary type used in a laboratory may be used, but a high-intensity light source capable of emitting high-intensity synchrotron radiation. Is preferably used. With synchrotron radiation, X-rays do not spread easily and the brightness is high, so measurements can be performed with high accuracy and in a short time.
  • SPring-8 Large-scale synchrotron radiation facilities such as SPring-8, High Energy Accelerator Research Organization, Aichi Synchrotron Light Center, Saga Kyushu Synchrotron Light Research Center
  • SPring-8 it is preferable to measure the full width at half maximum of the present invention using a beam line BL03XU owned by the Frontier Soft Matter Development Industry-University Federation (FSBL).
  • FSBL Frontier Soft Matter Development Industry-University Federation
  • the long period size is large.
  • a crystalline polymer has a regular laminated structure (periodic structure) composed of repeating crystals and amorphous.
  • the size of the repeating unit composed of a crystal and an amorphous is called a long period size.
  • the long period size can be obtained from the scattering peak angle derived from the long period structure in the main orientation direction measured by the small angle X-ray scattering method.
  • the long-period scattering peak by the small-angle X-ray scattering measurement of the stretched polypropylene film of the present invention needs to be clearly observed in the main orientation direction.
  • the main orientation direction indicates a direction in which scattering due to the long period of the polymer crystal is more strongly observed in the two-dimensional X-ray scattering pattern.
  • the main orientation direction In the case of uniaxial stretching, the main orientation direction often coincides with the stretching direction.
  • the main orientation direction in the transverse stretching direction In the case of sequential biaxial stretching of longitudinal stretching and transverse stretching, depending on the respective stretching ratios, the main orientation direction in the transverse stretching direction. Often match. It is shown that a long-period structure with high ordering is formed as the long-period peak attributed to the polymer crystal is clearly observed.
  • the long period size obtained from the long period scattering peak is preferably 40 nm or more.
  • the lower limit of the long period size is more preferably 41 nm, and still more preferably 43 nm.
  • the upper limit of the long period size is preferably 100 nm, more preferably 90 nm, and further preferably 80 nm.
  • the X-ray generation source used for the small-angle X-ray scattering measurement is not particularly limited, and a general apparatus such as a tube type or a rotary type used in a laboratory can be used. It is preferable to use a high-intensity light source capable of irradiating radiation with high luminance, similar to the X-ray generation source used in the above.
  • a high-intensity light source capable of irradiating radiation with high luminance similar to the X-ray generation source used in the above.
  • the stretched polypropylene film of the present invention has a large long period, X-ray scattering derived from the long period structure is in a smaller angle region.
  • the beam diameter can be reduced to several hundred microns or less, and It is preferable to measure an ultra-small angle region under a long camera length using synchrotron radiation having high luminance.
  • the camera length is preferably 7 m or longer.
  • the stretched film of the present invention has the following highly crystalline characteristics.
  • the total heat of fusion in the temperature rise measurement with a differential scanning calorimeter (DSC) can be used as an index of crystallinity.
  • the total heat of fusion corresponds to the melting endothermic peak area measured by a differential scanning calorimeter at a rate of temperature increase of 20 ° C./min.
  • the lower limit of the total heat of fusion is 115 J / g, preferably 117 J / g, more preferably 120 J / g.
  • the upper limit of the total heat of fusion is preferably 150 J / g, more preferably 145 J / g, and even more preferably 140 J / g.
  • the total heat of fusion is, for example, within the above range by a technique such as reducing or not using the amount of copolymerization monomer, increasing stereoregularity, setting the stretching temperature and heat setting temperature to a high temperature, and performing offline annealing. Can be controlled.
  • the area of 150 ° C. or lower corresponds to 150 ° C. heat of fusion.
  • the upper limit of the ratio of 150 ° C. heat of fusion and total heat of fusion (150 ° C. heat of fusion / total heat of fusion) obtained as an endothermic peak partial area of 150 ° C. or lower is 0.12, preferably 0.11. Yes, more preferably 0.10. If it is larger than this, the heat resistance at high temperatures may be lowered.
  • the lower limit of the 150 ° C. heat of fusion / total heat of fusion is preferably 0, more preferably 0.005, and even more preferably 0.01.
  • the heat of fusion at 150 ° C. can be controlled by, for example, techniques such as reducing or not using the amount of copolymerization monomer, setting the stretching temperature and heat setting temperature to a high temperature, and performing offline annealing.
  • the rise of the peak due to the start of melting is recognized from around 140 ° C., and at 140 ° C. Although the heat resistance of can be expected, the thermal shrinkage rate increased rapidly at 150 ° C.
  • the peak rise is small even at 150 ° C., and it is considered that low heat shrinkability at 150 ° C. is obtained. That is, the stretched polypropylene film of the present invention can maintain various physical properties even when exposed to an environment of 150 ° C. or higher, and should be used even in a high temperature environment that could not be considered with a conventional stretched polypropylene film. Can do.
  • the start of melting can be determined from the DSC curve.
  • FIG. 2 shows the DSC chart of Example 1 as an example of the stretched film of the present invention. *
  • the lower limit of the melting peak temperature measured with a differential scanning calorimeter at a rate of temperature rise of 20 ° C./min is preferably 165 ° C., more preferably 167 ° C. When the melting peak temperature is within the above range, the thermal shrinkage rate at a high temperature may be small.
  • the upper limit of the melting peak temperature is preferably 180 ° C, more preferably 178 ° C, and further preferably 177 ° C. When the melting peak temperature is within the above range, realistic production may be facilitated.
  • the melting peak temperature is within the above range by, for example, a technique in which the amount of copolymerization monomer is reduced or not used, the stereoregularity is increased, the stretching temperature and the heat setting temperature are set to a high temperature, and offline annealing is performed. Can be controlled within.
  • the stretched polypropylene film of the present invention exhibits the following physical properties.
  • the following physical properties can be measured and evaluated by, for example, the methods described later in Examples.
  • the stretched polypropylene film of the present invention is a stretched film mainly composed of a polypropylene resin, and preferably has a thermal shrinkage of 10% or less in the MD direction and the TD direction at 150 ° C.
  • the MD direction is a film flow direction (also referred to as a length direction or a longitudinal direction)
  • a TD direction is a direction perpendicular to the film flow direction (a lateral direction or a width direction).
  • the 150 ° C. heat shrinkage rate in the MD direction and the TD direction is 15% or more
  • the 120 ° C. heat shrinkage rate is about 3%.
  • the lower limit of the 150 ° C. heat shrinkage rate in the MD direction and the TD direction of the stretched polypropylene film of the present invention is preferably 0.2%, more preferably 0.3%, still more preferably 0.5%. Yes, particularly preferably 0.7%, most preferably 1.0%.
  • the upper limit of the 150 ° C. heat shrinkage in the MD direction and the TD direction is preferably 10%, more preferably 9%, still more preferably 8%, particularly preferably 7%, and most preferably 5%. %.
  • heat shrinkage ratio is in the above range, it is easier to use in applications and processing that may be exposed to a high temperature of about 150 ° C. If the heat shrinkage at 150 ° C. is up to about 1.5%, for example, it is possible to increase the low molecular weight component, and adjust the stretching conditions and heat setting conditions. It is preferable to perform an annealing treatment offline.
  • the lower limit of the impact resistance (23 ° C.) of the stretched polypropylene film of the present invention is preferably 0.6 J, more preferably 0.7 J.
  • the upper limit of impact resistance is preferably 2 J, more preferably 1.8 J, even more preferably 1.6 J, and particularly preferably 1.5 J from the practical viewpoint.
  • the impact resistance tends to decrease.
  • the lower limit of the haze of the stretched polypropylene film of the present invention is preferably 0.1% as a practical value, more preferably 0.2%, still more preferably 0.3%, and particularly preferably 0. 4%.
  • the upper limit of haze is preferably 6%, more preferably 5%, still more preferably 4.5%, particularly preferably 4%, and most preferably 3.5%. If the haze is in the above range, it may be easy to use in applications where transparency is required. For example, when the stretching temperature and the heat setting temperature are too high, the haze tends to be deteriorated when the cooling roll (CR) temperature is high and the stretching rate of the stretched raw sheet is slow, or when the low molecular weight is too large. By adjusting, it can control within the said range.
  • the lower limit of the Young's modulus (23 ° C.) in the MD direction is preferably 2 GPa, more preferably 2.1 GPa, and even more preferably 2.2 GPa. Yes, particularly preferably 2.3 GPa, and most preferably 2.4 GPa.
  • the upper limit of the Young's modulus in the MD direction is preferably 4 GPa, more preferably 3.7 GPa, still more preferably 3.5 GPa, particularly preferably 3.4 GPa, and most preferably 3.3 GPa. .
  • the lower limit of the Young's modulus (23 ° C.) in the TD direction is preferably 3.8 GPa, more preferably 4 GPa, and even more preferably 4.1 GPa. Yes, and particularly preferably 4.2 GPa.
  • the upper limit of the Young's modulus in the TD direction is preferably 8 GPa, more preferably 7.5 GPa, still more preferably 7 GPa, and particularly preferably 6.5 GPa.
  • the Young's modulus can be increased, for example, by increasing the stretching ratio. In the case of MD-TD stretching, the MD stretching ratio is set to a lower value, and the TD stretching ratio is set to a higher value. The Young's modulus of can be increased.
  • the lower limit of the uniformity of the thickness of the stretched polypropylene film of the present invention is preferably 0%, more preferably 0.1%, still more preferably 0.5%, and particularly preferably 1%.
  • the upper limit of the thickness uniformity is preferably 20%, more preferably 17%, still more preferably 15%, particularly preferably 12%, and most preferably 10%. When the thickness uniformity is within the above range, defects are unlikely to occur during post-processing such as coating and printing, and it is easy to use for applications that require precision.
  • the lower limit of the density of the stretched polypropylene film of the present invention is preferably 0.910 g / cm 3 , more preferably 0.911 g / cm 3 , still more preferably 0.912 g / cm 3 , and particularly preferably 0.913 g / cm 3 .
  • the upper limit of the film density is preferably 0.930 g / cm 3 , more preferably 0.928 g / cm 3 , still more preferably 0.926 g / cm 3 , and particularly preferably 0.925 g / cm 3. It is. If the film density exceeds the upper limit, production may be difficult in practice.
  • the film density can be increased by increasing the stretching ratio and stretching temperature, increasing the heat setting temperature, and further performing offline annealing.
  • the lower limit of the refractive index (Nx) in the MD direction of the stretched polypropylene film of the present invention is preferably 1.502, more preferably 1.503, and still more preferably 1.504.
  • the upper limit of Nx is preferably 1.520, more preferably 1.517, and even more preferably 1.515.
  • the lower limit of the refractive index (Ny) in the TD direction of the stretched polypropylene film of the present invention is preferably 1.523, more preferably 1.525.
  • the upper limit of Ny is preferably 1.535, and more preferably 1.532.
  • the lower limit of the refractive index (Nz) in the thickness direction of the stretched polypropylene film of the present invention is preferably 1.480, more preferably 1.490, and even more preferably 1.500.
  • the upper limit of Nz is preferably 1.510, more preferably 1.507, and even more preferably 1.505.
  • the lower limit of the plane orientation coefficient of the stretched polypropylene film of the present invention is preferably 0.0125, more preferably 0.0126, still more preferably 0.0127, and particularly preferably 0.0128.
  • the upper limit of the plane orientation coefficient is preferably 0.0155, more preferably 0.0150, even more preferably 0.0148, and particularly preferably 0.0145 as a practical value.
  • the plane orientation coefficient can be set within the range by adjusting the draw ratio. When the plane orientation coefficient is within this range, the thickness unevenness of the film is also good.
  • the polypropylene resin is obtained by polymerizing propylene as a raw material using a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst. Among these, in order to eliminate heterogeneous bonds, it is preferable to use a Ziegler-Natta catalyst and a catalyst capable of polymerization with high stereoregularity.
  • a known method may be employed as a polymerization method of propylene.
  • a method of polymerizing in an inert solvent such as hexane, heptane, toluene, xylene
  • a method of polymerizing in a liquid monomer a gas monomer
  • examples thereof include a method of adding a catalyst and polymerizing in a gas phase state, or a method of polymerizing by combining these.
  • additives and other resins may be added to the film-forming resin composition of the present invention.
  • the additive include an antioxidant, an ultraviolet absorber, an antistatic agent, a lubricant, a nucleating agent, an adhesive, an antifogging agent, a flame retardant, an antiblocking agent, and an inorganic or organic filler.
  • the other resin include polypropylene resins other than the polypropylene resin used in the present invention, random copolymers that are copolymers of propylene and ethylene and / or ⁇ -olefins having 4 or more carbon atoms, and various elastomers.
  • the stretched film of the present invention may be a uniaxially stretched film in the longitudinal direction (MD direction) or the transverse direction (TD direction), but is preferably a biaxially stretched film.
  • biaxial stretching sequential biaxial stretching or simultaneous biaxial stretching may be used.
  • by stretching at least uniaxially it is possible to obtain a film having a low thermal shrinkage even at 150 ° C., which could not be expected with a conventional polypropylene film.
  • a method for producing a longitudinally-laterally stretched sequential biaxially stretched film which is the most preferred example will be described below.
  • a polypropylene resin is heated and melted with a single or twin screw extruder and extruded onto a chill roll to obtain an unstretched sheet.
  • the melt extrusion conditions are such that the resin temperature is 200 to 280 ° C.
  • the sheet is extruded from a T-die and cooled and solidified with a cooling roll having a temperature of 10 to 100 ° C.
  • the film is stretched 3 to 8 times, preferably 3 to 7 times in the length (MD) direction with a stretching roll at 120 to 165 ° C., and then 155 ° C.
  • a roll sample can be obtained by subjecting the polypropylene film thus obtained to a corona discharge treatment on at least one surface, if necessary, and then winding it with a winder.
  • the lower limit of the MD draw ratio is preferably 3 times, more preferably 3.5 times. If the MD draw ratio is less than the above, film thickness unevenness may occur.
  • the upper limit of the MD draw ratio is preferably 8 times, more preferably 7 times. If the MD draw ratio exceeds the above, subsequent TD stretching may be difficult.
  • the lower limit of the MD stretching temperature is preferably 120 ° C, more preferably 125 ° C, and even more preferably 130 ° C. If the MD stretching temperature is lower than the above, the mechanical load may increase, the thickness unevenness may increase, or the film may become rough.
  • the upper limit of the MD stretching temperature is preferably 165 ° C, more preferably 160 ° C, still more preferably 155 ° C, and particularly preferably 150 ° C. A higher stretching temperature is preferable for lowering the thermal shrinkage, but it may adhere to the roll and cannot be stretched, or surface roughness may occur.
  • the lower limit of the stretching ratio of TD is preferably 4 times, more preferably 5 times, and further preferably 6 times. If the draw ratio of TD is less than the above, thickness unevenness may occur.
  • the upper limit of the TD stretch ratio is preferably 20 times, more preferably 17 times, still more preferably 15 times, and particularly preferably 12 times. When the draw ratio of TD exceeds the above, the thermal shrinkage rate may be increased or the film may be broken during stretching.
  • the preheating temperature in TD stretching is preferably set to be 5 to 15 ° C. higher than the stretching temperature in order to quickly raise the film temperature in the vicinity of the stretching temperature.
  • TD stretching is preferably performed at a higher temperature than a conventional stretched polypropylene film.
  • the lower limit of the TD stretching temperature is preferably 155 ° C, more preferably 157 ° C, and even more preferably 158 ° C.
  • the upper limit of the TD stretching temperature is preferably 175 ° C, more preferably 170 ° C, and even more preferably 168 ° C. In order to lower the heat shrinkage rate, it is preferable that the TD stretching temperature is higher. However, if the temperature exceeds the above, not only the low molecular weight component is melted and recrystallized, but the orientation is lowered, and the surface roughness and the film are whitened. There are things to do.
  • the stretched film is usually heat-set.
  • heat setting can be performed at a higher temperature than conventional stretched polypropylene films.
  • the lower limit of the heat setting temperature is preferably 165 ° C, more preferably 166 ° C.
  • the upper limit of the heat setting temperature is preferably 175 ° C, more preferably 173 ° C. If the heat setting temperature exceeds the above, the low molecular weight component may melt and recrystallize, resulting in surface roughness and whitening of the film.
  • the lower limit of relaxation is preferably 2%, more preferably 3%. If the relaxation is less than the above, the heat shrinkage rate may be high.
  • the upper limit of relaxation is preferably 10%, more preferably 8%. When the relaxation is more than the above, thickness unevenness may increase.
  • the film manufactured in the above process can be once rolled up and then annealed offline.
  • the lower limit of the offline annealing temperature is preferably 160 ° C., more preferably 162 ° C., and further preferably 163 ° C. If the offline annealing temperature is lower than the above, the effect of annealing may not be obtained.
  • the upper limit of the offline annealing temperature is preferably 175 ° C, more preferably 174 ° C, and further preferably 173 ° C. When the off-line annealing temperature exceeds the above, transparency may be reduced or thickness unevenness may be increased.
  • the lower limit of the offline annealing time is preferably 0.1 minutes, more preferably 0.5 minutes, and even more preferably 1 minute. If the offline annealing time is less than the above, the annealing effect may not be obtained.
  • the upper limit of the offline annealing time is preferably 30 minutes, more preferably 25 minutes, and further preferably 20 minutes. When the offline annealing time exceeds the above, productivity may be reduced.
  • the thickness of the film is set according to each application, the lower limit of the film thickness is preferably 2 ⁇ m, more preferably 3 ⁇ m, and further preferably 4 ⁇ m.
  • the upper limit of the film thickness is preferably 300 ⁇ m, more preferably 250 ⁇ m, still more preferably 200 ⁇ m, further preferably 150 ⁇ m, particularly preferably 100 ⁇ m, and most preferably 50 ⁇ m.
  • the stretched polypropylene film obtained in this way is usually formed into a film having a width of about 2000 to 12000 mm and a length of about 1000 to 50000 m, and wound into a roll. Furthermore, it is slit according to each application and used as a slit roll having a width of 300 to 2000 mm and a length of about 500 to 5000 m.
  • the stretched polypropylene film of the present invention has excellent properties such as those described above which are not present in the prior art. When used as a packaging film, it is highly rigid and can be thinned, thereby reducing costs and weight. In addition, since the stretched polypropylene film of the present invention has high heat resistance, it can be processed at a high temperature during coating and printing, and it is possible to use a coating agent, an ink, a laminating adhesive, or the like, which has been difficult to use conventionally, or production. it can. Furthermore, the stretched polypropylene film of the present invention can be used as an insulating film for capacitors and motors, a back sheet for solar cells, a barrier film for inorganic oxides, and a base film for transparent conductive films such as ITO.
  • Japanese Patent Application No. 2013-154673 filed Japanese Patent Application No. 2013-154673 filed on July 25, 2013, Japanese Patent Application No. 2013- filed on July 29, 2013 No. 157049 and Japanese Patent Application No. 2013-157050 filed on Jul. 29, 2013 are all claimed.
  • the measuring method of the physical property in an Example is as follows.
  • the mesopentad fraction ([mmmm]%) and meso average chain length were measured using 13 C-NMR.
  • the mesopentad fraction was determined according to the method described in “Zambelli et al., Macromolecules, Vol. 6, 925 (1973)”, and the meso average chain length was determined according to Chapter 2 of “Polymer Sequence Distribution” by “J. (1977) (Academic Press, New York) ".
  • the 13 C-NMR measurement was performed at 110 ° C. using “AVANCE 500” manufactured by BRUKER, and dissolving 200 mg of the sample in an 8: 2 (volume ratio) mixture of o-dichlorobenzene and heavy benzene at 135 ° C.
  • Xylene solubles (unit: mass%) 1 g of a polypropylene sample is dissolved in 200 ml of boiling xylene, allowed to cool, then recrystallized in a constant temperature water bath at 20 ° C. for 1 hour, and the ratio of the mass dissolved in the filtrate to the original sample amount is determined as the xylene solubles ( Mass%).
  • MFR Melt flow rate
  • the number average molecular weight (Mn), the mass average molecular weight (Mw), and the Z + 1 average molecular weight (Mz + 1) are determined by the molecular number (Ni) of the molecular weight (Mi) at each elution position of the GPC curve obtained through the molecular weight calibration curve. It is defined by the following formula.
  • the obtained two-dimensional image was subjected to air scattering correction in consideration of dark current (dark noise) and transmittance.
  • the camera length was measured using cerium oxide (CeO 2 ) and Fit 2D (European Synchrotron Radiation Facility software [http://www.esrf.eu/computing/scientific/FIT2D/]) (110) The azimuth profile of was calculated.
  • a scattering image of was obtained.
  • Air scattering correction was performed on the obtained scattered image in consideration of dark current and transmittance in the same manner as the WAXS measurement, and collagen calibrated separately with silver behenate was used for accurate camera length measurement.
  • a profile in the width direction of the sample was calculated using the Fit2d software described above, and plotted with the scattering vector q (nm ⁇ 1 ) on the horizontal axis and the common logarithm of intensity I (q) on the vertical axis.
  • the calculation range of the profile was ⁇ 5 degrees from the width direction.
  • DSC Differential scanning calorimetry
  • Thickness uniformity (thickness unevenness) (unit:%)
  • a square sample having a length of 1 m was cut out from the wound film roll, and divided into 10 parts each in the MD direction and the TD direction, and 100 measurement samples were prepared. The thickness was measured with a contact-type film thickness meter at the approximate center of the measurement sample. The average value A of the obtained 100 points of data was obtained, the difference (absolute value) B between the minimum value and the maximum value was obtained, and the value calculated using the formula of (B / A) ⁇ 100 was used as the thickness variation of the film. It was.
  • Refractive index (Nx, Ny, Nz) Measurement was performed using an Abbe refractometer (manufactured by Atago Co., Ltd.). The refractive indexes along the MD and TD directions were Nx and Ny, respectively, and the refractive index in the thickness direction was Nz.
  • NOVATEC registered trademark
  • Table 1 shows the structure of the polypropylene constituting the film
  • Table 2 shows the film forming conditions.
  • the physical properties of the obtained film are as shown in Table 3.
  • the heat shrinkage rate was low and the Young's modulus was high.
  • the chart obtained by the differential scanning calorimetry (DSC) of this film is shown in FIG.
  • a stretched polypropylene film of the present invention was obtained in the same manner as in Example 1 except that. The thickness of the obtained film was 20 ⁇ m. Table 1 shows the structure of the polypropylene constituting the film, and Table 2 shows the film forming conditions. The physical properties of the obtained film were as shown in Table 3.
  • PP-3 A pellet of a mixture of 96.5% propylene polymer
  • a stretched polypropylene film of the present invention was obtained in the same manner as in Example 1 except that this pellet was used as a polypropylene resin.
  • the thickness of the obtained film was 20 ⁇ m.
  • Table 1 shows the structure of the polypropylene constituting the film, and Table 2 shows the film forming conditions.
  • the physical properties of the obtained film were as shown in Table 3.
  • Example 4 A stretched polypropylene film of the present invention was obtained in the same manner as in Example 3 except that the film was stretched 5.5 times in the length direction and 12 times in the transverse direction. The thickness of the obtained film was 20 ⁇ m.
  • Table 1 shows the structure of the polypropylene constituting the film, and Table 2 shows the film forming conditions. The physical properties of the obtained film were as shown in Table 3.
  • Example 5 The stretched polypropylene film produced in Example 1 was heat-treated at 170 ° C. for 5 minutes in a tenter hot air oven to obtain a stretched polypropylene film of the present invention.
  • the thickness of the obtained film was 20 ⁇ m.
  • Table 1 shows the structure of the polypropylene constituting the film, and Table 2 shows the film forming conditions.
  • the physical properties of the obtained film were as shown in Table 3.
  • PP-4 a stretched polypropylene film of the present invention was obtained in the same manner as in Example 1. The thickness of the obtained film was 20 ⁇ m.
  • Table 1 shows the structure of the polypropylene constituting the film, and Table 2 shows the film forming conditions. The physical properties of the obtained film were as shown in Table 3.
  • the thickness of the obtained film was 20 ⁇ m.
  • Table 1 shows the structure of the polypropylene constituting the film, and Table 2 shows the film forming conditions.
  • the physical properties of the obtained film were as shown in Table 3.
  • the chart obtained by the differential scanning calorimetry (DSC) of this film is shown in FIG.
  • Comparative Example 2 A stretched polypropylene film was obtained in the same manner as in Comparative Example 1 except that the preheating temperature in transverse stretching was 171 ° C, the transverse stretching temperature was 160 ° C, and the heat treatment temperature after transverse stretching was 165 ° C. The thickness of the obtained film was 20 ⁇ m.
  • Table 1 shows the structure of the polypropylene constituting the film, and Table 2 shows the film forming conditions. The physical properties of the obtained film were as shown in Table 3.
  • NOVATEC registered trademark
  • the polypropylene film of the present invention can be widely used for packaging applications, industrial applications, and the like, but can be reduced in thickness because of its particularly high rigidity, and cost and weight can be reduced.
  • the polypropylene film of the present invention has high heat resistance, it can be processed at a high temperature during coating or printing, and it is possible to use a coating agent, ink, a laminating adhesive, or the like, which has been difficult to use conventionally, or production. it can.
  • the polypropylene film of the present invention is also suitable for insulating films such as capacitors and motors, back sheets for solar cells, barrier films for inorganic oxides, and base films for transparent conductive films such as ITO.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

A stretched polypropylene film that has a low shrinkage factor at 150°C that is comparable to that of polyethylene terephthalate (PET), the stretched polypropylene film being a stretched film that uses a propylene polymer satisfying conditions (a)—(c) and that satisfies conditions (d) and (e). (a) Meso pentad fraction is 96% or more. (b) Non-propylene comonomer content is 0.5 mol% or less. (c) Melt flow rate (MFR) is 0.5g/10 min. or more and 20g/10 min. or less. (d) When polypropylene α-crystal (110) surface scattering intensity as measured by wide-angle x-ray scattering is plotted against azimuth angle, the half width of the largest peak is 30 degrees or less. (e) Melting endothermic peak area (total heat of fusion) as measured using differential scanning calorimetry at a rate of temperature increase of 20°C/min. is 115J/g or more, and the ratio (heat of fusion at 150°C/total heat of fusion) of area at 150°C or less (heat of fusion at 150°C) to total heat of fusion is 0.12 or less.

Description

延伸ポリプロピレンフィルムStretched polypropylene film
 本発明は、延伸ポリプロピレンフィルムに関する。更に詳しくは、高温での寸法安定性や高い剛性が求められる様々な分野で好適に用いることができる、耐熱性、機械特性に優れた延伸ポリプロピレンフィルムに関する。 The present invention relates to a stretched polypropylene film. More specifically, the present invention relates to a stretched polypropylene film excellent in heat resistance and mechanical properties, which can be suitably used in various fields where dimensional stability at high temperature and high rigidity are required.
 従来、ポリプロピレンの延伸フィルムは、食品や様々な商品の包装用、電気絶縁用、表面保護フィルムなど広範囲な用途で汎用的に用いられていた。しかし、従来のポリプロピレンフィルムは、150℃での収縮率が数十%あり、ポリエチレンテレフタレート(PET)フィルム等と比べると耐熱性が低く、また剛性も低いため、用途が制限されていた。 Conventionally, stretched polypropylene films have been widely used for a wide range of applications such as packaging for food and various products, electrical insulation, and surface protection films. However, the conventional polypropylene film has a shrinkage rate of several tens of percent at 150 ° C., and has low heat resistance and low rigidity as compared with a polyethylene terephthalate (PET) film or the like.
 ところで、ポリプロピレンフィルムの物性を改良する技術は種々提案されている。例えば、高立体規則性を持ち、分子量分布の狭いポリプロピレンを用いて延伸フィルムとすることにより、高温剛性、耐熱性のフィルムとする技術が知られている(特許文献1参照)。
 また、高立体規則性を持ち、分子量分布の広いポリプロピレンを用いて延伸フィルムとすることにより、電気絶縁性、機械特性等に優れたキャパシターフィルムとして好適に用いることができるという技術が知られている(特許文献2参照)。
By the way, various techniques for improving the physical properties of the polypropylene film have been proposed. For example, a technique is known in which a stretched film is formed using polypropylene having high stereoregularity and a narrow molecular weight distribution to obtain a high-temperature rigidity and heat-resistant film (see Patent Document 1).
Further, a technique is known that can be suitably used as a capacitor film having excellent electrical insulation, mechanical properties, etc. by using a polypropylene film having high stereoregularity and a broad molecular weight distribution as a stretched film. (See Patent Document 2).
 さらにまた、低分子量であり、昇温分別法による0℃の可溶分量が特定の範囲のポリプロピレンを用いてセパレーターフィルムとする技術が知られており、このフィルムは乾燥工程、印刷工程での寸法安定性に優れるとされている(特許文献3参照)。 Furthermore, a technology for forming a separator film using polypropylene having a low molecular weight and a soluble content of 0 ° C. by a temperature rising fractionation method in a specific range is known. This film has dimensions in a drying process and a printing process. It is said that it is excellent in stability (refer patent document 3).
 しかし、特許文献1~3に記載のフィルムは延伸性に難があり、耐衝撃性など機械特性も劣るものであった。 However, the films described in Patent Documents 1 to 3 have difficulty in stretchability and inferior mechanical properties such as impact resistance.
 また、長鎖分岐もしくは架橋されたポリプロピレンを中分子量成分に微量添加することにより、子ラメラの形成を促して延伸性を向上させ、機械特性、耐熱性、耐電圧特性に優れ、諸物性の均一性に優れるフィルムとする技術が知られている(特許文献4参照)。 In addition, by adding a small amount of long-chain branched or cross-linked polypropylene to the medium molecular weight component, it promotes the formation of a child lamella, improves stretchability, has excellent mechanical properties, heat resistance, withstand voltage properties, and uniform physical properties. A technique for producing a film having excellent properties is known (see Patent Document 4).
 さらにまた、高分子量成分と低分子量成分をほぼ同量含み(もしくは低分子量成分が少ない)、分子量分布が広く、デカリン可溶分の少ないポリプロピレンを用いてフィルムとすることにより、剛性と加工性とのバランスをとるという技術が知られている(特許文献5参照)。 Furthermore, by using almost the same amount of high molecular weight component and low molecular weight component (or low low molecular weight component), broad molecular weight distribution, and using polypropylene with a small amount of decalin soluble, it is possible to obtain rigidity and workability. Is known (see Patent Document 5).
 しかしながら、これら特許文献4~5に記載のフィルムは、未だに150℃を超えるような高温での耐熱性は十分なものとは言えず、高い耐熱性を持ち、耐衝撃性、透明性に優れたポリプロピレンフィルムは知られていなかった。つまり、特許文献4~5に記載のフィルムは、従来のポリプロピレンフィルムの域を超えるものではなく、その用途は限られたものであり、例えば150℃を超えるような高温での耐熱性については着目もされていなかった。 However, these films described in Patent Documents 4 to 5 still cannot be said to have sufficient heat resistance at high temperatures exceeding 150 ° C., have high heat resistance, and excellent impact resistance and transparency. Polypropylene film was not known. In other words, the films described in Patent Documents 4 to 5 do not exceed the range of conventional polypropylene films, and their uses are limited. For example, heat resistance at high temperatures exceeding 150 ° C. It was not done.
特開平8-325327号公報JP-A-8-325327 特開2004-175932号公報JP 2004-175932 A 特開2001-146536号公報JP 2001-146536 A 特開2007-84813号公報JP 2007-84813 A 特表2008-540815号公報Special table 2008-540815
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、150℃でポリエチレンテレフタレート(PET)フィルムに匹敵する低収縮率を有し、高剛性である延伸ポリプロピレンフィルムを提供することにある。 The present invention has been made against the background of the problems of the prior art. That is, an object of the present invention is to provide a stretched polypropylene film having a low shrinkage comparable to that of a polyethylene terephthalate (PET) film at 150 ° C. and having high rigidity.
 本発明者は、かかる目的を達成するために鋭意検討した結果、本発明の完成に至った。すなわち、本発明の延伸ポリプロピレンフィルムは、以下の要件(a)~(c)を満たすプロピレン系重合体を用いた延伸フィルムであり、かつ、以下の要件(d)及び(e)を満たすことを特徴とする。
(a)メソペンタッド分率が96%以上である。
(b)プロピレン以外のコモノマーの含有量が0.5モル%以下である。
(c)メルトフローレート(MFR)が0.5g/10分以上、20g/10分以下である。
(d)広角X線散乱法により測定されるポリプロピレンのα型結晶の110面の散乱強度を方位角に対してプロットした時の最大ピークの半値幅が30度以下である。
(e)示差走査熱量計を用いて昇温速度20℃/分で測定された融解吸熱ピーク面積(全融解熱)が115J/g以上であり、かつ、150℃以下の面積(150℃融解熱)の全融解熱に対する比(150℃融解熱/全融解熱)が0.12以下である。
As a result of intensive studies to achieve the above object, the present inventors have completed the present invention. That is, the stretched polypropylene film of the present invention is a stretched film using a propylene polymer that satisfies the following requirements (a) to (c), and satisfies the following requirements (d) and (e): Features.
(A) Mesopentad fraction is 96% or more.
(B) The content of comonomer other than propylene is 0.5 mol% or less.
(C) The melt flow rate (MFR) is 0.5 g / 10 min or more and 20 g / 10 min or less.
(D) The half-value width of the maximum peak when the scattering intensity of the 110 plane of the α-type crystal of polypropylene measured by the wide angle X-ray scattering method is plotted against the azimuth is 30 degrees or less.
(E) The melting endothermic peak area (total heat of fusion) measured at a heating rate of 20 ° C./min using a differential scanning calorimeter is 115 J / g or more and an area of 150 ° C. or less (150 ° C. heat of fusion) ) To the total heat of fusion (150 ° C. heat of fusion / total heat of fusion) is 0.12 or less.
 延伸フィルムとは、工業的には、一軸、同時二軸、逐次二軸、などの方法で延伸された配向をもつフィルムであり、その配向の程度は、例えば、広角X線回折や小角X線散乱、屈折率などにより推算することが可能である。本発明では、広角X線回折により延伸フィルムの配向の程度を規定した。 A stretched film is a film having an orientation stretched by a method such as uniaxial, simultaneous biaxial, and sequential biaxial, industrially, and the degree of orientation is, for example, wide-angle X-ray diffraction or small-angle X-ray. It can be estimated from scattering, refractive index, and the like. In the present invention, the degree of orientation of the stretched film is defined by wide-angle X-ray diffraction.
 本発明においては、小角X線散乱法により測定される主たる配向方向の長周期散乱ピークから求められる長周期サイズが40nm以上であることが好適である。また本発明においては、厚みが3~100μmである少なくとも一軸に延伸されたフィルムであることが好適である。さらに本発明においては、150℃におけるTD方向の熱収縮率及び150℃におけるMD方向の熱収縮率が共に10%以下であることが好適である。さらに本発明においては、フィルムのヘイズが6%以下であることが好適である。 In the present invention, it is preferable that the long-period size obtained from the long-period scattering peak in the main orientation direction measured by the small-angle X-ray scattering method is 40 nm or more. In the present invention, a film stretched at least uniaxially and having a thickness of 3 to 100 μm is preferable. Furthermore, in the present invention, it is preferable that the thermal shrinkage rate in the TD direction at 150 ° C. and the thermal shrinkage rate in the MD direction at 150 ° C. are both 10% or less. Furthermore, in the present invention, it is preferable that the haze of the film is 6% or less.
 本発明の延伸ポリプロピレンフィルムによれば、150℃でポリエチレンテレフタレート(PET)フィルムに匹敵する低収縮率、高剛性を発現することができ、ひいては薄膜化が可能になる。
 さらに、本発明の延伸ポリプロピレンフィルムは、150℃以上の環境下にさらされても諸物性を維持することができるので、従来のポリプロピレンフィルムでは考えられなかったような高温の環境下でも使用することができ、幅広い用途において好ましく適用される。例えば、本発明の延伸ポリプロピレンフィルムを基材層とし、表層にヒートシール層やガスバリア層を積層することにより、種々の包装用途に使用できる。また、押出ラミネートの基材として用いることもできる。そして、本発明の延伸ポリプロピレンフィルム又はこれを用いた積層フィルムにヒートシールを行う場合、ヒートシール温度を高く設定することにより、ヒートシール強度が向上するので、製袋加工などにおけるライン速度を大きくすることなどが可能となり、生産性が向上する。さらに、製袋後にレトルトなど高温処理を行う際にも、袋の変形量を抑えることができる。
According to the stretched polypropylene film of the present invention, a low shrinkage rate and a high rigidity comparable to that of a polyethylene terephthalate (PET) film can be exhibited at 150 ° C., and thus thinning is possible.
Furthermore, since the stretched polypropylene film of the present invention can maintain various physical properties even when exposed to an environment of 150 ° C. or higher, it should be used in a high-temperature environment that has not been considered with conventional polypropylene films. And can be preferably applied in a wide range of applications. For example, the stretched polypropylene film of the present invention is used as a base material layer, and a heat seal layer or a gas barrier layer is laminated on the surface layer, so that it can be used for various packaging applications. It can also be used as a substrate for extrusion lamination. And when performing heat sealing on the stretched polypropylene film of the present invention or a laminated film using the same, the heat sealing strength is improved by setting the heat sealing temperature high, so that the line speed in bag making processing is increased. Can improve productivity. Furthermore, the amount of deformation of the bag can also be suppressed when high-temperature processing such as retort is performed after bag making.
延伸ポリプロピレンフィルムの広角X線回折パターンにおけるα型結晶の110面の回折強度の方位角依存性および半値幅を説明するためのチャートである。It is a chart for demonstrating the azimuth angle dependence and the half value width of the diffraction intensity of 110 plane of alpha type crystal in the wide angle X-ray diffraction pattern of a stretched polypropylene film. 実施例1および比較例1で得られた延伸ポリプロピレンフィルムについての示差走査熱量測定(DSC)チャートである。2 is a differential scanning calorimetry (DSC) chart for the stretched polypropylene film obtained in Example 1 and Comparative Example 1. FIG.
 本発明は高温での寸法安定性、機械特性に優れた延伸ポリプロピレンフィルムに関する。本発明の延伸ポリプロピレンフィルムの特徴は
(1)本発明の延伸ポリプロピレンフィルムは、以下の要件(a)~(c)を満たすプロピレン系重合体を用いた延伸フィルムであり、かつ、以下の要件(d)及び(e)を満たす。
(a)メソペンタッド分率が96%以上である。
(b)プロピレン以外のコモノマーの含有量が0.5モル%以下である。
(c)メルトフローレート(MFR)が0.5g/10分以上、20g/10分以下である。
(d)広角X線散乱法により測定されるポリプロピレンのα型結晶の110面の散乱強度を方位角に対してプロットした時の最大ピークの半値幅が30度以下である。
(e)示差走査熱量計を用いて昇温速度20℃/分で測定された融解吸熱ピーク面積(全融解熱)が115J/g以上であり、かつ、150℃以下の面積(150℃融解熱)の全融解熱に対する比(150℃融解熱/全融解熱)が0.12以下である。
The present invention relates to a stretched polypropylene film excellent in dimensional stability at high temperatures and mechanical properties. The characteristics of the stretched polypropylene film of the present invention are as follows: (1) The stretched polypropylene film of the present invention is a stretched film using a propylene polymer that satisfies the following requirements (a) to (c), and the following requirements ( d) and (e) are satisfied.
(A) Mesopentad fraction is 96% or more.
(B) The content of comonomer other than propylene is 0.5 mol% or less.
(C) The melt flow rate (MFR) is 0.5 g / 10 min or more and 20 g / 10 min or less.
(D) The half-value width of the maximum peak when the scattering intensity of the 110 plane of the α-type crystal of polypropylene measured by the wide angle X-ray scattering method is plotted against the azimuth is 30 degrees or less.
(E) The melting endothermic peak area (total heat of fusion) measured at a heating rate of 20 ° C./min using a differential scanning calorimeter is 115 J / g or more and an area of 150 ° C. or less (150 ° C. heat of fusion) ) To the total heat of fusion (150 ° C. heat of fusion / total heat of fusion) is 0.12 or less.
(2)また、小角X線散乱法により測定される主たる配向方向の長周期散乱ピークから求められる長周期サイズが40nm以上であることが好適であり、
(3)さらに、厚みが3~100μmである少なくとも一軸に延伸されたフィルムであることが好適であり、
(4)さらに、150℃におけるTD方向の熱収縮率及び150℃におけるMD方向の熱収縮率が共に10%以下であることが好適であり、
(5)さらに、ヘイズが6%以下であることが好適である。
(2) Moreover, it is preferable that the long period size calculated | required from the long period scattering peak of the main orientation direction measured by a small angle X-ray scattering method is 40 nm or more,
(3) Furthermore, it is preferable that the film is a film stretched at least uniaxially with a thickness of 3 to 100 μm,
(4) Furthermore, it is preferable that the thermal shrinkage rate in the TD direction at 150 ° C. and the thermal shrinkage rate in the MD direction at 150 ° C. are both 10% or less,
(5) Further, it is preferable that the haze is 6% or less.
(ポリプロピレン樹脂)
 本発明に用いられるポリプロピレン系樹脂は特に制約はなく、例えば、プロピレン単独重合体や、エチレンおよび/または炭素数4以上のα―オレフィンとの共重合体を用いることができる。
 フィルムを構成するポリプロピレン樹脂としては、実質的にコモノマーを含まないプロピレン単独重合体が好ましく、コモノマーを含む場合であっても、コモノマー量は0.5モル%以下である。コモノマー量の上限は、好ましくは0.3モル%であり、さらに好ましくは0.1モル%である。上記範囲であると結晶性が向上し、高温での熱収縮率が小さくなることがある。なお、結晶性を著しく低下させない範囲内において、微量であればコモノマーが含まれていてもよい。
 フィルムを構成するポリプロピレン樹脂は、プロピレンモノマーのみから得られるプロピレン単独重合体であることがより好ましく、プロピレン単独重合体であっても、頭-頭結合のような異種結合を含まないことが最も好ましい。
(Polypropylene resin)
The polypropylene resin used in the present invention is not particularly limited, and for example, a propylene homopolymer or a copolymer with ethylene and / or an α-olefin having 4 or more carbon atoms can be used.
As the polypropylene resin constituting the film, a propylene homopolymer substantially free of comonomer is preferable, and even when the comonomer is contained, the amount of comonomer is 0.5 mol% or less. The upper limit of the comonomer amount is preferably 0.3 mol%, more preferably 0.1 mol%. When it is in the above range, the crystallinity may be improved, and the thermal shrinkage at high temperatures may be reduced. In addition, a comonomer may be contained as long as it is a trace amount within a range in which the crystallinity is not significantly reduced.
The polypropylene resin constituting the film is more preferably a propylene homopolymer obtained only from a propylene monomer, and even the propylene homopolymer is most preferably free of heterogeneous bonds such as head-to-head bonds. .
(ポリプロピレン樹脂の立体規則性)
 フィルムを構成するポリプロピレン樹脂の立体規則性の指標である13C-NMRで測定されるメソペンタッド分率の下限は96%である。メソペンタッド分率の下限は、好ましくは96.5%であり、より好ましくは97%である。上記範囲であると結晶性が向上し、高温での熱収縮率がより低くなることがある。メソペンタッド分率の上限は好ましくは99.8%であり、より好ましくは99.6%であり、さらに好ましくは99.5%である。上記範囲であると現実的な製造が容易となることがある。
(Stereoregularity of polypropylene resin)
The lower limit of the mesopentad fraction measured by 13 C-NMR, which is an index of stereoregularity of the polypropylene resin constituting the film, is 96%. The lower limit of the mesopentad fraction is preferably 96.5%, more preferably 97%. When it is within the above range, the crystallinity may be improved, and the thermal shrinkage rate at a high temperature may be lower. The upper limit of the mesopentad fraction is preferably 99.8%, more preferably 99.6%, still more preferably 99.5%. In the above range, realistic production may be easy.
 フィルムを構成するポリプロピレン樹脂のメソ平均連鎖長の下限は、好ましくは100であり、より好ましくは120であり、さらに好ましくは130である。上記範囲であると、結晶性が向上し、高温での熱収縮率が小さくなることがある。メソ平均連鎖長の上限は、現実的な面から、好ましくは5000である。 The lower limit of the meso average chain length of the polypropylene resin constituting the film is preferably 100, more preferably 120, and still more preferably 130. When it is in the above range, the crystallinity may be improved, and the thermal shrinkage at high temperatures may be reduced. The upper limit of the meso average chain length is preferably 5000 from a practical aspect.
 フィルムを構成するポリプロピレン樹脂のキシレン可溶分の下限は、現実的な面から、好ましくは0.1質量%である。キシレン可溶分の上限は好ましくは7質量%であり、より好ましくは6質量%であり、さらに好ましくは5質量%である。上記範囲であると結晶性が向上し、高温での熱収縮率が小さくなることがある。 The lower limit of the xylene-soluble content of the polypropylene resin constituting the film is preferably 0.1% by mass from a practical aspect. The upper limit of the xylene-soluble content is preferably 7% by mass, more preferably 6% by mass, and further preferably 5% by mass. When it is in the above range, the crystallinity may be improved, and the thermal shrinkage at high temperatures may be reduced.
(ポリプロピレン樹脂のメルトフローレート)
 ポリプロピレン樹脂のメルトフローレート(MFR)(230℃、2.16kgf)の下限は0.5g/10分である。MFRの下限は、好ましくは1.0g/10分であり、より好ましくは1.3g/10分であり、さらに好ましくは1.5g/10分であり、さらに好ましくは2.0g/10分であり、特に好ましくは4.0g/10分であり、好ましくは6.0g/10分である。上記範囲であると機械的負荷が小さく、押出や延伸が容易となることがある。MFRの上限は20g/10分であり、好ましくは17g/10分であり、より好ましくは16g/10分であり、さらに好ましくは15g/10分である。上記範囲であると延伸が容易となったり、厚み斑が小さくなったり、延伸温度や熱固定温度が上げられやすく熱収縮率がより低くなることがある。
(Melt flow rate of polypropylene resin)
The lower limit of the melt flow rate (MFR) (230 ° C., 2.16 kgf) of the polypropylene resin is 0.5 g / 10 minutes. The lower limit of the MFR is preferably 1.0 g / 10 minutes, more preferably 1.3 g / 10 minutes, still more preferably 1.5 g / 10 minutes, still more preferably 2.0 g / 10 minutes. Yes, particularly preferably 4.0 g / 10 min, and preferably 6.0 g / 10 min. Within the above range, the mechanical load is small, and extrusion and stretching may be easy. The upper limit of MFR is 20 g / 10 minutes, preferably 17 g / 10 minutes, more preferably 16 g / 10 minutes, and further preferably 15 g / 10 minutes. When it is within the above range, stretching may be easy, thickness unevenness may be reduced, and the stretching temperature and heat setting temperature may be easily increased, resulting in a lower thermal shrinkage rate.
(ポリプロピレン樹脂の分子量) 
 フィルムを構成するポリプロピレン樹脂のゲルパーミエーションクロマトグラフィー(GPC)により測定される数平均分子量(Mn)の下限は、好ましくは20000であり、より好ましくは22000であり、さらに好ましくは24000であり、特に好ましくは26000であり、最も好ましくは27000である。上記範囲であると延伸が容易となる、厚み斑が小さくなる、延伸温度や熱固定温度が上げられやすく熱収縮率が低くなるという利点が生じることがある。Mnの上限は、好ましくは200000であり、より好ましくは170000であり、さらに好ましくは160000であり、特に好ましくは150000である。上記範囲であると低分子量物の効果である高温での低い熱収縮率など本願の効果が得られやすくなったり、延伸容易となることがある。
(Molecular weight of polypropylene resin)
The lower limit of the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) of the polypropylene resin constituting the film is preferably 20000, more preferably 22000, still more preferably 24000, Preferably it is 26000, and most preferably 27000. When it is in the above range, there are the advantages that stretching becomes easy, thickness unevenness is reduced, stretching temperature and heat setting temperature are easily raised, and thermal shrinkage rate is lowered. The upper limit of Mn is preferably 200000, more preferably 170000, still more preferably 160000, and particularly preferably 150,000. Within the above range, the effects of the present application such as a low heat shrinkage rate at high temperature, which is an effect of a low molecular weight substance, may be easily obtained, or stretching may be facilitated.
 フィルムを構成するポリプロピレン樹脂のGPCにより測定される質量平均分子量(Mw)の下限は、好ましくは180000であり、より好ましくは200000であり、さらに好ましくは230000であり、さらに好ましくは240000であり、特に好ましくは250000であり、最も好ましくは270000である。上記範囲であると延伸が容易となる、厚み斑が小さくなる、延伸温度や熱固定温度が上げられやすく熱収縮率が低くなるという利点が生じることがある。Mwの上限は、好ましくは500000であり、より好ましくは450000であり、さらに好ましくは420000であり、特に好ましくは410000であり、最も好ましくは400000である。上記範囲であると機械的負荷が小さく押出や延伸が容易となることがある。 The lower limit of the mass average molecular weight (Mw) measured by GPC of the polypropylene resin constituting the film is preferably 180000, more preferably 200000, still more preferably 230,000, still more preferably 240000, particularly Preferably it is 250,000, and most preferably 270000. When it is in the above range, there are the advantages that stretching becomes easy, thickness unevenness is reduced, stretching temperature and heat setting temperature are easily raised, and thermal shrinkage rate is lowered. The upper limit of Mw is preferably 500,000, more preferably 450,000, still more preferably 420,000, particularly preferably 410,000, and most preferably 400,000. Within the above range, the mechanical load is small and extrusion and stretching may be easy.
(ポリプロピレン樹脂の分子量分布)
 本発明に用いるポリプロピレン樹脂は、以下に示すような特徴を有することが好ましい。すなわち、フィルムを構成するポリプロピレン樹脂のゲルパーミエーションクロマトグラフィー(GPC)積算カーブを測定した場合、分子量10万以下の成分の量の下限は好ましくは35質量%であり、より好ましくは38質量%であり、さらに好ましくは40質量%であり、特に好ましくは41質量%であり、最も好ましくは42質量%である。上記範囲であると低分子量物の効果である高温での低い熱収縮率など本願の効果が得られやすくなったり、延伸が容易となることがある。GPC積算カーブでの分子量10万以下の成分の量の上限は好ましくは65質量%であり、より好ましくは60質量%であり、さらに好ましくは58質量%であり、特に好ましくは56質量%であり、最も好ましくは55質量%である。上記範囲であると延伸が容易となったり、厚み斑が小さくなったり、延伸温度や熱固定温度が上げられやすく熱収縮率が低くなることがある。
(Molecular weight distribution of polypropylene resin)
The polypropylene resin used in the present invention preferably has the following characteristics. That is, when the gel permeation chromatography (GPC) integration curve of the polypropylene resin constituting the film is measured, the lower limit of the amount of the component having a molecular weight of 100,000 or less is preferably 35% by mass, more preferably 38% by mass. Yes, more preferably 40% by mass, particularly preferably 41% by mass, and most preferably 42% by mass. Within the above range, the effects of the present application such as a low heat shrinkage rate at a high temperature, which is an effect of a low molecular weight substance, may be easily obtained, and stretching may be facilitated. The upper limit of the amount of a component having a molecular weight of 100,000 or less in the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, still more preferably 58% by mass, and particularly preferably 56% by mass. Most preferably, it is 55 mass%. When it is within the above range, stretching may be easy, thickness unevenness may be reduced, and the stretching temperature and heat setting temperature may be easily increased, resulting in a low thermal shrinkage rate.
 本発明に用いるポリプロピレン樹脂は、一般的に分子量分布の広さの指標である質量平均分子量(Mw)/数平均分子量(Mn)の下限が、好ましくは4であり、より好ましくは4.5であり、さらに好ましくは5であり、特に好ましくは5.5であり、最も好ましくは6である。Mw/Mnの上限は、好ましくは30であり、より好ましくは25であり、さらに好ましくは22であり、特に好ましくは21であり、最も好ましくは20である。Mw/Mnが上記範囲であると、現実的な製造が容易である。
 なお、ポリプロピレンの分子量分布は、異なる分子量の成分を多段階に一連のプラントで重合したり、異なる分子量の成分をオフラインで混錬機にてブレンドしたり、異なる性能をもつ触媒をブレンドして重合したり、所望の分子量分布を実現できる触媒を用いたりすることで調整することが可能である。
In the polypropylene resin used in the present invention, the lower limit of mass average molecular weight (Mw) / number average molecular weight (Mn), which is generally an indicator of the breadth of molecular weight distribution, is preferably 4, more preferably 4.5. Yes, more preferably 5, particularly preferably 5.5, and most preferably 6. The upper limit of Mw / Mn is preferably 30, more preferably 25, still more preferably 22, particularly preferably 21, and most preferably 20. When Mw / Mn is in the above range, realistic production is easy.
The molecular weight distribution of polypropylene is such that components with different molecular weights are polymerized in a series of plants in multiple stages, components with different molecular weights are blended offline in a kneader, or catalysts with different performances are blended for polymerization. Or by using a catalyst capable of realizing a desired molecular weight distribution.
 本発明における延伸ポリプロピレンフィルムは、その構造、特にフィルムの配向に特徴がある。
(フィルムの配向)
 延伸されたポリプロピレンフィルムは、一般的に結晶配向を有し、その方向や程度がフィルム物性に大きな影響を及ぼす。結晶配向の程度は、用いられるポリプロピレンの分子構造や、フィルム製造におけるプロセスや条件によって変化する。また、延伸ポリプロピレンフィルムの配向方向は、広角X線回折法により、X線をフィルム面に対して垂直に入射し、結晶由来の散乱ピークの方位角依存性を測定することによって、決定することができる。詳しくは、延伸ポリプロピレンフィルムは、典型的には単斜晶のα型結晶構造を有する。そしてそのα型結晶は、広角X線回折法により110面(面間隔:6.65オングストローム)の散乱強度の方位角依存性を測定すると、主として一軸に強い配向をもつ。つまり、α型結晶の110面由来の散乱強度を方位角に対してプロットした場合、最も強いピークが、分子軸の配向の垂直方向に観察される。本発明は、この最大ピークの半値幅によって、配向の程度を規定するものである。
 なお、ポリプロピレンのα型結晶の110面由来の散乱の方位角依存性について、典型的なパターンを図1に示す。また図1中に、110面の方位角依存性の主たるピーク(最大ピーク)の半値幅を示す。
The stretched polypropylene film in the present invention is characterized by its structure, particularly the orientation of the film.
(Film orientation)
The stretched polypropylene film generally has a crystal orientation, and its direction and degree greatly affect the physical properties of the film. The degree of crystal orientation varies depending on the molecular structure of the polypropylene used and the process and conditions in film production. Further, the orientation direction of the stretched polypropylene film can be determined by measuring the azimuth angle dependency of the scattering peak derived from the crystal by making X-rays incident perpendicular to the film surface by wide-angle X-ray diffraction method. it can. Specifically, the stretched polypropylene film typically has a monoclinic α-type crystal structure. The α-type crystal has a strong orientation mainly in one axis when the azimuth angle dependence of the scattering intensity of 110 planes (plane spacing: 6.65 Å) is measured by wide-angle X-ray diffraction. That is, when the scattering intensity derived from the 110 plane of the α-type crystal is plotted against the azimuth angle, the strongest peak is observed in the direction perpendicular to the orientation of the molecular axis. In the present invention, the degree of orientation is defined by the half width of the maximum peak.
A typical pattern is shown in FIG. 1 for the azimuth angle dependence of scattering from the 110 plane of the α-type crystal of polypropylene. Further, FIG. 1 shows the full width at half maximum of the main peak (maximum peak) of the azimuth angle dependency of the 110 plane.
 本発明の延伸ポリプロピレンフィルムでは、広角X線散乱法により測定される110面の散乱強度を方位角に対してプロットした時の最大ピークの半値幅が30度以下である。この半値幅の上限は、好ましくは29度であり、より好ましくは28度である。110面由来の散乱強度の方位角依存性の半値幅が前記範囲よりも大きいと、配向が十分でなく、耐熱性や剛性が十分でない。110面由来の散乱強度の方位角依存性の半値幅の下限は、好ましくは5度であり、より好ましくは7度であり、さらに好ましくは8度である。110面の半値幅が前記範囲よりも小さいと、耐衝撃性の低下や配向割れを生じることがある。 In the stretched polypropylene film of the present invention, the half-value width of the maximum peak when plotting the scattering intensity of the 110 plane measured by the wide-angle X-ray scattering method against the azimuth is 30 degrees or less. The upper limit of the half width is preferably 29 degrees, more preferably 28 degrees. When the FWHM of the azimuth angle dependence of the scattering intensity derived from the 110 plane is larger than the above range, the orientation is not sufficient, and the heat resistance and rigidity are not sufficient. The lower limit of the FWHM of the azimuth angle dependence of the scattering intensity derived from the 110 plane is preferably 5 degrees, more preferably 7 degrees, and even more preferably 8 degrees. If the full width at half maximum of the 110 plane is smaller than the above range, impact resistance may be lowered and orientation cracks may occur.
(広角X線回折装置)
 本発明で規定する半値幅は、平行度の高いX線を用いて測定されることが好ましく、放射光が好ましく用いられる。
 広角X線回折測定に用いるX線発生源としては、実験室で用いられる管球式や回転式などの一般的な装置でもよいが、平行度が高く高輝度の放射光を照射できる高輝度光源を用いることが好ましい。放射光では、X線が広がりにくく輝度も高いため、測定を高精度かつ短時間で行うことができ、例えば厚み数十ミクロンのフィルムサンプルでもフィルムを重ね合わせることなくフィルム1枚での測定が可能になり、しかも精度の高い測定が可能であるので詳細な結晶配向評価が可能になる。それに対して、輝度が低いX線では、厚み数十ミクロンのフィルムサンプルを測定する場合、複数枚を重ね合わさなければ測定に長時間を要することになり、複数枚を重ね合わさせると、微小なズレにより、110面の散乱強度を方位角に対してプロットした時のピークがブロードになり、得られる半値幅の値が大きくなる傾向となる。
 平行度が高く高輝度の放射光を照射可能な設備としては、例えば、SPring-8、高エネルギー加速器研究機構、あいちシンクロトロン光センター、佐賀県立九州シンクロトロン光研究センターのような大型放射光施設等を挙げることができ、例えば、SPring-8ではフロンティアソフトマター開発産学連合体(FSBL)が所有するビームラインBL03XUを使用して本発明の半値幅を測定することが好ましい。
(Wide-angle X-ray diffractometer)
The half width defined in the present invention is preferably measured using X-rays with high parallelism, and radiant light is preferably used.
As an X-ray generation source used for wide-angle X-ray diffraction measurement, a general apparatus such as a tube type or a rotary type used in a laboratory may be used, but a high-intensity light source capable of emitting high-intensity synchrotron radiation. Is preferably used. With synchrotron radiation, X-rays do not spread easily and the brightness is high, so measurements can be performed with high accuracy and in a short time. For example, even a film sample with a thickness of several tens of microns can be measured on a single film without overlapping the films. In addition, since a highly accurate measurement is possible, detailed crystal orientation evaluation is possible. On the other hand, with X-rays with low brightness, when measuring film samples with a thickness of several tens of microns, it takes a long time to measure unless multiple sheets are stacked. Thus, the peak when the scattering intensity of the 110 plane is plotted against the azimuth angle becomes broad, and the obtained half-value width tends to increase.
Large-scale synchrotron radiation facilities such as SPring-8, High Energy Accelerator Research Organization, Aichi Synchrotron Light Center, Saga Kyushu Synchrotron Light Research Center For example, in SPring-8, it is preferable to measure the full width at half maximum of the present invention using a beam line BL03XU owned by the Frontier Soft Matter Development Industry-University Federation (FSBL).
(長周期構造・小角X線散乱(SAXS))
 本発明の延伸ポリプロピレンフィルムでは、長周期サイズが大きいことが好ましい。一般的に、結晶性高分子は、結晶と非晶の繰り返しからなる規則的な積層構造(周期構造)を有する。ここで、結晶と非晶からなる繰り返し単位の大きさを長周期サイズと言う。この長周期サイズは、小角X線散乱法により測定される主たる配向方向の長周期構造に由来する散乱ピーク角度から求めることができる。
(Long-period structure, small-angle X-ray scattering (SAXS))
In the stretched polypropylene film of the present invention, it is preferable that the long period size is large. Generally, a crystalline polymer has a regular laminated structure (periodic structure) composed of repeating crystals and amorphous. Here, the size of the repeating unit composed of a crystal and an amorphous is called a long period size. The long period size can be obtained from the scattering peak angle derived from the long period structure in the main orientation direction measured by the small angle X-ray scattering method.
 本発明の延伸ポリプロピレンフィルムの小角X線散乱測定による長周期散乱ピークは、主たる配向方向にピークが明瞭に観察されることが必要である。ここで、主たる配向方向とは、2次元X線散乱パターンにおいて、高分子結晶の長周期に起因する散乱がより強く見られる方向を示す。一軸延伸の場合は、その延伸方向に主たる配向方向が一致する場合が多く、縦延伸-横延伸の逐次二軸延伸の場合は、それぞれの延伸倍率にもよるが、横延伸方向に主たる配向方向が一致する場合が多い。高分子結晶に起因する長周期ピークが明瞭に観察されるほど、秩序性の高い長周期構造が形成されていることが示される。 The long-period scattering peak by the small-angle X-ray scattering measurement of the stretched polypropylene film of the present invention needs to be clearly observed in the main orientation direction. Here, the main orientation direction indicates a direction in which scattering due to the long period of the polymer crystal is more strongly observed in the two-dimensional X-ray scattering pattern. In the case of uniaxial stretching, the main orientation direction often coincides with the stretching direction. In the case of sequential biaxial stretching of longitudinal stretching and transverse stretching, depending on the respective stretching ratios, the main orientation direction in the transverse stretching direction. Often match. It is shown that a long-period structure with high ordering is formed as the long-period peak attributed to the polymer crystal is clearly observed.
 本発明の延伸ポリプロピレンフィルムでは、長周期散乱ピークから得られる長周期サイズが40nm以上であることが好ましい。長周期サイズの下限は、より好ましくは41nmであり、さらに好ましくは43nmである。長周期サイズが前記範囲よりも小さいと、融解ピーク温度が低く、したがって耐熱性が十分でなくなる。長周期サイズの上限は、好ましくは100nmであり、より好ましくは90nmであり、さらに好ましくは80nmである。長周期サイズが前記範囲よりも大きいと、結晶化もしくは熱処理に長時間を要するため現実的な製造が困難になる。 In the stretched polypropylene film of the present invention, the long period size obtained from the long period scattering peak is preferably 40 nm or more. The lower limit of the long period size is more preferably 41 nm, and still more preferably 43 nm. When the long period size is smaller than the above range, the melting peak temperature is low, and thus the heat resistance is not sufficient. The upper limit of the long period size is preferably 100 nm, more preferably 90 nm, and further preferably 80 nm. When the long cycle size is larger than the above range, it takes a long time for crystallization or heat treatment, and thus realistic manufacturing becomes difficult.
(小角X線回折装置)
 小角X線散乱測定に用いるX線発生源としては、特に制限はなく、実験室で用いられる管球式や回転式などの一般的な装置を用いることができるが、上述した広角X線回折測定に用いるX線発生源と同じく、輝度が高い放射光を照射できる高輝度光源を用いることが好ましい。特に、本発明の延伸ポリプロピレンフィルムは大きな長周期を有するので、長周期構造に由来するX線散乱がより小角側の領域にある。そのため、X線ビーム径が大きく、カメラ長の短い実験室のX線装置では測定することが困難であるので、X線が広がりにくく、ビーム径を数百ミクロン以下に絞ることができ、かつ、輝度も高い放射光を用いて、長いカメラ長のもとで超小角領域を測定することが好ましい。このとき、カメラ長は7m以上が好ましい。
(Small angle X-ray diffractometer)
The X-ray generation source used for the small-angle X-ray scattering measurement is not particularly limited, and a general apparatus such as a tube type or a rotary type used in a laboratory can be used. It is preferable to use a high-intensity light source capable of irradiating radiation with high luminance, similar to the X-ray generation source used in the above. In particular, since the stretched polypropylene film of the present invention has a large long period, X-ray scattering derived from the long period structure is in a smaller angle region. Therefore, since it is difficult to measure with a laboratory X-ray apparatus having a large X-ray beam diameter and a short camera length, X-rays are difficult to spread, the beam diameter can be reduced to several hundred microns or less, and It is preferable to measure an ultra-small angle region under a long camera length using synchrotron radiation having high luminance. At this time, the camera length is preferably 7 m or longer.
 (フィルム結晶性)
 本発明の延伸フィルムは以下の様な高結晶性の特徴を有する。例えば、示差走査熱量計(DSC)による昇温測定における全融解熱を結晶化度の指標として用いることができる。
全融解熱は、示差走査熱量計によって昇温速度20℃/分で測定される融解吸熱ピーク面積に相当する。全融解熱の下限は115J/gであり、好ましくは117J/gであり、より好ましくは120J/gである。全融解熱が前記範囲よりも小さいと、結晶化度が十分でなく、耐熱性や剛性が低下する。全融解熱の上限は、好ましくは150J/gであり、より好ましくは145J/gであり、さらに好ましくは140J/gである。全融解熱を前記範囲よりも高くする場合、高温長時間の製造工程が必要となり現実的な製造が困難になることがある。全融解熱は、例えば、共重合モノマー量を少なくするか又は用いない、立体規則性を高くする、延伸温度や熱固定温度を高温に設定する、オフラインアニール処理を施す、などの手法により前記範囲に制御することができる。
(Film crystallinity)
The stretched film of the present invention has the following highly crystalline characteristics. For example, the total heat of fusion in the temperature rise measurement with a differential scanning calorimeter (DSC) can be used as an index of crystallinity.
The total heat of fusion corresponds to the melting endothermic peak area measured by a differential scanning calorimeter at a rate of temperature increase of 20 ° C./min. The lower limit of the total heat of fusion is 115 J / g, preferably 117 J / g, more preferably 120 J / g. When the total heat of fusion is smaller than the above range, the degree of crystallinity is not sufficient, and the heat resistance and rigidity are lowered. The upper limit of the total heat of fusion is preferably 150 J / g, more preferably 145 J / g, and even more preferably 140 J / g. When the total heat of fusion is higher than the above range, a high-temperature and long-time manufacturing process is required, and realistic manufacturing may be difficult. The total heat of fusion is, for example, within the above range by a technique such as reducing or not using the amount of copolymerization monomer, increasing stereoregularity, setting the stretching temperature and heat setting temperature to a high temperature, and performing offline annealing. Can be controlled.
 前記融解吸熱ピーク面積のうち、150℃以下の部分の面積が150℃融解熱に相当する。本発明において、150℃以下の吸熱ピーク部分面積として得られる150℃融解熱と全融解熱の比(150℃融解熱/全融解熱)の上限は0.12であり、好ましくは0.11であり、さらに好ましくは0.10である。これより大きいと、高温での耐熱性が低下することがある。150℃融解熱/全融解熱の下限は、好ましくは0であり、より好ましくは0.005であり、さらに好ましくは0.01である。150℃融解熱は、例えば、共重合モノマー量を少なくするか又は用いない、延伸温度や熱固定温度を高温に設定する、オフラインアニール処理を施す、などの手法により制御することができる。 Of the melting endothermic peak area, the area of 150 ° C. or lower corresponds to 150 ° C. heat of fusion. In the present invention, the upper limit of the ratio of 150 ° C. heat of fusion and total heat of fusion (150 ° C. heat of fusion / total heat of fusion) obtained as an endothermic peak partial area of 150 ° C. or lower is 0.12, preferably 0.11. Yes, more preferably 0.10. If it is larger than this, the heat resistance at high temperatures may be lowered. The lower limit of the 150 ° C. heat of fusion / total heat of fusion is preferably 0, more preferably 0.005, and even more preferably 0.01. The heat of fusion at 150 ° C. can be controlled by, for example, techniques such as reducing or not using the amount of copolymerization monomer, setting the stretching temperature and heat setting temperature to a high temperature, and performing offline annealing.
 従来の延伸ポリプロピレンフィルムは、たとえ融解ピーク温度が170℃近辺に存在した場合であっても、DSCで測定した場合に140℃を超えたあたりから融解開始によるピークの立ち上がりが認められ、140℃での耐熱性は期待できても150℃では急激に熱収縮率が増加するものであった。しかし、本発明の延伸ポリプロピレンフィルムでは150℃でもピークの立ち上がりは小さく、150℃での低熱収縮性が得られているものと考えられる。すなわち、本発明の延伸ポリプロピレンフィルムは、150℃以上の環境下にさらされても諸物性を維持することができ、従来の延伸ポリプロピレンフィルムでは考えられなかったような高温の環境下でも使用することができる。なお、融解開始はDSCカーブから求めることができる。本発明の延伸フィルムの一例として実施例1の上記DSCチャートを図2に示す。  In the conventional stretched polypropylene film, even when the melting peak temperature is in the vicinity of 170 ° C., when measured by DSC, the rise of the peak due to the start of melting is recognized from around 140 ° C., and at 140 ° C. Although the heat resistance of can be expected, the thermal shrinkage rate increased rapidly at 150 ° C. However, in the stretched polypropylene film of the present invention, the peak rise is small even at 150 ° C., and it is considered that low heat shrinkability at 150 ° C. is obtained. That is, the stretched polypropylene film of the present invention can maintain various physical properties even when exposed to an environment of 150 ° C. or higher, and should be used even in a high temperature environment that could not be considered with a conventional stretched polypropylene film. Can do. The start of melting can be determined from the DSC curve. FIG. 2 shows the DSC chart of Example 1 as an example of the stretched film of the present invention. *
(フィルムの融解ピーク温度)
 示差走査熱量計によって昇温速度20℃/分で測定される融解ピーク温度の下限は、好ましくは165℃であり、より好ましくは167℃である。融解ピーク温度が前記範囲であると、高温での熱収縮率が小さくなることがある。融解ピーク温度の上限は、好ましくは180℃であり、より好ましくは178℃であり、さらに好ましくは177℃である。融解ピーク温度が前記範囲であると、現実的な製造が容易となることがある。融解ピーク温度は、例えば、共重合モノマー量を少なくするか又は用いない、立体規則性を高くする、延伸温度や熱固定温度を高温に設定する、オフラインアニール処理を施す、などの手法により前記範囲内に制御することができる。
(Film melting peak temperature)
The lower limit of the melting peak temperature measured with a differential scanning calorimeter at a rate of temperature rise of 20 ° C./min is preferably 165 ° C., more preferably 167 ° C. When the melting peak temperature is within the above range, the thermal shrinkage rate at a high temperature may be small. The upper limit of the melting peak temperature is preferably 180 ° C, more preferably 178 ° C, and further preferably 177 ° C. When the melting peak temperature is within the above range, realistic production may be facilitated. The melting peak temperature is within the above range by, for example, a technique in which the amount of copolymerization monomer is reduced or not used, the stereoregularity is increased, the stretching temperature and the heat setting temperature are set to a high temperature, and offline annealing is performed. Can be controlled within.
(フィルム物性)
 本発明の延伸ポリプロピレンフィルムは、以下のような物性を示す。なお、以下の各物性は、例えば実施例で後述する方法で測定、評価することができる。
(熱収縮率)
 本発明の延伸ポリプロピレンフィルムは、ポリプロピレン樹脂を主体として構成された延伸フィルムであって、150℃でのMD方向およびTD方向の熱収縮率が10%以下であることが好ましい。ここで、MD方向とは、フィルムの流れ方向(長さ方向または長手方向と言うこともある)であり、TD方向とは、フィルムの流れ方向に垂直な方向(横方向または幅方向と言うこともある)である。従来の延伸ポリプロピレンフィルムでは、MD方向およびTD方向の150℃熱収縮率は15%以上であり、120℃熱収縮率は3%程度である。熱収縮率を10%以下とすることで、耐熱性の優れたフィルムを得ることができる。
(Film physical properties)
The stretched polypropylene film of the present invention exhibits the following physical properties. The following physical properties can be measured and evaluated by, for example, the methods described later in Examples.
(Heat shrinkage)
The stretched polypropylene film of the present invention is a stretched film mainly composed of a polypropylene resin, and preferably has a thermal shrinkage of 10% or less in the MD direction and the TD direction at 150 ° C. Here, the MD direction is a film flow direction (also referred to as a length direction or a longitudinal direction), and a TD direction is a direction perpendicular to the film flow direction (a lateral direction or a width direction). There is also. In the conventional stretched polypropylene film, the 150 ° C. heat shrinkage rate in the MD direction and the TD direction is 15% or more, and the 120 ° C. heat shrinkage rate is about 3%. By setting the heat shrinkage rate to 10% or less, a film having excellent heat resistance can be obtained.
 本発明の延伸ポリプロプレンフィルムのMD方向およびTD方向の150℃熱収縮率の下限は、好ましくは0.2%であり、より好ましくは0.3%であり、さらに好ましくは0.5%であり、特に好ましくは0.7%であり、最も好ましくは1.0%である。150℃熱収縮率が上記範囲であると、コスト面などで現実的な製造が容易となったり、厚みムラが小さくなったりすることがある。MD方向およびTD方向の150℃熱収縮率の上限は、好ましくは10%であり、より好ましくは9%であり、さらに好ましくは8%であり、特に好ましくは7%であり、最も好ましくは5%である。150℃熱収縮率が上記範囲であると、150℃程度の高温に晒される可能性のある用途や加工で使用がより容易になる。なお、150℃熱収縮率は1.5%程度までなら、例えば、低分子量成分を多くする、延伸条件や熱固定条件を調整することで可能であるが、1.5%以下に下げるには、オフラインでアニール処理を施すなどすることが好ましい。 The lower limit of the 150 ° C. heat shrinkage rate in the MD direction and the TD direction of the stretched polypropylene film of the present invention is preferably 0.2%, more preferably 0.3%, still more preferably 0.5%. Yes, particularly preferably 0.7%, most preferably 1.0%. When the 150 ° C. heat shrinkage ratio is in the above range, realistic manufacturing may be facilitated in terms of cost or the like, and thickness unevenness may be reduced. The upper limit of the 150 ° C. heat shrinkage in the MD direction and the TD direction is preferably 10%, more preferably 9%, still more preferably 8%, particularly preferably 7%, and most preferably 5%. %. When the 150 ° C. heat shrinkage ratio is in the above range, it is easier to use in applications and processing that may be exposed to a high temperature of about 150 ° C. If the heat shrinkage at 150 ° C. is up to about 1.5%, for example, it is possible to increase the low molecular weight component, and adjust the stretching conditions and heat setting conditions. It is preferable to perform an annealing treatment offline.
(耐衝撃性)
 本発明の延伸ポリプロプレンフィルムの耐衝撃性(23℃)の下限は、好ましくは0.6Jであり、より好ましくは0.7Jである。耐衝撃性が上記範囲であると、フィルムとして十分な強靱性があり、取り扱い時に破断したりすることがない。耐衝撃性の上限は、現実的な面から、好ましくは2Jであり、より好ましくは1.8Jであり、さらに好ましくは1.6Jであり、特に好ましくは1.5Jである。例えば、低分子量成分が多い場合、全体での分子量が低い場合、高分子量成分が少ない場合、高分子量成分の分子量が低い場合には耐衝撃性が低下する傾向となるため、耐衝撃性は用途に合わせてこれら成分を調整することにより、前記範囲内に制御することができる。
(Impact resistance)
The lower limit of the impact resistance (23 ° C.) of the stretched polypropylene film of the present invention is preferably 0.6 J, more preferably 0.7 J. When the impact resistance is within the above range, the film has sufficient toughness and does not break during handling. The upper limit of impact resistance is preferably 2 J, more preferably 1.8 J, even more preferably 1.6 J, and particularly preferably 1.5 J from the practical viewpoint. For example, when there are many low molecular weight components, when the overall molecular weight is low, when there are few high molecular weight components, and when the molecular weight of the high molecular weight component is low, the impact resistance tends to decrease. By adjusting these components according to the above, it is possible to control within the above range.
(ヘイズ)
 本発明の延伸ポリプロピレンフィルムのヘイズの下限は、現実的値として、好ましくは0.1%であり、より好ましくは0.2%であり、さらに好ましくは0.3%であり、特に好ましくは0.4%である。ヘイズの上限は、好ましくは6%であり、より好ましくは5%であり、さらに好ましくは4.5%であり、特に好ましくは4%であり、最も好ましくは3.5%である。ヘイズが上記範囲であると、透明が要求される用途で使いやすくなることがある。ヘイズは、例えば延伸温度、熱固定温度が高すぎる場合、冷却ロール(CR)温度が高く延伸原反シートの冷却速度が遅い場合、低分子量が多すぎる場合に悪くなる傾向があるので、これらを調節することにより、前記範囲内に制御することができる。
(Haze)
The lower limit of the haze of the stretched polypropylene film of the present invention is preferably 0.1% as a practical value, more preferably 0.2%, still more preferably 0.3%, and particularly preferably 0. 4%. The upper limit of haze is preferably 6%, more preferably 5%, still more preferably 4.5%, particularly preferably 4%, and most preferably 3.5%. If the haze is in the above range, it may be easy to use in applications where transparency is required. For example, when the stretching temperature and the heat setting temperature are too high, the haze tends to be deteriorated when the cooling roll (CR) temperature is high and the stretching rate of the stretched raw sheet is slow, or when the low molecular weight is too large. By adjusting, it can control within the said range.
(ヤング率)
 本発明の延伸ポリプロピレンフィルムが二軸延伸フィルムである場合、MD方向のヤング率(23℃)の下限は、好ましくは2GPaであり、より好ましくは2.1GPaであり、さらに好ましくは2.2GPaであり、特に好ましくは2.3GPaであり、最も好ましくは2.4GPaである。MD方向のヤング率の上限は、好ましくは4GPaであり、より好ましくは3.7GPaであり、さらに好ましくは3.5GPaであり、特に好ましくは3.4GPaであり、最も好ましくは3.3GPaである。MD方向のヤング率が上記範囲であると、現実的な製造が容易であったり、MD-TDバランスが良化することがある。
(Young's modulus)
When the stretched polypropylene film of the present invention is a biaxially stretched film, the lower limit of the Young's modulus (23 ° C.) in the MD direction is preferably 2 GPa, more preferably 2.1 GPa, and even more preferably 2.2 GPa. Yes, particularly preferably 2.3 GPa, and most preferably 2.4 GPa. The upper limit of the Young's modulus in the MD direction is preferably 4 GPa, more preferably 3.7 GPa, still more preferably 3.5 GPa, particularly preferably 3.4 GPa, and most preferably 3.3 GPa. . When the Young's modulus in the MD direction is within the above range, realistic production may be easy or the MD-TD balance may be improved.
 本発明の延伸ポリプロピレンフィルムが二軸延伸フィルムである場合、TD方向のヤング率(23℃)の下限は、好ましくは3.8GPaであり、より好ましくは4GPaであり、さらに好ましくは4.1GPaであり、特に好ましくは4.2GPaである。TD方向のヤング率の上限は、好ましくは8GPaであり、より好ましくは7.5GPaであり、さらに好ましくは7GPaであり、特に好ましくは6.5GPaである。TD方向のヤング率が上記範囲であると、現実的な製造が容易であったり、MD-TDバランスが良化することがある。なお、ヤング率は、例えば延伸倍率を高くすることで高めることができ、また、MD-TD延伸の場合はMD延伸倍率を低めに設定し、TD延伸倍率を高く設定することなどで、TD方向のヤング率を大きくすることができる。 When the stretched polypropylene film of the present invention is a biaxially stretched film, the lower limit of the Young's modulus (23 ° C.) in the TD direction is preferably 3.8 GPa, more preferably 4 GPa, and even more preferably 4.1 GPa. Yes, and particularly preferably 4.2 GPa. The upper limit of the Young's modulus in the TD direction is preferably 8 GPa, more preferably 7.5 GPa, still more preferably 7 GPa, and particularly preferably 6.5 GPa. When the Young's modulus in the TD direction is within the above range, realistic production may be easy or the MD-TD balance may be improved. The Young's modulus can be increased, for example, by increasing the stretching ratio. In the case of MD-TD stretching, the MD stretching ratio is set to a lower value, and the TD stretching ratio is set to a higher value. The Young's modulus of can be increased.
(厚み均一性)
 本発明の延伸ポリプロピレンフィルムの厚みの均一性の下限は、好ましくは0%であり、より好ましくは0.1%であり、さらに好ましくは0.5%であり、特に好ましくは1%である。厚みの均一性の上限は、好ましくは20%であり、より好ましくは17%であり、さらに好ましくは15%であり、特に好ましくは12%であり、最も好ましくは10%である。厚みの均一性が上記範囲であると、コートや印刷などの後加工時に不良が生じにくく、精密性を要求される用途に用いやすい。
(Thickness uniformity)
The lower limit of the uniformity of the thickness of the stretched polypropylene film of the present invention is preferably 0%, more preferably 0.1%, still more preferably 0.5%, and particularly preferably 1%. The upper limit of the thickness uniformity is preferably 20%, more preferably 17%, still more preferably 15%, particularly preferably 12%, and most preferably 10%. When the thickness uniformity is within the above range, defects are unlikely to occur during post-processing such as coating and printing, and it is easy to use for applications that require precision.
(フィルム密度)
 本発明の延伸ポリプロピレンフィルムの密度の下限は、好ましくは0.910g/cmであり、より好ましくは0.911g/cmであり、さらに好ましくは0.912g/cmであり、特に好ましくは0.913g/cmである。フィルム密度が上記範囲であると、結晶性が高く熱収縮率が小さくなることがある。フィルム密度の上限は、好ましくは0.930g/cmであり、より好ましくは0.928g/cmであり、さらに好ましくは0.926g/cmであり、特に好ましくは0.925g/cmである。フィルム密度が上記上限を超えると、現実的に製造が困難となることがある。フィルム密度は、延伸倍率や延伸温度を高くする、熱固定温度を高くする、さらにはオフラインアニールすることで高めることができる。
(Film density)
The lower limit of the density of the stretched polypropylene film of the present invention is preferably 0.910 g / cm 3 , more preferably 0.911 g / cm 3 , still more preferably 0.912 g / cm 3 , and particularly preferably 0.913 g / cm 3 . When the film density is in the above range, the crystallinity is high and the thermal shrinkage rate may be small. The upper limit of the film density is preferably 0.930 g / cm 3 , more preferably 0.928 g / cm 3 , still more preferably 0.926 g / cm 3 , and particularly preferably 0.925 g / cm 3. It is. If the film density exceeds the upper limit, production may be difficult in practice. The film density can be increased by increasing the stretching ratio and stretching temperature, increasing the heat setting temperature, and further performing offline annealing.
(屈折率)
 本発明の延伸ポリプロピレンフィルムのMD方向の屈折率(Nx)の下限は、好ましくは1.502であり、より好ましくは1.503であり、さらに好ましくは1.504である。Nxの上限は、好ましくは1.520であり、より好ましくは1.517であり、さらに好ましくは1.515である。
 本発明の延伸ポリプロピレンフィルムのTD方向の屈折率(Ny)の下限は、好ましくは1.523であり、より好ましくは1.525である。Nyの上限は、好ましくは1.535であり、より好ましくは1.532である。
 本発明の延伸ポリプロピレンフィルムの厚み方向の屈折率(Nz)の下限は、好ましくは1.480であり、より好ましくは1.489であり、さらに好ましくは1.500である。Nzの上限は、好ましくは1.510であり、より好ましくは1.507であり、さらに好ましくは1.505である。
(Refractive index)
The lower limit of the refractive index (Nx) in the MD direction of the stretched polypropylene film of the present invention is preferably 1.502, more preferably 1.503, and still more preferably 1.504. The upper limit of Nx is preferably 1.520, more preferably 1.517, and even more preferably 1.515.
The lower limit of the refractive index (Ny) in the TD direction of the stretched polypropylene film of the present invention is preferably 1.523, more preferably 1.525. The upper limit of Ny is preferably 1.535, and more preferably 1.532.
The lower limit of the refractive index (Nz) in the thickness direction of the stretched polypropylene film of the present invention is preferably 1.480, more preferably 1.490, and even more preferably 1.500. The upper limit of Nz is preferably 1.510, more preferably 1.507, and even more preferably 1.505.
(面配向係数)
 本発明の延伸ポリプロプレンフィルムの面配向係数の下限は、好ましくは0.0125であり、より好ましくは0.0126であり、さらに好ましくは0.0127であり、特に好ましくは0.0128である。面配向係数の上限は、現実的な値として、好ましくは0.0155であり、より好ましくは0.0150であり、さらに好ましくは0.0148であり、特に好ましくは0.0145である。面配向係数は、延伸倍率の調整により範囲内とすることができる。面配向係数がこの範囲であると、フィルムの厚みムラも良好である。
(Plane orientation coefficient)
The lower limit of the plane orientation coefficient of the stretched polypropylene film of the present invention is preferably 0.0125, more preferably 0.0126, still more preferably 0.0127, and particularly preferably 0.0128. The upper limit of the plane orientation coefficient is preferably 0.0155, more preferably 0.0150, even more preferably 0.0148, and particularly preferably 0.0145 as a practical value. The plane orientation coefficient can be set within the range by adjusting the draw ratio. When the plane orientation coefficient is within this range, the thickness unevenness of the film is also good.
(ポリプロピレン樹脂の製造方法)
 ポリプロピレン樹脂は、チーグラー・ナッタ触媒やメタロセン触媒等の公知の触媒を用いて、原料となるプロピレンを重合させることにより得られる。中でも、異種結合をなくすためにはチーグラー・ナッタ触媒を用い、かつ、立体規則性の高い重合が可能な触媒を用いることが好ましい。
 プロピレンの重合方法としては、公知の方法を採用すればよく、例えば、ヘキサン、ヘプタン、トルエン、キシレン等の不活性溶剤中で重合する方法、液状のモノマー中で重合する方法、気体のモノマー中に触媒を添加し、気相状態で重合する方法、または、これらを組み合わせて重合する方法等が挙げられる。
(Production method of polypropylene resin)
The polypropylene resin is obtained by polymerizing propylene as a raw material using a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst. Among these, in order to eliminate heterogeneous bonds, it is preferable to use a Ziegler-Natta catalyst and a catalyst capable of polymerization with high stereoregularity.
As a polymerization method of propylene, a known method may be employed. For example, a method of polymerizing in an inert solvent such as hexane, heptane, toluene, xylene, a method of polymerizing in a liquid monomer, a gas monomer Examples thereof include a method of adding a catalyst and polymerizing in a gas phase state, or a method of polymerizing by combining these.
(添加剤)
 本発明のフィルム成形用樹脂組成物には、必要に応じて、添加剤やその他の樹脂を添加しても良い。添加剤としては、例えば、酸化防止剤、紫外線吸収剤、帯電防止剤、滑剤、造核剤、粘着剤、防曇剤、難燃剤、アンチブロッキング剤、無機または有機の充填剤等が挙げられる。その他の樹脂としては、本発明で用いられるポリプロピレン樹脂以外のポリプロピレン樹脂、プロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体であるランダムコポリマーや、各種エラストマー等が挙げられる。これらは、多段の反応器を用いて逐次重合するか、ポリプロピレン樹脂とヘンシェルミキサーでブレンドするか、事前に溶融混錬機を用いて作製したマスターペレットを所定の濃度になるようにポリプロピレンで希釈するか、予め全量を溶融混練して使用するなどすればよい。
(Additive)
If necessary, additives and other resins may be added to the film-forming resin composition of the present invention. Examples of the additive include an antioxidant, an ultraviolet absorber, an antistatic agent, a lubricant, a nucleating agent, an adhesive, an antifogging agent, a flame retardant, an antiblocking agent, and an inorganic or organic filler. Examples of the other resin include polypropylene resins other than the polypropylene resin used in the present invention, random copolymers that are copolymers of propylene and ethylene and / or α-olefins having 4 or more carbon atoms, and various elastomers. These are sequentially polymerized using a multistage reactor, blended with a polypropylene resin and a Henschel mixer, or master pellets prepared in advance using a melt kneader are diluted with polypropylene to a predetermined concentration. Alternatively, the entire amount may be melt-kneaded before use.
(延伸ポリプロピレンフィルムの製造方法)
 本発明の延伸フィルムとしては長手方向(MD方向)もしくは横方向(TD方向)の一軸延伸フィルムでも良いが、二軸延伸フィルムであることが好ましい。二軸延伸の場合は逐次二軸延伸であっても同時二軸延伸であっても良い。本発明では、少なくとも一軸に延伸することで、従来のポリプロピレンフィルムでは予想できなかった150℃でも熱収縮率が低いというフィルムを得ることができる。
(Method for producing stretched polypropylene film)
The stretched film of the present invention may be a uniaxially stretched film in the longitudinal direction (MD direction) or the transverse direction (TD direction), but is preferably a biaxially stretched film. In the case of biaxial stretching, sequential biaxial stretching or simultaneous biaxial stretching may be used. In the present invention, by stretching at least uniaxially, it is possible to obtain a film having a low thermal shrinkage even at 150 ° C., which could not be expected with a conventional polypropylene film.
 以下に最も好ましい例である縦延伸-横延伸の逐次二軸延伸フィルムの製造方法を説明する。
 まず、ポリプロピレン樹脂を単軸または二軸の押出機で加熱溶融させ、チルロール上に押出して未延伸シートを得る。溶融押出条件としては、樹脂温度が200~280℃となるようにして、Tダイよりシート状に押出し、10~100℃の温度の冷却ロールで冷却固化する。ついで、120~165℃の延伸ロールでフィルムを長さ(MD)方向に3~8倍、好ましくは3~7倍に延伸し、引き続き幅(TD)方向に155℃~175℃、好ましくは158℃~170℃の温度で4~20倍、好ましくは6~12倍延伸を行う。さらに、165~175℃、好ましくは166~173℃の雰囲気温度で1~15%のリラックスを許しながら熱処理を施す。こうして得られたポリプロピレンフィルムに、必要に応じて、少なくとも片面にコロナ放電処理を施した後、ワインダーで巻取ることによりロールサンプルを得ることができる。
A method for producing a longitudinally-laterally stretched sequential biaxially stretched film which is the most preferred example will be described below.
First, a polypropylene resin is heated and melted with a single or twin screw extruder and extruded onto a chill roll to obtain an unstretched sheet. The melt extrusion conditions are such that the resin temperature is 200 to 280 ° C., the sheet is extruded from a T-die and cooled and solidified with a cooling roll having a temperature of 10 to 100 ° C. Next, the film is stretched 3 to 8 times, preferably 3 to 7 times in the length (MD) direction with a stretching roll at 120 to 165 ° C., and then 155 ° C. to 175 ° C., preferably 158 in the width (TD) direction. The film is stretched 4 to 20 times, preferably 6 to 12 times at a temperature of from 0 to 170 ° C. Furthermore, heat treatment is performed at an ambient temperature of 165 to 175 ° C., preferably 166 to 173 ° C. while allowing relaxation of 1 to 15%. A roll sample can be obtained by subjecting the polypropylene film thus obtained to a corona discharge treatment on at least one surface, if necessary, and then winding it with a winder.
 MDの延伸倍率の下限は、好ましくは3倍であり、より好ましくは3.5倍である。MDの延伸倍率が上記未満であると、膜厚ムラとなることがある。MDの延伸倍率の上限は、好ましくは8倍であり、より好ましくは7倍である。MDの延伸倍率が上記を超えると、引き続き行うTD延伸が困難になることがある。
 MDの延伸温度の下限は、好ましくは120℃であり、より好ましくは125℃であり、さらに好ましくは130℃である。MDの延伸温度が上記未満であると機械的負荷が大きくなったり、厚みムラが大きくなったり、フィルムの表面粗れが起こることがある。MDの延伸温度の上限は、好ましくは165℃であり、より好ましくは160℃であり、さらに好ましくは155℃であり、特に好ましくは150℃である。延伸の温度が高い方が熱収縮率の低下には好ましいが、ロールに付着し延伸できなくなったり、表面粗れが起こることがある。
The lower limit of the MD draw ratio is preferably 3 times, more preferably 3.5 times. If the MD draw ratio is less than the above, film thickness unevenness may occur. The upper limit of the MD draw ratio is preferably 8 times, more preferably 7 times. If the MD draw ratio exceeds the above, subsequent TD stretching may be difficult.
The lower limit of the MD stretching temperature is preferably 120 ° C, more preferably 125 ° C, and even more preferably 130 ° C. If the MD stretching temperature is lower than the above, the mechanical load may increase, the thickness unevenness may increase, or the film may become rough. The upper limit of the MD stretching temperature is preferably 165 ° C, more preferably 160 ° C, still more preferably 155 ° C, and particularly preferably 150 ° C. A higher stretching temperature is preferable for lowering the thermal shrinkage, but it may adhere to the roll and cannot be stretched, or surface roughness may occur.
 TDの延伸倍率の下限は、好ましくは4倍であり、より好ましくは5倍であり、さらに好ましくは6倍である。TDの延伸倍率が上記未満であると、厚みムラとなることがある。TD延伸倍率の上限は、好ましくは20倍であり、より好ましくは17倍であり、さらに好ましくは15倍、特に好ましくは12倍である。TDの延伸倍率が上記を超えると、熱収縮率が高くなったり、延伸時に破断することがある。
 TD延伸での予熱温度は、速やかに延伸温度付近にフィルム温度を上げるため、好ましくは延伸温度より5~15℃高く設定する。
The lower limit of the stretching ratio of TD is preferably 4 times, more preferably 5 times, and further preferably 6 times. If the draw ratio of TD is less than the above, thickness unevenness may occur. The upper limit of the TD stretch ratio is preferably 20 times, more preferably 17 times, still more preferably 15 times, and particularly preferably 12 times. When the draw ratio of TD exceeds the above, the thermal shrinkage rate may be increased or the film may be broken during stretching.
The preheating temperature in TD stretching is preferably set to be 5 to 15 ° C. higher than the stretching temperature in order to quickly raise the film temperature in the vicinity of the stretching temperature.
 TDの延伸は、従来の延伸ポリプロピレンフィルムより高温で行うことが好ましい。TDの延伸温度の下限は、好ましくは155℃であり、より好ましくは157℃であり、さらに好ましくは158℃である。TDの延伸温度が上記未満であると、十分に軟化せずに破断したり、熱収縮率が高くなることがある。TD延伸温度の上限は、好ましくは175℃であり、より好ましくは170℃であり、さらに好ましくは168℃である。熱収縮率を低くするためには、TD延伸温度は高い方が好ましいが、上記を超えると、低分子量成分が融解、再結晶化して配向が低下するだけでなく、表面粗れやフィルムが白化することがある。 TD stretching is preferably performed at a higher temperature than a conventional stretched polypropylene film. The lower limit of the TD stretching temperature is preferably 155 ° C, more preferably 157 ° C, and even more preferably 158 ° C. When the stretching temperature of TD is less than the above, it may break without being sufficiently softened or the thermal shrinkage rate may be increased. The upper limit of the TD stretching temperature is preferably 175 ° C, more preferably 170 ° C, and even more preferably 168 ° C. In order to lower the heat shrinkage rate, it is preferable that the TD stretching temperature is higher. However, if the temperature exceeds the above, not only the low molecular weight component is melted and recrystallized, but the orientation is lowered, and the surface roughness and the film are whitened. There are things to do.
 延伸後のフィルムは通常、熱固定される。本発明では、従来の延伸ポリプロピレンフィルムより高温で熱固定を行うことが可能である。熱固定温度の下限は、好ましくは165℃であり、より好ましくは166℃である。熱固定温度が上記未満であると、熱収縮率が高くなることがある。また、熱収縮率を低くするために長時間の処理が必要になり、生産性が劣ることがある。熱固定温度の上限は、好ましくは175℃であり、より好ましくは173℃である。熱固定温度が上記を超えると、低分子量成分が融解、再結晶化して表面粗れやフィルムが白化することがある。 The stretched film is usually heat-set. In the present invention, heat setting can be performed at a higher temperature than conventional stretched polypropylene films. The lower limit of the heat setting temperature is preferably 165 ° C, more preferably 166 ° C. When the heat setting temperature is lower than the above, the heat shrinkage rate may be increased. In addition, a long time treatment is required to lower the heat shrinkage rate, and productivity may be inferior. The upper limit of the heat setting temperature is preferably 175 ° C, more preferably 173 ° C. If the heat setting temperature exceeds the above, the low molecular weight component may melt and recrystallize, resulting in surface roughness and whitening of the film.
 熱固定時にはリラックス(緩和)させることが好ましい。リラックスの下限は、好ましくは2%であり、より好ましくは3%である。上記未満のリラックスでは、熱収縮率が高くなることがある。リラックスの上限は、好ましくは10%であり、より好ましくは8%である。上記を超えるリラックスでは、厚みムラが大きくなることがある。 時 に は It is preferable to relax when relaxing. The lower limit of relaxation is preferably 2%, more preferably 3%. If the relaxation is less than the above, the heat shrinkage rate may be high. The upper limit of relaxation is preferably 10%, more preferably 8%. When the relaxation is more than the above, thickness unevenness may increase.
 さらに、熱収縮率を低下させるためには、上記の工程で製造されたフィルムを一旦ロール状に巻き取った後、オフラインでアニールさせることもできる。オフラインアニール温度の下限は、好ましくは160℃であり、より好ましくは162℃であり、さらに好ましくは163℃である。オフラインアニール温度が上記未満であると、アニールの効果が得られないことがある。オフラインアニール温度の上限は、好ましくは175℃であり、より好ましくは174℃であり、さらに好ましくは173℃である。オフラインアニール温度が上記を超えると、透明性が低下したり、厚みムラがおおきくなったりすることがある。 Furthermore, in order to reduce the thermal shrinkage rate, the film manufactured in the above process can be once rolled up and then annealed offline. The lower limit of the offline annealing temperature is preferably 160 ° C., more preferably 162 ° C., and further preferably 163 ° C. If the offline annealing temperature is lower than the above, the effect of annealing may not be obtained. The upper limit of the offline annealing temperature is preferably 175 ° C, more preferably 174 ° C, and further preferably 173 ° C. When the off-line annealing temperature exceeds the above, transparency may be reduced or thickness unevenness may be increased.
 オフラインアニール時間の下限は、好ましくは0.1分であり、より好ましくは0.5分であり、さらに好ましくは1分である。オフラインアニール時間が上記未満であると、アニールの効果が得られないことがある。オフラインアニール時間の上限は、好ましくは30分であり、より好ましくは25分であり、さらに好ましくは20分である。オフラインアニール時間が上記を超えると、生産性が低下することがある。 The lower limit of the offline annealing time is preferably 0.1 minutes, more preferably 0.5 minutes, and even more preferably 1 minute. If the offline annealing time is less than the above, the annealing effect may not be obtained. The upper limit of the offline annealing time is preferably 30 minutes, more preferably 25 minutes, and further preferably 20 minutes. When the offline annealing time exceeds the above, productivity may be reduced.
 フィルムの厚みは各用途に合わせて設定されるが、フィルム厚みの下限は、好ましくは2μmであり、より好ましくは3μmであり、さらに好ましくは4μmである。フィルム厚みの上限は好ましくは300μmであり、より好ましくは250μmであり、さらに好ましくは200μmであり、さらに好ましくは150μmであり、特に好ましくは100μmであり、最も好ましくは50μmである。 Although the thickness of the film is set according to each application, the lower limit of the film thickness is preferably 2 μm, more preferably 3 μm, and further preferably 4 μm. The upper limit of the film thickness is preferably 300 μm, more preferably 250 μm, still more preferably 200 μm, further preferably 150 μm, particularly preferably 100 μm, and most preferably 50 μm.
 このようにして得られた延伸ポリプロピレンフィルムは通常、幅2000~12000mm、長さ1000~50000m程度に製膜され、ロール状に巻き取られる。さらに、各用途に合わせてスリットされ幅300~2000mm、長さ500~5000m程度のスリットロールとして供される。 The stretched polypropylene film obtained in this way is usually formed into a film having a width of about 2000 to 12000 mm and a length of about 1000 to 50000 m, and wound into a roll. Furthermore, it is slit according to each application and used as a slit roll having a width of 300 to 2000 mm and a length of about 500 to 5000 m.
 本発明の延伸ポリプロピレンフィルムは上記の様な従来にはない優れた特性を有する。包装フィルムとしても用いた場合には、高剛性であるため薄肉化が可能であり、コストダウン、軽量化ができる。
 また本発明の延伸ポリプロピレンフィルムは、耐熱性が高いため、コートや印刷時に高温での処理が可能となり、生産の効率化や従来用いられにくかったコート剤やインキ、ラミネート接着剤などを用いることができる。さらには、本発明の延伸ポリプロピレンフィルムは、コンデンサーやモーターなどの絶縁フィルム、太陽電池のバックシート、無機酸化物のバリアフィルム、ITOなどの透明導電フィルムのベースフィルムとして用いることも可能である。
The stretched polypropylene film of the present invention has excellent properties such as those described above which are not present in the prior art. When used as a packaging film, it is highly rigid and can be thinned, thereby reducing costs and weight.
In addition, since the stretched polypropylene film of the present invention has high heat resistance, it can be processed at a high temperature during coating and printing, and it is possible to use a coating agent, an ink, a laminating adhesive, or the like, which has been difficult to use conventionally, or production. it can. Furthermore, the stretched polypropylene film of the present invention can be used as an insulating film for capacitors and motors, a back sheet for solar cells, a barrier film for inorganic oxides, and a base film for transparent conductive films such as ITO.
 本願は、2013年7月23日に出願された日本国特許出願第2013-152979号、2013年7月23日に出願された日本国特許出願第2013-152980号、2013年7月25日に出願された日本国特許出願第2013-154673号、2013年7月25日に出願された日本国特許出願第2013-154674号、2013年7月29日に出願された日本国特許出願第2013-157049号および2013年7月29日に出願された日本国特許出願第2013-157050号に基づく優先権の利益を主張するものである。2013年7月23日に出願された日本国特許出願第2013-152979号、2013年7月23日に出願された日本国特許出願第2013-152980号、2013年7月25日に出願された日本国特許出願第2013-154673号、2013年7月25日に出願された日本国特許出願第2013-154674号、2013年7月29日に出願された日本国特許出願第2013-157049号および2013年7月29日に出願された日本国特許出願第2013-157050号の明細書の全内容が、本願に参考のため援用される。 The present application is Japanese Patent Application No. 2013-152929 filed on July 23, 2013, Japanese Patent Application No. 2013-152980 filed on July 23, 2013, July 25, 2013. Japanese Patent Application No. 2013-154673 filed, Japanese Patent Application No. 2013-154673 filed on July 25, 2013, Japanese Patent Application No. 2013- filed on July 29, 2013 No. 157049 and Japanese Patent Application No. 2013-157050 filed on Jul. 29, 2013 are all claimed. Japanese Patent Application No. 2013-152929 filed on July 23, 2013, Japanese Patent Application No. 2013-152980 filed on July 23, 2013, filed on July 25, 2013 Japanese Patent Application No. 2013-154673, Japanese Patent Application No. 2013-154673 filed on July 25, 2013, Japanese Patent Application No. 2013-1557049 filed on July 29, 2013, and The entire contents of Japanese Patent Application No. 2013-157050 filed on July 29, 2013 are incorporated herein by reference.
 以下に本発明を実施例に基づき詳細に説明するが、本発明はかかる実施例に限定されるものではない。実施例における物性の測定方法は次のとおりである。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to such examples. The measuring method of the physical property in an Example is as follows.
1)立体規則性
 メソペンタッド分率([mmmm]%)およびメソ平均連鎖長の測定は、13C-NMRを用いて行った。メソペンタッド分率は、「Zambelliら、Macromolecules,第6巻,925頁(1973)」に記載の方法に従い、メソ平均連鎖長は、「J.C.Randallによる、“Polymer Sequence Distribution”第2章(1977年)(Academic Press,New York)」に記載の方法に従って算出した。13C-NMR測定は、BRUKER社製「AVANCE500」を用い、試料200mgをo-ジクロロベンゼンと重ベンゼンの8:2(体積比)の混合液に135℃で溶解し、110℃で行った。
1) Stereoregularity The mesopentad fraction ([mmmm]%) and meso average chain length were measured using 13 C-NMR. The mesopentad fraction was determined according to the method described in “Zambelli et al., Macromolecules, Vol. 6, 925 (1973)”, and the meso average chain length was determined according to Chapter 2 of “Polymer Sequence Distribution” by “J. (1977) (Academic Press, New York) ". The 13 C-NMR measurement was performed at 110 ° C. using “AVANCE 500” manufactured by BRUKER, and dissolving 200 mg of the sample in an 8: 2 (volume ratio) mixture of o-dichlorobenzene and heavy benzene at 135 ° C.
2)キシレン可溶分(単位:質量%)
 ポリプロピレン試料1gを沸騰キシレン200mlに溶解して放冷後、20℃の恒温水槽で1時間再結晶化させ、ろ過液に溶解している質量の、元の試料量に対する割合をキシレン可溶分(質量%)とした。
2) Xylene solubles (unit: mass%)
1 g of a polypropylene sample is dissolved in 200 ml of boiling xylene, allowed to cool, then recrystallized in a constant temperature water bath at 20 ° C. for 1 hour, and the ratio of the mass dissolved in the filtrate to the original sample amount is determined as the xylene solubles ( Mass%).
3)メルトフローレート(MFR)(単位:g/10分)
 MFRは、JIS K7210に準拠し、温度230℃、荷重2.16kgfで測定した。
3) Melt flow rate (MFR) (unit: g / 10 min)
MFR was measured at a temperature of 230 ° C. and a load of 2.16 kgf in accordance with JIS K7210.
4)分子量および分子量分布
 分子量および分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて単分散ポリスチレン基準により求めた。GPC測定での使用カラム、溶媒等の測定条件は以下のとおりである。
溶媒:1,2,4-トリクロロベンゼン
カラム:TSKgel GMHHR-H(20)HT×3
流量:1.0ml/min
検出器:RI
測定温度:140℃
4) Molecular weight and molecular weight distribution The molecular weight and molecular weight distribution were determined on the basis of monodisperse polystyrene using gel permeation chromatography (GPC). The measurement conditions such as the column used and the solvent in GPC measurement are as follows.
Solvent: 1,2,4-trichlorobenzene Column: TSKgel GMH HR —H (20) HT × 3
Flow rate: 1.0 ml / min
Detector: RI
Measurement temperature: 140 ° C
 数平均分子量(Mn)、質量平均分子量(Mw)、Z+1平均分子量(Mz+1)はそれぞれ、分子量校正曲線を介して得られたGPC曲線の各溶出位置の分子量(Mi)の分子数(Ni)により次式で定義される。
数平均分子量:Mn=Σ(Ni・Mi)/ΣNi
質量平均分子量:Mw=Σ(Ni・Mi)/Σ(Ni・Mi)
Z+1平均分子量:Mz+1=Σ(Ni・Mi)/Σ(Ni・Mi
分子量分布:Mw/Mn
 また、GPC曲線のピーク位置の分子量をMpとした。
 ベースラインが明確でないときは、標準物質の溶出ピークに最も近い高分子量側の溶出ピークの高分子量側のすそ野の最も低い位置までの範囲でベースラインを設定することとした。
The number average molecular weight (Mn), the mass average molecular weight (Mw), and the Z + 1 average molecular weight (Mz + 1) are determined by the molecular number (Ni) of the molecular weight (Mi) at each elution position of the GPC curve obtained through the molecular weight calibration curve. It is defined by the following formula.
Number average molecular weight: Mn = Σ (Ni · Mi) / ΣNi
Mass average molecular weight: Mw = Σ (Ni · Mi 2 ) / Σ (Ni · Mi)
Z + 1 average molecular weight: Mz + 1 = Σ (Ni · Mi 4 ) / Σ (Ni · Mi 3 )
Molecular weight distribution: Mw / Mn
The molecular weight at the peak position of the GPC curve was defined as Mp.
When the baseline was not clear, the baseline was set in the range from the elution peak closest to the elution peak of the standard substance to the lowest position of the bottom of the high molecular weight side.
5)広角X線回折
 本発明の実施例では、大型放射光施設SPring―8の中にフロンティアソフトマター開発産学連合体(FSBL)が所有するビームラインBL03XUの第2ハッチにおいて、X線源方向とフィルム面とのなす角が垂直となすようし、測定フィルムをセットし、広角X線(WAXS)測定を行った。測定条件を下記に示す。
 X線波長は0.1nmとし、検出器としてイメージングプレート(RIGAKU R-AXIS VII)またはイメージインテンシファイア付きCCDカメラ(Hamamatsu Photonics V7739P + ORCA R2)を用い、試料前後にセットしたイオンチェンバーの値から透過率を算出した。得られた2次元像に対して暗電流(ダークノイズ)および透過率を勘案した空気散乱補正を行った。カメラ長の測定には酸化セリウム(CeO)を用い、Fit2D  (European  Synchrotron  Radiation  Facility製のソフトウェア[http://www.esrf.eu/computing/scientific/FIT2D/])を用いて(110)面の方位角プロファイルを算出した。
5) Wide-angle X-ray diffraction In the embodiment of the present invention, in the second hatch of the beamline BL03XU owned by the Frontier Soft Matter Development Industry-University Federation (FSBL) in the large synchrotron radiation facility SPring-8, A measurement film was set so that the angle formed with the film surface was vertical, and wide-angle X-ray (WAXS) measurement was performed. The measurement conditions are shown below.
The X-ray wavelength was 0.1 nm, and the detector was an imaging plate (RIGAKU R-AXIS VII) or a CCD camera with an image intensifier (Hamamatsu Photonics V7739P + ORCA R2). The transmittance was calculated. The obtained two-dimensional image was subjected to air scattering correction in consideration of dark current (dark noise) and transmittance. The camera length was measured using cerium oxide (CeO 2 ) and Fit 2D (European Synchrotron Radiation Facility software [http://www.esrf.eu/computing/scientific/FIT2D/]) (110) The azimuth profile of was calculated.
6)小角X線散乱法による長周期サイズ
 大型放射光施設SPring―8の中にフロンティアソフトマター開発産学連合体(FSBL)が所有するビームラインBL03XUの第2ハッチにおいて、フィルムのMD方向を上下、TD方向を左右とし、X線源方向とフィルム面とのなす角が垂直となすように測定フィルムをセットし、小角X線(SAXS)測定を行った。測定条件を下記に示す。
 X線波長は0.2nmとし、カメラ長は約7.7m、検出器としてはイメージングプレート(RIGAKU R-AXIS VII)を用い散乱ベクトルqの0.01~0.5(nm-1)の範囲の散乱像を得た。ここで散乱ベクトルqはθを散乱角2θの半分、πを円周率、λをX線の波長とした時、式q = 4πsinθ/λによって算出される。得られた散乱像に対してWAXS測定と同様に暗電流(ダークノイズ)および透過率を勘案した空気散乱補正を行い、正確なカメラ長の測定にはベヘン酸銀で別途校正したコラーゲンを用いた。前述のFit2dソフトウェアを用い試料の巾方向のプロファイルを算出し横軸に散乱ベクトルq(nm-1)、縦軸に強度I(q)の常用対数をとりプロットした。ここでプロファイルの算出範囲は巾方向から±5度とした。
6) Long-period size by small-angle X-ray scattering method In the second hatch of the beamline BL03XU owned by the Frontier Soft Matter Development Industry-University Federation (FSBL) in the large synchrotron radiation facility SPring-8, The measurement film was set so that the angle between the X-ray source direction and the film surface was perpendicular with the TD direction as the left and right, and small-angle X-ray (SAXS) measurement was performed. The measurement conditions are shown below.
X-ray wavelength is 0.2 nm, camera length is about 7.7 m, imaging plate (RIGAKU R-AXIS VII) is used as a detector, and scattering vector q is in the range of 0.01 to 0.5 (nm −1 ). A scattering image of was obtained. Here, the scattering vector q is calculated by the equation q = 4π sin θ / λ, where θ is half of the scattering angle 2θ, π is the circularity, and λ is the wavelength of the X-ray. Air scattering correction was performed on the obtained scattered image in consideration of dark current and transmittance in the same manner as the WAXS measurement, and collagen calibrated separately with silver behenate was used for accurate camera length measurement. . A profile in the width direction of the sample was calculated using the Fit2d software described above, and plotted with the scattering vector q (nm −1 ) on the horizontal axis and the common logarithm of intensity I (q) on the vertical axis. Here, the calculation range of the profile was ± 5 degrees from the width direction.
7)示差走査熱量分析(DSC)
 示差走査熱量計(島津製作所社製「DSC-60」)を用いて熱測定を行った。試料フィルムから約5mgを切り出して測定用のアルミパンに封入した。20℃/分の速度で室温から230℃まで昇温し、試料の融解吸熱ピーク温度、融解吸熱ピーク面積(全融解熱)を測定した。ここでベースラインは、吸熱ピークの開始からピーク終了まで、融解前後の温度でカーブがスムーズにつながるように設定した。また融解吸熱ピーク面積のうち、150℃以下の部分の面積を150℃融解熱とした。
7) Differential scanning calorimetry (DSC)
Thermal measurement was performed using a differential scanning calorimeter (“DSC-60” manufactured by Shimadzu Corporation). About 5 mg was cut out from the sample film and sealed in an aluminum pan for measurement. The temperature was raised from room temperature to 230 ° C. at a rate of 20 ° C./min, and the melting endothermic peak temperature and melting endothermic peak area (total heat of fusion) of the sample were measured. Here, the baseline was set so that the curve smoothly connected at the temperature before and after melting from the end of the endothermic peak to the end of the peak. Of the melting endothermic peak area, the area of 150 ° C. or lower was defined as 150 ° C. heat of fusion.
8)熱収縮率(単位:%)
 JIS Z 1712に準拠して以下の方法で測定した。延伸フィルムを巾20mm、長さ200mmの大きさで、MD方向、TD方向にそれぞれカットし、150℃の熱風オーブン中に吊るして5分間加熱した。加熱後の長さを測定し、元の長さに対する収縮した長さの割合(百分率)を熱収縮率とした。
8) Thermal shrinkage (unit:%)
Measurement was carried out according to JIS Z 1712 by the following method. The stretched film was 20 mm wide and 200 mm long, cut in the MD and TD directions, suspended in a hot air oven at 150 ° C. and heated for 5 minutes. The length after heating was measured, and the ratio (percentage) of the contracted length to the original length was defined as the thermal contraction rate.
9)ヤング率(単位:GPa)
 JIS K 7127に準拠してフィルムのMD方向およびTD方向のヤング率を23℃にて測定した。
9) Young's modulus (unit: GPa)
The Young's modulus in the MD direction and TD direction of the film was measured at 23 ° C. in accordance with JIS K 7127.
10)耐衝撃性(単位:J)
 東洋精機社製「フィルムインパクトテスター」を用いて、23℃にて測定した。
10) Impact resistance (Unit: J)
It measured at 23 degreeC using the Toyo Seiki "film impact tester".
11)厚み均一性(厚み斑)(単位:%)
 巻き取ったフィルムロールから長さが1mの正方形のサンプルを切り出し、MD方向およびTD方向にそれぞれ10等分して測定用サンプルを100枚用意した。測定用サンプルのほぼ中央部を接触式のフィルム厚み計で厚みを測定した。得られた100点のデータの平均値Aを求め、また最小値と最大値の差(絶対値)Bを求め、(B/A)×100の式を用いて計算した値をフィルムの厚み斑とした。
11) Thickness uniformity (thickness unevenness) (unit:%)
A square sample having a length of 1 m was cut out from the wound film roll, and divided into 10 parts each in the MD direction and the TD direction, and 100 measurement samples were prepared. The thickness was measured with a contact-type film thickness meter at the approximate center of the measurement sample. The average value A of the obtained 100 points of data was obtained, the difference (absolute value) B between the minimum value and the maximum value was obtained, and the value calculated using the formula of (B / A) × 100 was used as the thickness variation of the film. It was.
12)ヘイズ(単位:%)
 JIS K7105に従って測定した。
12) Haze (Unit:%)
It measured according to JIS K7105.
13)フィルム密度(単位:g/cm
 フィルムの密度は、JIS K7112に従って、密度勾配管法により測定した。
13) Film density (unit: g / cm 3 )
The density of the film was measured by a density gradient tube method according to JIS K7112.
14)屈折率(Nx、Ny、Nz)
 アッベ屈折計(アタゴ社製)を用いて測定した。MD方向、TD方向に沿った屈折率をそれぞれNx、Nyとし、厚み方向の屈折率をNzとした。
14) Refractive index (Nx, Ny, Nz)
Measurement was performed using an Abbe refractometer (manufactured by Atago Co., Ltd.). The refractive indexes along the MD and TD directions were Nx and Ny, respectively, and the refractive index in the thickness direction was Nz.
15)面配向係数P
 上記12)で測定したNx、Ny、Nzを用いて、式:P=[(Nx+Ny)/2]-Nzから算出した。
15) Plane orientation coefficient P
Using Nx, Ny, and Nz measured in the above 12), calculation was performed from the formula: P = [(Nx + Ny) / 2] −Nz.
(実施例1)
 ポリプロピレン樹脂として、Mw/Mn=7.7、Mz+1/Mn=140、MFR=5.0g/10分、メソペンタッド分率[mmmm]=97.3%であるプロピレン単独重合体(日本ポリプロ(株)製「ノバテック(登録商標)PP SA4L」:共重合モノマー量は0モル%;以下「PP-1」と略する)を用いた。
 このポリプロピレン樹脂を、60mm押出機を用いて、250℃でTダイよりシート状に押出し、30℃の冷却ロールで冷却固化した後、135℃で長さ方向(MD方向)に4.5倍に縦延伸し、次いで両端をクリップで挟み、熱風オーブン中に導いて、170℃で予熱後、160℃で横方向(TD方向)に8.2倍に横延伸し、次いで6.7%のリラックスを掛けながら168℃で熱処理した。その後、フィルムの片面にコロナ処理を行い、ワインダーで巻き取って、本発明の延伸ポリプロピレンフィルムとした。
 得られたフィルムの厚みは20μmであった。表1にフィルムを構成するポリプロピレンの構造を、表2に製膜条件をそれぞれ示す。得られたフィルムの物性は、表3に示すとおりであり、熱収縮率は低く、ヤング率は高かった。また、このフィルムの示差走査熱量測定(DSC)で得られたチャートを図2に示す。
Example 1
As a polypropylene resin, a propylene homopolymer having Mw / Mn = 7.7, Mz + 1 / Mn = 140, MFR = 5.0 g / 10 min, and mesopentad fraction [mmmm] = 97.3% (Nippon Polypro Corp.) “NOVATEC (registered trademark) PP SA4L” manufactured by Kobayashi Co., Ltd .: the amount of copolymerization monomer was 0 mol%;
This polypropylene resin was extruded into a sheet form from a T-die at 250 ° C. using a 60 mm extruder, cooled and solidified with a cooling roll at 30 ° C., and then 4.5 times in the length direction (MD direction) at 135 ° C. Longitudinal stretching, then clipped at both ends, guided into a hot air oven, preheated at 170 ° C, transversely stretched 8.2 times in the transverse direction (TD direction) at 160 ° C, and then relaxed by 6.7% And then heat treated at 168 ° C. Then, the corona treatment was performed on one side of the film, and it was wound up with a winder to obtain the stretched polypropylene film of the present invention.
The thickness of the obtained film was 20 μm. Table 1 shows the structure of the polypropylene constituting the film, and Table 2 shows the film forming conditions. The physical properties of the obtained film are as shown in Table 3. The heat shrinkage rate was low and the Young's modulus was high. Moreover, the chart obtained by the differential scanning calorimetry (DSC) of this film is shown in FIG.
(実施例2)
 ポリプロピレン樹脂として、Mw/Mn=8.9、Mz+1/Mn=110、MFR=3.0g/10分、[mmmm]=97.1%であるプロピレン単独重合体(サムスントタル(株)製「HU300」:共重合モノマー量は0モル%;以下「PP-2」と略する)を用い、横延伸の予熱温度を171℃、横延伸温度を161℃、横延伸後の熱処理温度を170℃とした以外は、実施例1と同様にして、本発明の延伸ポリプロピレンフィルムを得た。
 得られたフィルムの厚みは20μmであった。表1にフィルムを構成するポリプロピレンの構造を、表2に製膜条件をそれぞれ示す。得られたフィルムの物性は、表3に示すとおりであった。
(Example 2)
As a polypropylene resin, a propylene homopolymer (MU / Mn = 8.9, Mz + 1 / Mn = 110, MFR = 3.0 g / 10 min, [mmmm] = 97.1%, “HU300 manufactured by Samsung Sumtal Co., Ltd.) ": The amount of copolymerization monomer is 0 mol%; hereinafter abbreviated as" PP-2 "), the preheating temperature for transverse stretching is 171 ° C, the transverse stretching temperature is 161 ° C, and the heat treatment temperature after transverse stretching is 170 ° C A stretched polypropylene film of the present invention was obtained in the same manner as in Example 1 except that.
The thickness of the obtained film was 20 μm. Table 1 shows the structure of the polypropylene constituting the film, and Table 2 shows the film forming conditions. The physical properties of the obtained film were as shown in Table 3.
(実施例3)
 実施例1で用いたプロピレン単独重合体(PP―1)90質量部に対して、分子量10000の低分子量プロピレン(三井化学(株)製 ハイワックス「NP105」:共重合モノマー量は0モル%)を10質量部加えて合計100質量部とし、30mm二軸押出機にて溶融混錬して、Mw/Mn=11、Mz+1/Mn=146、MFR=7.0g/10分、[mmmm]=96.5%であるプロピレン重合体の混合物(以下「PP-3」と略する)のペレットを得た。このペレットをポリプロピレン樹脂として用いた以外は、実施例1と同様にして、本発明の延伸ポリプロピレンフィルムを得た。
 得られたフィルムの厚みは20μmであった。表1にフィルムを構成するポリプロピレンの構造を、表2に製膜条件をそれぞれ示す。得られたフィルムの物性は、表3に示すとおりであった。
Example 3
Low molecular weight propylene having a molecular weight of 10,000 (high wax “NP105” manufactured by Mitsui Chemicals, Inc .: amount of copolymerization monomer is 0 mol%) with respect to 90 parts by mass of the propylene homopolymer (PP-1) used in Example 1 10 parts by mass to make a total of 100 parts by mass, melt kneaded in a 30 mm twin screw extruder, Mw / Mn = 11, Mz + 1 / Mn = 146, MFR = 7.0 g / 10 min, [mmmm] = A pellet of a mixture of 96.5% propylene polymer (hereinafter abbreviated as “PP-3”) was obtained. A stretched polypropylene film of the present invention was obtained in the same manner as in Example 1 except that this pellet was used as a polypropylene resin.
The thickness of the obtained film was 20 μm. Table 1 shows the structure of the polypropylene constituting the film, and Table 2 shows the film forming conditions. The physical properties of the obtained film were as shown in Table 3.
(実施例4)
 長さ方向に5.5倍、横方向に12倍に延伸した以外は、実施例3と同様にして、本発明の延伸ポリプロピレンフィルムを得た。
 得られたフィルムの厚みは20μmであった。表1にフィルムを構成するポリプロピレンの構造を、表2に製膜条件をそれぞれ示す。得られたフィルムの物性は、表3に示すとおりであった。
Example 4
A stretched polypropylene film of the present invention was obtained in the same manner as in Example 3 except that the film was stretched 5.5 times in the length direction and 12 times in the transverse direction.
The thickness of the obtained film was 20 μm. Table 1 shows the structure of the polypropylene constituting the film, and Table 2 shows the film forming conditions. The physical properties of the obtained film were as shown in Table 3.
(実施例5)
 実施例1で作製した延伸ポリプロピレンフィルムに、テンター式熱風オーブン中で、170℃で5分間の熱処理を施し、本発明の延伸ポリプロピレンフィルムを得た。
 得られたフィルムの厚みは20μmであった。表1にフィルムを構成するポリプロピレンの構造を、表2に製膜条件をそれぞれ示す。得られたフィルムの物性は、表3に示すとおりであった。
(Example 5)
The stretched polypropylene film produced in Example 1 was heat-treated at 170 ° C. for 5 minutes in a tenter hot air oven to obtain a stretched polypropylene film of the present invention.
The thickness of the obtained film was 20 μm. Table 1 shows the structure of the polypropylene constituting the film, and Table 2 shows the film forming conditions. The physical properties of the obtained film were as shown in Table 3.
(実施例6)
 ポリプロピレン樹脂として、Mw/Mn=4.0、Mz+1/Mn=23、MFR=6.0g/10分、[mmmm]=98.7%であるプロピレン単独重合体(共重合モノマー量は0モル%;以下「PP-4」と略する)を用いた以外は、実施例1と同様にして、本発明の延伸ポリプロピレンフィルムを得た。
 得られたフィルムの厚みは20μmであった。表1にフィルムを構成するポリプロピレンの構造を、表2に製膜条件をそれぞれ示す。得られたフィルムの物性は、表3に示すとおりであった。
(Example 6)
As a polypropylene resin, a propylene homopolymer having Mw / Mn = 4.0, Mz + 1 / Mn = 23, MFR = 6.0 g / 10 min, [mmmm] = 98.7% (the amount of the comonomer is 0 mol%) ; Hereinafter abbreviated as “PP-4”), a stretched polypropylene film of the present invention was obtained in the same manner as in Example 1.
The thickness of the obtained film was 20 μm. Table 1 shows the structure of the polypropylene constituting the film, and Table 2 shows the film forming conditions. The physical properties of the obtained film were as shown in Table 3.
(比較例1)
 ポリプロピレン樹脂として、Mw/Mn=4、Mz+1/Mn=21、MFR=2.5g/10分、[mmmm]=97%であるプロピレン-エチレン共重合体(住友化学(株)製「住友ノーブレン(登録商標)FS2011DG3」:共重合モノマー量は0.6モル%;以下「PP-5」と略する)を用い、縦延伸温度を125℃、横延伸における予熱温度を168℃、横延伸温度を155℃、横延伸後の熱処理温度を163℃とした以外は、実施例1と同様にして、延伸ポリプロピレンフィルムを得た。
 得られたフィルムの厚みは20μmであった。表1にフィルムを構成するポリプロピレンの構造を、表2に製膜条件をそれぞれ示す。得られたフィルムの物性は、表3に示すとおりであった。また、このフィルムの示差走査熱量測定(DSC)で得られたチャートを図2に示す。
(Comparative Example 1)
As a polypropylene resin, a propylene-ethylene copolymer (Sumitomo Chemical Co., Ltd., “Sumitomo Noblen” (Mw / Mn = 4, Mz + 1 / Mn = 21, MFR = 2.5 g / 10 min, [mmmm] = 97%) (Registered trademark) FS2011DG3 ”: 0.6 mol% copolymer monomer amount; hereinafter abbreviated as“ PP-5 ”), the longitudinal stretching temperature is 125 ° C., the preheating temperature in the transverse stretching is 168 ° C., and the transverse stretching temperature is A stretched polypropylene film was obtained in the same manner as in Example 1 except that the heat treatment temperature after 155 ° C and transverse stretching was 163 ° C.
The thickness of the obtained film was 20 μm. Table 1 shows the structure of the polypropylene constituting the film, and Table 2 shows the film forming conditions. The physical properties of the obtained film were as shown in Table 3. Moreover, the chart obtained by the differential scanning calorimetry (DSC) of this film is shown in FIG.
(比較例2)
 横延伸における予熱温度を171℃、横延伸温度を160℃、横延伸後の熱処理温度を165℃とした以外は、比較例1と同様にして、延伸ポリプロピレンフィルムを得た。
 得られたフィルムの厚みは20μmであった。表1にフィルムを構成するポリプロピレンの構造を、表2に製膜条件をそれぞれ示す。得られたフィルムの物性は、表3に示すとおりであった。
(Comparative Example 2)
A stretched polypropylene film was obtained in the same manner as in Comparative Example 1 except that the preheating temperature in transverse stretching was 171 ° C, the transverse stretching temperature was 160 ° C, and the heat treatment temperature after transverse stretching was 165 ° C.
The thickness of the obtained film was 20 μm. Table 1 shows the structure of the polypropylene constituting the film, and Table 2 shows the film forming conditions. The physical properties of the obtained film were as shown in Table 3.
(比較例3)
 ポリプロピレン樹脂として、Mw/Mn=4.3、Mz+1/Mn=28、MFR=0.5g/10分、[mmmm]=97%であるプロピレン単独重合体(共重合モノマー量は0モル%;以下「PP-6」と略する)を用いた以外は、比較例2と同様にして、延伸ポリプロピレンフィルムを得た。
 得られたフィルムの厚みは20μmであった。表1にフィルムを構成するポリプロピレンの構造を、表2に製膜条件をそれぞれ示す。得られたフィルムの物性は、表3に示すとおりであった。
(Comparative Example 3)
As a polypropylene resin, propylene homopolymer having Mw / Mn = 4.3, Mz + 1 / Mn = 28, MFR = 0.5 g / 10 min, [mmmm] = 97% (copolymerization monomer amount is 0 mol%; A stretched polypropylene film was obtained in the same manner as in Comparative Example 2, except that “PP-6” was used.
The thickness of the obtained film was 20 μm. Table 1 shows the structure of the polypropylene constituting the film, and Table 2 shows the film forming conditions. The physical properties of the obtained film were as shown in Table 3.
(比較例4)
 ポリプロピレン樹脂として、Mw/Mn=2.8、Mz+1/Mn=9.2、MFR=30g/10分、[mmmm]=97.9%であるであるポリプロピレン系重合体(日本ポリプロ(株)製「ノバテック(登録商標)PP SA03」:共重合モノマー量は0モル%;以下「PP-7」と略する)を用いたこと以外は、実施例1と同様にして、延伸ポリプロピレンフィルムを得ようと試みたが、横延伸でフィルムが破断してしまい、二軸延伸できなかった。
(Comparative Example 4)
As a polypropylene resin, a polypropylene polymer (Mip / Mn = 2.8, Mz + 1 / Mn = 9.2, MFR = 30 g / 10 min, [mmmm] = 97.9%, manufactured by Nippon Polypro Co., Ltd.) A stretched polypropylene film is obtained in the same manner as in Example 1 except that “NOVATEC (registered trademark) PP SA03”: the amount of copolymerization monomer is 0 mol%; hereinafter abbreviated as “PP-7”) is used. However, the film was broken by transverse stretching, and biaxial stretching could not be performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明のポリプロピレンフィルムは、包装用途、工業用途などに広く使用することができるが、特に高剛性であるため薄肉化が可能であり、コストダウン、軽量化を図ることができる。また、本発明のポリプロピレンフィルムは、耐熱性が高いため、コートや印刷時に高温での処理が可能となり、生産の効率化や従来用いられにくかったコート剤やインキ、ラミネート接着剤などを用いることができる。さらには、本発明のポリプロピレンフィルムは、コンデンサーやモーターなどの絶縁フィルム、太陽電池のバックシート、無機酸化物のバリアフィルム、ITOなどの透明導電フィルムのベースフィルムにも適する。
 
The polypropylene film of the present invention can be widely used for packaging applications, industrial applications, and the like, but can be reduced in thickness because of its particularly high rigidity, and cost and weight can be reduced. In addition, since the polypropylene film of the present invention has high heat resistance, it can be processed at a high temperature during coating or printing, and it is possible to use a coating agent, ink, a laminating adhesive, or the like, which has been difficult to use conventionally, or production. it can. Furthermore, the polypropylene film of the present invention is also suitable for insulating films such as capacitors and motors, back sheets for solar cells, barrier films for inorganic oxides, and base films for transparent conductive films such as ITO.

Claims (5)

  1.  以下の要件(a)~(c)を満たすプロピレン系重合体を用いた延伸フィルムであり、かつ、以下の要件(d)及び(e)を満たすことを特徴とする延伸ポリプロピレンフィルム。
    (a)メソペンタッド分率が96%以上である。
    (b)プロピレン以外のコモノマーの含有量が0.5モル%以下である。
    (c)メルトフローレート(MFR)が0.5g/10分以上、20g/10分以下である。
    (d)広角X線散乱法により測定されるポリプロピレンのα型結晶の110面の散乱強度を方位角に対してプロットした時の最大ピークの半値幅が30度以下である。
    (e)示差走査熱量計を用いて昇温速度20℃/分で測定された融解吸熱ピーク面積(全融解熱)が115J/g以上であり、かつ、150℃以下の面積(150℃融解熱)の全融解熱に対する比(150℃融解熱/全融解熱)が0.12以下である。
    A stretched polypropylene film characterized by being a stretched film using a propylene polymer satisfying the following requirements (a) to (c) and satisfying the following requirements (d) and (e).
    (A) Mesopentad fraction is 96% or more.
    (B) The content of comonomer other than propylene is 0.5 mol% or less.
    (C) The melt flow rate (MFR) is 0.5 g / 10 min or more and 20 g / 10 min or less.
    (D) The half-value width of the maximum peak when the scattering intensity of the 110 plane of the α-type crystal of polypropylene measured by the wide angle X-ray scattering method is plotted against the azimuth is 30 degrees or less.
    (E) The melting endothermic peak area (total heat of fusion) measured at a heating rate of 20 ° C./min using a differential scanning calorimeter is 115 J / g or more and an area of 150 ° C. or less (150 ° C. heat of fusion) ) To the total heat of fusion (150 ° C. heat of fusion / total heat of fusion) is 0.12 or less.
  2.  小角X線散乱法により測定される主たる配向方向の長周期散乱ピークから求められる長周期サイズが40nm以上である請求項1に記載の延伸ポリプロピレンフィルム。 The stretched polypropylene film according to claim 1, wherein a long-period size obtained from a long-period scattering peak in a main orientation direction measured by a small-angle X-ray scattering method is 40 nm or more.
  3.  厚みが3~100μmである少なくとも一軸に延伸された請求項1又は2に記載の延伸ポリプロピレンフィルム。 3. The stretched polypropylene film according to claim 1, wherein the stretched polypropylene film is stretched at least uniaxially with a thickness of 3 to 100 μm.
  4.  150℃におけるTD方向の熱収縮率及び150℃におけるMD方向の熱収縮率が共に10%以下である請求項1~3のいずれかに記載の延伸ポリプロピレンフィルム。 The stretched polypropylene film according to any one of claims 1 to 3, wherein the thermal shrinkage in the TD direction at 150 ° C and the thermal shrinkage in the MD direction at 150 ° C are both 10% or less.
  5.  ヘイズが6%以下である請求項1~4のいずれかに記載の延伸ポリプロピレンフィルム。
     
    The stretched polypropylene film according to any one of claims 1 to 4, wherein the haze is 6% or less.
PCT/JP2014/069485 2013-07-23 2014-07-23 Stretched polypropylene film WO2015012324A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167001650A KR102352439B1 (en) 2013-07-23 2014-07-23 Stretched polypropylene film
JP2015528316A JP6477472B2 (en) 2013-07-23 2014-07-23 Stretched polypropylene film

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2013-152979 2013-07-23
JP2013-152980 2013-07-23
JP2013152979 2013-07-23
JP2013152980 2013-07-23
JP2013-154674 2013-07-25
JP2013154674 2013-07-25
JP2013154673 2013-07-25
JP2013-154673 2013-07-25
JP2013157050 2013-07-29
JP2013-157050 2013-07-29
JP2013157049 2013-07-29
JP2013-157049 2013-07-29

Publications (1)

Publication Number Publication Date
WO2015012324A1 true WO2015012324A1 (en) 2015-01-29

Family

ID=52393357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069485 WO2015012324A1 (en) 2013-07-23 2014-07-23 Stretched polypropylene film

Country Status (4)

Country Link
JP (1) JP6477472B2 (en)
KR (1) KR102352439B1 (en)
TW (1) TWI629301B (en)
WO (1) WO2015012324A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188360A (en) * 2015-03-27 2016-11-04 東レ株式会社 Biaxially oriented polypropylene film, metal film laminated film and film capacitor
WO2016182003A1 (en) * 2015-05-12 2016-11-17 東レ株式会社 Polypropylene film, metal membrane layered film, and film capacitor, and method for manufacturing same
JP2017226161A (en) * 2016-06-23 2017-12-28 東洋紡株式会社 Laminated film
WO2017221781A1 (en) * 2016-06-23 2017-12-28 東洋紡株式会社 Laminated polypropylene film
JP2017226776A (en) * 2016-06-23 2017-12-28 東洋紡株式会社 Laminated film
KR20180068971A (en) * 2015-10-13 2018-06-22 도레이 카부시키가이샤 Biaxially oriented polypropylene film, metal film laminated film and film capacitor
JP2018141122A (en) * 2017-02-28 2018-09-13 東洋紡株式会社 Biaxially oriented polypropylene film
WO2018180164A1 (en) * 2017-03-28 2018-10-04 東洋紡株式会社 Biaxially oriented polypropylene film
KR20180122459A (en) 2016-03-28 2018-11-12 도요보 가부시키가이샤 Biaxially oriented laminated polypropylene film
JPWO2017159103A1 (en) * 2016-03-17 2019-01-17 東レ株式会社 Biaxially oriented polypropylene film, metal film laminated film, and film capacitor
WO2019065306A1 (en) * 2017-09-26 2019-04-04 東洋紡株式会社 Polypropylene-based laminate film
CN110165123A (en) * 2019-05-15 2019-08-23 乐凯胶片股份有限公司 Polyethene microporous membrane and its preparation method and application
WO2020040127A1 (en) * 2018-08-23 2020-02-27 東レ株式会社 Polypropylene film, metal-membrane layered film using same, and film capacitor
WO2020137793A1 (en) * 2018-12-28 2020-07-02 東洋紡株式会社 Biaxially oriented polypropylene film
WO2020137790A1 (en) * 2018-12-28 2020-07-02 東洋紡株式会社 Biaxially oriented polypropylene film
WO2020137794A1 (en) * 2018-12-28 2020-07-02 東洋紡株式会社 Biaxially-oriented polypropylene film
WO2020137791A1 (en) * 2018-12-28 2020-07-02 東洋紡株式会社 Biaxially oriented polypropylene film
JP2020105358A (en) * 2018-12-27 2020-07-09 株式会社プライムポリマー Stretched film including propylene polymer
JP2020128097A (en) * 2016-06-23 2020-08-27 東洋紡株式会社 Laminate film
WO2021020400A1 (en) 2019-07-29 2021-02-04 凸版印刷株式会社 Laminated body and wrapping bag
CN112638645A (en) * 2018-08-29 2021-04-09 王子控股株式会社 Metal layer-integrated polypropylene film, film capacitor, and method for producing metal layer-integrated polypropylene film
WO2021070671A1 (en) * 2019-10-10 2021-04-15 東レ株式会社 Polyolefin film
CN113045789A (en) * 2021-04-15 2021-06-29 江南大学 Polyolefin-based high-barrier film with renewable structure and preparation method thereof
WO2021256347A1 (en) * 2020-06-17 2021-12-23 東洋紡株式会社 Biaxially-oriented polypropylene film
US20220064388A1 (en) * 2018-12-28 2022-03-03 Toyobo Co., Ltd. Biaxially oriented polypropylene film
WO2022092302A1 (en) * 2020-10-30 2022-05-05 旭化成株式会社 Siloxane dispersed crosslinked separator
WO2022091549A1 (en) 2020-10-30 2022-05-05 住友化学株式会社 Propylene polymer composition, biaxially stretched film and packaging bag
KR20220101758A (en) 2016-03-28 2022-07-19 도요보 가부시키가이샤 Biaxially oriented polypropylene film
EP3904049A4 (en) * 2018-12-28 2022-09-14 Toyobo Co., Ltd. Biaxially oriented polypropylene film
WO2022209190A1 (en) * 2021-03-30 2022-10-06 住友化学株式会社 Film, method for producing film, and propylene-based polymer composition
CN115315467A (en) * 2020-03-24 2022-11-08 东洋纺株式会社 Biaxially oriented polypropylene film
KR20230065291A (en) 2020-10-30 2023-05-11 아사히 가세이 가부시키가이샤 Polyolefin microporous membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139323A (en) * 1995-11-16 1997-05-27 Toray Ind Inc Polypropylene film for capacitor
JPH09148176A (en) * 1995-11-29 1997-06-06 Toray Ind Inc Heat-resistant polypropylene film for capacitor use
JP2001118430A (en) * 1999-08-11 2001-04-27 Toray Ind Inc Biaxially oriented polypropylene film for oil immersion electric insulation
JP2001525482A (en) * 1997-12-10 2001-12-11 ミネソタ マイニング アンド マニュファクチャリング カンパニー Stretched polypropylene-based base film for adhesive tape
JP2009301036A (en) * 2008-06-12 2009-12-24 Hwaseung Industries Co Ltd Retardation film having zero wavelength dispersibility and uniform in-plane retardation value and multilayer optical film having positive dispersibility in wavelength

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325327A (en) 1995-06-02 1996-12-10 Chisso Corp Highly stereoregular polypropylene
JP2001146536A (en) 1999-11-19 2001-05-29 Oji Paper Co Ltd Biaxially oriented polypropylene film for release sheet
JP4145639B2 (en) 2002-11-27 2008-09-03 株式会社プライムポリマー Polypropylene resin, sheet and film obtained from the resin
EP1726602A1 (en) 2005-05-27 2006-11-29 Borealis Technology Oy Propylene polymer with high crystallinity
JP4929923B2 (en) 2005-08-26 2012-05-09 東レ株式会社 Polypropylene film and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139323A (en) * 1995-11-16 1997-05-27 Toray Ind Inc Polypropylene film for capacitor
JPH09148176A (en) * 1995-11-29 1997-06-06 Toray Ind Inc Heat-resistant polypropylene film for capacitor use
JP2001525482A (en) * 1997-12-10 2001-12-11 ミネソタ マイニング アンド マニュファクチャリング カンパニー Stretched polypropylene-based base film for adhesive tape
JP2001118430A (en) * 1999-08-11 2001-04-27 Toray Ind Inc Biaxially oriented polypropylene film for oil immersion electric insulation
JP2009301036A (en) * 2008-06-12 2009-12-24 Hwaseung Industries Co Ltd Retardation film having zero wavelength dispersibility and uniform in-plane retardation value and multilayer optical film having positive dispersibility in wavelength

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188360A (en) * 2015-03-27 2016-11-04 東レ株式会社 Biaxially oriented polypropylene film, metal film laminated film and film capacitor
JP7173202B2 (en) 2015-05-12 2022-11-16 東レ株式会社 Polypropylene film, metal film laminated film, film capacitor, and manufacturing method thereof
WO2016182003A1 (en) * 2015-05-12 2016-11-17 東レ株式会社 Polypropylene film, metal membrane layered film, and film capacitor, and method for manufacturing same
CN107531924B (en) * 2015-05-12 2021-01-26 东丽株式会社 Polypropylene film, metal film laminate film, film capacitor, and methods for producing these
KR102500999B1 (en) * 2015-05-12 2023-02-17 도레이 카부시키가이샤 Polypropylene film, metal film laminated film and film capacitor and their manufacturing method
JP2021120456A (en) * 2015-05-12 2021-08-19 東レ株式会社 Polypropylene film, metal membrane layered film, and film capacitor, and method for manufacturing the same
CN107531924A (en) * 2015-05-12 2018-01-02 东丽株式会社 Polypropylene screen, metal film stacked film and membrane capacitance and their manufacture method
KR20180005670A (en) * 2015-05-12 2018-01-16 도레이 카부시키가이샤 Polypropylene film, metal film laminated film and film capacitor
JPWO2016182003A1 (en) * 2015-05-12 2018-02-22 東レ株式会社 Polypropylene film, metal film laminated film, film capacitor, and production method thereof
EP3296348B1 (en) 2015-05-12 2022-10-26 Toray Industries, Inc. Polypropylene film, metal membrane layered film and film capacitor as well as method for manufacturing the same
KR20180068971A (en) * 2015-10-13 2018-06-22 도레이 카부시키가이샤 Biaxially oriented polypropylene film, metal film laminated film and film capacitor
KR102451416B1 (en) * 2015-10-13 2022-10-07 도레이 카부시키가이샤 Biaxially Oriented Polypropylene Film, Metal Film Laminated Film and Film Capacitor
EP3363616A4 (en) * 2015-10-13 2019-05-15 Toray Industries, Inc. Biaxially oriented polypropylene film, multilayered film including metal film, and film capacitor
JPWO2017159103A1 (en) * 2016-03-17 2019-01-17 東レ株式会社 Biaxially oriented polypropylene film, metal film laminated film, and film capacitor
JP7135320B2 (en) 2016-03-17 2022-09-13 東レ株式会社 Biaxially oriented polypropylene film, metal film laminated film and film capacitor
KR20180122459A (en) 2016-03-28 2018-11-12 도요보 가부시키가이샤 Biaxially oriented laminated polypropylene film
KR20240058955A (en) 2016-03-28 2024-05-03 도요보 가부시키가이샤 Biaxially oriented polypropylene film
KR20220101758A (en) 2016-03-28 2022-07-19 도요보 가부시키가이샤 Biaxially oriented polypropylene film
JP7239036B2 (en) 2016-06-23 2023-03-14 東洋紡株式会社 laminated polypropylene film
JP2022088433A (en) * 2016-06-23 2022-06-14 東洋紡株式会社 Laminated polypropylene film
JP2017226161A (en) * 2016-06-23 2017-12-28 東洋紡株式会社 Laminated film
JP7451081B2 (en) 2016-06-23 2024-03-18 東洋紡株式会社 laminated polypropylene film
WO2017221781A1 (en) * 2016-06-23 2017-12-28 東洋紡株式会社 Laminated polypropylene film
JP2017226776A (en) * 2016-06-23 2017-12-28 東洋紡株式会社 Laminated film
JP2020128097A (en) * 2016-06-23 2020-08-27 東洋紡株式会社 Laminate film
JPWO2017221781A1 (en) * 2016-06-23 2019-04-11 東洋紡株式会社 Laminated polypropylene film
JP2018141122A (en) * 2017-02-28 2018-09-13 東洋紡株式会社 Biaxially oriented polypropylene film
JP2023017015A (en) * 2017-02-28 2023-02-02 東洋紡株式会社 biaxially oriented polypropylene film
WO2018180164A1 (en) * 2017-03-28 2018-10-04 東洋紡株式会社 Biaxially oriented polypropylene film
JP2022111158A (en) * 2017-03-28 2022-07-29 東洋紡株式会社 biaxially oriented polypropylene film
JP7298751B2 (en) 2017-03-28 2023-06-27 東洋紡株式会社 biaxially oriented polypropylene film
JPWO2018180164A1 (en) * 2017-03-28 2020-02-06 東洋紡株式会社 Biaxially oriented polypropylene film
JP7205462B2 (en) 2017-03-28 2023-01-17 東洋紡株式会社 biaxially oriented polypropylene film
JP7238779B2 (en) 2017-09-26 2023-03-14 東洋紡株式会社 Polypropylene laminated film
WO2019065306A1 (en) * 2017-09-26 2019-04-04 東洋紡株式会社 Polypropylene-based laminate film
JPWO2019065306A1 (en) * 2017-09-26 2020-11-19 東洋紡株式会社 Polypropylene laminated film
JP7409459B2 (en) 2017-09-26 2024-01-09 東洋紡株式会社 Polypropylene laminated film
JP2020033551A (en) * 2018-08-23 2020-03-05 東レ株式会社 Polypropylene film as well as metal membrane layered film and film capacitor using polypropylene film
WO2020040127A1 (en) * 2018-08-23 2020-02-27 東レ株式会社 Polypropylene film, metal-membrane layered film using same, and film capacitor
US11795282B2 (en) 2018-08-23 2023-10-24 Toray Industries, Inc. Polypropylene film, metal film laminated film using same, and film capacitor
CN112638645A (en) * 2018-08-29 2021-04-09 王子控股株式会社 Metal layer-integrated polypropylene film, film capacitor, and method for producing metal layer-integrated polypropylene film
JP7207997B2 (en) 2018-12-27 2023-01-18 株式会社プライムポリマー Stretched film containing propylene polymer
JP2020105358A (en) * 2018-12-27 2020-07-09 株式会社プライムポリマー Stretched film including propylene polymer
WO2020137793A1 (en) * 2018-12-28 2020-07-02 東洋紡株式会社 Biaxially oriented polypropylene film
JPWO2020137790A1 (en) * 2018-12-28 2021-11-11 東洋紡株式会社 Biaxially oriented polypropylene film
WO2020137790A1 (en) * 2018-12-28 2020-07-02 東洋紡株式会社 Biaxially oriented polypropylene film
WO2020137794A1 (en) * 2018-12-28 2020-07-02 東洋紡株式会社 Biaxially-oriented polypropylene film
US20220089822A1 (en) * 2018-12-28 2022-03-24 Toyobo Co., Ltd. Biaxially oriented polypropylene film
TWI824089B (en) * 2018-12-28 2023-12-01 日商東洋紡股份有限公司 Biaxially oriented polypropylene film
TWI824088B (en) * 2018-12-28 2023-12-01 日商東洋紡股份有限公司 Biaxially oriented polypropylene film
JP7388367B2 (en) 2018-12-28 2023-11-29 東洋紡株式会社 Biaxially oriented polypropylene film
US20220064388A1 (en) * 2018-12-28 2022-03-03 Toyobo Co., Ltd. Biaxially oriented polypropylene film
EP3904050A4 (en) * 2018-12-28 2022-09-14 Toyobo Co., Ltd. Biaxially oriented polypropylene film
EP3904051A4 (en) * 2018-12-28 2022-09-14 Toyobo Co., Ltd. Biaxially oriented polypropylene film
EP3904049A4 (en) * 2018-12-28 2022-09-14 Toyobo Co., Ltd. Biaxially oriented polypropylene film
EP3904053A4 (en) * 2018-12-28 2022-09-28 Toyobo Co., Ltd. Biaxially oriented polypropylene film
EP3904052A4 (en) * 2018-12-28 2022-09-28 Toyobo Co., Ltd. Biaxially oriented polypropylene film
WO2020137791A1 (en) * 2018-12-28 2020-07-02 東洋紡株式会社 Biaxially oriented polypropylene film
JP7363816B2 (en) 2018-12-28 2023-10-18 東洋紡株式会社 Biaxially oriented polypropylene film
US20210388193A1 (en) * 2018-12-28 2021-12-16 Toyobo Co., Ltd. Biaxially oriented polypropylene film
JP7363817B2 (en) 2018-12-28 2023-10-18 東洋紡株式会社 Biaxially oriented polypropylene film
JPWO2020137794A1 (en) * 2018-12-28 2021-11-11 東洋紡株式会社 Biaxially oriented polypropylene film
JPWO2020137793A1 (en) * 2018-12-28 2021-05-20 東洋紡株式会社 Biaxially oriented polypropylene film
JPWO2020137791A1 (en) * 2018-12-28 2021-11-11 東洋紡株式会社 Biaxially oriented polypropylene film
CN110165123B (en) * 2019-05-15 2022-03-04 乐凯胶片股份有限公司 Polyethylene microporous membrane and preparation method and application thereof
CN110165123A (en) * 2019-05-15 2019-08-23 乐凯胶片股份有限公司 Polyethene microporous membrane and its preparation method and application
WO2021020400A1 (en) 2019-07-29 2021-02-04 凸版印刷株式会社 Laminated body and wrapping bag
CN114502375B (en) * 2019-10-10 2024-04-26 东丽株式会社 Polyolefin film
WO2021070671A1 (en) * 2019-10-10 2021-04-15 東レ株式会社 Polyolefin film
CN114502375A (en) * 2019-10-10 2022-05-13 东丽株式会社 Polyolefin film
JPWO2021070671A1 (en) * 2019-10-10 2021-10-21 東レ株式会社 Polyolefin film
JP7107383B2 (en) 2019-10-10 2022-07-27 東レ株式会社 polyolefin film
CN115315467A (en) * 2020-03-24 2022-11-08 东洋纺株式会社 Biaxially oriented polypropylene film
JP7040681B1 (en) * 2020-06-17 2022-03-23 東洋紡株式会社 Biaxially oriented polypropylene film
WO2021256347A1 (en) * 2020-06-17 2021-12-23 東洋紡株式会社 Biaxially-oriented polypropylene film
KR20230079399A (en) 2020-10-30 2023-06-07 아사히 가세이 가부시키가이샤 Siloxane Dispersed Cross-linked Separator
KR20230065291A (en) 2020-10-30 2023-05-11 아사히 가세이 가부시키가이샤 Polyolefin microporous membrane
WO2022091549A1 (en) 2020-10-30 2022-05-05 住友化学株式会社 Propylene polymer composition, biaxially stretched film and packaging bag
WO2022092302A1 (en) * 2020-10-30 2022-05-05 旭化成株式会社 Siloxane dispersed crosslinked separator
WO2022209190A1 (en) * 2021-03-30 2022-10-06 住友化学株式会社 Film, method for producing film, and propylene-based polymer composition
CN113045789A (en) * 2021-04-15 2021-06-29 江南大学 Polyolefin-based high-barrier film with renewable structure and preparation method thereof

Also Published As

Publication number Publication date
KR102352439B1 (en) 2022-01-18
TW201510034A (en) 2015-03-16
TWI629301B (en) 2018-07-11
KR20160034302A (en) 2016-03-29
JPWO2015012324A1 (en) 2017-03-02
JP6477472B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6477472B2 (en) Stretched polypropylene film
JP7239036B2 (en) laminated polypropylene film
JP6241039B2 (en) Stretched polypropylene film
JP6349636B2 (en) Stretched polypropylene film
JP6221481B2 (en) Polypropylene film
JP6488703B2 (en) Biaxially stretched polypropylene film
JP6554765B2 (en) Polypropylene laminated stretched film
JP2017226161A (en) Laminated film
WO2014024970A1 (en) Polypropylene film
JP6414378B2 (en) Polypropylene film for in-mold labels
JP6477471B2 (en) Cavity-containing polypropylene film
WO2021193510A1 (en) Biaxially oriented polypropylene film
TW202146209A (en) Biaxially-oriented polypropylene film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528316

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167001650

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201601020

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14829475

Country of ref document: EP

Kind code of ref document: A1