WO2019065306A1 - Polypropylene-based laminate film - Google Patents

Polypropylene-based laminate film Download PDF

Info

Publication number
WO2019065306A1
WO2019065306A1 PCT/JP2018/034179 JP2018034179W WO2019065306A1 WO 2019065306 A1 WO2019065306 A1 WO 2019065306A1 JP 2018034179 W JP2018034179 W JP 2018034179W WO 2019065306 A1 WO2019065306 A1 WO 2019065306A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
molecular weight
film
heat seal
laminate film
Prior art date
Application number
PCT/JP2018/034179
Other languages
French (fr)
Japanese (ja)
Inventor
理 木下
山田 浩司
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2019544588A priority Critical patent/JP7238779B2/en
Priority to KR1020207011453A priority patent/KR102593205B1/en
Priority to CN201880061951.6A priority patent/CN111132831A/en
Publication of WO2019065306A1 publication Critical patent/WO2019065306A1/en
Priority to JP2022166463A priority patent/JP7409459B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene

Definitions

  • the present invention relates to a polypropylene-based laminate film having heat sealability. More particularly, it relates to a polypropylene-based laminate film having excellent heat seal strength for use as a packaging application.
  • the present invention relates to a polypropylene-based laminate film which can be suitably used in various fields where dimensional stability at high temperature and high rigidity are required, and which is excellent in heat resistance and mechanical properties and which is excellent in heat sealability.
  • polypropylene-based oriented films have been used for a wide range of applications such as packaging for food and various products, electrical insulation, surface protection films, etc., but applications that require heat sealability in one of them There is.
  • a polypropylene-based laminated film having heat sealability a co-extrusion laminated polypropylene-based resin film in which a low melting point polyolefin-based resin is laminated on a polypropylene-based resin has been widely used.
  • a stretched polypropylene laminated film which has a low shrinkage comparable to PET at 150 ° C. and can be heat-sealed at a high temperature has been proposed (see, for example, Patent Document 1). .
  • this film also has room for improvement in mechanical properties.
  • an object of the present invention is to provide a polypropylene-based laminate film having excellent heat seal strength for use as a packaging application.
  • a heat composed of a base material layer (A) in which the polypropylene resin constituting the layer satisfies the following conditions 1) to 4) and a polyolefin resin laminated on one side or both sides of this base layer It is a polypropylene-type laminated film which consists of a sealing layer (B) and the lower limit of the plane orientation coefficient of a film is 0.0125.
  • the lower limit of the mesopentad fraction is 96%.
  • the upper limit of the amount of copolymerized monomers other than propylene is 0.1 mol%.
  • Mass average molecular weight (Mw) / number average molecular weight (Mn) is 3.0 or more and 5.4 or less.
  • the melt flow rate (MFR) measured at 230 ° C. and 2.16 kgf is 6.2 g / 10 min or more and 9.0 g / 10 min or less.
  • the thermal shrinkage at 150 ° C. in the longitudinal direction and the transverse direction of the film is 8% or less.
  • the Young's modulus in the MD direction is 2.1 GPa or more, and the Young's modulus in the TD direction is 3.7 GPa or more.
  • the 180 ° peel strength of a 10 mm wide test piece obtained by overlapping the heat seal layer (B) surfaces and performing hot plate sealing at 140 ° C. for 1 second is 8.0 N / 15 mm or more Is preferred.
  • the polyolefin resin constituting the heat seal resin (B) is a propylene random copolymer and / or a propylene block copolymer.
  • the present invention it was excellent for use as a packaging application and very suitable for heat seal processing. Furthermore, for example, by setting the heat seal temperature high, it is possible to increase the line speed in bag-making processing and the like, and the productivity is improved. In addition, the heat seal strength can also be improved by increasing the heat seal temperature. Furthermore, it can be suitably used in various fields where dimensional stability at high temperatures and high rigidity are required, and for example, when performing high temperature treatment such as retort, the amount of deformation of the bag can be suppressed. As a result, thinning can be achieved.
  • the present invention relates to a polypropylene-based laminate film having heat sealability. More particularly, it relates to a polypropylene-based laminate film having sufficient heat seal strength which is excellent for use as a packaging application.
  • the feature of the polypropylene-based laminate film of the present invention lies in the molecular weight distribution of the polypropylene resin used for the substrate layer (A).
  • the polypropylene-based laminate film of the present invention comprises a substrate layer (A) in which the polypropylene resin constituting the layer satisfies the following conditions 1) to 4), and a polyolefin-based resin laminated on one side or both sides of this substrate layer. It is a polypropylene-based laminated film comprising the heat seal layer (B) and the lower limit of the plane orientation coefficient of the film being 0.0125. 1) The lower limit of the mesopentad fraction is 96%. 2) The upper limit of the amount of copolymerized monomers other than propylene is 0.1 mol%. 3) Mass average molecular weight (Mw) / number average molecular weight (Mn) is 3.0 or more and 5.4 or less. 4) The melt flow rate (MFR) measured at 230 ° C. and 2.16 kgf is 6.2 g / 10 min or more and 9.0 g / 10 min or less. Further details are described below.
  • the polypropylene resin used for the base material layer (A) of the present invention may be a polypropylene resin copolymerized with ethylene and / or an ⁇ -olefin having 4 or more carbon atoms at 0.5 mol% or less.
  • Such copolymerized polypropylene resin is also included in the polypropylene resin of the present invention (hereinafter, polypropylene resin).
  • polypropylene resin 0.3 mol% or less is preferable, 0.1 mol% or less is more preferable, and the completely homopolypropylene resin which does not contain a copolymerization component is the most preferable.
  • the mesopentad fraction ([mm mm]%) measured by 13 C-NMR, which is an index of stereoregularity of a polypropylene resin, is preferably 96 to 99.5%. More preferably, it is 97% or more, and more preferably 98% or more.
  • the mesopentad ratio of the polypropylene of the base material layer (A) is small, the melting point of the crystals is lowered, and the elastic modulus and the heat resistance at high temperature may be insufficient. 99.5% is a realistic upper limit.
  • Mw / Mn which is an index of molecular weight distribution, is preferably 3.0 to 5.4 in the polypropylene resin. More preferably, it is 3.0 to 5.0, still more preferably 3.2 to 4.5, and particularly preferably 3.3 to 4.0.
  • Mw / Mn of the entire polypropylene resin constituting the base material layer (A) is 5.4 or less, although the high molecular weight component is present, the amount thereof tends to be small, and the heat shrinkage tends to be small.
  • Mw means mass average molecular weight
  • Mn means number average molecular weight
  • the mass average molecular weight (Mw) of the polypropylene resin is preferably 180,000 to 500,000.
  • the lower limit of Mw is more preferably 190,000, further preferably 200,000, and the upper limit of Mw is more preferably 320,000, further preferably 300,000, particularly preferably 250,000.
  • the number average molecular weight (Mn) of the polypropylene resin is preferably 20,000 to 200,000.
  • the lower limit of Mn is more preferably 30,000, more preferably 40,000, particularly preferably 50,000, and the upper limit of Mn is more preferably 80,000, still more preferably 70,000, particularly preferably 60,000. is there.
  • the lower limit of the amount of the component having a molecular weight of 100,000 or less is preferably 35% by mass, more preferably It is 38% by mass, more preferably 40% by mass, particularly preferably 41% by mass, and most preferably 42% by mass.
  • the upper limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, still more preferably 58% by mass, particularly preferably 56% by mass Most preferably 55% by weight.
  • the lower limit of the amount of the component having a molecular weight of 10,000 or less is preferably 1% by mass, more preferably It is 1.5% by mass.
  • the upper limit of the amount of components having a molecular weight of 10,000 or less in the GPC integration curve is preferably 5% by mass, more preferably 4% by mass, still more preferably 3.5% by mass, particularly preferably 3 It is weight%.
  • the melt flow rate (MFR; 230 ° C., 2.16 kgf) of the polypropylene resin at this time is preferably 6.2 g / 10 minutes to 10.0 g / 10 minutes.
  • the lower limit of the MFR of the polypropylene resin is more preferably 6.5 g / 10 min, still more preferably 7 g / 10 min, and particularly preferably 7.5 g / 10 min.
  • the upper limit of the MFR of the polypropylene resin is more preferably 9 g / 10 min, still more preferably 8.5 g / 10 min, and particularly preferably 8.2 g / 10 min.
  • melt flow rate MFR; 230 ° C., 2.16 kgf
  • the heat shrinkage at high temperatures can also be made smaller.
  • the degree of crystallization of the film generated by stretching becomes strong, the rigidity of the film, in particular, the tensile elastic modulus (Young's modulus) in the width (TD) direction becomes high.
  • melt flow rate MFR; 230 ° C., 2.16 kgf
  • melt flow rate MFR; 230 ° C., 2.16 kgf
  • the molecular weight distribution of the polypropylene resin can be obtained by polymerizing components of different molecular weights in multiple stages in a series of plants, blending components of different molecular weights offline with a kneader, or blending catalysts having different performances for polymerization. It is possible to adjust by using a catalyst that can realize a desired molecular weight distribution.
  • the polypropylene resin used in the present invention can be obtained by polymerizing propylene as a raw material using a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst. Among them, it is preferable to use a Ziegler-Natta catalyst and to use a catalyst capable of highly stereoregular polymerization in order to eliminate foreign bonds.
  • a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst.
  • a Ziegler-Natta catalyst it is preferable to use a Ziegler-Natta catalyst and to use a catalyst capable of highly stereoregular polymerization in order to eliminate foreign bonds.
  • a known method may be adopted, for example, a method of polymerizing in an inert solvent such as hexane, heptane, toluene, xylene or the like, a method of polymerizing in a liquid monomer, a catalyst to a gas monomer And polymerizing in the gas phase, or a method of polymerizing these in combination, and the like.
  • an inert solvent such as hexane, heptane, toluene, xylene or the like
  • a method of polymerizing in a liquid monomer such as hexane, heptane, toluene, xylene or the like
  • a method of polymerizing in a liquid monomer such as hexane, heptane, toluene, xylene or the like
  • a method of polymerizing in a liquid monomer such as hexane, heptane, toluene,
  • the polypropylene resin may contain additives and other resins.
  • the additive include an antioxidant, an ultraviolet light absorber, a nucleating agent, an adhesive, an antifogging agent, a flame retardant, an inorganic or organic filler, and the like.
  • Other resins include polypropylene resins other than polypropylene resins used in the present invention, random copolymers which are copolymers of propylene and ethylene and / or ⁇ -olefins having 4 or more carbon atoms, and various elastomers.
  • the resin used for the heat seal layer (B) is preferably a low melting point propylene random copolymer having a melting point of 150 ° C. or less, or a propylene block copolymer in which an elastomer component containing a comonomer is dispersed, Moreover, these can be used individually or in mixture.
  • the comonomer it is preferable to use ethylene or at least one selected from ⁇ -olefins having 3 to 10 carbon atoms such as butene, pentene, hexene, octene and decene.
  • the melting point of the propylene random copolymer forming the heat seal layer (B) is preferably 60 to 150 ° C. Thereby, sufficient heat seal strength can be given to an oriented polypropylene resin laminated film.
  • the melting point of the elastomer component contained in the propylene block copolymer is also preferably 150 ° C. or less.
  • the MFR may be in the range of 0.1 to 100 g / 10 min, preferably 0.5 to 20 g / 10 min, more preferably 1.0 to 10 g / 10 min.
  • the polypropylene resin used in the heat seal layer (B) is obtained by polymerizing propylene as a raw material using a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst. Among them, in order to eliminate foreign bonds, it is preferable to use a Ziegler-Natta catalyst and to use a catalyst capable of highly regular polymerization.
  • a polymerization method of propylene a known method may be used, a method of polymerizing in an inert solvent such as hexane, heptane, toluene, xylene or the like, a method of polymerizing in liquid propylene or ethylene, propylene in gas or propylene.
  • the method of adding a catalyst and polymerizing in a gas phase state, or the method of combining and polymerizing these, etc. are mentioned.
  • the high molecular weight component and the low molecular weight component may be separately polymerized and then mixed, or may be produced in a series of plants in a multistage reactor.
  • a method is preferable in which a high molecular weight component is first polymerized and then the low molecular weight component is polymerized in the presence thereof using a plant having a multistage reactor.
  • the polypropylene-based laminate film of the present invention may be a uniaxially stretched film in the longitudinal direction (MD direction) or the transverse direction (TD direction), but is preferably a biaxially stretched film.
  • biaxial stretching it may be sequential biaxial stretching or simultaneous biaxial stretching.
  • the base material layer (A) is melt-extruded from one extruder
  • the heat seal layer (B) is melt-extruded using the other extruder
  • heat is applied to the polypropylene resin layer (A) in the T die. It laminates
  • the resin temperature is set to 200 to 280 ° C.
  • the sheet is extruded from a T-die, and it is cooled and solidified by a cooling roll at a temperature of 10 to 100 ° C.
  • the film is stretched 3 to 7 times in the length (MD) direction with a stretching roll at 120 to 165 ° C., and subsequently at a temperature of 155 ° C. to 175 ° C., preferably 158 ° C. to 170 ° C. in the width (TD) direction.
  • heat treatment is performed while allowing 1 to 15% relaxation at an ambient temperature of 165 to 175 ° C., preferably 166 to 173 ° C.
  • a roll sample can be obtained by applying corona discharge treatment to at least one side and winding with a winder.
  • the lower limit of the draw ratio of MD is preferably 3 times, more preferably 3.5 times. If it is less than the above, film thickness unevenness may occur.
  • the upper limit of the draw ratio of MD is preferably 8 times, more preferably 7 times. If the above is exceeded, it may be difficult to carry out the subsequent TD stretching.
  • the lower limit of the stretching temperature of MD is preferably 120 ° C., more preferably 122 ° C. If it is less than the above, mechanical load may increase, thickness unevenness may increase, or surface roughness of the film may occur.
  • the upper limit of the MD stretching temperature is preferably 150 ° C., more preferably 145 ° C., still more preferably 135 ° C., particularly preferably 130 ° C. A higher temperature is preferable for lowering the heat shrinkage, but it may stick to the roll and not be able to be stretched.
  • the lower limit of the draw ratio of TD is preferably 4 times, more preferably 5 times, and still more preferably 6 times. If it is less than the above, thickness unevenness may occur.
  • the upper limit of the TD stretch ratio is preferably 20 times, more preferably 17 times, and still more preferably 15 times. If the above is exceeded, the thermal contraction rate may be high, or the film may break during stretching.
  • the preheating temperature in TD stretching is preferably set 10 to 15 ° C. higher than the stretching temperature in order to rapidly raise the film temperature to around the stretching temperature.
  • TD stretching is performed at a higher temperature than conventional heat sealable polypropylene laminated stretched films.
  • the lower limit of the stretching temperature of TD is preferably 157 ° C., more preferably 158 ° C. If the amount is less than the above, breakage may occur without sufficient softening, or the heat shrinkage may increase.
  • the upper limit of the TD stretching temperature is preferably 170 ° C., more preferably 168 ° C. In order to lower the heat shrinkage rate, it is preferable that the temperature be higher, but if the temperature is higher than the above, the low molecular weight component may be melted and recrystallized to cause surface roughness and whitening of the film.
  • the stretched film is heat set. Heat setting can be done at higher temperatures than conventional polypropylene films.
  • the lower limit of the heat setting temperature is preferably 165 ° C, more preferably 166 ° C. When it is less than the above, the heat shrinkage may be high. In addition, a long time may be required to lower the thermal contraction rate, and the productivity may be poor.
  • the upper limit of the heat setting temperature is preferably 175 ° C, more preferably 173 ° C. If the above is exceeded, low molecular weight components may melt and recrystallize to cause surface roughness and whitening of the film.
  • the lower limit of relaxation is preferably 2%, more preferably 3%. When it is less than the above, the heat shrinkage may be high.
  • the upper limit of relaxation is preferably 10%, more preferably 8%. When the above is exceeded, thickness unevenness may become large.
  • the film produced in the above process may be once wound into a roll and then annealed off-line.
  • the lower limit of the off-line annealing temperature is preferably 160 ° C., more preferably 162 ° C., and still more preferably 163 ° C. If it is less than the above, the effect of annealing may not be obtained.
  • the upper limit of the off-line annealing temperature is preferably 175 ° C., more preferably 174 ° C., and still more preferably 173 ° C. If the above is exceeded, the transparency may be reduced, or the thickness unevenness may be significant.
  • the lower limit of the off-line annealing time is preferably 0.1 minutes, more preferably 0.5 minutes, and still more preferably 1 minute. If it is less than the above, the effect of annealing may not be obtained.
  • the upper limit of the off-line annealing time is preferably 30 minutes, more preferably 25 minutes, and still more preferably 20 minutes. If the above is exceeded, productivity may fall.
  • the thickness of the film is set according to each application, but the lower limit of the film thickness is preferably 2 ⁇ m, more preferably 3 ⁇ m, and still more preferably 4 ⁇ m.
  • the upper limit of the film thickness is preferably 300 ⁇ m, more preferably 250 ⁇ m, still more preferably 200 ⁇ m, particularly preferably 100 ⁇ m, and most preferably 50 ⁇ m.
  • the polypropylene-based laminate film thus obtained is usually formed as a roll having a width of 2000 to 12000 mm and a length of about 1000 to 50000 m, and is wound into a roll. Furthermore, it is slitted according to each use and provided as a slit roll having a width of about 300 to 2000 mm and a length of about 500 to 5000 m.
  • the polypropylene-based laminate film of the present invention has the above-mentioned excellent properties not heretofore available.
  • it When it is used as a packaging film, it can be made thin because it has high rigidity, and cost and weight can be reduced.
  • the heat resistance is high, high-temperature drying can be performed at the time of drying of the coating or printing, and it is possible to use a coating agent, an ink, a laminating adhesive, etc. Since there is no need for a lamination process using an organic solvent or the like, it is preferable from the viewpoints of both economic and global impact.
  • the lower limit of the thermal shrinkage at 150 ° C. in the MD and TD directions of the polypropylene-based laminate film of the present invention is preferably 0.5%, more preferably 1%, still more preferably 1.5%, Preferably it is 2%, most preferably 2.5%. If it is in the above-mentioned range, realistic production may be facilitated in terms of cost and the like, or thickness unevenness may be reduced.
  • the upper limit of the heat shrinkage at 150 ° C. in the MD direction is preferably 7%, more preferably 6%, and still more preferably 5%. If it is in the above range, it becomes easier to use in applications that may be exposed to high temperatures of about 150 ° C. In addition, if the thermal contraction rate at 150 ° C. is up to about 2.5%, for example, it is possible by increasing the low molecular weight component, adjusting the stretching conditions and fixing conditions, but annealing below that may be performed offline. preferable. In the conventional stretched polypropylene laminated film, the thermal contraction rate at 150 ° C. in the MD direction is 15% or more, and the thermal contraction rate at 120 ° C. is about 3%. By making heat contraction rate into said range, the polypropylene-type laminated film excellent in heat resistance can be obtained.
  • the upper limit of the heat shrinkage at 150 ° C. in the TD direction is preferably 8%, more preferably 7%, and still more preferably 7%. If it is in the above range, it becomes easier to use in applications that may be exposed to high temperatures of about 150 ° C. In addition, if the thermal contraction rate at 150 ° C. is up to about 2.5%, for example, it is possible by increasing the low molecular weight component, adjusting the stretching conditions and fixing conditions, but annealing below that may be performed offline. preferable. In the conventional stretched polypropylene laminated film, the thermal contraction rate at 150 ° C. in the TD direction is 15% or more, and the thermal contraction rate at 120 ° C. is about 3%. By making heat contraction rate into said range, the polypropylene-type laminated film excellent in heat resistance can be obtained.
  • the lower limit of Young's modulus (23 ° C.) in the MD direction is preferably 1.8 GPa, more preferably 1.9 GPa, and still more preferably 2. 0 GPa, particularly preferably 2.1 GPa, most preferably 2.2 GPa.
  • the upper limit of Young's modulus in the MD direction is preferably 3.7 GPa, more preferably 3.6 GPa, still more preferably 3.5 GPa, particularly preferably 3.4 GPa, and most preferably 3.3 GPa. is there. Within the above range, practical manufacture may be easy, or MD-TD balance may be improved.
  • the lower limit of Young's modulus (23 ° C.) in the TD direction is preferably 4.4 GPa, more preferably 4.5 GPa, and still more preferably 4. 6 GPa, particularly preferably 4.7 GPa.
  • the upper limit of the Young's modulus in the TD direction is preferably 8 GPa, more preferably 7.5 GPa, still more preferably 7 GPa, and particularly preferably 6.5 GPa.
  • practical manufacture may be facilitated, or MD-TD balance may be improved.
  • the Young's modulus can be increased by increasing the draw ratio, and in the case of MD-TD stretching, the MD draw ratio is set to a lower value, and the TD draw ratio is increased to increase the Young's modulus in the TD direction. Can.
  • the lower limit of the plane orientation coefficient of the polypropylene film of the present invention is preferably 0.0125, more preferably 0.0126, still more preferably 0.0127, particularly preferably 0.0128. .
  • the upper limit of the plane orientation coefficient is preferably 0.0155, more preferably 0.0150, still more preferably 0.0148, particularly preferably 0.0145, as a practical value. Preferably it is 0.0140.
  • the plane orientation coefficient can be in the range by adjusting the draw ratio. When the plane orientation coefficient is in this range, the thickness unevenness of the film is also good.
  • the heat seal strength of the polypropylene-based laminate film of the present invention at 140 ° C. is preferably 8.0 N / 15 mm or more, more preferably 9.0 N / 15 mm or more, and further preferably 10 N / 15 mm or more preferable.
  • the heat seal strength of the polypropylene-based laminate film of the present invention is preferably 1.5 N / 15 mm or more at 110 ° C., more preferably 2.0 N / 15 mm or more, and 2.2 N / 15 mm or more. It is further preferred that
  • the lower limit of the impact resistance (23 ° C.) of the stretched polypropylene film of the present invention is preferably 0.6 J, more preferably 0.7 J. If it is in the above range, it has sufficient toughness as a film and does not break during handling.
  • the upper limit of the impact resistance is preferably 3 J, more preferably 2.5 J, still more preferably 2.2 J, and particularly preferably 2 J from the practical viewpoint. For example, when the low molecular weight component is large, the impact resistance tends to decrease when the total molecular weight is low, or when the high molecular weight component is low or when the molecular weight of the high molecular weight component is low. These components can be adjusted to be in the range.
  • the lower limit of the haze of the polypropylene-based laminate film of the present invention is preferably 0.1%, more preferably 0.2%, still more preferably 0.3%, particularly preferably 0. It is 4%, most preferably 0.5%.
  • the upper limit of the haze is preferably 6%, more preferably 5%, still more preferably 4.5%, particularly preferably 4%, most preferably 3.5%.
  • the haze tends to be worse, for example, when the stretching temperature and the heat setting temperature are too high, when the cooling roll (CR) temperature is high and the cooling rate is slow, and when the low molecular weight is too high. You can do it.
  • the lower limit of the thickness uniformity of the polypropylene-based laminate film of the present invention is preferably 0%, more preferably 0.1%, still more preferably 0.5%, particularly preferably 1%.
  • the upper limit of thickness uniformity is preferably 20%, more preferably 17%, still more preferably 15%, particularly preferably 12%, and most preferably 10%. Within the above range, defects are less likely to occur during post-processing such as coating and printing, and it is easy to use for applications requiring precision.
  • the baseline is set in the range up to the lowest position on the high molecular weight side of the elution peak on the high molecular weight side closest to the elution peak of the standard substance.
  • peak separation was performed on two or more components having different molecular weights from the obtained GPC curve.
  • CXS Cold xylene soluble part
  • Heat shrinkage rate (%) It measured based on JIS Z 1712. (The stretched film was cut in the MD and TD directions with a width of 20 mm and a length of 200 mm, respectively, suspended in a hot air oven at 150 ° C. and heated for 5 minutes. The length after heating was measured and the shrinkage relative to the original length The heat shrinkage rate was determined by the ratio of
  • Plane orientation coefficient ( ⁇ P) It was measured according to JIS K7142-1996 5.1 (Method A) using an Atago Abbe refractometer. The refractive indices along the MD and TD directions are Nx and Ny, respectively, and the refractive index in the thickness direction is Nz. The plane orientation coefficient ( ⁇ P) was determined by (Nx + Ny) / 2-Nz.
  • the surface opposite to the sealing layer was measured three times, and the average value thereof was taken. In the case where the sealing layer is on both sides: the surface of the sealing layer was measured three times on both sides and the average value thereof was taken.
  • Heat seal strength is 140 ° C. and 110 ° C., pressure is 1 kg / cm 2 , heat seal time is 1 second, heat seal layer (B) faces of laminated stretched films are superposed and heat plate seal is formed. It carried out and produced the test piece of 10 mm width. The 180 degree peel strength of this test piece was measured to obtain the heat seal strength (N / 15 mm).
  • Thickness spots A square sample having a length of 1 m was cut out from the wound film roll, and divided into 10 equal parts in the MD direction and the TD direction to prepare 100 measurement samples. The thickness of the substantially central portion of the measurement sample was measured with a contact-type film thickness meter. The average value of the obtained data of 100 points is determined, and the difference between the minimum value and the maximum value (absolute value) is determined, and the absolute value of the difference between the minimum value and the maximum value is divided by the average value And
  • Example 1 Using two melt extruders and using the first extruder as the polypropylene resin, the polypropylene homopolymer PP-1 shown in Table 1 is used as the substrate layer (A), and using the second extruder as propylene. 85% by weight of ethylene-butene random copolymer (PP-7: Pr-Et-Bu, density 0.89 g / cm 3 , MFR 4.6 g / 10 min, melting point 128 ° C.), propylene-butene random copolymer A mixed resin of 15 wt% (PP-8: Pr-Bu, density 0.89 g / cm 3 , MFR 9.0 g / 10 min, melting point 130 ° C.) is used as a heat seal layer (B) in a die.
  • PP-7 ethylene-butene random copolymer
  • PP-7 Pr-Et-Bu, density 0.89 g / cm 3 , MFR 4.6 g / 10 min, melting point 128 ° C.
  • the thickness of the film thus obtained was 20 ⁇ m, and a laminated stretched film in which the thicknesses of the base material layer and the heat seal layer were 18 ⁇ m and 2 ⁇ m in this order, respectively, was obtained.
  • the resulting laminated stretched film satisfies the requirements of the present invention, has a low thermal shrinkage, high rigidity, and has heat seal strength, stiffness and curling properties. Was also excellent.
  • Example 2 A polypropylene-based laminate film was obtained in the same manner as Example 1, except that the raw material used for the base material layer (A) was changed to the polypropylene homopolymer PP-2 shown in Table 1. As shown in Tables 1, 2 and 3, the resulting laminated stretched film satisfies the requirements of the present invention, has a low thermal shrinkage, high rigidity, and has heat seal strength, stiffness and curling properties. Was also excellent.
  • Example 1 A polypropylene-based laminate film was obtained in the same manner as Example 1, except that the raw material used for the base material layer (A) was changed to the polypropylene homopolymer PP-3 shown in Table 1. As shown in Table 1, Table 2 and Table 3, the resulting laminated stretched film was excellent in heat seal strength, waist feel and curlability, but had a large heat shrinkage.
  • Example 3 A polypropylene-based laminate film was obtained in the same manner as in Example 1, except that the raw material used for the base material layer (A) was changed to the polypropylene homopolymer PP-5 shown in Table 1. As shown in Table 1, Table 2 and Table 3, the resulting laminated stretched film was excellent in heat seal strength, waist feel and curlability, but had a large heat shrinkage.
  • the raw material used for the base material layer (A) is changed to polypropylene homopolymer PP-6 shown in Table 1, and the width direction stretch preheating temperature is 170 ° C., the width direction stretch temperature is 158 ° C., and the heat setting temperature is 165.
  • a polypropylene-based laminate film was obtained in the same manner as in Example 1 except that the temperature was changed to ° C. As shown in Table 1, Table 2 and Table 3, the resulting laminated stretched film was excellent in heat seal strength, waist feel and curlability, but the heat shrinkage rate was very large.
  • the polypropylene-based laminate film of the present invention was excellent for use as a packaging application, and was very suitable for heat sealing. Furthermore, for example, by setting the heat seal temperature high, it is possible to increase the line speed in bag-making processing and the like, and the productivity is improved. In addition, the heat seal strength can also be improved by increasing the heat seal temperature.

Abstract

To provide a heat-sealable stretched polypropylene laminate film which has a low shrinkage rate at 150°C comparable to the shrinkage rate of PET and a high rigidity. A polypropylene-based laminate film which comprises a substrate layer (A), said substrate layer (A) being formed of a polypropylene resin satisfying requirements 1) to 4), and a heat seal layer (B) formed of a polyolefin-based resin, said heat seal layer (B) being laminated on one or both faces of the substrate layer, wherein the lower limit of the plane orientation coefficient of the film is 0.0125. 1) The lower limit of the mesopentad fraction is 96%. 2) The upper limit of the content of comonomer(s) other than propylene is 0.1 mol%. 3) The ratio [mass-average molecular weight (Mw)/number-average molecular ratio (Mn)] is 3.0-5.4 inclusive. 4) The melt flow rate (MFR) measured at 230°C and 2.16 kgf is 6.2-9.0 g/10 min inclusive.

Description

ポリプロピレン系積層フィルムPolypropylene-based laminated film
 本発明は、ヒートシール性を有するポリプロピレン系積層フィルムに関する。更に詳しくは、包装用途として使用するのに優れたヒートシール強度を有するポリプロピレン系積層フィルムに関するものである。特に詳しくは、高温での寸法安定性や高い剛性が求められる様々な分野で好適に用いることができ、耐熱性、機械特性にも優れたヒートシール性に優れたポリプロピレン系積層フィルムに関する。 The present invention relates to a polypropylene-based laminate film having heat sealability. More particularly, it relates to a polypropylene-based laminate film having excellent heat seal strength for use as a packaging application. In particular, the present invention relates to a polypropylene-based laminate film which can be suitably used in various fields where dimensional stability at high temperature and high rigidity are required, and which is excellent in heat resistance and mechanical properties and which is excellent in heat sealability.
 従来、ポリプロピレンを用いた延伸フィルムは食品や様々な商品の包装用、電気絶縁用、表面保護フィルムなど広範囲な用途で汎用的に用いられていたが、その一つにヒートシール性が必要な用途がある。従来から、ヒートシール性を有するポリプロピレン系積層フィルムとしては、ポリプロピレン系樹脂に低融点のポリオレフィン系樹脂を積層した共押出し積層ポリプロピレン系樹脂フィルムが多く用いられてきた。
 このようなヒートシーラブルフィルムの一つとして、150℃でPETに匹敵する低収縮率を有し、高温でヒートシール可能な延伸ポリプロピレン積層フィルムが提案されている(例えば、特許文献1参照。)。
 しかしながら、このフィルムも機械特性に改善の余地があった。
In the past, polypropylene-based oriented films have been used for a wide range of applications such as packaging for food and various products, electrical insulation, surface protection films, etc., but applications that require heat sealability in one of them There is. Heretofore, as a polypropylene-based laminated film having heat sealability, a co-extrusion laminated polypropylene-based resin film in which a low melting point polyolefin-based resin is laminated on a polypropylene-based resin has been widely used.
As one of such heat sealable films, a stretched polypropylene laminated film which has a low shrinkage comparable to PET at 150 ° C. and can be heat-sealed at a high temperature has been proposed (see, for example, Patent Document 1). .
However, this film also has room for improvement in mechanical properties.
WO2015/0126165号パンフレットWO 2015/0126165 brochure
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、包装用途として使用するのに優れたヒートシール強度を有するポリプロピレン系積層フィルムを提供することにある。 The present invention has been made on the background of the problems of the prior art. That is, an object of the present invention is to provide a polypropylene-based laminate film having excellent heat seal strength for use as a packaging application.
 本発明者は、かかる目的を達成するために鋭意検討した結果、本発明の完成に至った。すなわち本発明は、層を構成するポリプロピレン樹脂が下記1)~4)の条件を満たす基材層(A)と、この基材層の片面または両面に積層されるポリオレフィン系樹脂から構成されるヒートシール層(B)とからなり、フィルムの面配向係数の下限が0.0125であるポリプロピレン系積層フィルムである。
1)メソペンタッド分率の下限が96%である。
2)プロピレン以外の共重合モノマー量の上限が0.1mol%である。
3)質量平均分子量(Mw)/数平均分子量(Mn)が3.0以上、5.4以下である。
4)230℃、2.16kgfで測定されるメルトフローレート(MFR)が6.2g/10min以上、9.0g/10min以下である。
As a result of intensive investigations to achieve such an object, the present inventor has completed the present invention. That is, according to the present invention, a heat composed of a base material layer (A) in which the polypropylene resin constituting the layer satisfies the following conditions 1) to 4) and a polyolefin resin laminated on one side or both sides of this base layer It is a polypropylene-type laminated film which consists of a sealing layer (B) and the lower limit of the plane orientation coefficient of a film is 0.0125.
1) The lower limit of the mesopentad fraction is 96%.
2) The upper limit of the amount of copolymerized monomers other than propylene is 0.1 mol%.
3) Mass average molecular weight (Mw) / number average molecular weight (Mn) is 3.0 or more and 5.4 or less.
4) The melt flow rate (MFR) measured at 230 ° C. and 2.16 kgf is 6.2 g / 10 min or more and 9.0 g / 10 min or less.
 この場合において、フィルムの縦方向および横方向の150℃での熱収縮率が8%以下であることが好適である。 In this case, it is preferable that the thermal shrinkage at 150 ° C. in the longitudinal direction and the transverse direction of the film is 8% or less.
 また、この場合において、MD方向のヤング率が、2.1GPa以上、TD方向のヤング率が、3.7GPa以上であることが好適である。 In this case, it is preferable that the Young's modulus in the MD direction is 2.1 GPa or more, and the Young's modulus in the TD direction is 3.7 GPa or more.
 さらにまた、ヒートシール層(B)面同士を重ね合わせて140℃で1秒間熱板シールを行って得た10mm幅の試験片試験片の180度剥離強度が8.0N/15mm以上であることが好適である。 Furthermore, the 180 ° peel strength of a 10 mm wide test piece obtained by overlapping the heat seal layer (B) surfaces and performing hot plate sealing at 140 ° C. for 1 second is 8.0 N / 15 mm or more Is preferred.
 さらにまた、この場合において、ヒートシール樹脂(B)構成するポリオレフィン系樹脂が、プロピレンランダム共重合体および/またはプロピレンブロック共重合体であることが好適である。 Furthermore, in this case, it is preferable that the polyolefin resin constituting the heat seal resin (B) is a propylene random copolymer and / or a propylene block copolymer.
 本発明により、包装用途として使用するのに優れ、またヒートシール加工に非常に適したものであった。
 さらに、例えば、ヒートシール温度を高く設定することにより、製袋加工におけるライン速度を大きくすることなどが可能となり、生産性が向上する。また、ヒートシール温度を高くすることで、ヒートシール強度も向上させることができる。
 さらには、高温での寸法安定性や高い剛性が求められる様々な分野で好適に用いることができ、例えば、レトルトなど高温処理を行う際にも、袋の変形量を抑えることができる。ひいては薄膜化が可能である。
According to the present invention, it was excellent for use as a packaging application and very suitable for heat seal processing.
Furthermore, for example, by setting the heat seal temperature high, it is possible to increase the line speed in bag-making processing and the like, and the productivity is improved. In addition, the heat seal strength can also be improved by increasing the heat seal temperature.
Furthermore, it can be suitably used in various fields where dimensional stability at high temperatures and high rigidity are required, and for example, when performing high temperature treatment such as retort, the amount of deformation of the bag can be suppressed. As a result, thinning can be achieved.
 本発明は、ヒートシール性を有するポリプロピレン系積層フィルムに関する。更に詳しくは、包装用途として使用するのに優れた十分なヒートシール強度を有するポリプロピレン系積層フィルムに関するものである。
 本発明のポリプロピレン系積層フィルムの特徴は基材層(A)に用いるポリプロピレン樹脂の分子量分布状態にある。 
The present invention relates to a polypropylene-based laminate film having heat sealability. More particularly, it relates to a polypropylene-based laminate film having sufficient heat seal strength which is excellent for use as a packaging application.
The feature of the polypropylene-based laminate film of the present invention lies in the molecular weight distribution of the polypropylene resin used for the substrate layer (A).
 本発明のポリプロピレン系積層フィルムは、層を構成するポリプロピレン樹脂が下記1)~4)の条件を満たす基材層(A)と、この基材層の片面または両面に積層されるポリオレフィン系樹脂から構成されるヒートシール層(B)とからなり、フィルムの面配向係数の下限が0.0125であるポリプロピレン系積層フィルムである。
1)メソペンタッド分率の下限が96%である。
2)プロピレン以外の共重合モノマー量の上限が0.1mol%である。
3)質量平均分子量(Mw)/数平均分子量(Mn)が3.0以上、5.4以下である。
4)230℃、2.16kgfで測定されるメルトフローレート(MFR)が6.2g/10min以上、9.0g/10min以下である。
 さらに下記で詳細に説明する。
The polypropylene-based laminate film of the present invention comprises a substrate layer (A) in which the polypropylene resin constituting the layer satisfies the following conditions 1) to 4), and a polyolefin-based resin laminated on one side or both sides of this substrate layer. It is a polypropylene-based laminated film comprising the heat seal layer (B) and the lower limit of the plane orientation coefficient of the film being 0.0125.
1) The lower limit of the mesopentad fraction is 96%.
2) The upper limit of the amount of copolymerized monomers other than propylene is 0.1 mol%.
3) Mass average molecular weight (Mw) / number average molecular weight (Mn) is 3.0 or more and 5.4 or less.
4) The melt flow rate (MFR) measured at 230 ° C. and 2.16 kgf is 6.2 g / 10 min or more and 9.0 g / 10 min or less.
Further details are described below.
(基材層(A))
 本発明の基材層(A)に用いるポリプロピレン樹脂は、エチレンおよび/または炭素数4以上のα-オレフィンを0.5モル%以下で共重合したポリプロピレン樹脂を用いることができる。このような共重合ポリプロピレン樹脂も本発明のポリプロピレン樹脂(以下、ポリプロピレン樹脂)に含まれるものとする。共重合成分は0.3モル%以下が好ましく、0.1モル%以下がより好ましく、共重合成分を含まない完全ホモポリプロピレン樹脂が最も好ましい。
 エチレンおよび/または炭素数4以上のα-オレフィンは、0.5モル%を超えて共重合すると、結晶性や剛性が低下し過ぎて、高温での熱収縮率が大きくなることがある。この様な樹脂をブレンドして用いても良い。
(Base material layer (A))
The polypropylene resin used for the base material layer (A) of the present invention may be a polypropylene resin copolymerized with ethylene and / or an α-olefin having 4 or more carbon atoms at 0.5 mol% or less. Such copolymerized polypropylene resin is also included in the polypropylene resin of the present invention (hereinafter, polypropylene resin). 0.3 mol% or less is preferable, 0.1 mol% or less is more preferable, and the completely homopolypropylene resin which does not contain a copolymerization component is the most preferable.
When ethylene and / or an α-olefin having 4 or more carbon atoms are copolymerized in excess of 0.5 mol%, the crystallinity and rigidity may be excessively lowered, and the thermal shrinkage at high temperatures may be increased. You may blend and use such resin.
 ポリプロピレン樹脂の立体規則性の指標である13C-NMRで測定されるメソペンタッド分率([mmmm]%)は、96~99.5%であることが好ましい。より好ましくは、97%以上であり、さらに好ましくは98%以上である。基材層(A)のポリプロピレンのメソペンタッド率が小さいと、結晶の融点が低くなり、弾性率および高温での耐熱性が不充分となるおそれがある。99.5%が現実的な上限である。 The mesopentad fraction ([mm mm]%) measured by 13 C-NMR, which is an index of stereoregularity of a polypropylene resin, is preferably 96 to 99.5%. More preferably, it is 97% or more, and more preferably 98% or more. When the mesopentad ratio of the polypropylene of the base material layer (A) is small, the melting point of the crystals is lowered, and the elastic modulus and the heat resistance at high temperature may be insufficient. 99.5% is a realistic upper limit.
 また、分子量分布の指標であるMw/Mnは、ポリプロピレン樹脂では3.0~5.4が好ましい。より好ましくは3.0~5.0、さらに好ましくは3.2~4.5であり、特に好ましくは3.3~4.0である。
 基材層(A)を構成するポリプロピレン樹脂全体のMw/Mnが5.4以下であると、高分子量成分は存在するが、その量は少なくなり、熱収縮率が小さくなる傾向がある。高分子量成分が存在すると、低分子量成分の結晶化を促進する面があるが、分子同士の絡み合いが強くなり、結晶性が高くても熱収縮率が大きくする要因ともなるからである。
 また、基材層(A)を構成するポリプロピレン樹脂全体のMw/Mnが5.4以下であると、かなり分子量の低い低分子量成分が多くなり、弾性率が小さくなる傾向がある。かなり分子量の低い低分子量成分が存在すると、分子同士の絡み合いが弱くなり、低い延伸応力での延伸が可能となり、結晶性が高くなるが、弾性率を低下させる要因ともなるからである。
 本発明の基材層(A)を構成するポリプロピレン樹脂全体のMw/Mnが3.0未満であると、製膜が困難になる。Mwは質量平均分子量を意味し、Mnは数平均分子量を意味する。
In addition, Mw / Mn, which is an index of molecular weight distribution, is preferably 3.0 to 5.4 in the polypropylene resin. More preferably, it is 3.0 to 5.0, still more preferably 3.2 to 4.5, and particularly preferably 3.3 to 4.0.
When the Mw / Mn of the entire polypropylene resin constituting the base material layer (A) is 5.4 or less, although the high molecular weight component is present, the amount thereof tends to be small, and the heat shrinkage tends to be small. When a high molecular weight component is present, there is a surface that promotes crystallization of the low molecular weight component, but the entanglement between molecules becomes strong, and this is also a factor that increases the thermal contraction rate even if the crystallinity is high.
Moreover, when Mw / Mn of the whole polypropylene resin which comprises a base material layer (A) is 5.4 or less, there exists a tendency for the low molecular weight component with a considerably low molecular weight to increase, and an elastic modulus to become small. If a low molecular weight component having a considerably low molecular weight is present, the entanglement of the molecules becomes weak, stretching at a low stretching stress becomes possible, and the crystallinity becomes high, but it also becomes a factor to lower the elastic modulus.
Film formation becomes difficult for Mw / Mn of the whole polypropylene resin which comprises the base material layer (A) of this invention to be less than 3.0. Mw means mass average molecular weight, and Mn means number average molecular weight.
 ポリプロピレン樹脂の質量平均分子量(Mw)は、180,000~500,000が好ましい。より好ましいMwの下限は190,000、さらに好ましくは200,000であり、より好ましいMwの上限は320,000、さらに好ましくは300,000、特に好ましくは250,000である。 The mass average molecular weight (Mw) of the polypropylene resin is preferably 180,000 to 500,000. The lower limit of Mw is more preferably 190,000, further preferably 200,000, and the upper limit of Mw is more preferably 320,000, further preferably 300,000, particularly preferably 250,000.
 ポリプロピレン樹脂の数平均分子量(Mn)は、20,000~200,000が好ましい。より好ましいMnの下限は30,000、さらに好ましくは40,000、特に好ましくは50,000であり、より好ましいMnの上限は80,000、さらに好ましくは70,000、特に好ましくは60,000である。 The number average molecular weight (Mn) of the polypropylene resin is preferably 20,000 to 200,000. The lower limit of Mn is more preferably 30,000, more preferably 40,000, particularly preferably 50,000, and the upper limit of Mn is more preferably 80,000, still more preferably 70,000, particularly preferably 60,000. is there.
 基材層(A)を構成するポリプロピレン樹脂全体のゲルパーミエーションクロマトグラフィー(GPC)積算カーブを測定した場合、分子量10万以下の成分の量の下限は好ましくは35質量%であり、より好ましくは38質量%であり、さらに好ましくは40質量%であり、特に好ましくは41質量%であり、最も好ましくは42質量%である。
 一方、GPC積算カーブでの分子量10万以下の成分の量の上限は好ましくは65質量%であり、より好ましくは60質量%であり、さらに好ましくは58質量%であり、特に好ましくは56質量%であり、最も好ましくは55質量%である。上記範囲であると延伸が容易となったり、厚み斑が小さくなったり、延伸温度や熱固定温度が上げられやすく熱収縮率をより低く抑えることができる。
When the gel permeation chromatography (GPC) integration curve of the entire polypropylene resin constituting the substrate layer (A) is measured, the lower limit of the amount of the component having a molecular weight of 100,000 or less is preferably 35% by mass, more preferably It is 38% by mass, more preferably 40% by mass, particularly preferably 41% by mass, and most preferably 42% by mass.
On the other hand, the upper limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, still more preferably 58% by mass, particularly preferably 56% by mass Most preferably 55% by weight. Within the above range, stretching becomes easy, thickness unevenness becomes small, and the stretching temperature and the heat setting temperature are easily increased, and the heat shrinkage ratio can be suppressed to a lower level.
 基材層(A)を構成するポリプロピレン樹脂全体のゲルパーミエーションクロマトグラフィー(GPC)積算カーブを測定した場合、分子量1万以下の成分の量の下限は好ましくは1質量%であり、より好ましくは1.5質量%である。
 一方、GPC積算カーブでの分子量1万以下の成分の量の上限は好ましくは5質量%であり、より好ましくは4質量%であり、さらに好ましくは3.5質量%であり、特に好ましくは3重量%である。
When the gel permeation chromatography (GPC) integration curve of the entire polypropylene resin constituting the substrate layer (A) is measured, the lower limit of the amount of the component having a molecular weight of 10,000 or less is preferably 1% by mass, more preferably It is 1.5% by mass.
On the other hand, the upper limit of the amount of components having a molecular weight of 10,000 or less in the GPC integration curve is preferably 5% by mass, more preferably 4% by mass, still more preferably 3.5% by mass, particularly preferably 3 It is weight%.
 このときのポリプロピレン樹脂のメルトフローレート(MFR;230℃、2.16kgf)が6.2g/10分~10.0g/10分であることが好ましい。
 ポリプロピレン樹脂のMFRの下限は、6.5g/10分であることがより好ましく、7g/10分であることがさらに好ましく、7.5g/10分であることが特に好ましい。ポリプロピレン樹脂のMFRの上限は、9g/10分であることがより好ましく、8.5g/10分であることがさらに好ましく、8.2g/10分であることが特に好ましい。
 メルトフローレート(MFR;230℃、2.16kgf)が6.2g/10分以上であると、高温での熱収縮率もより小さくすることができる。さらに、延伸により生じるフィルムの結晶化の程度が強くなるため、フィルムの剛性、特に幅(TD)方向の引張弾性率(ヤング率)が高くなる。また、メルトフローレート(MFR;230℃、2.16kgf)が9.0g/10分以下であると破断なく製膜を行いやすい。
 なお、ポリプロピレン樹脂の分子量分布は、異なる分子量の成分を多段階に一連のプラントで重合したり、異なる分子量の成分をオフラインで混錬機でブレンドしたり、異なる性能をもつ触媒をブレンドして重合したり、所望の分子量分布を実現できる触媒を用いたりすることで調整することが可能である。
The melt flow rate (MFR; 230 ° C., 2.16 kgf) of the polypropylene resin at this time is preferably 6.2 g / 10 minutes to 10.0 g / 10 minutes.
The lower limit of the MFR of the polypropylene resin is more preferably 6.5 g / 10 min, still more preferably 7 g / 10 min, and particularly preferably 7.5 g / 10 min. The upper limit of the MFR of the polypropylene resin is more preferably 9 g / 10 min, still more preferably 8.5 g / 10 min, and particularly preferably 8.2 g / 10 min.
When the melt flow rate (MFR; 230 ° C., 2.16 kgf) is 6.2 g / 10 min or more, the heat shrinkage at high temperatures can also be made smaller. Furthermore, since the degree of crystallization of the film generated by stretching becomes strong, the rigidity of the film, in particular, the tensile elastic modulus (Young's modulus) in the width (TD) direction becomes high. In addition, when the melt flow rate (MFR; 230 ° C., 2.16 kgf) is 9.0 g / 10 min or less, film formation can be easily performed without breakage.
The molecular weight distribution of the polypropylene resin can be obtained by polymerizing components of different molecular weights in multiple stages in a series of plants, blending components of different molecular weights offline with a kneader, or blending catalysts having different performances for polymerization. It is possible to adjust by using a catalyst that can realize a desired molecular weight distribution.
 本発明で用いるポリプロピレン樹脂は、チーグラー・ナッタ触媒やメタロセン触媒等の公知の触媒を用いて、原料のプロピレンを重合させることにより得られる。中でも、異種結合をなくすためにはチーグラー・ナッタ触媒を用い、立体規則性の高い重合が可能な触媒を用いることが好ましい。
 プロピレンの重合方法としては、公知の方法を採用すればよく、例えば、ヘキサン、ヘプタン、トルエン、キシレン等の不活性溶剤中で重合する方法、液状のモノマー中で重合する方法、気体のモノマーに触媒を添加し、気相状態で重合する方法、または、これらを組み合わせて重合する方法等が挙げられる。
The polypropylene resin used in the present invention can be obtained by polymerizing propylene as a raw material using a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst. Among them, it is preferable to use a Ziegler-Natta catalyst and to use a catalyst capable of highly stereoregular polymerization in order to eliminate foreign bonds.
As a polymerization method of propylene, a known method may be adopted, for example, a method of polymerizing in an inert solvent such as hexane, heptane, toluene, xylene or the like, a method of polymerizing in a liquid monomer, a catalyst to a gas monomer And polymerizing in the gas phase, or a method of polymerizing these in combination, and the like.
 ポリプロピレン樹脂には、添加剤やその他の樹脂を含有させてもよい。添加剤としては、例えば、酸化防止剤、紫外線吸収剤、造核剤、粘着剤、防曇剤、難燃剤、無機または有機の充填剤等が挙げられる。その他の樹脂としては、本発明で用いられるポリプロピレン樹脂以外のポリプロピレン樹脂、プロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体であるランダムコポリマーや、各種エラストマー等が挙げられる。これらは、多段の反応器を用いて逐次重合するか、ポリプロピレン樹脂とヘンシェルミキサーでブレンドするか、事前に溶融混錬機を用いて作製したマスターペレットを所定の濃度になるようにポリプロピレンで希釈するか、予め全量を溶融混練して使用してもよい。 The polypropylene resin may contain additives and other resins. Examples of the additive include an antioxidant, an ultraviolet light absorber, a nucleating agent, an adhesive, an antifogging agent, a flame retardant, an inorganic or organic filler, and the like. Other resins include polypropylene resins other than polypropylene resins used in the present invention, random copolymers which are copolymers of propylene and ethylene and / or α-olefins having 4 or more carbon atoms, and various elastomers. These may be sequentially polymerized using a multistage reactor, blended with a polypropylene resin and a Henschel mixer, or diluted with polypropylene so as to obtain a predetermined concentration of master pellets prepared beforehand using a melt kneader Alternatively, the whole may be melt-kneaded in advance and used.
(ヒートシール層(B))
 また、本発明において、ヒートシール層(B)に用いる樹脂は、融点が150℃以下の低融点のプロピレンランダム共重合体、またはコモノマーを含有するエラストマー成分が分散したプロピレンブロック共重合体が好ましく、また、これらを単独または混合して使用することができる。コモノマーとしては、エチレン、または、ブテン、ペンテン、ヘキセン、オクテン、デセン等の炭素数が3~10のα-オレフィンから選ばれた1種以上を用いることが好ましい。
(Heat seal layer (B))
In the present invention, the resin used for the heat seal layer (B) is preferably a low melting point propylene random copolymer having a melting point of 150 ° C. or less, or a propylene block copolymer in which an elastomer component containing a comonomer is dispersed, Moreover, these can be used individually or in mixture. As the comonomer, it is preferable to use ethylene or at least one selected from α-olefins having 3 to 10 carbon atoms such as butene, pentene, hexene, octene and decene.
 さらにまた、ヒートシール層(B)を形成するプロピレンランダム共重合体の融点は、好ましくは60~150℃にすることが望ましい。これにより、延伸ポリプロピレン系樹脂積層フィルムに十分なヒートシール強度を与えることができる。ヒートシール層(B)を形成するプロピレンランダム共重合体の融点が60℃未満ではヒートシール部の耐熱性が乏しく、150℃を越えるとヒートシール強度の向上が期待できない。また、プロピレンブロック共重合体中に含まれるエラストマー成分の融点も150℃以下であることが好ましい。
 また、MFRは0.1~100g/10min、好ましくは0.5~20g/10min、さらに好ましくは、1.0~10g/10minの範囲のものを例示することができる。
Furthermore, the melting point of the propylene random copolymer forming the heat seal layer (B) is preferably 60 to 150 ° C. Thereby, sufficient heat seal strength can be given to an oriented polypropylene resin laminated film. When the melting point of the propylene random copolymer forming the heat seal layer (B) is less than 60 ° C., the heat resistance of the heat seal portion is poor, and when it exceeds 150 ° C., improvement in heat seal strength can not be expected. The melting point of the elastomer component contained in the propylene block copolymer is also preferably 150 ° C. or less.
The MFR may be in the range of 0.1 to 100 g / 10 min, preferably 0.5 to 20 g / 10 min, more preferably 1.0 to 10 g / 10 min.
 ヒートシール層(B)で用いるポリプロピレン樹脂は、チーグラー・ナッタ触媒やメタロセン触媒等の公知の触媒を用いて、原料となるプロピレンを重合させて得られる。中でも異種結合をなくすためにはチーグラー・ナッタ触媒を用い、かつ、規則性の高い重合が可能な触媒を用いることが好ましい。
 プロピレンの重合方法としては、公知の方法でよく、ヘキサン、ヘプタン、トルエン、キシレン等の不活性溶剤中で重合する方法、液状のプロピレンやエチレン中で重合する方法、気体であるプロピレンやエチレン中に触媒を添加し、気相状態で重合する方法、または、これらを組み合わせて重合する方法等が挙げられる。
 高分子量成分、低分子量成分は別々に重合した後に混合しても良く、多段階の反応器で一連のプラントで製造しても良い。特に、多段階の反応器を持つプラントを用い、高分子量成分を最初に重合した後にその存在下で低分子量成分を重合する方法が好ましい。
The polypropylene resin used in the heat seal layer (B) is obtained by polymerizing propylene as a raw material using a known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst. Among them, in order to eliminate foreign bonds, it is preferable to use a Ziegler-Natta catalyst and to use a catalyst capable of highly regular polymerization.
As a polymerization method of propylene, a known method may be used, a method of polymerizing in an inert solvent such as hexane, heptane, toluene, xylene or the like, a method of polymerizing in liquid propylene or ethylene, propylene in gas or propylene. The method of adding a catalyst and polymerizing in a gas phase state, or the method of combining and polymerizing these, etc. are mentioned.
The high molecular weight component and the low molecular weight component may be separately polymerized and then mixed, or may be produced in a series of plants in a multistage reactor. In particular, a method is preferable in which a high molecular weight component is first polymerized and then the low molecular weight component is polymerized in the presence thereof using a plant having a multistage reactor.
(ポリプロピレンフィルムの製造方法)
 本発明のポリプロピレン系積層フィルムとしては長手方向(MD方向)もしくは横方向(TD方向)の一軸延伸フィルムでも良いが、二軸延伸フィルムであることが好ましい。二軸延伸の場合は逐次二軸延伸であっても同時二軸延伸であっても良い。
 延伸フィルムとすることで、従来のポリプロピレン系積層フィルムでは予想できなかった150℃でも熱収縮率が低いフィルムを得ることができる。
(Method for producing polypropylene film)
The polypropylene-based laminate film of the present invention may be a uniaxially stretched film in the longitudinal direction (MD direction) or the transverse direction (TD direction), but is preferably a biaxially stretched film. In the case of biaxial stretching, it may be sequential biaxial stretching or simultaneous biaxial stretching.
By setting it as a stretched film, it is possible to obtain a film having a low thermal shrinkage even at 150 ° C., which could not be predicted with a conventional polypropylene-based laminate film.
 以下に最も好ましい例である縦延伸-横延伸の逐次二軸延伸のフィルムの製造方法を説明する。
 まず、一方の押し出し機より基材層(A)を溶融押し出しし、もう一方の押し出し機によりヒートシール層(B)を溶融押し出しし、Tダイ内にて、ポリプロピレン系樹脂層(A)とヒートシール層(B)となるように積層し、冷却ロールにて冷却固化し未延伸シートを得る。溶融押出し条件としては、樹脂温度として200~280℃となるようにして、Tダイよりシート状に押出し、10~100℃の温度の冷却ロールで冷却固化する。ついで、120~165℃の延伸ロールでフィルムを長さ(MD)方向に3~7倍に延伸し、引き続き幅(TD)方向に155℃~175℃、好ましくは158℃~170℃の温度で6~12倍延伸を行う。
 さらに、165~175℃、好ましくは166~173℃の雰囲気温度で1~15%のリラックスを許しながら熱処理を施す。
 必要であれば、少なくとも片面にコロナ放電処理を施した後、ワインダーで巻取ることによりロールサンプルを得ることができる。
The following will describe a method of producing a longitudinally stretched-laterally stretched sequential biaxially stretched film which is the most preferable example.
First, the base material layer (A) is melt-extruded from one extruder, the heat seal layer (B) is melt-extruded using the other extruder, and heat is applied to the polypropylene resin layer (A) in the T die. It laminates | stacks so that it may become a sealing layer (B), it cools and solidifies with a cooling roll, and obtains an unstretched sheet. As the melt extrusion conditions, the resin temperature is set to 200 to 280 ° C., the sheet is extruded from a T-die, and it is cooled and solidified by a cooling roll at a temperature of 10 to 100 ° C. Then, the film is stretched 3 to 7 times in the length (MD) direction with a stretching roll at 120 to 165 ° C., and subsequently at a temperature of 155 ° C. to 175 ° C., preferably 158 ° C. to 170 ° C. in the width (TD) direction. Perform stretching 6 to 12 times.
Furthermore, heat treatment is performed while allowing 1 to 15% relaxation at an ambient temperature of 165 to 175 ° C., preferably 166 to 173 ° C.
If necessary, a roll sample can be obtained by applying corona discharge treatment to at least one side and winding with a winder.
 MDの延伸倍率の下限は好ましくは3倍であり、より好ましくは3.5倍である。上記未満であると膜厚ムラとなることがある。
MDの延伸倍率の上限は好ましくは8倍であり、より好ましくは7倍である。上記を越えると引き続き行うTD延伸がしにくくなることがある。
The lower limit of the draw ratio of MD is preferably 3 times, more preferably 3.5 times. If it is less than the above, film thickness unevenness may occur.
The upper limit of the draw ratio of MD is preferably 8 times, more preferably 7 times. If the above is exceeded, it may be difficult to carry out the subsequent TD stretching.
 MDの延伸温度の下限は好ましくは120℃であり、より好ましくは122℃である。上記未満であると機械的負荷が大きくなったり、厚みムラが大きくなったり、フィルムの表面粗れが起こることがある。
 MDの延伸温度の上限は好ましくは150℃であり、より好ましくは145℃であり、さらに好ましくは135℃であり、特に好ましくは130℃である。温度が高い方が熱収縮率の低下には好ましいが、ロールに付着し延伸できなくなることがある。
The lower limit of the stretching temperature of MD is preferably 120 ° C., more preferably 122 ° C. If it is less than the above, mechanical load may increase, thickness unevenness may increase, or surface roughness of the film may occur.
The upper limit of the MD stretching temperature is preferably 150 ° C., more preferably 145 ° C., still more preferably 135 ° C., particularly preferably 130 ° C. A higher temperature is preferable for lowering the heat shrinkage, but it may stick to the roll and not be able to be stretched.
 TDの延伸倍率の下限は好ましくは4倍であり、より好ましくは5倍であり、さらに好ましくは6倍である。上記未満であると厚みムラとなることがある。
 TD延伸倍率の上限は好ましくは20倍であり、より好ましくは17倍であり、さらに好ましくは15倍である。上記を越えると熱収縮率が高くなったり、延伸時に破断することがある。
The lower limit of the draw ratio of TD is preferably 4 times, more preferably 5 times, and still more preferably 6 times. If it is less than the above, thickness unevenness may occur.
The upper limit of the TD stretch ratio is preferably 20 times, more preferably 17 times, and still more preferably 15 times. If the above is exceeded, the thermal contraction rate may be high, or the film may break during stretching.
 TD延伸での予熱温度は速やかに延伸温度付近にフィルム温度を上げるため、好ましくは延伸温度より10~15℃高く設定する。 The preheating temperature in TD stretching is preferably set 10 to 15 ° C. higher than the stretching temperature in order to rapidly raise the film temperature to around the stretching temperature.
 TDの延伸では従来のヒートシール性ポリプロピレン積層延伸フィルムより高温で行う。
TDの延伸温度の下限は好ましくは157℃であり、より好ましくは158℃である。上記未満であると十分に軟化せずに破断したり、熱収縮率が高くなることがある。
 TD延伸温度の上限は好ましくは170℃であり、より好ましくは168℃である。熱収縮率を低くするためには温度は高い方が好ましいが、上記を越えると低分子成分が融解、再結晶化して表面粗れやフィルムが白化することがある。
TD stretching is performed at a higher temperature than conventional heat sealable polypropylene laminated stretched films.
The lower limit of the stretching temperature of TD is preferably 157 ° C., more preferably 158 ° C. If the amount is less than the above, breakage may occur without sufficient softening, or the heat shrinkage may increase.
The upper limit of the TD stretching temperature is preferably 170 ° C., more preferably 168 ° C. In order to lower the heat shrinkage rate, it is preferable that the temperature be higher, but if the temperature is higher than the above, the low molecular weight component may be melted and recrystallized to cause surface roughness and whitening of the film.
 延伸後のフィルムは熱固定される。熱固定は従来のポリプロピレンフィルムより高温で行うことが可能である。熱固定温度の下限は好ましくは165℃であり、より好ましくは166℃である。上記未満であると熱収縮率が高くなることがある。また、熱収縮率を低くするために長時間が必要になり、生産性が劣ることがある。
 熱固定温度の上限は好ましくは175℃であり、より好ましくは173℃である。上記を越えると低分子成分が融解、再結晶化して表面粗れやフィルムが白化することがある。
The stretched film is heat set. Heat setting can be done at higher temperatures than conventional polypropylene films. The lower limit of the heat setting temperature is preferably 165 ° C, more preferably 166 ° C. When it is less than the above, the heat shrinkage may be high. In addition, a long time may be required to lower the thermal contraction rate, and the productivity may be poor.
The upper limit of the heat setting temperature is preferably 175 ° C, more preferably 173 ° C. If the above is exceeded, low molecular weight components may melt and recrystallize to cause surface roughness and whitening of the film.
 熱固定時にリラックス(緩和)させることが好ましい。リラックスの下限は好ましくは2%であり、より好ましくは3%である。上記未満であると熱収縮率が高くなることがある。
 リラックスの上限は好ましくは10%であり、より好ましくは8%である。上記を越えると厚みムラが大きくなることがある。
It is preferable to relax during heat setting. The lower limit of relaxation is preferably 2%, more preferably 3%. When it is less than the above, the heat shrinkage may be high.
The upper limit of relaxation is preferably 10%, more preferably 8%. When the above is exceeded, thickness unevenness may become large.
 さらに、熱収縮率を低下させるためには上記の工程で製造されたフィルムを一旦ロール状に巻き取った後、オフラインでアニールさせることもできる。
 オフラインアニール温度の下限は好ましくは160℃であり、より好ましくは162℃であり、さらに好ましくは163℃である。上記未満であるとアニールの効果が得られないことがある。
 オフラインアニール温度の上限は好ましくは175℃であり、より好ましくは174℃であり、さらに好ましくは173℃である。上記を越えると透明性が低下したり、厚みムラがおおきくなったりすることがある。
Furthermore, in order to reduce the thermal contraction rate, the film produced in the above process may be once wound into a roll and then annealed off-line.
The lower limit of the off-line annealing temperature is preferably 160 ° C., more preferably 162 ° C., and still more preferably 163 ° C. If it is less than the above, the effect of annealing may not be obtained.
The upper limit of the off-line annealing temperature is preferably 175 ° C., more preferably 174 ° C., and still more preferably 173 ° C. If the above is exceeded, the transparency may be reduced, or the thickness unevenness may be significant.
 オフラインアニール時間の下限は好ましくは0.1分であり、より好ましくは0.5分であり、さらに好ましくは1分である。上記未満であるとアニールの効果が得られないことがある。
 オフラインアニール時間の上限は好ましくは30分であり、より好ましくは25分であり、さらに好ましくは20分である。上記を越えると生産性が低下することがある。
The lower limit of the off-line annealing time is preferably 0.1 minutes, more preferably 0.5 minutes, and still more preferably 1 minute. If it is less than the above, the effect of annealing may not be obtained.
The upper limit of the off-line annealing time is preferably 30 minutes, more preferably 25 minutes, and still more preferably 20 minutes. If the above is exceeded, productivity may fall.
 フィルムの厚みは各用途に合わせて設定されるが、フィルム厚みの下限は好ましくは2μmであり、より好ましくは3μmであり、さらに好ましくは4μmである。フィルム厚みの上限は好ましくは300μmであり、より好ましくは250μmであり、さらに好ましくは200μmであり、特に好ましくは100μmであり、最も好ましくは50μmである。 The thickness of the film is set according to each application, but the lower limit of the film thickness is preferably 2 μm, more preferably 3 μm, and still more preferably 4 μm. The upper limit of the film thickness is preferably 300 μm, more preferably 250 μm, still more preferably 200 μm, particularly preferably 100 μm, and most preferably 50 μm.
 このようにして得られたポリプロピレン系積層フィルムは通常、幅2000~12000mm、長さ1000~50000m程度のロールとして製膜され、ロール状に巻き取られる。
さらに、各用途に合わせてスリットされ幅300~2000mm、長さ500~5000m程度のスリットロールとして供される。
The polypropylene-based laminate film thus obtained is usually formed as a roll having a width of 2000 to 12000 mm and a length of about 1000 to 50000 m, and is wound into a roll.
Furthermore, it is slitted according to each use and provided as a slit roll having a width of about 300 to 2000 mm and a length of about 500 to 5000 m.
 本発明のポリプロピレン系積層フィルムは上記の様な従来にはない優れた特性を有する。
 包装フィルムとしても用いた場合には、高剛性であるため薄肉化が可能であり、コストダウン、軽量化ができる。
 また、耐熱性が高いため、コートや印刷の乾燥時に高温乾燥か可能となり、生産の効率化や従来用いられにくかったコート剤やインキ、ラミネート接着剤などを用いることができる。有機溶剤等を使用するラミネート工程の必要がないため、経済的にも地球環境に与える影響の面からも好ましい。
The polypropylene-based laminate film of the present invention has the above-mentioned excellent properties not heretofore available.
When it is used as a packaging film, it can be made thin because it has high rigidity, and cost and weight can be reduced.
In addition, since the heat resistance is high, high-temperature drying can be performed at the time of drying of the coating or printing, and it is possible to use a coating agent, an ink, a laminating adhesive, etc. Since there is no need for a lamination process using an organic solvent or the like, it is preferable from the viewpoints of both economic and global impact.
(フィルム特性)
 本発明のポリプロピレン系積層フィルムのMD方向およびTD方向の150℃熱収縮率の下限は好ましくは0.5%であり、より好ましくは1%であり、さらに好ましくは1.5%であり、特に好ましくは2%であり、最も好ましくは2.5%である。上記範囲であるとコスト面などで現実的な製造が容易となったり、厚みムラが小さくなったりすることがある。
(Film characteristics)
The lower limit of the thermal shrinkage at 150 ° C. in the MD and TD directions of the polypropylene-based laminate film of the present invention is preferably 0.5%, more preferably 1%, still more preferably 1.5%, Preferably it is 2%, most preferably 2.5%. If it is in the above-mentioned range, realistic production may be facilitated in terms of cost and the like, or thickness unevenness may be reduced.
 MD方向の150℃熱収縮率の上限は好ましくは7%であり、より好ましくは6%であり、さらに好ましくは5%である。上記範囲であると150℃程度の高温に晒される可能性のある用途で使用がより容易なる。なお、150℃熱収縮率は2.5%程度までなら、例えば低分子量成分を多くする、延伸条件、固定条件を調整することで可能であるが、それ以下はオフラインでアニール処理をすることが好ましい。
 従来の延伸ポリプロピレン積層フィルムでは、MD方向の150℃熱収縮率は15%以上であり、120℃熱収縮率は3%程度である。熱収縮率を上記の範囲とすることで、耐熱性の優れたポリプロピレン系積層フィルムを得ることができる。
The upper limit of the heat shrinkage at 150 ° C. in the MD direction is preferably 7%, more preferably 6%, and still more preferably 5%. If it is in the above range, it becomes easier to use in applications that may be exposed to high temperatures of about 150 ° C. In addition, if the thermal contraction rate at 150 ° C. is up to about 2.5%, for example, it is possible by increasing the low molecular weight component, adjusting the stretching conditions and fixing conditions, but annealing below that may be performed offline. preferable.
In the conventional stretched polypropylene laminated film, the thermal contraction rate at 150 ° C. in the MD direction is 15% or more, and the thermal contraction rate at 120 ° C. is about 3%. By making heat contraction rate into said range, the polypropylene-type laminated film excellent in heat resistance can be obtained.
 TD方向の150℃熱収縮率の上限は好ましくは8%であり、より好ましくは7%であり、さらに好ましくは7%である。上記範囲であると150℃程度の高温に晒される可能性のある用途で使用がより容易なる。なお、150℃熱収縮率は2.5%程度までなら、例えば低分子量成分を多くする、延伸条件、固定条件を調整することで可能であるが、それ以下はオフラインでアニール処理をすることが好ましい。
 従来の延伸ポリプロピレン積層フィルムでは、TD方向の150℃熱収縮率は15%以上であり、120℃熱収縮率は3%程度である。熱収縮率を上記の範囲とすることで、耐熱性の優れたポリプロピレン系積層フィルムを得ることができる。
The upper limit of the heat shrinkage at 150 ° C. in the TD direction is preferably 8%, more preferably 7%, and still more preferably 7%. If it is in the above range, it becomes easier to use in applications that may be exposed to high temperatures of about 150 ° C. In addition, if the thermal contraction rate at 150 ° C. is up to about 2.5%, for example, it is possible by increasing the low molecular weight component, adjusting the stretching conditions and fixing conditions, but annealing below that may be performed offline. preferable.
In the conventional stretched polypropylene laminated film, the thermal contraction rate at 150 ° C. in the TD direction is 15% or more, and the thermal contraction rate at 120 ° C. is about 3%. By making heat contraction rate into said range, the polypropylene-type laminated film excellent in heat resistance can be obtained.
 本発明のポリプロピレン系積層フィルムが二軸延伸フィルムである場合、MD方向のヤング率(23℃)の下限は好ましくは1.8GPaであり、より好ましくは1.9GPaであり、さらに好ましくは2.0GPaであり、特に好ましくは2.1GPaであり、最も好ましくは2.2GPaである。
 MD方向のヤング率の上限は好ましくは3.7GPaであり、より好ましくは3.6GPaであり、さらに好ましくは3.5GPaであり、特に好ましくは3.4GPaであり、最も好ましくは3.3GPaである。上記範囲ではと現実的な製造が容易であったり、MD-TDバランスが良化することがある。
When the polypropylene-based laminate film of the present invention is a biaxially stretched film, the lower limit of Young's modulus (23 ° C.) in the MD direction is preferably 1.8 GPa, more preferably 1.9 GPa, and still more preferably 2. 0 GPa, particularly preferably 2.1 GPa, most preferably 2.2 GPa.
The upper limit of Young's modulus in the MD direction is preferably 3.7 GPa, more preferably 3.6 GPa, still more preferably 3.5 GPa, particularly preferably 3.4 GPa, and most preferably 3.3 GPa. is there. Within the above range, practical manufacture may be easy, or MD-TD balance may be improved.
 本発明のポリプロピレン系積層フィルムが二軸延伸フィルムである場合、TD方向のヤング率(23℃)の下限は好ましくは4.4GPaであり、より好ましくは4.5GPaであり、さらに好ましくは4.6GPaであり、特に好ましくは4.7GPaである。
 TD方向のヤング率の上限は好ましくは8GPaであり、より好ましくは7.5GPaであり、さらに好ましくは7GPaであり、特に好ましくは6.5GPaである。上記範囲だと現実的な製造が容易であったり、MD-TDバランスが良化することがある。
 なお、ヤング率は延伸倍率を高くすることで高めることができ、MD-TD延伸の場合はMD延伸倍率を低めに設定し、TD延伸倍率を高くすることでTD方向のヤング率を大きくすることができる。
When the polypropylene-based laminate film of the present invention is a biaxially stretched film, the lower limit of Young's modulus (23 ° C.) in the TD direction is preferably 4.4 GPa, more preferably 4.5 GPa, and still more preferably 4. 6 GPa, particularly preferably 4.7 GPa.
The upper limit of the Young's modulus in the TD direction is preferably 8 GPa, more preferably 7.5 GPa, still more preferably 7 GPa, and particularly preferably 6.5 GPa. Within the above range, practical manufacture may be facilitated, or MD-TD balance may be improved.
The Young's modulus can be increased by increasing the draw ratio, and in the case of MD-TD stretching, the MD draw ratio is set to a lower value, and the TD draw ratio is increased to increase the Young's modulus in the TD direction. Can.
 本発明のポリプロプレン系積層フィルムの面配向係数の下限は、好ましくは0.0125であり、より好ましくは0.0126であり、さらに好ましくは0.0127であり、特に好ましくは0.0128である。面配向係数の上限は、現実的な値として、好ましくは0.0155であり、より好ましくは0.0150であり、さらに好ましくは0.0148であり、特に好ましくは0.0145であり、より特に好ましくは0.0140である。面配向係数は、延伸倍率の調整により範囲内とすることができる。面配向係数がこの範囲であると、フィルムの厚みムラも良好である。 The lower limit of the plane orientation coefficient of the polypropylene film of the present invention is preferably 0.0125, more preferably 0.0126, still more preferably 0.0127, particularly preferably 0.0128. . The upper limit of the plane orientation coefficient is preferably 0.0155, more preferably 0.0150, still more preferably 0.0148, particularly preferably 0.0145, as a practical value. Preferably it is 0.0140. The plane orientation coefficient can be in the range by adjusting the draw ratio. When the plane orientation coefficient is in this range, the thickness unevenness of the film is also good.
 本発明のポリプロピレン系積層フィルムのヒートシール強度は140℃においては8.0N/15mm以上であることが好ましく、9.0N/15mm以上であることがより好ましく、10N/15mm以上であることがさらに好ましい。
 また、本発明のポリプロピレン系積層フィルムのヒートシール強度は110℃においては1.5N/15mm以上であることが好ましく、2.0N/15mm以上であることがより好ましく、2.2N/15mm以上であることがさらに好ましい。
The heat seal strength of the polypropylene-based laminate film of the present invention at 140 ° C. is preferably 8.0 N / 15 mm or more, more preferably 9.0 N / 15 mm or more, and further preferably 10 N / 15 mm or more preferable.
The heat seal strength of the polypropylene-based laminate film of the present invention is preferably 1.5 N / 15 mm or more at 110 ° C., more preferably 2.0 N / 15 mm or more, and 2.2 N / 15 mm or more. It is further preferred that
 本発明の延伸ポリプロピレンフィルムの耐衝撃性(23℃)の下限は好ましくは0.6Jであり、より好ましくは0.7Jである。上記範囲であるとフィルムとして十分な強靱性があり、取り扱い時に破断したりすることがない。
 耐衝撃性の上限は現実的な面から好ましくは3Jであり、より好ましくは2.5Jであり、さらに好ましくは2.2Jであり、特に好ましくは2Jである。耐衝撃性は例えば低分子量成分が多い場合全体での分子量が低い場合、高分子量成分が少ない場合や高分子量成分の分子量が低い場合に耐衝撃性が低下する傾向となるため、用途に合わせてこれら成分を調整して範囲内とすることが出来る。
The lower limit of the impact resistance (23 ° C.) of the stretched polypropylene film of the present invention is preferably 0.6 J, more preferably 0.7 J. If it is in the above range, it has sufficient toughness as a film and does not break during handling.
The upper limit of the impact resistance is preferably 3 J, more preferably 2.5 J, still more preferably 2.2 J, and particularly preferably 2 J from the practical viewpoint. For example, when the low molecular weight component is large, the impact resistance tends to decrease when the total molecular weight is low, or when the high molecular weight component is low or when the molecular weight of the high molecular weight component is low. These components can be adjusted to be in the range.
 本発明のポリプロピレン系積層フィルムのヘイズは現実的値として下限は好ましくは0.1%であり、より好ましくは0.2%であり、さらに好ましくは0.3%であり、特に好ましくは0.4%であり、最も好ましくは0.5%である。
 ヘイズの上限は好ましくは6%であり、より好ましくは5%であり、さらに好ましくは4.5%であり、特に好ましくは4%であり、最も好ましくは3.5%である。上記範囲であると透明が要求される用途で使いやすくなることがある。ヘイズは例えば延伸温度、熱固定温度が高すぎる場合、冷却ロール(CR)温度が高く冷却速度が遅い場合、低分子量が多すぎる場合に悪くなる傾向があり、これらを調節することで範囲内とすることが出来る。
The lower limit of the haze of the polypropylene-based laminate film of the present invention is preferably 0.1%, more preferably 0.2%, still more preferably 0.3%, particularly preferably 0. It is 4%, most preferably 0.5%.
The upper limit of the haze is preferably 6%, more preferably 5%, still more preferably 4.5%, particularly preferably 4%, most preferably 3.5%. Within the above range, it may be easy to use in applications where transparency is required. The haze tends to be worse, for example, when the stretching temperature and the heat setting temperature are too high, when the cooling roll (CR) temperature is high and the cooling rate is slow, and when the low molecular weight is too high. You can do it.
 本発明のポリプロピレン系積層フィルムの厚み均一性の下限は好ましくは0%であり、より好ましくは0.1%であり、さらに好ましくは0.5%であり、特に好ましくは1%である。
 厚み均一性の上限は好ましくは20%であり、より好ましくは17%であり、さらに好ましくは15%であり、特に好ましくは12%であり、最も好ましくは10%である。上記範囲だとコートや印刷などの後加工時に不良が生じにくく、精密性を要求される用途に用いやすい。
The lower limit of the thickness uniformity of the polypropylene-based laminate film of the present invention is preferably 0%, more preferably 0.1%, still more preferably 0.5%, particularly preferably 1%.
The upper limit of thickness uniformity is preferably 20%, more preferably 17%, still more preferably 15%, particularly preferably 12%, and most preferably 10%. Within the above range, defects are less likely to occur during post-processing such as coating and printing, and it is easy to use for applications requiring precision.
 以下に本発明を実施例に基づき詳細に説明するが、本発明はかかる実施例に限定されるものではない。実施例における物性の測定方法は次のとおりである。 EXAMPLES The present invention will be described in detail based on examples given below, but the present invention is not limited to these examples. The measuring method of the physical property in an Example is as follows.
1)メルトフローレート(MFR、g/10分)
 JIS K7210に準拠し、温度230℃で測定した。
1) Melt flow rate (MFR, g / 10 min)
It was measured at a temperature of 230 ° C. in accordance with JIS K7210.
2)分子量および分子量分布
 分子量および分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて単分散ポリスチレン基準により求めた。
GPC測定での使用カラム、溶媒は以下のとおりである。
溶媒:1,2,4-トリクロロベンゼン
カラム:TSKgel GMHHR-H(20)HT×3
流量:1.0ml/min
検出器:RI
測定温度:140℃
 数平均分子量(Mn)、質量平均分子量(Mw)、Z+1平均分子量(Mz+1)はそれぞれ、分子量校正曲線を介して得られたGPC曲線の各溶出位置の分子量(Mi)の分子数(Ni)により次式で定義される。
数平均分子量:Mn=Σ(Ni・Mi)/ΣNi
質量平均分子量:Mw=Σ(Ni・Mi)/Σ(Ni・Mi)
Z+1平均分子量:Mz+1=Σ(Ni・Mi)/Σ(Ni・Mi
分子量分布:Mw/Mn、Mz+1/Mn
 また、GPC曲線のピーク位置の分子量をMpとした。
 ベースラインが明確でないときは、標準物質の溶出ピークに最も近い高分子量側の溶出ピークの高分子量側のすそ野の最も低い位置までの範囲でベースラインを設定することとする。
 ピーク分離は、得られたGPC曲線から、分子量の異なる2つ以上の成分にピーク分離を行った。各成分の分子量分布はガウス関数を仮定し、通常のポリプロピレンの分子量分布と同様になるようにMw/Mn=4とした。得られた各成分のカーブから、各平均分子量を計算した。
2) Molecular weight and molecular weight distribution Molecular weight and molecular weight distribution were determined by gel permeation chromatography (GPC) on the basis of monodispersed polystyrene.
The used column and solvent in GPC measurement are as follows.
Solvent: 1, 2, 4- trichlorobenzene column: TSKgel GMH HR- H (20) HT x 3
Flow rate: 1.0 ml / min
Detector: RI
Measurement temperature: 140 ° C
The number average molecular weight (Mn), mass average molecular weight (Mw), and Z + 1 average molecular weight (Mz + 1) are respectively determined by the molecular number (Ni) of the molecular weight (Mi) at each elution position of the GPC curve obtained through the molecular weight calibration curve. It is defined by the following equation.
Number average molecular weight: Mn = ((Ni · Mi) / Ni Ni
Mass average molecular weight: Mw = Σ (Ni · Mi 2 ) / Σ (Ni · Mi)
Z + 1 average molecular weight: Mz + 1 = Σ (Ni · Mi 4 ) / 4 (Ni · Mi 3 )
Molecular weight distribution: Mw / Mn, Mz + 1 / Mn
Moreover, the molecular weight of the peak position of a GPC curve was set to Mp.
When the baseline is not clear, the baseline is set in the range up to the lowest position on the high molecular weight side of the elution peak on the high molecular weight side closest to the elution peak of the standard substance.
For peak separation, peak separation was performed on two or more components having different molecular weights from the obtained GPC curve. The molecular weight distribution of each component assumes a Gaussian function, and Mw / Mn = 4 so as to be similar to the molecular weight distribution of normal polypropylene. Each average molecular weight was calculated from the obtained curve of each component.
3)立体規則性
 メソペンタッド分率([mmmm]%)およびメソ平均連鎖長の測定は、13C-NMRを用いて行った。メソペンタッド分率は、Zambelliら、Macromolecules,第6巻,925頁(1973)に記載の方法に従い、メソ平均連鎖長は、J.C.Randallによる、“Polymer Sequence Distribution”第2章(1977年)(Academic Press,New York)に記載の方法に従って算出した。
 13C-NMR測定は、BRUKER社製AVANCE500を用い、試料200mgをo-ジクロロベンゼンと重ベンゼンの8:2の混合液に135℃で溶解し、110℃で行った。
3) Stereoregularity Measurement of mesopentad fraction ([mm mm]%) and meso average chain length was performed using 13 C-NMR. The mesopentad fraction is determined according to the method described by Zambelli et al., Macromolecules, 6: 925 (1973), and the meso average chain length is determined according to J. Am. C. Calculated according to the method described in Randall, "Polymer Sequence Distribution", Chapter 2 (1977) (Academic Press, New York).
The 13 C-NMR measurement was carried out at 110 ° C. by dissolving 200 mg of the sample in an 8: 2 mixture of o-dichlorobenzene and heavy benzene at 135 ° C. using AVANCE 500 manufactured by BRUKER.
4)冷キシレン可溶部(CXS、質量%)
 ポリプロピレン試料1gを沸騰キシレン200mlに溶解して放冷後、20℃の恒温水槽で1時間再結晶化させ、ろ過液に溶解している質量の、元の試料量に対する割合をCXS(質量%)とした。
4) Cold xylene soluble part (CXS, mass%)
1 g of a polypropylene sample is dissolved in 200 ml of boiling xylene and allowed to cool, then recrystallized in a constant temperature water bath at 20 ° C. for 1 hour, and the ratio of the mass dissolved in the filtrate to the original sample amount is CXS (mass%) And
5)熱収縮率(%)
 JIS Z 1712に準拠して測定した。
(延伸フィルムを20mm巾で200mmの長さでMD、TD方向にそれぞれカットし、150℃の熱風オーブン中に吊るして5分間加熱した。加熱後の長さを測定し、元の長さに対する収縮した長さの割合で熱収縮率を求めた。)
5) Heat shrinkage rate (%)
It measured based on JIS Z 1712.
(The stretched film was cut in the MD and TD directions with a width of 20 mm and a length of 200 mm, respectively, suspended in a hot air oven at 150 ° C. and heated for 5 minutes. The length after heating was measured and the shrinkage relative to the original length The heat shrinkage rate was determined by the ratio of
6)耐衝撃性
 東洋精機製フィルムインパクトテスターを用いて、23℃にて測定した。
6) Impact resistance It measured at 23 degreeC using the Toyo Seiki film impact tester.
7)ヤング率(単位:GPa)
 JIS K 7127に準拠してMDおよびTD方向のヤング率を23℃で測定した。
7) Young's modulus (unit: GPa)
Young's modulus in the MD and TD directions was measured at 23 ° C. in accordance with JIS K 7127.
8)ヘイズ(単位:%)
 JIS K7105に従って測定した。
8) Haze (unit:%)
It measured according to JIS K7105.
9)面配向係数(ΔP)
 JIS K7142-1996 5.1(A法)により、アタゴ製アッベ屈折計を用いて測定した。MD、TD方向に沿った屈折率をそれぞれNx、Nyとし、厚み方向の屈折率をNzとした。面配向係数(ΔP)は、(Nx+Ny)/2-Nzで求めた。
 シール層が片面の場合:シール層と反対側の面を3回測定し、それらの平均値とした。
 シール層が両面の場合:シール層の面を両側とも3回ずつ測定し、それらの平均値とした。
9) Plane orientation coefficient (ΔP)
It was measured according to JIS K7142-1996 5.1 (Method A) using an Atago Abbe refractometer. The refractive indices along the MD and TD directions are Nx and Ny, respectively, and the refractive index in the thickness direction is Nz. The plane orientation coefficient (ΔP) was determined by (Nx + Ny) / 2-Nz.
When the sealing layer is single-sided: The surface opposite to the sealing layer was measured three times, and the average value thereof was taken.
In the case where the sealing layer is on both sides: the surface of the sealing layer was measured three times on both sides and the average value thereof was taken.
10)ヒートシール強度
 ヒートシール温度140℃及び110℃で、圧力1kg/cm、ヒートシール時間1秒の条件で、積層延伸フィルムのヒートシール層(B)面同士を重ね合わせて熱板シールを行い、10mm幅の試験片を作製した。この試験片の180度剥離強度を測定し、ヒートシール強度(N/15mm)とした。
10) Heat seal strength Heat seal temperature is 140 ° C. and 110 ° C., pressure is 1 kg / cm 2 , heat seal time is 1 second, heat seal layer (B) faces of laminated stretched films are superposed and heat plate seal is formed. It carried out and produced the test piece of 10 mm width. The 180 degree peel strength of this test piece was measured to obtain the heat seal strength (N / 15 mm).
11)カール性
 10)の評価で得られたフィルムの積層延伸フィルムのカールの程度をカールの程度を目視で測定した。
○:カール性なし
△:ややカール性あり
×:著しいカール性あり
11) Curl property The degree of curl of the laminated stretched film of the film obtained in the evaluation of 10) was measured by visual observation.
○: no curling △: slightly curled ×: significant curling
12)厚み斑
 巻き取ったフィルムロールから長さが1mの正方形のサンプルを切り出し、MD方向およびTD方向にそれぞれ10等分して測定用サンプルを100枚用意した。測定用サンプルのほぼ中央部を接触式のフィルム厚み計で厚みを測定した。
 得られた100点のデータの平均値を求め、また最小値と最大値の差(絶対値)を求め、最小値と最大値の差の絶対値を平均値で除した値をフィルムの厚み斑とした。
12) Thickness spots A square sample having a length of 1 m was cut out from the wound film roll, and divided into 10 equal parts in the MD direction and the TD direction to prepare 100 measurement samples. The thickness of the substantially central portion of the measurement sample was measured with a contact-type film thickness meter.
The average value of the obtained data of 100 points is determined, and the difference between the minimum value and the maximum value (absolute value) is determined, and the absolute value of the difference between the minimum value and the maximum value is divided by the average value And
13)ヒートシール外観
 作製したフィルムと東洋紡績株式会社製パイレンフィルム-CT P1128を重ねて、西部機械株式会社製テストシーラーを用いて、170℃、荷重2kgで1秒間保持することによりヒートシールを行った。ヒートシール後のフィルムの収縮による外観の変化の具合を目視により評価した。ヒートシール部の変形量が小さく、使用に影響しない範囲のものを○、ヒートシールによる収縮が大きく、変形量が大きいものを×とした。
13) Heat-sealed appearance Heat-sealed by holding the produced film and Pylen Film-CT P1128 manufactured by Toyobo Co., Ltd. and using a test sealer manufactured by Seibu Kikai Co., Ltd. at 170 ° C. and a 2 kg load for 1 second The The degree of appearance change due to shrinkage of the film after heat sealing was visually evaluated. The heat seal portion with a small deformation amount in a range not affecting use was marked with ○, and a heat seal with a large shrinkage and a large deformation amount with ×.
(実施例1)
 2台の溶融押出機を用い、第1の押出機にて、ポリプロピレン樹脂として、表1に示すポリプロピレン単独重合体PP-1を基材層(A)とし、第2の押出機にて、プロピレン-エチレン-ブテンランダム共重合体(PP-7:Pr-Et-Bu、密度0.89g/cm、MFR4.6g/10分、融点128℃)を85重量%、プロピレン-ブテンランダム共重合体(PP-8:Pr-Bu、密度0.89g/cm、MFR9.0g/10分、融点130℃)を15重量%とした混合樹脂をヒートシール層(B)として、ダイス内にて基材層(A)/ヒートシール層(B)とるように、基材層(A)、ヒートシール層(B)の順にTダイ方式にて250℃でTダイよりシート状に溶融共押出し後、30℃の冷却ロールで冷却固化した後、125℃で長さ方向に4.5倍に延伸し、ついで両端をクリップで挟み、熱風オーブン中に導いて、175℃で予熱後、160℃で横方向に8.2倍に延伸し、ついでリラックスを6.7%させながら170℃で熱処理した。その後、フィルムの片面にコロナ処理を行い、ワインダーで巻き取った。こうして得られたフィルムの厚みは20μmであり、基材層、ヒートシール層の厚みがそれぞれ順に18μm、2μmである積層延伸フィルムを得た。表1、表2、表3に示すとおり、得られた積層延伸フィルムは本発明の要件を満足するものであり、熱収縮率が低く、剛性が高く、しかもヒートシール強度、腰感及びカール性も優れるものであった。
Example 1
Using two melt extruders and using the first extruder as the polypropylene resin, the polypropylene homopolymer PP-1 shown in Table 1 is used as the substrate layer (A), and using the second extruder as propylene. 85% by weight of ethylene-butene random copolymer (PP-7: Pr-Et-Bu, density 0.89 g / cm 3 , MFR 4.6 g / 10 min, melting point 128 ° C.), propylene-butene random copolymer A mixed resin of 15 wt% (PP-8: Pr-Bu, density 0.89 g / cm 3 , MFR 9.0 g / 10 min, melting point 130 ° C.) is used as a heat seal layer (B) in a die. Material layer (A) / heat seal layer (B), after melt coextrusion into a sheet form from T die at 250 ° C by T die method in order of base material layer (A) and heat seal layer (B) It solidified by cooling with a 30 ° C cooling roll After that, it is stretched 4.5 times in the longitudinal direction at 125 ° C., then both ends are clipped, led into a hot air oven, and after being preheated at 175 ° C., stretched 8.2 times in the transverse direction at 160 ° C. Then, it was heat-treated at 170 ° C. with 6.7% relaxation. Thereafter, one side of the film was subjected to corona treatment and was wound by a winder. The thickness of the film thus obtained was 20 μm, and a laminated stretched film in which the thicknesses of the base material layer and the heat seal layer were 18 μm and 2 μm in this order, respectively, was obtained. As shown in Tables 1, 2 and 3, the resulting laminated stretched film satisfies the requirements of the present invention, has a low thermal shrinkage, high rigidity, and has heat seal strength, stiffness and curling properties. Was also excellent.
(実施例2)
 基材層(A)に使用する原料を表1に示すポリプロピレン単独重合体PP-2に変更したこと以外は、実施例1と同様にしてポリプロピレン系積層フィルムを得た。表1、表2、表3に示すとおり、得られた積層延伸フィルムは本発明の要件を満足するものであり、熱収縮率が低く、剛性が高く、しかもヒートシール強度、腰感及びカール性も優れるものであった。
(Example 2)
A polypropylene-based laminate film was obtained in the same manner as Example 1, except that the raw material used for the base material layer (A) was changed to the polypropylene homopolymer PP-2 shown in Table 1. As shown in Tables 1, 2 and 3, the resulting laminated stretched film satisfies the requirements of the present invention, has a low thermal shrinkage, high rigidity, and has heat seal strength, stiffness and curling properties. Was also excellent.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(比較例1)
 基材層(A)に使用する原料を表1に示すポリプロピレン単独重合体PP-3に変更したこと以外は、実施例1と同様にしてポリプロピレン系積層フィルムを得た。表1、表2、表3に示すとおり、得られた積層延伸フィルムはヒートシール強度、腰感及びカール性に優れるものであったが、熱収縮率が大きかった。
(Comparative example 1)
A polypropylene-based laminate film was obtained in the same manner as Example 1, except that the raw material used for the base material layer (A) was changed to the polypropylene homopolymer PP-3 shown in Table 1. As shown in Table 1, Table 2 and Table 3, the resulting laminated stretched film was excellent in heat seal strength, waist feel and curlability, but had a large heat shrinkage.
(比較例2)
 基材層(A)に使用する原料を表1に示すポリプロピレン単独重合体PP-4に変更したこと以外は、実施例1と同様にしてポリプロピレン系積層フィルムを得ようとしたが、途中でフィルムが破れて、サンプルが得られなかった。
(Comparative example 2)
An attempt was made to obtain a polypropylene-based laminate film in the same manner as in Example 1 except that the raw material used for the base material layer (A) was changed to the polypropylene homopolymer PP-4 shown in Table 1. Was broken and no sample was obtained.
(比較例3)
 基材層(A)に使用する原料を表1に示すポリプロピレン単独重合体PP-5に変更したこと以外は、実施例1と同様にしてポリプロピレン系積層フィルムを得た。表1、表2、表3に示すとおり、得られた積層延伸フィルムはヒートシール強度、腰感及びカール性に優れるものであったが、熱収縮率が大きかった。
(Comparative example 3)
A polypropylene-based laminate film was obtained in the same manner as in Example 1, except that the raw material used for the base material layer (A) was changed to the polypropylene homopolymer PP-5 shown in Table 1. As shown in Table 1, Table 2 and Table 3, the resulting laminated stretched film was excellent in heat seal strength, waist feel and curlability, but had a large heat shrinkage.
(比較例4)
 基材層(A)に使用する原料を表1に示すポリプロピレン単独重合体PP-6に変更し、幅方向延伸予熱温度を170℃に、幅方向延伸温度を158℃に、熱固定温度を165℃に変更した以外は、実施例1と同様にしてポリプロピレン系積層フィルムを得た。表1、表2、表3に示すとおり、得られた積層延伸フィルムはヒートシール強度、腰感及びカール性に優れるものであったが、熱収縮率が非常に大きかった。
(Comparative example 4)
The raw material used for the base material layer (A) is changed to polypropylene homopolymer PP-6 shown in Table 1, and the width direction stretch preheating temperature is 170 ° C., the width direction stretch temperature is 158 ° C., and the heat setting temperature is 165. A polypropylene-based laminate film was obtained in the same manner as in Example 1 except that the temperature was changed to ° C. As shown in Table 1, Table 2 and Table 3, the resulting laminated stretched film was excellent in heat seal strength, waist feel and curlability, but the heat shrinkage rate was very large.
 本発明のポリプロピレン系積層フィルムは、包装用途として使用するのに優れ、ヒートシール加工を行うのに非常に適したものであった。
 さらに、例えば、ヒートシール温度を高く設定することにより、製袋加工におけるライン速度を大きくすることなどが可能となり、生産性が向上する。また、ヒートシール温度を高くすることで、ヒートシール強度も向上させることができる。
The polypropylene-based laminate film of the present invention was excellent for use as a packaging application, and was very suitable for heat sealing.
Furthermore, for example, by setting the heat seal temperature high, it is possible to increase the line speed in bag-making processing and the like, and the productivity is improved. In addition, the heat seal strength can also be improved by increasing the heat seal temperature.

Claims (5)

  1.  層を構成するポリプロピレン樹脂が下記1)~4)の条件を満たす基材層(A)と、この基材層の片面または両面に積層されるポリオレフィン系樹脂から構成されるヒートシール層(B)とからなり、フィルムの面配向係数の下限が0.0125であるポリプロピレン系積層フィルム。
    1)メソペンタッド分率の下限が96%である。
    2)プロピレン以外の共重合モノマー量の上限が0.1mol%である。
    3)質量平均分子量(Mw)/数平均分子量(Mn)が3.0以上、5.4以下である。
    4)230℃、2.16kgfで測定されるメルトフローレート(MFR)が6.2g/10min以上、9.0g/10min以下である。
    A heat seal layer (B) comprising a base layer (A) in which a polypropylene resin constituting the layer satisfies the following conditions 1) to 4) and a polyolefin resin laminated on one side or both sides of the base layer And the lower limit of the plane orientation coefficient of the film is 0.0125.
    1) The lower limit of the mesopentad fraction is 96%.
    2) The upper limit of the amount of copolymerized monomers other than propylene is 0.1 mol%.
    3) Mass average molecular weight (Mw) / number average molecular weight (Mn) is 3.0 or more and 5.4 or less.
    4) The melt flow rate (MFR) measured at 230 ° C. and 2.16 kgf is 6.2 g / 10 min or more and 9.0 g / 10 min or less.
  2.  フィルムの縦方向および横方向の150℃での熱収縮率が8%以下である請求項1あるいは2に記載のポリプロピレン系積層フィルム。 The polypropylene-based laminate film according to claim 1 or 2, wherein the heat shrinkage at 150 ° C in the longitudinal direction and the transverse direction of the film is 8% or less.
  3.  MD方向のヤング率が、2.1GPa以上、TD方向のヤング率が、3.7GPa以上である請求項1または2に記載のポリプロピレン系積層フィルム。 The polypropylene-based laminate film according to claim 1 or 2, wherein Young's modulus in the MD direction is 2.1 GPa or more, and Young's modulus in the TD direction is 3.7 GPa or more.
  4.  ヒートシール層(B)面同士を重ね合わせて140℃で1秒間熱板シールを行って得た10mm幅の試験片の180度剥離強度が8.0N/15mm以上である請求項1~3のいずれかに記載のポリプロピレン系積層フィルム。 The 180 ° peel strength of a 10 mm wide test piece obtained by laminating heat seal layer (B) surfaces and performing hot plate sealing at 140 ° C. for 1 second is 8.0 N / 15 mm or more. The polypropylene-based laminate film according to any one of the above.
  5.  ヒートシール樹脂(B)を構成するポリオレフィン系樹脂が、プロピレンランダム共重合体および/またはプロピレンブロック共重合体である請求項1~4のいずれかに記載のポリプロピレン系積層フィルム。 The polypropylene-based laminate film according to any one of claims 1 to 4, wherein the polyolefin resin constituting the heat seal resin (B) is a propylene random copolymer and / or a propylene block copolymer.
PCT/JP2018/034179 2017-09-26 2018-09-14 Polypropylene-based laminate film WO2019065306A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019544588A JP7238779B2 (en) 2017-09-26 2018-09-14 Polypropylene laminated film
KR1020207011453A KR102593205B1 (en) 2017-09-26 2018-09-14 Polypropylene-based laminated film
CN201880061951.6A CN111132831A (en) 2017-09-26 2018-09-14 Polypropylene-based laminated film
JP2022166463A JP7409459B2 (en) 2017-09-26 2022-10-17 Polypropylene laminated film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-184990 2017-09-26
JP2017184990 2017-09-26
JP2017193574 2017-10-03
JP2017-193574 2017-10-03
JP2018-116034 2018-06-19
JP2018116034 2018-06-19

Publications (1)

Publication Number Publication Date
WO2019065306A1 true WO2019065306A1 (en) 2019-04-04

Family

ID=65902380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034179 WO2019065306A1 (en) 2017-09-26 2018-09-14 Polypropylene-based laminate film

Country Status (4)

Country Link
JP (2) JP7238779B2 (en)
KR (1) KR102593205B1 (en)
CN (1) CN111132831A (en)
WO (1) WO2019065306A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255642A1 (en) * 2019-06-20 2020-12-24 東洋紡株式会社 Polyolefin-based resin film, and laminate using same
WO2020255643A1 (en) * 2019-06-20 2020-12-24 東洋紡株式会社 Polyolefin-based resin film, and laminate using same
WO2023181852A1 (en) * 2022-03-25 2023-09-28 凸版印刷株式会社 Packaging laminate and packaging bag
WO2023238825A1 (en) * 2022-06-09 2023-12-14 Toppanホールディングス株式会社 Packaging laminate and packaging bag
WO2024019049A1 (en) * 2022-07-21 2024-01-25 Toppanホールディングス株式会社 Laminate for packaging, method for selecting same, method for evaluating same, packaging bag, and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205584A (en) * 2002-01-15 2003-07-22 Toyobo Co Ltd Heat-sealing laminated film
JP2007508423A (en) * 2003-10-07 2007-04-05 ダウ グローバル テクノロジーズ インコーポレイティド Polypropylene composition for air quench bron film
WO2014002934A1 (en) * 2012-06-29 2014-01-03 東洋紡株式会社 Stretchable polypropylene film
WO2015012165A1 (en) * 2013-07-23 2015-01-29 東洋紡株式会社 Heat-sealable stretched multilayer polypropylene film
WO2015012324A1 (en) * 2013-07-23 2015-01-29 東洋紡株式会社 Stretched polypropylene film
WO2017170244A1 (en) * 2016-03-28 2017-10-05 東洋紡株式会社 Biaxially oriented polypropylene film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111779A1 (en) * 2012-01-24 2013-08-01 東洋紡株式会社 Stretched polypropylene film
KR101396828B1 (en) 2014-02-19 2014-05-20 (주)아셈스 Method for manufacturing three dimensional pattern using the adhesive material
JP2018141122A (en) 2017-02-28 2018-09-13 東洋紡株式会社 Biaxially oriented polypropylene film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205584A (en) * 2002-01-15 2003-07-22 Toyobo Co Ltd Heat-sealing laminated film
JP2007508423A (en) * 2003-10-07 2007-04-05 ダウ グローバル テクノロジーズ インコーポレイティド Polypropylene composition for air quench bron film
WO2014002934A1 (en) * 2012-06-29 2014-01-03 東洋紡株式会社 Stretchable polypropylene film
WO2015012165A1 (en) * 2013-07-23 2015-01-29 東洋紡株式会社 Heat-sealable stretched multilayer polypropylene film
WO2015012324A1 (en) * 2013-07-23 2015-01-29 東洋紡株式会社 Stretched polypropylene film
WO2017170244A1 (en) * 2016-03-28 2017-10-05 東洋紡株式会社 Biaxially oriented polypropylene film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988279A4 (en) * 2019-06-20 2023-10-25 Toyobo Co., Ltd. Polyolefin-based resin film, and laminate using same
WO2020255643A1 (en) * 2019-06-20 2020-12-24 東洋紡株式会社 Polyolefin-based resin film, and laminate using same
CN113993685A (en) * 2019-06-20 2022-01-28 东洋纺株式会社 Polyolefin resin film and laminate using same
CN114007844A (en) * 2019-06-20 2022-02-01 东洋纺株式会社 Polyolefin resin film and laminate using same
EP3988280A4 (en) * 2019-06-20 2023-10-25 Toyobo Co., Ltd. Polyolefin-based resin film, and laminate using same
WO2020255642A1 (en) * 2019-06-20 2020-12-24 東洋紡株式会社 Polyolefin-based resin film, and laminate using same
CN114007844B (en) * 2019-06-20 2023-11-24 东洋纺株式会社 Polyolefin resin film and laminate using same
JP7392718B2 (en) 2019-06-20 2023-12-06 東洋紡株式会社 Polyolefin resin film and laminate using the same
US11866572B2 (en) 2019-06-20 2024-01-09 Toyobo Co., Ltd. Polyolefin-based resin film and laminate including the same
CN113993685B (en) * 2019-06-20 2024-03-08 东洋纺株式会社 Polyolefin resin film and laminate using same
WO2023181852A1 (en) * 2022-03-25 2023-09-28 凸版印刷株式会社 Packaging laminate and packaging bag
WO2023238825A1 (en) * 2022-06-09 2023-12-14 Toppanホールディングス株式会社 Packaging laminate and packaging bag
WO2024019049A1 (en) * 2022-07-21 2024-01-25 Toppanホールディングス株式会社 Laminate for packaging, method for selecting same, method for evaluating same, packaging bag, and method for producing same

Also Published As

Publication number Publication date
KR20200047733A (en) 2020-05-07
JP2023001143A (en) 2023-01-04
CN111132831A (en) 2020-05-08
JP7238779B2 (en) 2023-03-14
TW201919900A (en) 2019-06-01
JP7409459B2 (en) 2024-01-09
JPWO2019065306A1 (en) 2020-11-19
KR102593205B1 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
JP6443334B2 (en) Heat-sealable polypropylene laminated stretched film
TWI711539B (en) Biaxially stretched laminated polypropylene film
TWI631151B (en) Stretched polypropylene film
TWI597309B (en) Oreinted polypropylene film
JP7409459B2 (en) Polypropylene laminated film
JP6554765B2 (en) Polypropylene laminated stretched film
JP7298751B2 (en) biaxially oriented polypropylene film
TW201418288A (en) Polypropylene film
WO2019244708A1 (en) Polypropylene-based multilayer film
JP6409773B2 (en) Laminated film
TW201412778A (en) Polypropylene film
JP6414378B2 (en) Polypropylene film for in-mold labels
TWI835744B (en) Polypropylene based laminated film
KR20160034906A (en) Cavity-containing polypropylene film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544588

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207011453

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18861979

Country of ref document: EP

Kind code of ref document: A1