WO2021256349A1 - Biaxially-oriented polypropylene film - Google Patents

Biaxially-oriented polypropylene film Download PDF

Info

Publication number
WO2021256349A1
WO2021256349A1 PCT/JP2021/021950 JP2021021950W WO2021256349A1 WO 2021256349 A1 WO2021256349 A1 WO 2021256349A1 JP 2021021950 W JP2021021950 W JP 2021021950W WO 2021256349 A1 WO2021256349 A1 WO 2021256349A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
less
polypropylene
weight
biaxially oriented
Prior art date
Application number
PCT/JP2021/021950
Other languages
French (fr)
Japanese (ja)
Inventor
麻洋 中野
徹 今井
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022531720A priority Critical patent/JPWO2021256349A1/ja
Publication of WO2021256349A1 publication Critical patent/WO2021256349A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins

Definitions

  • the present invention relates to a biaxially oriented polypropylene film having excellent rigidity and heat resistance. More specifically, the present invention relates to a biaxially oriented polypropylene film that can be suitably used for a packaging bag because it is easy to maintain the shape of the bag when it is used as a packaging bag, and there are few wrinkles in the sealed portion when it is heat-sealed and it is difficult to be charged.
  • Biaxially oriented polypropylene film has moisture resistance, and also has the necessary rigidity and heat resistance, so it is used for packaging and industrial applications. In recent years, as the applications used have expanded, higher performance has been required, and in particular, improvement in rigidity is expected. Further, from the consideration of the environment, it is required to maintain the strength even if the volume is reduced (the film thickness is thinned), but for that purpose, it is indispensable to significantly improve the rigidity. As a means for improving the rigidity, it is known that the crystallinity and melting point of the polypropylene resin are improved by improving the catalyst and the process technology at the time of polymerization of the polypropylene resin. No biaxially oriented polypropylene film had sufficient rigidity.
  • the first stage heat treatment is performed while relaxing the film below the temperature at the time of width direction stretching, and in the second stage, heat treatment is performed at the first stage temperature to the width direction stretching temperature.
  • a method of further stretching in the longitudinal direction after stretching in the width direction see, for example, Reference 2 and the like
  • the film described in Patent Document 2 is excellent in rigidity, wrinkles are likely to occur in the sealed portion after heat sealing, and the heat resistance is inferior. Further, the orientation of the film described in Patent Document 1 is low, and the rigidity is not sufficient.
  • the object of the present invention is to solve the above-mentioned problems. That is, the present invention relates to a biaxially oriented polypropylene film having excellent film rigidity and heat resistance at a high temperature of 150 ° C. More specifically, it is an object of the present invention to provide a biaxially oriented polypropylene film which can easily maintain the shape of a packaging bag, has less wrinkles in and around the sealed portion when heat-sealed, and is less likely to be charged.
  • the stress (F5) at 5% elongation is 40 MPa or more in the longitudinal direction, 160 MPa or more in the width direction, and 150 at 23 ° C.
  • a biaxially oriented polypropylene film having excellent film rigidity and heat resistance at a high temperature of as high as 150 ° C. and being less likely to be charged can be obtained.
  • the heat shrinkage rate of the biaxially oriented polypropylene film at 120 ° C. is 2.0% or less in the longitudinal direction, 5.0% or less in the width direction, and the heat shrinkage rate at 120 ° C. in the longitudinal direction is It is preferably smaller than the heat shrinkage rate of 120 ° C. in the width direction.
  • the refractive index Ny in the longitudinal direction of the biaxially oriented polypropylene film is 1.5230 or more and ⁇ Ny is 0.0220 or more.
  • the haze of the biaxially oriented polypropylene film is 5.0% or less.
  • the mesopentad fraction of the main polypropylene resin constituting the base material layer (A) is 97.0% or more.
  • the crystallization temperature of the main polypropylene resin constituting the base material layer (A) is 105 ° C. or higher and the melting point is 161 ° C. or higher.
  • the melt flow rate of the main polypropylene resin constituting the base material layer (A) is 4.0 g / 10 minutes or more.
  • the component amount of the main polypropylene resin constituting the base material layer (A) having a molecular weight of 100,000 or less is 35% by mass or more.
  • the biaxially oriented polypropylene film of the present invention has high rigidity and excellent heat resistance at a high temperature of 150 ° C., so that it is easy to maintain the bag shape when it is used as a packaging bag, and wrinkles in the sealed portion when heat-sealed.
  • a biaxially oriented polypropylene film that can be suitably used for a packaging bag can be obtained because the amount of the film is small and the laminating strength is excellent. Further, since the biaxially oriented polypropylene film has excellent rigidity, the strength can be maintained even if the thickness of the film is reduced, and it can be suitably used for applications requiring higher rigidity. ..
  • the biaxially oriented polypropylene film of the present invention preferably has a structure including a base layer (A), an intermediate layer (B), and a surface layer (C), and the base layer (A), the intermediate layer (B), and the surface layer (C) are preferably included.
  • the surface layer (C) is preferably adjacent in this order.
  • the base layer (A), the intermediate layer (B), and the surface layer (C) will be described in detail below.
  • the base material layer (A) of the biaxially oriented polypropylene film of the present invention comprises a polypropylene resin composition containing the following polypropylene homopolymer as a main component.
  • the polypropylene homopolymer used for the base material layer (A) is preferably a polypropylene polymer that does not substantially contain ethylene and / or an ⁇ -olefin having 4 or more carbon atoms, and ethylene and / or 4 or more carbon atoms. Even when the ⁇ -olefin component is contained, the amount of ethylene and / or the ⁇ -olefin component having 4 or more carbon atoms is preferably 0.3 mol% or less, more preferably 0.2 mol or less. More preferably, it is a polypropylene polymer having an amount of 0.1 mol or less. Within the above range, crystallinity tends to improve.
  • Examples of the ⁇ -olefin component having 4 or more carbon atoms constituting such a copolymer include 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene-1, 1-hexene, and 4-methyl. Examples thereof include pentene-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicosene and the like.
  • the polypropylene homopolymer two or more different kinds of polypropylene homopolymers can be used.
  • the mesopentad fraction ([mmmm]%) which is an index of the stereoregularity of the polypropylene homopolymer used in the present invention, is preferably in the range of 97.0 to 99.9%, preferably 97.5 to 99. It is more preferably in the range of 0.7%, further preferably in the range of 98.0 to 99.5%, and particularly preferably in the range of 98.5 to 99.3%.
  • it is 97.0% or more, the crystallinity of the polypropylene resin is enhanced, the melting point, crystallinity, and crystallinity of the crystals in the film are improved, and rigidity and heat resistance at high temperature can be easily obtained.
  • the mesopentad fraction is measured by a nuclear magnetic resonance method (so-called NMR method).
  • NMR method nuclear magnetic resonance method
  • a method of washing the obtained polypropylene resin powder with a solvent such as n-heptane, selection of a catalyst and / or a co-catalyst, and a polypropylene resin composition is preferably adopted.
  • the lower limit of the melting temperature (Tm) of the polypropylene homopolymer constituting the biaxially oriented polypropylene film of the present invention is preferably 160 ° C, more preferably 161 ° C, still more preferably 162 ° C, and further. It is preferably 163 ° C, more preferably 164 ° C. When Tm is 160 ° C. or higher, rigidity and heat resistance at high temperature can be easily obtained.
  • the upper limit of Tm is preferably 170 ° C., more preferably 169 ° C., still more preferably 168 ° C., even more preferably 167 ° C., and particularly preferably 166 ° C. When Tm is 170 ° C.
  • the melting temperature can be further increased.
  • Tm is measured by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • a sample of 1 to 10 mg is packed in an aluminum pan, set, melted at 230 ° C. for 5 minutes in a nitrogen atmosphere, and the scanning speed is -10 ° C./. It is the main peak temperature of the endothermic peak associated with melting observed when the temperature is lowered to 30 ° C. in minutes, held for 5 minutes, and the temperature is raised at a scanning rate of 10 ° C./min.
  • the lower limit of the crystallization temperature (Tc) measured by DSC of the polypropylene homopolymer constituting the biaxially oriented polypropylene film of the present invention is 105 ° C, preferably 108 ° C, and more preferably 110 ° C. ..
  • Tc crystallization temperature measured by DSC of the polypropylene homopolymer constituting the biaxially oriented polypropylene film of the present invention.
  • Tc crystallization temperature measured by DSC of the polypropylene homopolymer constituting the biaxially oriented polypropylene film of the present invention.
  • the upper limit of Tc is preferably 135 ° C., more preferably 133 ° C., still more preferably 132 ° C., even more preferably 130 ° C., particularly preferably 128 ° C., and most preferably 127 ° C.
  • Tc When Tc is 135 ° C. or lower, it is easy to suppress an increase in cost in terms of polypropylene production, and it is difficult to break during film formation.
  • the crystallization temperature By blending the crystal nucleating agent with the above-mentioned polypropylene resin, the crystallization temperature can be further raised.
  • Tc is measured by DSC. A sample of 1 to 10 mg is packed in an aluminum pan, melted at 230 ° C for 5 minutes in a nitrogen atmosphere, and cooled to 30 ° C at a scanning speed of -10 ° C / min. It is the main peak temperature of the exothermic peak observed at the time of.
  • melt flow rate The melt flow rate (MFR) of the polypropylene homopolymer constituting the biaxially oriented polypropylene film of the present invention is measured in accordance with the condition M (230 ° C., 2.16 kgf) of JIS K 7210 (1995). 4.0 to 30 g / 10 minutes is preferable, 4.5 to 25 g / 10 minutes is more preferable, and 4.8 to 22 g / 10 minutes is more preferable, and 5.0 to 20 g / 10 minutes is preferable. Minutes are particularly preferable, and 6.0 to 20 g / 10 minutes are most preferable.
  • the MFR of the polypropylene resin is 4.0 g / 10 minutes or more, it is easy to obtain a biaxially oriented polypropylene film having low heat shrinkage. Further, when the MFR of the polypropylene resin is 30 g / 10 minutes or less, it is easy to maintain the film-forming property of the film.
  • the lower limit of the MFR (230 ° C., 2.16 kgf) of the polypropylene homopolymer constituting the film is preferably 5.0 g / 10 minutes, more preferably 5.5 g / 10 minutes, still more preferably. It is preferably 6.0 g / 10 minutes, particularly preferably 6.3 g / 10 minutes, and most preferably 6.5 g / 10 minutes.
  • the MFR of the polypropylene resin is 5.0 g / 10 minutes or more, the amount of low molecular weight components of the polypropylene resin constituting the film increases.
  • the widthwise stretching step in the film forming step described later In addition to the fact that the orientation crystallization of the polypropylene resin is more promoted and the degree of crystallization in the film is more likely to be increased, the polypropylene molecular chains in the amorphous portion are less entangled with each other, and the heat resistance is more likely to be increased. ..
  • the lower limit of the amount of the component having a molecular weight of 100,000 or less in the gel permeation chromatography (GPC) integration curve of the polypropylene homopolymer constituting the film of the present invention is 35% by mass, preferably 38% by mass, and more. It is preferably 40% by mass, more preferably 41% by mass, and particularly preferably 42% by mass.
  • the upper limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, and further preferably 58% by mass. When the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is 65% by mass or less, the film strength is unlikely to decrease.
  • the amount of the component having a molecular weight of 100,000 or less contained in the polypropylene resin can be easily adjusted without significantly changing the overall viscosity, so that the rigidity is increased. It is easy to improve the film-forming property without significantly affecting the heat shrinkage.
  • the lower limit of the mass average molecular weight (Mw) / number average molecular weight (Mn), which is an index of the breadth of the molecular weight distribution of the polypropylene homopolymer used in the present invention, is preferably 3.5, more preferably 4.0. Yes, more preferably 4.5, and particularly preferably 5.0.
  • the upper limit of Mw / Mn is preferably 30, more preferably 25, still more preferably 23, particularly preferably 21 and most preferably 20.
  • Mw / Mn can be obtained using GPC. When Mw / Mn is in the above range, it is easy to increase the amount of the component having a molecular weight of 100,000 or less.
  • components of different molecular weights can be polymerized in a series of plants in multiple stages, components of different molecular weights can be blended offline with a kneader, or catalysts with different performances can be blended. It can be adjusted by polymerization or by using a catalyst capable of achieving a desired molecular weight distribution.
  • the shape of the molecular weight distribution obtained by GPC has a single peak in a GPC chart in which the horizontal axis is the logarithmic weight (M) log (logM) and the vertical axis is the differential distribution value (weight fraction per logM). It may have a gentle molecular weight distribution, or it may have a molecular weight distribution having a plurality of peaks and shoulders.
  • the content of the copolymer of propylene exceeding% and ethylene and / or ⁇ -olefin having 4 or more carbon atoms is preferably 5% by weight or less, more preferably 3% by weight or less, and 1% by weight. The following is more preferable, and 0% by weight is particularly preferable.
  • Antistatic agent By using a specific diethanolamine fatty acid ester compound, a specific amine compound, and a specific glycerin monofatty acid ester compound in combination with the propylene resin composition constituting the base material layer (A) in a specific ratio, the initial antistatic property is sufficient. At the same time, an excellent antistatic property can be maintained for a long period of time, and the initial transparency is hardly deteriorated even when exposed to a high temperature, so that a non-sticky biaxially stretched polypropylene-based resin film can be obtained.
  • a polyoxyethylene alkylamine mono obtained by adding 2 mol or more of ethylene oxide to 1 mol of the amine represented by the formula (1) with respect to 100 parts by weight of the polypropylene resin composition constituting the base material layer (A).
  • R1 and R2 are alkyl groups having 7 to 21 carbon atoms
  • X and Y are integers of 1 to 29, respectively
  • X + Y are integers of 2 to 30.
  • R3 is an alkyl group having 7 to 21 carbon atoms.
  • R4, R5, and R6 are alkyl groups having 7 to 21 carbon atoms, X and Y are integers of 1 to 29, respectively, and X + Y are integers of 2 to 30.
  • R7 is an alkenyl group having 7 to 21 carbon atoms
  • X and Y are integers of 1 to 29, respectively
  • X + Y is an integer of 2 to 30. Is preferably contained.
  • the polyoxyethylene amine monoester compound (A) to which 2 mol of ethylene oxide is added to 1 mol of the amine used in the present invention is a nonionic antistatic agent represented by the formula (1) and is a group. It is contained in an amount of preferably 0.3 to 1.2 parts by weight, particularly preferably 0.3 to 1.1 parts by weight, based on 100 parts by weight of the polypropylene-based resin composition constituting the material layer (A).
  • the content of the compound (A) is 0.3 parts by weight or more, the antistatic effect is obtained for a long period of time, and when the content is 1.2 parts by weight or less, the bleeding amount is small and the transparency is lowered due to whitening. few.
  • the glycerin monofatty acid ester compound (B) used in the present invention is a nonionic antistatic agent represented by the formula (2), and R3 is a linear or branched alkyl group, preferably having 10 carbon atoms.
  • Alkyl groups of ⁇ 21 are particularly preferably alkyl groups having 14 to 20 carbon atoms, and are preferably 0.03 to 0. With respect to 100 parts by weight of the polypropylene-based resin composition constituting the base material layer (A). It is contained in an amount of 3 parts by weight, particularly preferably 0.03 to 0.2 parts by weight.
  • the antistatic property develops quickly and the antistatic effect can be obtained, and when the content is 0.3 parts by weight or less, the bleeding amount is small and the film surface becomes adhesive. It is unlikely to occur and there is little decrease in transparency due to whitening.
  • the polyoxyethylene alkyl diethanolamine compound (C) to which 2 mol or more of ethylene oxide is added to 1 mol of amine used in the present invention is a nonionic antistatic agent represented by the formula (3) and is a base material.
  • the content is preferably 0 to 0.2 parts by weight, particularly preferably 0.002 to 0.15 parts by weight, based on 100 parts by weight of the polypropylene-based resin composition constituting the layer (A).
  • the content of the compound (C) is 0.2 parts by weight or less, the amount of bleeding is small and the decrease in transparency due to whitening is small.
  • X and Y in the formulas (1) to (4) are integers of 1 to 29, respectively, and X + Y is an integer of 2 to 30, preferably an integer of 2 to 4.
  • R1 to R6 are linear or branched alkyl groups, particularly preferably alkyl groups having 13 to 25 carbon atoms, and particularly preferably alkyl groups having 13 to 18 carbon atoms.
  • alkyl group of R1 to R6 in the formulas (1) to (3) include a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, an isopentyl group and a nonyl group.
  • Examples thereof include a group, a decyl group, an undecyl group, a lauryl group, a trilauryl group, a myristyl group, a pentadecyl group, a palmityl group, a heptadecyl group, a stearyl group, a nonadecyl group and an eicosyl group.
  • the alkenyl group of R7 in the formula (4) is preferably at least one selected from higher unsaturated aliphatic groups having 12 to 21 carbon atoms.
  • the polypropylene-based resin composition constituting the base material layer (A) has various additives for improving quality such as slipperiness, for example, improving productivity. It is also possible to add lubricants such as waxes and metal soaps, plasticizers, processing aids, known heat stabilizers usually added to polypropylene films, antioxidants, ultraviolet absorbers and the like.
  • the polypropylene resin composition used for the intermediate layer (B) of the biaxially oriented polypropylene film of the present invention contains the polypropylene homopolymer described below and the common weight of propylene and ethylene and / or ⁇ -olefin having 4 or more carbon atoms. When coalesced, it is easy to improve the laminate strength while maintaining rigidity.
  • the polypropylene homopolymer used for the intermediate layer (B) is preferably a polypropylene polymer that does not substantially contain ethylene and / or an ⁇ -olefin having 4 or more carbon atoms, and has ethylene and / or 4 or more carbon atoms. Even when the ⁇ -olefin component is contained, the amount of ethylene and / or the ⁇ -olefin component having 4 or more carbon atoms is preferably 0.3 mol% or less, more preferably 0.2 mol% or less. More preferably, it is a polypropylene polymer having an amount of 0.1 mol or less. Within the above range, crystallinity tends to improve.
  • Examples of the ⁇ -olefin component having 4 or more carbon atoms constituting such a copolymer include 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene-1, 1-hexene, and 4-methyl. Examples thereof include pentene-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicosene and the like.
  • the polypropylene homopolymer two or more different kinds of polypropylene homopolymers can be used.
  • the content of the polypropylene homopolymer is preferably 55% by weight or more, more preferably 55% by weight or more and 95% by weight or less, more preferably 60% by weight, based on the total polypropylene resin used in the intermediate layer (B). It is more preferably contained in an amount of% or more and 92% by weight or less, and particularly preferably contained in an amount of 65% by weight or more and 92% by weight or less.
  • the mesopentad fraction ([mmmm]%) which is an index of the stereoregularity of the polypropylene homopolymer, is preferably in the range of 97.0 to 99.9%, and preferably in the range of 97.5 to 99.7%. It is more preferably in the range of 98.0 to 99.5%, further preferably in the range of 98.5 to 99.3%, and particularly preferably in the range of 98.5 to 99.3%.
  • it is 97.0% or more, the crystallinity of the polypropylene homopolymer is enhanced, the melting point, crystallinity, and crystallinity of the crystals in the film are improved, and rigidity and heat resistance at high temperature can be easily obtained.
  • the mesopentad fraction is measured by a nuclear magnetic resonance method (so-called NMR method). It is more preferably 99.5% or less.
  • the mesopentad fraction is measured by a nuclear magnetic resonance method (so-called NMR method).
  • a method of washing the obtained polypropylene homopolymer powder with a solvent such as n-heptane, selection of a catalyst and / or a co-catalyst, and polypropylene A method of appropriately selecting the components of the resin composition is preferably adopted.
  • the lower limit of the melting temperature (Tm) measured by DSC of the polypropylene homopolymer is preferably 160 ° C., more preferably 161 ° C., still more preferably 162 ° C., and even more preferably 163 ° C. , More preferably 164 ° C.
  • Tm melting temperature
  • the upper limit of Tm is preferably 170 ° C., more preferably 169 ° C., still more preferably 168 ° C., even more preferably 167 ° C., and particularly preferably 166 ° C.
  • Tm is 170 ° C.
  • the melting temperature can be further increased by adding a crystal nucleating agent to the above-mentioned polypropylene homopolymer.
  • Tm is measured by a differential scanning calorimeter (DSC). A sample of 1 to 10 mg is packed in an aluminum pan, set in a differential scanning calorimeter (DSC), and melted at 230 ° C. for 5 minutes in a nitrogen atmosphere. This is the main peak temperature of the endothermic peak associated with melting, which is observed when the temperature is lowered to 30 ° C. at a scanning speed of ⁇ 10 ° C./min, held for 5 minutes, and the temperature is raised at a scanning speed of 10 ° C./min.
  • the lower limit of the crystallization temperature (Tc) measured by DSC of the polypropylene homopolymer is 105 ° C, preferably 108 ° C, and more preferably 110 ° C.
  • Tc crystallization temperature measured by DSC of the polypropylene homopolymer
  • the upper limit of Tc is preferably 135 ° C., more preferably 133 ° C., still more preferably 132 ° C., even more preferably 130 ° C., particularly preferably 128 ° C., and most preferably 127 ° C. Is. If the Tc is 135 ° C.
  • the crystallization temperature can be further increased by adding a crystal nucleating agent to the above-mentioned polypropylene homopolymer.
  • Tc is measured by a differential scanning calorimeter (DSC). A sample of 1 to 10 mg is packed in an aluminum pan, set in the DSC, melted at 230 ° C. for 5 minutes in a nitrogen atmosphere, and the scanning speed is -10. It is the main peak temperature of the exothermic peak observed when the temperature is lowered to 30 ° C. at ° C./min.
  • the melt flow rate (MFR) of the polypropylene homopolymer shall be 4.0 to 30 g / 10 minutes when measured in accordance with the condition M (230 ° C., 2.16 kgf) of JIS K 7210 (1995). It is preferably 5.0 to 25 g / 10 minutes, more preferably 6.0 to 22 g / 10 minutes, particularly preferably 7.0 to 20 g / 10 minutes, and 8.0 to 20 g. Most preferably, it is / 10 minutes.
  • MFR melt flow rate
  • the lower limit of the melt flow rate (MFR) (230 ° C., 2.16 kgf) of the polypropylene homopolymer is preferably 5.0 g / 10 minutes, more preferably 5.5 g / 10 minutes, and further, from the viewpoint of film characteristics. It is preferably 6.0 g / 10 minutes, particularly preferably 6.3 g / 10 minutes, and most preferably 6.5 g / 10 minutes.
  • MFR melt flow rate
  • the orientation crystallization of the polypropylene homopolymer is further promoted, the degree of crystallization in the film is more likely to be increased, and the polypropylene molecular chains in the amorphous portion are arranged with each other. There is less entanglement and it is easier to increase heat resistance.
  • MFR melt flow rate
  • the lower limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve of the polypropylene homopolymer is 35% by mass, preferably 38% by mass, more preferably 40% by mass, and further preferably 41% by mass. %, Especially preferably 42% by mass.
  • the upper limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, and further preferably 58% by mass.
  • the lower limit of the mass average molecular weight (Mw) / number average molecular weight (Mn), which is an index of the breadth of the molecular weight distribution, is preferably 3.5, more preferably 4, and even more preferably 4. It is 4.5, and particularly preferably 5.
  • the upper limit of Mw / Mn is preferably 30, more preferably 25, still more preferably 23, particularly preferably 21 and most preferably 20.
  • Mw / Mn can be obtained using gel permeation chromatography (GPC). When Mw / Mn is in the above range, it is easy to increase the amount of the component having a molecular weight of 100,000 or less.
  • components of different molecular weights can be polymerized in a series of plants in multiple stages, components of different molecular weights can be blended offline with a kneader, or catalysts with different performances can be blended. It can be adjusted by polymerizing or using a catalyst capable of achieving a desired molecular weight distribution.
  • the shape of the molecular weight distribution obtained by GPC has a single peak in a GPC chart in which the horizontal axis is the logarithmic weight (M) log (logM) and the vertical axis is the differential distribution value (weight fraction per logM). It may have a gentle molecular weight distribution, or it may have a molecular weight distribution having a plurality of peaks and shoulders.
  • the copolymer of propylene used in the intermediate layer (B) with ethylene and / or an ⁇ -olefin having 4 or more carbon atoms has an ethylene and / or ⁇ -olefin component having 4 or more carbon atoms in an amount of 0.3 mol%. It is preferably a copolymer of more propylene and ethylene and / or an ⁇ -olefin having 4 or more carbon atoms.
  • Ethylene and / or a copolymer of ethylene and / or an ⁇ -olefin having 4 or more carbon atoms having an ⁇ -olefin component content of more than 0.3 mol% and ethylene and / or an ⁇ -olefin having 4 or more carbon atoms may have low crystallinity.
  • other ⁇ -olefins include, for example, ethylene, 1-butene, 1-pentene, 3-methylpentene-1,3-methylbutene-1,1-hexene, 4-methylpentene-1,5-ethylhexene.
  • -1,1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicosene and the like can be mentioned.
  • the amount of ethylene and / or ⁇ -olefin component having 4 or more carbon atoms is preferably 0.4 mol% or more, more preferably 0.6 mol% or more. Within the above range, crystallinity tends to decrease.
  • the copolymer is preferably a random or block copolymer obtained by polymerizing one or more of the ⁇ -olefins exemplified above with propylene, and is preferably a propylene / ethylene copolymer. It is preferably a propylene / butene-1 copolymer, a propylene / ethylene / butene-1 copolymer, or a propylene / penten-1 copolymer.
  • the one having the lowest DSC melting point has a melting point peak temperature of 150 ° C. or higher and 160 ° C. or lower.
  • the content of the copolymer of ethylene and / or propylene having an ⁇ -olefin component content of 4 or more carbon atoms of more than 0.3 mol% and ethylene and / or ⁇ -olefin having 4 or more carbon atoms is the intermediate layer (B). ), It is preferably 45% by weight or less, more preferably 5% by weight or more and 45% by weight or less, and 8% by weight or more and 40% by weight or less with respect to the entire polypropylene resin composition used in). It is more preferably 8% by weight or more, and particularly preferably 35% by weight or less.
  • the ratio of the ⁇ -olefin monomer-derived component to the total of the propylene monomer-derived component and the ⁇ -olefin monomer-derived component of the entire polypropylene resin composition used in the intermediate layer (B) is 0.03 mol% or more, 0.4 mol%. It is preferably 0.04 mol% or more and 0.3 mol% or less, and more preferably 0.05 mol% or more and 0.2 mol% or less.
  • the isotactic mesopentad fraction of the entire polypropylene resin composition constituting the intermediate layer (B) is preferably 95% or more from the viewpoint of rigidity. Further, from the viewpoint of film forming property, it is preferably 99.5% or less.
  • melt flow rate (MFR) of the polypropylene resin composition used in the intermediate layer (B) is preferably 5.0 g / 10 min or more from the viewpoint of fusing sealability. By doing so, it is possible to achieve both rigidity and heat resistance at high temperatures at a higher level. It is more preferably 6.0 g / 10 min or more, particularly preferably 7.0 g / 10 min or more, and most preferably 8.0 g / 10 min or more.
  • Antistatic agent By using a specific amine ester compound, a specific amine compound, and a specific glycerin monofatty acid ester compound in combination with the propylene resin composition constituting the intermediate layer (B) in a specific ratio, the antistatic property can be further improved. ..
  • a polyoxyethylene alkylamine mono obtained by adding 2 mol or more of ethylene oxat to 1 mol of the amine represented by the general formula (1) with respect to 100 parts by weight of the polypropylene resin composition constituting the intermediate layer (B).
  • 0.3 to 1.2 parts by weight of fatty acid ester compound (A)
  • R1 and R2 are alkyl groups having 7 to 21 carbon atoms
  • X and Y are integers of 1 to 29, respectively
  • X + Y are integers of 2 to 30.
  • Glycerin monofatty acid ester compound (B) represented by the general formula (2) 0.03 to 1.2 parts by weight,
  • R3 is an alkyl group or an alkenyl group having 7 to 21 carbon atoms.
  • R4, R5, and R6 are alkyl groups having 7 to 21 carbon atoms, X and Y are integers of 1 to 29, respectively, and X + Y are integers of 2 to 30.
  • R7 is an alkenyl group having 7 to 21 carbon atoms
  • X and Y are integers of 1 to 29, respectively
  • X + Y is an integer of 2 to 30. Is preferably contained.
  • the polyoxyethylene amine monoester compound (A) in which 2 mol of ethylene oxalate is added to 1 mol of amine used in the present invention is a nonionic antistatic agent represented by the formula (1) and is intermediate.
  • the content is preferably 0.3 to 1.2 parts by weight, particularly preferably 0.3 to 1.1 parts by weight, based on 100 parts by weight of the polypropylene-based resin composition constituting the layer (B).
  • the content of compound (A) is 0.3 parts by weight or more, an antistatic effect can be obtained for a long period of time, and when the content is 1.2 parts by weight or less, the amount of bleeding is small and the transparency is lowered by whitening. few.
  • the glycerin monofatty acid ester compound (B) used in the present invention is a nonionic antistatic agent represented by the formula (2), and R3 is a linear or branched alkyl group, preferably having 10 carbon atoms. It is an alkyl group of to 21 to, particularly preferably an alkyl group having 14 to 20 carbon atoms, and is preferably 0.03 to 0.3 weight by weight with respect to 100 parts by weight of the polypropylene resin composition constituting the intermediate layer (B). It is contained in an amount of 0.03 to 0.2 parts by weight, particularly preferably 0.03 to 0.2 parts by weight.
  • the antistatic property develops quickly and the antistatic effect can be obtained, and when the content is 1.2 parts by weight or less, the bleeding amount is small and the film surface becomes adhesive. It is less likely to occur and the transparency due to whitening is less likely to decrease.
  • the polyoxyethylene alkyl diethanolamine compound (C) to which 2 mol or more of ethylene oxalate is added to 1 mol of amine used in the present invention is a nonionic antistatic agent represented by the formula (3) and is an intermediate layer. It is preferably contained in an amount of 0 to 0.2 parts by weight, particularly preferably 0.002 to 0.15 parts by weight, based on 100 parts by weight of the polypropylene resin composition constituting (B). When the content of the compound (C) is 0.2 parts by weight or less, the amount of bleeding is small and the decrease in transparency due to whitening is small.
  • the polyoxyethylene alkenyldiethanolamine compound (D) to which 2 mol or more of ethylene oxalate is added to 1 mol of amine used in the present invention is a nonionic antistatic agent represented by the formula (4) and is an intermediate layer. It is preferably contained in an amount of 0 to 0.2 parts by weight, particularly preferably 0.002 to 0.15 parts by weight, based on 100 parts by weight of the polypropylene resin composition constituting (B). When the content of the compound (C) is 0.2 parts by weight or less, the amount of bleeding is small and the decrease in transparency due to whitening is small.
  • X and Y in the equations (1) to (4) are integers of 1 to 29, respectively, and X + Y is an integer of 2 to 30, preferably an integer of 2 to 4.
  • R1 is a linear or branched alkyl group, particularly preferably an alkyl group having 13 to 25 carbon atoms, and particularly preferably an alkyl group having 13 to 18 carbon atoms.
  • alkyl group of R1 to R6 in the formulas (1) to (3) include a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, an isopentyl group and a nonyl group.
  • Examples thereof include a group, a decyl group, an undecyl group, a lauryl group, a trilauryl group, a myristyl group, a pentadecyl group, a palmityl group, a heptadecyl group, a stearyl group, a nonadecyl group and an eicosyl group.
  • the alkenyl group of R7 in the formula (4) is preferably at least one selected from higher unsaturated aliphatic groups having 12 to 21 carbon atoms.
  • the polypropylene-based resin composition constituting the intermediate layer (B) has various additives for improving quality such as slipperiness, for example, improving productivity. Therefore, it is also possible to add lubricants such as waxes and metal soaps, plasticizers, processing aids, known heat stabilizers usually added to polypropylene films, antioxidants, ultraviolet absorbers and the like.
  • the polypropylene resin composition used for the surface layer (C) of the biaxially oriented polypropylene film of the present invention contains the polypropylene homopolymer described below and the common weight of propylene and ethylene and / or ⁇ -olefin having 4 or more carbon atoms. When coalesced, it is easy to improve the laminate strength while maintaining rigidity.
  • the polypropylene homopolymer used for the surface layer (C) is preferably a polypropylene polymer that does not substantially contain ethylene and / or an ⁇ -olefin having 4 or more carbon atoms, and has ethylene and / or 4 or more carbon atoms. Even when the ⁇ -olefin component is contained, the amount of ethylene and / or the ⁇ -olefin component having 4 or more carbon atoms is preferably 0.3 mol% or less, more preferably 0.2 mol% or less. More preferably, it is a polypropylene polymer having an amount of 0.1 mol or less. Within the above range, crystallinity tends to improve.
  • Examples of the ⁇ -olefin component having 4 or more carbon atoms constituting such a copolymer include 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene-1, 1-hexene, and 4-methyl. Examples thereof include pentene-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicosene and the like.
  • the polypropylene homopolymer two or more different kinds of polypropylene homopolymers can be used.
  • the content of the polypropylene homopolymer is preferably 90% by weight or less, more preferably 40% by weight or more and 90% by weight or less, more preferably 50% by weight or less, based on the total polypropylene resin used for the surface layer (C). It is more preferably contained in an amount of% by weight or more and 80% by weight or less, and particularly preferably 60% by weight or more and 70% by weight or less.
  • the mesopentad fraction ([mmmm]%) which is an index of the stereoregularity of the polypropylene homopolymer, is preferably in the range of 97.0 to 99.9%, and preferably in the range of 97.5 to 99.7%. It is more preferably in the range of 98.0 to 99.5%, further preferably in the range of 98.5 to 99.3%, and particularly preferably in the range of 98.5 to 99.3%.
  • it is 97.0% or more, the crystallinity of the polypropylene resin is enhanced, the melting point, crystallinity, and crystallinity of the crystals in the film are improved, and rigidity and heat resistance at high temperature can be easily obtained.
  • the mesopentad fraction is measured by a nuclear magnetic resonance method (so-called NMR method). It is more preferably 99.5% or less.
  • the mesopentad fraction is measured by a nuclear magnetic resonance method (so-called NMR method).
  • a method of washing the obtained polypropylene homopolymer powder with a solvent such as n-heptane, selection of a catalyst and / or a co-catalyst, and polypropylene A method of appropriately selecting the components of the resin composition is preferably adopted.
  • the lower limit of the melting temperature (Tm) measured by DSC of the polypropylene homopolymer is preferably 160 ° C., more preferably 161 ° C., still more preferably 162 ° C., and even more preferably 163 ° C. , More preferably 164 ° C.
  • Tm melting temperature
  • the upper limit of Tm is preferably 170 ° C., more preferably 169 ° C., still more preferably 168 ° C., even more preferably 167 ° C., and particularly preferably 166 ° C.
  • Tm is 170 ° C.
  • the melting temperature can be further increased by adding a crystal nucleating agent to the above-mentioned polypropylene homopolymer.
  • Tm is measured by a differential scanning calorimeter (DSC). A sample of 1 to 10 mg is packed in an aluminum pan, set in a differential scanning calorimeter (DSC), and melted at 230 ° C. for 5 minutes in a nitrogen atmosphere. This is the main peak temperature of the endothermic peak associated with melting, which is observed when the temperature is lowered to 30 ° C. at a scanning speed of ⁇ 10 ° C./min, held for 5 minutes, and the temperature is raised at a scanning speed of 10 ° C./min.
  • the lower limit of the crystallization temperature (Tc) of the polypropylene homopolymer is 105 ° C, preferably 108 ° C, and more preferably 110 ° C.
  • Tc crystallization temperature
  • the upper limit of Tc is preferably 135 ° C., more preferably 133 ° C., still more preferably 132 ° C., even more preferably 130 ° C., particularly preferably 128 ° C., and most preferably 127 ° C. Is. If the Tc is 135 ° C.
  • the crystallization temperature can be further increased by adding a crystal nucleating agent to the above-mentioned polypropylene homopolymer.
  • Tc is measured by a differential scanning calorimeter (DSC). A sample of 1 to 10 mg is packed in an aluminum pan, set in the DSC, melted at 230 ° C. for 5 minutes in a nitrogen atmosphere, and the scanning speed is -10. It is the main peak temperature of the exothermic peak observed when the temperature is lowered to 30 ° C. at ° C./min.
  • the MFR of the polypropylene homopolymer is preferably 4.0 to 30 g / 10 minutes when measured in accordance with the condition M (230 ° C., 2.16 kgf) of JIS K 7210 (1995). It is more preferably 5 to 25 g / 10 minutes, further preferably 4.8 to 22 g / 10 minutes, particularly preferably 5.0 to 20 g / 10 minutes, and 6.0 to 20 g / 10 minutes. And most preferable.
  • MFR of the polypropylene homopolymer is 4.0 g / 10 minutes or more, it is easy to obtain a biaxially oriented polypropylene film having low heat shrinkage. Further, when the MFR of the polypropylene tree homopolymer is 30 g / 10 minutes or less, it is easy to maintain the film-forming property of the film.
  • the lower limit of the MFR (230 ° C., 2.16 kgf) of the polypropylene homopolymer is preferably 5.0 g / 10 minutes, more preferably 5.5 g / 10 minutes, still more preferably 6.0 g from the viewpoint of film characteristics. It is preferably / 10 minutes, particularly preferably 6.3 g / 10 minutes, and most preferably 6.5 g / 10 minutes.
  • the MFR of the polypropylene homopolymer is 5.0 g / 10 minutes or more, the amount of low molecular weight components of the polypropylene tree homopolymer constituting the film increases.
  • the orientation crystallization of the polypropylene resin is further promoted, the degree of crystallization in the film is more likely to be increased, and the polypropylene molecular chains in the amorphous portion are less entangled with each other, resulting in heat resistance. It is easier to enhance sex.
  • the lower limit of the amount of the component having a molecular weight of 100,000 or less in the gel permeation chromatography (GPC) integration curve of the polypropylene homopolymer is 35% by mass, preferably 38% by mass, and more preferably 40% by mass. It is more preferably 41% by mass, and particularly preferably 42% by mass.
  • the upper limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, and further preferably 58% by mass. When the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is 65% by mass or less, the film strength is unlikely to decrease.
  • the lower limit of the mass average molecular weight (Mw) / number average molecular weight (Mn), which is an index of the breadth of the molecular weight distribution, is preferably 3.5, more preferably 4, and even more preferably 4. It is 4.5, and particularly preferably 5.
  • the upper limit of Mw / Mn is preferably 30, more preferably 25, still more preferably 23, particularly preferably 21 and most preferably 20.
  • Mw / Mn can be obtained using gel permeation chromatography (GPC). When Mw / Mn is in the above range, it is easy to increase the amount of the component having a molecular weight of 100,000 or less.
  • components of different molecular weights can be polymerized in a series of plants in multiple stages, components of different molecular weights can be blended offline with a kneader, or catalysts with different performances can be blended. It can be adjusted by polymerizing or using a catalyst capable of achieving a desired molecular weight distribution.
  • the shape of the molecular weight distribution obtained by GPC has a single peak in a GPC chart in which the horizontal axis is the logarithmic weight (M) log (logM) and the vertical axis is the differential distribution value (quantity fraction per logM). It may have a gentle molecular weight distribution, or it may have a molecular weight distribution having a plurality of peaks and shoulders.
  • the copolymer of propylene used in the surface layer (C) with ethylene and / or an ⁇ -olefin having 4 or more carbon atoms is ethylene and / or propylene having an ⁇ -olefin component content of 4 or more carbon atoms of more than 0.3 mol. And / or a copolymer of ethylene and / or an ⁇ -olefin having 4 or more carbon atoms is preferable.
  • the copolymer of ethylene and / or an ⁇ -olefin having 4 or more carbon atoms and having an ⁇ -olefin component of more than 0.3 mol and ethylene and / or an ⁇ -olefin having 4 or more carbon atoms is preferably low in crystallinity.
  • ⁇ -olefins include ethylene, 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene-1, 1-hexene, 4-methylpentene-1, 5-ethylhexene-1.
  • the amount of ethylene and / or ⁇ -olefin component having 4 or more carbon atoms is preferably 0.4 mol% or more, more preferably 0.5 mol% or more. Within the above range, crystallinity tends to decrease.
  • the copolymer is preferably a random or block copolymer obtained by polymerizing one or more of the ⁇ -olefins exemplified above with propylene, and is preferably a propylene / ethylene copolymer. It is preferably a propylene / butene-1 copolymer, a propylene / ethylene / butene-1 copolymer, or a propylene / penten-1 copolymer.
  • the one having the lowest DSC melting point preferably has a melting point peak temperature of 150 ° C. or higher and 160 ° C. or lower.
  • the content of the copolymer of ethylene and / or the copolymer of ethylene and / or the ⁇ -olefin having 4 or more carbon atoms and the ⁇ -olefin having more than 0.3 mol and the ethylene and / or the ⁇ -olefin having 4 or more carbon atoms is in the surface layer (C). It is preferably 10% by weight or more, more preferably 10% by weight or more and 60% by weight or less, and further preferably 20% by weight or more and 50% by weight or less with respect to the entire polypropylene resin used. It is preferable, and it is particularly preferable that it is 30% by weight or more and 50% by weight or less.
  • the ratio of the ⁇ -olefin monomer-derived component to the total of the propylene monomer-derived component and the ⁇ -olefin monomer-derived component of the entire polypropylene resin composition used in the surface layer (C) is 0.10 mol% or more and 0.4 mol%. It is preferably 0.15 mol% or more and 0.2 mol% or less, and further preferably 0.2 mol% or more and 0.25 mol% or less.
  • the isotactic mesopentad fraction of the entire polypropylene resin composition constituting the surface layer (C) is preferably 95% or more from the viewpoint of rigidity. Further, from the viewpoint of film forming property, it is preferably 99.5% or less.
  • melt flow rate (MFR) of the polypropylene resin composition used in the surface layer (C) is preferably 5.0 g / 10 min or more from the viewpoint of fusing sealability. By doing so, it is possible to achieve both rigidity and heat resistance at high temperatures at a higher level. It is more preferably 6.0 g / 10 min or more, particularly preferably 7.0 g / 10 min or more, and most preferably 8.0 g / 10 min or more.
  • Antistatic agent By using a specific amine ester compound, a specific amine compound, and a specific glycerin monofatty acid ester compound in combination with the propylene resin composition constituting the surface layer (C) in a specific ratio, the antistatic property can be further improved. ..
  • a polyoxyethylene alkylamine mono obtained by adding 2 mol or more of ethylene oxat to 1 mol of the amine represented by the general formula (1) with respect to 100 parts by weight of the polypropylene resin composition constituting the surface layer (C).
  • a polypropylene resin composition constituting the surface layer (C) 0.3 to 1.2 parts by weight of fatty acid ester compound (A),
  • R1 and R2 are alkyl groups having 7 to 21 carbon atoms
  • X and Y are integers of 1 to 29, respectively
  • X + Y are integers of 2 to 30.
  • R3 is an alkyl group having 7 to 21 carbon atoms.
  • R4, R5, and R6 are alkyl groups having 7 to 21 carbon atoms, X and Y are integers of 1 to 29, respectively, and X + Y are integers of 2 to 30.
  • R7 is an alkenyl group having 7 to 21 carbon atoms
  • X and Y are integers of 1 to 29, respectively
  • X + Y is an integer of 2 to 30. Is preferably contained.
  • the polyoxyethylene alkylamine monofatty acid ester compound (A) in which 2 mol of ethylene oxalate is added to 1 mol of amine used in the present invention is a nonionic antistatic agent represented by the formula (1).
  • the content is preferably 0.3 to 1.2 parts by weight, particularly preferably 0.3 to 1.1 parts by weight, based on 100 parts by weight of the polypropylene-based resin composition constituting the surface layer (C). ..
  • the content of compound (A) is 0.3 parts by weight or more, an antistatic effect can be obtained for a long period of time, and when the content is 1.2 parts by weight or less, the amount of bleeding is small and the transparency is lowered by whitening. few.
  • the glycerin monofatty acid ester compound (B) used in the present invention is a nonionic antistatic agent represented by the formula (2), and R3 is a linear or branched alkyl group, preferably having 10 carbon atoms. It is an alkyl group of ⁇ 21, particularly preferably an alkyl group having 14 to 20 carbon atoms, and is preferably 0.03 to 0.3 weight by weight with respect to 100 parts by weight of the polypropylene resin composition constituting the surface layer (C). It is contained in an amount of 0.03 to 0.2 parts by weight, particularly preferably 0.03 to 0.2 parts by weight.
  • the content of the compound (E) is 0.03 part by weight or more, the antistatic property is rapidly developed and the antistatic effect is obtained, and when the content is 1.2 parts by weight or less, the bleeding amount is small and the film surface is adhesive. It is less likely to occur and the transparency due to whitening is less likely to decrease.
  • the polyoxyethylene alkylamine difatty acid ester compound (C) to which 2 mol or more of ethylene oxalate is added to 1 mol of amine used in the present invention is a nonionic antistatic agent represented by the formula (3).
  • the content is preferably 0 to 0.2 parts by weight, and particularly preferably 0.002 to 0.15 parts by weight with respect to 100 parts by weight of the polypropylene resin composition constituting the surface layer (C).
  • the content of the compound (C) is 0.2 parts by weight or less, the amount of bleeding is small and the decrease in transparency due to whitening is small.
  • the polyoxyethylene alkenylamine compound (D) in which 2 mol or more of ethylene oxalate is added to 1 mol of the amine used in the present invention is a nonionic antistatic agent represented by the formula (4) and is a surface layer. It is preferably contained in an amount of 0 to 0.2 parts by weight, particularly preferably 0.002 to 0.15 parts by weight, based on 100 parts by weight of the polypropylene resin composition constituting (C). When the content of compound (D) is 0.2 parts by weight or less, the amount of bleeding is small and the decrease in transparency due to whitening is small.
  • X and Y in the equations (1) to (4) are integers of 1 to 29, respectively, and X + Y is an integer of 2 to 30, preferably an integer of 2 to 4.
  • R1 is a linear or branched alkyl group, particularly preferably an alkyl group having 13 to 25 carbon atoms, and particularly preferably an alkyl group having 13 to 18 carbon atoms.
  • alkyl group of R1 to R6 in the formulas (1) to (3) include a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, an isopentyl group and a nonyl group.
  • Examples thereof include a group, a decyl group, an undecyl group, a lauryl group, a trilauryl group, a myristyl group, a pentadecyl group, a palmityl group, a heptadecyl group, a stearyl group, a nonadecyl group and an eicosyl group.
  • the alkenyl group of R7 in the formula (4) is preferably at least one selected from higher unsaturated aliphatic groups having 12 to 21 carbon atoms.
  • the polypropylene-based resin composition constituting the surface layer (C) has various additives for improving quality such as slipperiness, for example, improving productivity.
  • lubricants such as waxes and metal soaps, plasticizers, processing aids, known heat stabilizers usually added to polypropylene films, antioxidants, ultraviolet absorbers, inorganic and organic fine particles, etc. are blended. It is also possible.
  • the inorganic fine particles include silicon dioxide, calcium carbonate, titanium dioxide, talc, kaolin, mica, and zeolite, and these shapes can be spherical, elliptical, conical, or amorphous.
  • the particle size a desired particle size can be used and blended depending on the intended use and usage of the film.
  • the organic fine particles crosslinked particles such as acrylic, methyl acrylate, and styrene-butadiene can be used, and various particles such as inorganic fine particles can be used in terms of shape and size. It is possible. Further, it is possible to apply various surface treatments to the surface of these inorganic or organic fine particles, and these can be used alone or in combination of two or more. The above is also applicable to the surface layer (B) described later.
  • the biaxially oriented polypropylene-based film of the present invention has a three-layer structure of a base layer (A) / intermediate layer (B) / surface layer (C), and a surface layer (C) / base layer (A) / intermediate layer ( It has a four-layer structure of B) / surface layer (C) and a six-layer structure of surface layer (C) / intermediate layer (B) / base layer (A) / intermediate layer (B) / surface layer (C). May be good.
  • the total layer thickness of the biaxially oriented polypropylene resin film of the present invention varies depending on its use and usage, but is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and more preferably 20 ⁇ m from the viewpoint of film strength, sealing property or water vapor barrier property. The above is more preferable. Further, in terms of high-speed packaging processability or visibility, 60 ⁇ m or less is preferable, 50 ⁇ m or less is further preferable, 45 ⁇ m or less is particularly preferable, and 40 ⁇ m or less is most preferable.
  • the thickness of the base material layer (A) varies depending on the application and the method of use, but is preferably 10 ⁇ m or more in terms of the rigidity of the film and the water vapor barrier property. In terms of transparency and influence on the environment, 50 ⁇ m or less is preferable, 45 ⁇ m or less is more preferable, 40 ⁇ m or less is further preferable, and 37 ⁇ m or less is particularly preferable.
  • the thickness of the intermediate layer (B) varies depending on its use and method of use, but is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, still more preferably 4 ⁇ m or more, in terms of film laminating strength and antistatic property.
  • the thickness of the intermediate layer (B) varies depending on its use and method of use, but is preferably 8 ⁇ m or less, more preferably 6 ⁇ m or less, in terms of film rigidity and heat resistance at high temperatures.
  • the ratio of the thickness of the intermediate layer (B) to the thickness of all the biaxially oriented polypropylene-based resin films is preferably 5% or more, more preferably 10% or more, and more preferably 10% or more from the viewpoint of rigidity and heat resistance at high temperatures. % Or more is more preferable.
  • the ratio of the thickness of the intermediate layer (B) to the thickness of the entire biaxially oriented polypropylene-based resin film is preferably 30% or less, more preferably 25% or less, from the viewpoint of rigidity and heat resistance at high temperatures.
  • the thickness of the surface layer (C) varies depending on its use and usage, but is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and more preferably 0.8 ⁇ m or more in terms of film laminating strength and antistatic property. More preferred.
  • the thickness of the surface layer (C) varies depending on the application and the method of use, but is preferably 4 ⁇ m or less, more preferably 3 ⁇ m or less, in terms of the rigidity of the film and the heat resistance at high temperatures.
  • the ratio of the thickness of the surface layer (C) to the thickness of the entire biaxially oriented polypropylene resin film is preferably 2% or more from the viewpoint of rigidity and heat resistance at high temperature, and more preferably 3% or more. % Or more is more preferable.
  • the ratio of the thickness of the surface layer (C) to the thickness of the entire biaxially oriented polypropylene-based resin film is preferably 20% or less, more preferably 15% or less from the viewpoint of rigidity and heat resistance at high temperatures.
  • the biaxially oriented polypropylene film of the present invention is preferably obtained by preparing an unstretched sheet made of the polypropylene resin composition containing the above-mentioned polypropylene resin as a main component and biaxially stretching the film.
  • a biaxial stretching method any of the inflation simultaneous biaxial stretching method, the tenter simultaneous biaxial stretching method, and the tenter sequential biaxial stretching method can be obtained, but from the viewpoint of film forming stability and thickness uniformity, the tenter sequential biaxial stretching method can be obtained.
  • the method for producing the biaxially oriented polypropylene film of the present invention will be described below, but the present invention is not necessarily limited thereto.
  • the following is an example of the case of the surface layer (C) / intermediate layer (B) / base layer (A) / intermediate layer (B) / surface layer (C) when the tenter sequential biaxial stretching method is adopted. Will be described.
  • a molten polypropylene resin composition multilayer sheet having a structure of a surface layer (C) / intermediate layer (B) / base layer (A) / intermediate layer (B) / surface layer (C) is extruded from a T-die.
  • thermoplastic resins fed from different flow paths using six extruders are laminated in multiple layers using a multi-layer feed block, a static mixer, a multi-layer multi-manifold die, or the like.
  • a co-extruding method or the like can be used. It is also possible to introduce the above-mentioned multilayer device into the melt line from the extruder to the T-type die by using only one extruder. From the viewpoint of stabilizing back pressure and suppressing thickness fluctuation, a method of installing a gear pump in the polymer flow path is preferable.
  • the molten sheet co-extruded from the T-die into a sheet is grounded on a metal cooling roll to be cooled and solidified. For the purpose of promoting solidification, it is preferable to further cool the sheet cooled by a cooling roll by immersing it in a water tank or the like.
  • the sheet is stretched in the longitudinal direction by increasing the rotation speed of the rear stretching rolls with two pairs of stretching rolls in which the sheet is heated to obtain a uniaxially stretched film.
  • the film is stretched in the width direction at a specific temperature while grasping the end of the film with a tenter type stretcher to obtain a biaxially stretched film.
  • This width direction stretching step will be described in detail later.
  • the biaxially stretched film is heat-treated at a specific temperature to obtain a biaxially oriented film.
  • the film may be relaxed in the width direction.
  • a film roll can be obtained by subjecting the biaxially oriented polypropylene film thus obtained to, for example, corona discharge treatment on at least one side thereof and then winding it with a winder.
  • the temperature of the cooling roll or the cooling roll and the water tank is preferably in the range of 10 ° C to Tc, and if it is desired to increase the transparency of the film, it is cooled and solidified with a cooling roll having a temperature in the range of 10 to 50 ° C. Is preferable.
  • the cooling temperature is 50 ° C. or lower, the transparency of the unstretched sheet tends to increase, preferably 40 ° C. or lower, and more preferably 30 ° C. or lower.
  • the cooling temperature is preferably 40 ° C. or lower, which is preferable in terms of facilitating stretching in the next step and reducing thickness unevenness, and more preferably 30 ° C. or lower.
  • the thickness of the unstretched sheet is preferably 3500 ⁇ m or less, more preferably 3000 ⁇ m or less in terms of cooling efficiency, and can be appropriately adjusted according to the film thickness after sequential biaxial stretching.
  • the thickness of the unstretched sheet can be controlled by the extrusion speed of the polypropylene resin composition, the lip width of the T-die, and the like.
  • the lower limit of the longitudinal stretching ratio is preferably 3 times, more preferably 3.5 times, and particularly preferably 3.8 times. Within the above range, the strength can be easily increased and the film thickness unevenness can be reduced.
  • the upper limit of the longitudinal stretching ratio is preferably 8 times, more preferably 7.5 times, and particularly preferably 7 times. Within the above range, the width direction stretching in the width direction stretching step is easy, and the productivity is improved.
  • the lower limit of the longitudinal stretching temperature is preferably Tm-40 ° C, more preferably Tm-37 ° C, and even more preferably Tm-35 ° C. Tm is the melting point of the polypropylene homopolymer constituting the base material layer.
  • the longitudinal stretching temperature is preferably Tm-7 ° C, more preferably Tm-10 ° C, and even more preferably Tm-12 ° C.
  • the longitudinal stretching may be performed by using three or more pairs of stretching rolls and stretching in two or more stages.
  • a section (first half section) for stretching at a temperature of Tm-10 ° C. or higher and a preheating temperature or lower is provided.
  • the start of the first half section may be at the time when the preheating temperature is reached, or at the time when the temperature is lowered after reaching the preheating temperature and reaches a temperature lower than the preheating temperature.
  • the lower limit of the temperature in the early section in the width direction stretching step is preferably Tm ° C, more preferably Tm + 1 ° C, and further preferably Tm + 3 ° C.
  • the stretching temperature in the first half section is in this range, the shrinkage at a high temperature is reduced, the plane orientation coefficient does not become too high, and the antistatic property is likely to be improved.
  • a section (late section) that is lower than the temperature of the first half section and stretches at a temperature of Tm-70 ° C or higher and Tm-5 ° C or lower may be provided, or the temperature in the first half section may be used as it is. Lateral stretching may be continued.
  • the upper limit of the stretching temperature in the latter section is preferably Tm-8 ° C, more preferably Tm-10 ° C. If the stretching temperature in the latter section is in this range, rigidity is likely to be developed.
  • the lower limit of the stretching temperature in the latter section is preferably Tm-65 ° C, more preferably Tm-60 ° C, and even more preferably Tm-55 ° C.
  • Tm-65 ° C more preferably Tm-60 ° C
  • Tm-55 ° C the stretching temperature in the latter section is in this range.
  • the cooling temperature at this time is preferably a temperature of Tm-80 ° C or higher and Tm-15 ° C or lower, preferably Tm-80 ° C or higher and Tm-20 ° C or lower, which is lower than the temperature of the latter section. It is more preferably Tm-80 ° C. or higher and Tm-30 ° C. or lower, and particularly preferably Tm-70 ° C. or higher and Tm-40 ° C. or lower.
  • the temperature in the early section and the temperature in the late section can be gradually lowered, but can also be lowered stepwise or in one step, and may be constant.
  • the temperature is gradually lowered, the film is less likely to break and the thickness variation of the film is likely to be reduced. Further, it is preferable because the heat shrinkage rate is easy to be small and the film is less whitened.
  • the temperature at the end of the early section in the width direction stretching step can be gradually lowered to the temperature at the start of the late section, but it can also be lowered stepwise or in one step.
  • the lower limit of the draw ratio at the end of the first section of the width direction stretching step is preferably 5 times, more preferably 6 times, and further preferably 7 times.
  • the upper limit of the draw ratio at the end of the first half section is preferably 15 times, more preferably 14 times, and further preferably 13 times.
  • the lower limit of the final width direction stretching ratio in the width direction stretching step is preferably 7 times, more preferably 8 times, still more preferably 9 times, and particularly preferably 10 times. .. If it is 7 times or more, the rigidity is likely to be increased and the film thickness unevenness is likely to be reduced.
  • the upper limit of the stretch ratio in the width direction is preferably 20 times, more preferably 17 times, and further preferably 15 times. When it is 20 times or less, the heat shrinkage rate is likely to be reduced, and it is difficult to break during stretching.
  • the lower limit of the final width drawing magnification in the width direction stretching step is preferably 10 times, more preferably 11 times. .. If it is 10 times or more, the rigidity is likely to be increased and the film thickness unevenness is likely to be reduced.
  • the upper limit of the stretch ratio in the width direction is preferably 20 times, more preferably 17 times, and further preferably 15 times. When it is 20 times or less, the heat shrinkage rate is likely to be reduced, and it is difficult to break during stretching.
  • the molecules of the polypropylene resin do not need to be extremely increased in stretching ratio. Is highly aligned in the main orientation direction (the width direction is applicable in the above-mentioned width direction stretching step), so that the crystal orientation in the obtained biaxially oriented film is very strong and crystals with a high melting point are likely to be produced. ..
  • the orientation of the amorphous part between the crystals also increases in the main orientation direction (the width direction corresponds to the above-mentioned width direction stretching step), and many crystals having a high melting point exist around the amorphous part.
  • the elongated polypropylene molecule in the amorphous part is difficult to relax and tends to maintain its tense state. Therefore, the entire biaxially oriented film can maintain high rigidity even at high temperatures. Further, it should be noted that by adopting such a stretching step in the width direction, the heat shrinkage rate at a high temperature of 150 ° C. tends to decrease. The reason is that since many crystals with a high melting point exist around the amorphous part, the elongated polypropylene resin molecules in the amorphous part are difficult to relax at a temperature lower than the melting point of the crystals, and the molecules are less entangled with each other. be.
  • the crystallinity of the film is more likely to increase, and the entanglement of the polypropylene resin molecular chains in the amorphous portion is reduced, resulting in heat shrinkage stress.
  • the heat shrinkage rate can be further reduced. Conventionally, it can be said that it is epoch-making considering that if either the strength or the heat shrinkage rate is improved, the other property tends to be deteriorated.
  • the biaxially stretched film can be heat-treated to further reduce the heat shrinkage.
  • the upper limit of the heat treatment temperature is preferably Tm + 10 ° C, more preferably Tm + 7 ° C. By setting the temperature to Tm + 10 ° C. or lower, rigidity is easily developed, the roughness of the film surface does not become too large, and the film is less likely to whiten.
  • the lower limit of the heat treatment temperature is preferably Tm-10 ° C, more preferably Tm-7 ° C. If the temperature is lower than Tm-10 ° C, the heat shrinkage rate may increase.
  • the highly oriented crystals produced in the stretching step are difficult to melt, and the rigidity of the obtained film is reduced.
  • the heat shrinkage can be made smaller without lowering.
  • the film may be relaxed (relaxed) in the width direction during the heat treatment.
  • the upper limit of the relaxation rate is preferably 10%. Within the above range, the film strength is unlikely to decrease, and the film thickness variation tends to be small. It is more preferably 8%, further preferably 7%, even more preferably 3%, particularly preferably 2%, and most preferably 0%.
  • the thickness of the biaxially oriented polypropylene film of the present invention is set according to each application, but in order to obtain the strength of the film, the lower limit of the film thickness is preferably 10 ⁇ m, more preferably 12 ⁇ m, still more preferably. It is 14 ⁇ m, particularly preferably 16 ⁇ m. When the film thickness is 2 ⁇ m or more, the rigidity of the film can be easily obtained.
  • the upper limit of the film thickness is preferably 100 ⁇ m, more preferably 70 ⁇ m, still more preferably 50 ⁇ m, particularly preferably 40 ⁇ m, and most preferably 30 ⁇ m. When the film thickness is 100 ⁇ m or less, the cooling rate of the unstretched sheet during the extrusion process is unlikely to decrease.
  • the biaxially oriented polypropylene film of the present invention is usually formed as a roll having a width of 2000 to 12000 mm and a length of about 1000 to 50000 m, and is wound into a film roll. Further, it is slit according to each application and is provided as a slit roll having a width of 300 to 2000 mm and a length of about 500 to 5000 m.
  • the biaxially oriented polypropylene film of the present invention can obtain a longer film roll.
  • the antistatic biaxially stretched polypropylene resin film used in the present invention is subjected to surface treatment by conventionally known methods such as corona discharge treatment, plasma treatment, ozone treatment, chemical treatment, and known anchor treatment, depending on the purpose.
  • Anchor treatment or the like using an agent may be applied.
  • antistatic properties can be improved by performing corona discharge treatment, plasma treatment, and ozone treatment.
  • a corona processing machine manufactured by Sophthal Corona & Plasma GmbH, etc. was used on the film surface on the side of the obtained biaxially oriented polypropylene film in contact with the cooling roll, and the applied current value was 0.30 to 2.
  • Corona treatment is preferably performed under the condition of 0.0A, more preferably 0.50 to 2.0A, still more preferably 0.80 to 2.0A, and particularly preferably 1.5 to 2.0A.
  • the lower limit of the thickness uniformity of the biaxially oriented polypropylene film of the present invention is preferably 0%, more preferably 0.1%, still more preferably 0.5%, and particularly preferably 1%.
  • the upper limit of the thickness uniformity is preferably 20%, more preferably 17%, still more preferably 15%, particularly preferably 12%, and most preferably 10%. Within the above range, defects are less likely to occur during post-processing such as coating and printing, and it is easy to use for applications that require precision.
  • the measurement method was as follows. A test piece having a width of 40 mm is cut out from a constant region where the film physical characteristics are stable in the length direction of the film, and a film feeder manufactured by Micron Measuring Instruments Co., Ltd.
  • Thickness uniformity (%) [(maximum thickness-minimum thickness) / average thickness] x 100
  • the biaxially oriented polypropylene film of the present invention is characterized by the following characteristics.
  • the "longitudinal direction" in the biaxially oriented polypropylene film of the present invention is a direction corresponding to the flow direction in the film manufacturing process
  • the "width direction” is a direction orthogonal to the flow direction in the film manufacturing process.
  • wide-angle X-rays are incident in the direction perpendicular to the film surface, and the scattering peak derived from the (110) plane of the ⁇ -type crystal is scanned in the circumferential direction.
  • the direction in which the diffraction intensity of the obtained diffraction intensity distribution is the largest is referred to as the "width direction”
  • the direction orthogonal to it is referred to as the "longitudinal direction”.
  • the lower limit of the stress (F5) of the biaxially oriented polypropylene film of the present invention at 5% elongation in the longitudinal direction at 23 ° C. is 40 MPa, preferably 42 MPa, more preferably 43 MPa, still more preferably 44 MPa. It is particularly preferably 45 MPa.
  • the upper limit of F5 in the longitudinal direction is preferably 70 MPa, more preferably 65 MPa, still more preferably 62 MPa, particularly preferably 61 MPa, and most preferably 60 MPa. At 70 MPa or less, realistic manufacturing is easy and the vertical-width balance is easy to improve.
  • the lower limit of F5 in the width direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is 160 MPa, preferably 165 MPa, more preferably 168 MPa, and further preferably 170 MPa. At 160 MPa or higher, the rigidity is high, so that the bag shape when used as a packaging bag is easily maintained, and the film is less likely to be deformed during processing such as printing.
  • the upper limit of F5 in the width direction is preferably 250 MPa, more preferably 245 MPa, and even more preferably 240 MPa. If it is 250 MPa or less, realistic manufacturing is easy and the vertical width balance is easy to improve. F5 is within the range by adjusting the stretching ratio and the relaxing rate, and adjusting the temperature at the time of film formation.
  • the upper limit of the heat shrinkage in the longitudinal direction at 150 ° C. of the biaxially oriented polypropylene film of the present invention is 10%, preferably 7.0%, more preferably 6.0%, and particularly preferably 4. It is 5.5%, most preferably 3.0%.
  • the upper limit of the heat shrinkage in the width direction at 150 ° C. is 30%, preferably 16%, more preferably 15%, particularly preferably 12%, and most preferably 10%.
  • the strain when the chuck portion is fused to the open portion is extremely small, which is preferable.
  • the lower limit of the amount of components with a molecular weight of 100,000 or less when measuring the gel permeation chromatography (GPC) integration curve of the polypropylene resin constituting the film is set to 35% by mass. It is effective to do.
  • the surface intrinsic resistance of the biaxially oriented polypropylene film of the present invention is 15 ⁇ / ⁇ or less, preferably 14.5 ⁇ / ⁇ or less, more preferably 14.0 ⁇ / ⁇ or less, and 13.5 ⁇ / ⁇ or less. ⁇ The following is particularly preferable. When it is 15 ⁇ / ⁇ or less, the film roll and the film being processed are less charged, the bag making process is easy, and the obtained bag is also easy to have few defects.
  • the lower limit of the surface intrinsic resistance length is preferably 10 N / 15 mm as a realistic value, and more preferably 11 N / 15 mm.
  • biaxially oriented polypropylene film of the present invention has the following characteristics and structure.
  • the upper limit of the heat shrinkage in the longitudinal direction at 120 ° C. of the biaxially oriented polypropylene film of the present invention is preferably 2.0%, more preferably 1.7%, still more preferably 1.5%. , Particularly preferably 1.0%. When it is 2.0% or less, the printing pitch shift when transferring the printing ink is less likely to occur.
  • the upper limit of the heat shrinkage in the width direction at 120 ° C. is 5.0%, preferably 4.0%, more preferably 3.0%, still more preferably 2.0%, and particularly. It is preferably 1.5%. When it is 5.0% or less, wrinkles at the time of heat sealing are less likely to occur.
  • the balance between the heat shrinkage rate at 120 ° C. and the heat shrinkage rate in the longitudinal direction and the width direction can be within the range by adjusting the stretching ratio, the stretching temperature, and the heat fixing temperature.
  • the lower limit of the refractive index (Nx) in the longitudinal direction of the biaxially oriented polypropylene film of the present invention is preferably 1.4970, more preferably 1.4990, still more preferably 1.5000, and particularly preferably 1.5000. It is 1.5020. If it is 1.4970 or more, it is easy to increase the rigidity of the film.
  • the upper limit of the refractive index (Nx) in the longitudinal direction is preferably 1.5100, more preferably 15070, and even more preferably 1.5050. If it is 1.5100 or less, the balance of the characteristics in the longitudinal direction and the width direction of the film tends to be excellent.
  • the lower limit of the refractive index (Ny) in the width direction of the biaxially oriented polypropylene film of the present invention is 1.5230, preferably 1.5240, and more preferably 1.5250. If it is 1.5230 or more, it is easy to increase the rigidity of the film.
  • the upper limit of the refractive index (Ny) in the width direction is preferably 1.5280, more preferably 1.5275, and even more preferably 1.5270. If it is 1.5280 or less, the balance of the characteristics in the longitudinal direction and the width direction of the film tends to be excellent.
  • the lower limit of the refractive index (Nz) in the thickness direction of the biaxially oriented polypropylene film of the present invention is preferably 1.4960, more preferably 14970, still more preferably 1.4990, and particularly preferably 1. It is 5000. If it is 1.4960 or more, it is easy to increase the rigidity of the film.
  • the upper limit of the refractive index (Nz) in the thickness direction is preferably 1.5020, more preferably 1.5015, and even more preferably 1.5010. If it is 1.5020 or less, it is easy to increase the heat resistance of the film.
  • the refractive index can be set within the range by adjusting the stretching ratio, the stretching temperature, and the heat fixing temperature.
  • ⁇ Ny which is the degree of orientation of the biaxially oriented polypropylene film of the present invention in the width direction, is 0.0220, preferably 0.0230, more preferably 0.0235, and even more preferably. Is 0.0240. If it is 0.0220 or more, the rigidity of the film tends to be high.
  • the upper limit of ⁇ Ny is preferably 0.0270, more preferably 0.0265, still more preferably 0.0262, and particularly preferably 0.0260 as a realistic value. If it is 0.0270 or less, the thickness unevenness tends to be good.
  • ⁇ Ny can be set within the range by adjusting the stretch ratio, the stretch temperature, and the heat fixing temperature of the film.
  • ⁇ Ny is calculated by the following formula, where the refractive indexes along the longitudinal direction, the width direction, and the thickness direction of the film are Nx, Ny, and Nz, respectively. It means the degree of orientation in the direction.
  • ⁇ Ny Ny- [(Nx + Nz) / 2]
  • the lower limit of the plane orientation coefficient ( ⁇ P) of the biaxially oriented polypropylene film of the present invention is preferably 0.0135, more preferably 0.0138, and even more preferably 0.0140. When it is 0.0135 or more, the balance in the surface direction of the film is good and the thickness unevenness is also good.
  • the upper limit of the plane orientation coefficient ( ⁇ P) is preferably 0.0155, more preferably 0.0152, and even more preferably 0.0150 as a realistic value. If it is 0.0155 or less, the heat resistance at high temperature is likely to be excellent.
  • the plane orientation coefficient ( ⁇ P) can be set within the range by adjusting the stretching ratio, stretching temperature, and heat fixing temperature. The plane orientation coefficient ( ⁇ P) was calculated using (Equation) [(Nx + Ny) / 2] -Nz.
  • the upper limit of the haze of the biaxially oriented polypropylene film of the present invention is preferably 5.0%, more preferably 4.5%, still more preferably 4.0%, and particularly preferably 3.5%. Yes, most preferably 3.0%. If it is 5.0% or less, it is easy to use in applications where transparency is required.
  • the lower limit of the haze is preferably 0.1%, more preferably 0.2%, still more preferably 0.3%, and particularly preferably 0.4% as a practical value. If it is 0.1% or more, it is easy to manufacture.
  • the haze adjusts the cooling roll (CR) temperature, the width stretching temperature, the preheating temperature before stretching in the tenter width direction, the stretching temperature in the width direction, or the heat fixing temperature, or the amount of the component having a polypropylene resin molecular weight of 100,000 or less. However, it may increase due to the addition of a blocking inhibitor or the addition of a seal layer.
  • the practical characteristics of the biaxially oriented polypropylene film of the present invention will be described.
  • the lower limit of the tensile breaking strength in the longitudinal direction of the biaxially oriented polypropylene film of the present invention is preferably 90 MPa, more preferably 95 MPa, and further preferably 100 MPa. If it is 90 MPa or more, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent.
  • the upper limit of the tensile breaking strength in the longitudinal direction is preferably 200 MPa, more preferably 190 MPa, and further preferably 180 MPa as a realistic value. If it is 200 MPa or less, the breakage of the film and the breakage of the packaging bag are likely to decrease.
  • the lower limit of the tensile breaking strength in the width direction of the biaxially oriented polypropylene film of the present invention is preferably 320 MPa, more preferably 340 MPa, and further preferably 350 MPa. If it is 320 MPa or more, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent.
  • the upper limit of the tensile breaking strength in the width direction is preferably 500 MPa, more preferably 480 MPa, and further preferably 470 MPa as a realistic value. If it is 500 MPa or less, the breakage of the film and the breakage of the packaging bag are likely to decrease.
  • the tensile breaking strength can be set within the range by adjusting the draw ratio, the draw temperature, and the heat fixing temperature.
  • the lower limit of the tensile elongation at break in the longitudinal direction of the biaxially oriented polypropylene film of the present invention is preferably 50%, more preferably 55%, still more preferably 60%. If it is 50% or more, the breakage of the film and the breakage of the packaging bag are likely to decrease.
  • the upper limit of the tensile elongation at break in the longitudinal direction is preferably 230%, more preferably 220%, and even more preferably 210% as a realistic value. If it is 230% or less, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent.
  • the lower limit of the tensile elongation at break in the width direction of the biaxially oriented polypropylene film of the present invention is preferably 10%, more preferably 15%, still more preferably 17%. If it is 10% or more, the breakage of the film and the breakage of the packaging bag are likely to decrease.
  • the upper limit of the tensile elongation at break in the width direction is preferably 60%, more preferably 55%, and even more preferably 50%. If it is 60% or less, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent.
  • the tensile elongation at break can be within the range by adjusting the draw ratio, the draw temperature, and the heat fixing temperature.
  • the lower limit of the longitudinal loop stefness stress S (mN) at 23 ° C. of the biaxially oriented polypropylene film of the present invention is preferably 0.00020 ⁇ t, where t ( ⁇ m) is the thickness of the biaxially oriented polypropylene film. It is 3 , more preferably 0.00025 ⁇ t 3 , still more preferably 0.00030 ⁇ t 3 , and particularly preferably 0.00035 ⁇ t 3 . When it is 0.00020 ⁇ t 3 or more, it is easy to maintain the shape of the package.
  • the lower limit of the loop stefness stress S (mN) in the width direction of the biaxially oriented polypropylene film at 23 ° C. is preferably 0.0010 ⁇ t, where t ( ⁇ m) is the thickness of the biaxially oriented polypropylene film.
  • the upper limit of the loop stepness stress S (mN) in the width direction at 23 ° C. is preferably 0.0020 ⁇ t 3 , more preferably 0.0019 ⁇ t 3 , and even more preferably 0.0018 ⁇ t. It is 3 , and particularly preferably 0.0017 ⁇ t 3 . When it is 0.0020 ⁇ t 3 or less, it is practically easy to manufacture.
  • the loop stefness stress is an index showing the waist feeling of the film, but it also depends on the thickness of the film.
  • the measurement method is as follows. Two strips of 110 mm ⁇ 25.4 mm were cut out, with the longitudinal direction of the film as the long axis of the strip (loop direction) and the width direction of the film as the long axis of the strip (loop direction). For measuring loops in which one side of the film is the inner surface of the loop and the other side is the inner surface of the loop, with these sandwiched between clips, and the long axis of the strip is in the longitudinal and width directions of the film. Made.
  • the inclination a means a characteristic value peculiar to the film that does not depend on the thickness that determines the rigidity.
  • the inclination a was used as the evaluation value of the feeling of waist.
  • the measurement loop in which the long axis of the strip is in the width direction of the film was measured in the same manner.
  • the pre-made bag is filled with the contents and heated to melt the film, fuse it and seal it.
  • a sealant film made of polyethylene, polypropylene, or the like is laminated on the base film, and the sealant film surfaces are fused to each other.
  • pressure is applied from the base film side with a heating plate to press the film to seal it, but the sealing width is often about 10 mm.
  • the base film is also heated, and the shrinkage at that time causes wrinkles. It is better to have less wrinkles in the durability of the bag, and it is better to have less wrinkles in order to increase purchasing motivation.
  • the sealing temperature may be about 120 ° C., but in order to increase the bag making processing speed, a higher sealing temperature is required, and even in that case, it is preferable that the shrinkage is small. When the chuck is fused to the open portion of the bag, sealing at a higher temperature is required.
  • the lower limit of the longitudinal lamination strength of the biaxially oriented polypropylene film of the present invention is preferably 1.2N / 15mm, more preferably 1.3N / 15mm, still more preferably 1.4N / 15mm, and more. It is more preferably 1.5 N / 15 mm, and particularly preferably 1.6 N / 15 mm. If it is 1.2 N / 15 mm or more, the number of broken packaging bags tends to decrease.
  • the upper limit of the laminating strength in the longitudinal direction is preferably 2.7 N / 15 mm as a realistic value, and more preferably 2.5 N / 15 mm.
  • the lower limit of the laminating strength in the width direction of the biaxially oriented polypropylene film of the present invention is preferably 1.0 N / 15 mm, more preferably 1.1 N / 15 mm, still more preferably 1.2 N / 15 mm, and more. It is more preferably 1.3 N / 15 mm, particularly preferably 1.4 N / 15 mm, and most preferably 1.5 N / 15 mm. If it is 1.0 N / 15 mm or more, the number of broken packaging bags tends to decrease.
  • the upper limit of the laminating strength in the width direction is preferably 2.5 N / 15 mm as a realistic value, and more preferably 2.2 N / 15 mm.
  • the surface intrinsic resistance of the surface of the biaxially oriented polypropylene film of the present invention is preferably 15 ⁇ / ⁇ or less, more preferably 14.5 ⁇ / ⁇ or less, further preferably 14.0 ⁇ / ⁇ or less, and particularly preferably 13.5 ⁇ / ⁇ or less. preferable.
  • the lower limit of the surface intrinsic resistance length is preferably 10 N / 15 mm as a realistic value, and more preferably 11 N / 15 mm.
  • Print pitch shift As a basic structure of the packaging film, it is often composed of a laminated film of a printed base film and a sealant film.
  • a bag making machine is used to manufacture bags, and there are three-way bags, standing bags, gusset bags, etc., and various bag making machines are used. It is considered that the printing pitch shift occurs because the base material of the film expands and contracts because tension and heat are applied to the film during the printing process. Eliminating defective products due to print pitch deviation is important in terms of effective use of resources, and is also important in increasing purchasing motivation.
  • the biaxially oriented polypropylene film of the present invention can be printed by letterpress printing, lithographic printing, intaglio printing, stencil printing, and transfer printing, depending on the application.
  • low-density polyethylene, linear low-density polyethylene, ethylene-vinyl acetate copolymer, polypropylene, unstretched sheet made of polyester, uniaxially stretched film, and biaxially stretched fill are bonded as a sealant film to impart heat-sealing properties. It can also be used as a laminated body.
  • aluminum foil polyvinylidene chloride, nylon, ethylene-vinyl alcohol copolymer, unstretched sheet made of polyvinyl alcohol, uniaxially stretched film, and biaxially stretched film as biaxially oriented polypropylene film. It can be provided as an intermediate layer between the and the sealant film.
  • An adhesive applied by a dry lamination method or a hot melt lamination method can be used for laminating the sealant film.
  • aluminum or an inorganic oxide can be vapor-deposited on a biaxially oriented polypropylene film, an intermediate layer film, or a sealant film. Vacuum vapor deposition, sputtering, and ion plating can be adopted as the vapor deposition method, but silica, allumina, or a mixture thereof is particularly preferable.
  • the biaxially oriented polypropylene film of the present invention contains, for example, antifogging agents such as fatty acid esters of polyhydric alcohols, amines of higher fatty acids, amides of higher fatty acids, amines of higher fatty acids and ethylene oxide adducts of amide.
  • antifogging agents such as fatty acid esters of polyhydric alcohols, amines of higher fatty acids, amides of higher fatty acids, amines of higher fatty acids and ethylene oxide adducts of amide.
  • additives for improving quality such as slipperiness and antistatic property
  • lubricants such as wax and metal soap for improving productivity
  • plasticizers for example, plasticizers.
  • agents, processing aids, heat stabilizers, antioxidants, antistatic agents, ultraviolet absorbers and the like are also possible.
  • the biaxially oriented polypropylene film of the present invention has excellent properties as described above, it can be preferably used for packaging bags, and the thickness of the film can be made thinner than before.
  • insulating films for capacitors and motors such as insulating films for capacitors and motors, back sheets for solar cells, barrier films for inorganic oxides, and base films for transparent conductive films such as ITO, and to have rigidity such as separate films. It is also suitable for various applications.
  • melt flow rate The melt flow rate (MFR) was measured at a temperature of 230 ° C. and a load of 2.16 kgf in accordance with JIS K7210.
  • Mw ⁇ (N i ⁇ M i 2) / ⁇ (N i ⁇ M i)
  • the molecular weight distribution can be obtained by Mw / Mn.
  • the ratio of the components having a molecular weight of 100,000 or less was obtained from the integral curve of the molecular weight distribution obtained by GPC.
  • Crystallization temperature (Tc), melting temperature (Tm) Thermal measurements were performed in a nitrogen atmosphere using a Q1000 differential scanning calorimeter manufactured by TA Instruments. Approximately 5 mg was cut out from the polypropylene resin pellet and sealed in an aluminum pan for measurement. The temperature was raised to 230 ° C. and held for 5 minutes, then cooled to 30 ° C. at a rate of ⁇ 10 ° C./min, and the exothermic peak temperature was defined as the crystallization temperature (Tc). The amount of heat of crystallization ( ⁇ Hc) was determined by setting a baseline so that the area of the exothermic peak could be smoothly connected from the start to the end of the peak. The temperature was kept as it was at 30 ° C. for 5 minutes, the temperature was raised to 230 ° C. at 10 ° C./min, and the main endothermic peak temperature was defined as the melting temperature (Tm).
  • Tensile test The tensile strength in the longitudinal direction and the width direction of the film was measured at 23 ° C. according to JIS K7127. The sample was cut out from a film to a size of 15 mm ⁇ 200 mm, had a chuck width of 100 mm, and was set in a tensile tester (dual column desktop tester Instron 5965 manufactured by Instron Japan Company Limited). A tensile test was performed at a tensile speed of 200 mm / min. From the obtained strain-stress curve, the stress at 5% elongation was defined as F5. The tensile breaking strength and the tensile breaking elongation were taken as the strength and elongation at the time when the sample broke, respectively.
  • Heat shrinkage rate Measured by the following method according to JISZ1712. The film was cut with a width of 20 mm and a length of 200 mm in the longitudinal direction and the width direction of the film, respectively, and hung in a hot air oven at 120 ° C. or 150 ° C. and heated for 5 minutes. The length after heating was measured, and the heat shrinkage rate was determined by the ratio of the contracted length to the original length.
  • the loop stepness stress was measured at 50 mm, a pushing depth of 15 mm, and a compression rate of 3.3 mm / sec. The measurement was performed so that one side of the film was the inner surface of the loop, but the loop stefness stress and the thickness were measured 5 times, and then the other side of the film was measured 5 times.
  • plot the thickness ( ⁇ m) of each test piece on the horizontal axis and the loop stepness stress (mN) on the vertical axis and approximate it with a straight line that becomes the intercept 0.
  • the inclination a was obtained.
  • the inclination a was used as the evaluation value of the feeling of waist.
  • the measurement loop in which the long axis of the strip is in the width direction of the film was measured in the same manner.
  • Laminate strength was measured by the following procedure. 1) Preparation of laminated film with sealant film The following was performed using a continuous dry laminating machine. First, an adhesive was gravure-coated on the corona surface of the biaxially oriented polypropylene films obtained in Examples and Comparative Examples so that the amount applied during drying was 3.0 g / m 2, and then the adhesive was guided to a drying zone at 80 ° C. It dried in 5 seconds. Subsequently, it was bonded to the sealant film between the rolls provided on the downstream side (roll pressure 0.2 MP, roll temperature: 60 ° C.). The obtained laminated film was aged at 40 ° C. for 3 days in a wound state.
  • the adhesive was obtained by mixing 17.9% by mass of the main agent (TM329 manufactured by Toyo Morton Co., Ltd.), 17.9% by mass of the curing agent (CAT8B manufactured by Toyo Morton Co., Ltd.) and 64.2% by mass of ethyl acetate.
  • An ether adhesive was used, and a non-biaxially oriented polypropylene film (Pyrene (registered trademark) CT P1128, thickness 30 ⁇ m) manufactured by Toyobo Co., Ltd. was used as the sealant film.
  • the laminated film obtained above is cut into strips (length 200 mm, width 15 mm) having long sides in the longitudinal direction and the width direction of the biaxially oriented polypropylene film, and a tensile tester (Tensilon, manufactured by Orientec) is used.
  • the peel strength (N / 15 mm) when peeled by 90 ° (T-shaped) at a tensile speed of 200 mm / min in an environment of 23 ° C. was measured. The measurement was performed three times, and the average value was taken as the laminating strength in the longitudinal direction and the width direction.
  • stearylamine monostearic acid ester as an antifogging agent as compound (A) (manufactured by Toho Chemical Industry Co., Ltd .: Anstex SA321) ) To 0.9912 parts by weight and 0.156 parts by weight of glycerin monostearate (manufactured by Toho Chemical Industry Co., Ltd .: Anstex MG100) as the compound (B), and then an extruder with a pelletizer. Was melt-kneaded and granulated to obtain pellets of the polypropylene composition, which was used as a polypropylene-based resin composition for the base material layer (A).
  • Tex SA321) is 1.000 parts by weight
  • glycerin monostearate manufactured by Toho Chemical Industry Co., Ltd .: Anstex MG100
  • compound (C) is stearyl, which is an antifogging agent.
  • 0.0400 parts by weight of diethanolamine manufactured by Toho Kagaku Kogyo Co., Ltd .: Anstex SA20
  • the polypropylene-based resin composition for (B) was used.
  • the polypropylene resin composition constituting each of the surface layer (C) / base layer (A) / intermediate layer (B) / surface layer (C) is extruded at 250 ° C. and 250 ° C. using a multilayer feed block. It was heated and melted at ° C. and 250 ° C., and coextruded into a sheet at 250 ° C.
  • the surface layer (C) on the base layer (A) side of the molten sheet was brought into contact with a cooling roll at 20 ° C. and was put into a water tank at 20 ° C. as it was. Then, after preheating to 137 ° C, it is stretched 4.5 times in the longitudinal direction with two pairs of rolls at 142 ° C, then both ends are clipped and guided into a hot air oven, preheated at 170 ° C, and then in the width direction. As the first step, it was stretched 7 times at 168 ° C., and then as the second step, it was stretched 1.43 times at 145 ° C., so that a total of 10 times was stretched.
  • the mixture was cooled at 100 ° C. while being held by the clip, and then heat-fixed at 165 ° C. while relaxing by 3% in the width direction.
  • a corona processing machine manufactured by Sophthal Corona & Plasma GmbH on the film surface on the side of the obtained biaxially oriented polypropylene film in contact with the cooling roll, the corona was applied under the condition of an applied current value of 0.75 A.
  • the film wound with a winder was obtained as a biaxially stretched single-layer polypropylene film of the present invention.
  • the thickness of the obtained film was 20 ⁇ m.
  • Table 1 shows the structure of the polypropylene resin
  • Table 2 shows the raw materials for each layer
  • Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity, low heat shrinkage at high temperature, and less easily charged was obtained.
  • Example 2 The procedure was the same as in Example 1 except that the antistatic agent was not added to the intermediate layer (B).
  • Table 1 shows the structure of the polypropylene resin
  • Table 2 shows the raw materials for each layer
  • Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity, low heat shrinkage at high temperature, and less easily charged was obtained.
  • Toho Kagaku Kogyo Co., Ltd .: Anstex SA321) is blended in 1.0752 parts by weight, mixed, melt-kneaded and granulated using an extruder with a pelletizer to obtain pellets of the polypropylene composition, and the surface layer (C). ), Except for the polypropylene-based resin composition, the same procedure as in Example 1 was carried out.
  • Table 1 shows the structure of the polypropylene resin
  • Table 2 shows the raw materials for each layer
  • Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity, low heat shrinkage at high temperature, and less easily charged was obtained.
  • Table 1 shows the structure of the polypropylene resin
  • Table 2 shows the raw materials for each layer
  • Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity, low heat shrinkage at high temperature, and less easily charged was obtained.
  • the same procedure as in Example 1 was carried out except that the heat fixing temperature was set to 168 ° C.
  • Table 1 shows the structure of the polypropylene resin
  • Table 2 shows the raw materials for each layer
  • Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity, low heat shrinkage at high temperature, and less easily charged was obtained.
  • the same procedure as in Example 1 was carried out except that the heat fixing temperature was set to 168 ° C.
  • Table 1 shows the structure of the polypropylene resin
  • Table 2 shows the raw materials for each layer
  • Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity, low heat shrinkage at high temperature, and less easily charged was obtained.
  • Example 7 The same procedure as in Example 1 was carried out except that the first step was stretched at 166 ° C. in the width direction and then the second step was double stretched at 162 ° C.
  • Table 1 shows the structure of the polypropylene resin
  • Table 2 shows the raw materials for each layer
  • Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity, low heat shrinkage at high temperature, and less easily charged was obtained.
  • Table 1 shows the structure of the polypropylene resin
  • Table 2 shows the raw materials for each layer
  • Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity and low heat shrinkage at high temperature but not easily charged was obtained.
  • Comparative Example 1 1.2974 parts of stearylamine monostearic acid ester (manufactured by Toho Chemical Industry Co., Ltd .: Anstex SA321) as compound (A) was added to the intermediate layer (B) without adding an antistatic agent to the base material layer (A). , 0.155 parts by weight of glycerin monostearate (manufactured by Toho Chemical Industry Co., Ltd .: Anstex MG100) as compound (B), and stearyldiethanolamine (manufactured by Toho Chemical Industry Co., Ltd .: Anstex SA20) as compound (C). The same procedure as in Example 1 was carried out except that 0.0400 parts by weight was blended.
  • Table 1 shows the structure of the polypropylene resin
  • Table 2 shows the raw materials for each layer
  • Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity, low heat shrinkage at high temperature, and high laminating strength which is easily charged was obtained.
  • Polypropylene homopolymer PP-2 (Sumitomo) 0.9912 of stearylamine monostearic acid ester (manufactured by Toho Chemical Industry Co., Ltd .: Anstex SA321) as compound (A) in 100 parts by weight of a blend of 20 parts by weight of EL80F5 manufactured by Chemical Co., Ltd. 0.156 parts by weight and 0.156 parts by weight of glycerin monostearate (manufactured by Toho Chemical Industry Co., Ltd .: Anstex MG100) as compound (B) are mixed, and then melt-kneaded and granulated using an extruder with a pelletizer.
  • Example 2 The same procedure as in Example 1 was carried out except that pellets of the polypropylene composition were obtained and used as the polypropylene-based resin composition for the intermediate layer (B).
  • Table 1 shows the structure of the polypropylene resin
  • Table 2 shows the raw materials for each layer
  • Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity and low heat shrinkage at high temperature, but easily charged was obtained.
  • Tex SA321) is 0.9554 parts by weight and glycerin monostearate (manufactured by Toho Chemical Industry Co., Ltd .: Anstex MG100) is 0.153 parts by weight as compound (B), and stearyldiethanolamine (Toho Chemical Co., Ltd.) is used as compound (C).
  • Industrial Co., Ltd .: Anstex SA20) is blended in 0.120 parts by weight, mixed, melt-kneaded and granulated using an extruder with a pelletizer to obtain pellets of the polypropylene composition, and used for the intermediate layer (B).
  • the same procedure as in Example 1 was carried out except that the polypropylene-based resin composition of the above was used.
  • Table 1 shows the structure of the polypropylene resin
  • Table 2 shows the raw materials for each layer
  • Table 3 shows the film forming conditions. As shown in Table 4, a film having low rigidity was obtained.
  • Polypropylene homopolymer PP-2 (Sumitomo) 0.9912 of stearylamine monostearic acid ester (manufactured by Toho Kagaku Kogyo Co., Ltd .: Anstex A321) as compound (A) in 100 parts by weight of a blend of 20 parts by weight of EL80F5 manufactured by Kagaku Co., Ltd. 0.156 parts by weight and 0.156 parts by weight of glycerin monostearate (manufactured by Toho Chemical Industry Co., Ltd .: Anstex MG100) as compound (B) are mixed, and then melt-kneaded and granulated using an extruder with a pelletizer.
  • Example 2 (WF836DG3 manufactured by Sumitomo Chemical Co., Ltd.) was blended with 6 parts by weight to prepare a polypropylene-based resin composition for the surface layer (C), and the same procedure as in Example 1 was carried out.
  • Table 1 shows the structure of the polypropylene resin
  • Table 2 shows the raw materials for each layer
  • Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity and low heat shrinkage at high temperature, but easily charged was obtained.
  • Example 7 It was carried out in the same manner as in Example 1 except that it was stretched at 162 ° C. as the first step in the width direction.
  • Table 1 shows the structure of the polypropylene resin
  • Table 2 shows the film forming conditions. As shown in Table 3, a film having high rigidity but high heat shrinkage at high temperature and easily charged was obtained.
  • Example 8 The same procedure as in Example 1 was carried out except that the temperature was stretched at 162 ° C. in the width direction, the heat fixing temperature was set to 168 ° C., and the temperature was relaxed by 5% in the width direction.
  • Table 1 shows the structure of the polypropylene resin
  • Table 2 shows the raw materials for each layer
  • Table 3 shows the film forming conditions. As shown in Table 4, a film having low rigidity was obtained.

Abstract

[Problem] To provide a biaxially-oriented polypropylene film which has high rigidity and excellent heat resistance even at a temperature as high as 150°C, which easily maintains a bag shape when used as a packaging bag, which undergoes little pitch shift during printing and has few wrinkles in a seal part when heat sealed, and is not susceptible to electrostatic charge. [Solution] This biaxially-oriented polypropylene film: has stress (F5) when stretched 5% at 23°C of 40 MPa or more in the longitudinal direction, and 160 MPa or more in the width direction; heat shrinkage at 150°C of 10% or less in the longitudinal direction, and 30% or less in the width direction; and a surface intrinsic resistance of at least one surface of the film of 15Ω/□.

Description

二軸配向ポリプロピレンフィルムBiaxially oriented polypropylene film
 本発明は剛性と耐熱性に優れる二軸配向ポリプロピレンフィルムに関する。詳しくは、包装袋としたときの袋形状を保持しやすく、しかもヒートシールしたときにシール部のシワが少なく、帯電しにくいため、包装袋に好適に用いることができる二軸配向ポリプロピレンフィルムに関する。 The present invention relates to a biaxially oriented polypropylene film having excellent rigidity and heat resistance. More specifically, the present invention relates to a biaxially oriented polypropylene film that can be suitably used for a packaging bag because it is easy to maintain the shape of the bag when it is used as a packaging bag, and there are few wrinkles in the sealed portion when it is heat-sealed and it is difficult to be charged.
 二軸配向ポリプロピレンフィルムは、防湿性を有し、しかも必要な剛性、耐熱性を有するため、包装用途や工業用途に用いられている。近年、使用される用途が広がるにつれ、より高性能化が求められており、特に剛性の向上が期待されている。また、環境への配慮から、減容(フィルム厚みを薄く)しても強度を維持することも求められているが、そのためには、著しく剛性を向上させることが不可欠である。剛性を向上する手段として、ポリプロピレン樹脂の重合時の触媒やプロセス技術の改良により、そのポリプロピレン樹脂の結晶性や融点が向上することが知られているが、このような改善にもかかわらず、これまで十分な剛性を有する二軸配向ポリプロピレンフィルムはなかった。 Biaxially oriented polypropylene film has moisture resistance, and also has the necessary rigidity and heat resistance, so it is used for packaging and industrial applications. In recent years, as the applications used have expanded, higher performance has been required, and in particular, improvement in rigidity is expected. Further, from the consideration of the environment, it is required to maintain the strength even if the volume is reduced (the film thickness is thinned), but for that purpose, it is indispensable to significantly improve the rigidity. As a means for improving the rigidity, it is known that the crystallinity and melting point of the polypropylene resin are improved by improving the catalyst and the process technology at the time of polymerization of the polypropylene resin. No biaxially oriented polypropylene film had sufficient rigidity.
 二軸配向ポリプロピレンフィルムの製造工程において、幅方向に延伸後に、幅方向延伸時の温度以下でフィルムを弛緩しながら一段目の熱処理を行い、二段目で一段目温度~幅方向延伸温度で熱処理を行う方法(例えば、参考文献1等参照。)や、幅方向延伸後にさらに、長手方向に延伸を行う方法(例えば、参考文献2等参照。)が提案されている。しかしながら、特許文献2に記載のフィルムは剛性には優れるが、ヒートシール後はシール部にシワが生じやすく、耐熱性に劣るものであった。また、特許文献1記載のフィルムの配向は低く、剛性は十分でない。 In the manufacturing process of biaxially oriented polypropylene film, after stretching in the width direction, the first stage heat treatment is performed while relaxing the film below the temperature at the time of width direction stretching, and in the second stage, heat treatment is performed at the first stage temperature to the width direction stretching temperature. (For example, see Reference 1 and the like), and a method of further stretching in the longitudinal direction after stretching in the width direction (see, for example, Reference 2 and the like) have been proposed. However, although the film described in Patent Document 2 is excellent in rigidity, wrinkles are likely to occur in the sealed portion after heat sealing, and the heat resistance is inferior. Further, the orientation of the film described in Patent Document 1 is low, and the rigidity is not sufficient.
WO2016/182003号国際公報WO2016 / 182003 International Bulletin 特開2013-177645号公報Japanese Unexamined Patent Publication No. 2013-177645
 本発明の課題は、上述した問題点を解決することにある。すなわち、フィルムの剛性と150℃もの高温での耐熱性に優れる二軸配向ポリプロピレンフィルムに関する。詳しくは、包装袋としたときの袋形状を保持しやすく、しかもヒートシールしたときにシール部及びその周りにシワが少なく、さらに帯電しにくい、二軸配向ポリプロピレンフィルムを提供することにある。 The object of the present invention is to solve the above-mentioned problems. That is, the present invention relates to a biaxially oriented polypropylene film having excellent film rigidity and heat resistance at a high temperature of 150 ° C. More specifically, it is an object of the present invention to provide a biaxially oriented polypropylene film which can easily maintain the shape of a packaging bag, has less wrinkles in and around the sealed portion when heat-sealed, and is less likely to be charged.
 本発明者らが、かかる目的を達成するために鋭意検討した結果、5%伸長時の応力(F5)が23℃において長手方向で40MPa以上であり、幅方向で160MPa以上であり、かつ、150℃における熱収縮率が、長手方向で10%以下であり、幅方向で30%以下であり、かつ、少なくとも片側のフィルム表面の表面固有抵抗が15Ω/□以下である二軸配向ポリプロピレンフィルムとすることにより、フィルムの剛性と150℃もの高温での耐熱性に優れ、さらに帯電しにくい二軸配向ポリプロピレンフィルムを得ることができることを見出した。 As a result of diligent studies to achieve such an object, the present inventors have found that the stress (F5) at 5% elongation is 40 MPa or more in the longitudinal direction, 160 MPa or more in the width direction, and 150 at 23 ° C. A biaxially oriented polypropylene film having a heat shrinkage rate at ° C. of 10% or less in the longitudinal direction, 30% or less in the width direction, and a surface intrinsic resistance of at least one side of the film surface of 15 Ω / □ or less. As a result, it has been found that a biaxially oriented polypropylene film having excellent film rigidity and heat resistance at a high temperature of as high as 150 ° C. and being less likely to be charged can be obtained.
 この場合において、前記二軸配向ポリプロピレンフィルムの120℃における熱収縮率が長手方向で2.0%以下であり、幅方向で5.0%以下であり、かつ長手方向の120℃熱収縮率が幅方向の120℃熱収縮率よりも小さいことが好適である。 In this case, the heat shrinkage rate of the biaxially oriented polypropylene film at 120 ° C. is 2.0% or less in the longitudinal direction, 5.0% or less in the width direction, and the heat shrinkage rate at 120 ° C. in the longitudinal direction is It is preferably smaller than the heat shrinkage rate of 120 ° C. in the width direction.
 また、この場合において、前記二軸配向ポリプロピレンフィルムの長手方向の屈折率Nyが1.5230以上であり、△Nyが0.0220以上であることが好適である。 Further, in this case, it is preferable that the refractive index Ny in the longitudinal direction of the biaxially oriented polypropylene film is 1.5230 or more and ΔNy is 0.0220 or more.
 さらにまた、この場合において、前記二軸配向ポリプロピレンフィルムのヘイズが5.0%以下であることが好適である。 Furthermore, in this case, it is preferable that the haze of the biaxially oriented polypropylene film is 5.0% or less.
 さらにまた、この場合において、前記基材層(A)を構成する主たるポリプロピレン樹脂のメソペンタッド分率が97.0%以上であることが好適である。 Furthermore, in this case, it is preferable that the mesopentad fraction of the main polypropylene resin constituting the base material layer (A) is 97.0% or more.
 さらにまた、この場合において、前記基材層(A)を構成する主たるポリプロピレン樹脂の結晶化温度が105℃以上であり、融点が161℃以上であることが好適である。 Furthermore, in this case, it is preferable that the crystallization temperature of the main polypropylene resin constituting the base material layer (A) is 105 ° C. or higher and the melting point is 161 ° C. or higher.
 さらにまた、この場合において、前記基材層(A)を構成する主たるポリプロピレン樹脂のメルトフローレートが4.0g/10分以上であることが好適である。 Furthermore, in this case, it is preferable that the melt flow rate of the main polypropylene resin constituting the base material layer (A) is 4.0 g / 10 minutes or more.
 さらにまた、この場合において、前記基材層(A)を構成する主たるポリプロピレン樹脂の分子量10万以下の成分量が35質量%以上であることが好適である。 Furthermore, in this case, it is preferable that the component amount of the main polypropylene resin constituting the base material layer (A) having a molecular weight of 100,000 or less is 35% by mass or more.
 本発明の二軸配向ポリプロピレンフィルムは、剛性が高く、150℃もの高温での耐熱性にも優れるため、包装袋としたときの袋形状を保持しやすく、しかもヒートシールしたときにシール部のシワが少なく、さらにラミネート強度が優れるため、包装袋に好適に用いることができる二軸配向ポリプロピレンフィルムを得ることができる。また、その二軸配向ポリプロピレンフィルムは剛性にも優れることから、フィルムの厚みを薄くしても強度を維持することができるとともに、より高い剛性が必要とされる用途にも好適に用いることができる。 The biaxially oriented polypropylene film of the present invention has high rigidity and excellent heat resistance at a high temperature of 150 ° C., so that it is easy to maintain the bag shape when it is used as a packaging bag, and wrinkles in the sealed portion when heat-sealed. A biaxially oriented polypropylene film that can be suitably used for a packaging bag can be obtained because the amount of the film is small and the laminating strength is excellent. Further, since the biaxially oriented polypropylene film has excellent rigidity, the strength can be maintained even if the thickness of the film is reduced, and it can be suitably used for applications requiring higher rigidity. ..
 以下、さらに詳しく本発明の二軸配向ポリプロピレンフィルムについて説明する。
 本発明の二軸配向ポリプロピレンフィルムは、基材層(A)、中間層(B)及び表面層(C)を含む構成とするのが好ましく、基材層(A)、中間層(B)及び表面層(C)はこの順に隣接するのが好ましい。
Hereinafter, the biaxially oriented polypropylene film of the present invention will be described in more detail.
The biaxially oriented polypropylene film of the present invention preferably has a structure including a base layer (A), an intermediate layer (B), and a surface layer (C), and the base layer (A), the intermediate layer (B), and the surface layer (C) are preferably included. The surface layer (C) is preferably adjacent in this order.
 以下に基材層(A)、中間層(B)及び表面層(C)それぞれについて、詳しく説明する。 The base layer (A), the intermediate layer (B), and the surface layer (C) will be described in detail below.
(基材層(A))
 本発明の二軸配向ポリプロピレンフィルムの基材層(A)は、下記ポリプロピレン単独重合体を主成分とするポリプロピレン樹脂組成物からなる。
(Base material layer (A))
The base material layer (A) of the biaxially oriented polypropylene film of the present invention comprises a polypropylene resin composition containing the following polypropylene homopolymer as a main component.
(ポリプロピレン単独重合体)
 基材層(A)に用いられるポリプロピレン単独重合体は、実質的にエチレンおよび/または炭素数4以上のα-オレフィンを含まないポリプロピレン重合体であることが好ましく、エチレンおよび/または炭素数4以上のα-オレフィン成分を含む場合であっても、エチレンおよび/または炭素数4以上のα-オレフィン成分量は好ましくは0.3モル%以下であり、より好ましくは0.2モル以下であり、さらに好ましくは0.1モル以下であるポリプロピレン重合体である。上記範囲であると結晶性が向上しやすい。
 このような共重合体を構成する炭素数4以上のα-オレフィン成分として、例えば、1-ブテン、1-ペンテン、3-メチルペンテン-1、3-メチルブテン-1、1-ヘキセン、4-メチルペンテン-1、5-エチルヘキセン-1、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセンなどが挙げられる。
 ポリプロピレン単独重合体は異なる2種以上のポリプロピレン単独重合体を用いることができる。
(Polypropylene homopolymer)
The polypropylene homopolymer used for the base material layer (A) is preferably a polypropylene polymer that does not substantially contain ethylene and / or an α-olefin having 4 or more carbon atoms, and ethylene and / or 4 or more carbon atoms. Even when the α-olefin component is contained, the amount of ethylene and / or the α-olefin component having 4 or more carbon atoms is preferably 0.3 mol% or less, more preferably 0.2 mol or less. More preferably, it is a polypropylene polymer having an amount of 0.1 mol or less. Within the above range, crystallinity tends to improve.
Examples of the α-olefin component having 4 or more carbon atoms constituting such a copolymer include 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene-1, 1-hexene, and 4-methyl. Examples thereof include pentene-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicosene and the like.
As the polypropylene homopolymer, two or more different kinds of polypropylene homopolymers can be used.
(立体規則性)
 本発明に用いられるポリプロピレン単独重合体の立体規則性の指標であるメソペンタッド分率([mmmm]%)は、97.0~99.9%の範囲内であることが好ましく、97.5~99.7%の範囲内であることがより好ましく、98.0~99.5%の範囲内であるとさらに好ましく、98.5~99.3%の範囲内であると特に好ましい。
 97.0%以上であると、ポリプロピレン樹脂の結晶性が高まり、フィルムにおける結晶の融点、結晶化度、結晶配向度が向上し、剛性と高温での耐熱性が得られやすい。99.9%以下であるとポリプロピレン製造の点でコストを抑えやすく、製膜時に破断しにくくなる。メソペンタッド分率は核磁気共鳴法(所謂NMR法)で測定される。
 ポリプロピレン単独重合体のメソペンタッド分率を上述の範囲内とするためには、得られたポリプロピレン樹脂パウダーをn-ヘプタンなどの溶媒で洗浄する方法や、触媒および/または助触媒の選定、ポリプロピレン樹脂組成物の成分の選定を適宜行う方法などが好ましく採用される。
(Tacticity)
The mesopentad fraction ([mmmm]%), which is an index of the stereoregularity of the polypropylene homopolymer used in the present invention, is preferably in the range of 97.0 to 99.9%, preferably 97.5 to 99. It is more preferably in the range of 0.7%, further preferably in the range of 98.0 to 99.5%, and particularly preferably in the range of 98.5 to 99.3%.
When it is 97.0% or more, the crystallinity of the polypropylene resin is enhanced, the melting point, crystallinity, and crystallinity of the crystals in the film are improved, and rigidity and heat resistance at high temperature can be easily obtained. When it is 99.9% or less, it is easy to suppress the cost in terms of polypropylene production, and it is difficult to break during film formation. The mesopentad fraction is measured by a nuclear magnetic resonance method (so-called NMR method).
In order to keep the mesopentad fraction of the polypropylene homopolymer within the above range, a method of washing the obtained polypropylene resin powder with a solvent such as n-heptane, selection of a catalyst and / or a co-catalyst, and a polypropylene resin composition. A method of appropriately selecting the components of the substance is preferably adopted.
(融解温度)
 本発明の二軸配向ポリプロピレンフィルムを構成する上記ポリプロピレン単独重合体の融解温度(Tm)の下限は好ましくは160℃であり、より好ましくは161℃であり、さらに好ましくは162℃であり、よりさらに好ましくは163℃であり、さらに好ましくは164℃である。Tmが160℃以上であると剛性と高温での耐熱性が得られやすい。Tmの上限は、好ましくは170℃であり、より好ましくは169℃であり、さらに好ましくは168℃であり、よりさらに好ましくは167℃であり、特に好ましくは166℃である。Tmが170℃以下であると、ポリプロピレン製造の点でコストアップを抑制しやすく、また製膜時に破断しにくくなる。前述のポリプロピレン樹脂に結晶核剤を配合することによって、融解温度をより上げることもできる。
 Tmは、示差走査熱量計(DSC)にて測定しており、1~10mgのサンプルをアルミパンに詰めてセットし、窒素雰囲気下で230℃にて5分間融解し、走査速度-10℃/分で30℃まで降温した後、5分間保持し、走査速度10℃/分で昇温した際に観察される、融解にともなう吸熱ピークの主たるピーク温度である。
(Melting temperature)
The lower limit of the melting temperature (Tm) of the polypropylene homopolymer constituting the biaxially oriented polypropylene film of the present invention is preferably 160 ° C, more preferably 161 ° C, still more preferably 162 ° C, and further. It is preferably 163 ° C, more preferably 164 ° C. When Tm is 160 ° C. or higher, rigidity and heat resistance at high temperature can be easily obtained. The upper limit of Tm is preferably 170 ° C., more preferably 169 ° C., still more preferably 168 ° C., even more preferably 167 ° C., and particularly preferably 166 ° C. When Tm is 170 ° C. or lower, it is easy to suppress an increase in cost in terms of polypropylene production, and it is difficult to break during film formation. By blending the crystal nucleating agent with the polypropylene resin described above, the melting temperature can be further increased.
Tm is measured by a differential scanning calorimeter (DSC). A sample of 1 to 10 mg is packed in an aluminum pan, set, melted at 230 ° C. for 5 minutes in a nitrogen atmosphere, and the scanning speed is -10 ° C./. It is the main peak temperature of the endothermic peak associated with melting observed when the temperature is lowered to 30 ° C. in minutes, held for 5 minutes, and the temperature is raised at a scanning rate of 10 ° C./min.
(結晶化温度)
 本発明の二軸配向ポリプロピレンフィルムを構成する上記ポリプロピレン単独重合体のDSCで測定される結晶化温度(Tc)の下限は105℃であり、好ましくは108℃であり、より好ましくは110℃である。Tcが105℃以上であると、幅方向延伸とそれに続く冷却工程において結晶化が進みやすく、剛性と高温での耐熱性が得られやすい。Tcの上限は、好ましくは135℃であり、より好ましくは133℃であり、さらに好ましくは132℃であり、よりさらに好ましくは130℃であり、特に好ましくは128℃であり、最も好ましくは127℃である。Tcが135℃以下であるとポリプロピレン製造の点でコストアップを抑制しやすく、また製膜時に破断しにくくなる。前述のポリプロピレン樹脂に結晶核剤を配合することによって、結晶化温度をより上げることもできる。
 Tcは、DSCにて測定しており、1~10mgのサンプルをアルミパンに詰めてセットし、窒素雰囲気下で230℃にて5分間融解し、走査速度-10℃/分で30℃まで降温したときに観察される発熱ピークの主たるピーク温度である。
(Crystallization temperature)
The lower limit of the crystallization temperature (Tc) measured by DSC of the polypropylene homopolymer constituting the biaxially oriented polypropylene film of the present invention is 105 ° C, preferably 108 ° C, and more preferably 110 ° C. .. When Tc is 105 ° C. or higher, crystallization is likely to proceed in the stretching in the width direction and the subsequent cooling step, and rigidity and heat resistance at high temperature are easily obtained. The upper limit of Tc is preferably 135 ° C., more preferably 133 ° C., still more preferably 132 ° C., even more preferably 130 ° C., particularly preferably 128 ° C., and most preferably 127 ° C. Is. When Tc is 135 ° C. or lower, it is easy to suppress an increase in cost in terms of polypropylene production, and it is difficult to break during film formation. By blending the crystal nucleating agent with the above-mentioned polypropylene resin, the crystallization temperature can be further raised.
Tc is measured by DSC. A sample of 1 to 10 mg is packed in an aluminum pan, melted at 230 ° C for 5 minutes in a nitrogen atmosphere, and cooled to 30 ° C at a scanning speed of -10 ° C / min. It is the main peak temperature of the exothermic peak observed at the time of.
(メルトフローレート)
 本発明の二軸配向ポリプロピレンフィルムを構成する上記ポリプロピレン単独重合体のメルトフローレート(MFR)は、JIS K 7210(1995)の条件M(230℃、2.16kgf)に準拠して測定した場合において、4.0~30g/10分であることが好ましく、4.5~25g/10分であるとより好ましく、4.8~22g/10分であるとさらに好ましく、5.0~20g/10分であると特に好ましく、6.0~20g/10分であると最も好ましい。
 ポリプロピレン樹脂のMFRが4.0g/10分以上であると、熱収縮が低い二軸配向ポリプロピレンフィルムを得られやすい。
 また、ポリプロピレン樹脂のMFRが30g/10分以下であると、フィルムの製膜性を維持しやすい。
(Melt flow rate)
The melt flow rate (MFR) of the polypropylene homopolymer constituting the biaxially oriented polypropylene film of the present invention is measured in accordance with the condition M (230 ° C., 2.16 kgf) of JIS K 7210 (1995). 4.0 to 30 g / 10 minutes is preferable, 4.5 to 25 g / 10 minutes is more preferable, and 4.8 to 22 g / 10 minutes is more preferable, and 5.0 to 20 g / 10 minutes is preferable. Minutes are particularly preferable, and 6.0 to 20 g / 10 minutes are most preferable.
When the MFR of the polypropylene resin is 4.0 g / 10 minutes or more, it is easy to obtain a biaxially oriented polypropylene film having low heat shrinkage.
Further, when the MFR of the polypropylene resin is 30 g / 10 minutes or less, it is easy to maintain the film-forming property of the film.
 フィルム特性の観点からは、フィルムを構成するポリプロピレン単独重合体のMFR(230℃、2.16kgf)の下限を好ましくは5.0g/10分、より好ましくは5.5g/10分、さらに好ましくは6.0g/10分、特に好ましくは6.3g/10分、最も好ましくは6.5g/10分とするのが良い。
 ポリプロピレン樹脂のMFRが5.0g/10分以上であると、フィルムを構成するポリプロピレン樹脂の低分子量成分量が多くなるため、後述するフィルム製膜工程での幅方向延伸工程を採用することにより、ポリプロピレン樹脂の配向結晶化がより促進されること、及びフィルムにおける結晶化度がより高まりやすくなることに加えて、非晶部分のポリプロピレン分子鎖同士の絡み合いがより少なくなり、耐熱性をより高めやすい。
 ポリプロピレン単独重合体のMFRを上記の範囲内とするためには、ポリプロピレン単独重合体の平均分子量や分子量分布を制御する方法などを採用するのが好ましい。
From the viewpoint of film characteristics, the lower limit of the MFR (230 ° C., 2.16 kgf) of the polypropylene homopolymer constituting the film is preferably 5.0 g / 10 minutes, more preferably 5.5 g / 10 minutes, still more preferably. It is preferably 6.0 g / 10 minutes, particularly preferably 6.3 g / 10 minutes, and most preferably 6.5 g / 10 minutes.
When the MFR of the polypropylene resin is 5.0 g / 10 minutes or more, the amount of low molecular weight components of the polypropylene resin constituting the film increases. Therefore, by adopting the widthwise stretching step in the film forming step described later, In addition to the fact that the orientation crystallization of the polypropylene resin is more promoted and the degree of crystallization in the film is more likely to be increased, the polypropylene molecular chains in the amorphous portion are less entangled with each other, and the heat resistance is more likely to be increased. ..
In order to keep the MFR of the polypropylene homopolymer within the above range, it is preferable to adopt a method of controlling the average molecular weight and the molecular weight distribution of the polypropylene homopolymer.
 すなわち、本発明のフィルムを構成するポリプロピレン単独重合体ゲルパーミエーションクロマトグラフィー(GPC)積算カーブにおける分子量10万以下の成分の量の下限は35質量%であり、好ましくは38質量%であり、より好ましくは40質量%であり、さらに好ましくは41質量%であり、特に好ましくは42質量%である。
 GPC積算カーブでの分子量10万以下の成分の量の上限は、好ましくは65質量%であり、より好ましくは60質量%であり、さらに好ましくは58質量%である。GPC積算カーブでの分子量10万以下の成分の量が65質量%以下であるとフィルム強度が低下しにくい。
 このとき、緩和時間の長い高分子量成分や長鎖分岐成分を含むと、ポリプロピレン樹脂に含まれる分子量10万以下の成分の量を、全体の粘度を大きく変えずに、調整しやすくなるので、剛性や熱収縮にあまり影響させずに、製膜性を改善しやすい。
That is, the lower limit of the amount of the component having a molecular weight of 100,000 or less in the gel permeation chromatography (GPC) integration curve of the polypropylene homopolymer constituting the film of the present invention is 35% by mass, preferably 38% by mass, and more. It is preferably 40% by mass, more preferably 41% by mass, and particularly preferably 42% by mass.
The upper limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, and further preferably 58% by mass. When the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is 65% by mass or less, the film strength is unlikely to decrease.
At this time, if a high molecular weight component or a long chain branching component having a long relaxation time is included, the amount of the component having a molecular weight of 100,000 or less contained in the polypropylene resin can be easily adjusted without significantly changing the overall viscosity, so that the rigidity is increased. It is easy to improve the film-forming property without significantly affecting the heat shrinkage.
(分子量分布)
 本発明に用いるポリプロピレン単独重合体、分子量分布の広さの指標である質量平均分子量(Mw)/数平均分子量(Mn)の下限が、好ましくは3.5であり、より好ましくは4.0であり、さらに好ましくは4.5であり、特に好ましくは5.0である。Mw/Mnの上限は、好ましくは30であり、より好ましくは25であり、さらに好ましくは23であり、特に好ましくは21であり、最も好ましくは20である。
 Mw/Mnは、GPCを用いて得ることができる。Mw/Mnが上記範囲であると、分子量10万以下の成分の量を多くすることが容易である。
(Molecular weight distribution)
The lower limit of the mass average molecular weight (Mw) / number average molecular weight (Mn), which is an index of the breadth of the molecular weight distribution of the polypropylene homopolymer used in the present invention, is preferably 3.5, more preferably 4.0. Yes, more preferably 4.5, and particularly preferably 5.0. The upper limit of Mw / Mn is preferably 30, more preferably 25, still more preferably 23, particularly preferably 21 and most preferably 20.
Mw / Mn can be obtained using GPC. When Mw / Mn is in the above range, it is easy to increase the amount of the component having a molecular weight of 100,000 or less.
 なお、ポリプロピレン単独重合体分子量分布は、異なる分子量の成分を多段階に一連のプラントで重合したり、異なる分子量の成分をオフラインで混練機にてブレンドしたり、異なる性能をもつ触媒をブレンドして重合したり、所望の分子量分布を実現できる触媒を用いたりすることで調整することが可能である。GPCで得られる分子量分布の形状としては、横軸に分子量(M)の対数(logM)、縦軸に微分分布値(logMあたりの重量分率)をとったGPCチャートにおいて、単一ピークを有するなだらかな分子量分布であってもよく、複数のピークやショルダーを有する分子量分布であってよい。 For the molecular weight distribution of polypropylene homopolymers, components of different molecular weights can be polymerized in a series of plants in multiple stages, components of different molecular weights can be blended offline with a kneader, or catalysts with different performances can be blended. It can be adjusted by polymerization or by using a catalyst capable of achieving a desired molecular weight distribution. The shape of the molecular weight distribution obtained by GPC has a single peak in a GPC chart in which the horizontal axis is the logarithmic weight (M) log (logM) and the vertical axis is the differential distribution value (weight fraction per logM). It may have a gentle molecular weight distribution, or it may have a molecular weight distribution having a plurality of peaks and shoulders.
(プロピレン系樹脂組成物)
 基材層(A)を構成するプロピレン系樹脂組成物にエチレンおよび/または炭素数4以上のα-オレフィン成分量が0.3%を超えるプロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体を混合して使用する場合は、基材層(A)に使用されるポリプロピレン系樹脂全体に対して、エチレンおよび/または炭素数4以上のα-オレフィン成分量が0.3%を超えるプロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体の含有量を5重量%以下とすることが好ましく、3重量%以下であることがより好ましく、1重量%以下であることがさらに好ましく、0重量%であることが特に好ましい。
(Propylene resin composition)
Ethylene and / or propylene having an α-olefin component having 4 or more carbon atoms of more than 0.3% and ethylene and / or α-olefin having 4 or more carbon atoms in the propylene resin composition constituting the base material layer (A) When the copolymer with ethylene is mixed and used, the amount of ethylene and / or α-olefin component having 4 or more carbon atoms is 0.3 with respect to the entire polypropylene-based resin used for the base material layer (A). The content of the copolymer of propylene exceeding% and ethylene and / or α-olefin having 4 or more carbon atoms is preferably 5% by weight or less, more preferably 3% by weight or less, and 1% by weight. The following is more preferable, and 0% by weight is particularly preferable.
(帯電防止剤)
 基材層(A)を構成するプロピレン樹脂組成物に特定のジエタノールアミン脂肪酸エステル化合物と特定のアミン化合物と特定のグリセリンモノ脂肪酸エステル化合物を特定割合で併用することにより、初期の帯電防止性が充分であると共に、優れた帯電防止性が長期にわたり持続し、しかも高温に晒されても初期の透明性の低下が殆どなく、べた付きのない二軸延伸ポリプロピレン系樹脂フィルムとすることができる。
(Antistatic agent)
By using a specific diethanolamine fatty acid ester compound, a specific amine compound, and a specific glycerin monofatty acid ester compound in combination with the propylene resin composition constituting the base material layer (A) in a specific ratio, the initial antistatic property is sufficient. At the same time, an excellent antistatic property can be maintained for a long period of time, and the initial transparency is hardly deteriorated even when exposed to a high temperature, so that a non-sticky biaxially stretched polypropylene-based resin film can be obtained.
 例えば、基材層(A)を構成するポリプロピレン樹脂組成物100重量部に対し、式(1)で表されるアミン1モルに対しエチレンオキサイトを2モル以上付加させたポリオキシエチレンアルキルアミンモノ脂肪酸エステル化合物(A)を0.3~0.2重量部、
Figure JPOXMLDOC01-appb-C000001
 式中、R1、R2は炭素数7~21のアルキル基であり、XおよびYは、それぞれ1~29の整数であり、X+Yは2~30の整数である。
For example, a polyoxyethylene alkylamine mono obtained by adding 2 mol or more of ethylene oxide to 1 mol of the amine represented by the formula (1) with respect to 100 parts by weight of the polypropylene resin composition constituting the base material layer (A). 0.3 to 0.2 parts by weight of the fatty acid ester compound (A),
Figure JPOXMLDOC01-appb-C000001
In the formula, R1 and R2 are alkyl groups having 7 to 21 carbon atoms, X and Y are integers of 1 to 29, respectively, and X + Y are integers of 2 to 30.
 式(2)で表されるグリセリンモノ脂肪酸エステル化合物(B)を0.03~0.2重量部、
Figure JPOXMLDOC01-appb-C000002
 式中、R3は炭素数7~21のアルキル基である。
0.03 to 0.2 parts by weight of the glycerin monofatty acid ester compound (B) represented by the formula (2),
Figure JPOXMLDOC01-appb-C000002
In the formula, R3 is an alkyl group having 7 to 21 carbon atoms.
 式(3)で表されるアミン1モルに対しエチレンオキサイトを2モル以上付加させたポリオキシエチレンアルキルアミンジ脂肪酸エステル化合物(C)を0~0.2重量部、
Figure JPOXMLDOC01-appb-C000003
 式中、R4、R5、R6は炭素数7~21のアルキル基であり、XおよびYは、それぞれ1~29の整数であり、X+Yは2~30の整数である。
0 to 0.2 parts by weight of the polyoxyethylene alkylamine difatty acid ester compound (C) to which 2 mol or more of ethylene oxide is added to 1 mol of the amine represented by the formula (3).
Figure JPOXMLDOC01-appb-C000003
In the formula, R4, R5, and R6 are alkyl groups having 7 to 21 carbon atoms, X and Y are integers of 1 to 29, respectively, and X + Y are integers of 2 to 30.
 式(4)で表されるアミン1モルに対しエチレンオキサイトを2モル以上付加させたポリオキシエチレンアルケニルアミン化合物(D)を0~0.2重量部、
Figure JPOXMLDOC01-appb-C000004
 式中、R7は炭素数7~21のアルケニル基であり、XおよびYは、それぞれ1~29の整数であり、X+Yは2~30の整数である。
を含有するのが好ましい。
0 to 0.2 parts by weight of the polyoxyethylene alkenylamine compound (D) to which 2 mol or more of ethylene oxide is added to 1 mol of the amine represented by the formula (4).
Figure JPOXMLDOC01-appb-C000004
In the formula, R7 is an alkenyl group having 7 to 21 carbon atoms, X and Y are integers of 1 to 29, respectively, and X + Y is an integer of 2 to 30.
Is preferably contained.
 本発明で用いられるアミン1モルに対しエチレンオキサイトを2モル付加させたポリオキシエチレンアミンモノエステル化合物(A)は、式(1)で表される非イオン系の帯電防止剤であり、基材層(A)を構成するポリプロピレン系樹脂組成物100重量部に対して、好ましくは0.3~1.2重量部、特に好ましくは0.3~1.1重量部の割合で含有する。化合物(A)の含有量が0.3重量部以上では長期に亘っての帯電防止効果が得られ、1.2重量部を以下の含有量ではブリード量が少なく、白化による透明性の低下が少ない。 The polyoxyethylene amine monoester compound (A) to which 2 mol of ethylene oxide is added to 1 mol of the amine used in the present invention is a nonionic antistatic agent represented by the formula (1) and is a group. It is contained in an amount of preferably 0.3 to 1.2 parts by weight, particularly preferably 0.3 to 1.1 parts by weight, based on 100 parts by weight of the polypropylene-based resin composition constituting the material layer (A). When the content of the compound (A) is 0.3 parts by weight or more, the antistatic effect is obtained for a long period of time, and when the content is 1.2 parts by weight or less, the bleeding amount is small and the transparency is lowered due to whitening. few.
 本発明で用いられるグリセリンモノ脂肪酸エステル化合物(B)は式(2)で表される非イオン系の帯電防止剤であり、R3は直鎖状または分岐状のアルキル基、好ましくは炭素原子数10~21のアルキル基、特に好ましくは炭素原子数14~20のアルキル基であり、基材層(A)を構成するポリプロピレン系樹脂組成物100重量部に対して、好ましくは0.03~0.3重量部、特に好ましくは0.03~0.2重量部の割合で含有する。化合物(E)の含有量が0.03重量部以上では帯電防止性の発現が速く帯電防止効果が得られ、0.3重量部以下の含有量ではブリード量が少なく、フィルム表面に粘着性が生じにくいとともに白化による透明性の低下が少ない。 The glycerin monofatty acid ester compound (B) used in the present invention is a nonionic antistatic agent represented by the formula (2), and R3 is a linear or branched alkyl group, preferably having 10 carbon atoms. Alkyl groups of ~ 21 are particularly preferably alkyl groups having 14 to 20 carbon atoms, and are preferably 0.03 to 0. With respect to 100 parts by weight of the polypropylene-based resin composition constituting the base material layer (A). It is contained in an amount of 3 parts by weight, particularly preferably 0.03 to 0.2 parts by weight. When the content of the compound (E) is 0.03 parts by weight or more, the antistatic property develops quickly and the antistatic effect can be obtained, and when the content is 0.3 parts by weight or less, the bleeding amount is small and the film surface becomes adhesive. It is unlikely to occur and there is little decrease in transparency due to whitening.
 本発明で用いられるアミン1モルに対しエチレンオキサイトを2モル以上付加させたポリオキシエチレンアルキルジエタノールアミン化合物(C)は式(3)で表される非イオン系の帯電防止剤であり、基材層(A)を構成するポリプロピレン系樹脂組成物100重量部に対して、好ましくは0~0.2重量部、特に好ましくは0.002~0.15重量部の割合で含有する。化合物(C)の含有量が0.2重量部以下ではブリード量が少なく、白化による透明性の低下が少ない。 The polyoxyethylene alkyl diethanolamine compound (C) to which 2 mol or more of ethylene oxide is added to 1 mol of amine used in the present invention is a nonionic antistatic agent represented by the formula (3) and is a base material. The content is preferably 0 to 0.2 parts by weight, particularly preferably 0.002 to 0.15 parts by weight, based on 100 parts by weight of the polypropylene-based resin composition constituting the layer (A). When the content of the compound (C) is 0.2 parts by weight or less, the amount of bleeding is small and the decrease in transparency due to whitening is small.
 本発明で用いられるアミン1モルに対しエチレンオキサイトを2モル以上付加させたポリオキシエチレンアルケニルジエタノールアミン化合物(D)式(4)で表される非イオン系の帯電防止剤であり、基材層(A)を構成するポリプロピレン系樹脂組成物100重量部に対して、好ましくは0~0.2重量部、特に好ましくは0.002~0.15重量部の割合で含有する。化合物(C)の含有量が0.2重量部以下ではブリード量が少なく、白化による透明性の低下が少ない。 It is a nonionic antistatic agent represented by the formula (4) of the polyoxyethylene alkenyl diethanolamine compound (D) in which 2 mol or more of ethylene oxide is added to 1 mol of the amine used in the present invention, and is a base material layer. It is preferably contained in an amount of 0 to 0.2 parts by weight, particularly preferably 0.002 to 0.15 parts by weight, based on 100 parts by weight of the polypropylene-based resin composition constituting (A). When the content of the compound (C) is 0.2 parts by weight or less, the amount of bleeding is small and the decrease in transparency due to whitening is small.
 式(1)~(4)におけるX及びYはそれぞれ1~29の整数であり、X+Yは2~30の整数、好ましくは2~4の整数である。
 R1~R6は直鎖状または分岐状のアルキル基、特に好ましくは炭素原子数13~25のアルキル基、特に好ましくは炭素原子数13~18のアルキル基である。
X and Y in the formulas (1) to (4) are integers of 1 to 29, respectively, and X + Y is an integer of 2 to 30, preferably an integer of 2 to 4.
R1 to R6 are linear or branched alkyl groups, particularly preferably alkyl groups having 13 to 25 carbon atoms, and particularly preferably alkyl groups having 13 to 18 carbon atoms.
 式(1)~(3)におけるR1~R6のアルキル基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソペンチル基、ノニル基、デシル基、ウンデシル基、ラウリル基、トリラウリル基、ミリスチル基、ペンタデシル基、パルミチル基、ヘプタデシル基、ステアリル基、ノナデシル基、エイコシル基などが挙げられる。 Specific examples of the alkyl group of R1 to R6 in the formulas (1) to (3) include a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, an isopentyl group and a nonyl group. Examples thereof include a group, a decyl group, an undecyl group, a lauryl group, a trilauryl group, a myristyl group, a pentadecyl group, a palmityl group, a heptadecyl group, a stearyl group, a nonadecyl group and an eicosyl group.
 式(4)におけるR7のアルケニル基は炭素原子数12~21よりなる高級不飽和脂肪族基の中から選ばれた少なくとも1種が好ましい。 The alkenyl group of R7 in the formula (4) is preferably at least one selected from higher unsaturated aliphatic groups having 12 to 21 carbon atoms.
 また、本発明の効果を損なわない範囲であれば、基材層(A)を構成するポリプロピレン系樹脂組成物には滑り性やなどの品質向上のための各種添加剤、例えば、生産性の向上のためにワックス、金属石鹸などの潤滑剤、可塑剤、加工助剤やポリプロピレン系フィルムに通常添加される公知の熱安定剤、酸化防止剤、紫外線吸収剤などを配合することも可能である。 Further, as long as the effect of the present invention is not impaired, the polypropylene-based resin composition constituting the base material layer (A) has various additives for improving quality such as slipperiness, for example, improving productivity. It is also possible to add lubricants such as waxes and metal soaps, plasticizers, processing aids, known heat stabilizers usually added to polypropylene films, antioxidants, ultraviolet absorbers and the like.
(中間層(B))
 (ポリプロピレン樹脂)
 本発明の二軸配向ポリプロピレンフィルムの中間層(B)に用いるポリプロピレン樹脂組成物には、下記で説明するポリプロピレン単独重合体とプロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体を用いると、剛性を維持しながら、ラミネート強度を向上させやすい。
(Middle layer (B))
(Polypropylene resin)
The polypropylene resin composition used for the intermediate layer (B) of the biaxially oriented polypropylene film of the present invention contains the polypropylene homopolymer described below and the common weight of propylene and ethylene and / or α-olefin having 4 or more carbon atoms. When coalesced, it is easy to improve the laminate strength while maintaining rigidity.
(ポリプロピレン単独重合体)
 中間層(B)に用いられるポリプロピレン単独重合体は、実質的にエチレンおよび/または炭素数4以上のα-オレフィンを含まないポリプロピレン重合体であることが好ましく、エチレンおよび/または炭素数4以上のα-オレフィン成分を含む場合であっても、エチレンおよび/または炭素数4以上のα-オレフィン成分量は好ましくは0.3モル%以下であり、より好ましくは0.2モル%以下であり、さらに好ましくは0.1モル以下であるポリプロピレン重合体である。上記範囲であると結晶性が向上しやすい。
 このような共重合体を構成する炭素数4以上のα-オレフィン成分として、例えば、1-ブテン、1-ペンテン、3-メチルペンテン-1、3-メチルブテン-1、1-ヘキセン、4-メチルペンテン-1、5-エチルヘキセン-1、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセンなどが挙げられる。
 ポリプロピレン単独重合体は異なる2種以上のポリプロピレン単独重合体を用いることができる。
(Polypropylene homopolymer)
The polypropylene homopolymer used for the intermediate layer (B) is preferably a polypropylene polymer that does not substantially contain ethylene and / or an α-olefin having 4 or more carbon atoms, and has ethylene and / or 4 or more carbon atoms. Even when the α-olefin component is contained, the amount of ethylene and / or the α-olefin component having 4 or more carbon atoms is preferably 0.3 mol% or less, more preferably 0.2 mol% or less. More preferably, it is a polypropylene polymer having an amount of 0.1 mol or less. Within the above range, crystallinity tends to improve.
Examples of the α-olefin component having 4 or more carbon atoms constituting such a copolymer include 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene-1, 1-hexene, and 4-methyl. Examples thereof include pentene-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicosene and the like.
As the polypropylene homopolymer, two or more different kinds of polypropylene homopolymers can be used.
 ポリプロピレン単独重合体の含有量は、中間層(B)に使用されるポリプロピレン系樹脂全体に対して、55重量%以上含むことが好ましく、55重量%以上、95重量%以下がより好ましく、60重量%以上、92重量%以下含むことがさらに好ましく、65重量%以上、92重量%以下含むことが特に好ましい。 The content of the polypropylene homopolymer is preferably 55% by weight or more, more preferably 55% by weight or more and 95% by weight or less, more preferably 60% by weight, based on the total polypropylene resin used in the intermediate layer (B). It is more preferably contained in an amount of% or more and 92% by weight or less, and particularly preferably contained in an amount of 65% by weight or more and 92% by weight or less.
(立体規則性)
 ポリプロピレン単独重合体の立体規則性の指標であるメソペンタッド分率([mmmm]%)は、97.0~99.9%の範囲内であることが好ましく、97.5~99.7%の範囲内であることがより好ましく、98.0~99.5%の範囲内であるとさらに好ましく、98.5~99.3%の範囲内であると特に好ましい。
 97.0%以上であると、ポリプロピレン単独重合体の結晶性が高まり、フィルムにおける結晶の融点、結晶化度、結晶配向度が向上し、剛性と高温での耐熱性が得られやすい。99.9%以下であるとポリプロピレン製造の点でコストを抑えやすく、製膜時に破断しにくくなる。メソペンタッド分率は核磁気共鳴法(所謂NMR法)で測定される。
99.5%以下であることがより好ましい。メソペンタッド分率は核磁気共鳴法(所謂NMR法)で測定される。
 ポリプロピレン単独重合体のメソペンタッド分率を上述の範囲内とするためには、得られたポリプロピレン単独重合体パウダーをn-ヘプタンなどの溶媒で洗浄する方法や、触媒および/または助触媒の選定、ポリプロピレン樹脂組成物の成分の選定を適宜行う方法などが好ましく採用される。
(Tacticity)
The mesopentad fraction ([mmmm]%), which is an index of the stereoregularity of the polypropylene homopolymer, is preferably in the range of 97.0 to 99.9%, and preferably in the range of 97.5 to 99.7%. It is more preferably in the range of 98.0 to 99.5%, further preferably in the range of 98.5 to 99.3%, and particularly preferably in the range of 98.5 to 99.3%.
When it is 97.0% or more, the crystallinity of the polypropylene homopolymer is enhanced, the melting point, crystallinity, and crystallinity of the crystals in the film are improved, and rigidity and heat resistance at high temperature can be easily obtained. When it is 99.9% or less, it is easy to suppress the cost in terms of polypropylene production, and it is difficult to break during film formation. The mesopentad fraction is measured by a nuclear magnetic resonance method (so-called NMR method).
It is more preferably 99.5% or less. The mesopentad fraction is measured by a nuclear magnetic resonance method (so-called NMR method).
In order to keep the mesopentad fraction of the polypropylene homopolymer within the above range, a method of washing the obtained polypropylene homopolymer powder with a solvent such as n-heptane, selection of a catalyst and / or a co-catalyst, and polypropylene A method of appropriately selecting the components of the resin composition is preferably adopted.
(融解温度)
 上記ポリプロピレン単独重合体のDSCで測定される融解温度(Tm)の下限は好ましくは160℃であり、より好ましくは161℃であり、さらに好ましくは162℃であり、よりさらに好ましくは163℃であり、さらに好ましくは164℃である。Tmが160℃以上であると剛性と高温での耐熱性が得られやすい。Tmの上限は、好ましくは170℃であり、より好ましくは169℃であり、さらに好ましくは168℃であり、よりさらに好ましくは167℃であり、特に好ましくは166℃である。Tmが170℃以下であると、ポリプロピレン製造の点でコストアップを抑制しやすかったり、製膜時に破断しにくくなる。前述のポリプロピレン単独重合体に結晶核剤を配合することによって、融解温度をより上げることもできる。
 Tmは、示差走査熱量計(DSC)にて測定しており、1~10mgのサンプルをアルミパンに詰めて示差走査熱量計(DSC)にセットし、窒素雰囲気下で、230℃で5分間融解し、走査速度-10℃/分で30℃まで降温した後、5分間保持し、走査速度10℃/分で昇温した際に観察される、融解にともなう吸熱ピークの主たるピーク温度である。
(Melting temperature)
The lower limit of the melting temperature (Tm) measured by DSC of the polypropylene homopolymer is preferably 160 ° C., more preferably 161 ° C., still more preferably 162 ° C., and even more preferably 163 ° C. , More preferably 164 ° C. When Tm is 160 ° C. or higher, rigidity and heat resistance at high temperature can be easily obtained. The upper limit of Tm is preferably 170 ° C., more preferably 169 ° C., still more preferably 168 ° C., even more preferably 167 ° C., and particularly preferably 166 ° C. When Tm is 170 ° C. or lower, it is easy to suppress an increase in cost in terms of polypropylene production, and it is difficult to break during film formation. The melting temperature can be further increased by adding a crystal nucleating agent to the above-mentioned polypropylene homopolymer.
Tm is measured by a differential scanning calorimeter (DSC). A sample of 1 to 10 mg is packed in an aluminum pan, set in a differential scanning calorimeter (DSC), and melted at 230 ° C. for 5 minutes in a nitrogen atmosphere. This is the main peak temperature of the endothermic peak associated with melting, which is observed when the temperature is lowered to 30 ° C. at a scanning speed of −10 ° C./min, held for 5 minutes, and the temperature is raised at a scanning speed of 10 ° C./min.
(結晶化温度)
 ポリプロピレン単独重合体のDSCで測定される結晶化温度(Tc)の下限は105℃であり、好ましくは108℃であり、より好ましくは110℃である。Tcが105℃以上であると、幅方向延伸とそれに続く冷却工程において結晶化が進みやすく、剛性と高温での耐熱性が得られやすい。Tcの上限は、好ましくは135℃であり、より好ましくは133℃であり、さらに好ましくは132℃であり、よりさらに好ましくは130℃であり、特に好ましくは128℃であり、最も好ましくは127℃である。Tcが135℃以下であるとポリプロピレン製造の点でコストアップしにくかったり、製膜時に破断しにくくなる。前述のポリプロピレン単独重合体に結晶核剤を配合することによって、結晶化温度をより上げることもできる。
 Tcは、示差走査熱量計(DSC)にて測定しており、1~10mgのサンプルをアルミパンに詰めてDSCにセットし、窒素雰囲気下で、230℃で5分間融解し、走査速度-10℃/分で30℃まで降温したときに観察される発熱ピークの主たるピーク温度である。
(Crystallization temperature)
The lower limit of the crystallization temperature (Tc) measured by DSC of the polypropylene homopolymer is 105 ° C, preferably 108 ° C, and more preferably 110 ° C. When Tc is 105 ° C. or higher, crystallization is likely to proceed in the stretching in the width direction and the subsequent cooling step, and rigidity and heat resistance at high temperature are easily obtained. The upper limit of Tc is preferably 135 ° C., more preferably 133 ° C., still more preferably 132 ° C., even more preferably 130 ° C., particularly preferably 128 ° C., and most preferably 127 ° C. Is. If the Tc is 135 ° C. or lower, it is difficult to increase the cost in terms of polypropylene production, and it is difficult to break during film formation. The crystallization temperature can be further increased by adding a crystal nucleating agent to the above-mentioned polypropylene homopolymer.
Tc is measured by a differential scanning calorimeter (DSC). A sample of 1 to 10 mg is packed in an aluminum pan, set in the DSC, melted at 230 ° C. for 5 minutes in a nitrogen atmosphere, and the scanning speed is -10. It is the main peak temperature of the exothermic peak observed when the temperature is lowered to 30 ° C. at ° C./min.
(メルトフローレート)
 ポリプロピレン単独重合体のメルトフローレート(MFR)は、JIS K 7210(1995)の条件M(230℃、2.16kgf)に準拠して測定した場合において、4.0~30g/10分であることが好ましく、5.0~25g/10分であるとより好ましく、6.0~22g/10分であるとさらに好ましく、7.0~20g/10分であると特に好ましく、8.0~20g/10分であると最も好ましい。
 ポリプロピレン単独重合体のメルトフローレート(MFR)が4.0g/10分以上であると、熱収縮が低い二軸配向ポリプロピレンフィルムを得られやすい。
 また、ポリプロピレン単独重合体のメルトフローレート(MFR)が30g/10分以下であると、フィルムの製膜性を維持しやすい。
(Melt flow rate)
The melt flow rate (MFR) of the polypropylene homopolymer shall be 4.0 to 30 g / 10 minutes when measured in accordance with the condition M (230 ° C., 2.16 kgf) of JIS K 7210 (1995). It is preferably 5.0 to 25 g / 10 minutes, more preferably 6.0 to 22 g / 10 minutes, particularly preferably 7.0 to 20 g / 10 minutes, and 8.0 to 20 g. Most preferably, it is / 10 minutes.
When the melt flow rate (MFR) of the polypropylene homopolymer is 4.0 g / 10 minutes or more, it is easy to obtain a biaxially oriented polypropylene film having low heat shrinkage.
Further, when the melt flow rate (MFR) of the polypropylene homopolymer is 30 g / 10 minutes or less, it is easy to maintain the film-forming property of the film.
 ポリプロピレン単独重合体のメルトフローレート(MFR)(230℃、2.16kgf)の下限は、フィルム特性の観点からは、好ましくは5.0g/10分、より好ましくは5.5g/10分、さらに好ましくは6.0g/10分、特に好ましくは6.3g/10分、最も好ましくは6.5g/10分とするのが良い。
 ポリプロピレン単独重合体脂のメルトフローレート(MFR)が5.0g/10分以上であると、フィルムを構成するポリプロピレン単独重合体脂の低分子量成分量が多くなるため、後述するフィルム製膜工程での幅方向延伸工程を採用することにより、ポリプロピレン単独重合体の配向結晶化がより促進されること、及びフィルムにおける結晶化度がより高まりやすくなることに加えて、非晶部分のポリプロピレン分子鎖同士の絡み合いがより少なくなり、耐熱性をより高めやすい。
 ポリプロピレン単独重合体のメルトフローレート(MFR)を上記の範囲内とするためには、ポリプロピレン樹脂の平均分子量や分子量分布を制御する方法などを採用するのが好ましい。
The lower limit of the melt flow rate (MFR) (230 ° C., 2.16 kgf) of the polypropylene homopolymer is preferably 5.0 g / 10 minutes, more preferably 5.5 g / 10 minutes, and further, from the viewpoint of film characteristics. It is preferably 6.0 g / 10 minutes, particularly preferably 6.3 g / 10 minutes, and most preferably 6.5 g / 10 minutes.
When the melt flow rate (MFR) of the polypropylene homopolymer fat is 5.0 g / 10 minutes or more, the amount of the low molecular weight component of the polypropylene homopolymer fat constituting the film increases. By adopting the widthwise stretching step, the orientation crystallization of the polypropylene homopolymer is further promoted, the degree of crystallization in the film is more likely to be increased, and the polypropylene molecular chains in the amorphous portion are arranged with each other. There is less entanglement and it is easier to increase heat resistance.
In order to keep the melt flow rate (MFR) of the polypropylene homopolymer within the above range, it is preferable to adopt a method of controlling the average molecular weight and the molecular weight distribution of the polypropylene resin.
 すなわち、ポリプロピレン単独重合体のGPC積算カーブにおける分子量10万以下の成分の量の下限は35質量%であり、好ましくは38質量%であり、より好ましくは40質量%であり、さらに好ましくは41質量%であり、特に好ましくは42質量%である。
 GPC積算カーブでの分子量10万以下の成分の量の上限は、好ましくは65質量%であり、より好ましくは60質量%であり、さらに好ましくは58質量%である。GPC積算カーブでの分子量10万以下の成分の量が65質量%以下であるとフィルム強度が低下しにくい。
 このとき、緩和時間の長い高分子量成分や長鎖分岐成分を含むと、ポリプロピレン単独重合体に含まれる分子量10万以下の成分の量を、全体の粘度を大きく変えずに、調整しやすくなるので、剛性や熱収縮にあまり影響させずに、製膜性を改善しやすい。
That is, the lower limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve of the polypropylene homopolymer is 35% by mass, preferably 38% by mass, more preferably 40% by mass, and further preferably 41% by mass. %, Especially preferably 42% by mass.
The upper limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, and further preferably 58% by mass. When the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is 65% by mass or less, the film strength is unlikely to decrease.
At this time, if a high molecular weight component or a long chain branched component having a long relaxation time is included, it becomes easy to adjust the amount of the component having a molecular weight of 100,000 or less contained in the polypropylene homopolymer without significantly changing the overall viscosity. , It is easy to improve the film-forming property without significantly affecting the rigidity and heat shrinkage.
(分子量分布)
 ポリプロピレン単独重合体は、分子量分布の広さの指標である質量平均分子量(Mw)/数平均分子量(Mn)の下限が、好ましくは3.5であり、より好ましくは4であり、さらに好ましくは4.5であり、特に好ましくは5である。Mw/Mnの上限は、好ましくは30であり、より好ましくは25であり、さらに好ましくは23であり、特に好ましくは21であり、最も好ましくは20である。
 Mw/Mnは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて得ることができる。Mw/Mnが上記範囲であると、分子量10万以下の成分の量を多くすることが容易である。
(Molecular weight distribution)
In the polypropylene homopolymer, the lower limit of the mass average molecular weight (Mw) / number average molecular weight (Mn), which is an index of the breadth of the molecular weight distribution, is preferably 3.5, more preferably 4, and even more preferably 4. It is 4.5, and particularly preferably 5. The upper limit of Mw / Mn is preferably 30, more preferably 25, still more preferably 23, particularly preferably 21 and most preferably 20.
Mw / Mn can be obtained using gel permeation chromatography (GPC). When Mw / Mn is in the above range, it is easy to increase the amount of the component having a molecular weight of 100,000 or less.
 なお、ポリプロピレン単独重合体の分子量分布は、異なる分子量の成分を多段階に一連のプラントで重合したり、異なる分子量の成分をオフラインで混練機にてブレンドしたり、異なる性能をもつ触媒をブレンドして重合したり、所望の分子量分布を実現できる触媒を用いたりすることで調整することが可能である。GPCで得られる分子量分布の形状としては、横軸に分子量(M)の対数(logM)、縦軸に微分分布値(logMあたりの重量分率)をとったGPCチャートにおいて、単一ピークを有するなだらかな分子量分布であってもよく、複数のピークやショルダーを有する分子量分布であってよい。 Regarding the molecular weight distribution of polypropylene homopolymers, components of different molecular weights can be polymerized in a series of plants in multiple stages, components of different molecular weights can be blended offline with a kneader, or catalysts with different performances can be blended. It can be adjusted by polymerizing or using a catalyst capable of achieving a desired molecular weight distribution. The shape of the molecular weight distribution obtained by GPC has a single peak in a GPC chart in which the horizontal axis is the logarithmic weight (M) log (logM) and the vertical axis is the differential distribution value (weight fraction per logM). It may have a gentle molecular weight distribution, or it may have a molecular weight distribution having a plurality of peaks and shoulders.
(プロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体)
 中間層(B)に用いられるプロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体は、エチレンおよび/または炭素数4以上のα-オレフィン成分量が0.3モル%を超えるプロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体であることが好ましい。
 エチレンおよび/または炭素数4以上のα-オレフィン成分量が0.3モル%を超えるプロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体は、低結晶性であることが好ましく、他のα-オレフィンとしては、例えば、エチレン、1-ブテン、1-ペンテン、3-メチルペンテン-1、3-メチルブテン-1、1-ヘキセン、4-メチルペンテン-1、5-エチルヘキセン-1、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセンなどが挙げられる。
 エチレンおよび/または炭素数4以上のα-オレフィン成分量は0.4モル以上%であるのが好ましく、より好ましくは0.6モル%以上である。上記範囲であると結晶性が低下しやすい。
 ここで共重合体とは、プロピレンに上記に例示されるα-オレフィンを1種又は2種以上重合して得られたランダム又はブロック共重合体であることが好ましく、プロピレン・エチレン共重合体、プロピレン・ブテン-1共重合体、プロピレン・エチレン・ブテン-1共重合体、またはプロピレン・ペンテン-1共重合体であることが好ましい。
 プロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体のうち、DSC融点の最も低いものの融点ピーク温度が150℃以上、160℃以下であることが好ましい。
(Copolymer of propylene and ethylene and / or α-olefin having 4 or more carbon atoms)
The copolymer of propylene used in the intermediate layer (B) with ethylene and / or an α-olefin having 4 or more carbon atoms has an ethylene and / or α-olefin component having 4 or more carbon atoms in an amount of 0.3 mol%. It is preferably a copolymer of more propylene and ethylene and / or an α-olefin having 4 or more carbon atoms.
Ethylene and / or a copolymer of ethylene and / or an α-olefin having 4 or more carbon atoms having an α-olefin component content of more than 0.3 mol% and ethylene and / or an α-olefin having 4 or more carbon atoms may have low crystallinity. Preferably, other α-olefins include, for example, ethylene, 1-butene, 1-pentene, 3-methylpentene-1,3-methylbutene-1,1-hexene, 4-methylpentene-1,5-ethylhexene. -1,1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicosene and the like can be mentioned.
The amount of ethylene and / or α-olefin component having 4 or more carbon atoms is preferably 0.4 mol% or more, more preferably 0.6 mol% or more. Within the above range, crystallinity tends to decrease.
Here, the copolymer is preferably a random or block copolymer obtained by polymerizing one or more of the α-olefins exemplified above with propylene, and is preferably a propylene / ethylene copolymer. It is preferably a propylene / butene-1 copolymer, a propylene / ethylene / butene-1 copolymer, or a propylene / penten-1 copolymer.
Among the copolymers of propylene and ethylene and / or α-olefin having 4 or more carbon atoms, the one having the lowest DSC melting point has a melting point peak temperature of 150 ° C. or higher and 160 ° C. or lower.
 エチレンおよび/または炭素数4以上のα-オレフィン成分量が0.3モル%を超えるプロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体の含有量は、中間層(B)に使用されるポリプロピレン樹脂組成物全体に対して、45重量%以下であることが好ましく、5重量%以上、45重量%以下であることがより好ましく、8重量%以上、40重量%以下であることがさらに好ましく、8重量%以上、35重量%以下であることが特に好ましい。 The content of the copolymer of ethylene and / or propylene having an α-olefin component content of 4 or more carbon atoms of more than 0.3 mol% and ethylene and / or α-olefin having 4 or more carbon atoms is the intermediate layer (B). ), It is preferably 45% by weight or less, more preferably 5% by weight or more and 45% by weight or less, and 8% by weight or more and 40% by weight or less with respect to the entire polypropylene resin composition used in). It is more preferably 8% by weight or more, and particularly preferably 35% by weight or less.
(ポリプロピレン樹脂組成物)
 中間層(B)で使用されるポリプロピレン樹脂組成物全体のプロピレンモノマー由来成分及びα-オレフィンモノマー由来成分の合計に対するα-オレフィンモノマー由来成分の割合は0.03モル%以上、0.4モル%以下であることが好ましく、0.04モル%以上、0.3モル%以下であることがより好ましく、0.05モル%以上、0.2モル%以下であることがさらに好ましい。
(Polypropylene resin composition)
The ratio of the α-olefin monomer-derived component to the total of the propylene monomer-derived component and the α-olefin monomer-derived component of the entire polypropylene resin composition used in the intermediate layer (B) is 0.03 mol% or more, 0.4 mol%. It is preferably 0.04 mol% or more and 0.3 mol% or less, and more preferably 0.05 mol% or more and 0.2 mol% or less.
 中間層(B)を構成するポリプロピレン樹脂組成物全体のアイソタクチックメソペンタッド分率は剛性の観点から95%以上であることが好ましい。また製膜性の観点からは99.5%以下であることが好ましい。 The isotactic mesopentad fraction of the entire polypropylene resin composition constituting the intermediate layer (B) is preferably 95% or more from the viewpoint of rigidity. Further, from the viewpoint of film forming property, it is preferably 99.5% or less.
 また、中間層(B)で使用されるポリプロピレン樹脂組成物のメルトフローレート(MFR)は溶断シール性の観点から5.0g/10min以上であることが好ましい。こうすることで、剛性と高温での耐熱性をより高いレベルで両立することができる。6.0g/10min以上であることがより好ましく、7.0g/10min以上であることが特に好ましく、8.0g/10min以上であることが最も好ましい。 Further, the melt flow rate (MFR) of the polypropylene resin composition used in the intermediate layer (B) is preferably 5.0 g / 10 min or more from the viewpoint of fusing sealability. By doing so, it is possible to achieve both rigidity and heat resistance at high temperatures at a higher level. It is more preferably 6.0 g / 10 min or more, particularly preferably 7.0 g / 10 min or more, and most preferably 8.0 g / 10 min or more.
(帯電防止剤)
 中間層(B)を構成するプロピレン樹脂組成物に特定のアミンエステル化合物と特定のアミン化合物と特定のグリセリンモノ脂肪酸エステル化合物を特定割合で併用することにより、より帯電防止性を向上させることができる。
(Antistatic agent)
By using a specific amine ester compound, a specific amine compound, and a specific glycerin monofatty acid ester compound in combination with the propylene resin composition constituting the intermediate layer (B) in a specific ratio, the antistatic property can be further improved. ..
 例えば、中間層(B)を構成するポリプロピレン樹脂組成物100重量部に対し、一般式(1)で表されるアミン1モルに対しエチレンオキサトを2モル以上付加させたポリオキシエチレンアルキルアミンモノ脂肪酸エステル化合物(A)を0.3~1.2重量部、
Figure JPOXMLDOC01-appb-C000005
 式中、R1、R2は炭素数7~21のアルキル基であり、XおよびYは、それぞれ1~29の整数であり、X+Yは2~30の整数である。
For example, a polyoxyethylene alkylamine mono obtained by adding 2 mol or more of ethylene oxat to 1 mol of the amine represented by the general formula (1) with respect to 100 parts by weight of the polypropylene resin composition constituting the intermediate layer (B). 0.3 to 1.2 parts by weight of fatty acid ester compound (A),
Figure JPOXMLDOC01-appb-C000005
In the formula, R1 and R2 are alkyl groups having 7 to 21 carbon atoms, X and Y are integers of 1 to 29, respectively, and X + Y are integers of 2 to 30.
 一般式(2)で表されるグリセリンモノ脂肪酸エステル化合物(B)0.03~1.2重量部、
Figure JPOXMLDOC01-appb-C000006
 式中、R3は炭素数7~21のアルキル基またはアルケニル基である。
Glycerin monofatty acid ester compound (B) represented by the general formula (2) 0.03 to 1.2 parts by weight,
Figure JPOXMLDOC01-appb-C000006
In the formula, R3 is an alkyl group or an alkenyl group having 7 to 21 carbon atoms.
 一般式(3)で表されるアミン1モルに対しエチレンオキサトを2モル以上付加させたポリオキシエチレンアルキルアミンジ脂肪酸エステル化合物(C)を0~0.2重量部、
Figure JPOXMLDOC01-appb-C000007
 式中、R4、R5、R6は炭素数7~21のアルキル基であり、XおよびYは、それぞれ1~29の整数であり、X+Yは2~30の整数である。
0 to 0.2 parts by weight of the polyoxyethylene alkylamine difatty acid ester compound (C) to which 2 mol or more of ethylene oxalate is added to 1 mol of the amine represented by the general formula (3).
Figure JPOXMLDOC01-appb-C000007
In the formula, R4, R5, and R6 are alkyl groups having 7 to 21 carbon atoms, X and Y are integers of 1 to 29, respectively, and X + Y are integers of 2 to 30.
 一般式(4)で表されるアミン1モルに対しエチレンオキサトを2モル以上付加させたポリオキシエチレンアルケニルアミン化合物(D)を0~0.2重量部、
Figure JPOXMLDOC01-appb-C000008
 式中、R7は炭素数7~21のアルケニル基であり、XおよびYは、それぞれ1~29の整数であり、X+Yは2~30の整数である。
を含有するのが好ましい。
0 to 0.2 parts by weight of the polyoxyethylene alkenylamine compound (D) to which 2 mol or more of ethylene oxide is added to 1 mol of the amine represented by the general formula (4).
Figure JPOXMLDOC01-appb-C000008
In the formula, R7 is an alkenyl group having 7 to 21 carbon atoms, X and Y are integers of 1 to 29, respectively, and X + Y is an integer of 2 to 30.
Is preferably contained.
 本発明で用いられるアミン1モルに対しエチレンオキサトを2モル付加させたポリオキシエチレンアミンモノエステル化合物(A)は、式(1)で表される非イオン系の帯電防止剤であり、中間層(B)を構成するポリプロピレン系樹脂組成物100重量部に対して、好ましくは0.3~1.2重量部、特に好ましくは、0.3~1.1重量部の割合で含有する。化合物(A)の含有量が0.3重量部以上では長期に亘っての帯電防止効果が得られ、1.2重量部を以下の含有量ではブリード量が少なく、白化により透明性の低下が少ない。 The polyoxyethylene amine monoester compound (A) in which 2 mol of ethylene oxalate is added to 1 mol of amine used in the present invention is a nonionic antistatic agent represented by the formula (1) and is intermediate. The content is preferably 0.3 to 1.2 parts by weight, particularly preferably 0.3 to 1.1 parts by weight, based on 100 parts by weight of the polypropylene-based resin composition constituting the layer (B). When the content of compound (A) is 0.3 parts by weight or more, an antistatic effect can be obtained for a long period of time, and when the content is 1.2 parts by weight or less, the amount of bleeding is small and the transparency is lowered by whitening. few.
 本発明で用いられるグリセリンモノ脂肪酸エステル化合物(B)は式(2)で表される非イオン系の帯電防止剤であり、R3は直鎖状または分岐状のアルキル基、好ましくは炭素原子数10~21のアルキル基、特に好ましくは炭素原子数14~20のアルキル基であり、中間層(B)を構成するポリプロピレン樹脂組成物100重量部に対して、好ましくは0.03~0.3重量部、特に好ましくは0.03~0.2重量部の割合で含有する。化合物(E)の含有量が0.03重量部以上では帯電防止性の発現が速く帯電防止効果が得られ、1.2重量部以下の含有量ではブリード量が少なく、フィルム表面に粘着性が生じにくくいとともに白化による透明性が低下少ない。 The glycerin monofatty acid ester compound (B) used in the present invention is a nonionic antistatic agent represented by the formula (2), and R3 is a linear or branched alkyl group, preferably having 10 carbon atoms. It is an alkyl group of to 21 to, particularly preferably an alkyl group having 14 to 20 carbon atoms, and is preferably 0.03 to 0.3 weight by weight with respect to 100 parts by weight of the polypropylene resin composition constituting the intermediate layer (B). It is contained in an amount of 0.03 to 0.2 parts by weight, particularly preferably 0.03 to 0.2 parts by weight. When the content of the compound (E) is 0.03 part by weight or more, the antistatic property develops quickly and the antistatic effect can be obtained, and when the content is 1.2 parts by weight or less, the bleeding amount is small and the film surface becomes adhesive. It is less likely to occur and the transparency due to whitening is less likely to decrease.
 本発明で用いられるアミン1モルに対しエチレンオキサトを2モル以上付加させたポリオキシエチレンアルキルジエタノールアミン化合物(C)は式(3)で表される非イオン系の帯電防止剤であり、中間層(B)を構成するポリプロピレン樹脂組成物100重量部に対して、好ましくは0~0.2重量部、特に好ましくは0.002~0.15重量部の割合で含有する。化合物(C)の含有量が0.2重量部以下ではブリード量が少なく、白化による透明性の低下が少ない。 The polyoxyethylene alkyl diethanolamine compound (C) to which 2 mol or more of ethylene oxalate is added to 1 mol of amine used in the present invention is a nonionic antistatic agent represented by the formula (3) and is an intermediate layer. It is preferably contained in an amount of 0 to 0.2 parts by weight, particularly preferably 0.002 to 0.15 parts by weight, based on 100 parts by weight of the polypropylene resin composition constituting (B). When the content of the compound (C) is 0.2 parts by weight or less, the amount of bleeding is small and the decrease in transparency due to whitening is small.
 本発明で用いられるアミン1モルに対しエチレンオキサトを2モル以上付加させたポリオキシエチレンアルケニルジエタノールアミン化合物(D)は式(4)で表される非イオン系の帯電防止剤であり、中間層(B)を構成するポリプロピレン樹脂組成物100重量部に対して、好ましくは0~0.2重量部、特に好ましくは0.002~0.15重量部の割合で含有する。化合物(C)の含有量が0.2重量部以下ではブリード量が少なく、白化による透明性の低下が少ない。 The polyoxyethylene alkenyldiethanolamine compound (D) to which 2 mol or more of ethylene oxalate is added to 1 mol of amine used in the present invention is a nonionic antistatic agent represented by the formula (4) and is an intermediate layer. It is preferably contained in an amount of 0 to 0.2 parts by weight, particularly preferably 0.002 to 0.15 parts by weight, based on 100 parts by weight of the polypropylene resin composition constituting (B). When the content of the compound (C) is 0.2 parts by weight or less, the amount of bleeding is small and the decrease in transparency due to whitening is small.
 式(1)~(4)におけるX及びYはそれぞれ1~29の整数であり、X+Yは2~30の整数、好ましくは2~4の整数である。R1は直鎖状または分岐状のアルキル基、特に好ましくは炭素原子数13~25のアルキル基、特に好ましくは炭素原子数13~18のアルキル基である。 X and Y in the equations (1) to (4) are integers of 1 to 29, respectively, and X + Y is an integer of 2 to 30, preferably an integer of 2 to 4. R1 is a linear or branched alkyl group, particularly preferably an alkyl group having 13 to 25 carbon atoms, and particularly preferably an alkyl group having 13 to 18 carbon atoms.
 式(1)~(3)におけるR1~R6のアルキル基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソペンチル基、ノニル基、デシル基、ウンデシル基、ラウリル基、トリラウリル基、ミリスチル基、ペンタデシル基、パルミチル基、ヘプタデシル基、ステアリル基、ノナデシル基、エイコシル基などが挙げられる。 Specific examples of the alkyl group of R1 to R6 in the formulas (1) to (3) include a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, an isopentyl group and a nonyl group. Examples thereof include a group, a decyl group, an undecyl group, a lauryl group, a trilauryl group, a myristyl group, a pentadecyl group, a palmityl group, a heptadecyl group, a stearyl group, a nonadecyl group and an eicosyl group.
 式(4)におけるR7のアルケニル基は炭素原子数12~21よりなる高級不飽和脂肪族基の中から選ばれた少なくとも1種が好ましい。 The alkenyl group of R7 in the formula (4) is preferably at least one selected from higher unsaturated aliphatic groups having 12 to 21 carbon atoms.
 また、本発明の効果を損なわない範囲であれば、中間層(B)を構成するポリプロピレン系樹脂組成物には滑り性やなどの品質向上のための各種添加剤、例えば、生産性の向上のためにワックス、金属石鹸などの潤滑剤、可塑剤、加工助剤やポリプロピレン系フィルムに通常添加される公知の熱安定剤、酸化防止剤、紫外線吸収剤などを配合することも可能である。 Further, as long as the effect of the present invention is not impaired, the polypropylene-based resin composition constituting the intermediate layer (B) has various additives for improving quality such as slipperiness, for example, improving productivity. Therefore, it is also possible to add lubricants such as waxes and metal soaps, plasticizers, processing aids, known heat stabilizers usually added to polypropylene films, antioxidants, ultraviolet absorbers and the like.
(表面層(C))
(ポリプロピレン樹脂)
 本発明の二軸配向ポリプロピレンフィルムの表面層(C)に用いるポリプロピレン樹脂組成物には、下記で説明するポリプロピレン単独重合体とプロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体を用いると、剛性を維持しながら、ラミネート強度を向上させやすい。
(Surface layer (C))
(Polypropylene resin)
The polypropylene resin composition used for the surface layer (C) of the biaxially oriented polypropylene film of the present invention contains the polypropylene homopolymer described below and the common weight of propylene and ethylene and / or α-olefin having 4 or more carbon atoms. When coalesced, it is easy to improve the laminate strength while maintaining rigidity.
(ポリプロピレン単独重合体)
 表面層(C)に用いられるポリプロピレン単独重合体は、実質的にエチレンおよび/または炭素数4以上のα-オレフィンを含まないポリプロピレン重合体であることが好ましく、エチレンおよび/または炭素数4以上のα-オレフィン成分を含む場合であっても、エチレンおよび/または炭素数4以上のα-オレフィン成分量は好ましくは0.3モル%以下であり、より好ましくは0.2モル%以下であり、さらに好ましくは0.1モル以下であるポリプロピレン重合体である。上記範囲であると結晶性が向上しやすい。
 このような共重合体を構成する炭素数4以上のα-オレフィン成分として、例えば、1-ブテン、1-ペンテン、3-メチルペンテン-1、3-メチルブテン-1、1-ヘキセン、4-メチルペンテン-1、5-エチルヘキセン-1、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセンなどが挙げられる。
 ポリプロピレン単独重合体は異なる2種以上のポリプロピレン単独重合体を用いることができる。
(Polypropylene homopolymer)
The polypropylene homopolymer used for the surface layer (C) is preferably a polypropylene polymer that does not substantially contain ethylene and / or an α-olefin having 4 or more carbon atoms, and has ethylene and / or 4 or more carbon atoms. Even when the α-olefin component is contained, the amount of ethylene and / or the α-olefin component having 4 or more carbon atoms is preferably 0.3 mol% or less, more preferably 0.2 mol% or less. More preferably, it is a polypropylene polymer having an amount of 0.1 mol or less. Within the above range, crystallinity tends to improve.
Examples of the α-olefin component having 4 or more carbon atoms constituting such a copolymer include 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene-1, 1-hexene, and 4-methyl. Examples thereof include pentene-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicosene and the like.
As the polypropylene homopolymer, two or more different kinds of polypropylene homopolymers can be used.
 ポリプロピレン単独重合体の含有量は、表面層(C)に使用されるポリプロピレン樹脂全体に対して、90重量%以下含むことが好ましく、40重量%以上、90重量%以下含むことがより好ましく、50重量%以上、80重量%以下含むことがさらに好ましく、60重量%以上、70重量%以下含むことが特に好ましい。 The content of the polypropylene homopolymer is preferably 90% by weight or less, more preferably 40% by weight or more and 90% by weight or less, more preferably 50% by weight or less, based on the total polypropylene resin used for the surface layer (C). It is more preferably contained in an amount of% by weight or more and 80% by weight or less, and particularly preferably 60% by weight or more and 70% by weight or less.
(立体規則性)
 ポリプロピレン単独重合体の立体規則性の指標であるメソペンタッド分率([mmmm]%)は、97.0~99.9%の範囲内であることが好ましく、97.5~99.7%の範囲内であることがより好ましく、98.0~99.5%の範囲内である
とさらに好ましく、98.5~99.3%の範囲内であると特に好ましい。
 97.0%以上であると、ポリプロピレン樹脂の結晶性が高まり、フィルムにおける結晶の融点、結晶化度、結晶配向度が向上し、剛性と高温での耐熱性が得られやすい。99.9%以下であるとポリプロピレン製造の点でコストを抑えやすく、製膜時に破断しにくくなる。メソペンタッド分率は核磁気共鳴法(所謂NMR法)で測定される。
99.5%以下であることがより好ましい。メソペンタッド分率は核磁気共鳴法(所謂NMR法)で測定される。
 ポリプロピレン単独重合体のメソペンタッド分率を上述の範囲内とするためには、得られたポリプロピレン単独重合体パウダーをn-ヘプタンなどの溶媒で洗浄する方法や、触媒および/または助触媒の選定、ポリプロピレン樹脂組成物の成分の選定を適宜行う方法などが好ましく採用される。
(Tacticity)
The mesopentad fraction ([mmmm]%), which is an index of the stereoregularity of the polypropylene homopolymer, is preferably in the range of 97.0 to 99.9%, and preferably in the range of 97.5 to 99.7%. It is more preferably in the range of 98.0 to 99.5%, further preferably in the range of 98.5 to 99.3%, and particularly preferably in the range of 98.5 to 99.3%.
When it is 97.0% or more, the crystallinity of the polypropylene resin is enhanced, the melting point, crystallinity, and crystallinity of the crystals in the film are improved, and rigidity and heat resistance at high temperature can be easily obtained. When it is 99.9% or less, it is easy to suppress the cost in terms of polypropylene production, and it is difficult to break during film formation. The mesopentad fraction is measured by a nuclear magnetic resonance method (so-called NMR method).
It is more preferably 99.5% or less. The mesopentad fraction is measured by a nuclear magnetic resonance method (so-called NMR method).
In order to keep the mesopentad fraction of the polypropylene homopolymer within the above range, a method of washing the obtained polypropylene homopolymer powder with a solvent such as n-heptane, selection of a catalyst and / or a co-catalyst, and polypropylene A method of appropriately selecting the components of the resin composition is preferably adopted.
(融解温度)
 上記ポリプロピレン単独重合体のDSCで測定される融解温度(Tm)の下限は好ましくは160℃であり、より好ましくは161℃であり、さらに好ましくは162℃であり、よりさらに好ましくは163℃であり、さらに好ましくは164℃である。Tmが160℃以上であると剛性と高温での耐熱性が得られやすい。Tmの上限は、好ましくは170℃であり、より好ましくは169℃であり、さらに好ましくは168℃であり、よりさらに好ましくは167℃であり、特に好ましくは166℃である。Tmが170℃以下であると、ポリプロピレン製造の点でコストアップを抑制しやすかったり、製膜時に破断しにくくなる。前述のポリプロピレン単独重合体に結晶核剤を配合することによって、融解温度をより上げることもできる。
 Tmは、示差走査熱量計(DSC)にて測定しており、1~10mgのサンプルをアルミパンに詰めて示差走査熱量計(DSC)にセットし、窒素雰囲気下で、230℃で5分間融解し、走査速度-10℃/分で30℃まで降温した後、5分間保持し、走査速度10℃/分で昇温した際に観察される、融解にともなう吸熱ピークの主たるピーク温度である。
(Melting temperature)
The lower limit of the melting temperature (Tm) measured by DSC of the polypropylene homopolymer is preferably 160 ° C., more preferably 161 ° C., still more preferably 162 ° C., and even more preferably 163 ° C. , More preferably 164 ° C. When Tm is 160 ° C. or higher, rigidity and heat resistance at high temperature can be easily obtained. The upper limit of Tm is preferably 170 ° C., more preferably 169 ° C., still more preferably 168 ° C., even more preferably 167 ° C., and particularly preferably 166 ° C. When Tm is 170 ° C. or lower, it is easy to suppress an increase in cost in terms of polypropylene production, and it is difficult to break during film formation. The melting temperature can be further increased by adding a crystal nucleating agent to the above-mentioned polypropylene homopolymer.
Tm is measured by a differential scanning calorimeter (DSC). A sample of 1 to 10 mg is packed in an aluminum pan, set in a differential scanning calorimeter (DSC), and melted at 230 ° C. for 5 minutes in a nitrogen atmosphere. This is the main peak temperature of the endothermic peak associated with melting, which is observed when the temperature is lowered to 30 ° C. at a scanning speed of −10 ° C./min, held for 5 minutes, and the temperature is raised at a scanning speed of 10 ° C./min.
(結晶化温度)
 ポリプロピレン単独重合体の結晶化温度(Tc)の下限は105℃であり、好ましくは108℃であり、より好ましくは110℃である。Tcが105℃以上であると、幅方向延伸とそれに続く冷却工程において結晶化が進みやすく、剛性と高温での耐熱性が得られやすい。Tcの上限は、好ましくは135℃であり、より好ましくは133℃であり、さらに好ましくは132℃であり、よりさらに好ましくは130℃であり、特に好ましくは128℃であり、最も好ましくは127℃である。Tcが135℃以下であるとポリプロピレン製造の点でコストアップしにくかったり、製膜時に破断しにくくなる。前述のポリプロピレン単独重合体に結晶核剤を配合することによって、結晶化温度をより上げることもできる。
 Tcは、示差走査熱量計(DSC)にて測定しており、1~10mgのサンプルをアルミパンに詰めてDSCにセットし、窒素雰囲気下で、230℃で5分間融解し、走査速度-10℃/分で30℃まで降温したときに観察される発熱ピークの主たるピーク温度である。
(Crystallization temperature)
The lower limit of the crystallization temperature (Tc) of the polypropylene homopolymer is 105 ° C, preferably 108 ° C, and more preferably 110 ° C. When Tc is 105 ° C. or higher, crystallization is likely to proceed in the stretching in the width direction and the subsequent cooling step, and rigidity and heat resistance at high temperature are easily obtained. The upper limit of Tc is preferably 135 ° C., more preferably 133 ° C., still more preferably 132 ° C., even more preferably 130 ° C., particularly preferably 128 ° C., and most preferably 127 ° C. Is. If the Tc is 135 ° C. or lower, it is difficult to increase the cost in terms of polypropylene production, and it is difficult to break during film formation. The crystallization temperature can be further increased by adding a crystal nucleating agent to the above-mentioned polypropylene homopolymer.
Tc is measured by a differential scanning calorimeter (DSC). A sample of 1 to 10 mg is packed in an aluminum pan, set in the DSC, melted at 230 ° C. for 5 minutes in a nitrogen atmosphere, and the scanning speed is -10. It is the main peak temperature of the exothermic peak observed when the temperature is lowered to 30 ° C. at ° C./min.
(メルトフローレート)
 ポリプロピレン単独重合体のMFRは、JIS K 7210(1995)の条件M(230℃、2.16kgf)に準拠して測定した場合において、4.0~30g/10分であることが好ましく、4.5~25g/10分であるとより好ましく、4.8~22g/10分であるとさらに好ましく、5.0~20g/10分であると特に好ましく、6.0~20g/10分であると最も好ましい。
 ポリプロピレン単独重合体のMFRが4.0g/10分以上であると、熱収縮が低い二軸配向ポリプロピレンフィルムを得られやすい。
 また、ポリプロピレン樹単独重合体のMFRが30g/10分以下であると、フィルムの製膜性を維持しやすい。
(Melt flow rate)
The MFR of the polypropylene homopolymer is preferably 4.0 to 30 g / 10 minutes when measured in accordance with the condition M (230 ° C., 2.16 kgf) of JIS K 7210 (1995). It is more preferably 5 to 25 g / 10 minutes, further preferably 4.8 to 22 g / 10 minutes, particularly preferably 5.0 to 20 g / 10 minutes, and 6.0 to 20 g / 10 minutes. And most preferable.
When the MFR of the polypropylene homopolymer is 4.0 g / 10 minutes or more, it is easy to obtain a biaxially oriented polypropylene film having low heat shrinkage.
Further, when the MFR of the polypropylene tree homopolymer is 30 g / 10 minutes or less, it is easy to maintain the film-forming property of the film.
 ポリプロピレン単独重合体のMFR(230℃、2.16kgf)の下限は、フィルム特性の観点からは、好ましくは5.0g/10分、より好ましくは5.5g/10分、さらに好ましくは6.0g/10分、特に好ましくは6.3g/10分、最も好ましくは6.5g/10分とするのが良い。
 ポリプロピレン単独重合体のMFRが5.0g/10分以上であると、フィルムを構成するポリプロピレン樹単独重合体の低分子量成分量が多くなるため、後述するフィルム製膜工程での幅方向延伸工程を採用することにより、ポリプロピレン樹脂の配向結晶化がより促進されること、及びフィルムにおける結晶化度がより高まりやすくなることに加えて、非晶部分のポリプロピレン分子鎖同士の絡み合いがより少なくなり、耐熱性をより高めやすい。
 ポリプロピレン単独重合体のMFRを上記の範囲内とするためには、ポリプロピレン樹脂の平均分子量や分子量分布を制御する方法などを採用するのが好ましい。
The lower limit of the MFR (230 ° C., 2.16 kgf) of the polypropylene homopolymer is preferably 5.0 g / 10 minutes, more preferably 5.5 g / 10 minutes, still more preferably 6.0 g from the viewpoint of film characteristics. It is preferably / 10 minutes, particularly preferably 6.3 g / 10 minutes, and most preferably 6.5 g / 10 minutes.
When the MFR of the polypropylene homopolymer is 5.0 g / 10 minutes or more, the amount of low molecular weight components of the polypropylene tree homopolymer constituting the film increases. By adopting it, the orientation crystallization of the polypropylene resin is further promoted, the degree of crystallization in the film is more likely to be increased, and the polypropylene molecular chains in the amorphous portion are less entangled with each other, resulting in heat resistance. It is easier to enhance sex.
In order to keep the MFR of the polypropylene homopolymer within the above range, it is preferable to adopt a method of controlling the average molecular weight and the molecular weight distribution of the polypropylene resin.
 すなわち、ポリプロピレン単独重合体のゲルパーミュエーションクロマトグラフィー(GPC)積算カーブにおける分子量10万以下の成分の量の下限は35質量%であり、好ましくは38質量%であり、より好ましくは40質量%であり、さらに好ましくは41質量%であり、特に好ましくは42質量%である。
 GPC積算カーブでの分子量10万以下の成分の量の上限は、好ましくは65質量%であり、より好ましくは60質量%であり、さらに好ましくは58質量%である。GPC積算カーブでの分子量10万以下の成分の量が65質量%以下であるとフィルム強度が低下しにくい。
 このとき、緩和時間の長い高分子量成分や長鎖分岐成分を含むと、ポリプロピレン単独重合体に含まれる分子量10万以下の成分の量を、全体の粘度を大きく変えずに、調整しやすくなるので、剛性や熱収縮にあまり影響させずに、製膜性を改善しやすい。
That is, the lower limit of the amount of the component having a molecular weight of 100,000 or less in the gel permeation chromatography (GPC) integration curve of the polypropylene homopolymer is 35% by mass, preferably 38% by mass, and more preferably 40% by mass. It is more preferably 41% by mass, and particularly preferably 42% by mass.
The upper limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, and further preferably 58% by mass. When the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is 65% by mass or less, the film strength is unlikely to decrease.
At this time, if a high molecular weight component or a long chain branched component having a long relaxation time is included, it becomes easy to adjust the amount of the component having a molecular weight of 100,000 or less contained in the polypropylene homopolymer without significantly changing the overall viscosity. , It is easy to improve the film-forming property without significantly affecting the rigidity and heat shrinkage.
(分子量分布)
 ポリプロピレン単独重合体は、分子量分布の広さの指標である質量平均分子量(Mw)/数平均分子量(Mn)の下限が、好ましくは3.5であり、より好ましくは4であり、さらに好ましくは4.5であり、特に好ましくは5である。Mw/Mnの上限は、好ましくは30であり、より好ましくは25であり、さらに好ましくは23であり、特に好ましくは21であり、最も好ましくは20である。
 Mw/Mnは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて得ることができる。Mw/Mnが上記範囲であると、分子量10万以下の成分の量を多くすることが容易である。
(Molecular weight distribution)
In the polypropylene homopolymer, the lower limit of the mass average molecular weight (Mw) / number average molecular weight (Mn), which is an index of the breadth of the molecular weight distribution, is preferably 3.5, more preferably 4, and even more preferably 4. It is 4.5, and particularly preferably 5. The upper limit of Mw / Mn is preferably 30, more preferably 25, still more preferably 23, particularly preferably 21 and most preferably 20.
Mw / Mn can be obtained using gel permeation chromatography (GPC). When Mw / Mn is in the above range, it is easy to increase the amount of the component having a molecular weight of 100,000 or less.
 なお、ポリプロピレン単独重合体の分子量分布は、異なる分子量の成分を多段階に一連のプラントで重合したり、異なる分子量の成分をオフラインで混練機にてブレンドしたり、異なる性能をもつ触媒をブレンドして重合したり、所望の分子量分布を実現できる触媒を用いたりすることで調整することが可能である。GPCで得られる分子量分布の形状としては、横軸に分子量(M)の対数(logM)、縦軸に微分分布値(logMあたりの量分率)をとったGPCチャートにおいて、単一ピークを有するなだらかな分子量分布であってもよく、複数のピークやショルダーを有する分子量分布であってよい。 Regarding the molecular weight distribution of polypropylene homopolymers, components of different molecular weights can be polymerized in a series of plants in multiple stages, components of different molecular weights can be blended offline with a kneader, or catalysts with different performances can be blended. It can be adjusted by polymerizing or using a catalyst capable of achieving a desired molecular weight distribution. The shape of the molecular weight distribution obtained by GPC has a single peak in a GPC chart in which the horizontal axis is the logarithmic weight (M) log (logM) and the vertical axis is the differential distribution value (quantity fraction per logM). It may have a gentle molecular weight distribution, or it may have a molecular weight distribution having a plurality of peaks and shoulders.
(プロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体)
 表面層(C)に用いられるプロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体は、エチレンおよび/または炭素数4以上のα-オレフィン成分量0.3モルを超えるプロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体であることが好ましい。
 エチレンおよび/または炭素数4以上のα-オレフィン成分量0.3モルを超えるプロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体は、低結晶性であることが好ましく、他のα-オレフィンとしては、例えば、エチレン、1-ブテン、1-ペンテン、3-メチルペンテン-1、3-メチルブテン-1、1-ヘキセン、4-メチルペンテン-1、5-エチルヘキセン-1、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセンなどが挙げられる。
 エチレンおよび/または炭素数4以上のα-オレフィン成分量0.4モル以上%であるのが好ましく、より好ましくは0.5モル%以上である。上記範囲であると結晶性が低下しやすい。
 ここで共重合体とは、プロピレンに上記に例示されるα-オレフィンを1種又は2種以上重合して得られたランダム又はブロック共重合体であることが好ましく、プロピレン・エチレン共重合体、プロピレン・ブテン-1共重合体、プロピレン・エチレン・ブテン-1共重合体、またはプロピレン・ペンテン-1共重合体であることが好ましい。
(Copolymer of propylene and ethylene and / or α-olefin having 4 or more carbon atoms)
The copolymer of propylene used in the surface layer (C) with ethylene and / or an α-olefin having 4 or more carbon atoms is ethylene and / or propylene having an α-olefin component content of 4 or more carbon atoms of more than 0.3 mol. And / or a copolymer of ethylene and / or an α-olefin having 4 or more carbon atoms is preferable.
The copolymer of ethylene and / or an α-olefin having 4 or more carbon atoms and having an α-olefin component of more than 0.3 mol and ethylene and / or an α-olefin having 4 or more carbon atoms is preferably low in crystallinity. Examples of other α-olefins include ethylene, 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene-1, 1-hexene, 4-methylpentene-1, 5-ethylhexene-1. , 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicosene and the like.
The amount of ethylene and / or α-olefin component having 4 or more carbon atoms is preferably 0.4 mol% or more, more preferably 0.5 mol% or more. Within the above range, crystallinity tends to decrease.
Here, the copolymer is preferably a random or block copolymer obtained by polymerizing one or more of the α-olefins exemplified above with propylene, and is preferably a propylene / ethylene copolymer. It is preferably a propylene / butene-1 copolymer, a propylene / ethylene / butene-1 copolymer, or a propylene / penten-1 copolymer.
 プロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体のうち、DSC融点の最も低いものの融点ピーク温度が150℃以上、160℃以下であることが好ましい。 Among the copolymers of propylene and ethylene and / or α-olefin having 4 or more carbon atoms, the one having the lowest DSC melting point preferably has a melting point peak temperature of 150 ° C. or higher and 160 ° C. or lower.
 エチレンおよび/または炭素数4以上のα-オレフィン成分量0.3モルを超えるプロピレンとエチレンおよび/または炭素数4以上のα-オレフィンとの共重合体の含有量は、表面層(C)に使用されるポリプロピレン樹脂全体に対して、10重量%以上であることが好ましく、10重量%以上、60重量%以下であることがより好ましく、20重量%以上、50重量%以下であることがさらに好ましく、30重量%以上50重量%以下であることが特に好ましい。 The content of the copolymer of ethylene and / or the copolymer of ethylene and / or the α-olefin having 4 or more carbon atoms and the α-olefin having more than 0.3 mol and the ethylene and / or the α-olefin having 4 or more carbon atoms is in the surface layer (C). It is preferably 10% by weight or more, more preferably 10% by weight or more and 60% by weight or less, and further preferably 20% by weight or more and 50% by weight or less with respect to the entire polypropylene resin used. It is preferable, and it is particularly preferable that it is 30% by weight or more and 50% by weight or less.
(ポリプロピレン系樹脂組成物)
 表面層(C)で使用されるポリプロピレン樹脂組成物全体のプロピレンモノマー由来成分及びα-オレフィンモノマー由来成分の合計に対するα-オレフィンモノマー由来成分の割合は0.10モル%以上、0.4モル%以下であることが好ましく、0.15モル%以上、0.2モル%以下であることがより好ましく、0.2モル%以上、0.25モル%以下であることがさらに好ましい。
(Polypropylene resin composition)
The ratio of the α-olefin monomer-derived component to the total of the propylene monomer-derived component and the α-olefin monomer-derived component of the entire polypropylene resin composition used in the surface layer (C) is 0.10 mol% or more and 0.4 mol%. It is preferably 0.15 mol% or more and 0.2 mol% or less, and further preferably 0.2 mol% or more and 0.25 mol% or less.
 表面層(C)を構成するポリプロピレン樹脂組成物全体のアイソタクチックメソペンタッド分率は剛性の観点から95%以上であることが好ましい。また製膜性の観点からは99.5%以下であることが好ましい。 The isotactic mesopentad fraction of the entire polypropylene resin composition constituting the surface layer (C) is preferably 95% or more from the viewpoint of rigidity. Further, from the viewpoint of film forming property, it is preferably 99.5% or less.
 また、表面層(C)で使用されるポリプロピレン樹脂組成物のメルトフローレート(MFR)は溶断シール性の観点から5.0g/10min以上であることが好ましい。こうすることで、剛性と高温での耐熱性をより高いレベルで両立することができる。6.0g/10min以上であることがより好ましく、7.0g/10min以上であることが特に好ましく、8.0g/10min以上であることが最も好ましい。 Further, the melt flow rate (MFR) of the polypropylene resin composition used in the surface layer (C) is preferably 5.0 g / 10 min or more from the viewpoint of fusing sealability. By doing so, it is possible to achieve both rigidity and heat resistance at high temperatures at a higher level. It is more preferably 6.0 g / 10 min or more, particularly preferably 7.0 g / 10 min or more, and most preferably 8.0 g / 10 min or more.
(帯電防止剤)
 表面層(C)を構成するプロピレン樹脂組成物に特定のアミンエステル化合物と特定のアミン化合物と特定のグリセリンモノ脂肪酸エステル化合物を特定割合で併用することにより、より帯電防止性を向上させることができる。
(Antistatic agent)
By using a specific amine ester compound, a specific amine compound, and a specific glycerin monofatty acid ester compound in combination with the propylene resin composition constituting the surface layer (C) in a specific ratio, the antistatic property can be further improved. ..
 例えば、表面層(C)を構成するポリプロピレン樹脂組成物100重量部に対し、一般式(1)で表されるアミン1モルに対しエチレンオキサトを2モル以上付加させたポリオキシエチレンアルキルアミンモノ脂肪酸エステル化合物(A)を0.3~1.2重量部、
Figure JPOXMLDOC01-appb-C000009
 式中、R1、R2は炭素数7~21のアルキル基であり、XおよびYは、それぞれ1~29の整数であり、X+Yは2~30の整数である。
For example, a polyoxyethylene alkylamine mono obtained by adding 2 mol or more of ethylene oxat to 1 mol of the amine represented by the general formula (1) with respect to 100 parts by weight of the polypropylene resin composition constituting the surface layer (C). 0.3 to 1.2 parts by weight of fatty acid ester compound (A),
Figure JPOXMLDOC01-appb-C000009
In the formula, R1 and R2 are alkyl groups having 7 to 21 carbon atoms, X and Y are integers of 1 to 29, respectively, and X + Y are integers of 2 to 30.
 下記式(2)で表されるグリセリンモノ脂肪酸エステル化合物(B)0.03~1.2重量部、
Figure JPOXMLDOC01-appb-C000010
 式中、R3は炭素数7~21のアルキル基である。
0.03 to 1.2 parts by weight of the glycerin monofatty acid ester compound (B) represented by the following formula (2),
Figure JPOXMLDOC01-appb-C000010
In the formula, R3 is an alkyl group having 7 to 21 carbon atoms.
 下記式(3)で表されるアミン1モルに対しエチレンオキサトを2モル以上付加させたポリオキシエチレンアルキルアミンジ脂肪酸エステル化合物(C)を0~0.2重量部、
Figure JPOXMLDOC01-appb-C000011
 式中、R4、R5、R6は炭素数7~21のアルキル基であり、XおよびYは、それぞれ1~29の整数であり、X+Yは2~30の整数である。
0 to 0.2 parts by weight of the polyoxyethylene alkylamine difatty acid ester compound (C) to which 2 mol or more of ethylene oxalate is added to 1 mol of the amine represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000011
In the formula, R4, R5, and R6 are alkyl groups having 7 to 21 carbon atoms, X and Y are integers of 1 to 29, respectively, and X + Y are integers of 2 to 30.
 下記式(4)で表されるアミン1モルに対しエチレンオキサトを2モル以上付加させたポリオキシエチレンアルケニルアミン化合物(D)を0~0.2重量部、
Figure JPOXMLDOC01-appb-C000012
 式中、R7は炭素数7~21のアルケニル基であり、XおよびYは、それぞれ1~29の整数であり、X+Yは2~30の整数である。
を含有するのが好ましい。
0 to 0.2 parts by weight of the polyoxyethylene alkenylamine compound (D) to which 2 mol or more of ethylene oxide is added to 1 mol of the amine represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000012
In the formula, R7 is an alkenyl group having 7 to 21 carbon atoms, X and Y are integers of 1 to 29, respectively, and X + Y is an integer of 2 to 30.
Is preferably contained.
 本発明で用いられるアミン1モルに対しエチレンオキサトを2モル付加させたポリオキシエチレンアルキルアミンモノ脂肪酸エステル化合物(A)は、式(1)で表される非イオン系の帯電防止剤であり、表面層(C)を構成するポリプロピレン系樹脂組成物100重量部に対して、好ましくは0.3~1.2重量部、特に好ましくは0.3~1.1重量部の割合で含有する。化合物(A)の含有量が0.3重量部以上では長期に亘っての帯電防止効果が得られ、1.2重量部を以下の含有量ではブリード量が少なく、白化により透明性の低下が少ない。 The polyoxyethylene alkylamine monofatty acid ester compound (A) in which 2 mol of ethylene oxalate is added to 1 mol of amine used in the present invention is a nonionic antistatic agent represented by the formula (1). , The content is preferably 0.3 to 1.2 parts by weight, particularly preferably 0.3 to 1.1 parts by weight, based on 100 parts by weight of the polypropylene-based resin composition constituting the surface layer (C). .. When the content of compound (A) is 0.3 parts by weight or more, an antistatic effect can be obtained for a long period of time, and when the content is 1.2 parts by weight or less, the amount of bleeding is small and the transparency is lowered by whitening. few.
 本発明で用いられるグリセリンモノ脂肪酸エステル化合物(B)は式(2)で表される非イオン系の帯電防止剤であり、R3は直鎖状または分岐状のアルキル基、好ましくは炭素原子数10~21のアルキル基、特に好ましくは炭素原子数14~20のアルキル基であり、表面層(C)を構成するポリプロピレン樹脂組成物100重量部に対して、好ましくは0.03~0.3重量部、特に好ましくは0.03~0.2重量部の割合で含有する。化合物(E)の含有量が0.03重量部以上では帯電防止性の発現が速く帯電防止効果が得られ、1.2重量部以下の含有量ではブリード量が少な、フィルム表面に粘着性が生じにくくいとともに白化による透明性が低下少ない。 The glycerin monofatty acid ester compound (B) used in the present invention is a nonionic antistatic agent represented by the formula (2), and R3 is a linear or branched alkyl group, preferably having 10 carbon atoms. It is an alkyl group of ~ 21, particularly preferably an alkyl group having 14 to 20 carbon atoms, and is preferably 0.03 to 0.3 weight by weight with respect to 100 parts by weight of the polypropylene resin composition constituting the surface layer (C). It is contained in an amount of 0.03 to 0.2 parts by weight, particularly preferably 0.03 to 0.2 parts by weight. When the content of the compound (E) is 0.03 part by weight or more, the antistatic property is rapidly developed and the antistatic effect is obtained, and when the content is 1.2 parts by weight or less, the bleeding amount is small and the film surface is adhesive. It is less likely to occur and the transparency due to whitening is less likely to decrease.
 本発明で用いられるアミン1モルに対しエチレンオキサトを2モル以上付加させたポリオキシエチレンアルキルアミンジ脂肪酸エステル化合物(C)は式(3)で表される非イオン系の帯電防止剤であり、表面層(C)を構成するポリプロピレン樹脂組成物100重量部に対して好ましくは0~0.2重量部、特に好ましくは0.002~0.15重量部の割合で含有する。化合物(C)の含有量が0.2重量部以下ではブリード量が少なく、白化による透明性の低下が少ない。 The polyoxyethylene alkylamine difatty acid ester compound (C) to which 2 mol or more of ethylene oxalate is added to 1 mol of amine used in the present invention is a nonionic antistatic agent represented by the formula (3). , The content is preferably 0 to 0.2 parts by weight, and particularly preferably 0.002 to 0.15 parts by weight with respect to 100 parts by weight of the polypropylene resin composition constituting the surface layer (C). When the content of the compound (C) is 0.2 parts by weight or less, the amount of bleeding is small and the decrease in transparency due to whitening is small.
 本発明で用いられるアミン1モルに対しエチレンオキサトを2モル以上付加させたポリオキシエチレンアルケニルアミン化合物(D)は式(4)で表される非イオン系の帯電防止剤であり、表面層(C)を構成するポリプロピレン樹脂組成物100重量部に対して、好ましくは0~0.2重量部、特に好ましくは0.002~0.15重量部の割合で含有する。化合物(D)の含有量が0.2重量部以下ではブリード量が少なく、白化による透明性の低下が少ない。 The polyoxyethylene alkenylamine compound (D) in which 2 mol or more of ethylene oxalate is added to 1 mol of the amine used in the present invention is a nonionic antistatic agent represented by the formula (4) and is a surface layer. It is preferably contained in an amount of 0 to 0.2 parts by weight, particularly preferably 0.002 to 0.15 parts by weight, based on 100 parts by weight of the polypropylene resin composition constituting (C). When the content of compound (D) is 0.2 parts by weight or less, the amount of bleeding is small and the decrease in transparency due to whitening is small.
 式(1)~(4)におけるX及びYはそれぞれ1~29の整数であり、X+Yは2~30の整数、好ましくは2~4の整数である。R1は直鎖状または分岐状のアルキル基、特に好ましくは炭素原子数13~25のアルキル基、特に好ましくは炭素原子数13~18のアルキル基である。 X and Y in the equations (1) to (4) are integers of 1 to 29, respectively, and X + Y is an integer of 2 to 30, preferably an integer of 2 to 4. R1 is a linear or branched alkyl group, particularly preferably an alkyl group having 13 to 25 carbon atoms, and particularly preferably an alkyl group having 13 to 18 carbon atoms.
 式(1)~(3)におけるR1~R6のアルキル基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソペンチル基、ノニル基、デシル基、ウンデシル基、ラウリル基、トリラウリル基、ミリスチル基、ペンタデシル基、パルミチル基、ヘプタデシル基、ステアリル基、ノナデシル基、エイコシル基などが挙げられる。 Specific examples of the alkyl group of R1 to R6 in the formulas (1) to (3) include a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, an isopentyl group and a nonyl group. Examples thereof include a group, a decyl group, an undecyl group, a lauryl group, a trilauryl group, a myristyl group, a pentadecyl group, a palmityl group, a heptadecyl group, a stearyl group, a nonadecyl group and an eicosyl group.
 式(4)におけるR7のアルケニル基は炭素原子数12~21よりなる高級不飽和脂肪族基の中から選ばれた少なくとも1種が好ましい。 The alkenyl group of R7 in the formula (4) is preferably at least one selected from higher unsaturated aliphatic groups having 12 to 21 carbon atoms.
 また、本発明の効果を損なわない範囲であれば、表面層(C)を構成するポリプロピレン系樹脂組成物には滑り性やなどの品質向上のための各種添加剤、例えば、生産性の向上のためにワックス、金属石鹸などの潤滑剤、可塑剤、加工助剤やポリプロピレン系フィルムに通常添加される公知の熱安定剤、酸化防止剤、紫外線吸収剤、無機質や有機質の微細粒子などを配合することも可能である。 Further, as long as the effect of the present invention is not impaired, the polypropylene-based resin composition constituting the surface layer (C) has various additives for improving quality such as slipperiness, for example, improving productivity. For this purpose, lubricants such as waxes and metal soaps, plasticizers, processing aids, known heat stabilizers usually added to polypropylene films, antioxidants, ultraviolet absorbers, inorganic and organic fine particles, etc. are blended. It is also possible.
 無機質の微細粒子としては、二酸化珪素、炭酸カルシウム、二酸化チタン、タルク、カオリン、雲母、ゼオライトなどが挙げられ、これらの形状は、球状、楕円状、円錐状、不定形と種類を問うものではなく、その粒子径もフィルムの用途、使用法により所望のものを使用配合することができる。
 また、有機質の微細粒子としては、アクリル、アクリル酸メチル、スチレン-ブタジエンなどの架橋体粒子を使用することができ、形状、大きさに関しては無機質微細粒子と同様にさまざまなものを使用することが可能である。また、これら無機質あるいは有機質の微細粒子表面に各種の表面処理を施すことも可能であり、また、これらは単独で使用し得るほか、2種以上を併用することも可能である。以上は後述の表面層(B)にも適合する。
Examples of the inorganic fine particles include silicon dioxide, calcium carbonate, titanium dioxide, talc, kaolin, mica, and zeolite, and these shapes can be spherical, elliptical, conical, or amorphous. As for the particle size, a desired particle size can be used and blended depending on the intended use and usage of the film.
Further, as the organic fine particles, crosslinked particles such as acrylic, methyl acrylate, and styrene-butadiene can be used, and various particles such as inorganic fine particles can be used in terms of shape and size. It is possible. Further, it is possible to apply various surface treatments to the surface of these inorganic or organic fine particles, and these can be used alone or in combination of two or more. The above is also applicable to the surface layer (B) described later.
(フィルム層構成)
 本発明の二軸配向ポリプロピレン系フィルムは、基材層(A)/中間層(B)/表面層(C)の3層構造、表面層(C)/基材層(A)/中間層(B)/表面層(C)の4層構造、表面層(C)/中間層(B)/基材層(A)/中間層(B)/表面層(C)の6層構造であってもよい。
(Film layer composition)
The biaxially oriented polypropylene-based film of the present invention has a three-layer structure of a base layer (A) / intermediate layer (B) / surface layer (C), and a surface layer (C) / base layer (A) / intermediate layer ( It has a four-layer structure of B) / surface layer (C) and a six-layer structure of surface layer (C) / intermediate layer (B) / base layer (A) / intermediate layer (B) / surface layer (C). May be good.
(フィルム厚み)
 本発明の二軸配向ポリプロピレン系樹脂フィルムの全層厚みは、その用途や使用方法によって異なるが、フィルム強度、若しくは密封性又は水蒸気バリア性の観点から10μm以上が好ましく、15μm以上がより好ましく、20μ以上がさらに好ましい。
 また、高速包装加工性、若しくは視認性の点において、60μm以下が好ましく、50μm以下がさらに好ましく、45μm以下が特に好ましく40μm以下が最も好ましい。
(Film thickness)
The total layer thickness of the biaxially oriented polypropylene resin film of the present invention varies depending on its use and usage, but is preferably 10 μm or more, more preferably 15 μm or more, and more preferably 20 μm from the viewpoint of film strength, sealing property or water vapor barrier property. The above is more preferable.
Further, in terms of high-speed packaging processability or visibility, 60 μm or less is preferable, 50 μm or less is further preferable, 45 μm or less is particularly preferable, and 40 μm or less is most preferable.
 基材層(A)の厚みは、その用途や使用方法によって異なるが、フィルムの剛性や水蒸気バリア性の点で、10μm以上が好ましい。透明性や環境への影響の点において、50μm以下が好ましく、45μm以下がより好ましく、40μm以下がさらに好ましく、37μm以下が特に好ましい。
 中間層(B)の厚みは、その用途や使用方法によって異なるが、フィルムのラミネート強度や帯電防止性の点で、1μm以上が好ましく、2μm以上がより好ましく、4μm以上がさらに好ましい。
The thickness of the base material layer (A) varies depending on the application and the method of use, but is preferably 10 μm or more in terms of the rigidity of the film and the water vapor barrier property. In terms of transparency and influence on the environment, 50 μm or less is preferable, 45 μm or less is more preferable, 40 μm or less is further preferable, and 37 μm or less is particularly preferable.
The thickness of the intermediate layer (B) varies depending on its use and method of use, but is preferably 1 μm or more, more preferably 2 μm or more, still more preferably 4 μm or more, in terms of film laminating strength and antistatic property.
 中間層(B)の厚みは、その用途や使用方法によって異なるが、フィルムの剛性や高温での耐熱性の点で、8μm以下が好ましく、6μm以下がより好ましい。
 中間層(B)の厚みの二軸配向ポリプロピレン系樹脂フィルム全層の厚みに対する割合は、5%以上であるのが剛性と高温での耐熱性の観点から好ましく、10%以上がより好ましく、15%以上がさらに好ましい。
The thickness of the intermediate layer (B) varies depending on its use and method of use, but is preferably 8 μm or less, more preferably 6 μm or less, in terms of film rigidity and heat resistance at high temperatures.
The ratio of the thickness of the intermediate layer (B) to the thickness of all the biaxially oriented polypropylene-based resin films is preferably 5% or more, more preferably 10% or more, and more preferably 10% or more from the viewpoint of rigidity and heat resistance at high temperatures. % Or more is more preferable.
 中間層(B)の厚みの二軸配向ポリプロピレン系樹脂フィルム全層の厚みに対する割合は、30%以下であるのが剛性と高温での耐熱性の観点から好ましく、25%以下がより好ましい。
 表面層(C)の厚みは、その用途や使用方法によって異なるが、フィルムのラミネート強度や帯電防止性の点で、0.3μm以上が好ましく、0.5μm以上がより好ましく、0.8μm以上がさらに好ましい。
 表面層(C)の厚みは、その用途や使用方法によって異なるが、フィルムの剛性や高温での耐熱性の点で4μm以下が好ましく、3μm以下がより好ましい。
The ratio of the thickness of the intermediate layer (B) to the thickness of the entire biaxially oriented polypropylene-based resin film is preferably 30% or less, more preferably 25% or less, from the viewpoint of rigidity and heat resistance at high temperatures.
The thickness of the surface layer (C) varies depending on its use and usage, but is preferably 0.3 μm or more, more preferably 0.5 μm or more, and more preferably 0.8 μm or more in terms of film laminating strength and antistatic property. More preferred.
The thickness of the surface layer (C) varies depending on the application and the method of use, but is preferably 4 μm or less, more preferably 3 μm or less, in terms of the rigidity of the film and the heat resistance at high temperatures.
 表面層(C)の厚みの二軸配向ポリプロピレン系樹脂フィルム全層の厚みに対する割合は、2%以上であるのが剛性と高温での耐熱性の観点から好ましく、3%以上がより好ましく、4%以上がさらに好ましい。
 表面層(C)の厚みの二軸配向ポリプロピレン系樹脂フィルム全層の厚みに対する割合は、20%以下であるのが剛性と高温での耐熱性の観点から好ましく、15%以下がより好ましい。
The ratio of the thickness of the surface layer (C) to the thickness of the entire biaxially oriented polypropylene resin film is preferably 2% or more from the viewpoint of rigidity and heat resistance at high temperature, and more preferably 3% or more. % Or more is more preferable.
The ratio of the thickness of the surface layer (C) to the thickness of the entire biaxially oriented polypropylene-based resin film is preferably 20% or less, more preferably 15% or less from the viewpoint of rigidity and heat resistance at high temperatures.
(二軸配向ポリプロピレンフィルムの製膜方法)
 本発明の二軸配向ポリプロピレンフィルムは、上述したポリプロピレン樹脂を主成分とするポリプロピレン樹脂組成物からなる未延伸シートを作製し、二軸延伸することによって得ることが好ましい。二軸延伸の方法としては、インフレーション同時二軸延伸法、テンター同時二軸延伸法、テンター逐次二軸延伸法のいずれによっても得られるが、製膜安定性、厚み均一性の観点でテンター逐次二軸延伸法を採用することが好ましい。特に長手方向に延伸後、幅方向に延伸することが好ましいが、幅方向に延伸後に長手方向に延伸する方法でもよい。
(Method for forming biaxially oriented polypropylene film)
The biaxially oriented polypropylene film of the present invention is preferably obtained by preparing an unstretched sheet made of the polypropylene resin composition containing the above-mentioned polypropylene resin as a main component and biaxially stretching the film. As a biaxial stretching method, any of the inflation simultaneous biaxial stretching method, the tenter simultaneous biaxial stretching method, and the tenter sequential biaxial stretching method can be obtained, but from the viewpoint of film forming stability and thickness uniformity, the tenter sequential biaxial stretching method can be obtained. It is preferable to adopt the axial stretching method. In particular, it is preferable to stretch in the longitudinal direction and then in the width direction, but a method of stretching in the width direction and then stretching in the longitudinal direction may also be used.
 次に本発明の二軸配向ポリプロピレンフィルムの製造方法を以下に説明するが、必ずしもこれに限定されるものではない。
 以下には、表面層(C)/中間層(B)/基材層(A)/中間層(B)/表面層(C)の場合の例について、テンター逐次二軸延伸法を採用した場合について述べる。
 まず、表面層(C)/中間層(B)/基材層(A)/中間層(B)/表面層(C)の構成からなる溶融ポリプロピレン樹脂組成物多層シートをTダイから押出す。
 その方法として、例えば、6台の押出機を用いて異なる流路から送り出された熱可塑性樹脂を多層フィードブロックやスタティックミキサー、多層マルチマニホールドダイ等を用いて多層に積層しながら。共押出しする方法等を使用することができる。
 また、一台の押出機のみを用いて、押出機からT型ダイまでのメルトラインに上述の多層化装置を導入することも可能である。
 背圧の安定化および厚み変動の抑制の観点からポリマー流路にギヤポンプを設置する方法が好ましい。
 Tダイからシート状に共押出した溶融シートを金属製冷却ロール上に接地させて冷却固化する。固化を促進する目的で、冷却ロールで冷却したシートを水槽に浸漬するなどして、さらに冷却することが好ましい。
Next, the method for producing the biaxially oriented polypropylene film of the present invention will be described below, but the present invention is not necessarily limited thereto.
The following is an example of the case of the surface layer (C) / intermediate layer (B) / base layer (A) / intermediate layer (B) / surface layer (C) when the tenter sequential biaxial stretching method is adopted. Will be described.
First, a molten polypropylene resin composition multilayer sheet having a structure of a surface layer (C) / intermediate layer (B) / base layer (A) / intermediate layer (B) / surface layer (C) is extruded from a T-die.
As a method, for example, thermoplastic resins fed from different flow paths using six extruders are laminated in multiple layers using a multi-layer feed block, a static mixer, a multi-layer multi-manifold die, or the like. A co-extruding method or the like can be used.
It is also possible to introduce the above-mentioned multilayer device into the melt line from the extruder to the T-type die by using only one extruder.
From the viewpoint of stabilizing back pressure and suppressing thickness fluctuation, a method of installing a gear pump in the polymer flow path is preferable.
The molten sheet co-extruded from the T-die into a sheet is grounded on a metal cooling roll to be cooled and solidified. For the purpose of promoting solidification, it is preferable to further cool the sheet cooled by a cooling roll by immersing it in a water tank or the like.
 ついで、シートを加熱した2対の延伸ロールで、後方の延伸ロールの回転数を大きくすることでシートを長手方向に延伸し、一軸延伸フィルムを得る。 Then, the sheet is stretched in the longitudinal direction by increasing the rotation speed of the rear stretching rolls with two pairs of stretching rolls in which the sheet is heated to obtain a uniaxially stretched film.
 引き続き、一軸延伸フィルムを予熱後、テンター式延伸機でフィルム端部を把持しながら、特定の温度で幅方向に延伸を行い、二軸延伸フィルムを得る。この幅方向延伸工程については後に詳細に述べる。 Subsequently, after preheating the uniaxially stretched film, the film is stretched in the width direction at a specific temperature while grasping the end of the film with a tenter type stretcher to obtain a biaxially stretched film. This width direction stretching step will be described in detail later.
 幅方向延伸工程が終了後、二軸延伸フィルムを特定の温度で熱処理を行い、二軸配向フィルムを得る。熱処理工程においては、幅方向にフィルムを弛緩してもよい。 After the width direction stretching step is completed, the biaxially stretched film is heat-treated at a specific temperature to obtain a biaxially oriented film. In the heat treatment step, the film may be relaxed in the width direction.
 こうして得られた二軸配向ポリプロピレンフィルムに、必要に応じて、例えば少なくとも片面にコロナ放電処理を施した後、ワインダーで巻取ることによりフィルムロールを得ることができる。 A film roll can be obtained by subjecting the biaxially oriented polypropylene film thus obtained to, for example, corona discharge treatment on at least one side thereof and then winding it with a winder.
 以下それぞれの工程について詳しく説明する。
(押出し工程)
 冷却ロール、又は冷却ロールと水槽の温度は、10℃からTcまでの範囲であることが好ましく、フィルムの透明性を上げたい場合は、10~50℃の範囲の温度の冷却ロールで冷却固化するのが好ましい。冷却温度を50℃以下にすると未延伸シートの透明性が高まりやすく、好ましくは40℃以下であり、さらに好ましくは30℃以下である。逐次二軸延伸後の結晶配向度を増大させるには冷却温度を40℃以上とするのも好ましい場合があるが、上述のようにメソペンダット分率が97.0%以上のプロピレン単独重合体を用いる場合は、冷却温度を40℃以下とするのが次工程の延伸を容易に行い、また厚み斑を低減する上で好ましく、30℃以下とするのがより好ましい。
 未延伸シートの厚みは3500μm以下とするのが、冷却効率の上で好ましく、3000μm以下とするのがさらに好ましく、逐次二軸延伸後のフィルム厚みに応じて、適宜調整できる。未延伸シートの厚みはポリプロピレン樹脂組成物の押出し速度及びTダイのリップ幅等で制御できる。
Each process will be described in detail below.
(Extrusion process)
The temperature of the cooling roll or the cooling roll and the water tank is preferably in the range of 10 ° C to Tc, and if it is desired to increase the transparency of the film, it is cooled and solidified with a cooling roll having a temperature in the range of 10 to 50 ° C. Is preferable. When the cooling temperature is 50 ° C. or lower, the transparency of the unstretched sheet tends to increase, preferably 40 ° C. or lower, and more preferably 30 ° C. or lower. In order to increase the degree of crystal orientation after sequential biaxial stretching, it may be preferable to set the cooling temperature to 40 ° C. or higher, but as described above, a propylene homopolymer having a mesopendat fraction of 97.0% or higher is used. In this case, the cooling temperature is preferably 40 ° C. or lower, which is preferable in terms of facilitating stretching in the next step and reducing thickness unevenness, and more preferably 30 ° C. or lower.
The thickness of the unstretched sheet is preferably 3500 μm or less, more preferably 3000 μm or less in terms of cooling efficiency, and can be appropriately adjusted according to the film thickness after sequential biaxial stretching. The thickness of the unstretched sheet can be controlled by the extrusion speed of the polypropylene resin composition, the lip width of the T-die, and the like.
(長手方向延伸工程)
 長手方向延伸倍率の下限は好ましくは3倍であり、より好ましくは3.5倍であり、特に好ましくは3.8倍である。上記範囲であると強度を高めやすく、膜厚ムラも少なくなる。 長手方向延伸倍率の上限は好ましくは8倍であり、より好ましくは7.5倍であり、特に好ましくは7倍である。上記範囲であると、幅方向延伸工程での幅方向延伸がしやすく、生産性が向上する。
 長手方向延伸温度の下限は、好ましくはTm-40℃であり、より好ましくはTm-37℃であり、さらに好ましくはTm-35℃である。Tmは基材層を構成するポリプロピレン単独重合体の融点とする。上記範囲であると引き続いて行われる幅方向延伸が容易になり、厚みムラも少なくなる。長手方向延伸温度の上限は好ましくはTm-7℃であり、より好ましくはTm-10℃であり、さらに好ましくはTm-12℃である。上記範囲であると熱収縮率を小さくしやすく、延伸ロールに付漕し延伸しにくくなったり、表面の粗さが大きくなることにより品位が低下することも少ない。
 なお、長手方向延伸は3対以上の延伸ロールを使用して、2段階以上の多段階に分けて延伸してもよい。
(Longitudinal stretching step)
The lower limit of the longitudinal stretching ratio is preferably 3 times, more preferably 3.5 times, and particularly preferably 3.8 times. Within the above range, the strength can be easily increased and the film thickness unevenness can be reduced. The upper limit of the longitudinal stretching ratio is preferably 8 times, more preferably 7.5 times, and particularly preferably 7 times. Within the above range, the width direction stretching in the width direction stretching step is easy, and the productivity is improved.
The lower limit of the longitudinal stretching temperature is preferably Tm-40 ° C, more preferably Tm-37 ° C, and even more preferably Tm-35 ° C. Tm is the melting point of the polypropylene homopolymer constituting the base material layer. Within the above range, the subsequent stretching in the width direction becomes easy and the thickness unevenness is reduced. The upper limit of the longitudinal stretching temperature is preferably Tm-7 ° C, more preferably Tm-10 ° C, and even more preferably Tm-12 ° C. Within the above range, the heat shrinkage rate is likely to be reduced, and it is unlikely that the heat shrinkage will be reduced due to the difficulty in stretching by being attached to the stretching roll or the surface roughness becoming large.
The longitudinal stretching may be performed by using three or more pairs of stretching rolls and stretching in two or more stages.
(予熱工程)
 幅方向延伸工程の前に、長手方向延伸後の一軸延伸フィルムをTm~Tm+25℃の範囲で加熱して、ポリプロピレン樹脂組成物を軟化させる必要がある。Tm以上とすることにより、軟化が進み、幅方向の延伸が容易になる。Tm+25℃以下とすることで、横延伸時の配向が進み、剛性が発現しやすくなる。より好ましくはTm+2~Tm+22℃であり、特に好ましくはTm+3~Tm+20℃である。ここで、予熱工程での最高温度を予熱温度とする。
(Preheating process)
Prior to the widthwise stretching step, it is necessary to heat the uniaxially stretched film after longitudinal stretching in the range of Tm to Tm + 25 ° C. to soften the polypropylene resin composition. When it is set to Tm or more, softening progresses and stretching in the width direction becomes easy. By setting the temperature to Tm + 25 ° C. or lower, the orientation at the time of lateral stretching progresses, and the rigidity is easily developed. It is more preferably Tm + 2 to Tm + 22 ° C, and particularly preferably Tm + 3 to Tm + 20 ° C. Here, the maximum temperature in the preheating process is defined as the preheating temperature.
(幅方向延伸工程)
 予熱工程後の幅方向延伸工程においては、好ましい方法は以下のとおりである。
(Width direction stretching step)
In the width direction stretching step after the preheating step, a preferable method is as follows.
 幅方向延伸工程においては、Tm-10℃以上、予熱温度以下の温度で延伸する区間(前期区間)を設ける。このとき、前期区間の開始時は予熱温度に達した時点でも良いし、予熱温度に達した後に温度を降下させ予熱温度よりも低い温度に達した時点でもよい。
 幅方向延伸工程における前期区間の温度の下限は、好ましくはTm℃であり、より好ましくはTm+1℃であり、さらに好ましくはTm+3℃である。前期区間の延伸温度がこの範囲であると、高温での収縮が低減しすく、かつ面配向係数が高くなりすぎず、帯電防止性が向上しやすい。
 前期区間に続いて、前期区間の温度よりも低く、かつTm-70℃以上、Tm-5℃以下の温度で延伸する区間(後期区間)を設けても良いし、前期区間での温度でそのまま横方向延伸を続けてもよい。
 後期区間の延伸温度の上限は、好ましくはTm-8℃であり、より好ましくはTm-10℃である。後期区間の延伸温度がこの範囲であると剛性が発現しやすくなる。
 後期区間の延伸温度の下限は、好ましくはTm-65℃であり、より好ましくはTm-60℃であり、さらに好ましくはTm-55℃である。後期区間の延伸温度がこの範囲であると製膜が安定しやすい。
In the width direction stretching step, a section (first half section) for stretching at a temperature of Tm-10 ° C. or higher and a preheating temperature or lower is provided. At this time, the start of the first half section may be at the time when the preheating temperature is reached, or at the time when the temperature is lowered after reaching the preheating temperature and reaches a temperature lower than the preheating temperature.
The lower limit of the temperature in the early section in the width direction stretching step is preferably Tm ° C, more preferably Tm + 1 ° C, and further preferably Tm + 3 ° C. When the stretching temperature in the first half section is in this range, the shrinkage at a high temperature is reduced, the plane orientation coefficient does not become too high, and the antistatic property is likely to be improved.
Following the first half section, a section (late section) that is lower than the temperature of the first half section and stretches at a temperature of Tm-70 ° C or higher and Tm-5 ° C or lower may be provided, or the temperature in the first half section may be used as it is. Lateral stretching may be continued.
The upper limit of the stretching temperature in the latter section is preferably Tm-8 ° C, more preferably Tm-10 ° C. If the stretching temperature in the latter section is in this range, rigidity is likely to be developed.
The lower limit of the stretching temperature in the latter section is preferably Tm-65 ° C, more preferably Tm-60 ° C, and even more preferably Tm-55 ° C. When the stretching temperature in the latter section is in this range, the film formation is likely to be stable.
 後期区間終了時、あるいは前期区間での温度でそのまま横方向延伸を続けて、幅方向最終延伸倍率に到達した時の直後に、フィルムを冷却することが好ましい。この時の冷却の温度は、後期区間の温度以下で、かつTm-80℃以上、Tm-15℃以下の温度にするのが好ましく、Tm-80℃以上、Tm-20℃以下の温度にすることがより好ましく、Tm-80℃以上、Tm-30℃以下の温度とすることがさらに好ましく、Tm-70℃以上、Tm-40℃以下の温度とすることが特に好ましい。
 前期区間の温度及び後期区間の温度は、徐々に低下させることもできるが、段階的にあるいは一段階で低下させることもでき、それぞれ一定であっても良い。温度を徐々に低下させると、フィルムの破断がししにくく、またフィルムの厚み変動も小さくしやすい。また、熱収縮率も小さくしやすく、フィルムの白化も少ないため好ましい。幅方向延伸工程における前期区間終了時の温度から後期区間開始時の温度へは徐々に低下させることもできるが、段階的にあるいは一段階で低下させることもできる。
It is preferable to cool the film at the end of the late section or immediately after the film is continuously stretched at the temperature in the early section and the final stretching ratio in the width direction is reached. The cooling temperature at this time is preferably a temperature of Tm-80 ° C or higher and Tm-15 ° C or lower, preferably Tm-80 ° C or higher and Tm-20 ° C or lower, which is lower than the temperature of the latter section. It is more preferably Tm-80 ° C. or higher and Tm-30 ° C. or lower, and particularly preferably Tm-70 ° C. or higher and Tm-40 ° C. or lower.
The temperature in the early section and the temperature in the late section can be gradually lowered, but can also be lowered stepwise or in one step, and may be constant. When the temperature is gradually lowered, the film is less likely to break and the thickness variation of the film is likely to be reduced. Further, it is preferable because the heat shrinkage rate is easy to be small and the film is less whitened. The temperature at the end of the early section in the width direction stretching step can be gradually lowered to the temperature at the start of the late section, but it can also be lowered stepwise or in one step.
 後期区間を設ける場合は、幅方向延伸工程の前期区間終了時の延伸倍率の下限は、好ましくは5倍であり、より好ましくは6倍であり、さらに好ましくは7倍である。前期区間終了時の延伸倍率の上限は、好ましくは15倍であり、より好ましくは14倍であり、さらに好ましくは13倍である。 When the latter section is provided, the lower limit of the draw ratio at the end of the first section of the width direction stretching step is preferably 5 times, more preferably 6 times, and further preferably 7 times. The upper limit of the draw ratio at the end of the first half section is preferably 15 times, more preferably 14 times, and further preferably 13 times.
 後期区間を設ける場合は、幅方向延伸工程における最終幅方向延伸倍率の下限は、好ましく7倍であり、より好ましくは8倍であり、さらに好ましくは9倍であり、特に好ましくは10倍である。7倍以上であると剛性を高めやすく、膜厚ムラも少なくなりやすい。幅方向延伸倍率の上限は、好ましくは20倍であり、より好ましくは17倍であり、さらに好ましくは15倍である。20倍以下であると熱収縮率を小さくしやすく、延伸時に破断しにくい。 When the latter section is provided, the lower limit of the final width direction stretching ratio in the width direction stretching step is preferably 7 times, more preferably 8 times, still more preferably 9 times, and particularly preferably 10 times. .. If it is 7 times or more, the rigidity is likely to be increased and the film thickness unevenness is likely to be reduced. The upper limit of the stretch ratio in the width direction is preferably 20 times, more preferably 17 times, and further preferably 15 times. When it is 20 times or less, the heat shrinkage rate is likely to be reduced, and it is difficult to break during stretching.
 後期区間を設けずに、前期区間での温度でそのまま横方向延伸を続ける場合は、幅方向延伸工程における最終幅方向延伸倍率の下限は、好ましくは10倍であり、より好ましくは11倍である。10倍以上であると剛性を高めやすく、膜厚ムラも少なくなりやすい。幅方向延伸倍率の上限は、好ましくは20倍であり、より好ましくは17倍であり、さらに好ましくは15倍である。20倍以下であると熱収縮率を小さくしやすく、延伸時に破断しにくい。 When the lateral stretching is continued as it is at the temperature in the early section without providing the latter section, the lower limit of the final width drawing magnification in the width direction stretching step is preferably 10 times, more preferably 11 times. .. If it is 10 times or more, the rigidity is likely to be increased and the film thickness unevenness is likely to be reduced. The upper limit of the stretch ratio in the width direction is preferably 20 times, more preferably 17 times, and further preferably 15 times. When it is 20 times or less, the heat shrinkage rate is likely to be reduced, and it is difficult to break during stretching.
 このように、立体規則性が高く、高融点である結晶性の高いポリプロピレン樹脂を用い、上述の幅方向延伸工程を採用することにより、延伸倍率を極端に大きくしなくても、ポリプロピレン樹脂の分子が高度に主配向方向に(上述した幅方向延伸工程では幅方向が該当する。)に整列するため、得られる二軸配向フィルム中の結晶配向が非常に強く、融点も高い結晶が生成しやすい。
 また、結晶間の非晶部の配向も主配向方向(上述した幅方向延伸工程では幅方向が該当する。)に高まり、非晶部の周りに融点の高い結晶が多く存在するため、結晶の融点より低い温度では非晶部の伸長したポリプロピレン分子は緩和しにくく、その緊張した状態を保ちやすい。そのため、高温においても二軸配向フィルム全体が高い剛性を維持することができる。
 また、着目すべきことは、このような幅方向延伸工程を採用することにより、150℃の高温での熱収縮率も低下しやすいことである。その理由は、非晶部の周りに融点の高い結晶が多く存在するため、結晶の融点より低い温度では非晶部における伸長したポリプロピレン樹脂分子は緩和しにくく、しかも分子同士の絡み合いが少ないところにある。
As described above, by using the polypropylene resin having high stereoregularity and high crystallinity and adopting the above-mentioned stretching step in the width direction, the molecules of the polypropylene resin do not need to be extremely increased in stretching ratio. Is highly aligned in the main orientation direction (the width direction is applicable in the above-mentioned width direction stretching step), so that the crystal orientation in the obtained biaxially oriented film is very strong and crystals with a high melting point are likely to be produced. ..
In addition, the orientation of the amorphous part between the crystals also increases in the main orientation direction (the width direction corresponds to the above-mentioned width direction stretching step), and many crystals having a high melting point exist around the amorphous part. At a temperature lower than the melting point, the elongated polypropylene molecule in the amorphous part is difficult to relax and tends to maintain its tense state. Therefore, the entire biaxially oriented film can maintain high rigidity even at high temperatures.
Further, it should be noted that by adopting such a stretching step in the width direction, the heat shrinkage rate at a high temperature of 150 ° C. tends to decrease. The reason is that since many crystals with a high melting point exist around the amorphous part, the elongated polypropylene resin molecules in the amorphous part are difficult to relax at a temperature lower than the melting point of the crystals, and the molecules are less entangled with each other. be.
 さらに着目すべきこととして、ポリプロピレン樹脂の低分子量成分を増やすことで、フィルムの結晶化度がより高まりやすくなるとともに、非晶部分のポリプロピレン樹脂分子鎖同士の絡み合いがより少なくなり、熱収縮応力を弱めることで、熱収縮率をさらに低下させることができることが挙げられる。従来は強度と熱収縮率のどちらかが向上すれば、他方の特性が低下する傾向となることを考慮すると、画期的なことと言える。 It should be further noted that by increasing the low molecular weight component of the polypropylene resin, the crystallinity of the film is more likely to increase, and the entanglement of the polypropylene resin molecular chains in the amorphous portion is reduced, resulting in heat shrinkage stress. By weakening it, the heat shrinkage rate can be further reduced. Conventionally, it can be said that it is epoch-making considering that if either the strength or the heat shrinkage rate is improved, the other property tends to be deteriorated.
(熱処理工程)
 二軸延伸フィルムは必要に応じて、熱収縮率をさらに小さくするために、熱処理することができる。熱処理温度の上限は好ましくはTm+10℃であり、より好ましくはTm+7℃である。Tm+10℃以下にすることで、剛性が発現しやすく、フィルム表面の粗さが大きくなりすぎず、フィルムが白化しにくい。熱処理温度の下限は好ましくはTm-10℃であり、より好ましくはTm-7℃である。Tm-10℃未満であると熱収縮率が高くなることがある。
 上述の幅方向延伸工程を採用することにより、Tm-10℃からTm+10の間の温度で熱処理を行っても、延伸工程で生成した配向の高い結晶は融解しにくく、得られたフィルムの剛性を低下させずに、熱収縮率をより小さくすることができる。熱収縮率を調整する目的で、熱処理時に幅方向にフィルムを弛緩(緩和)させてもよい。弛緩率の上限は好ましくは10%である。上記範囲内であると、フィルム強度が低下しにくく、フィルム厚み変動が小さくなりやすい。より好ましくは8%であり、さらに好ましくは7%であり、よりさらに好ましくは3%であり、特に好ましくは2%であり、最も好ましくは0%である。
(Heat treatment process)
If necessary, the biaxially stretched film can be heat-treated to further reduce the heat shrinkage. The upper limit of the heat treatment temperature is preferably Tm + 10 ° C, more preferably Tm + 7 ° C. By setting the temperature to Tm + 10 ° C. or lower, rigidity is easily developed, the roughness of the film surface does not become too large, and the film is less likely to whiten. The lower limit of the heat treatment temperature is preferably Tm-10 ° C, more preferably Tm-7 ° C. If the temperature is lower than Tm-10 ° C, the heat shrinkage rate may increase.
By adopting the above-mentioned width direction stretching step, even if heat treatment is performed at a temperature between Tm-10 ° C. and Tm + 10, the highly oriented crystals produced in the stretching step are difficult to melt, and the rigidity of the obtained film is reduced. The heat shrinkage can be made smaller without lowering. For the purpose of adjusting the heat shrinkage rate, the film may be relaxed (relaxed) in the width direction during the heat treatment. The upper limit of the relaxation rate is preferably 10%. Within the above range, the film strength is unlikely to decrease, and the film thickness variation tends to be small. It is more preferably 8%, further preferably 7%, even more preferably 3%, particularly preferably 2%, and most preferably 0%.
(フィルム厚み)
 本発明の二軸配向ポリプロピレンフィルムの厚みは各用途に合わせて設定されるが、フィルムの強度を得るには、フィルム厚みの下限は好ましくは10μmであり、より好ましくは12μmであり、さらに好ましくは14μmであり、特に好ましくは16μmである。フィルム厚みが2μm以上であるとフィルムの剛性を得やすい。フィルム厚みの上限は好ましくは100μmであり、より好ましくは70μmであり、さらに好ましくは50μmであり、特に好ましくは40μmであり、最も好ましくは30μmである。フィルム厚みが100μm以下であると押出工程時の未延伸シートの冷却速度が小さくなりにくい。
 本発明の二軸配向ポリプロピレンフィルムは通常、幅2000~12000mm、長さ1000~50000m程度のロールとして製膜され、フィルムロール状に巻き取られる。さらに、各用途に合わせてスリットされ、幅300~2000mm、長さ500~5000m程度のスリットロールとして供される。本発明の二軸配向ポリプロピレンフィルムはより長尺のフィルムロールを得ることが可能である。
(Film thickness)
The thickness of the biaxially oriented polypropylene film of the present invention is set according to each application, but in order to obtain the strength of the film, the lower limit of the film thickness is preferably 10 μm, more preferably 12 μm, still more preferably. It is 14 μm, particularly preferably 16 μm. When the film thickness is 2 μm or more, the rigidity of the film can be easily obtained. The upper limit of the film thickness is preferably 100 μm, more preferably 70 μm, still more preferably 50 μm, particularly preferably 40 μm, and most preferably 30 μm. When the film thickness is 100 μm or less, the cooling rate of the unstretched sheet during the extrusion process is unlikely to decrease.
The biaxially oriented polypropylene film of the present invention is usually formed as a roll having a width of 2000 to 12000 mm and a length of about 1000 to 50000 m, and is wound into a film roll. Further, it is slit according to each application and is provided as a slit roll having a width of 300 to 2000 mm and a length of about 500 to 5000 m. The biaxially oriented polypropylene film of the present invention can obtain a longer film roll.
 本発明に用いられる帯電防止性二軸延伸ポリプロピレン系樹脂フィルムには、目的に応じて例えばコロナ放電処理,プラズマ処理,オゾン処理,薬品処理等の従来公知の方法による表面処理や、公知のアンカー処理剤を用いたアンカー処理等が施されていてもよい。
 特にコロナ放電処理,プラズマ処理,オゾン処理を行うことで、帯電防止性を向上させることができる。
 例えば、得られた二軸配向ポリプロピレンフィルムの冷却ロールに接触させた側のフィルム表面にソフタル・コロナ・アンド・プラズマGmbH社製等のコロナ処理機を用いて、印加電流値が0.30~2.0Aの条件で、コロナ処理を施すのが好ましく、0.50~2.0Aがより好ましく、0.80~2.0Aがさらに好ましく1.5~2.0Aが特に好ましい。
The antistatic biaxially stretched polypropylene resin film used in the present invention is subjected to surface treatment by conventionally known methods such as corona discharge treatment, plasma treatment, ozone treatment, chemical treatment, and known anchor treatment, depending on the purpose. Anchor treatment or the like using an agent may be applied.
In particular, antistatic properties can be improved by performing corona discharge treatment, plasma treatment, and ozone treatment.
For example, a corona processing machine manufactured by Sophthal Corona & Plasma GmbH, etc. was used on the film surface on the side of the obtained biaxially oriented polypropylene film in contact with the cooling roll, and the applied current value was 0.30 to 2. Corona treatment is preferably performed under the condition of 0.0A, more preferably 0.50 to 2.0A, still more preferably 0.80 to 2.0A, and particularly preferably 1.5 to 2.0A.
(厚み均一性)
 本発明の二軸配向ポリプロピレンフィルムの厚み均一性の下限は好ましくは0%であり、より好ましくは0.1%であり、さらに好ましくは0.5%であり、特に好ましくは1%である。厚み均一性の上限は好ましくは20%であり、より好ましくは17%であり、さらに好ましくは15%であり、特に好ましくは12%であり、最も好ましくは10%である。上記範囲だとコートや印刷などの後加工時に不良が生じにくく、精密性を要求される用途に用いやすい。
 測定方法は下記のとおりとした。フィルムの長さ方向にフィルム物性が安定している定常領域から幅方向40mmの試験片を切り出し、ミクロン計測器(株)製のフィルム送り装置(製番:A90172を使用)及びアンリツ株式会社製フィルム厚み連続測定器(製品名:K-313A広範囲高感度電子マイクロメーター)を用い、20000mmにわたって連続してフィルム厚みを計測し、下式から厚み均一性を算出した。
 厚み均一性(%)=[(厚みの最大値-厚みの最低値)/厚みの平均値]×100
(Thickness uniformity)
The lower limit of the thickness uniformity of the biaxially oriented polypropylene film of the present invention is preferably 0%, more preferably 0.1%, still more preferably 0.5%, and particularly preferably 1%. The upper limit of the thickness uniformity is preferably 20%, more preferably 17%, still more preferably 15%, particularly preferably 12%, and most preferably 10%. Within the above range, defects are less likely to occur during post-processing such as coating and printing, and it is easy to use for applications that require precision.
The measurement method was as follows. A test piece having a width of 40 mm is cut out from a constant region where the film physical characteristics are stable in the length direction of the film, and a film feeder manufactured by Micron Measuring Instruments Co., Ltd. (using the product number: A90172) and a film manufactured by Anritsu Co., Ltd. Using a continuous thickness measuring device (product name: K-313A wide-range high-sensitivity electronic micrometer), the film thickness was continuously measured over 20000 mm, and the thickness uniformity was calculated from the following formula.
Thickness uniformity (%) = [(maximum thickness-minimum thickness) / average thickness] x 100
(フィルム特性)
 本発明の二軸配向ポリプロピレンフィルムは、下記特性に特徴がある。ここで本発明の二軸配向ポリプロピレンフィルムにおける「長手方向」とは、フィルム製造工程における流れ方向に対応する方向であり、「幅方向」とは、前記のフィルム製造工程における流れ方向と直交する方向である。フィルム製造工程における流れ方向が不明なポリプロピレンフィルムについては、フィルム表面に対して垂直方向に広角X線を入射し、α型結晶の(110)面に由来する散乱ピークを円周方向にスキャンし、得られた回折強度分布の回折強度が最も大きい方向を「幅方向」、それと直交する方向を「長手方向」とする。
(Film characteristics)
The biaxially oriented polypropylene film of the present invention is characterized by the following characteristics. Here, the "longitudinal direction" in the biaxially oriented polypropylene film of the present invention is a direction corresponding to the flow direction in the film manufacturing process, and the "width direction" is a direction orthogonal to the flow direction in the film manufacturing process. Is. For polypropylene films whose flow direction is unknown in the film manufacturing process, wide-angle X-rays are incident in the direction perpendicular to the film surface, and the scattering peak derived from the (110) plane of the α-type crystal is scanned in the circumferential direction. The direction in which the diffraction intensity of the obtained diffraction intensity distribution is the largest is referred to as the "width direction", and the direction orthogonal to it is referred to as the "longitudinal direction".
(23℃5%伸長時応力)
 本発明の二軸配向ポリプロピレンフィルムの23℃での長手方向の5%伸長時の応力(F5)の下限は40MPaであり、好ましくは42MPaであり、より好ましくは43MPaであり、さらに好ましくは44MPaであり、特に好ましくは45MPaである。40MPa以上では、剛性が高いため、包装袋としたときの袋形状を保持しやすく、印刷など加工時にフィルムの変形が起こりにくい。長手方向のF5の上限は、好ましくは70MPaであり、より好ましくは65MPaであり、さらに好ましくは62MPaであり、特に好ましくは61MPaであり、最も好ましくは60MPaである。70MPa以下では現実的な製造が容易であったり、縦一幅バランスが良化しやすい。
(Stress at 23 ° C 5% elongation)
The lower limit of the stress (F5) of the biaxially oriented polypropylene film of the present invention at 5% elongation in the longitudinal direction at 23 ° C. is 40 MPa, preferably 42 MPa, more preferably 43 MPa, still more preferably 44 MPa. It is particularly preferably 45 MPa. At 40 MPa or more, the rigidity is high, so that the bag shape when used as a packaging bag is easily maintained, and the film is less likely to be deformed during processing such as printing. The upper limit of F5 in the longitudinal direction is preferably 70 MPa, more preferably 65 MPa, still more preferably 62 MPa, particularly preferably 61 MPa, and most preferably 60 MPa. At 70 MPa or less, realistic manufacturing is easy and the vertical-width balance is easy to improve.
 本発明の二軸配向ポリプロピレンフィルムの23℃での幅方向のF5の下限は160MPaであり、好ましくは165MPaであり、より好ましくは168MPaであり、さらに好ましくは170MPaである。160MPa以上では、剛性が高いため、包装袋としたときの袋形状を保持しやすく、印刷など加工時にフィルムの変形が起こりにくい。幅方向のF5の上限は、好ましくは250MPaであり、より好ましくは245MPaであり、さらに好ましくは240MPaである。250MPa以下だと現実的な製造が容易であったり、縦一幅バランスが良化しやすい。
F5は延伸倍率やリラックス率を調節したり、製膜時の温度を調整することで範囲内とする。
The lower limit of F5 in the width direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is 160 MPa, preferably 165 MPa, more preferably 168 MPa, and further preferably 170 MPa. At 160 MPa or higher, the rigidity is high, so that the bag shape when used as a packaging bag is easily maintained, and the film is less likely to be deformed during processing such as printing. The upper limit of F5 in the width direction is preferably 250 MPa, more preferably 245 MPa, and even more preferably 240 MPa. If it is 250 MPa or less, realistic manufacturing is easy and the vertical width balance is easy to improve.
F5 is within the range by adjusting the stretching ratio and the relaxing rate, and adjusting the temperature at the time of film formation.
(150℃熱収縮率)
 本発明の二軸配向ポリプロピレンフィルムの150℃での長手方向の熱収縮率の上限は10%であり、好ましくは7.0%であり、より好ましくは6.0%であり、特に好ましくは4.5%であり、最も好ましくは3.0%である。150℃での幅方向の熱収縮率の上限は30%であり、好ましくは16%であり、より好ましくは15%であり、特に好ましくは12%であり、最も好ましくは10%である。長手方向の熱収縮率が10%以下、かつ、幅方向の熱収縮率が30%以下であると、ヒートシール時のシワが生じにくく、特に150℃での長手方向の熱収縮率が8.0%以下、150℃での幅方向の熱収縮率が15%以下であると、開ロ部にチャック部を融着する際の歪みも極めて小さく好ましい。150℃での熱収縮率を小さくするには、フィルムを構成するポリプロピレン樹脂のゲルパーミエーションクロマトグラフィー(GPC)積算カーブを測定した場合の分子量10万以下の成分の量の下限を35質量%とするのが有効である。
(150 ° C heat shrinkage rate)
The upper limit of the heat shrinkage in the longitudinal direction at 150 ° C. of the biaxially oriented polypropylene film of the present invention is 10%, preferably 7.0%, more preferably 6.0%, and particularly preferably 4. It is 5.5%, most preferably 3.0%. The upper limit of the heat shrinkage in the width direction at 150 ° C. is 30%, preferably 16%, more preferably 15%, particularly preferably 12%, and most preferably 10%. When the heat shrinkage rate in the longitudinal direction is 10% or less and the heat shrinkage rate in the width direction is 30% or less, wrinkles are less likely to occur during heat sealing, and the heat shrinkage rate in the longitudinal direction at 150 ° C. is 8. When the heat shrinkage rate in the width direction at 0% or less and 150 ° C. is 15% or less, the strain when the chuck portion is fused to the open portion is extremely small, which is preferable. In order to reduce the heat shrinkage at 150 ° C, the lower limit of the amount of components with a molecular weight of 100,000 or less when measuring the gel permeation chromatography (GPC) integration curve of the polypropylene resin constituting the film is set to 35% by mass. It is effective to do.
(表面固有抵抗試験)
 本発明の二軸配向ポリプロピレンフィルムの少なくと片側のフィルム表面の表面固有抵抗は15Ω/□以下であり、14.5Ω/□以下が好ましく、14.0Ω/□以下がより好ましく、13.5Ω/□以下が特に好ましい。15Ω/□以下であるとフィルムロールや加工中のフィルムの帯電が少なく、製袋加工がしやすく、得られた袋にも欠陥が少なくなりやすい。表面固有抵抗長の下限は、現実的な値として好ましくは10N/15mmであり、より好ましくは11N/15mmである。
(Surface specific resistance test)
The surface intrinsic resistance of the biaxially oriented polypropylene film of the present invention is 15Ω / □ or less, preferably 14.5Ω / □ or less, more preferably 14.0Ω / □ or less, and 13.5Ω / □ or less. □ The following is particularly preferable. When it is 15Ω / □ or less, the film roll and the film being processed are less charged, the bag making process is easy, and the obtained bag is also easy to have few defects. The lower limit of the surface intrinsic resistance length is preferably 10 N / 15 mm as a realistic value, and more preferably 11 N / 15 mm.
 本発明の二軸配向ポリプロピレンフィルムは、下記特性、構造を有するとより良い。 It is better that the biaxially oriented polypropylene film of the present invention has the following characteristics and structure.
(120℃熱収縮率)
 本発明の二軸配向ポリプロピレンフィルムの120℃での長手方向の熱収縮率の上限は好ましくは2.0%であり、より好ましくは1.7%であり、さらに好ましくは1.5%であり、特に好ましくは1.0%である。2.0%以下であると、印刷インキを転写する際の印刷ピッチずれが生じにくくなる。120℃での幅方向の熱収縮率の上限は5.0%であり、好ましくは4.0%であり、より好ましくは3.0%であり、さらに好ましくは2.0%であり、特に好ましくは1.5%である。5.0%以下であると、ヒートシール時のシワが生じにくい。
 120℃での長手方向熱収縮率が120℃での幅方向熱収縮率より小さいと、印刷インキを転写する際の印刷ピッチずれがより生じにくくなる。120℃での熱収縮率と、熱収縮率の長手方向-幅方向のバランスは延伸倍率、延伸温度、熱固定温度の調整により範囲内とすることが出来る。
(120 ° C. heat shrinkage rate)
The upper limit of the heat shrinkage in the longitudinal direction at 120 ° C. of the biaxially oriented polypropylene film of the present invention is preferably 2.0%, more preferably 1.7%, still more preferably 1.5%. , Particularly preferably 1.0%. When it is 2.0% or less, the printing pitch shift when transferring the printing ink is less likely to occur. The upper limit of the heat shrinkage in the width direction at 120 ° C. is 5.0%, preferably 4.0%, more preferably 3.0%, still more preferably 2.0%, and particularly. It is preferably 1.5%. When it is 5.0% or less, wrinkles at the time of heat sealing are less likely to occur.
When the longitudinal heat shrinkage rate at 120 ° C. is smaller than the width direction heat shrinkage rate at 120 ° C., the printing pitch shift when transferring the printing ink is less likely to occur. The balance between the heat shrinkage rate at 120 ° C. and the heat shrinkage rate in the longitudinal direction and the width direction can be within the range by adjusting the stretching ratio, the stretching temperature, and the heat fixing temperature.
(屈折率)
 本発明の二軸配向ポリプロピレンフィルムの長手方向の屈折率(Nx)の下限は、好ましくは1.4970であり、より好ましくは1.4990であり、さらに好ましくは1.5000であり、特に好ましくは1.5020である。1.4970以上だとフィルムの剛性を大きくしやすい。長手方向の屈折率(Nx)の上限は、好ましくは1.5100であり、より好ましくは15070であり、さらに好ましくは1.5050である。1.5100以下だとフィルムの長手方向-幅方向の特性のバランスに優れやすい。
(Refractive index)
The lower limit of the refractive index (Nx) in the longitudinal direction of the biaxially oriented polypropylene film of the present invention is preferably 1.4970, more preferably 1.4990, still more preferably 1.5000, and particularly preferably 1.5000. It is 1.5020. If it is 1.4970 or more, it is easy to increase the rigidity of the film. The upper limit of the refractive index (Nx) in the longitudinal direction is preferably 1.5100, more preferably 15070, and even more preferably 1.5050. If it is 1.5100 or less, the balance of the characteristics in the longitudinal direction and the width direction of the film tends to be excellent.
 本発明の二軸配向ポリプロピレンフィルムの幅方向の屈折率(Ny)の下限は1.5230であり、好ましくは1.5240であり、より好ましくは1.5250である。1.5230以上だとフィルムの剛性を大きくしやすい。幅方向の屈折率(Ny)の上限は、好ましくは1.5280であり、より好ましくは1.5275であり、さらに好ましくは1.5270である。1.5280以下だとフィルムの長手方向-幅方向の特性のバランスに優れやすい。 The lower limit of the refractive index (Ny) in the width direction of the biaxially oriented polypropylene film of the present invention is 1.5230, preferably 1.5240, and more preferably 1.5250. If it is 1.5230 or more, it is easy to increase the rigidity of the film. The upper limit of the refractive index (Ny) in the width direction is preferably 1.5280, more preferably 1.5275, and even more preferably 1.5270. If it is 1.5280 or less, the balance of the characteristics in the longitudinal direction and the width direction of the film tends to be excellent.
 本発明の二軸配向ポリプロピレンフィルムの厚み方向の屈折率(Nz)の下限は、好ましくは1.4960であり、より好ましくは14970であり、さらに好ましくは1.4990であり、特に好ましくは1.5000である。1.4960以上だとフィルムの剛性を大きくしやすい。厚み方向の屈折率(Nz)の上限は、好ましくは1.5020であり、より好ましくは1.5015であり、さらに好ましくは1.5010である。1.5020以下だとフィルムの耐熱性を高めやすい。
 屈折率は延伸倍率、延伸温度、熱固定温度の調整により範囲内とすることが出来る。
The lower limit of the refractive index (Nz) in the thickness direction of the biaxially oriented polypropylene film of the present invention is preferably 1.4960, more preferably 14970, still more preferably 1.4990, and particularly preferably 1. It is 5000. If it is 1.4960 or more, it is easy to increase the rigidity of the film. The upper limit of the refractive index (Nz) in the thickness direction is preferably 1.5020, more preferably 1.5015, and even more preferably 1.5010. If it is 1.5020 or less, it is easy to increase the heat resistance of the film.
The refractive index can be set within the range by adjusting the stretching ratio, the stretching temperature, and the heat fixing temperature.
(△Ny)
 本発明の本発明の二軸配向ポリプロピレンフィルムの幅方向の配向の程度である△Nyの下限は0.0220であり、好ましくは0.0230であり、より好ましくは0.0235であり、さらに好ましくは0.0240である。0.0220以上だとフィルムの剛性が高くなりやすい。△Nyの上限は、現実的な値として好ましくは0.0270であり、より好ましくは0.0265であり、さらに好ましくは0.0262であり、特に好ましくは0.0260である。0.0270以下だと厚みムラも良好となりやすい。△Nyはフィルムの延伸倍率、延伸温度、熱固定温度の調整により範囲内とすることが出来る。
 △Nyはフィルムの長手方向、幅方向、厚み方向に沿った屈折率をそれぞれNx、Ny、Nzとし、下記式で計算されるが、フィルムの長手方向、幅方向、厚み方向全体の配向における幅方向の配向の程度を意味する。
 △Ny=Ny-[(Nx+Nz)/2]
(△ Ny)
The lower limit of ΔNy, which is the degree of orientation of the biaxially oriented polypropylene film of the present invention in the width direction, is 0.0220, preferably 0.0230, more preferably 0.0235, and even more preferably. Is 0.0240. If it is 0.0220 or more, the rigidity of the film tends to be high. The upper limit of ΔNy is preferably 0.0270, more preferably 0.0265, still more preferably 0.0262, and particularly preferably 0.0260 as a realistic value. If it is 0.0270 or less, the thickness unevenness tends to be good. ΔNy can be set within the range by adjusting the stretch ratio, the stretch temperature, and the heat fixing temperature of the film.
ΔNy is calculated by the following formula, where the refractive indexes along the longitudinal direction, the width direction, and the thickness direction of the film are Nx, Ny, and Nz, respectively. It means the degree of orientation in the direction.
ΔNy = Ny- [(Nx + Nz) / 2]
(面配向係数)
 本発明の二軸配向ポリプロピレンフィルムの面配向係数(ΔP)の下限は、好ましくは0.0135であり、より好ましくは0.0138であり、さらに好ましくは0.0140である。0.0135以上だとフィルムの面方向のバランスが良好で、厚みムラも良好である。面配向係数(ΔP)の上限は、現実的な値として好ましくは0.0155であり、より好ましくは0.0152であり、さらに好ましくは0.0150である。0.0155以下だと高温での耐熱性に優れやすい。面配向係数(ΔP)は延伸倍率、延伸温度、熱固定温度の調整により範囲内とすることが出来る。
 また、面配向係数(ΔP)は、(式)[(Nx+Ny)/2]-Nzを用いて計算した。
(Surface orientation coefficient)
The lower limit of the plane orientation coefficient (ΔP) of the biaxially oriented polypropylene film of the present invention is preferably 0.0135, more preferably 0.0138, and even more preferably 0.0140. When it is 0.0135 or more, the balance in the surface direction of the film is good and the thickness unevenness is also good. The upper limit of the plane orientation coefficient (ΔP) is preferably 0.0155, more preferably 0.0152, and even more preferably 0.0150 as a realistic value. If it is 0.0155 or less, the heat resistance at high temperature is likely to be excellent. The plane orientation coefficient (ΔP) can be set within the range by adjusting the stretching ratio, stretching temperature, and heat fixing temperature.
The plane orientation coefficient (ΔP) was calculated using (Equation) [(Nx + Ny) / 2] -Nz.
(ヘイズ)
 本発明の二軸配向ポリプロピレンフィルムのヘイズの上限は好ましくは5.0%であり、より好ましくは4.5%であり、さらに好ましくは4.0%であり、特に好ましくは3.5%であり、最も好ましくは3.0%である。5.0%以下であると透明が要求される用途で使いやすい。ヘイズの下限は、現実的値としては好ましくは0.1%であり、より好ましくは0.2%であり、さらに好ましくは0.3%であり、特に好ましくは0.4%である。0.1%以上であると製造しやすい。ヘイズは、冷却ロール(CR)温度、幅方向延伸温度、テンター幅方向延伸前予熱温度、幅方向延伸温度、又は熱固定温度、若しくはポリプロピレン樹脂の分子量が10万以下の成分の量を調節することで範囲内とすることが出来るが、ブロッキング防止剤の添加や、シール層付与により、大きくなることがある。
(Haze)
The upper limit of the haze of the biaxially oriented polypropylene film of the present invention is preferably 5.0%, more preferably 4.5%, still more preferably 4.0%, and particularly preferably 3.5%. Yes, most preferably 3.0%. If it is 5.0% or less, it is easy to use in applications where transparency is required. The lower limit of the haze is preferably 0.1%, more preferably 0.2%, still more preferably 0.3%, and particularly preferably 0.4% as a practical value. If it is 0.1% or more, it is easy to manufacture. The haze adjusts the cooling roll (CR) temperature, the width stretching temperature, the preheating temperature before stretching in the tenter width direction, the stretching temperature in the width direction, or the heat fixing temperature, or the amount of the component having a polypropylene resin molecular weight of 100,000 or less. However, it may increase due to the addition of a blocking inhibitor or the addition of a seal layer.
(フィルムの実用特性)
 本発明の二軸配向ポリプロピレンフィルムの有する実用特性について説明する。
(引張破断強度)
 本発明の二軸配向ポリプロピレンフィルムの長手方向の引張破断強度の下限は、好ましくは90MPaであり、より好ましくは95MPaであり、さらに好ましくは100MPaである。90MPa以上だと印刷インキを転写する際の印刷ピッチずれが生じにくくなり、包装袋の耐久性にも優れやすい。長手方向の引張破断強度の上限は、現実的な値として好ましくは200MPaであり、より好ましくは190MPaであり、さらに好ましくは180MPaである。200MPa以下だとフィルムの破断や包装袋の破袋が少なくなりやすい。
(Practical characteristics of film)
The practical characteristics of the biaxially oriented polypropylene film of the present invention will be described.
(Tensile breaking strength)
The lower limit of the tensile breaking strength in the longitudinal direction of the biaxially oriented polypropylene film of the present invention is preferably 90 MPa, more preferably 95 MPa, and further preferably 100 MPa. If it is 90 MPa or more, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent. The upper limit of the tensile breaking strength in the longitudinal direction is preferably 200 MPa, more preferably 190 MPa, and further preferably 180 MPa as a realistic value. If it is 200 MPa or less, the breakage of the film and the breakage of the packaging bag are likely to decrease.
 本発明の二軸配向ポリプロピレンフィルムの幅方向の引張破断強度の下限は、好ましくは320MPaであり、より好ましくは340MPaであり、さらに好ましくは350MPaである。320MPa以上だと印刷インキを転写する際の印刷ピッチずれが生じにくくなり、包装袋の耐久性にも優れやすい。幅方向の引張破断強度の上限は、現実的な値として好ましくは500MPaであり、より好ましくは480MPaであり、さらに好ましくは470MPaである。500MPa以下だとフィルムの破断や包装袋の破袋が少なくなりやすい。
 引張破断強度は延伸倍率、延伸温度、熱固定温度の調整により範囲内とすることが出来る。
The lower limit of the tensile breaking strength in the width direction of the biaxially oriented polypropylene film of the present invention is preferably 320 MPa, more preferably 340 MPa, and further preferably 350 MPa. If it is 320 MPa or more, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent. The upper limit of the tensile breaking strength in the width direction is preferably 500 MPa, more preferably 480 MPa, and further preferably 470 MPa as a realistic value. If it is 500 MPa or less, the breakage of the film and the breakage of the packaging bag are likely to decrease.
The tensile breaking strength can be set within the range by adjusting the draw ratio, the draw temperature, and the heat fixing temperature.
(引張破断伸度)
 本発明の二軸配向ポリプロピレンフィルムの長手方向の引張破断伸度の下限は、好ましくは50%であり、より好ましくは55%であり、さらに好ましくは60%である。50%以上であるとフィルムの破断や包装袋の破袋が少なくなりやすい。長手方向の引張破断伸度の上限は、現実的な値として好ましくは230%であり、より好ましくは220%であり、さらに好ましく210%である。230%以下だと印刷インキを転写する際の印刷ピッチずれが生じにくくなり、包装袋の耐久性にも優れやすい。
(Tension breaking elongation)
The lower limit of the tensile elongation at break in the longitudinal direction of the biaxially oriented polypropylene film of the present invention is preferably 50%, more preferably 55%, still more preferably 60%. If it is 50% or more, the breakage of the film and the breakage of the packaging bag are likely to decrease. The upper limit of the tensile elongation at break in the longitudinal direction is preferably 230%, more preferably 220%, and even more preferably 210% as a realistic value. If it is 230% or less, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent.
 本発明の二軸配向ポリプロピレンフィルムの幅方向の引張破断伸度の下限は、好ましくは10%であり、より好ましくは15%であり、さらに好ましくは17%である。10%以上だと、フィルムの破断や包装袋の破袋が少なくなりやすい。幅方向の引張破断伸度の上限は、好ましくは60%であり、より好ましくは55%であり、さらに好ましくは50%である。60%以下だと印刷インキを転写する際の印刷ピッチずれが生じにくくなり、包装袋の耐久性にも優れやすい。
 引張破断伸度は延伸倍率、延伸温度、熱固定温度の調整により範囲内とすることが出来る。
The lower limit of the tensile elongation at break in the width direction of the biaxially oriented polypropylene film of the present invention is preferably 10%, more preferably 15%, still more preferably 17%. If it is 10% or more, the breakage of the film and the breakage of the packaging bag are likely to decrease. The upper limit of the tensile elongation at break in the width direction is preferably 60%, more preferably 55%, and even more preferably 50%. If it is 60% or less, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent.
The tensile elongation at break can be within the range by adjusting the draw ratio, the draw temperature, and the heat fixing temperature.
(ループステフネス応力)
 本発明の二軸配向ポリプロピレンフィルムの23℃での長手方向のループステフネス応力S(mN)の下限は、二軸配向ポリプロピレンフィルムの厚みをt(μm)とすると、好ましくは0.00020×tであり、より好ましくは0.00025×tであり、さらに好ましくは0.00030×tであり、特に好ましくは0.00035×tである。0.00020×t以上であると、包装体の形状を保持しやすい。23℃での長手方向のループステフネス応力S(mN)の上限は、好ましくは0.00080×tであり、より好ましくは0.00075×tであり、さらに好ましくは0.00072×tであり、特に好ましくは0.00070×tである。0.00080×t以下であると、現実的に製造しやすい。
 本発明の二軸配向ポリプロピレンフィルムの23℃での幅方向のループステフネス応力S(mN)の下限は、二軸配向ポリプロピレンフィルムの厚みをt(μm)とすると、好ましくは0.0010×tであり、より好ましくは0.0011×tであり、さらに好ましくは0.0012×tであり、特に好ましくは0.0013×tである。0.0010×t以上であると、包装体の形状を保持しやすい。23℃での幅方向のループステフネス応力S(mN)の上限は、好ましくは0.0020×tであり、より好ましくは0.0019×tであり、さらに好ましくは0.0018×tであり、特に好ましくは0.0017×tである。0.0020×t以下であると、現実的に製造しやすい。
(Loop stefness stress)
The lower limit of the longitudinal loop stefness stress S (mN) at 23 ° C. of the biaxially oriented polypropylene film of the present invention is preferably 0.00020 × t, where t (μm) is the thickness of the biaxially oriented polypropylene film. It is 3 , more preferably 0.00025 × t 3 , still more preferably 0.00030 × t 3 , and particularly preferably 0.00035 × t 3 . When it is 0.00020 × t 3 or more, it is easy to maintain the shape of the package. The upper limit of the longitudinal loop stefness stress S (mN) at 23 ° C. is preferably 0.00080 × t 3 , more preferably 0.00075 × t 3 , and even more preferably 0.00072 × t. It is 3 , and particularly preferably 0.00070 × t 3 . If it is 0.00080 × t 3 below, realistic and easy to manufacture.
The lower limit of the loop stefness stress S (mN) in the width direction of the biaxially oriented polypropylene film at 23 ° C. is preferably 0.0010 × t, where t (μm) is the thickness of the biaxially oriented polypropylene film. It is 3 , more preferably 0.0011 × t 3 , still more preferably 0.0012 × t 3 , and particularly preferably 0.0013 × t 3 . When it is 0.0010 × t 3 or more, it is easy to maintain the shape of the package. The upper limit of the loop stepness stress S (mN) in the width direction at 23 ° C. is preferably 0.0020 × t 3 , more preferably 0.0019 × t 3 , and even more preferably 0.0018 × t. It is 3 , and particularly preferably 0.0017 × t 3 . When it is 0.0020 × t 3 or less, it is practically easy to manufacture.
 ループステフネス応力はフィルムの腰感を表す指標であるが、それはフィルムの厚みにも依存する。その測定方法は以下のとおりである。フィルムの長手方向を短冊の長軸(ループ方向)、あるいはフィルムの幅方向を短冊の長軸(ループ方向)として、110mm×25.4mmの短冊をそれぞれ2枚ずつ切り出した。これらをクリップに挟んでフィルムの片方の面がループの内面になるものと、その反対面がループの内面になる測定用ループを、短冊の長軸がフィルムの長手方向及び幅方向となるものについて作製した。短冊の長軸がフィルムの長手方向となる測定用のループを、東洋精機株式会社製ループステフネステスタDAのチャック部に幅方向を垂直にした状態でセットし、クリップをはずし、チャック間隔は50mm、押し込み深さを15mm、圧縮速度を3.3mm/秒としてループステフネス応力を測定した。
 測定は、フィルムの片方の面がループの内面になるようにしたもののループステフネス応力と厚みを5回測定し、その後もう片面がループの内面になるようにしたものも5回測定した。この計10回分のデータを用い、各試験片の厚み(μm)の3乗を横軸に、そのループステフネス応力(mN)を縦軸にプロットし、切片0となる直線で近似して、その傾きaを求めた。傾きaは剛性を決める厚みによらないフィルム固有の特性値を意味する。傾きaを腰感の評価値とした。短冊の長軸がフィルムの幅方向となる測定用のループも同様に測定した。
The loop stefness stress is an index showing the waist feeling of the film, but it also depends on the thickness of the film. The measurement method is as follows. Two strips of 110 mm × 25.4 mm were cut out, with the longitudinal direction of the film as the long axis of the strip (loop direction) and the width direction of the film as the long axis of the strip (loop direction). For measuring loops in which one side of the film is the inner surface of the loop and the other side is the inner surface of the loop, with these sandwiched between clips, and the long axis of the strip is in the longitudinal and width directions of the film. Made. Set the measurement loop with the long axis of the strip in the longitudinal direction of the film on the chuck of Loop Steph Nestester DA manufactured by Toyo Seiki Co., Ltd. with the width direction perpendicular, remove the clip, and the chuck interval is 50 mm. The loop stepness stress was measured with a pushing depth of 15 mm and a compression rate of 3.3 mm / sec.
In the measurement, the loop stefness stress and the thickness were measured 5 times with one side of the film being the inner surface of the loop, and then 5 times with the other side being the inner surface of the loop. Using the data for a total of 10 times, plot the cube of the thickness (μm) of each test piece on the horizontal axis and the loop stepness stress (mN) on the vertical axis, and approximate it with a straight line that becomes the intercept 0. The inclination a was obtained. The inclination a means a characteristic value peculiar to the film that does not depend on the thickness that determines the rigidity. The inclination a was used as the evaluation value of the feeling of waist. The measurement loop in which the long axis of the strip is in the width direction of the film was measured in the same manner.
(ヒートシール時のシワ)
 食品を包装する袋を形成するには、製袋済みの袋に内容物を充填し、加熱してフィルムを溶融して融着して密封する。また、食品を充填しながら製袋する際にも同様に行う場合が多い。通常は基材フィルムにポリエチレンやポリプロピレンなどからなるシーラントフィルムを積層し、このシーラントフィルム面同士を融着させる。加熱方法は基材フィルム側から加熱板で圧力をかけフィルムを押さえてシールするが、シール幅は10mm程度とする場合が多い。このとき基材フィルムも加熱されるため、その際の収縮がシワを発生させる。袋の耐久性においてシワは少ない方が良く、購買意欲を高めるためにもシワは少ない方が良い。シール温度は120℃程度である場合もあるが、製袋加工速度を高めるためにはより高温でのシール温度が求められ、その場合でも収縮が小さいことが好ましい。袋の開ロ部にチャックを融着する場合には、さらに高温でのシールが求められる。
(Wrinkles during heat sealing)
To form a bag for packaging food, the pre-made bag is filled with the contents and heated to melt the film, fuse it and seal it. In many cases, the same procedure is used when making a bag while filling food. Usually, a sealant film made of polyethylene, polypropylene, or the like is laminated on the base film, and the sealant film surfaces are fused to each other. In the heating method, pressure is applied from the base film side with a heating plate to press the film to seal it, but the sealing width is often about 10 mm. At this time, the base film is also heated, and the shrinkage at that time causes wrinkles. It is better to have less wrinkles in the durability of the bag, and it is better to have less wrinkles in order to increase purchasing motivation. The sealing temperature may be about 120 ° C., but in order to increase the bag making processing speed, a higher sealing temperature is required, and even in that case, it is preferable that the shrinkage is small. When the chuck is fused to the open portion of the bag, sealing at a higher temperature is required.
(ラミネート強度)
 本発明の二軸配向ポリプロピレンフィルムの長手方向のラミネート強度の下限は、好ましくは1.2N/15mmであり、より好ましくは1.3N/15mmあり、さらに好ましくは1.4N/15mmであり、よりさらに好ましくは1.5N/15mmであり、特に好ましくは1.6N/15mmである。1.2N/15mm以上であると包装袋の破袋が少なくなりやすい。長手方向のラミネート強度の上限は、現実的な値として好ましくは2.7N/15mmであり、より好ましくは2.5N/15mmである。
(Laminate strength)
The lower limit of the longitudinal lamination strength of the biaxially oriented polypropylene film of the present invention is preferably 1.2N / 15mm, more preferably 1.3N / 15mm, still more preferably 1.4N / 15mm, and more. It is more preferably 1.5 N / 15 mm, and particularly preferably 1.6 N / 15 mm. If it is 1.2 N / 15 mm or more, the number of broken packaging bags tends to decrease. The upper limit of the laminating strength in the longitudinal direction is preferably 2.7 N / 15 mm as a realistic value, and more preferably 2.5 N / 15 mm.
 本発明の二軸配向ポリプロピレンフィルムの幅方向のラミネート強度の下限は、好ましくは1.0N/15mmであり、より好ましくは1.1N/15mmあり、さらに好ましくは1.2N/15mmであり、よりさらに好ましくは1.3N/15mmであり、特に好ましくは1.4N/15mmであり、最も好ましくは1.5N/15mmである。1.0N/15mm以上であると包装袋の破袋が少なくなりやすい。幅方向のラミネート強度の上限は、現実的な値として好ましくは2.5N/15mmであり、より好ましくは2.2N/15mmである。 The lower limit of the laminating strength in the width direction of the biaxially oriented polypropylene film of the present invention is preferably 1.0 N / 15 mm, more preferably 1.1 N / 15 mm, still more preferably 1.2 N / 15 mm, and more. It is more preferably 1.3 N / 15 mm, particularly preferably 1.4 N / 15 mm, and most preferably 1.5 N / 15 mm. If it is 1.0 N / 15 mm or more, the number of broken packaging bags tends to decrease. The upper limit of the laminating strength in the width direction is preferably 2.5 N / 15 mm as a realistic value, and more preferably 2.2 N / 15 mm.
(表面固有抵抗試験)
 本発明の二軸配向ポリプロピレンフィルムの表面の表面固有抵抗は15Ω/□以下が好ましく、14.5Ω/□以下がより好ましく、14.0Ω/□以下がさらに好ましく、13.5Ω/□以下が特に好ましい。15Ω/□以下であるとフィルムロールや加工中のフィルムの帯電が少なく、製袋加工がしやすく、得られた袋にも欠陥が少なくなりやすい。表面固有抵抗長の下限は、現実的な値として好ましくは10N/15mmであり、より好ましくは11N/15mmである。
(Surface specific resistance test)
The surface intrinsic resistance of the surface of the biaxially oriented polypropylene film of the present invention is preferably 15Ω / □ or less, more preferably 14.5Ω / □ or less, further preferably 14.0Ω / □ or less, and particularly preferably 13.5Ω / □ or less. preferable. When it is 15Ω / □ or less, the film roll and the film being processed are less charged, the bag making process is easy, and the obtained bag is also easy to have few defects. The lower limit of the surface intrinsic resistance length is preferably 10 N / 15 mm as a realistic value, and more preferably 11 N / 15 mm.
(印刷ピッチずれ)
 包装フィルムの構成としては、基本的な構成として、印刷が施された基材フィルムとシーラントフィルムの積層フィルムからなる場合が多い。袋の製造には、製袋機が使用され、三方袋、スタンディング袋、ガゼット袋などがあり、さまざまな製袋機が使用されている。印刷ピッチズレは、印刷工程時にフィルムにテンションや熱を掛けるため、フィルムの基材が伸び縮みするため発生すると考えられる。印刷ピッチズレによる不良品をなくすことは資源の有効活用の点でも重要であり、購買意欲を高めるためにも重要である。
(Print pitch shift)
As a basic structure of the packaging film, it is often composed of a laminated film of a printed base film and a sealant film. A bag making machine is used to manufacture bags, and there are three-way bags, standing bags, gusset bags, etc., and various bag making machines are used. It is considered that the printing pitch shift occurs because the base material of the film expands and contracts because tension and heat are applied to the film during the printing process. Eliminating defective products due to print pitch deviation is important in terms of effective use of resources, and is also important in increasing purchasing motivation.
(フィルム加工)
 本発明の二軸配向ポリプロピレンフィルムの印刷は用途に応じて、凸版印刷・平版印刷・凹版印刷、孔版印刷、転写印刷方式により行うことができる。
 また、低密度ポリエチレン、線状低密度ポリエチレン、エチレン-酢酸ビニル共重合体、ポリプロピレン、ポリエステルからなる未延伸シート、一軸延伸フィルム、二軸延伸フィルをシーラントフィルムとして貼り合せて、ヒートシール性を付与したラミネート体としても使用することができる。さらにガスバリア性や耐熱性を高めたいときはアルミ箔やポリ塩化ビニリデン、ナイロン、エチレンービニルアルコール共重合体、ポリビニルアルコールからなる未延伸シート、一軸延伸フィルム、二軸延伸フィルムを二軸配向ポリプロピレンフィルムとシーラントフィルムの間に中間層として設けることができる。シーラントフィルムの貼り合せには、ドライラミネーション法又はホットメルトラミネーション法により塗布した接着剤を使用することができる。
 ガスバリア性を高めるには、二軸配向ポリプロピレンフィルムや中間層フィルム、あるいはシーラントフィルムにアルミや無機酸化物を蒸着加工することもできる。蒸着方法には真空蒸着、スパッタリング、イオンプレーティング法を採用できるが、特にシリカ、アルルミナ、又はこれらの混合物を真空蒸着するのが好ましい。
(Film processing)
The biaxially oriented polypropylene film of the present invention can be printed by letterpress printing, lithographic printing, intaglio printing, stencil printing, and transfer printing, depending on the application.
In addition, low-density polyethylene, linear low-density polyethylene, ethylene-vinyl acetate copolymer, polypropylene, unstretched sheet made of polyester, uniaxially stretched film, and biaxially stretched fill are bonded as a sealant film to impart heat-sealing properties. It can also be used as a laminated body. If you want to further improve gas barrier properties and heat resistance, use aluminum foil, polyvinylidene chloride, nylon, ethylene-vinyl alcohol copolymer, unstretched sheet made of polyvinyl alcohol, uniaxially stretched film, and biaxially stretched film as biaxially oriented polypropylene film. It can be provided as an intermediate layer between the and the sealant film. An adhesive applied by a dry lamination method or a hot melt lamination method can be used for laminating the sealant film.
In order to enhance the gas barrier property, aluminum or an inorganic oxide can be vapor-deposited on a biaxially oriented polypropylene film, an intermediate layer film, or a sealant film. Vacuum vapor deposition, sputtering, and ion plating can be adopted as the vapor deposition method, but silica, allumina, or a mixture thereof is particularly preferable.
 本発明の二軸配向ポリプロピレンフィルムには、例えば、多価アルコールの脂肪酸エステル類、高級脂肪酸のアミン類、高級脂肪酸のアマイド類、高級脂肪酸のアミンやアマイドのエチレンオキサイド付加物などの防曇剤のフィルム中での存在量を0.2~5質量%の範囲することで、野菜、果実、草花など高い鮮度が要求される植物類からなる生鮮品を包装するのに適したものとすることができる。 The biaxially oriented polypropylene film of the present invention contains, for example, antifogging agents such as fatty acid esters of polyhydric alcohols, amines of higher fatty acids, amides of higher fatty acids, amines of higher fatty acids and ethylene oxide adducts of amide. By setting the abundance in the film in the range of 0.2 to 5% by mass, it is possible to make it suitable for packaging fresh products made of plants that require high freshness such as vegetables, fruits, and flowers. can.
 また、本発明の効果を損なわない範囲であれば、滑り性や帯電防止性などの品質向上のための各種添加剤、例えば、生産性の向上のためにワックス、金属石鹸などの潤滑剤、可塑剤、加工助剤や熱安定剤、酸化防止剤、帯電防止剤、紫外線吸収剤などを配合することも可能である。 Further, as long as the effect of the present invention is not impaired, various additives for improving quality such as slipperiness and antistatic property, for example, lubricants such as wax and metal soap for improving productivity, and plasticizers. It is also possible to add agents, processing aids, heat stabilizers, antioxidants, antistatic agents, ultraviolet absorbers and the like.
(産業上の利用可能性)
 本発明の二軸配向ポリプロピレンフィルムは上記の様な従来にはない優れた特性を有するため、包装袋に好ましく使用することができ、またフィルムの厚みを従来よりも薄くすることが可能である。
(Industrial applicability)
Since the biaxially oriented polypropylene film of the present invention has excellent properties as described above, it can be preferably used for packaging bags, and the thickness of the film can be made thinner than before.
 さらには、コンデンサーやモーターなどの絶縁フィルム、太陽電池のバックシート、無機酸化物のバリアフィルム、ITOなどの透明導電フィルムのベースフィルムなど高温で使用される用途や、セパレートフィルムなど剛性が必要とされる用途にも好適である。また、従来用いられにくかったコート剤やインキ、ラミネート接着剤などを用い、高温でのコートや印刷加工が可能となり、生産の効率化が期待できる。 Furthermore, it is required to be used at high temperatures such as insulating films for capacitors and motors, back sheets for solar cells, barrier films for inorganic oxides, and base films for transparent conductive films such as ITO, and to have rigidity such as separate films. It is also suitable for various applications. In addition, it is possible to coat and print at high temperatures by using coating agents, inks, laminating adhesives, etc., which have been difficult to use in the past, and it is expected that production efficiency will be improved.
 以下、実施例により本発明を群細に説明する。なお、特性は以下の方法により測定、評価を行った。
(1)メルトフローレート
メルトフローレート(MFR)は、JISK7210に準拠し、温度230℃、荷重2.16kgfで測定した。
Hereinafter, the present invention will be described in detail with reference to Examples. The characteristics were measured and evaluated by the following methods.
(1) Melt flow rate The melt flow rate (MFR) was measured at a temperature of 230 ° C. and a load of 2.16 kgf in accordance with JIS K7210.
(2)メソペンダット分率
 ポリプロピレン樹脂のメソペンタッド分率([mmmm]%)の測定は、13C-NMRを用いて行った。メソペンタッド分率は、Zambelliら、Macromolecules、第6巻、925頁(1973)に記載の方法に従って算出した。13C-NMR測定は、BRUKER社製AVANCE500を用い、試料200mgをo-ジクロロベンゼンと重ベンゼンの8:2の混合液に135℃で溶解し、110℃で行った。
(2) Mesopendat fraction The mesopentad fraction ([mmmm]%) of the polypropylene resin was measured using 13 C-NMR. The mesopentad fraction was calculated according to the method described in Zambelli et al., Macromolecules, Vol. 6, p. 925 (1973). 13 C-NMR measurement was carried out using AVANCE 500 manufactured by BRUKER, in which 200 mg of a sample was dissolved in an 8: 2 mixture of o-dichlorobenzene and heavy benzene at 135 ° C. and 110 ° C.
(3)ポリプロピレン樹脂の数平均分子量、重量平均分子量、分子量10万以下の成分量、および分子量分布
 ゲルパーミエーションクロマトグラフィー(GPC)を用い、単分散ポリスチレン基準としPP換算分子量として求めた。ベースラインが明確でないときは、標準物質の溶出ピークに最も近い高分子量側の溶出ピークの高分子量側のすそ野の最も低い位置までの範囲でベースラインを設定することとした。
 GPC測定条件は次のとおりである。
装置:HLC-8321PC/HT(東ソー株式会社製)
検出器:RI
溶媒:1,2,4-トリクロロベンゼン+ジブチルヒドロキシトルエン(0.05%)カラム:TSKgelguardcolumnHHR(30)HT(7.5mmI.D.×7.5cm)×1本 + TSKgelGMHHR-H(20)HT(7.8mmI.D.×30cm)×3本
流量:1.0mL/min
注入量:0.3mL
測定温度:140℃
 数平均分子量(Mn)、質量平均分子量(Mw)はそれぞれ、分子量較正曲線を介して得られたGPC曲線の各溶出位置の分子量(Mi)の分子数(N)により次式で定義される。
 数平均分子量:Mn=Σ(N・M)/ΣNi
 質量平均分子量:Mw=Σ(N・M )/Σ(N・M
ここで、分子量分布は、Mw/Mnで得ることができる。
 また、GPCで得られた分子量分布の積分曲線から、分子量10万以下の成分の割合を求めた。
(3) Number average molecular weight, weight average molecular weight, component weight of 100,000 or less, and molecular weight distribution of polypropylene resin It was determined as a PP-equivalent molecular weight based on monodisperse polystyrene using gel permeation chromatography (GPC). When the baseline is not clear, it was decided to set the baseline up to the lowest position of the skirt on the high molecular weight side of the elution peak on the high molecular weight side closest to the elution peak of the standard substance.
The GPC measurement conditions are as follows.
Equipment: HLC-8321PC / HT (manufactured by Tosoh Corporation)
Detector: RI
Solvent: 1,2,4-trichlorobenzene + dibutylhydroxytoluene (0.05%) Column: TSKgelgoldvolume HHR (30) HT (7.5 mm ID x 7.5 cm) x 1 + TSKgelGMHR-H (20) HT (7.8 mm ID × 30 cm) × 3 Flow rate: 1.0 mL / min
Injection volume: 0.3 mL
Measurement temperature: 140 ° C
Defined by the following equation by the number average molecular weight (Mn), weight average molecular weight (Mw) molecular weight, respectively of the elution position of GPC curve obtained via the molecular weight calibration curve the number of molecules (Mi) (N i) ..
The number average molecular weight: Mn = Σ (N i · M i) / ΣNi
Weight average molecular weight: Mw = Σ (N i · M i 2) / Σ (N i · M i)
Here, the molecular weight distribution can be obtained by Mw / Mn.
Further, the ratio of the components having a molecular weight of 100,000 or less was obtained from the integral curve of the molecular weight distribution obtained by GPC.
(4)結晶化温度(Tc)、融解温度(Tm)
 ティー・エイ・インスツルメント社製Q1000示差走査熱量計を用いて、窒素雰囲気下で熱測定を行った。ポリプロピレン樹脂のペレットから約5mgを切り出して測定用のアルミパンに封入した。230℃まで昇温し5分間保持した後、-10℃/分の速度で30℃まで冷却し、発熱ピーク温度を結晶化温度(Tc)とした。また、結晶化熱量(△Hc)は、発熱ピークの面積をピークの開始からピーク終了まで、スムーズにつながるようにベースラインを設定して求めた。そのまま、30℃で5分間保持し、10℃/分で230℃まで昇温し、主たる吸熱ピーク温度を融解温度(Tm)とした。
(4) Crystallization temperature (Tc), melting temperature (Tm)
Thermal measurements were performed in a nitrogen atmosphere using a Q1000 differential scanning calorimeter manufactured by TA Instruments. Approximately 5 mg was cut out from the polypropylene resin pellet and sealed in an aluminum pan for measurement. The temperature was raised to 230 ° C. and held for 5 minutes, then cooled to 30 ° C. at a rate of −10 ° C./min, and the exothermic peak temperature was defined as the crystallization temperature (Tc). The amount of heat of crystallization (ΔHc) was determined by setting a baseline so that the area of the exothermic peak could be smoothly connected from the start to the end of the peak. The temperature was kept as it was at 30 ° C. for 5 minutes, the temperature was raised to 230 ° C. at 10 ° C./min, and the main endothermic peak temperature was defined as the melting temperature (Tm).
(5)フィルム厚み
 セイコー・イーエム社製ミリトロン1202Dを用いて、フィルムの厚さを計測した。
(5) Film thickness The thickness of the film was measured using a Millitron 1202D manufactured by Seiko EM.
(6)ヘイズ
 日本電色工業株式会社製NDH5000を用い、23℃にて、JISK7105に従って測定した。
(6) Haze Using NDH5000 manufactured by Nippon Denshoku Kogyo Co., Ltd., the measurement was carried out at 23 ° C. according to JIS K7105.
(7)引張試験
 JISK7127に準拠してフィルムの長手方向および幅方向の引張強度を23℃にて測定した。サンプルは15mm×200mmのサイズにフィルムより切り出し、チャック幅は100mmで、引張試験機(インストロンジャパンカンパニイリミテッド社製デュアルコラム卓上型試験機インストロン5965)にセットした。引張速度200mm/分にて引張試験を行った。得られた歪み-応力カーブより、5%伸長時の応力をF5とした。引張破断強度、引張破断伸度は、それぞれ、サンプルが破断した時点での強度と伸度とした。
(7) Tensile test The tensile strength in the longitudinal direction and the width direction of the film was measured at 23 ° C. according to JIS K7127. The sample was cut out from a film to a size of 15 mm × 200 mm, had a chuck width of 100 mm, and was set in a tensile tester (dual column desktop tester Instron 5965 manufactured by Instron Japan Company Limited). A tensile test was performed at a tensile speed of 200 mm / min. From the obtained strain-stress curve, the stress at 5% elongation was defined as F5. The tensile breaking strength and the tensile breaking elongation were taken as the strength and elongation at the time when the sample broke, respectively.
(8)熱収縮率
 JISZ1712に準拠して以下の方法で測定した。フィルムを20mm巾で200mmの長さでフィルムの長手方向、幅方向にそれぞれカットし、120℃または150℃の熱風オーブン中に吊るして5分間加熱した。加熱後の長さを測定し、元の長さに対する収縮した長さの割合で熱収縮率を求めた。
(8) Heat shrinkage rate Measured by the following method according to JISZ1712. The film was cut with a width of 20 mm and a length of 200 mm in the longitudinal direction and the width direction of the film, respectively, and hung in a hot air oven at 120 ° C. or 150 ° C. and heated for 5 minutes. The length after heating was measured, and the heat shrinkage rate was determined by the ratio of the contracted length to the original length.
(9)屈折率、△Ny、面配向係数
 (株)アタゴ製アッベ屈折計を用いて波長589.3nm、温度23℃で測定した。フィルムの長手方向、幅方向に沿った屈折率をそれぞれNx、Nyとし、厚み方向の屈折率をNzとした。幅方向の配向の程度である△Nyは、Nx、Ny、Nzを用いて、(式)△Ny=Ny-[(Nx+Nz)/2]を用いて求めた。また、面配向係数(ΔP)は、(式)ΔP=[(Nx+Ny)/2]-Nzを用いて計算した。
(9) Refractive index, ΔNy, plane orientation coefficient Measured at a wavelength of 589.3 nm and a temperature of 23 ° C. using an Abbe refractometer manufactured by Atago Co., Ltd. The refractive indexes along the longitudinal direction and the width direction of the film were Nx and Ny, respectively, and the refractive indexes in the thickness direction were Nz. ΔNy, which is the degree of orientation in the width direction, was determined using (Equation) ΔNy = Ny− [(Nx + Nz) / 2] using Nx, Ny, and Nz. The plane orientation coefficient (ΔP) was calculated using (Equation) ΔP = [(Nx + Ny) / 2] −Nz.
(12)ループステフネス応力
 フィルムの長手方向を短冊の長軸(ループ方向)、あるいはフィルムの幅方向を短冊の長軸(ループ方向)として、110mm×25.4mmの短冊状試験片をそれぞれ10枚ずつ切り出した。これらをクリップに挟んでフィルムの片方の面がループの内面になるものと、その反対面がループの内面になる測定用ループを、短冊の長軸がフィルムの長手方向及び幅方向となるものについて作製した。短冊の長軸がフィルムの長手方向となる測定用のループを、株式会社東洋精機製作所製ループステフネステスタDAのチャック部に幅方向を垂直にした状態でセットし、クリップをはずし、チャック間隔は50mm、押し込み深さを15mm、圧縮速度を3.3mm/秒としてループステフネス応力を測定した。
 測定はフィルムの片方の面がループの内面になるようにしたもののループステフネス応力と厚みを5回測定し、その後もう片面がループの内面になるようにしたものも5回測定した。この計10回分のデータを用い、各試験片の厚み(μm)の3乗を横軸に、そのループステフネス応力(mN)を縦軸としてプロットし、切片0となる直線で近似して、その傾きaを求めた。傾きaを腰感の評価値とした。短冊の長軸がフィルムの幅方向となる測定用のループも同様に測定した。
(12) Loop stepness stress 10 strip-shaped test pieces of 110 mm × 25.4 mm each with the longitudinal direction of the film as the long axis of the strip (loop direction) or the width direction of the film as the long axis of the strip (loop direction). I cut it out one by one. For measuring loops in which one side of the film is the inner surface of the loop and the other side is the inner surface of the loop, with these sandwiched between clips, and the long axis of the strip is in the longitudinal and width directions of the film. Made. Set the measurement loop with the long axis of the strip in the longitudinal direction of the film on the chuck part of Loop Stef Nestester DA manufactured by Toyo Seiki Seisakusho Co., Ltd. with the width direction perpendicular, remove the clip, and set the chuck interval. The loop stepness stress was measured at 50 mm, a pushing depth of 15 mm, and a compression rate of 3.3 mm / sec.
The measurement was performed so that one side of the film was the inner surface of the loop, but the loop stefness stress and the thickness were measured 5 times, and then the other side of the film was measured 5 times. Using the data for a total of 10 times, plot the thickness (μm) of each test piece on the horizontal axis and the loop stepness stress (mN) on the vertical axis, and approximate it with a straight line that becomes the intercept 0. The inclination a was obtained. The inclination a was used as the evaluation value of the feeling of waist. The measurement loop in which the long axis of the strip is in the width direction of the film was measured in the same manner.
(13)ラミネート強度
 ラミネート強度は以下のような手順により測定した。
1)シーラントフィルムとのラミネートフィルムの作成
 連続式のドライラミネート機を用いて以下の様に行った。まず、実施例、比較例で得られた二軸配向ポリプロピレンフィルムのコロナ面に接着剤を乾燥時塗布量が3.0g/mとなるようにグラビアコートした後、乾燥ゾーンに導き80℃、5秒で乾燥した。引き続き下流側に設けられたロール間でシーラントフィルムと貼り合わせた(ロール圧力0.2MP、ロール温度:60℃)。得られたラミネートフィルムは巻き取った状態で40℃、3日間のエージング処理を行った。
 なお、接着剤は主剤(東洋モートン社製、TM329)17.9質量%、硬化剤(東洋モートン社製、CAT8B)17.9質量%および酢酸エチル64.2質量%を混合して得られたエーテル系接着剤を使用し、シーラントフィルムは東洋紡社製無二軸配向ポリプロピレンフィルム(パイレン(登録商標)CT P1128、厚み30μm)を使用した。
 上記で得られたラミネートフィルムを二軸配向ポリプロピレンフィルムの長手方向、及び幅方向に長辺を持つ短冊状(長さ200mm、幅15mm)に切り出し、引張試験機(テンシロン、オリエンテック社製)を用いて、23℃の環境下200mm/分の引張速度で90°(T字)剥離した際の剥離強度(N/15mm)を測定した。測定は3回行い、その平均値を長手方向、及び幅方向のラミネート強度とした。
(13) Laminate strength The laminate strength was measured by the following procedure.
1) Preparation of laminated film with sealant film The following was performed using a continuous dry laminating machine. First, an adhesive was gravure-coated on the corona surface of the biaxially oriented polypropylene films obtained in Examples and Comparative Examples so that the amount applied during drying was 3.0 g / m 2, and then the adhesive was guided to a drying zone at 80 ° C. It dried in 5 seconds. Subsequently, it was bonded to the sealant film between the rolls provided on the downstream side (roll pressure 0.2 MP, roll temperature: 60 ° C.). The obtained laminated film was aged at 40 ° C. for 3 days in a wound state.
The adhesive was obtained by mixing 17.9% by mass of the main agent (TM329 manufactured by Toyo Morton Co., Ltd.), 17.9% by mass of the curing agent (CAT8B manufactured by Toyo Morton Co., Ltd.) and 64.2% by mass of ethyl acetate. An ether adhesive was used, and a non-biaxially oriented polypropylene film (Pyrene (registered trademark) CT P1128, thickness 30 μm) manufactured by Toyobo Co., Ltd. was used as the sealant film.
The laminated film obtained above is cut into strips (length 200 mm, width 15 mm) having long sides in the longitudinal direction and the width direction of the biaxially oriented polypropylene film, and a tensile tester (Tensilon, manufactured by Orientec) is used. The peel strength (N / 15 mm) when peeled by 90 ° (T-shaped) at a tensile speed of 200 mm / min in an environment of 23 ° C. was measured. The measurement was performed three times, and the average value was taken as the laminating strength in the longitudinal direction and the width direction.
(14)表面固有抵抗試験
 実施例、比較例で得られた二軸配向ポリプロピレンフィルムのコロナ面にASTM D257に準拠して、得られたフィルム表面の表面固有抵抗(Ω/□)を測定した。なお、測定温度及び湿度は、23℃×65%RHであった。
(14) Surface intrinsic resistance test The surface intrinsic resistance (Ω / □) of the obtained film surface was measured on the corona surface of the biaxially oriented polypropylene films obtained in Examples and Comparative Examples in accordance with ASTM D257. The measured temperature and humidity were 23 ° C. × 65% RH.
(実施例1)
[基材層(A)]
 ポリプロピレン樹脂として、MFR=7.5g/10分、[mmmm]=98.9%、Tc=116.2℃、Tm=162.5℃であるプロピレン単独重合体PP-1(住友化学(株)製、FLX80E4)を80重量部と、MFR=11g/10分、[mmmm]=98.8%、Tc=116.5℃、Tm=161.5℃であるプロピレン単独重合体PP-2(住友化学(株)製、EL80F5)を20重量部とをブレンドしたもの100重量部に、化合物(A)として防曇剤であるステアリルアミンモノステアリン酸エステル(東邦化学工業(株)製:アンステックス SA321)を0.9912重量部と化合物(B)として防曇剤であるグリセリンモノステアレート(東邦化学工業(株)製:アンステックス MG100)を0.156重量部配合し混合後、ペレタイザー付き押出し機を用いて溶融混練、造粒してポリプロピレン組成物のペレットを得て、基材層(A)用のポリプロピレン系樹脂組成物とした。
[中間層(B)]
 ポリプロピレン樹脂として、MFR=7.5g/10分、[mmmm]=98.9%、Tc=116.2℃、Tm=162.5℃であるプロピレン単独重合体PP-1(住友化学(株)製、FLX80E4)70を重量部と、MFR=11g/10分、[mmmm]=98.8%、Tc=116.5℃、Tm=161.5℃であるプロピレン単独重合体PP-2(住友化学(株)製、EL80F5)を20重量部と、MFR=7.5g/10分、Tc=111.7℃、Tm=158℃であるエチレンモノマー由来成分が0.6モル%のプロピレン・エチレン共重合体PP-3(住友化学(株)製WF836DG3)を10重量部とをブレンドしたもの100重量部に、化合物(A)としてステアリルアミンモノステアリン酸エステル(東邦化学工業(株)製:アンステックス SA321)を1.000量部と化合物(B)としてグリセリンモノステアレート(東邦化学工業(株)製:アンステックス MG100)を0.155重量部、化合物(C)として防曇剤であるステアリルジエタノールアミン(東邦化学工業(株)製:アンステックス SA20)を0.0400重量部配合し混合後、ペレタイザー付き押出し機を用いて溶融混練、造粒してポリプロピレン組成物のペレットを得て、中間層(B)用のポリプロピレン系樹脂組成物とした。
[表面層(C)]
 ポリプロピレン樹脂として、MFR=7.5g/10分、[mmmm]=98.9%、Tc=116.2℃、Tm=162.5℃であるプロピレン単独重合体PP-1(住友化学(株)製、FLX80E4)を64重量部と、MFR=7.5g/10分、Tc=111.7℃、Tm=158℃であるエチレンモノマー由来成分が0.6モル%のプロピレン・エチレン共重合体PP-3(住友化学(株)製WF836DG3)を36重量部とをブレンドしたものをペレタイザー付き押出し機を用いて溶融混練、造粒してポリプロピレン組成物のペレットを得て、表面層(C)用のポリプロピレン系樹脂組成物とした。
 まず、表面層(C)/基材層(A)/中間層(B)/表面層(C)のそれぞれを構成するポリプロピレン樹脂組成物を多層フィードブロックを用い、押出機でそれぞれ250℃、250℃、250℃で加熱溶融させ、250℃でTダイから溶融ポリプロピレン樹脂組成物を積層しながらシート状に共押出した。
 溶融シートの基材層(A)側の表面層(C)を20℃の冷却ロールに接触させ、そのまま20℃の水槽に投入した。その後、137℃に予熱後、142℃で二対のロールで長手方向に4.5倍に延伸し、ついで両端をクリップで挟み、熱風オーブン中に導いて、170℃で予熱後、幅方向に1段目として168℃で7倍延伸し、引き続き、2段目として145℃で1.43倍延伸することで、合計10倍の延伸を行った。幅方向延伸直後に、クリップに把持したまま100℃で冷却し、その後、165℃で、幅方向に3%緩和させながら、熱固定を行った。
 得られた二軸配向ポリプロピレンフィルムの冷却ロールに接触させた側のフィルム表面にソフタル・コロナ・アンド・プラズマGmbH社製のコロナ処理機を用いて、印加電流値:0.75Aの条件で、コロナ処理を施した後、ワインダーで巻き取ったものを本発明の二軸延伸単層ポリプロピレンフィルムとした。得られたフィルムの厚みは20μmであった。
 こうして得られたフィルムの厚みは表面層(C)/基材層(A)/中間層(B)/表面層(C)=1/16/2/1μmであった。表1にポリプロピレン樹脂の構造、表2に各層の原料、表3に製膜条件を示す。その特性は、表4に示すとおり、剛性が高く、高温での熱収縮率が低く、しかも帯電しにくいフィルムが得られた。
(Example 1)
[Base layer (A)]
As a polypropylene resin, MFR = 7.5 g / 10 minutes, [mmmm] = 98.9%, Tc = 116.2 ° C., Tm = 162.5 ° C., propylene homopolymer PP-1 (Sumitomo Chemical Co., Ltd.) , FLX80E4) with 80 parts by weight, MFR = 11 g / 10 minutes, [mmmm] = 98.8%, Tc = 116.5 ° C, Tm = 161.5 ° C. Polypropylene homopolymer PP-2 (Sumitomo) A blend of 20 parts by weight of EL80F5 manufactured by Chemical Co., Ltd. in 100 parts by weight, stearylamine monostearic acid ester as an antifogging agent as compound (A) (manufactured by Toho Chemical Industry Co., Ltd .: Anstex SA321) ) To 0.9912 parts by weight and 0.156 parts by weight of glycerin monostearate (manufactured by Toho Chemical Industry Co., Ltd .: Anstex MG100) as the compound (B), and then an extruder with a pelletizer. Was melt-kneaded and granulated to obtain pellets of the polypropylene composition, which was used as a polypropylene-based resin composition for the base material layer (A).
[Middle layer (B)]
As a polypropylene resin, MFR = 7.5 g / 10 minutes, [mmmm] = 98.9%, Tc = 116.2 ° C., Tm = 162.5 ° C., propylene homopolymer PP-1 (Sumitomo Chemical Co., Ltd.) Made of FLX80E4) 70 by weight, MFR = 11 g / 10 minutes, [mmmm] = 98.8%, Tc = 116.5 ° C, Tm = 161.5 ° C. Polypropylene homopolymer PP-2 (Sumitomo) 20 parts by weight of EL80F5) manufactured by Kagaku Co., Ltd., MFR = 7.5 g / 10 minutes, Tc = 111.7 ° C, Tm = 158 ° C. A blend of 10 parts by weight of the copolymer PP-3 (WF836DG3 manufactured by Sumitomo Chemical Co., Ltd.) in 100 parts by weight, and stearylamine monostearic acid ester as the compound (A) (manufactured by Toho Chemical Industry Co., Ltd .: Anse). Tex SA321) is 1.000 parts by weight, glycerin monostearate (manufactured by Toho Chemical Industry Co., Ltd .: Anstex MG100) is 0.155 parts by weight, and compound (C) is stearyl, which is an antifogging agent. 0.0400 parts by weight of diethanolamine (manufactured by Toho Kagaku Kogyo Co., Ltd .: Anstex SA20) is blended, mixed, melt-kneaded and granulated using an extruder with a pelletizer to obtain pellets of the polypropylene composition, and an intermediate layer is obtained. The polypropylene-based resin composition for (B) was used.
[Surface layer (C)]
As a polypropylene resin, MFR = 7.5 g / 10 minutes, [mmmm] = 98.9%, Tc = 116.2 ° C., Tm = 162.5 ° C., propylene homopolymer PP-1 (Sumitomo Chemical Co., Ltd.) Made of FLX80E4) with 64 parts by weight, MFR = 7.5 g / 10 minutes, Tc = 111.7 ° C., Tm = 158 ° C., and polypropylene / ethylene copolymer PP containing 0.6 mol% of ethylene monomer-derived components. -3 (WF836DG3 manufactured by Sumitomo Chemical Co., Ltd.) blended with 36 parts by weight is melt-kneaded and granulated using an extruder with a pelletizer to obtain pellets of a polypropylene composition, which is used for the surface layer (C). Was used as the polypropylene-based resin composition of.
First, the polypropylene resin composition constituting each of the surface layer (C) / base layer (A) / intermediate layer (B) / surface layer (C) is extruded at 250 ° C. and 250 ° C. using a multilayer feed block. It was heated and melted at ° C. and 250 ° C., and coextruded into a sheet at 250 ° C. while laminating the molten polypropylene resin composition from the T die.
The surface layer (C) on the base layer (A) side of the molten sheet was brought into contact with a cooling roll at 20 ° C. and was put into a water tank at 20 ° C. as it was. Then, after preheating to 137 ° C, it is stretched 4.5 times in the longitudinal direction with two pairs of rolls at 142 ° C, then both ends are clipped and guided into a hot air oven, preheated at 170 ° C, and then in the width direction. As the first step, it was stretched 7 times at 168 ° C., and then as the second step, it was stretched 1.43 times at 145 ° C., so that a total of 10 times was stretched. Immediately after stretching in the width direction, the mixture was cooled at 100 ° C. while being held by the clip, and then heat-fixed at 165 ° C. while relaxing by 3% in the width direction.
Using a corona processing machine manufactured by Sophthal Corona & Plasma GmbH on the film surface on the side of the obtained biaxially oriented polypropylene film in contact with the cooling roll, the corona was applied under the condition of an applied current value of 0.75 A. After the treatment, the film wound with a winder was obtained as a biaxially stretched single-layer polypropylene film of the present invention. The thickness of the obtained film was 20 μm.
The thickness of the film thus obtained was surface layer (C) / substrate layer (A) / intermediate layer (B) / surface layer (C) = 1/16/2/1 μm. Table 1 shows the structure of the polypropylene resin, Table 2 shows the raw materials for each layer, and Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity, low heat shrinkage at high temperature, and less easily charged was obtained.
(実施例2)
 中間層(B)に帯電防止剤を入れない以外は実施例1と同様に行った。表1にポリプロピレン樹脂の構造、表2に各層の原料、表3に製膜条件を示す。その特性は、表4に示すとおり、剛性が高く、高温での熱収縮率が低く、しかも帯電しにくいフィルムが得られた。
(Example 2)
The procedure was the same as in Example 1 except that the antistatic agent was not added to the intermediate layer (B). Table 1 shows the structure of the polypropylene resin, Table 2 shows the raw materials for each layer, and Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity, low heat shrinkage at high temperature, and less easily charged was obtained.
(実施例3)
 中間層(B)に帯電防止剤を入れず、ポリプロピレン樹脂として、MFR=7.5g/10分、[mmmm]=98.9%、Tc=116.2℃、Tm=162.5℃であるプロピレン単独重合体PP-1(住友化学(株)製、FLX80E4)を64重量部と、MFR=7.5g/10分、Tc=111.7℃、Tm=158℃であるエチレンモノマー由来成分が0.6モル%のプロピレン・エチレン共重合体PP-3(住友化学(株)製WF836DG3)を36重量部とをブレンドしたもの100重量部に、化合物(A)としてステアリルアミンモノステアリン酸エステル(東邦化学工業(株)製:アンステックス SA321)を1.0752重量部配合し混合後、ペレタイザー付き押出し機を用いて溶融混練、造粒してポリプロピレン組成物のペレットを得て、表面層(C)用のポリプロピレン系樹脂組成物とした以外は実施例1と同様に行った。表1にポリプロピレン樹脂の構造、表2に各層の原料、表3に製膜条件を示す。その特性は、表4に示すとおり、剛性が高い、高温での熱収縮率が低く、しかも帯電しにくいフィルムが得られた。
(Example 3)
No antistatic agent was added to the intermediate layer (B), and as a polypropylene resin, MFR = 7.5 g / 10 minutes, [mmmm] = 98.9%, Tc = 116.2 ° C., Tm = 162.5 ° C. 64 parts by weight of propylene homopolymer PP-1 (manufactured by Sumitomo Chemical Co., Ltd., FLX80E4) and ethylene monomer-derived components having MFR = 7.5 g / 10 minutes, Tc = 111.7 ° C., Tm = 158 ° C. A blend of 0.6 mol% propylene / ethylene copolymer PP-3 (WF836DG3 manufactured by Sumitomo Chemical Co., Ltd.) with 36 parts by weight, and 100 parts by weight of stearylamine monostearic acid ester (sterylamine monostearic acid ester) as compound (A). Toho Kagaku Kogyo Co., Ltd .: Anstex SA321) is blended in 1.0752 parts by weight, mixed, melt-kneaded and granulated using an extruder with a pelletizer to obtain pellets of the polypropylene composition, and the surface layer (C). ), Except for the polypropylene-based resin composition, the same procedure as in Example 1 was carried out. Table 1 shows the structure of the polypropylene resin, Table 2 shows the raw materials for each layer, and Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity, low heat shrinkage at high temperature, and less easily charged was obtained.
(実施例4)
 フィルムの厚みは表面層(C)/基材層(A)/中間層(B)/表面層(C)=3/16/2/3μmとした以外は、実施例1と同様に行った。表1にポリプロピレン樹脂の構造、表2に各層の原料、表3に製膜条件を示す。その特性は、表4に示すとおり、剛性が高く、高温での熱収縮率が低く、しかも帯電しにくいフィルムが得られた。
(Example 4)
The film thickness was the same as in Example 1 except that the surface layer (C) / base layer (A) / intermediate layer (B) / surface layer (C) = 3/16/2/3 μm. Table 1 shows the structure of the polypropylene resin, Table 2 shows the raw materials for each layer, and Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity, low heat shrinkage at high temperature, and less easily charged was obtained.
(実施例5)
 フィルムの厚みは表面層(C)/基材層(A)/中間層(B)/表面層(C)=1/14/4/1μmとし、幅方向に1段目として164℃で延伸し、熱固定温度を168℃とした以外は、実施例1と同様に行った。表1にポリプロピレン樹脂の構造、表2に各層の原料、表3に製膜条件を示す。その特性は、表4に示すとおり、剛性が高く、高温での熱収縮率が低く、しかも帯電しにくいフィルムが得られた。
(Example 5)
The thickness of the film is surface layer (C) / base layer (A) / intermediate layer (B) / surface layer (C) = 1/14/4/1 μm, and the film is stretched at 164 ° C. as the first step in the width direction. The same procedure as in Example 1 was carried out except that the heat fixing temperature was set to 168 ° C. Table 1 shows the structure of the polypropylene resin, Table 2 shows the raw materials for each layer, and Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity, low heat shrinkage at high temperature, and less easily charged was obtained.
(実施例6)
 フィルムの厚みは表面層(C)/基材層(A)/中間層(B)/表面層(C)=1/12/6/1μmとし、幅方向に1段目として164℃で延伸し、熱固定温度を168℃とした以外は、実施例1と同様に行った。表1にポリプロピレン樹脂の構造、表2に各層の原料、表3に製膜条件を示す。その特性は、表4に示すとおり、剛性が高く、高温での熱収縮率が低く、しかも帯電しにくいフィルムが得られた。
(Example 6)
The thickness of the film is surface layer (C) / base layer (A) / intermediate layer (B) / surface layer (C) = 1/12/6/1 μm, and the film is stretched at 164 ° C. as the first step in the width direction. The same procedure as in Example 1 was carried out except that the heat fixing temperature was set to 168 ° C. Table 1 shows the structure of the polypropylene resin, Table 2 shows the raw materials for each layer, and Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity, low heat shrinkage at high temperature, and less easily charged was obtained.
(実施例7)
 幅方向に1段目として166℃で延伸し、引き続き、2段目として162℃で倍延伸した以外は、実施例1と同様に行った。表1にポリプロピレン樹脂の構造、表2に各層の原料、表3に製膜条件を示す。その特性は、表4に示すとおり、剛性が高く、高温での熱収縮率が低く、しかも帯電しにくいフィルムが得られた。
(Example 7)
The same procedure as in Example 1 was carried out except that the first step was stretched at 166 ° C. in the width direction and then the second step was double stretched at 162 ° C. Table 1 shows the structure of the polypropylene resin, Table 2 shows the raw materials for each layer, and Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity, low heat shrinkage at high temperature, and less easily charged was obtained.
(実施例8)
 ポリプロピレン樹脂として、MFR=7.5g/10分、Tc=111.7℃、Tm=158℃であるエチレンモノマー由来成分が0.6モル%のプロピレン・エチレン共重合体PP-3(住友化学(株)製WF836DG3)を100重量部を表面層(C)用のポリプロピレン系樹脂組成物とした以外は実施例1と同様に行った。表1にポリプロピレン樹脂の構造、表2に各層の原料、表3に製膜条件を示す。その特性は、表4に示すとおり、剛性が高く、高温での熱収縮率が低いが、帯電しにくいフィルムが得られた。
(Example 8)
As a polypropylene resin, a propylene / ethylene copolymer PP-3 (Sumitomo Chemical Co., Ltd.) containing 0.6 mol% of ethylene monomer-derived components having MFR = 7.5 g / 10 minutes, Tc = 111.7 ° C., and Tm = 158 ° C. WF836DG3) manufactured by Co., Ltd. was carried out in the same manner as in Example 1 except that 100 parts by weight was used as a polypropylene-based resin composition for the surface layer (C). Table 1 shows the structure of the polypropylene resin, Table 2 shows the raw materials for each layer, and Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity and low heat shrinkage at high temperature but not easily charged was obtained.
(比較例1)
 基材層(A)に帯電防止剤を入れず、中間層(B)に化合物(A)としてステアリルアミンモノステアリン酸エステル(東邦化学工業(株)製:アンステックス SA321)を1.2974量部、化合物(B)としてグリセリンモノステアレート(東邦化学工業(株)製:アンステックス MG100)を0.155重量部、化合物(C)としてステアリルジエタノールアミン(東邦化学工業(株)製:アンステックス SA20)を0.0400重量部を配合した以外は、実施例1と同様に行った。表1にポリプロピレン樹脂の構造、表2に各層の原料、表3に製膜条件を示す。その特性は、表4に示すとおり、剛性が高く、高温での熱収縮率が低く、しかも帯電しやすいラミネート強度が高いフィルムが得られた。
(Comparative Example 1)
1.2974 parts of stearylamine monostearic acid ester (manufactured by Toho Chemical Industry Co., Ltd .: Anstex SA321) as compound (A) was added to the intermediate layer (B) without adding an antistatic agent to the base material layer (A). , 0.155 parts by weight of glycerin monostearate (manufactured by Toho Chemical Industry Co., Ltd .: Anstex MG100) as compound (B), and stearyldiethanolamine (manufactured by Toho Chemical Industry Co., Ltd .: Anstex SA20) as compound (C). The same procedure as in Example 1 was carried out except that 0.0400 parts by weight was blended. Table 1 shows the structure of the polypropylene resin, Table 2 shows the raw materials for each layer, and Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity, low heat shrinkage at high temperature, and high laminating strength which is easily charged was obtained.
(比較例2)
 ポリプロピレン樹脂として、MFR=7.5g/10分、[mmmm]=98.9%、Tc=116.2℃、Tm=162.5℃であるプロピレン単独重合体PP-1(住友化学(株)製、FLX80E4)を80重量部と、MFR=11g/10分、[mmmm]=98.8%、Tc=116.5℃、Tm=161.5℃であるプロピレン単独重合体PP-2(住友化学(株)製、EL80F5)を20重量部とをブレンドしたもの100重量部に、化合物(A)としてステアリルアミンモノステアリン酸エステル(東邦化学工業(株)製:アンステックス SA321)を0.9912重量部と化合物(B)としてグリセリンモノステアレート(東邦化学工業(株)製:アンステックス MG100)を0.156重量部配合し混合後、ペレタイザー付き押出し機を用いて溶融混練、造粒してポリプロピレン組成物のペレットを得て、中間層(B)用のポリプロピレン系樹脂組成物とした以外は実施例1と同様に行った。表1にポリプロピレン樹脂の構造、表2に各層の原料、表3に製膜条件を示す。その特性は、表4に示すとおり、剛性が高く、高温での熱収縮率が低いが、帯電しやすいフィルムが得られた。
(Comparative Example 2)
As a polypropylene resin, MFR = 7.5 g / 10 minutes, [mmmm] = 98.9%, Tc = 116.2 ° C., Tm = 162.5 ° C., propylene homopolymer PP-1 (Sumitomo Chemical Co., Ltd.) , FLX80E4) with 80 parts by weight, MFR = 11 g / 10 minutes, [mmmm] = 98.8%, Tc = 116.5 ° C, Tm = 161.5 ° C. Polypropylene homopolymer PP-2 (Sumitomo) 0.9912 of stearylamine monostearic acid ester (manufactured by Toho Chemical Industry Co., Ltd .: Anstex SA321) as compound (A) in 100 parts by weight of a blend of 20 parts by weight of EL80F5 manufactured by Chemical Co., Ltd. 0.156 parts by weight and 0.156 parts by weight of glycerin monostearate (manufactured by Toho Chemical Industry Co., Ltd .: Anstex MG100) as compound (B) are mixed, and then melt-kneaded and granulated using an extruder with a pelletizer. The same procedure as in Example 1 was carried out except that pellets of the polypropylene composition were obtained and used as the polypropylene-based resin composition for the intermediate layer (B). Table 1 shows the structure of the polypropylene resin, Table 2 shows the raw materials for each layer, and Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity and low heat shrinkage at high temperature, but easily charged was obtained.
(比較例3)
 ポリプロピレン樹脂として、MFR=7.5g/10分、[mmmm]=98.9%、Tc=116.2℃、Tm=162.5℃であるプロピレン単独重合体PP-1(住友化学(株)製、FLX80E4)を30重量部と、MFR=11g/10分、[mmmm]=98.8%、Tc=116.5℃、Tm=161.5℃であるプロピレン単独重合体PP-2(住友化学(株)製、EL80F5)を20重量部と、MFR=7.5g/10分、Tc=111.7℃、Tm=158℃であるエチレンモノマー由来成分が0.6モル%のプロピレン・エチレン共重合体PP-3(住友化学(株)製WF836DG3)を50重量部とをブレンドしたもの100重量部に、化合物(A)としてステアリルアミンモノステアリン酸エステル(東邦化学工業(株)製:アンステックス SA321)を0.9554重量部と化合物(B)としてグリセリンモノステアレート(東邦化学工業(株)製:アンステックス MG100)を0.153重量部と、化合物(C)としてステアリルジエタノールアミン(東邦化学工業(株)製:アンステックス SA20)を0.120重量部配合し混合後、ペレタイザー付き押出し機を用いて溶融混練、造粒してポリプロピレン組成物のペレットを得て、中間層(B)用のポリプロピレン系樹脂組成物とした以外は実施例1と同様に行った。表1にポリプロピレン樹脂の構造、表2に各層の原料、表3に製膜条件を示す。その特性は、表4に示すとおり、剛性が低いフィルムが得られた。
(Comparative Example 3)
As a polypropylene resin, MFR = 7.5 g / 10 minutes, [mmmm] = 98.9%, Tc = 116.2 ° C., Tm = 162.5 ° C., propylene homopolymer PP-1 (Sumitomo Chemical Co., Ltd.) , FLX80E4) with 30 parts by weight, MFR = 11 g / 10 minutes, [mmmm] = 98.8%, Tc = 116.5 ° C, Tm = 161.5 ° C. Polypropylene homopolymer PP-2 (Sumitomo) 20 parts by weight of EL80F5) manufactured by Kagaku Co., Ltd., MFR = 7.5 g / 10 minutes, Tc = 111.7 ° C, Tm = 158 ° C. A blend of 50 parts by weight of the copolymer PP-3 (WF836DG3 manufactured by Sumitomo Chemical Co., Ltd.) in 100 parts by weight, and stearylamine monostearic acid ester as the compound (A) (manufactured by Toho Chemical Industry Co., Ltd .: Anse). Tex SA321) is 0.9554 parts by weight and glycerin monostearate (manufactured by Toho Chemical Industry Co., Ltd .: Anstex MG100) is 0.153 parts by weight as compound (B), and stearyldiethanolamine (Toho Chemical Co., Ltd.) is used as compound (C). Industrial Co., Ltd .: Anstex SA20) is blended in 0.120 parts by weight, mixed, melt-kneaded and granulated using an extruder with a pelletizer to obtain pellets of the polypropylene composition, and used for the intermediate layer (B). The same procedure as in Example 1 was carried out except that the polypropylene-based resin composition of the above was used. Table 1 shows the structure of the polypropylene resin, Table 2 shows the raw materials for each layer, and Table 3 shows the film forming conditions. As shown in Table 4, a film having low rigidity was obtained.
(比較例4)
 ポリプロピレン樹脂として、MFR=7.5g/10分、Tc=111.7℃、Tm=158℃であるエチレンモノマー由来成分が0.6モル%のプロピレン・エチレン共重合体PP-3(住友化学(株)製WF836DG3)100重量部に、化合物(A)としてステアリルアミンモノステアリン酸エステル(東邦化学工業(株)製:アンステックス SA321)を0.800重量部と化合物(B)としてグリセリンモノステアレート(東邦化学工業(株)製:アンステックス MG100)を0.157重量部と、化合物(C)としてステアリルジエタノールアミン(東邦化学工業(株)製:アンステックス SA20)を0.200重量部配合し混合後、ペレタイザー付き押出し機を用いて溶融混練、造粒してポリプロピレン組成物のペレットを得て、中間層(B)用のポリプロピレン系樹脂組成物とした以外は実施例1と同様に行った。表1にポリプロピレン樹脂の構造、表2に各層の原料、表3に製膜条件を示す。その特性は、表4に示すとおり、剛性が低いフィルムが得られた。
(Comparative Example 4)
As a polypropylene resin, a propylene / ethylene copolymer PP-3 (Sumitomo Chemical Co., Ltd.) containing 0.6 mol% of ethylene monomer-derived components having MFR = 7.5 g / 10 minutes, Tc = 111.7 ° C., and Tm = 158 ° C. WF836DG3) manufactured by Co., Ltd., 0.800 parts by weight of stearylamine monostearate ester (manufactured by Toho Chemical Industry Co., Ltd .: Anstex SA321) as compound (A) and glycerin monostearate as compound (B) in 100 parts by weight. (Toho Chemical Industry Co., Ltd .: Anstex MG100) is mixed in an amount of 0.157 parts by weight, and compound (C) is mixed with stearyldiethanolamine (manufactured by Toho Chemical Industry Co., Ltd .: Anstex SA20) in an amount of 0.200 parts by weight. After that, the polypropylene composition was melt-kneaded and granulated using an extruder with a pelletizer to obtain pellets of the polypropylene composition, and the same procedure as in Example 1 was carried out except that the polypropylene-based resin composition for the intermediate layer (B) was obtained. Table 1 shows the structure of the polypropylene resin, Table 2 shows the raw materials for each layer, and Table 3 shows the film forming conditions. As shown in Table 4, a film having low rigidity was obtained.
(比較例5)
 ポリプロピレン樹脂として、MFR=7.5g/10分、[mmmm]=98.9%、Tc=116.2℃、Tm=162.5℃であるプロピレン単独重合体PP-1(住友化学(株)製、FLX80E4)を80重量部と、MFR=11g/10分、[mmmm]=98.8%、Tc=116.5℃、Tm=161.5℃であるプロピレン単独重合体PP-2(住友化学(株)製、EL80F5)を20重量部とをブレンドしたもの100重量部に、化合物(A)としてステアリルアミンモノステアリン酸エステル(東邦化学工業(株)製:アンステックス A321)を0.9912重量部と化合物(B)としてグリセリンモノステアレート(東邦化学工業(株)製:アンステックス MG100)を0.156重量部配合し混合後、ペレタイザー付き押出し機を用いて溶融混練、造粒してポリプロピレン組成物のペレットを得て、中間層(B)用のポリプロピレン系樹脂組成物とし、 ポリプロピレン樹脂として、MFR=7.5g/10分、[mmmm]=98.9%、Tc=116.2℃、Tm=162.5℃であるプロピレン単独重合体PP-1(住友化学(株)製、FLX80E4)を94重量部と、MFR=7.5g/10分、Tc=111.7℃、Tm=158℃であるエチレンモノマー由来成分が0.6モル%のプロピレン・エチレン共重合体PP-3(住友化学(株)製WF836DG3)を6重量部とをブレンドしたものを表面層(C)用のポリプロピレン系樹脂組成物とした以外は実施例1と同様に行った。表1にポリプロピレン樹脂の構造、表2に各層の原料、表3に製膜条件を示す。その特性は、表4に示すとおり、剛性が高く、高温での熱収縮率が低いが、帯電しやすいフィルムが得られた。
(Comparative Example 5)
As a polypropylene resin, MFR = 7.5 g / 10 minutes, [mmmm] = 98.9%, Tc = 116.2 ° C., Tm = 162.5 ° C., propylene homopolymer PP-1 (Sumitomo Chemical Co., Ltd.) , FLX80E4) with 80 parts by weight, MFR = 11 g / 10 minutes, [mmmm] = 98.8%, Tc = 116.5 ° C, Tm = 161.5 ° C. Polypropylene homopolymer PP-2 (Sumitomo) 0.9912 of stearylamine monostearic acid ester (manufactured by Toho Kagaku Kogyo Co., Ltd .: Anstex A321) as compound (A) in 100 parts by weight of a blend of 20 parts by weight of EL80F5 manufactured by Kagaku Co., Ltd. 0.156 parts by weight and 0.156 parts by weight of glycerin monostearate (manufactured by Toho Chemical Industry Co., Ltd .: Anstex MG100) as compound (B) are mixed, and then melt-kneaded and granulated using an extruder with a pelletizer. Pellets of the polypropylene composition were obtained to obtain a polypropylene-based resin composition for the intermediate layer (B), and as the polypropylene resin, MFR = 7.5 g / 10 minutes, [mm mm] = 98.9%, Tc = 116.2. 94 parts by weight of polypropylene homopolymer PP-1 (manufactured by Sumitomo Chemical Co., Ltd., FLX80E4) at ° C., Tm = 162.5 ° C., MFR = 7.5 g / 10 minutes, Tc = 111.7 ° C., Tm A blend of 6 parts by weight of propylene / ethylene copolymer PP-3 (WF836DG3 manufactured by Sumitomo Chemical Co., Ltd.) containing 0.6 mol% of an ethylene monomer-derived component at 158 ° C. is used for the surface layer (C). The same procedure as in Example 1 was carried out except that the polypropylene-based resin composition of No. 1 was used. Table 1 shows the structure of the polypropylene resin, Table 2 shows the raw materials for each layer, and Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity and low heat shrinkage at high temperature, but easily charged was obtained.
(比較例6)
 ポリプロピレン樹脂として、MFR=7.5g/10分、[mmmm]=98.9%、Tc=116.2℃、Tm=162.5℃であるプロピレン単独重合体PP-1(住友化学(株)製、FLX80E4)を94重量部に、MFR=7.5g/10分、Tc=111.7℃、Tm=158℃であるエチレンモノマー由来成分が0.6モル%のプロピレン・エチレン共重合体PP-3(住友化学(株)製WF836DG3)を6重量部とをブレンドしたものを表面層(C)用のポリプロピレン系樹脂組成物とした以外は実施例1と同様に行った。表1にポリプロピレン樹脂の構造、表2に各層の原料、表3に製膜条件を示す。その特性は、表4に示すとおり、剛性が高く、高温での熱収縮率が低いが、帯電しやすいフィルムが得られた。
(Comparative Example 6)
As a polypropylene resin, MFR = 7.5 g / 10 minutes, [mmmm] = 98.9%, Tc = 116.2 ° C., Tm = 162.5 ° C., propylene homopolymer PP-1 (Sumitomo Chemical Co., Ltd.) Made of FLX80E4) in 94 parts by weight, MFR = 7.5 g / 10 minutes, Tc = 111.7 ° C, Tm = 158 ° C. Polypropylene / ethylene copolymer PP with 0.6 mol% of ethylene monomer-derived component. -3 (WF836DG3 manufactured by Sumitomo Chemical Co., Ltd.) was blended with 6 parts by weight to prepare a polypropylene-based resin composition for the surface layer (C), and the same procedure as in Example 1 was carried out. Table 1 shows the structure of the polypropylene resin, Table 2 shows the raw materials for each layer, and Table 3 shows the film forming conditions. As shown in Table 4, a film having high rigidity and low heat shrinkage at high temperature, but easily charged was obtained.
(比較例7)
 幅方向に1段目として162℃で延伸した以外は、実施例1と同様に行った。得表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その特性は、表3に示すとおり、剛性が高いが、高温での熱収縮率が高く、帯電しやすいフィルムが得られた。
(Comparative Example 7)
It was carried out in the same manner as in Example 1 except that it was stretched at 162 ° C. as the first step in the width direction. Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, a film having high rigidity but high heat shrinkage at high temperature and easily charged was obtained.
(比較例8)
 幅方向に162℃で延伸し、熱固定温度を168℃とし、幅方向に5%緩和した以外は、実施例1と同様に行った。得表1にポリプロピレン樹脂の構造、表2に各層の原料、表3に製膜条件を示す。その特性は、表4に示すとおり、剛性が低いフィルムが得られた。
(Comparative Example 8)
The same procedure as in Example 1 was carried out except that the temperature was stretched at 162 ° C. in the width direction, the heat fixing temperature was set to 168 ° C., and the temperature was relaxed by 5% in the width direction. Table 1 shows the structure of the polypropylene resin, Table 2 shows the raw materials for each layer, and Table 3 shows the film forming conditions. As shown in Table 4, a film having low rigidity was obtained.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016

Claims (8)

  1.  5%伸長時の応力(F5)が23℃において長手方向で40MPa以上であり、幅方向で160MPa以上であり、かつ、150℃における熱収縮率が、長手方向で10%以下であり、幅方向で30%以下であり、かつ、少なくとも片側のフィルム表面の表面固有抵抗が15Ω/□以下である二軸配向ポリプロピレンフィルム。 The stress (F5) at 5% elongation is 40 MPa or more in the longitudinal direction at 23 ° C., 160 MPa or more in the width direction, and the heat shrinkage rate at 150 ° C. is 10% or less in the longitudinal direction, in the width direction. A biaxially oriented polypropylene film having a surface intrinsic resistance of 30% or less and at least one side of the film surface having a surface intrinsic resistance of 15Ω / □ or less.
  2.  前記二軸配向ポリプロピレンフィルムの120℃の熱収縮率が長手方向で2.0%以下であり、幅方向で5.0%以下であり、かつ長手方向の120℃熱収縮率が幅方向の120℃熱収縮率よりも小さい請求項1に記載の二軸配向ポリプロピレンフィルム。 The heat shrinkage rate of the biaxially oriented polypropylene film at 120 ° C. is 2.0% or less in the longitudinal direction, 5.0% or less in the width direction, and the heat shrinkage rate at 120 ° C. in the longitudinal direction is 120 in the width direction. The biaxially oriented polypropylene film according to claim 1, which is smaller than the ° C. heat shrinkage rate.
  3.  前記二軸配向ポリプロピレンフィルムの幅方向の屈折率Nyが1.5230以上であり、△Nyが0.0220以上である請求項1又は2に記載の二軸配向ポリプロピレンフィルム。 The biaxially oriented polypropylene film according to claim 1 or 2, wherein the refractive index Ny in the width direction of the biaxially oriented polypropylene film is 1.5230 or more and ΔNy is 0.0220 or more.
  4.  前記二軸配向ポリプロピレンフィルムのヘイズが5.0%以下である請求項1~3のいずれかに記載の二軸配向ポリプロピレンフィルム。 The biaxially oriented polypropylene film according to any one of claims 1 to 3, wherein the haze of the biaxially oriented polypropylene film is 5.0% or less.
  5.  前記基材層(A)を構成する主たるポリプロピレン樹脂のメソペンタッド分率が97.0%以上である請求項1~4のいずれかに記載の二軸配向ポリプロピレンフィルム。 The biaxially oriented polypropylene film according to any one of claims 1 to 4, wherein the main polypropylene resin constituting the base material layer (A) has a mesopentad fraction of 97.0% or more.
  6.  前記基材層(A)を構成する主たるポリプロピレン樹脂の結晶化温度が105℃以上であり、融点が160℃以上である請求項1~5のいずれかに記載の二軸配向ポリプロピレンフィルム。 The biaxially oriented polypropylene film according to any one of claims 1 to 5, wherein the main polypropylene resin constituting the base material layer (A) has a crystallization temperature of 105 ° C. or higher and a melting point of 160 ° C. or higher.
  7.  前記基材層(A)を構成する主たるポリプロピレン樹脂のメルトフローレートが4.0g/10分以上である請求項1~6のいずれかに記載の二軸配向ポリプロピレンフィルム。 The biaxially oriented polypropylene film according to any one of claims 1 to 6, wherein the melt flow rate of the main polypropylene resin constituting the base material layer (A) is 4.0 g / 10 minutes or more.
  8.  前記基材層(A)を構成する主たるポリプロピレン樹脂の分子量10万以下の成分量が35質量%以上である請求項1~7のいずれかに記載の二軸配向ポリプロピレンフィルム。 The biaxially oriented polypropylene film according to any one of claims 1 to 7, wherein the main polypropylene resin constituting the base material layer (A) has a molecular weight of 100,000 or less and a component amount of 35% by mass or more.
PCT/JP2021/021950 2020-06-17 2021-06-09 Biaxially-oriented polypropylene film WO2021256349A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022531720A JPWO2021256349A1 (en) 2020-06-17 2021-06-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020104870 2020-06-17
JP2020-104870 2020-06-17

Publications (1)

Publication Number Publication Date
WO2021256349A1 true WO2021256349A1 (en) 2021-12-23

Family

ID=79267946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021950 WO2021256349A1 (en) 2020-06-17 2021-06-09 Biaxially-oriented polypropylene film

Country Status (3)

Country Link
JP (1) JPWO2021256349A1 (en)
TW (1) TW202210274A (en)
WO (1) WO2021256349A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146894A1 (en) * 2014-03-28 2015-10-01 東レ株式会社 Biaxially oriented polypropylene film
JP2018141122A (en) * 2017-02-28 2018-09-13 東洋紡株式会社 Biaxially oriented polypropylene film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146894A1 (en) * 2014-03-28 2015-10-01 東レ株式会社 Biaxially oriented polypropylene film
JP2018141122A (en) * 2017-02-28 2018-09-13 東洋紡株式会社 Biaxially oriented polypropylene film

Also Published As

Publication number Publication date
JPWO2021256349A1 (en) 2021-12-23
TW202210274A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
JP7014326B2 (en) Biaxially oriented polypropylene film
JP7363816B2 (en) Biaxially oriented polypropylene film
WO2021256348A1 (en) Biaxially-oriented polypropylene film
JP6904489B2 (en) Biaxially oriented polypropylene film
JP7040681B1 (en) Biaxially oriented polypropylene film
JP7124980B2 (en) biaxially oriented polypropylene film
WO2021256349A1 (en) Biaxially-oriented polypropylene film
JP7010390B2 (en) Biaxially oriented polypropylene film
JP7363817B2 (en) Biaxially oriented polypropylene film
JP6915753B2 (en) Biaxially oriented polypropylene film
WO2021261311A1 (en) Biaxially-oriented polypropylene film
WO2021261312A1 (en) Biaxially-oriented polypropylene film
WO2021261313A1 (en) Production method for biaxially-oriented polypropylene film
WO2020137795A1 (en) Method for manufacturing biaxially oriented polypropylene film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531720

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826407

Country of ref document: EP

Kind code of ref document: A1