WO2024057827A1 - Electroconductive film - Google Patents

Electroconductive film Download PDF

Info

Publication number
WO2024057827A1
WO2024057827A1 PCT/JP2023/029952 JP2023029952W WO2024057827A1 WO 2024057827 A1 WO2024057827 A1 WO 2024057827A1 JP 2023029952 W JP2023029952 W JP 2023029952W WO 2024057827 A1 WO2024057827 A1 WO 2024057827A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
conductive
resin layer
temperature
layer
Prior art date
Application number
PCT/JP2023/029952
Other languages
French (fr)
Japanese (ja)
Inventor
宗一郎 山中
Original Assignee
グンゼ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グンゼ株式会社 filed Critical グンゼ株式会社
Publication of WO2024057827A1 publication Critical patent/WO2024057827A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates

Definitions

  • the present invention relates to a conductive film.
  • Patent Document 1 JP 2020-97142A discloses a conductive film.
  • This conductive film includes a resin film and a metal layer laminated on the resin film.
  • the present invention has been made to solve such problems, and the purpose is to provide a conductive film that can suppress the occurrence of cracks caused by further cooling of the conductive film after passing through a predetermined thermal shock test.
  • the purpose is to provide sex films.
  • the conductive film according to the present invention includes a conductive film body and a metal layer.
  • the conductive film body includes a resin and a conductive material.
  • the metal layer is laminated to the conductive film body.
  • TMA Thermomechanical Analyzer
  • the MD Machine Direction
  • the rate of change in dimensions is -0.10% or more.
  • the load pulling the conductive film was 0.0035N
  • the rate of temperature change during heating was 5.0°C/min
  • the rate of temperature change during cooling was -5.0°C/min. be.
  • this conductive film in a test using TMA, when the conductive film was heated from 20°C to 80°C and then cooled from 80°C to 20°C, the dimensional change rate in MD was is -0.10% or more. That is, this conductive film has a relatively small shrinkage rate when subjected to a predetermined thermal shock test. Therefore, according to this conductive film, the shrinkage rate after passing through the prescribed thermal shock test is relatively small, so even if the conductive film is further cooled after passing through the prescribed thermal shock test, the occurrence of cracks is suppressed. can do.
  • the relaxation temperature of residual stress in the conductive film body may be higher than 80°C.
  • the relaxation temperature of residual stress in the conductive film body is higher than 80°C, so the conductive film is heated from 20°C to 80°C, and then the conductive film is heated from 80°C to 20°C.
  • the shrinkage rate after passing through the prescribed thermal shock test is relatively small, so even if the conductive film is further cooled after passing through the prescribed thermal shock test, the occurrence of cracks is suppressed. can do.
  • the conductive film body includes a first conductive resin layer containing a first conductive filler and a second conductive resin layer containing a second conductive filler, the first conductive filler being conductive carbon, and the second conductive filler may include at least one metal selected from the group including platinum, gold, silver, copper, SUS (Stainless Used Steel), nickel, and titanium.
  • the product of the breaking strength in MD and the breaking strength in TD may be 710 or more.
  • the product of the breaking strength in MD and the breaking strength in TD is relatively large, so even if the conductive film is further cooled after a prescribed thermal shock test, the occurrence of cracks is suppressed. be able to.
  • the present invention it is possible to provide a conductive film that can suppress the occurrence of cracks due to further cooling of the conductive film after passing through a predetermined thermal shock test.
  • FIG. 3 is a diagram showing a cross section of a conductive film.
  • FIG. 3 is a diagram for explaining an image of dimensional changes caused by passing through a predetermined thermal shock test.
  • FIG. 1 is a diagram schematically showing the configuration of a manufacturing device.
  • this embodiment according to one aspect of the present invention will be described in detail using the drawings.
  • the same reference numerals are attached to the same or corresponding parts in the drawings, and the description thereof will not be repeated.
  • each drawing is schematically drawn with objects omitted or exaggerated as appropriate for ease of understanding.
  • FIG. 1 is a diagram showing a cross section of a conductive film 10 according to this embodiment.
  • the conductive film 10 is used, for example, as a charging film or an antistatic film for copying machines, printers, etc., and various functional films for other electric/electronic devices and parts.
  • the conductive film 10 includes a conductive film body 15 and a metal coating layer 300.
  • the conductive film body 15 includes a first conductive resin layer 100 and a second conductive resin layer 200.
  • the thickness T1 of the first conductive resin layer 100 is, for example, 0.5 times or more and 5 times or less the thickness T2 of the second conductive resin layer 200. Each layer will be explained below.
  • the first conductive resin layer 100 contains polyolefin and conductive filler. That is, the first conductive resin layer 100 is formed by mixing polyolefin and conductive filler.
  • polyolefins examples include polypropylene (PP) and polyethylene (PE). Further, a polymer having an ⁇ -olefin having 4 to 30 carbon atoms (1-butene, isobutene, 1-hexene, 1-decene, or 1-dodecene, etc.) as an essential constituent monomer may also be used as the polyolefin. . These polyolefins may be used alone or in a mixture of two or more.
  • polypropylene is preferred from the viewpoint of moisture-proofing properties and mechanical strength.
  • examples of polypropylene include homopolypropylene, random polypropylene, block polypropylene, polypropylene having a long chain branched structure, and acid-modified polypropylene.
  • An example of the conductive filler included in the first conductive resin layer 100 is conductive carbon.
  • the conductive carbon include graphite, carbon black (acetylene black, Ketjen black, furnace black, channel black, thermal lamp black, etc.), carbon nanotubes, and mixtures thereof.
  • carbon black is preferred, and acetylene black, furnace black, or a mixture thereof is more preferred.
  • the second conductive resin layer 200 is formed on the first conductive resin layer 100 and includes a first surface layer 210 and a second surface layer 220. Note that the first surface 240 is the surface of the first conductive resin layer 100 opposite to the second conductive resin layer 200. The second surface 230 is the surface of the second conductive resin layer 200 opposite to the first conductive resin layer 100 .
  • the first surface layer 210 and the second surface layer 220 each contain a polyolefin and a conductive filler. That is, each of the first surface layer 210 and the second surface layer 220 is formed by mixing polyolefin and a conductive filler.
  • the polyolefin for example, those exemplified in the description of the first conductive resin layer 100 can be used.
  • the conductive filler included in the second conductive resin layer 200 examples include platinum, gold, silver, copper, nickel, titanium, and mixtures thereof. That is, the conductive filler contained in the second conductive resin layer 200 contains at least one metal element selected from the group containing platinum, gold, silver, copper, nickel, and titanium. Note that among these, nickel particles are more preferable as the conductive filler.
  • the second surface layer 220 contains more conductive filler than the first surface layer 210.
  • the metal coating layer 300 is formed on the second surface 230 of the second conductive resin layer 200.
  • the metal coating layer 300 may be made of, for example, at least one of nickel, copper, silver, and aluminum. Further, the metal coating layer 300 may be composed of an oxide or an alloy thereof.
  • the metal coating layer 300 is formed, for example, by a known technique such as a vapor deposition method, a sputtering method, a plating method, or a coating method.
  • the thickness of the metal coating layer 300 is not particularly limited, but is preferably 10 to 100 nm.
  • the conductive film 10 has a characteristic that the dimensional change rate in MD (Machine Direction) after passing through a predetermined thermal shock test is "-(minus) 0.10%" or more.
  • the prescribed thermal shock test is a test using a TMA (Thermomechanical Analyzer). In this test, the conductive film 10 is heated from 20°C to 80°C, and then the conductive film 10 is cooled from 80°C to 20°C.
  • the conductive film 10 has a characteristic that the MD dimensional change rate after heating and cooling is -0.10% or more.
  • FIG. 2 is a diagram for explaining an image of dimensional changes caused by passing through a predetermined thermal shock test.
  • the horizontal axis represents temperature
  • the vertical axis represents the rate of change in dimension in MD.
  • the conductive film 10 is heated from 20°C to 80°C. By being heated, the dimensions of the conductive film 10 gradually increase. Thereafter, the conductive film 10 is cooled from 80°C to 20°C. As the conductive film 10 is cooled, the dimensions of the conductive film 10 gradually become smaller. In this example, after heating and cooling, the dimension in MD of the conductive film 10 becomes smaller than before heating.
  • the conductive film 10 has the characteristic that this dimensional change rate is -0.10% or more.
  • the conductive film 10 has a relatively small shrinkage rate when subjected to a predetermined thermal shock test. Therefore, since the conductive film 10 has a relatively small shrinkage rate after passing through a predetermined thermal shock test, even if the conductive film 10 is further cooled after passing through a predetermined thermal shock test (for example, - Even if the material is cooled to 20° C., the occurrence of cracks can be suppressed.
  • the conductive film 10 has a characteristic that the relaxation temperature of residual stress in the conductive film body 15 is higher than 80°C. Although details will be described later, in the manufacturing process of the conductive film main body 15, a device is adopted in which the molten material begins to solidify at a relatively high temperature. As the molten material begins to solidify at a relatively high temperature, the relaxation temperature of residual stress in the conductive film body 15 increases.
  • the residual stress relaxation temperature is higher than 80°C, so the conductive film 10 is heated from 20°C to 80°C, and then the conductive film 10 is cooled from 80°C to 20°C. Even after passing through a predetermined thermal shock test, no large shrinkage occurs in the conductive film body 15. Therefore, since the conductive film 10 has a relatively small shrinkage rate when subjected to a predetermined thermal shock test, cracks do not occur even if the conductive film 10 is further cooled after undergoing a predetermined thermal shock test. Can be suppressed.
  • the conductive film 10 has a characteristic that the product of the breaking strength in MD and the breaking strength in TD (breaking strength product) is 710 or more. Further, the conductive film 10 has a characteristic that the product of the elongation at break in MD and the elongation at break in TD (product of elongation at break) is 7 or more.
  • FIG. 3 is a diagram schematically showing the configuration of the manufacturing apparatus 40. As shown in FIG. The conductive film main body 15 is manufactured by the manufacturing apparatus 40 . As shown in FIG. 3, the manufacturing apparatus 40 includes a T-die 400, cast rolls 410, 420, and a take-up roll 430.
  • the T-die 400 includes a T-die main body 401 and raw material input parts 440, 450, and 460.
  • Raw materials for forming the second surface side layer 220 are charged into the raw material input section 440 .
  • polypropylene and nickel are charged into the raw material input section 440.
  • Raw materials for forming the first surface side layer 210 are charged into the raw material input section 450 .
  • polypropylene and nickel are charged into the raw material input section 450.
  • the weight percent concentration of nickel in the raw material input to the raw material input section 450 is lower than the weight percent concentration of nickel in the raw material input to the raw material input section 440.
  • Raw materials for forming the first conductive resin layer 100 are charged into the raw material input section 460 .
  • polypropylene and carbon black are charged into the raw material input section 460.
  • the T-die main body 401 co-extrudes the raw materials input through the raw material input parts 440, 450, and 460, thereby melting the raw materials input into each raw material input part and melting them together to form one integral piece. It is configured to produce a molten film (molten material). Cast rolls 410, 420 are configured to cool the extruded molten material and send it downstream. The winding roll 430 is configured to pull and wind up the molten material cooled by the cast rolls 410, 420 at a predetermined speed. A rolled body of the conductive film body 15 is manufactured through the manufacturing process in the manufacturing apparatus 40.
  • the conductive film 10 is manufactured by forming the metal coating layer 300 on the conductive film body 15 manufactured by the manufacturing apparatus 40 by a known technique such as a vapor deposition method, a sputtering method, a plating method, or a coating method.
  • the temperature of the cast roll 410 is 40°C or higher and 120°C or lower, preferably 80°C or higher and 120°C or lower.
  • the temperature of the cast roll 420 is 80°C or more and 120°C or less, preferably 90°C or more and 120°C or less.
  • the temperature of the cast roll 420 is high to some extent.
  • the molten material discharged from the T-die 400 begins to harden at a relatively high temperature, so that it is possible to manufacture the conductive film body 15 with a relatively high residual stress relaxation temperature.
  • the residual stress relaxation temperature of the conductive film body 15 manufactured by the manufacturing apparatus 40 is higher than 80°C.
  • the relaxation temperature of residual stress is higher than 80° C., so that no large shrinkage occurs in the conductive film body 15 even after passing through the above-described prescribed thermal shock test. . Therefore, according to the conductive film 10, the shrinkage rate after passing through a predetermined thermal shock test is relatively small, so even if the conductive film 10 is further cooled after passing through a predetermined thermal shock test (for example, -20 Crack generation can be suppressed.
  • the conductive film 10 in a test using TMA, the conductive film 10 is heated from 20°C to 80°C, and then the conductive film 10 is heated from 80°C to 20°C.
  • the dimensional change rate in MD is -0.10% or more. That is, the conductive film 10 has a relatively small shrinkage rate when subjected to a predetermined thermal shock test. Therefore, since the conductive film 10 has a relatively small shrinkage rate when subjected to a predetermined thermal shock test, cracks do not occur even if the conductive film 10 is further cooled after the predetermined thermal shock test. Can be suppressed.
  • the conductive filler contained in the first conductive resin layer 100 is at least one metal selected from the group containing platinum, gold, silver, copper, nickel, and titanium. It may further contain elements.
  • the conductive film 10 according to the above embodiment is a film having a multi-layer structure.
  • the conductive film 10 does not necessarily have to have a multi-layer structure, and may have a single layer structure.
  • the conductive film having a single layer structure may contain, for example, a polyolefin and a conductive filler.
  • the polyolefin for example, one exemplified in the description of the first conductive resin layer 100 may be used.
  • the conductive filler at least one metal element selected from the group including platinum, gold, silver, copper, nickel, and titanium may be included.
  • the conductive film body 15 included a first conductive resin layer 100 and a second conductive resin layer 200.
  • the conductive film body 15 does not necessarily need to include both the first conductive resin layer 100 and the second conductive resin layer 200.
  • the conductive film body 15 may include the second conductive resin layer 200 but may not include the first conductive resin layer 100.
  • each conductive film of Examples 1 and 2 was manufactured using the manufacturing apparatus 40 shown in FIG. 3. Specifically, the conductive films of Examples 1 and 2 were manufactured by manufacturing a conductive film body by coextrusion and depositing copper on the conductive film body. In each of the conductive films of Examples 1 and 2, the second conductive resin layer 200 was formed of polypropylene and nickel, and the first conductive resin layer 100 was formed of polypropylene and carbon black.
  • the total thickness of the first conductive resin layer 100 and the second conductive resin layer 200 was 50 ⁇ m.
  • the ratio of the thickness of the first conductive resin layer 100 to the thickness of the second conductive resin layer 200 was 3:1.
  • the weight percent concentration of nickel in the second surface layer 220 of the second conductive resin layer 200 was 75 wt%, and the weight percent concentration of nickel in the second surface side layer 220 of the second conductive resin layer 200 was 75 wt%.
  • the weight percent concentration of nickel in the side layer 210 was 70 wt%.
  • the weight percent concentration of carbon black in the first conductive resin layer 100 was 30 wt%.
  • the temperature of the cast roll 410 was 90°C, and the temperature of the cast roll 420 was 100°C.
  • the temperature of the cast roll 410 was 110°C, and the temperature of the cast roll 420 was 70°C.
  • the conductive film of Example 3 was manufactured using a single-layer film manufacturing apparatus.
  • This manufacturing apparatus was the same as the manufacturing apparatus 40 shown in FIG. 3 in which the T-die 400 was replaced with another T-die.
  • This T-die was configured to discharge a single layer of molten material.
  • a conductive film body was manufactured by heating and melting polypropylene and nickel and extrusion molding, and the conductive film of Example 3 was manufactured by vapor depositing copper on the conductive film body.
  • the weight percent concentration of nickel in the conductive film of Example 3 was 50 wt%.
  • the thickness of the conductive film of Example 3 was 50 ⁇ m.
  • the temperature of cast roll 410 was 100°C, and the temperature of cast roll 420 was 90°C.
  • a conductive film of a comparative example was manufactured using the manufacturing apparatus 40 shown in FIG. 3. Specifically, a conductive film body was manufactured by coextrusion, and a conductive film of a comparative example was manufactured by vapor depositing copper on the conductive film body.
  • the second conductive resin layer 200 was formed of polypropylene and nickel
  • the first conductive resin layer 100 was formed of polypropylene and carbon black.
  • the total thickness of the first conductive resin layer 100 and the second conductive resin layer 200 was 50 ⁇ m.
  • the ratio of the thickness of the first conductive resin layer 100 to the thickness of the second conductive resin layer 200 was 3:1.
  • the weight percentage concentration of nickel in the second surface side layer 220 of the second conductive resin layer 200 is 75 wt%, and the weight percent concentration of nickel in the first surface side layer 210 of the second conductive resin layer 200 is 75 wt%.
  • the weight percent concentration of nickel in was 70 wt%.
  • the weight percent concentration of carbon black in the first conductive resin layer 100 was 30 wt%.
  • the temperature of the cast roll 410 was 90°C
  • the temperature of the cast roll 420 was 70°C.
  • the residual stress relaxation temperature of each conductive film was measured using TMA Q400 manufactured by TA Instruments Japan. Regarding the sample size of each conductive film, the width was 4.9 mm, and the distance between chucks was 16 mm. In this test, the temperature of the conductive film was raised from 20° C. to 130° C., and the temperature at which the thermal expansion of the conductive film turned into thermal contraction during this constant temperature increase process was defined as the residual stress relaxation temperature. In this test, the load pulling the conductive film was 0.0035 N, and the rate of temperature change during heating was 10° C./min.
  • the tensile strength at break in each of MD and TD was measured by a method based on JIS-K-6732.
  • the size of the sample used to measure the tensile strength at break (MPa) was 10 mm in width and 110 mm or more in length (the length of the gauge line in the sample was 40 mm ⁇ 0-2).
  • the thickness of the sample was measured at five equally spaced points in the length direction, and the average thickness was calculated based on the measured thickness at the five points. Specific measurements were performed using an autograph (Shimadzu precision universal testing machine Autograph AG-X 500N).
  • the tensile speed at that time was 200 mm/min
  • the chart speed was 200 mm/min
  • the grip interval was 40 mm.
  • the strength of the sample at break was defined as the tensile strength at break.
  • the tensile speed at that time was 200 mm/min
  • the chart speed was 200 mm/min
  • the grip interval was 40 mm.
  • the elongation of the sample at break was defined as the tensile elongation at break.
  • ⁇ 3-5. Cracking test> The conductive film was cut into a size of 300 x 300 mm, and the four sides of the cut sample were fixed. Place the sample with the four sides fixed in a constant temperature and humidity chamber (LHU-113) manufactured by ESPEC Corporation, heat the temperature inside the constant temperature and humidity chamber from 20°C to 80°C, and then heat it in the high temperature and humidity chamber. The temperature was cooled from 80°C to -20°C. Note that the rate of temperature change was 5.0° C./min. Cracks were observed in the sample that underwent this process.
  • LHU-113 constant temperature and humidity chamber
  • test and measurement results The test and measurement results are shown in Table 1 below.
  • the breaking strength of each of MD and TD was measured as a value in MPa, and the product of the breaking strength value in MD and the breaking strength value in TD was defined as the breaking strength product. Further, the elongation at break in each of MD and TD was measured as a percentage value, and the product of the numerical value of the elongation at break in MD and the numerical value of elongation at break in TD was defined as the elongation at break product. Note that each of the product of strength at break and the product of elongation at break was an index value without a unit. Further, the residual stress relaxation temperature of Example 1 was 96°C, the residual stress relaxation temperature of Example 2 was 83°C, and the residual stress relaxation temperature of Example 3 was 86°C. The residual stress relaxation temperature of the comparative example was 65°C. As shown in Table 1, no cracks occurred in each of Examples 1-3, and cracks occurred in Comparative Examples.

Abstract

This electroconductive film comprises an electroconductive film body and a metal layer. The electroconductive film body contains a resin and an electroconductive material. The metal layer is layered on the electroconductive film body. When the electroconductive film is heated from 20°C to 80°C and then cooled from 80°C to 20°C in a test carried out using a thermomechanical analyzer (TMA), the rate of change in the machine direction (MD) dimension of the electroconductive film is −0.10% or higher. In the test, the load by which the electroconductive film is stretched is 0.0035 N, the speed of the temperature change during heating is 5.0°C/min, and the speed of the temperature change during cooling is −5.0°C/min.

Description

導電性フィルムconductive film
 本発明は、導電性フィルムに関する。 The present invention relates to a conductive film.
 特開2020-97142号公報(特許文献1)は、導電性フィルムを開示する。この導電性フィルムは、樹脂フィルムと、樹脂フィルム上に積層された金属層とを備えている。 JP 2020-97142A (Patent Document 1) discloses a conductive film. This conductive film includes a resin film and a metal layer laminated on the resin film.
特開2020-97142号公報JP2020-97142A
 樹脂を含む層と金属層とを含む導電性フィルムに関して、所定の熱衝撃試験が行なわれる場合を考える。例えば、導電性フィルムを20℃から80℃まで加熱し、その後、導電性フィルムを80℃から20℃まで冷却する所定の熱衝撃試験を経た場合に、導電性フィルムは収縮する。導電性フィルムがさらに冷却され(例えば、-20℃まで冷却され)、金属層に固定された樹脂を含む層がさらに収縮することによって、樹脂を含む層において亀裂が生じる場合がある。上記特許文献1においては、このような問題の解決手段が開示されていない。 Consider a case where a predetermined thermal shock test is performed on a conductive film that includes a layer containing resin and a metal layer. For example, when a conductive film is heated from 20° C. to 80° C. and then subjected to a predetermined thermal shock test in which the conductive film is cooled from 80° C. to 20° C., the conductive film contracts. When the conductive film is further cooled (for example, to −20° C.), the resin-containing layer fixed to the metal layer further shrinks, which may cause cracks in the resin-containing layer. The above-mentioned Patent Document 1 does not disclose any means for solving such problems.
 本発明は、このような問題を解決するためになされたものであって、その目的は、所定の熱衝撃試験を経てその後導電性フィルムがさらに冷却されることによる亀裂の発生を抑制可能な導電性フィルムを提供することである。 The present invention has been made to solve such problems, and the purpose is to provide a conductive film that can suppress the occurrence of cracks caused by further cooling of the conductive film after passing through a predetermined thermal shock test. The purpose is to provide sex films.
 本発明に従う導電性フィルムは、導電性フィルム本体と、金属層とを備える。導電性フィルム本体は、樹脂と導電材料とを含む。金属層は、導電性フィルム本体に積層されている。TMA(Thermomechanical Analyzer)を用いた試験において、導電性フィルムを20℃から80℃まで加熱し、その後、導電性フィルムを80℃から20℃まで冷却した場合に、導電性フィルムのMD(Machine Direction)における寸法の変化率が-0.10%以上である。上記試験において、導電性フィルムを引っ張る荷重が0.0035Nであり、加熱時の温度変化の速度が5.0℃/分であり、冷却時の温度変化の速度が-5.0℃/分である。 The conductive film according to the present invention includes a conductive film body and a metal layer. The conductive film body includes a resin and a conductive material. The metal layer is laminated to the conductive film body. In a test using TMA (Thermomechanical Analyzer), when the conductive film was heated from 20°C to 80°C and then cooled from 80°C to 20°C, the MD (Machine Direction) of the conductive film was determined. The rate of change in dimensions is -0.10% or more. In the above test, the load pulling the conductive film was 0.0035N, the rate of temperature change during heating was 5.0°C/min, and the rate of temperature change during cooling was -5.0°C/min. be.
 この導電性フィルムにおいては、TMAを用いた試験において、導電性フィルムを20℃から80℃まで加熱し、その後、導電性フィルムを80℃から20℃まで冷却した場合に、MDにおける寸法の変化率が-0.10%以上である。すなわち、この導電性フィルムにおいては、所定の熱衝撃試験を経た場合の収縮率が比較的小さい。したがって、この導電性フィルムによれば、所定の熱衝撃試験を経た場合の収縮率が比較的小さいため、所定の熱衝撃試験を経てその後導電性フィルムがさらに冷却されたとしても亀裂の発生を抑制することができる。 In this conductive film, in a test using TMA, when the conductive film was heated from 20°C to 80°C and then cooled from 80°C to 20°C, the dimensional change rate in MD was is -0.10% or more. That is, this conductive film has a relatively small shrinkage rate when subjected to a predetermined thermal shock test. Therefore, according to this conductive film, the shrinkage rate after passing through the prescribed thermal shock test is relatively small, so even if the conductive film is further cooled after passing through the prescribed thermal shock test, the occurrence of cracks is suppressed. can do.
 上記導電性フィルムにおいて、導電性フィルム本体における残留応力の緩和温度が80℃よりも高くてもよい。 In the above conductive film, the relaxation temperature of residual stress in the conductive film body may be higher than 80°C.
 この導電性フィルムにおいては、導電性フィルム本体における残留応力の緩和温度が80℃よりも高いため、導電性フィルムを20℃から80℃まで加熱し、その後、導電性フィルムを80℃から20℃まで冷却する所定の熱衝撃試験を経ても、導電性フィルム本体において大きい収縮が生じない。したがって、この導電性フィルムによれば、所定の熱衝撃試験を経た場合の収縮率が比較的小さいため、所定の熱衝撃試験を経てその後導電性フィルムがさらに冷却されたとしても亀裂の発生を抑制することができる。 In this conductive film, the relaxation temperature of residual stress in the conductive film body is higher than 80°C, so the conductive film is heated from 20°C to 80°C, and then the conductive film is heated from 80°C to 20°C. Even after undergoing a prescribed thermal shock test during cooling, no large shrinkage occurs in the conductive film body. Therefore, according to this conductive film, the shrinkage rate after passing through the prescribed thermal shock test is relatively small, so even if the conductive film is further cooled after passing through the prescribed thermal shock test, the occurrence of cracks is suppressed. can do.
 また、上記導電性フィルムにおいて、導電性フィルム本体は、第1導電性フィラーを含む第1導電性樹脂層と、第2導電性フィラーを含む第2導電性樹脂層とを備え、第1導電性フィラーは、導電性カーボンであり、第2導電性フィラーは、白金、金、銀、銅、SUS(Stainless Used Steel)、ニッケル及びチタンが含まれる群から選択される少なくとも1種類の金属を含んでいてもよい。 In addition, in the above conductive film, the conductive film body includes a first conductive resin layer containing a first conductive filler and a second conductive resin layer containing a second conductive filler, the first conductive filler being conductive carbon, and the second conductive filler may include at least one metal selected from the group including platinum, gold, silver, copper, SUS (Stainless Used Steel), nickel, and titanium.
 また、上記導電性フィルムにおいて、MDにおける破断強度とTD(Traverse Direction)における破断強度との積が710以上であってもよい。 Furthermore, in the conductive film, the product of the breaking strength in MD and the breaking strength in TD (Traverse Direction) may be 710 or more.
 この導電性フィルムによれば、MDにおける破断強度とTDにおける破断強度との積が比較的大きいため、所定の熱衝撃試験を経てその後導電性フィルムがさらに冷却されたとしても亀裂の発生を抑制することができる。 According to this conductive film, the product of the breaking strength in MD and the breaking strength in TD is relatively large, so even if the conductive film is further cooled after a prescribed thermal shock test, the occurrence of cracks is suppressed. be able to.
 本発明によれば、所定の熱衝撃試験を経てその後導電性フィルムがさらに冷却されることによる亀裂の発生を抑制可能な導電性フィルムを提供することができる。 According to the present invention, it is possible to provide a conductive film that can suppress the occurrence of cracks due to further cooling of the conductive film after passing through a predetermined thermal shock test.
導電性フィルムの断面を示す図である。FIG. 3 is a diagram showing a cross section of a conductive film. 所定の熱衝撃試験を経ることによる寸法変化のイメージを説明するための図である。FIG. 3 is a diagram for explaining an image of dimensional changes caused by passing through a predetermined thermal shock test. 製造装置の構成を模式的に示す図である。FIG. 1 is a diagram schematically showing the configuration of a manufacturing device.
 以下、本発明の一側面に係る実施の形態(以下、「本実施の形態」とも称する。)について、図面を用いて詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。また、各図面は、理解の容易のために、適宜対象を省略又は誇張して模式的に描かれている。 Hereinafter, an embodiment (hereinafter also referred to as "this embodiment") according to one aspect of the present invention will be described in detail using the drawings. In addition, the same reference numerals are attached to the same or corresponding parts in the drawings, and the description thereof will not be repeated. Further, each drawing is schematically drawn with objects omitted or exaggerated as appropriate for ease of understanding.
 [1.導電性フィルムの構成]
 図1は、本実施の形態に従う導電性フィルム10の断面を示す図である。導電性フィルム10は、例えば、複写機やプリンタ等の帯電フィルムや除電フィルム、その他電気・電子機器や部品用の各種機能性フィルムとして用いられる。図1に示されるように、導電性フィルム10は、導電性フィルム本体15と、金属被膜層300とを含んでいる。導電性フィルム本体15は、第1導電性樹脂層100と、第2導電性樹脂層200とを含んでいる。第1導電性樹脂層100の厚みT1は、例えば、第2導電性樹脂層200の厚みT2の0.5倍以上、5倍以下である。以下、各層について説明する。
[1. Structure of conductive film]
FIG. 1 is a diagram showing a cross section of a conductive film 10 according to this embodiment. The conductive film 10 is used, for example, as a charging film or an antistatic film for copying machines, printers, etc., and various functional films for other electric/electronic devices and parts. As shown in FIG. 1, the conductive film 10 includes a conductive film body 15 and a metal coating layer 300. The conductive film body 15 includes a first conductive resin layer 100 and a second conductive resin layer 200. The thickness T1 of the first conductive resin layer 100 is, for example, 0.5 times or more and 5 times or less the thickness T2 of the second conductive resin layer 200. Each layer will be explained below.
 <1-1.第1導電性樹脂層>
 第1導電性樹脂層100は、ポリオレフィンと、導電性フィラーとを含んでいる。すなわち、第1導電性樹脂層100は、ポリオレフィンと導電性フィラーとを混合することによって形成されている。
<1-1. First conductive resin layer>
The first conductive resin layer 100 contains polyolefin and conductive filler. That is, the first conductive resin layer 100 is formed by mixing polyolefin and conductive filler.
 ポリオレフィンとしては、例えば、ポリプロピレン(PP)及びポリエチレン(PE)が挙げられる。また、炭素数4~30のα-オレフィン(1-ブテン、イソブテン、1-ヘキセン、1-デセン又は1-ドデセン等)を必須構成単量体とする重合体等がポリオレフィンとして用いられてもよい。これらのポリオレフィンは、1種単独であってもよいし、2種以上の混合物であってもよい。 Examples of polyolefins include polypropylene (PP) and polyethylene (PE). Further, a polymer having an α-olefin having 4 to 30 carbon atoms (1-butene, isobutene, 1-hexene, 1-decene, or 1-dodecene, etc.) as an essential constituent monomer may also be used as the polyolefin. . These polyolefins may be used alone or in a mixture of two or more.
 ポリオレフィンの中でも、防湿特性及び機械的強度の観点で、ポリプロピレンが好ましい。ポリプロピレンとしては、例えば、ホモポリプロピレン、ランダムポリプロピレン、ブロックポリプロピレン、長鎖分岐構造を有するポリプロピレン及び酸変性ポリプロピレンが挙げられる。 Among polyolefins, polypropylene is preferred from the viewpoint of moisture-proofing properties and mechanical strength. Examples of polypropylene include homopolypropylene, random polypropylene, block polypropylene, polypropylene having a long chain branched structure, and acid-modified polypropylene.
 第1導電性樹脂層100に含まれる導電性フィラーとしては、導電性カーボンが挙げられる。導電性カーボンとしては、例えば、黒鉛(グラファイト)、カーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)、カーボンナノチューブ及びこれらの混合物が挙げられる。導電性カーボンの中では、カーボンブラックが好ましく、アセチレンブラック、ファーネスブラック、又は、それらの混合物がより好ましい。 An example of the conductive filler included in the first conductive resin layer 100 is conductive carbon. Examples of the conductive carbon include graphite, carbon black (acetylene black, Ketjen black, furnace black, channel black, thermal lamp black, etc.), carbon nanotubes, and mixtures thereof. Among the conductive carbons, carbon black is preferred, and acetylene black, furnace black, or a mixture thereof is more preferred.
 <1-2.第2導電性樹脂層>
 第2導電性樹脂層200は、第1導電性樹脂層100上に形成されており、第1面側層210と、第2面側層220とを含んでいる。なお、第1面240は、第1導電性樹脂層100の第2導電性樹脂層200と反対側の面である。第2面230は、第2導電性樹脂層200の第1導電性樹脂層100と反対側の面である。
<1-2. Second conductive resin layer>
The second conductive resin layer 200 is formed on the first conductive resin layer 100 and includes a first surface layer 210 and a second surface layer 220. Note that the first surface 240 is the surface of the first conductive resin layer 100 opposite to the second conductive resin layer 200. The second surface 230 is the surface of the second conductive resin layer 200 opposite to the first conductive resin layer 100 .
 第1面側層210及び第2面側層220の各々は、ポリオレフィンと、導電性フィラーとを含んでいる。すなわち、第1面側層210及び第2面側層220の各々は、ポリオレフィンと導電性フィラーとを混合することによって形成されている。ポリオレフィンとしては、例えば、第1導電性樹脂層100の説明において例示したものを用いることができる。 The first surface layer 210 and the second surface layer 220 each contain a polyolefin and a conductive filler. That is, each of the first surface layer 210 and the second surface layer 220 is formed by mixing polyolefin and a conductive filler. As the polyolefin, for example, those exemplified in the description of the first conductive resin layer 100 can be used.
 第2導電性樹脂層200に含まれる導電性フィラーとしては、白金、金、銀、銅、ニッケル、チタン及びこれらの混合物が挙げられる。すなわち、第2導電性樹脂層200に含まれる導電性フィラーは、白金、金、銀、銅、ニッケル及びチタンが含まれる群から選択される少なくとも1種類の金属元素を含む。なお、これらの中では、ニッケル粒子が導電性フィラーとしてより好ましい。例えば、第2導電性樹脂層200においては、導電性フィラーが、第1面側層210よりも第2面側層220の方に多く含まれている。 Examples of the conductive filler included in the second conductive resin layer 200 include platinum, gold, silver, copper, nickel, titanium, and mixtures thereof. That is, the conductive filler contained in the second conductive resin layer 200 contains at least one metal element selected from the group containing platinum, gold, silver, copper, nickel, and titanium. Note that among these, nickel particles are more preferable as the conductive filler. For example, in the second conductive resin layer 200, the second surface layer 220 contains more conductive filler than the first surface layer 210.
 <1-3.金属被膜層>
 金属被膜層300は、第2導電性樹脂層200の第2面230上に形成されている。金属被膜層300は、例えば、ニッケル、銅、銀及びアルミニウムの少なくともいずれかによって構成されてもよい。また、金属被膜層300は、それらの酸化物又は合金によって構成されてもよい。金属被膜層300は、例えば、蒸着法、スパッタリング法、メッキ法又はコーティング法等の公知の技術によって形成される。金属被膜層300の厚さは、特に限定されないが、10~100nmであることが好ましい。
<1-3. Metal coating layer>
The metal coating layer 300 is formed on the second surface 230 of the second conductive resin layer 200. The metal coating layer 300 may be made of, for example, at least one of nickel, copper, silver, and aluminum. Further, the metal coating layer 300 may be composed of an oxide or an alloy thereof. The metal coating layer 300 is formed, for example, by a known technique such as a vapor deposition method, a sputtering method, a plating method, or a coating method. The thickness of the metal coating layer 300 is not particularly limited, but is preferably 10 to 100 nm.
 [2.各種パラメータ]
 <2-1.熱衝撃試験を経た寸法変化>
 導電性フィルム10は、所定の熱衝撃試験を経ることによるMD(Machine Direction)における寸法の変化率が「-(マイナス)0.10%」以上という特性を有している。所定の熱衝撃試験は、TMA(Thermomechanical Analyzer)を用いた試験である。この試験においては、導電性フィルム10が20℃から80℃まで加熱され、その後、導電性フィルム10が80℃から20℃まで冷却される。導電性フィルム10は、この加熱及び冷却を経た後におけるMDの寸法変化率が-0.10%以上という特性を有している。
[2. Various parameters]
<2-1. Dimensional change after thermal shock test>
The conductive film 10 has a characteristic that the dimensional change rate in MD (Machine Direction) after passing through a predetermined thermal shock test is "-(minus) 0.10%" or more. The prescribed thermal shock test is a test using a TMA (Thermomechanical Analyzer). In this test, the conductive film 10 is heated from 20°C to 80°C, and then the conductive film 10 is cooled from 80°C to 20°C. The conductive film 10 has a characteristic that the MD dimensional change rate after heating and cooling is -0.10% or more.
 図2は、所定の熱衝撃試験を経ることによる寸法変化のイメージを説明するための図である。図2を参照して、横軸は温度を示し、縦軸はMDにおける寸法の変化率を示す。上述のように、導電性フィルム10は、20℃から80℃まで加熱される。加熱されることによって導電性フィルム10の寸法は徐々に大きくなる。その後、導電性フィルム10は、80℃から20℃まで冷却される。冷却されることによって導電性フィルム10の寸法は徐々に小さくなる。この例においては、加熱及び冷却を経て、導電性フィルム10のMDにおける寸法は加熱前よりも小さくなっている。この寸法変化率が-0.10%以上であるという特性を導電性フィルム10は有している。 FIG. 2 is a diagram for explaining an image of dimensional changes caused by passing through a predetermined thermal shock test. Referring to FIG. 2, the horizontal axis represents temperature, and the vertical axis represents the rate of change in dimension in MD. As mentioned above, the conductive film 10 is heated from 20°C to 80°C. By being heated, the dimensions of the conductive film 10 gradually increase. Thereafter, the conductive film 10 is cooled from 80°C to 20°C. As the conductive film 10 is cooled, the dimensions of the conductive film 10 gradually become smaller. In this example, after heating and cooling, the dimension in MD of the conductive film 10 becomes smaller than before heating. The conductive film 10 has the characteristic that this dimensional change rate is -0.10% or more.
 このように、導電性フィルム10においては、所定の熱衝撃試験を経た場合の収縮率が比較的小さい。したがって、導電性フィルム10によれば、所定の熱衝撃試験を経た場合の収縮率が比較的小さいため、所定の熱衝撃試験を経た後に導電性フィルム10がさらに冷却されたとしても(例えば、-20℃まで冷却されたとしても)亀裂の発生を抑制することができる。 As described above, the conductive film 10 has a relatively small shrinkage rate when subjected to a predetermined thermal shock test. Therefore, since the conductive film 10 has a relatively small shrinkage rate after passing through a predetermined thermal shock test, even if the conductive film 10 is further cooled after passing through a predetermined thermal shock test (for example, - Even if the material is cooled to 20° C., the occurrence of cracks can be suppressed.
 <2-2.残留応力の緩和温度>
 導電性フィルム10は、導電性フィルム本体15における残留応力の緩和温度が80℃よりも高いという特性を有している。詳細については後述するが、導電性フィルム本体15の製造工程においては、温度が比較的高い状態で溶融材料が固まり始める工夫が施されている。温度が比較的高い状態で溶融材料が固まり始めることによって、導電性フィルム本体15における残留応力の緩和温度が高くなる。
<2-2. Residual stress relaxation temperature>
The conductive film 10 has a characteristic that the relaxation temperature of residual stress in the conductive film body 15 is higher than 80°C. Although details will be described later, in the manufacturing process of the conductive film main body 15, a device is adopted in which the molten material begins to solidify at a relatively high temperature. As the molten material begins to solidify at a relatively high temperature, the relaxation temperature of residual stress in the conductive film body 15 increases.
 導電性フィルム本体15においては、残留応力の緩和温度が80℃よりも高いため、導電性フィルム10を20℃から80℃まで加熱し、その後、導電性フィルム10を80℃から20℃まで冷却する所定の熱衝撃試験を経ても、導電性フィルム本体15において大きい収縮が生じない。したがって、導電性フィルム10によれば、所定の熱衝撃試験を経た場合の収縮率が比較的小さいため、所定の熱衝撃試験を経た後に導電性フィルム10がさらに冷却されたとしても亀裂の発生を抑制することができる。 In the conductive film body 15, the residual stress relaxation temperature is higher than 80°C, so the conductive film 10 is heated from 20°C to 80°C, and then the conductive film 10 is cooled from 80°C to 20°C. Even after passing through a predetermined thermal shock test, no large shrinkage occurs in the conductive film body 15. Therefore, since the conductive film 10 has a relatively small shrinkage rate when subjected to a predetermined thermal shock test, cracks do not occur even if the conductive film 10 is further cooled after undergoing a predetermined thermal shock test. Can be suppressed.
 <2-3.破断強度及び破断伸度>
 導電性フィルム10は、MDにおける破断強度とTDにおける破断強度との積(破断強度積)が710以上という特性を有している。また、導電性フィルム10は、MDにおける破断伸度とTDにおける破断伸度との積(破断伸度積)が7以上という特性を有している。
<2-3. Breaking strength and breaking elongation>
The conductive film 10 has a characteristic that the product of the breaking strength in MD and the breaking strength in TD (breaking strength product) is 710 or more. Further, the conductive film 10 has a characteristic that the product of the elongation at break in MD and the elongation at break in TD (product of elongation at break) is 7 or more.
 [3.導電性フィルムの製造方法]
 図3は、製造装置40の構成を模式的に示す図である。製造装置40によって、導電性フィルム本体15が製造される。図3に示されるように、製造装置40は、Tダイ400と、キャストロール410,420と、巻取りロール430とを含んでいる。
[3. Manufacturing method of conductive film]
FIG. 3 is a diagram schematically showing the configuration of the manufacturing apparatus 40. As shown in FIG. The conductive film main body 15 is manufactured by the manufacturing apparatus 40 . As shown in FIG. 3, the manufacturing apparatus 40 includes a T-die 400, cast rolls 410, 420, and a take-up roll 430.
 Tダイ400は、Tダイ本体401と、原料投入部440,450,460とを含んでいる。原料投入部440には、第2面側層220を形成するための原料が投入される。原料投入部440には、例えば、ポリプロピレンとニッケルとが投入される。原料投入部450には、第1面側層210を形成するための原料が投入される。原料投入部450には、例えば、ポリプロピレンとニッケルとが投入される。原料投入部450に投入される原料におけるニッケルの重量パーセント濃度は、原料投入部440投入される原料におけるニッケルの重量パーセント濃度よりも低い。原料投入部460には、第1導電性樹脂層100を形成するための原料が投入される。原料投入部460には、例えば、ポリプロピレンとカーボンブラックとが投入される。 The T-die 400 includes a T-die main body 401 and raw material input parts 440, 450, and 460. Raw materials for forming the second surface side layer 220 are charged into the raw material input section 440 . For example, polypropylene and nickel are charged into the raw material input section 440. Raw materials for forming the first surface side layer 210 are charged into the raw material input section 450 . For example, polypropylene and nickel are charged into the raw material input section 450. The weight percent concentration of nickel in the raw material input to the raw material input section 450 is lower than the weight percent concentration of nickel in the raw material input to the raw material input section 440. Raw materials for forming the first conductive resin layer 100 are charged into the raw material input section 460 . For example, polypropylene and carbon black are charged into the raw material input section 460.
 Tダイ本体401は、原料投入部440,450,460を介して投入された原料を共押出しすることによって、各原料投入部に投入された原料の溶融物同士を融着させて1枚の一体化したフィルム(溶融材料)とするように構成されている。キャストロール410,420は、押し出された溶融材料を冷却するとともに、下流へ送るように構成されている。巻取りロール430は、キャストロール410,420によって冷却された溶融材料を所定速度で引いて巻き取るように構成されている。製造装置40における製造工程を経て導電性フィルム本体15の巻取体が製造される。製造装置40で製造された導電性フィルム本体15に蒸着法、スパッタリング法、メッキ法又はコーティング法等の公知の技術により金属被膜層300を形成することによって、導電性フィルム10が製造される。 The T-die main body 401 co-extrudes the raw materials input through the raw material input parts 440, 450, and 460, thereby melting the raw materials input into each raw material input part and melting them together to form one integral piece. It is configured to produce a molten film (molten material). Cast rolls 410, 420 are configured to cool the extruded molten material and send it downstream. The winding roll 430 is configured to pull and wind up the molten material cooled by the cast rolls 410, 420 at a predetermined speed. A rolled body of the conductive film body 15 is manufactured through the manufacturing process in the manufacturing apparatus 40. The conductive film 10 is manufactured by forming the metal coating layer 300 on the conductive film body 15 manufactured by the manufacturing apparatus 40 by a known technique such as a vapor deposition method, a sputtering method, a plating method, or a coating method.
 製造装置40において、例えば、キャストロール410の温度は、40℃以上、120℃以下、好ましくは80℃以上、120℃以下である。また、キャストロール420の温度は、80℃以上、120℃以下、好ましくは90℃以上、120℃以下である。 In the manufacturing apparatus 40, for example, the temperature of the cast roll 410 is 40°C or higher and 120°C or lower, preferably 80°C or higher and 120°C or lower. Moreover, the temperature of the cast roll 420 is 80°C or more and 120°C or less, preferably 90°C or more and 120°C or less.
 製造装置40においては、キャストロール420の温度がある程度高い。その結果、製造装置40によれば、Tダイ400から吐出された溶融材料が比較的温度が高い段階で固まり始めるため、残留応力の緩和温度が比較的高い導電性フィルム本体15を製造することができる。例えば、製造装置40によって製造される導電性フィルム本体15の残留応力の緩和温度は80℃よりも高い。 In the manufacturing apparatus 40, the temperature of the cast roll 420 is high to some extent. As a result, according to the manufacturing apparatus 40, the molten material discharged from the T-die 400 begins to harden at a relatively high temperature, so that it is possible to manufacture the conductive film body 15 with a relatively high residual stress relaxation temperature. can. For example, the residual stress relaxation temperature of the conductive film body 15 manufactured by the manufacturing apparatus 40 is higher than 80°C.
 製造装置40によって製造された導電性フィルム本体15においては、残留応力の緩和温度が80℃よりも高いため、上述の所定の熱衝撃試験を経ても、導電性フィルム本体15において大きい収縮が生じない。したがって、導電性フィルム10によれば、所定の熱衝撃試験を経た場合の収縮率が比較的小さいため、所定の熱衝撃試験を経て導電性フィルム10がさらに冷却されたとしても(例えば、-20℃まで冷却されたとしても)亀裂の発生を抑制することができる。 In the conductive film body 15 manufactured by the manufacturing apparatus 40, the relaxation temperature of residual stress is higher than 80° C., so that no large shrinkage occurs in the conductive film body 15 even after passing through the above-described prescribed thermal shock test. . Therefore, according to the conductive film 10, the shrinkage rate after passing through a predetermined thermal shock test is relatively small, so even if the conductive film 10 is further cooled after passing through a predetermined thermal shock test (for example, -20 Crack generation can be suppressed.
 [4.特徴]
 以上のように、本実施の形態に従う導電性フィルム10においては、TMAを用いた試験において、導電性フィルム10を20℃から80℃まで加熱し、その後、導電性フィルム10を80℃から20℃まで冷却した場合に、MDにおける寸法の変化率が-0.10%以上である。すなわち、導電性フィルム10においては、所定の熱衝撃試験を経た場合の収縮率が比較的小さい。したがって、導電性フィルム10によれば、所定の熱衝撃試験を経た場合の収縮率が比較的小さいため、所定の熱衝撃試験を経てその後導電性フィルム10がさらに冷却されたとしても亀裂の発生を抑制することができる。
[4. Features]
As described above, in the conductive film 10 according to the present embodiment, in a test using TMA, the conductive film 10 is heated from 20°C to 80°C, and then the conductive film 10 is heated from 80°C to 20°C. When cooled to a temperature of -0.10% or more, the dimensional change rate in MD is -0.10% or more. That is, the conductive film 10 has a relatively small shrinkage rate when subjected to a predetermined thermal shock test. Therefore, since the conductive film 10 has a relatively small shrinkage rate when subjected to a predetermined thermal shock test, cracks do not occur even if the conductive film 10 is further cooled after the predetermined thermal shock test. Can be suppressed.
 [5.他の実施の形態]
 上記実施の形態の思想は、以上で説明された実施の形態に限定されない。以下、上記実施の形態の思想を適用できる他の実施の形態の一例について説明する。
[5. Other embodiments]
The idea of the above embodiments is not limited to the embodiments described above. Hereinafter, an example of another embodiment to which the idea of the above embodiment can be applied will be described.
 <5-1>
 上記実施の形態に従う導電性フィルム10において、第1導電性樹脂層100に含まれる導電性フィラーは、白金、金、銀、銅、ニッケル及びチタンが含まれる群から選択される少なくとも1種類の金属元素をさらに含んでいてもよい。
<5-1>
In the conductive film 10 according to the embodiment described above, the conductive filler contained in the first conductive resin layer 100 is at least one metal selected from the group containing platinum, gold, silver, copper, nickel, and titanium. It may further contain elements.
 <5-2>
 上記実施の形態に従う導電性フィルム10は、多層構成のフィルムであった。しかしながら、導電性フィルム10は、必ずしも多層構成である必要はなく、単層構成であってもよい。単層構成の導電性フィルムは、例えば、ポリオレフィンと、導電性フィラーとを含んでいてもよい。ポリオレフィンとしては、例えば、第1導電性樹脂層100の説明において例示したものが用いられてもよい。導電性フィラーとしては、白金、金、銀、銅、ニッケル及びチタンが含まれる群から選択される少なくとも1種類の金属元素が含まれていてもよい。
<5-2>
The conductive film 10 according to the above embodiment is a film having a multi-layer structure. However, the conductive film 10 does not necessarily have to have a multi-layer structure, and may have a single layer structure. The conductive film having a single layer structure may contain, for example, a polyolefin and a conductive filler. As the polyolefin, for example, one exemplified in the description of the first conductive resin layer 100 may be used. As the conductive filler, at least one metal element selected from the group including platinum, gold, silver, copper, nickel, and titanium may be included.
 <5-3>
 上記実施の形態に従う導電性フィルム10において、導電性フィルム本体15は、第1導電性樹脂層100と第2導電性樹脂層200とを含んでいた。しかしながら、導電性フィルム本体15は、必ずしも第1導電性樹脂層100及び第2導電性樹脂層200の両方を含んでいなくてもよい。導電性フィルム本体15は、例えば、第2導電性樹脂層200を含む一方、第1導電性樹脂層100を含まなくてもよい。
<5-3>
In the conductive film 10 according to the embodiment described above, the conductive film body 15 included a first conductive resin layer 100 and a second conductive resin layer 200. However, the conductive film body 15 does not necessarily need to include both the first conductive resin layer 100 and the second conductive resin layer 200. For example, the conductive film body 15 may include the second conductive resin layer 200 but may not include the first conductive resin layer 100.
 以上、本発明の実施の形態について例示的に説明した。すなわち、例示的な説明のために、詳細な説明及び添付の図面が開示された。よって、詳細な説明及び添付の図面に記載された構成要素の中には、課題解決のために必須でない構成要素が含まれることがある。したがって、それらの必須でない構成要素が詳細な説明及び添付の図面に記載されているからといって、それらの必須でない構成要素が必須であると直ちに認定されるべきではない。 The embodiments of the present invention have been exemplarily described above. That is, the detailed description and accompanying drawings have been disclosed for purposes of illustration. Therefore, some of the components described in the detailed description and the attached drawings may not be essential for solving the problem. Therefore, just because non-essential components are described in the detailed description and accompanying drawings, such non-essential components should not be immediately identified as essential.
 また、上記実施の形態は、あらゆる点において本発明の例示にすぎない。上記実施の形態は、本発明の範囲内において、種々の改良や変更が可能である。すなわち、本発明の実施にあたっては、実施の形態に応じて具体的構成を適宜採用することができる。 Furthermore, the above embodiments are merely illustrative of the present invention in all respects. Various improvements and changes can be made to the above embodiments within the scope of the present invention. That is, in implementing the present invention, specific configurations can be adopted as appropriate depending on the embodiment.
 以下、本発明の実施例について説明する。なお、本発明は以下の実施例に限定されない。 Examples of the present invention will be described below. Note that the present invention is not limited to the following examples.
 [1.実施例]
 図3に示される製造装置40を用いて実施例1,2の各導電性フィルムを製造した。具体的には、共押出しによって導電性フィルム本体を製造し、導電性フィルム本体に銅を蒸着することによって実施例1,2の各導電性フィルムを製造した。実施例1,2の各導電性フィルムにおいては、ポリプロピレン及びニッケルによって第2導電性樹脂層200が形成され、ポリプロピレン及びカーボンブラックによって第1導電性樹脂層100が形成された。
[1. Example]
Each conductive film of Examples 1 and 2 was manufactured using the manufacturing apparatus 40 shown in FIG. 3. Specifically, the conductive films of Examples 1 and 2 were manufactured by manufacturing a conductive film body by coextrusion and depositing copper on the conductive film body. In each of the conductive films of Examples 1 and 2, the second conductive resin layer 200 was formed of polypropylene and nickel, and the first conductive resin layer 100 was formed of polypropylene and carbon black.
 実施例1,2の各導電性フィルムにおいて、第1導電性樹脂層100及び第2導電性樹脂層200の厚みの合計は50μmであった。第1導電性樹脂層100の厚みと第2導電性樹脂層200の厚みとの比は3:1であった。 In each of the conductive films of Examples 1 and 2, the total thickness of the first conductive resin layer 100 and the second conductive resin layer 200 was 50 μm. The ratio of the thickness of the first conductive resin layer 100 to the thickness of the second conductive resin layer 200 was 3:1.
 実施例1,2の各導電性フィルムにおいて、第2導電性樹脂層200のうち第2面側層220におけるニッケルの重量パーセント濃度は75wt%であり、第2導電性樹脂層200のうち第1面側層210におけるニッケルの重量パーセント濃度は70wt%であった。第1導電性樹脂層100におけるカーボンブラックの重量パーセント濃度は30wt%であった。 In each of the conductive films of Examples 1 and 2, the weight percent concentration of nickel in the second surface layer 220 of the second conductive resin layer 200 was 75 wt%, and the weight percent concentration of nickel in the second surface side layer 220 of the second conductive resin layer 200 was 75 wt%. The weight percent concentration of nickel in the side layer 210 was 70 wt%. The weight percent concentration of carbon black in the first conductive resin layer 100 was 30 wt%.
 実施例1の導電性フィルムの製造過程において、キャストロール410の温度は90℃であり、キャストロール420の温度は100℃であった。実施例2の導電性フィルムの製造過程において、キャストロール410の温度は110℃であり、キャストロール420の温度は70℃であった。 In the manufacturing process of the conductive film of Example 1, the temperature of the cast roll 410 was 90°C, and the temperature of the cast roll 420 was 100°C. In the manufacturing process of the conductive film of Example 2, the temperature of the cast roll 410 was 110°C, and the temperature of the cast roll 420 was 70°C.
 単層フィルムの製造装置を用いて実施例3の導電性フィルムを製造した。この製造装置は、図3に示される製造装置40においてTダイ400が別のTダイに取り替えられたものであった。このTダイは、単層の溶融材料を吐出するように構成されていた。 The conductive film of Example 3 was manufactured using a single-layer film manufacturing apparatus. This manufacturing apparatus was the same as the manufacturing apparatus 40 shown in FIG. 3 in which the T-die 400 was replaced with another T-die. This T-die was configured to discharge a single layer of molten material.
 ポリプロピレン及びニッケルを加熱溶融し押出成形を行なうことによって導電性フィルム本体を製造し、導電性フィルム本体に銅を蒸着することによって実施例3の導電性フィルムを製造した。実施例3の導電性フィルムにおけるニッケルの重量パーセント濃度は、50wt%であった。実施例3の導電性フィルムの厚みは、50μmであった。実施例3の導電性フィルムの製造過程において、キャストロール410の温度は100℃であり、キャストロール420の温度は90℃であった。 A conductive film body was manufactured by heating and melting polypropylene and nickel and extrusion molding, and the conductive film of Example 3 was manufactured by vapor depositing copper on the conductive film body. The weight percent concentration of nickel in the conductive film of Example 3 was 50 wt%. The thickness of the conductive film of Example 3 was 50 μm. In the manufacturing process of the conductive film of Example 3, the temperature of cast roll 410 was 100°C, and the temperature of cast roll 420 was 90°C.
 [2.比較例]
 図3に示される製造装置40を用いて比較例の導電性フィルムを製造した。具体的には、共押出しによって導電性フィルム本体を製造し、導電性フィルム本体に銅を蒸着することによって比較例の導電性フィルムを製造した。比較例の導電性フィルムにおいては、ポリプロピレン及びニッケルによって第2導電性樹脂層200が形成され、ポリプロピレン及びカーボンブラックによって第1導電性樹脂層100が形成された。
[2. Comparative example]
A conductive film of a comparative example was manufactured using the manufacturing apparatus 40 shown in FIG. 3. Specifically, a conductive film body was manufactured by coextrusion, and a conductive film of a comparative example was manufactured by vapor depositing copper on the conductive film body. In the conductive film of the comparative example, the second conductive resin layer 200 was formed of polypropylene and nickel, and the first conductive resin layer 100 was formed of polypropylene and carbon black.
 第1導電性樹脂層100及び第2導電性樹脂層200の厚みの合計は50μmであった。第1導電性樹脂層100の厚みと第2導電性樹脂層200の厚みとの比は3:1であった。 The total thickness of the first conductive resin layer 100 and the second conductive resin layer 200 was 50 μm. The ratio of the thickness of the first conductive resin layer 100 to the thickness of the second conductive resin layer 200 was 3:1.
 比較例の導電性フィルムにおいて、第2導電性樹脂層200のうち第2面側層220におけるニッケルの重量パーセント濃度は75wt%であり、第2導電性樹脂層200のうち第1面側層210におけるニッケルの重量パーセント濃度は70wt%であった。第1導電性樹脂層100におけるカーボンブラックの重量パーセント濃度は30wt%であった。 In the conductive film of the comparative example, the weight percentage concentration of nickel in the second surface side layer 220 of the second conductive resin layer 200 is 75 wt%, and the weight percent concentration of nickel in the first surface side layer 210 of the second conductive resin layer 200 is 75 wt%. The weight percent concentration of nickel in was 70 wt%. The weight percent concentration of carbon black in the first conductive resin layer 100 was 30 wt%.
 比較例の導電性フィルムの製造過程において、キャストロール410の温度は90℃であり、キャストロール420の温度は70℃であった。 In the manufacturing process of the conductive film of the comparative example, the temperature of the cast roll 410 was 90°C, and the temperature of the cast roll 420 was 70°C.
 [3.各種試験及び測定]
 <3-1.熱衝撃試験を通じた寸法変化率の測定>
 TAインスツルメンツ・ジャパン社製のTMA Q400を用いて各導電性フィルムのMDにおける寸法変化率を測定した。各導電性フィルムのサンプルサイズに関しては、幅が4.9mmであり、チャック間距離が16mmであった。この試験においては、各導電性フィルムの温度が、20℃から80℃まで加熱され、その後、80℃から20℃まで冷却された。なお、各温度でホールドはされなかった。この試験においては、導電性フィルムを引っ張る荷重が0.0035Nであり、加熱時の温度変化の速度が5.0℃/分であり、冷却時の温度変化の速度が-5.0℃/分であった。
[3. Various tests and measurements]
<3-1. Measurement of dimensional change rate through thermal shock test>
The dimensional change rate in MD of each conductive film was measured using TMA Q400 manufactured by TA Instruments Japan. Regarding the sample size of each conductive film, the width was 4.9 mm, and the distance between chucks was 16 mm. In this test, the temperature of each conductive film was heated from 20°C to 80°C, and then cooled from 80°C to 20°C. Note that no hold was performed at each temperature. In this test, the load pulling the conductive film was 0.0035N, the rate of temperature change during heating was 5.0°C/min, and the rate of temperature change during cooling was -5.0°C/min. Met.
 <3-2.残留応力緩和温度の測定>
 TAインスツルメンツ・ジャパン社製のTMA Q400を用いて各導電性フィルムの残留応力緩和温度を測定した。各導電性フィルムのサンプルサイズに関しては、幅が4.9mmであり、チャック間距離が16mmであった。この試験においては、導電性フィルムの温度が20℃から130℃まで上げられ、この等速昇温過程において、導電性フィルムの熱膨張が熱収縮に転じた温度が残留応力緩和温度とされた。この試験においては、導電性フィルムを引っ張る荷重が0.0035Nであり、加熱時の温度変化の速度が10℃/分であった。
<3-2. Measurement of residual stress relaxation temperature>
The residual stress relaxation temperature of each conductive film was measured using TMA Q400 manufactured by TA Instruments Japan. Regarding the sample size of each conductive film, the width was 4.9 mm, and the distance between chucks was 16 mm. In this test, the temperature of the conductive film was raised from 20° C. to 130° C., and the temperature at which the thermal expansion of the conductive film turned into thermal contraction during this constant temperature increase process was defined as the residual stress relaxation temperature. In this test, the load pulling the conductive film was 0.0035 N, and the rate of temperature change during heating was 10° C./min.
 <3-3.破断強度の測定>
 MD及びTDの各々における引張破断強度の測定は、JIS-K-6732に準拠した方法によって行なわれた。引張破断強度(MPa)の測定に用いられるサンプルのサイズは、幅が10mmであり、長さが110mm以上(試料における標線の長さは40mm±0-2)であった。サンプルの厚みは長さ方向において等間隔離れた5点で測定され、測定された5点の厚みに基づいて平均厚みが算出された。具体的な測定は、オートグラフ(島津精密万能試験機 オートグラフ AG-X 500N)を用いて行なわれた。その際の引張スピードは200mm/分、チャートスピードは200mm/分、つかみ間隔は40mmであった。サンプルの破断時の強度が引張破断強度とされた。
<3-3. Measurement of breaking strength>
The tensile strength at break in each of MD and TD was measured by a method based on JIS-K-6732. The size of the sample used to measure the tensile strength at break (MPa) was 10 mm in width and 110 mm or more in length (the length of the gauge line in the sample was 40 mm±0-2). The thickness of the sample was measured at five equally spaced points in the length direction, and the average thickness was calculated based on the measured thickness at the five points. Specific measurements were performed using an autograph (Shimadzu precision universal testing machine Autograph AG-X 500N). The tensile speed at that time was 200 mm/min, the chart speed was 200 mm/min, and the grip interval was 40 mm. The strength of the sample at break was defined as the tensile strength at break.
 <3-4.破断伸度の測定>
 MD及びTDの各々における引張破断伸度の測定は、JIS-K-6732に準拠した方法によって行なわれた。引張破断伸度(%)の測定に用いられるサンプルのサイズは、幅が10mmであり、長さが110mm以上(試料における標線の長さは40mm±0-2)であった。サンプルの厚みは長さ方向において等間隔離れた5点で測定され、測定された5点の厚みに基づいて平均厚みが算出された。具体的な測定は、オートグラフ(島津精密万能試験機 オートグラフ AG-X 500N)を用いて行なわれた。その際の引張スピードは200mm/分、チャートスピードは200mm/分、つかみ間隔は40mmであった。サンプルの破断時の伸度が引張破断伸度とされた。
 <3-5.割れ試験>
 導電性フィルムを300×300mmに切り出し、切り出されたサンプルの4辺を固定した。4辺が固定されたサンプルをESPEC株式会社製の恒温恒湿器(LHU-113)に入れ、恒温恒湿器内の温度を20℃から80℃まで加熱し、その後、高温恒湿器内の温度を80℃から-20℃まで冷却した。なお、温度変化の速度は、5.0℃/分であった。これを経たサンプルにおける割れを観察した。
<3-4. Measurement of elongation at break>
The tensile elongation at break in each of MD and TD was measured by a method based on JIS-K-6732. The size of the sample used to measure the tensile elongation at break (%) was 10 mm in width and 110 mm or more in length (the length of the gauge line in the sample was 40 mm±0-2). The thickness of the sample was measured at five equally spaced points in the length direction, and the average thickness was calculated based on the measured thickness at the five points. Specific measurements were performed using an autograph (Shimadzu precision universal testing machine Autograph AG-X 500N). The tensile speed at that time was 200 mm/min, the chart speed was 200 mm/min, and the grip interval was 40 mm. The elongation of the sample at break was defined as the tensile elongation at break.
<3-5. Cracking test>
The conductive film was cut into a size of 300 x 300 mm, and the four sides of the cut sample were fixed. Place the sample with the four sides fixed in a constant temperature and humidity chamber (LHU-113) manufactured by ESPEC Corporation, heat the temperature inside the constant temperature and humidity chamber from 20℃ to 80℃, and then heat it in the high temperature and humidity chamber. The temperature was cooled from 80°C to -20°C. Note that the rate of temperature change was 5.0° C./min. Cracks were observed in the sample that underwent this process.
 [4.試験及び測定結果]
 試験及び測定結果は以下の表1に示す通りである。
Figure JPOXMLDOC01-appb-T000001
[4. Test and measurement results]
The test and measurement results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 なお、MD及びTDの各々の破断強度をMPa単位の値として測定し、MDにおける破断強度の数値とTDにおける破断強度の数値との積を破断強度積とした。また、MD及びTDの各々の破断伸度を%値として測定し、MDにおける破断伸度の数値とTDにおける破断伸度の数値との積を破断伸度積とした。なお、破断強度積及び破断伸度積の各々は、単位なしの指標値とした。また、実施例1の残留応力緩和温度は96℃であり、実施例2の残留応力緩和温度は83℃であり、実施例3の残留応力緩和温度は86℃であった。比較例の残留応力緩和温度は65℃であった。表1に示されるように、実施例1-3の各々においては割れが生じず、比較例においては割れが生じた。 The breaking strength of each of MD and TD was measured as a value in MPa, and the product of the breaking strength value in MD and the breaking strength value in TD was defined as the breaking strength product. Further, the elongation at break in each of MD and TD was measured as a percentage value, and the product of the numerical value of the elongation at break in MD and the numerical value of elongation at break in TD was defined as the elongation at break product. Note that each of the product of strength at break and the product of elongation at break was an index value without a unit. Further, the residual stress relaxation temperature of Example 1 was 96°C, the residual stress relaxation temperature of Example 2 was 83°C, and the residual stress relaxation temperature of Example 3 was 86°C. The residual stress relaxation temperature of the comparative example was 65°C. As shown in Table 1, no cracks occurred in each of Examples 1-3, and cracks occurred in Comparative Examples.
 10 導電性フィルム、15 導電性フィルム本体、40 製造装置、100 第1導電性樹脂層、200 第2導電性樹脂層、210 第1面側層、220 第2面側層、230 第2面、240 第1面、300 金属被膜層、400 Tダイ、401 Tダイ本体、410,420 キャストロール、430 巻取りロール、440,450,460 原料投入部。

 
Reference Signs List 10 conductive film, 15 conductive film main body, 40 manufacturing device, 100 first conductive resin layer, 200 second conductive resin layer, 210 first surface side layer, 220 second surface side layer, 230 second surface, 240 first surface, 300 metal coating layer, 400 T die, 401 T die body, 410, 420 cast roll, 430 winding roll, 440, 450, 460 raw material input section.

Claims (3)

  1.  導電性フィルムであって、
     樹脂と導電材料とを含む導電性フィルム本体と、
     前記導電性フィルム本体に積層された金属層とを備え、
     TMA(Thermomechanical Analyzer)を用いた試験において、前記導電性フィルムを20℃から80℃まで加熱し、その後、前記導電性フィルムを80℃から20℃まで冷却した場合に、前記導電性フィルムのMD(Machine Direction)における寸法の変化率が-0.10%以上であり、
     前記試験においては、前記導電性フィルムを引っ張る荷重が0.0035Nであり、加熱時の温度変化の速度が5.0℃/分であり、冷却時の温度変化の速度が-5.0℃/分である、導電性フィルム。
    A conductive film,
    a conductive film body containing a resin and a conductive material;
    a metal layer laminated on the conductive film body,
    In a test using a TMA (Thermomechanical Analyzer), when the conductive film was heated from 20°C to 80°C and then cooled from 80°C to 20°C, the MD of the conductive film ( The rate of change in dimensions in machine direction) is -0.10% or more,
    In the test, the load pulling the conductive film was 0.0035N, the rate of temperature change during heating was 5.0°C/min, and the rate of temperature change during cooling was -5.0°C/min. conductive film.
  2.  前記導電性フィルム本体における残留応力の緩和温度が80℃よりも高い、請求項1に記載の導電性フィルム。 The conductive film according to claim 1, wherein the residual stress relaxation temperature in the conductive film body is higher than 80°C.
  3.  MDにおける破断強度とTD(Traverse Direction)における破断強度との積が710以上である、請求項1又は請求項2に記載の導電性フィルム。

     
    The conductive film according to claim 1 or 2, wherein the product of the breaking strength in MD and the breaking strength in TD (Traverse Direction) is 710 or more.

PCT/JP2023/029952 2022-09-13 2023-08-21 Electroconductive film WO2024057827A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-145194 2022-09-13
JP2022145194A JP2024040688A (en) 2022-09-13 2022-09-13 conductive film

Publications (1)

Publication Number Publication Date
WO2024057827A1 true WO2024057827A1 (en) 2024-03-21

Family

ID=90274959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029952 WO2024057827A1 (en) 2022-09-13 2023-08-21 Electroconductive film

Country Status (2)

Country Link
JP (1) JP2024040688A (en)
WO (1) WO2024057827A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096578A (en) * 2013-11-15 2015-05-21 フタムラ化学株式会社 Metal-adhered conductive resin film and conductive resin-metal composite
JP2019121707A (en) * 2018-01-09 2019-07-22 タツタ電線株式会社 Electromagnetic wave shield film
JP2021056161A (en) * 2019-10-01 2021-04-08 日東電工株式会社 Conductive film, manufacturing method therefor, temperature sensor film, and manufacturing method therefor
JP2021072243A (en) * 2019-11-01 2021-05-06 グンゼ株式会社 Current collector for lithium ion battery, and method for manufacturing the same
JP2022081130A (en) * 2020-11-19 2022-05-31 グンゼ株式会社 Current collector
JP2022081129A (en) * 2020-11-19 2022-05-31 グンゼ株式会社 Current collector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096578A (en) * 2013-11-15 2015-05-21 フタムラ化学株式会社 Metal-adhered conductive resin film and conductive resin-metal composite
JP2019121707A (en) * 2018-01-09 2019-07-22 タツタ電線株式会社 Electromagnetic wave shield film
JP2021056161A (en) * 2019-10-01 2021-04-08 日東電工株式会社 Conductive film, manufacturing method therefor, temperature sensor film, and manufacturing method therefor
JP2021072243A (en) * 2019-11-01 2021-05-06 グンゼ株式会社 Current collector for lithium ion battery, and method for manufacturing the same
JP2022081130A (en) * 2020-11-19 2022-05-31 グンゼ株式会社 Current collector
JP2022081129A (en) * 2020-11-19 2022-05-31 グンゼ株式会社 Current collector

Also Published As

Publication number Publication date
JP2024040688A (en) 2024-03-26

Similar Documents

Publication Publication Date Title
TWI773665B (en) Biaxially oriented polypropylene film
JP6521189B1 (en) Polypropylene film, metal film laminated film and film capacitor
JP2019147953A (en) Biaxially oriented polypropylene film
JP2021120456A (en) Polypropylene film, metal membrane layered film, and film capacitor, and method for manufacturing the same
JP4653852B2 (en) Biaxially stretched polypropylene film for capacitor, vapor-deposited film using the same, and capacitor
JP5825103B2 (en) Biaxially oriented polypropylene film, metallized film and film capacitor
JP7088019B2 (en) Polypropylene film, metal film laminated film and film capacitor and their manufacturing method
JP7135320B2 (en) Biaxially oriented polypropylene film, metal film laminated film and film capacitor
JP6304470B1 (en) Biaxially oriented polypropylene film, metallized film for capacitors, and capacitors
JP6269062B2 (en) Film roll
JP7434751B2 (en) Polypropylene film, metal film laminate film and film capacitor using the same
JP2011122143A (en) Biaxially oriented polypropylene film for capacitor and metallized film and film capacitor
WO2024057827A1 (en) Electroconductive film
WO2021166993A1 (en) Polypropylene film, metal membrane layered film, and film capacitor
WO2024034195A1 (en) Conductive film and method for manufacturing conductive film
JP2019172922A (en) Polypropylene film, metal film laminate film and film capacitor
JP2013213193A (en) Separator film for electricity storage device
JP7355172B2 (en) polyolefin film
JP2021160358A (en) Method for producing film
TW202302733A (en) Polypropylene film
JP2022077360A (en) Laminate film
JP2021134352A (en) Polypropylene film, and metal film laminated film and film capacitor using the same
WO2021193507A1 (en) Production method for biaxially-oriented polypropylene film
JP2021134353A (en) Polypropylene film, metal film laminated film, and film capacitor
JP2019178218A (en) Composition, film, film for twisted packaging, manufacturing method of film