WO2021193507A1 - Production method for biaxially-oriented polypropylene film - Google Patents
Production method for biaxially-oriented polypropylene film Download PDFInfo
- Publication number
- WO2021193507A1 WO2021193507A1 PCT/JP2021/011659 JP2021011659W WO2021193507A1 WO 2021193507 A1 WO2021193507 A1 WO 2021193507A1 JP 2021011659 W JP2021011659 W JP 2021011659W WO 2021193507 A1 WO2021193507 A1 WO 2021193507A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- temperature
- stretching
- polypropylene resin
- width direction
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
Definitions
- the present invention relates to a method for producing a biaxially oriented polypropylene film having excellent rigidity and heat resistance. More specifically, the present invention relates to a method for producing a biaxially oriented polypropylene film that can be suitably used for a packaging bag because it is easy to maintain the shape of the packaging bag and there are few wrinkles in the sealed portion when heat-sealed.
- Biaxially oriented polypropylene film is used for packaging and industrial applications because it has moisture resistance and the required rigidity and heat resistance. In recent years, as the applications used have expanded, higher performance has been required, and in particular, improvement in rigidity is expected. Further, from the consideration of the environment, it is required to maintain the strength even if the volume is reduced (the film thickness is thinned), but for that purpose, it is indispensable to remarkably improve the rigidity. As a means for improving the rigidity, it is known that the crystallinity and melting point of the polypropylene resin are improved by improving the catalyst and the process technology at the time of polymerization of the polypropylene resin. Until now, there was no biaxially oriented polypropylene film having sufficient rigidity.
- the first stage heat treatment is performed while relaxing the film at a temperature lower than the temperature at the time of width direction stretching, and the second stage heat treatment is performed at the first stage temperature to the width direction stretching temperature.
- Patent Document 1 and the like a method of further stretching in the longitudinal direction after stretching in the width direction
- Patent Document 2 and the like a method of further stretching in the longitudinal direction after stretching in the width direction
- the film described in Patent Document 2 is excellent in rigidity, wrinkles are likely to occur in the sealed portion after heat sealing, and the heat resistance is inferior.
- the orientation of the film described in Patent Document 1 is low, and the rigidity is not sufficient.
- An object of the present invention is to solve the above-mentioned problems. That is, the present invention relates to a biaxially oriented polypropylene film having excellent film rigidity, and further relates to a method for producing a biaxially oriented polypropylene film having excellent film rigidity and heat resistance at a high temperature of 150 ° C. More specifically, it is an object of the present invention to provide a method for producing a biaxially oriented polypropylene film which can easily maintain the shape of a packaging bag and has less wrinkles in and around the sealed portion when heat-sealed.
- the present inventors have made a biaxially oriented polypropylene film having excellent film rigidity, and further excellent film rigidity and heat resistance at a high temperature of 150 ° C. by the following manufacturing method. It has been found that a biaxially oriented polypropylene film can be obtained. That is, the present invention provides a step of extruding a polypropylene resin composition containing a polypropylene resin having a mesopentad fraction of 97.0% or more to obtain an unstretched sheet, a step of stretching the unstretched sheet in the longitudinal direction, and a longitudinally stretched film.
- This is a method for producing a biaxially oriented polypropylene film, which in turn includes a step of cooling a temperature film having a stretching temperature of Tm-80 ° C. or higher and Tm-15 ° C. or lower at the end of stretching, and a heat treatment step.
- the polypropylene resin constituting the biaxially oriented polypropylene film has a crystallization temperature of 105 ° C. or higher and a melting point of 160 ° C. or higher.
- melt flow rate of the polypropylene resin constituting the biaxially oriented polypropylene film is 4.0 g / 10 minutes or more.
- the component amount of the polypropylene resin constituting the biaxially oriented polypropylene film having a molecular weight of 100,000 or less is 35% by mass or more.
- the method for producing a biaxially oriented polypropylene film of the present invention since the rigidity is high, it is easy to maintain the bag shape when it is used as a packaging bag, so that the biaxially oriented polypropylene film can be suitably used for a packaging bag. Can be obtained. Furthermore, it has high rigidity and excellent heat resistance at a high temperature of 150 ° C, so it is easy to maintain the bag shape when it is made into a packaging bag, and there are few wrinkles in the sealed part when it is heat-sealed, so it is suitable for packaging bags. A biaxially oriented polypropylene film that can be obtained can be obtained. Further, the biaxially oriented polypropylene film has excellent rigidity, and the strength can be maintained even if the thickness of the film is reduced, and the biaxially oriented polypropylene film can be suitably used for applications requiring higher rigidity.
- the biaxially oriented polypropylene film obtained by the present invention comprises a polypropylene resin composition containing a polypropylene resin as a main component.
- the "main component” means that the proportion of the polypropylene resin in the polypropylene resin composition is 90% by mass or more, more preferably 93% by mass or more, still more preferably 95% by mass or more, and particularly preferably. Is 97% by mass or more.
- Polypropylene resin As the polypropylene resin used in the present invention, a polypropylene homopolymer or a copolymer with ethylene and / or an ⁇ -olefin having 4 or more carbon atoms can be used. A propylene homopolymer substantially free of ethylene and / or an ⁇ -olefin having 4 or more carbon atoms is preferable, and even when ethylene and / or an ⁇ -olefin component having 4 or more carbon atoms is contained, ethylene and / or The amount of the ⁇ -olefin component having 4 or more carbon atoms is preferably 1 mol% or less.
- the upper limit of the amount of the component is more preferably 0.5 mol%, further preferably 0.3 mol%, and particularly preferably 0.1 mol%. Within the above range, crystallinity tends to improve.
- the ⁇ -olefin component having 4 or more carbon atoms constituting such a copolymer include 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene-1, 1-hexene, and 4-methylpen.
- Examples thereof include ten-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicosene and the like.
- the polypropylene resin two or more different polypropylene homopolymers, a copolymer with ethylene and / or an ⁇ -olefin having 4 or more carbon atoms, and a mixture thereof can be used.
- the mesopentad fraction ([mmmm]%) which is an index of the stereoregularity of the polypropylene resin used in the present invention, is preferably in the range of 97.0 to 99.9%, preferably 97.5 to 99.7. It is more preferably in the range of%, further preferably in the range of 98.0 to 99.5%, and particularly preferably in the range of 98.5 to 99.3%.
- it is 97.0% or more, the crystallinity of the polypropylene resin is enhanced, the melting point, crystallinity, and crystallinity of the crystals in the film are improved, and rigidity and heat resistance at high temperature can be easily obtained.
- the mesopentad fraction is measured by a nuclear magnetic resonance method (so-called NMR method).
- NMR method nuclear magnetic resonance method
- a method of washing the obtained polypropylene resin powder with a solvent such as n-heptane, selection of a catalyst and / or a co-catalyst, and a polypropylene resin composition A method of appropriately selecting the components is preferably adopted.
- the lower limit of the melting temperature (Tm) measured by DSC of the polypropylene resin constituting the biaxially oriented polypropylene film of the present invention is preferably 160 ° C., more preferably 161 ° C., and further preferably 162 ° C. , More preferably 163 ° C.
- Tm melting temperature
- the upper limit of Tm is preferably 170 ° C., more preferably 169 ° C., even more preferably 168 ° C., even more preferably 167 ° C., and particularly preferably 166 ° C.
- Tm is 170 ° C.
- the melting temperature can be further raised by blending the crystal nucleating agent with the polypropylene resin described above.
- Tm is a sample of 1 to 10 mg packed in an aluminum pan, set in a differential scanning calorimeter (DSC), melted at 230 ° C for 5 minutes in a nitrogen atmosphere, and up to 30 ° C at a scanning speed of -10 ° C / min. This is the main peak temperature of the endothermic peak associated with melting, which is observed when the temperature is lowered, held for 5 minutes, and the temperature is raised at a scanning speed of 10 ° C./min.
- DSC differential scanning calorimeter
- the lower limit of the crystallization temperature (Tc) measured by DSC of the polypropylene resin constituting the biaxially oriented polypropylene film of the present invention is 105 ° C., preferably 108 ° C., and more preferably 110 ° C.
- Tc crystallization temperature measured by DSC of the polypropylene resin constituting the biaxially oriented polypropylene film of the present invention
- the upper limit of Tc is preferably 135 ° C., more preferably 133 ° C., still more preferably 132 ° C., even more preferably 130 ° C., particularly preferably 128 ° C., and most preferably 127 ° C. Is.
- Tc is 135 ° C. or lower, it is difficult to increase the cost in terms of polypropylene production, and it is difficult to break during film formation.
- Tc is observed when a sample of 1 to 10 mg is packed in an aluminum pan, set in a DSC, melted at 230 ° C. for 5 minutes in a nitrogen atmosphere, and cooled to 30 ° C. at a scanning speed of -10 ° C./min. This is the main peak temperature of the exothermic peak.
- the crystallization temperature can be further raised by blending the crystal nucleating agent with the polypropylene resin described above.
- the melt flow rate (MFR) of the polypropylene resin constituting the biaxially oriented polypropylene film of the present invention is 4 when measured in accordance with the condition M (230 ° C., 2.16 kgf) of JIS K 7210 (1995). It is preferably 0.0 to 30 g / 10 minutes, more preferably 4.5 to 25 g / 10 minutes, further preferably 4.8 to 22 g / 10 minutes, and 5.0 to 20 g / 10 minutes. It is particularly preferable to have it, and it is most preferably 6.0 to 20 g / 10 minutes.
- melt flow rate (MFR) of the polypropylene resin is 4.0 g / 10 minutes or more, it is easy to obtain a biaxially oriented polypropylene film having a low heat shrinkage rate. Further, when the melt flow rate (MFR) of the polypropylene resin is 30 g / 10 minutes or less, it is easy to maintain the film-forming property of the film.
- the lower limit of the melt flow rate (MFR) (230 ° C., 2.16 kgf) of the polypropylene resin constituting the film is preferably 5.0 g / 10 minutes, more preferably 5.5 g / 10 minutes. It is more preferably 6.0 g / 10 minutes, particularly preferably 6.3 g / 10 minutes, and most preferably 6.5 g / 10 minutes.
- MFR melt flow rate
- the orientation crystallization of the polypropylene resin is further promoted, the degree of crystallization in the film is more likely to be increased, and the polypropylene molecular chains in the amorphous portion are less entangled with each other, resulting in heat resistance. It is easier to improve sex.
- MFR melt flow rate
- a method of controlling the average molecular weight and the molecular weight distribution of the polypropylene resin is preferably adopted.
- the lower limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve of the polypropylene resin constituting the film of the present invention is preferably 35% by mass, more preferably 38% by mass, and further preferably 40% by mass. It is particularly preferably 41% by mass, and most preferably 42% by mass.
- the upper limit of the amount of the component having a molecular weight of 100,000 or less on the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, and further preferably 58% by mass. When the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is 65% by mass or less, the film strength is unlikely to decrease.
- the amount of the component having a molecular weight of 100,000 or less contained in the polypropylene resin can be easily adjusted without significantly changing the overall viscosity, so that the rigidity is increased. It is easy to improve the film-forming property without affecting the heat shrinkage.
- the polypropylene resin used in the present invention has a lower limit of mass average molecular weight (Mw) / number average molecular weight (Mn), which is an index of the breadth of molecular weight distribution, preferably 3.5, more preferably 4.0. , More preferably 4.5, and particularly preferably 5.0.
- the upper limit of Mw / Mn is preferably 30, more preferably 25, still more preferably 23, particularly preferably 21 and most preferably 20.
- Mw / Mn can be obtained using gel permeation chromatography (GPC). When Mw / Mn is in the above range, it is easy to increase the amount of the component having a molecular weight of 100,000 or less.
- the shape of the molecular weight distribution obtained by GPC has a single peak in a GPC chart in which the horizontal axis is the logarithm of the molecular weight (M) (logM) and the vertical axis is the differential distribution value (weight fraction per logM). It may have a gentle molecular weight distribution, or it may have a molecular weight distribution having a plurality of peaks and shoulders.
- the method for producing a biaxially oriented polypropylene film of the present invention is preferably obtained by preparing an unstretched sheet made of the polypropylene resin composition containing the above-mentioned polypropylene resin as a main component and biaxially stretching the film.
- a biaxial stretching method any of the inflation simultaneous biaxial stretching method, the tenter simultaneous biaxial stretching method, and the tenter sequential biaxial stretching method can be obtained, but from the viewpoint of film forming stability and thickness uniformity, the tenter sequential biaxial stretching method can be obtained.
- the biaxially oriented polypropylene film obtained by the present invention may have a layer having another function laminated on at least one side thereof. It may be laminated on one side or both sides.
- the polypropylene resin composition described above may be used as the resin composition of the other one layer or the central layer. Further, it may be different from the polypropylene resin composition described above.
- the number of layers to be laminated may be one layer, two layers, three layers or more per one side, but one layer or two layers is preferable from the viewpoint of production.
- a laminating method for example, coextrusion by a feed block method or a multi-manifold method is preferable.
- a resin layer having a heat-sealing property can be laminated within a range that does not deteriorate the characteristics.
- one side or both sides may be subjected to corona treatment.
- the tenter sequential biaxial stretching method is adopted as an example in the case of a single layer.
- the resin composition containing the polypropylene resin is heated and melted by a single-screw or twin-screw extruder, extruded into a sheet from a T-die, and grounded on a cooling roll to be cooled and solidified.
- a cooling roll For the purpose of promoting solidification, it is preferable to further cool the sheet cooled by a cooling roll by immersing it in a water tank or the like.
- the sheet is stretched in the longitudinal direction by increasing the number of rotations of the rear stretching rolls with two pairs of stretching rolls in which the sheet is heated to obtain a uniaxially stretched film.
- the uniaxially stretched film is stretched in the width direction at a specific temperature while grasping the end of the film with a tenter type stretching machine to obtain a biaxially stretched film.
- This width direction stretching step will be described in detail later.
- the biaxially stretched film is heat-treated at a specific temperature to obtain a biaxially oriented film.
- the film may be relaxed in the width direction.
- the biaxially oriented polypropylene film thus obtained is subjected to, for example, corona discharge treatment on at least one side, and then wound with a winder to obtain a film roll.
- the cooling temperature is 50 ° C. or lower, the transparency of the unstretched sheet tends to increase, preferably 40 ° C. or lower, and more preferably 30 ° C. or lower.
- the cooling temperature is preferably 40 ° C. or higher, but as described above, a propylene homopolymer having a mesopendat fraction of 97.0% or higher is used. In this case, the cooling temperature is preferably 40 ° C.
- the thickness of the unstretched sheet is preferably 3500 ⁇ m or less, more preferably 3000 ⁇ m or less in terms of cooling efficiency, and can be appropriately adjusted according to the film thickness after sequential biaxial stretching.
- the thickness of the unstretched sheet can be controlled by the extrusion speed of the polypropylene resin composition, the lip width of the T-die, and the like.
- the lower limit of the longitudinal stretching ratio is preferably 3 times, more preferably 3.5 times, and particularly preferably 3.8 times. Within the above range, the strength can be easily increased and the film thickness unevenness can be reduced.
- the upper limit of the longitudinal stretching ratio is preferably 8 times, more preferably 7.5 times, and particularly preferably 7 times. Within the above range, the width direction stretching in the width direction stretching step is easy, and the productivity is improved.
- the lower limit of the longitudinal stretching temperature is preferably Tm-40 ° C, more preferably Tm-37 ° C, and even more preferably Tm-35 ° C. Within the above range, the subsequent stretching in the width direction becomes easy and the thickness unevenness is reduced.
- the upper limit of the longitudinal stretching temperature is preferably Tm-7 ° C, more preferably Tm-10 ° C, and even more preferably Tm-12 ° C.
- the longitudinal stretching may be performed by using three or more pairs of stretching rolls and stretching in two or more stages.
- the width direction stretching step it is preferable to stretch at a temperature of Tm-10 ° C. or higher and a preheating temperature or lower.
- the start of stretching in the width direction may be when the preheating temperature is reached, or when the temperature is lowered after reaching the preheating temperature and reaches a temperature lower than the preheating temperature.
- the lower limit of the temperature in the width direction stretching step is more preferably Tm-9 ° C, further preferably Tm-7 ° C, and particularly preferably Tm-5 ° C.
- the upper limit of the temperature in the width direction stretching step is preferably Tm + 10 ° C., more preferably Tm + 7 ° C., and particularly preferably Tm + 5 ° C.
- the cooling temperature at this time is preferably not more than the temperature of stretching in the width direction and preferably Tm-80 ° C. or higher and Tm-15 ° C. or lower, and is preferably Tm-80 ° C. or higher and Tm-20 ° C. or lower. It is more preferable to set the temperature to Tm-80 ° C.
- the temperature at the end of stretching in the width direction can be gradually lowered to the temperature at the time of cooling, but it can also be lowered stepwise or in one step. It is preferable to lower the temperature stepwise or stepwise because the crystal orientation in the film tends to be increased.
- the lower limit of the final width direction stretching ratio in the width direction stretching step is preferably 10 times, more preferably 11 times. If it is 10 times or more, the rigidity is likely to be increased and the film thickness unevenness is likely to be reduced.
- the upper limit of the stretching ratio in the width direction is preferably 20 times, more preferably 17 times, and further preferably 15 times. When it is 20 times or less, the heat shrinkage rate is likely to be reduced, and it is difficult to break during stretching.
- the molecules of the polypropylene resin are highly oriented in the main orientation direction (the above-mentioned width).
- the width direction is applicable. Therefore, more crystals having a strong crystal orientation and a high melting point in the obtained biaxially oriented film can be easily produced. Further, the orientation of the amorphous portion between the crystals is also increased in the main orientation direction (the width direction corresponds to the above-described width direction stretching step), so that the rigidity is high.
- the entire biaxially oriented film can maintain high rigidity even at high temperatures.
- the heat shrinkage rate at a high temperature of 150 ° C. is likely to be further reduced.
- the elongated polypropylene resin molecules in the amorphous portion are difficult to relax at a temperature lower than the melting point of the crystals because the crystal orientation is strong around the amorphous portion and more crystals have a high melting point. Furthermore, it should be noted that the orientation of the amorphous part between the crystals also increases in the main orientation direction (the width direction corresponds to the above-mentioned width direction stretching step), but it is not in an extremely tense state, so that the tensile fracture occurs. The elongation is improved.
- the crystallinity of the film is more likely to be increased, and the entanglement of the polypropylene resin molecular chains in the amorphous portion is reduced, and the heat shrinkage stress is weakened to reduce heat.
- the shrinkage rate can be further reduced. It can be said that the prior art is epoch-making in consideration of the fact that if either the strength or the heat shrinkage rate is improved, the other property tends to be deteriorated.
- the biaxially stretched film can be heat-treated to further reduce the heat shrinkage rate.
- the upper limit of the heat treatment temperature is preferably Tm + 10 ° C, more preferably Tm + 7 ° C, and particularly preferably Tm + 5 ° C. By setting the temperature to Tm + 10 ° C. or lower, rigidity is likely to be developed, the roughness of the film surface does not become too large, and the film is less likely to whiten.
- the lower limit of the heat treatment temperature is preferably Tm-5 ° C, more preferably Tm-2 ° C, and particularly preferably Tm ° C. If it is less than Tm-5 ° C, the heat shrinkage rate may increase.
- the highly oriented crystals produced in the stretching step are difficult to melt, and the rigidity of the obtained film is reduced.
- the heat shrinkage rate can be made smaller without lowering.
- the film may be relaxed (relaxed) in the width direction during heat treatment for the purpose of adjusting the heat shrinkage rate, but the upper limit of the relaxation rate is preferably 4%. When it is within the above range, the film strength is unlikely to decrease, and the fluctuation in film thickness tends to be small. It is more preferably 3%, even more preferably 2%, even more preferably 1%, and particularly preferably 0%.
- the thickness of the biaxially oriented polypropylene film obtained by the present invention is set according to each application, but in order to obtain the strength of the film, the lower limit of the film thickness is preferably 2 ⁇ m, more preferably 3 ⁇ m, and further. It is preferably 4 ⁇ m, particularly preferably 8 ⁇ m, and most preferably 10 ⁇ m. When the film thickness is 2 ⁇ m or more, the rigidity of the film can be easily obtained.
- the upper limit of the film thickness is preferably 100 ⁇ m, more preferably 80 ⁇ m, further preferably 60 ⁇ m, particularly preferably 50 ⁇ m, and most preferably 40 ⁇ m.
- the biaxially oriented polypropylene film obtained by the present invention is usually formed as a roll having a width of 2000 to 12000 mm and a length of about 1000 to 50000 m, and is wound into a film roll. Further, it is slit according to each application and is provided as a slit roll having a width of 300 to 2000 mm and a length of about 500 to 5000 m.
- the biaxially oriented polypropylene film of the present invention can obtain a longer film roll.
- the lower limit of the thickness uniformity of the biaxially oriented polypropylene film obtained by the present invention is preferably 0%, more preferably 0.1%, further preferably 0.5%, and particularly preferably 1%. be.
- the upper limit of the thickness uniformity is preferably 20%, more preferably 17%, still more preferably 15%, particularly preferably 12%, and most preferably 10%. Within the above range, defects are less likely to occur during post-processing such as coating and printing, and it is easy to use for applications that require precision.
- the measurement method was as follows.
- a test piece having a width of 40 mm is cut out from a steady region where the physical properties of the film are stable in the length direction of the film, and a film feeder manufactured by Micrometer Measuring Instruments Co., Ltd. (manufacturing number: A90172 is used) and a film manufactured by Anritsu Co., Ltd.
- a continuous thickness measuring device product name: K-313A wide range high-sensitivity electronic micrometer
- the film thickness was continuously measured over 20000 mm, and the thickness uniformity was calculated from the following formula.
- Thickness uniformity (%) [(maximum thickness-minimum thickness) / average thickness] x 100
- the biaxially oriented polypropylene film of the present invention is characterized by the following characteristics.
- the "longitudinal direction" in the biaxially oriented polypropylene film of the present invention is a direction corresponding to the flow direction in the film manufacturing process
- the "width direction” is a direction orthogonal to the flow direction in the film manufacturing process.
- wide-angle X-rays are incident in the direction perpendicular to the film surface, and the scattering peaks derived from the (110) plane of the ⁇ -type crystal are scanned in the circumferential direction.
- the direction in which the obtained diffraction intensity distribution has the largest diffraction intensity is referred to as the "longitudinal direction", and the direction orthogonal to it is referred to as the "width direction”.
- the upper limit of the heat shrinkage in the longitudinal direction of the biaxially oriented polypropylene film of the present invention at 150 ° C. is 10%, preferably 7.0%, more preferably 6.0%, and even more preferably. It is 5.0%, particularly preferably 4.0% or less.
- the upper limit of the heat shrinkage rate in the width direction at 150 ° C. is preferably 30%, more preferably 24%, further preferably 21%, and particularly preferably 18% or less.
- the strain when the chuck portion is fused to the open portion is small, which is preferable.
- the lower limit of the amount of components having a molecular weight of 100,000 or less when measuring the gel permeation chromatography (GPC) integration curve of the polypropylene resin constituting the film is set to 35% by mass. It is effective to adjust the stretching ratio, stretching temperature, and heat fixing temperature.
- the heat shrinkage rate (%) in the width direction at 150 ° C. and the tensile breaking strength (MPa) in the width direction at 23 ° C. of the biaxially oriented polypropylene film of the present invention satisfy the following equations.
- the rigidity is higher and the heat shrinkage rate at high temperature is smaller, so that it is easier to maintain the bag shape when it is used as a packaging bag, and at the time of processing such as printing. Deformation of the film is less likely to occur.
- the lower limit of the tensile breaking strength in the longitudinal direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is preferably 90 MPa, more preferably 100 MPa, still more preferably 110 MPa, and particularly preferably 120 MPa. If it is 90 MPa or more, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent.
- the upper limit of the tensile breaking strength in the longitudinal direction is preferably 200 MPa, more preferably 180 MPa, and further preferably 160 MPa as a realistic value. If it is 200 MPa or less, the breakage of the film and the breakage of the packaging bag are likely to decrease.
- the lower limit of the tensile breaking strength in the width direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is preferably 380 MPa, more preferably 400 MPa, further preferably 430 MPa, and particularly preferably 450 MPa. If it is 380 MPa or more, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent.
- the upper limit of the tensile breaking strength in the width direction is preferably 550 MPa, more preferably 520 MPa, and further preferably 500 MPa as a realistic value. If it is 550 MPa or less, the breakage of the film and the breakage of the packaging bag are likely to decrease.
- the lower limit of the amount of the component having a molecular weight of 100,000 or less when the gel permeation chromatography (GPC) integration curve of the polypropylene resin constituting the film is measured is set to 35% by mass, and the draw ratio is set to 35% by mass. It is effective to adjust the stretching temperature and the heat fixing temperature.
- the biaxially oriented polypropylene film of the present invention has the following characteristics and structure.
- Stress at 23 ° C. 5% elongation The lower limit of the stress (F5) of the biaxially oriented polypropylene film of the present invention at 5% elongation in the longitudinal direction at 23 ° C. is preferably 40 MPa, more preferably 42 MPa, still more preferably 44 MPa, and further. It is preferably 46 MPa, particularly preferably 48 MPa. At 40 MPa or more, since the rigidity is high, it is easy to maintain the bag shape when it is used as a packaging bag, and the film is less likely to be deformed during processing such as printing.
- the upper limit of F5 in the longitudinal direction is preferably 70 MPa, more preferably 65 MPa, still more preferably 62 MPa, and particularly preferably 60 MPa. At 70 MPa or less, realistic manufacturing is easy, and the vertical-width balance is easy to improve.
- the lower limit of F5 in the width direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is preferably 160 MPa, more preferably 170 MPa, still more preferably 180 MPa, and particularly preferably 190 MPa. At 160 MPa or more, since the rigidity is high, it is easy to maintain the bag shape when it is used as a packaging bag, and the film is less likely to be deformed during processing such as printing.
- the upper limit of F5 in the width direction is preferably 250 MPa, more preferably 230 MPa, and even more preferably 220 MPa. If it is 250 MPa or less, realistic manufacturing is easy and the vertical width balance is easy to improve.
- F5 can be set within the range by adjusting the stretching ratio and the relaxing rate, and adjusting the temperature at the time of film formation.
- the lower limit of the tensile elongation at break in the longitudinal direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is preferably 195%, more preferably 200%, more preferably 210%, and particularly preferably. It is 220% or more. If it is 195% or more, the breakage of the film and the breakage of the packaging bag are likely to decrease.
- the upper limit of the tensile elongation at break in the longitudinal direction is preferably 300% as a realistic value, and more preferably 280%.
- the lower limit of the tensile elongation at break in the width direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is preferably 25%, more preferably 30%, still more preferably 32%, and particularly preferably. It is 35% or more. If it is 25% or more, the breakage of the film and the breakage of the packaging bag are likely to occur.
- the upper limit of the tensile elongation at break in the width direction is preferably 60%, more preferably 55%, and even more preferably 50%. If it is 60% or less, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent.
- the tensile elongation at break can be within the range by adjusting the draw ratio, the draw temperature, and the heat fixation temperature.
- the upper limit of the heat shrinkage in the longitudinal direction of the biaxially oriented polypropylene film of the present invention at 120 ° C. is preferably 2.0%, more preferably 1.5%, and even more preferably 1.2%. , Particularly preferably 1.0%. When it is 2.0% or less, the printing pitch shift when transferring the printing ink is less likely to occur.
- the upper limit of the heat shrinkage rate in the width direction at 120 ° C. is 5.0%, preferably 4.0%, more preferably 3.5%, and particularly preferably 2.5%. If it is 5.0% or less, wrinkles during heat sealing are unlikely to occur.
- the balance between the heat shrinkage rate at 120 ° C. and the heat shrinkage rate in the longitudinal direction to the width direction can be within the range by adjusting the draw ratio, the draw temperature, and the heat fixation temperature.
- the lower limit of the refractive index (Nx) in the longitudinal direction of the biaxially oriented polypropylene film of the present invention is preferably 1.4950, more preferably 1.4970, and even more preferably 1.4980. If it is 1.4950 or more, it is easy to increase the rigidity of the film.
- the upper limit of the refractive index (Nx) in the longitudinal direction is preferably 1.5100, more preferably 1.5070, and even more preferably 1.5050. If it is 1.5100 or less, the balance of the characteristics in the longitudinal direction and the width direction of the film tends to be excellent.
- the lower limit of the refractive index (Ny) in the width direction of the biaxially oriented polypropylene film of the present invention is 1.5230, preferably 1.5235, and more preferably 1.5240. If it is 1.5230 or more, it is easy to increase the rigidity of the film.
- the upper limit of the refractive index (Ny) in the width direction is preferably 1.5280, more preferably 1.5275, and even more preferably 1.5270. If it is 1.5280 or less, the balance of the characteristics in the longitudinal direction and the width direction of the film tends to be excellent.
- the lower limit of the refractive index (Nz) in the thickness direction of the biaxially oriented polypropylene film of the present invention is preferably 1.4960, more preferably 14965, and even more preferably 1.4970. If it is 1.4960 or more, it is easy to increase the rigidity of the film.
- the upper limit of the refractive index (Nz) in the thickness direction is preferably 1.5020, more preferably 1.5015, and even more preferably 1.5010. If it is 1.5020 or less, the heat resistance of the film can be easily increased.
- the refractive index can be set within the range by adjusting the stretching ratio, stretching temperature, and heat fixing temperature.
- the lower limit of ⁇ Ny of the biaxially oriented polypropylene film of the present invention of the present invention is 0.0220, preferably 0.0225, more preferably 0.0228, and further preferably 0.0230. If it is 0.0220 or more, the rigidity of the film tends to increase.
- the upper limit of ⁇ Ny is preferably 0.0270, more preferably 0.0265, still more preferably 0.0262, and particularly preferably 0.0260 as a realistic value. If it is 0.0270 or less, the thickness unevenness tends to be good.
- ⁇ Ny can be set within the range by adjusting the stretching ratio, stretching temperature, and heat fixing temperature of the film.
- ⁇ Ny is calculated by the following formula, where the refractive indexes along the longitudinal direction, the width direction, and the thickness direction of the film are Nx, Ny, and Nz, respectively. It means the degree of orientation in the direction.
- ⁇ Ny Ny ⁇ [(Nx + Nz) / 2]
- the lower limit of the plane orientation coefficient ( ⁇ P) of the biaxially oriented polypropylene film of the present invention is preferably 0.0135, more preferably 0.0138, and even more preferably 0.0140. When it is 0.0135 or more, the balance in the surface direction of the film is good, and the thickness unevenness is also good.
- the upper limit of the plane orientation coefficient ( ⁇ P) is preferably 0.0155, more preferably 0.0152, and even more preferably 0.0150 as a realistic value. If it is 0.0155 or less, the heat resistance at high temperature is likely to be excellent.
- the plane orientation coefficient ( ⁇ P) can be set within the range by adjusting the stretching ratio, stretching temperature, and heat fixing temperature. The plane orientation coefficient ( ⁇ P) was calculated using (Equation) [(Nx + Ny) / 2] -Nz.
- the upper limit of the haze of the biaxially oriented polypropylene film of the present invention is preferably 5.0%, more preferably 4.5%, further preferably 4.0%, and particularly preferably 3.5%. Yes, most preferably 3.0%. If it is 5.0% or less, it is easy to use in applications where transparency is required.
- the lower limit of the haze is preferably 0.1%, more preferably 0.2%, still more preferably 0.3%, and particularly preferably 0.4% as a realistic value. If it is 0.1% or more, it is easy to manufacture.
- the haze adjusts the cooling roll (CR) temperature, the stretching temperature in the width direction, the preheating temperature before stretching in the tenter width direction, the stretching temperature in the width direction, or the heat fixing temperature, or the amount of components having a molecular weight of 100,000 or less of the polypropylene resin.
- it may increase due to the addition of an antiblocking agent or the addition of a seal layer.
- the oriented crystal in the width direction of the film.
- the upper limit of the half-value width (Wh) of the diffraction peak derived from is preferably 25 °, more preferably 24 °, more preferably 23 °, and particularly preferably 22 °.
- Wh half-value width
- the lower limit of Wh is preferably 16 °, more preferably 17 °, and even more preferably 18 °.
- the lower limit of the X-ray orientation calculated from Wh of the biaxially oriented polypropylene film of the present invention by the following formula is preferably 0.860, more preferably 0.867, and even more preferably 0.872. .. It is easy to increase the rigidity by setting it to 0.860 or more.
- X-ray orientation (180-Wh) / 180
- the upper limit of the X-ray orientation is preferably 0.911, more preferably 0.906, and even more preferably 0.900. When it is 0.911 or less, the film formation is easy to stabilize.
- the pre-made bag is filled with the contents and heated to melt the film, fuse it and seal it.
- a sealant film made of polyethylene, polypropylene, or the like is laminated on the base film, and the sealant film surfaces are fused to each other.
- pressure is applied from the base film side with a heating plate to press the film to seal it, but the sealing width is often about 10 mm.
- the base film is also heated, and the shrinkage at that time causes wrinkles. It is better to have less wrinkles in the durability of the bag, and it is better to have less wrinkles in order to increase purchasing motivation.
- the sealing temperature may be about 120 ° C., but in order to increase the bag making processing speed, a higher sealing temperature is required, and even in that case, it is preferable that the shrinkage is small.
- the chuck is fused to the opening portion of the bag, it is required to seal at a higher temperature.
- Print pitch shift As a basic structure of the packaging film, it is often composed of a laminated film of a printed base film and a sealant film.
- a bag making machine is used to manufacture bags, and there are three-sided bags, standing bags, gusset bags, etc., and various bag making machines are used. It is considered that the printing pitch shift occurs because the base material of the film expands and contracts because tension and heat are applied to the film during the printing process. Eliminating defective products due to printing pitch deviation is important in terms of effective use of resources, and is also important in increasing purchasing motivation.
- the biaxially oriented polypropylene film of the present invention can be printed by letterpress printing, lithographic printing, intaglio printing, stencil printing, and transfer printing, depending on the application.
- low-density polyethylene, linear low-density polyethylene, ethylene-vinyl acetate copolymer, polypropylene, unstretched sheet made of polyester, uniaxially stretched film, and biaxially stretched fill are bonded as a sealant film to impart heat sealability. It can also be used as a laminated body.
- aluminum foil polyvinylidene chloride, nylon, ethylene-vinyl alcohol copolymer, unstretched sheet made of polyvinyl alcohol, uniaxially stretched film, and biaxially stretched film as biaxially oriented polypropylene film. It can be provided as an intermediate layer between the and the sealant film.
- An adhesive applied by a dry lamination method or a hot melt lamination method can be used for laminating the sealant film.
- aluminum or an inorganic oxide can be vapor-deposited on a biaxially oriented polypropylene film, an intermediate layer film, or a sealant film. Vacuum vapor deposition, sputtering, and ion plating methods can be adopted as the vapor deposition method, but silica, allumina, or a mixture thereof is particularly preferable.
- the biaxially oriented polypropylene film of the present invention contains, for example, antifogging agents such as fatty acid esters of polyhydric alcohols, amines of higher fatty acids, amides of higher fatty acids, amines of higher fatty acids and ethylene oxide adducts of amide.
- antifogging agents such as fatty acid esters of polyhydric alcohols, amines of higher fatty acids, amides of higher fatty acids, amines of higher fatty acids and ethylene oxide adducts of amide.
- additives for improving quality such as slipperiness and antistatic property
- lubricants such as wax and metal soap for improving productivity
- plasticizers for example, plasticizers.
- agents, processing aids, heat stabilizers, antioxidants, antistatic agents, ultraviolet absorbers and the like are also possible.
- the biaxially oriented polypropylene film of the present invention has excellent properties as described above, it can be preferably used for packaging bags, and the thickness of the film can be made thinner than before.
- insulating films for capacitors and motors such as insulating films for capacitors and motors, back sheets for solar cells, barrier films for inorganic oxides, and base films for transparent conductive films such as ITO, and to have rigidity such as separate films. It is also suitable for various applications.
- melt flow rate The melt flow rate (MFR) was measured at a temperature of 230 ° C. and a load of 2.16 kgf in accordance with JIS K7210.
- the mesopentad fraction ([mmmm]%) of the polypropylene resin was measured using 13C-NMR.
- the mesopentad fraction was calculated according to the method described in Zambelli et al., Macromolecules, Vol. 6, p. 925 (1973).
- the 13C-NMR measurement was carried out at 110 ° C. by dissolving 200 mg of a sample in an 8: 2 mixture of o-dichlorobenzene and heavy benzene using AVANCE500 manufactured by Bruker.
- the number average molecular weight (Mn) and the mass average molecular weight (Mw) are each defined by the following equations by the number of molecules (Ni) of the molecular weight (Mi) at each elution position of the GPC curve obtained via the molecular weight calibration curve.
- Number average molecular weight: Mn ⁇ (Ni ⁇ Mi) / ⁇ Ni
- Mass average molecular weight: Mw ⁇ (Ni ⁇ Mi 2 ) / ⁇ (Ni ⁇ Mi)
- the molecular weight distribution can be obtained by Mw / Mn.
- the ratio of the components having a molecular weight of 100,000 or less was obtained from the integral curve of the molecular weight distribution obtained by GPC.
- Crystallization temperature (Tc), melting temperature (Tm) Heat measurement was performed in a nitrogen atmosphere using a Q1000 differential scanning calorimeter manufactured by TA Instruments. Approximately 5 mg was cut out from polypropylene resin pellets and sealed in an aluminum pan for measurement. The temperature was raised to 230 ° C. and held for 5 minutes, then cooled to 30 ° C. at a rate of ⁇ 10 ° C./min, and the exothermic peak temperature was defined as the crystallization temperature (Tc). The amount of heat of crystallization ( ⁇ Hc) was determined by setting a baseline so that the area of the exothermic peak could be smoothly connected from the start of the peak to the end of the peak. The temperature was kept as it was at 30 ° C. for 5 minutes, the temperature was raised to 230 ° C. at 10 ° C./min, and the main endothermic peak temperature was defined as the melting temperature (Tm).
- Tensile test The tensile strength of the film in the longitudinal direction and the width direction was measured at 23 ° C. according to JIS K 7127. The sample was cut out from a film to a size of 15 mm ⁇ 200 mm, had a chuck width of 100 mm, and was set in a tensile tester (dual column desktop tester Instron 5965 manufactured by Instron Japan Company Limited). A tensile test was performed at a tensile speed of 200 mm / min. From the obtained strain-stress curve, the stress at 5% elongation was defined as F5. The tensile breaking strength and the tensile breaking elongation were taken as the strength and elongation at the time when the sample broke, respectively.
- Heat shrinkage rate Measured by the following method in accordance with JIS Z 1712. The film was cut with a width of 20 mm and a length of 200 mm in the longitudinal direction and the width direction of the film, respectively, and hung in a hot air oven at 120 ° C. or 150 ° C. and heated for 5 minutes. The length after heating was measured, and the heat shrinkage rate was determined by the ratio of the contracted length to the original length.
- Refractive index, ⁇ Ny, plane orientation coefficient Measured at a wavelength of 589.3 nm and a temperature of 23 ° C. using an Abbe refractometer manufactured by Atago Co., Ltd.
- the refractive indexes along the longitudinal direction and the width direction of the film were Nx and Ny, respectively, and the refractive indexes in the thickness direction were Nz.
- ⁇ Ny was determined using (formula) Ny ⁇ [(Nx + Nz) / 2] using Nx, Ny, and Nz.
- the plane orientation coefficient ( ⁇ P) was calculated using (Equation) [(Nx + Ny) / 2] -Nz.
- PP-1 Suditomo Chemical Co., Ltd.
- Example 2 The same procedure as in Example 1 was carried out except that stretching was performed at 162 ° C. in the width direction and heat treatment was performed at 170 ° C. The thickness of the obtained film was 20.8 ⁇ m.
- Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As for the physical characteristics, as shown in Table 3, a film having high rigidity and low heat shrinkage at high temperature was obtained.
- Example 3 It was carried out in the same manner as in Example 1 except that it was stretched at 162 ° C. in the width direction. The thickness of the obtained film was 20.7 ⁇ m.
- Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As for the physical characteristics, as shown in Table 3, a film having high rigidity and low heat shrinkage at high temperature was obtained.
- Example 4 It was stretched at 162 ° C. in the width direction and cooled at 140 ° C. in the same manner as in Example 1. The thickness of the obtained film was 20.6 ⁇ m.
- Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As for the physical characteristics, as shown in Table 3, a film having high rigidity and low heat shrinkage at high temperature was obtained.
- Comparative Example 3 The same procedure as in Comparative Example 2 was carried out except that 3% relaxation was applied at the time of heat fixation.
- the thickness of the obtained film was 21.1 ⁇ m.
- Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
- Comparative Example 4 The same procedure as in Comparative Example 2 was carried out except that the stretching temperature in the longitudinal direction was 145 ° C. and the cooling temperature immediately after stretching in the width direction was 140 ° C. The thickness of the obtained film was 18.9 ⁇ m.
- Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
- Comparative Example 5 After stretching in the width direction, the same procedure as in Comparative Example 2 was carried out except that the heat was fixed at 165 ° C. while being held by the clip without cooling. The thickness of the obtained film was 19.5 ⁇ m.
- Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical characteristics were inferior in the heat shrinkage rate at 150 ° C.
- Comparative Example 6 The same procedure as in Comparative Example 2 was carried out except that the stretching temperature of the second stage in the width direction was set to 155 ° C. The thickness of the film thus obtained was 20.3 ⁇ m.
- Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
- Comparative Example 7 The same procedure as in Comparative Example 2 was carried out except that the longitudinal stretching ratio was set to 4.8 times. The thickness of the obtained film was 19.1 ⁇ m.
- Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
- Comparative Example 8 In the width direction stretching, the same procedure as in Comparative Example 2 was carried out except that the stretching ratio of the first stage was 6.6 times and the stretching ratio of the second stage was 1.5 times, for a total of 9.9 times. .. The thickness of the obtained film was 20.1 ⁇ m.
- Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
- PP-1 was used as the polypropylene resin, extruded into a sheet from a T die at 250 ° C., brought into contact with a cooling roll at 20 ° C., and put into a water tank at 20 ° C. as it was. After that, it was stretched 4.5 times in the longitudinal direction at 143 ° C., preheated at 170 ° C. in the width direction in the tenter, stretched 8.2 times at a stretching temperature of 158 ° C., and subsequently heat-fixed at 168 ° C. Was done. The thickness of the obtained film was 18.6 ⁇ m.
- Table 1 shows the structure of the polypropylene resin
- Table 2 shows the film forming conditions
- Table 3 shows the physical properties. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
- Comparative Example 10 As the polypropylene resin, 80 parts by weight of PP-1 and 20 parts by weight of PP-2 were blended and used in the same manner as in Comparative Example 9. The thickness of the obtained film was 20.0 ⁇ m.
- Table 1 shows the structure of the polypropylene resin
- Table 2 shows the film forming conditions
- Table 3 shows the physical properties. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
- the preheating temperature was set to 166 ° C.
- the first step of stretching was 6 times stretching at 155 ° C.
- the second-stage stretching 1.36 times was stretched at 139 ° C., and a total of 8.2 times was stretched.
- the mixture was cooled at 95 ° C. while being held by the clip, and then heat-treated at 158 ° C. without relaxation in the width direction.
- the thickness of the obtained film was 19.2 ⁇ m.
- Table 1 shows the structure of the polypropylene resin
- Table 2 shows the film forming conditions
- Table 3 shows the physical properties. As shown in Table 3, the physical characteristics were inferior in the heat shrinkage rate at 150 ° C.
- the preheating temperature was set to 170 ° C.
- the first step of stretching was 6 times stretching at 160 ° C.
- the second-stage stretching 1.36 times was stretched at 145 ° C., and a total of 8.2 times was stretched.
- the mixture was cooled at 100 ° C. while being held by the clip, and then heat-treated at 163 ° C. without relaxation in the width direction.
- the thickness of the obtained film was 21.2 ⁇ m.
- Table 1 shows the structure of the polypropylene resin
- Table 2 shows the film forming conditions
- Table 3 shows the physical properties. As shown in Table 3, the physical characteristics were inferior in the heat shrinkage rate at 150 ° C.
- PP-4 was used as the polypropylene resin. It was extruded into a sheet from a T-die at 250 ° C., brought into contact with a cooling roll at 20 ° C., and put into a water tank at 20 ° C. as it was. Then, after stretching 5.8 times at 130 ° C. in the longitudinal direction, the film was heated at a preheating temperature of 167 ° C. with a tenter, and then stretched 8.6 times in the width direction at a stretching temperature of 161 ° C., and then. Heat fixation was performed at 130 ° C. while applying relaxation of 10%, and subsequently, heat fixation in the second stage was performed at 140 ° C.
- the thickness of the obtained film was 13.4 ⁇ m.
- Table 1 shows the structure of the polypropylene resin
- Table 2 shows the film forming conditions
- Table 3 shows the physical properties. As shown in Table 3, the physical characteristics were inferior in the heat shrinkage rate at 150 ° C.
- Example 14 It was stretched 8 times at 162 ° C. in the width direction and cooled at 140 ° C. in the same manner as in Example 1. The thickness of the obtained film was 19.7 ⁇ m.
- Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
- Example 15 It was carried out in the same manner as in Example 1 except that it was stretched 8 times at 162 ° C. in the width direction. The thickness of the obtained film was 20.1 ⁇ m.
- Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
The purpose of the present invention is to provide a biaxially-oriented polypropylene film which has high rigidity, has excellent heat resistance at temperatures as high as 150°C, easily maintains a bag shape when formed into a packaging bag, and has few wrinkles in a sealed part when heat sealed. Provided is a production method for a biaxially-oriented polypropylene film, said production method comprising, in the given order: a step in which a polypropylene resin composition containing a polypropylene resin with a meso pentad fraction of at least 97.0% is extruded to obtain an unstretched sheet; a step in which the unstretched sheet is stretched in the length direction thereof; a preheating step in which the length-direction stretched film is heated to a preheat temperature in the range from Tm to Tm+25°C; a step in which the preheated length-direction stretched film is stretched in the width direction by a factor of at least 10 at a temperature in the range from Tm-10°C to the preheat temperature; a step in which the film is cooled at a temperature that is not greater than the width-direction stretching temperature when the width-direction stretching was completed and is in the range from Tm-80˚C to Tm-15˚C; and a heat treatment step.
Description
本発明は剛性と耐熱性に優れる二軸配向ポリプロピレンフィルムの製造方法に関する。詳しくは、包装袋としたときの袋形状を保持しやすく、しかもヒートシールしたときにシール部のシワが少ないため、包装袋に好適に用いることができる二軸配向ポリプロピレンフィルムの製造方法に関する。
The present invention relates to a method for producing a biaxially oriented polypropylene film having excellent rigidity and heat resistance. More specifically, the present invention relates to a method for producing a biaxially oriented polypropylene film that can be suitably used for a packaging bag because it is easy to maintain the shape of the packaging bag and there are few wrinkles in the sealed portion when heat-sealed.
二軸配向ポリプロピレンフィルムは、防湿性を有し、しかも必要な剛性、耐熱性を有するため、包装用途や工業用途に用いられている。近年、使用される用途が広がるにつれ、より高性能化が求められており、特に剛性の向上が期待されている。また、環境への配慮から、減容(フィルム厚みを薄く)しても強度を維持することも求められているが、そのためには、著しく剛性を向上させることが不可欠である。剛性を向上する手段として、ポリプロピレン樹脂の重合時の触媒やプロセス技術の改良により、そのポリプロピレン樹脂の結晶性や融点が向上することが知られているが、このような改善にもかかわらず、これまで十分な剛性を有する二軸配向ポリプロピレンフィルムはなかった。
Biaxially oriented polypropylene film is used for packaging and industrial applications because it has moisture resistance and the required rigidity and heat resistance. In recent years, as the applications used have expanded, higher performance has been required, and in particular, improvement in rigidity is expected. Further, from the consideration of the environment, it is required to maintain the strength even if the volume is reduced (the film thickness is thinned), but for that purpose, it is indispensable to remarkably improve the rigidity. As a means for improving the rigidity, it is known that the crystallinity and melting point of the polypropylene resin are improved by improving the catalyst and the process technology at the time of polymerization of the polypropylene resin. Until now, there was no biaxially oriented polypropylene film having sufficient rigidity.
二軸配向ポリプロピレンフィルムの製造工程において、幅方向に延伸後に、幅方向延伸時の温度以下でフィルムを弛緩しながら一段目の熱処理を行い、二段目で一段目温度~幅方向延伸温度で熱処理を行う方法(例えば、特許文献1等参照。)や、幅方向延伸後にさらに、長手方向に延伸を行う方法(例えば、特許文献2等参照。)が提案されている。しかしながら、特許文献2に記載のフィルムは剛性には優れるが、ヒートシール後はシール部にシワが生じやすく、耐熱性に劣るものであった。また、特許文献1記載のフィルムの配向は低く、剛性は十分でない。
In the manufacturing process of biaxially oriented polypropylene film, after stretching in the width direction, the first stage heat treatment is performed while relaxing the film at a temperature lower than the temperature at the time of width direction stretching, and the second stage heat treatment is performed at the first stage temperature to the width direction stretching temperature. (See, for example, Patent Document 1 and the like), and a method of further stretching in the longitudinal direction after stretching in the width direction (see, for example, Patent Document 2 and the like) have been proposed. However, although the film described in Patent Document 2 is excellent in rigidity, wrinkles are likely to occur in the sealed portion after heat sealing, and the heat resistance is inferior. Further, the orientation of the film described in Patent Document 1 is low, and the rigidity is not sufficient.
本発明の課題は、上述した問題点を解決することにある。すなわち、フィルムの剛性に優れる二軸配向ポリプロピレンフィルムに関し、さらにフィルムの剛性と150℃もの高温での耐熱性に優れる二軸配向ポリプロピレンフィルムの製造方法に関する。詳しくは、包装袋としたときの袋形状を保持しやすく、しかもヒートシールしたときにシール部及びその周りにシワが少ない二軸配向ポリプロピレンフィルムの製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems. That is, the present invention relates to a biaxially oriented polypropylene film having excellent film rigidity, and further relates to a method for producing a biaxially oriented polypropylene film having excellent film rigidity and heat resistance at a high temperature of 150 ° C. More specifically, it is an object of the present invention to provide a method for producing a biaxially oriented polypropylene film which can easily maintain the shape of a packaging bag and has less wrinkles in and around the sealed portion when heat-sealed.
本発明者らが、かかる目的を達成するために鋭意検討した結果、下記の製造方法により、フィルムの剛性に優れる二軸配向ポリプロピレンフィルム、さらにフィルムの剛性と150℃もの高温での耐熱性に優れる二軸配向ポリプロピレンフィルムを得ることができることを見出した。
すなわち本発明は、メソペンタッド分率が97.0%以上であるポリプロピレン樹脂を含むポリプロピレン樹脂組成物を押出して未延伸シートを得る工程、未延伸シートを長手方向に延伸する工程、長手方向延伸フィルムをTm~Tm+25℃の範囲の予熱温度に加熱する予熱工程、予熱された長手方向延伸フィルムをTm-10℃以上、予熱温度以下の温度で幅方向に10倍以上の倍率で延伸する工程、幅方向延伸終了時に幅方向延伸温度以下で、かつTm-80℃以上、Tm-15℃以下の温度フィルムを冷却する工程、及び熱処理工程を順に含む二軸配向ポリプロピレンフィルムの製造方法である。 As a result of diligent studies to achieve such an object, the present inventors have made a biaxially oriented polypropylene film having excellent film rigidity, and further excellent film rigidity and heat resistance at a high temperature of 150 ° C. by the following manufacturing method. It has been found that a biaxially oriented polypropylene film can be obtained.
That is, the present invention provides a step of extruding a polypropylene resin composition containing a polypropylene resin having a mesopentad fraction of 97.0% or more to obtain an unstretched sheet, a step of stretching the unstretched sheet in the longitudinal direction, and a longitudinally stretched film. Preheating step of heating to a preheating temperature in the range of Tm to Tm + 25 ° C, step of stretching the preheated longitudinally stretched film at a temperature of Tm-10 ° C or higher and lower than the preheating temperature at a magnification of 10 times or more in the width direction, width direction. This is a method for producing a biaxially oriented polypropylene film, which in turn includes a step of cooling a temperature film having a stretching temperature of Tm-80 ° C. or higher and Tm-15 ° C. or lower at the end of stretching, and a heat treatment step.
すなわち本発明は、メソペンタッド分率が97.0%以上であるポリプロピレン樹脂を含むポリプロピレン樹脂組成物を押出して未延伸シートを得る工程、未延伸シートを長手方向に延伸する工程、長手方向延伸フィルムをTm~Tm+25℃の範囲の予熱温度に加熱する予熱工程、予熱された長手方向延伸フィルムをTm-10℃以上、予熱温度以下の温度で幅方向に10倍以上の倍率で延伸する工程、幅方向延伸終了時に幅方向延伸温度以下で、かつTm-80℃以上、Tm-15℃以下の温度フィルムを冷却する工程、及び熱処理工程を順に含む二軸配向ポリプロピレンフィルムの製造方法である。 As a result of diligent studies to achieve such an object, the present inventors have made a biaxially oriented polypropylene film having excellent film rigidity, and further excellent film rigidity and heat resistance at a high temperature of 150 ° C. by the following manufacturing method. It has been found that a biaxially oriented polypropylene film can be obtained.
That is, the present invention provides a step of extruding a polypropylene resin composition containing a polypropylene resin having a mesopentad fraction of 97.0% or more to obtain an unstretched sheet, a step of stretching the unstretched sheet in the longitudinal direction, and a longitudinally stretched film. Preheating step of heating to a preheating temperature in the range of Tm to Tm + 25 ° C, step of stretching the preheated longitudinally stretched film at a temperature of Tm-10 ° C or higher and lower than the preheating temperature at a magnification of 10 times or more in the width direction, width direction. This is a method for producing a biaxially oriented polypropylene film, which in turn includes a step of cooling a temperature film having a stretching temperature of Tm-80 ° C. or higher and Tm-15 ° C. or lower at the end of stretching, and a heat treatment step.
この場合において、前記二軸配向ポリプロピレンフィルムを構成するポリプロピレン樹脂の結晶化温度が105℃以上であり、融点が160℃以上であることが好適である。
In this case, it is preferable that the polypropylene resin constituting the biaxially oriented polypropylene film has a crystallization temperature of 105 ° C. or higher and a melting point of 160 ° C. or higher.
また、この場合において、前記二軸配向ポリプロピレンフィルムを構成するポリプロピレン樹脂のメルトフローレートが4.0g/10分以上であることが好適である。
Further, in this case, it is preferable that the melt flow rate of the polypropylene resin constituting the biaxially oriented polypropylene film is 4.0 g / 10 minutes or more.
さらにまた、この場合において、前記二軸配向ポリプロピレンフィルムを構成するポリプロピレン樹脂の分子量10万以下の成分量が35質量%以上であることが好適である。
Furthermore, in this case, it is preferable that the component amount of the polypropylene resin constituting the biaxially oriented polypropylene film having a molecular weight of 100,000 or less is 35% by mass or more.
本発明の二軸配向ポリプロピレンフィルムの製造方法を適用することにより、剛性が高いため、包装袋としたときの袋形状を保持しやすいため、包装袋に好適に用いることができる二軸配向ポリプロピレンフィルムを得ることができる。さらに剛性が高く、150℃もの高温での耐熱性に優れるため、包装袋としたときの袋形状を保持しやすく、しかもヒートシールしたときにシール部のシワが少ないため、包装袋に好適に用いることができる二軸配向ポリプロピレンフィルムを得ることができる。
また、その二軸配向ポリプロピレンフィルムは剛性にも優れ、フィルムの厚みを薄くしても強度が維持することができるとともに、より高い剛性が必要とされる用途にも好適に用いることができる。 By applying the method for producing a biaxially oriented polypropylene film of the present invention, since the rigidity is high, it is easy to maintain the bag shape when it is used as a packaging bag, so that the biaxially oriented polypropylene film can be suitably used for a packaging bag. Can be obtained. Furthermore, it has high rigidity and excellent heat resistance at a high temperature of 150 ° C, so it is easy to maintain the bag shape when it is made into a packaging bag, and there are few wrinkles in the sealed part when it is heat-sealed, so it is suitable for packaging bags. A biaxially oriented polypropylene film that can be obtained can be obtained.
Further, the biaxially oriented polypropylene film has excellent rigidity, and the strength can be maintained even if the thickness of the film is reduced, and the biaxially oriented polypropylene film can be suitably used for applications requiring higher rigidity.
また、その二軸配向ポリプロピレンフィルムは剛性にも優れ、フィルムの厚みを薄くしても強度が維持することができるとともに、より高い剛性が必要とされる用途にも好適に用いることができる。 By applying the method for producing a biaxially oriented polypropylene film of the present invention, since the rigidity is high, it is easy to maintain the bag shape when it is used as a packaging bag, so that the biaxially oriented polypropylene film can be suitably used for a packaging bag. Can be obtained. Furthermore, it has high rigidity and excellent heat resistance at a high temperature of 150 ° C, so it is easy to maintain the bag shape when it is made into a packaging bag, and there are few wrinkles in the sealed part when it is heat-sealed, so it is suitable for packaging bags. A biaxially oriented polypropylene film that can be obtained can be obtained.
Further, the biaxially oriented polypropylene film has excellent rigidity, and the strength can be maintained even if the thickness of the film is reduced, and the biaxially oriented polypropylene film can be suitably used for applications requiring higher rigidity.
以下、さらに詳しく本発明の二軸配向ポリプロピレンフィルムの製造方法について説明する。
Hereinafter, the method for producing the biaxially oriented polypropylene film of the present invention will be described in more detail.
本発明により得られる二軸配向ポリプロピレンフィルムは、ポリプロピレン樹脂を主成分とするポリプロピレン樹脂組成物からなる。なお、「主成分」とは、ポリプロピレン樹脂がポリプロピレン樹脂組成物中に占める割合が90質量%以上であることを意味し、より好ましくは93質量%以上、さらに好ましくは95質量%以上、特に好ましくは97質量%以上である。
The biaxially oriented polypropylene film obtained by the present invention comprises a polypropylene resin composition containing a polypropylene resin as a main component. The "main component" means that the proportion of the polypropylene resin in the polypropylene resin composition is 90% by mass or more, more preferably 93% by mass or more, still more preferably 95% by mass or more, and particularly preferably. Is 97% by mass or more.
(ポリプロピレン樹脂)
本発明に用いられるポリプロピレン樹脂は、ポリプロピレン単独重合体や、エチレンおよび/または炭素数4以上のα-オレフィンとの共重合体を用いることができる。実質的にエチレンおよび/または炭素数4以上のα-オレフィンを含まないプロピレン単独重合体が好ましく、エチレンおよび/または炭素数4以上のα-オレフィン成分を含む場合であっても、エチレンおよび/または炭素数4以上のα-オレフィン成分量は1モル%以下であるのが好ましい。成分量の上限は、より好ましくは0.5モル%であり、さらに好ましくは0.3モル%であり、特に好ましくは0.1モル%である。上記範囲であると結晶性が向上しやすい。このような共重合体を構成する炭素数4以上のα-オレフィン成分として、例えば、1-ブテン、1-ペンテン、3-メチルペンテンー1、3-メチルブテンー1、1-ヘキセン、4-メチルペンテンー1、5-エチルヘキセンー1、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセンなどが挙げられる。ポリプロピレン樹脂は異なる2種以上のポリプロピレン単独重合体や、エチレンおよび/または炭素数4以上のα-オレフィンとの共重合体、及びこれらの混合物を用いることができる。 (Polypropylene resin)
As the polypropylene resin used in the present invention, a polypropylene homopolymer or a copolymer with ethylene and / or an α-olefin having 4 or more carbon atoms can be used. A propylene homopolymer substantially free of ethylene and / or an α-olefin having 4 or more carbon atoms is preferable, and even when ethylene and / or an α-olefin component having 4 or more carbon atoms is contained, ethylene and / or The amount of the α-olefin component having 4 or more carbon atoms is preferably 1 mol% or less. The upper limit of the amount of the component is more preferably 0.5 mol%, further preferably 0.3 mol%, and particularly preferably 0.1 mol%. Within the above range, crystallinity tends to improve. Examples of the α-olefin component having 4 or more carbon atoms constituting such a copolymer include 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene-1, 1-hexene, and 4-methylpen. Examples thereof include ten-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicosene and the like. As the polypropylene resin, two or more different polypropylene homopolymers, a copolymer with ethylene and / or an α-olefin having 4 or more carbon atoms, and a mixture thereof can be used.
本発明に用いられるポリプロピレン樹脂は、ポリプロピレン単独重合体や、エチレンおよび/または炭素数4以上のα-オレフィンとの共重合体を用いることができる。実質的にエチレンおよび/または炭素数4以上のα-オレフィンを含まないプロピレン単独重合体が好ましく、エチレンおよび/または炭素数4以上のα-オレフィン成分を含む場合であっても、エチレンおよび/または炭素数4以上のα-オレフィン成分量は1モル%以下であるのが好ましい。成分量の上限は、より好ましくは0.5モル%であり、さらに好ましくは0.3モル%であり、特に好ましくは0.1モル%である。上記範囲であると結晶性が向上しやすい。このような共重合体を構成する炭素数4以上のα-オレフィン成分として、例えば、1-ブテン、1-ペンテン、3-メチルペンテンー1、3-メチルブテンー1、1-ヘキセン、4-メチルペンテンー1、5-エチルヘキセンー1、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセンなどが挙げられる。ポリプロピレン樹脂は異なる2種以上のポリプロピレン単独重合体や、エチレンおよび/または炭素数4以上のα-オレフィンとの共重合体、及びこれらの混合物を用いることができる。 (Polypropylene resin)
As the polypropylene resin used in the present invention, a polypropylene homopolymer or a copolymer with ethylene and / or an α-olefin having 4 or more carbon atoms can be used. A propylene homopolymer substantially free of ethylene and / or an α-olefin having 4 or more carbon atoms is preferable, and even when ethylene and / or an α-olefin component having 4 or more carbon atoms is contained, ethylene and / or The amount of the α-olefin component having 4 or more carbon atoms is preferably 1 mol% or less. The upper limit of the amount of the component is more preferably 0.5 mol%, further preferably 0.3 mol%, and particularly preferably 0.1 mol%. Within the above range, crystallinity tends to improve. Examples of the α-olefin component having 4 or more carbon atoms constituting such a copolymer include 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene-1, 1-hexene, and 4-methylpen. Examples thereof include ten-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicosene and the like. As the polypropylene resin, two or more different polypropylene homopolymers, a copolymer with ethylene and / or an α-olefin having 4 or more carbon atoms, and a mixture thereof can be used.
(立体規則性)
本発明に用いられるポリプロピレン樹脂の立体規則性の指標であるメソペンタッド分率([mmmm]%)は、97.0~99.9%の範囲内であることが好ましく、97.5~99.7%の範囲内であることがより好ましく、98.0~99.5%の範囲内であるとさらに好ましく、98.5~99.3%の範囲内であると特に好ましい。
97.0%以上であると、ポリプロピレン樹脂の結晶性が高まり、フィルムにおける結晶の融点、結晶化度、結晶配向度が向上し、剛性と高温での耐熱性が得られやすい。99.9%以下であるとポリプロピレン製造の点でコストを抑えやすく、製膜時に破断しにくくなる。99.5%以下であることがより好ましい。メソペンタッド分率は核磁気共鳴法(所謂NMR法)で測定される。
ポリプロピレン樹脂のメソペンタッド分率を上述の範囲内とするためには、得られたポリプロピレン樹脂パウダーをn-ヘプタンなどの溶媒で洗浄する方法や、触媒および/または助触媒の選定、ポリプロピレン樹脂組成物の成分の選定を適宜行う方法などが好ましく採用される。 (Tacticity)
The mesopentad fraction ([mmmm]%), which is an index of the stereoregularity of the polypropylene resin used in the present invention, is preferably in the range of 97.0 to 99.9%, preferably 97.5 to 99.7. It is more preferably in the range of%, further preferably in the range of 98.0 to 99.5%, and particularly preferably in the range of 98.5 to 99.3%.
When it is 97.0% or more, the crystallinity of the polypropylene resin is enhanced, the melting point, crystallinity, and crystallinity of the crystals in the film are improved, and rigidity and heat resistance at high temperature can be easily obtained. When it is 99.9% or less, it is easy to suppress the cost in terms of polypropylene production, and it is difficult to break during film formation. More preferably, it is 99.5% or less. The mesopentad fraction is measured by a nuclear magnetic resonance method (so-called NMR method).
In order to keep the mesopentad fraction of the polypropylene resin within the above range, a method of washing the obtained polypropylene resin powder with a solvent such as n-heptane, selection of a catalyst and / or a co-catalyst, and a polypropylene resin composition A method of appropriately selecting the components is preferably adopted.
本発明に用いられるポリプロピレン樹脂の立体規則性の指標であるメソペンタッド分率([mmmm]%)は、97.0~99.9%の範囲内であることが好ましく、97.5~99.7%の範囲内であることがより好ましく、98.0~99.5%の範囲内であるとさらに好ましく、98.5~99.3%の範囲内であると特に好ましい。
97.0%以上であると、ポリプロピレン樹脂の結晶性が高まり、フィルムにおける結晶の融点、結晶化度、結晶配向度が向上し、剛性と高温での耐熱性が得られやすい。99.9%以下であるとポリプロピレン製造の点でコストを抑えやすく、製膜時に破断しにくくなる。99.5%以下であることがより好ましい。メソペンタッド分率は核磁気共鳴法(所謂NMR法)で測定される。
ポリプロピレン樹脂のメソペンタッド分率を上述の範囲内とするためには、得られたポリプロピレン樹脂パウダーをn-ヘプタンなどの溶媒で洗浄する方法や、触媒および/または助触媒の選定、ポリプロピレン樹脂組成物の成分の選定を適宜行う方法などが好ましく採用される。 (Tacticity)
The mesopentad fraction ([mmmm]%), which is an index of the stereoregularity of the polypropylene resin used in the present invention, is preferably in the range of 97.0 to 99.9%, preferably 97.5 to 99.7. It is more preferably in the range of%, further preferably in the range of 98.0 to 99.5%, and particularly preferably in the range of 98.5 to 99.3%.
When it is 97.0% or more, the crystallinity of the polypropylene resin is enhanced, the melting point, crystallinity, and crystallinity of the crystals in the film are improved, and rigidity and heat resistance at high temperature can be easily obtained. When it is 99.9% or less, it is easy to suppress the cost in terms of polypropylene production, and it is difficult to break during film formation. More preferably, it is 99.5% or less. The mesopentad fraction is measured by a nuclear magnetic resonance method (so-called NMR method).
In order to keep the mesopentad fraction of the polypropylene resin within the above range, a method of washing the obtained polypropylene resin powder with a solvent such as n-heptane, selection of a catalyst and / or a co-catalyst, and a polypropylene resin composition A method of appropriately selecting the components is preferably adopted.
(融解温度)
本発明の二軸配向ポリプロピレンフィルムを構成する上記ポリプロピレン樹脂のDSCで測定される融解温度(Tm)の下限は好ましくは160℃であり、より好ましくは161℃であり、さらに好ましくは162℃であり、よりさらに好ましくは163℃である。Tmが160℃以上であると剛性と高温での耐熱性が得られやすい。
Tmの上限は、好ましくは170℃であり、より好ましくは169℃であり、さらに好ましくは168℃であり、よりさらに好ましくは167℃であり、特に好ましくは166℃である。Tmが170℃以下であると、ポリプロピレン製造の点でコストアップを抑制しやすかったり、製膜時に破断しにくくなる。前述のポリプロピレン樹脂に結晶核剤を配合することによって、融解温度をより上げることもできる。
Tmとは、1~10mgのサンプルをアルミパンに詰めて示差走査熱量計(DSC)にセットし、窒素雰囲気下で、230℃で5分間融解し、走査速度-10℃/分で30℃まで降温した後、5分間保持し、走査速度10℃/分で昇温した際に観察される、融解にともなう吸熱ピークの主たるピーク温度である。 (Melting temperature)
The lower limit of the melting temperature (Tm) measured by DSC of the polypropylene resin constituting the biaxially oriented polypropylene film of the present invention is preferably 160 ° C., more preferably 161 ° C., and further preferably 162 ° C. , More preferably 163 ° C. When Tm is 160 ° C. or higher, rigidity and heat resistance at high temperature can be easily obtained.
The upper limit of Tm is preferably 170 ° C., more preferably 169 ° C., even more preferably 168 ° C., even more preferably 167 ° C., and particularly preferably 166 ° C. When Tm is 170 ° C. or lower, it is easy to suppress an increase in cost in terms of polypropylene production, and it is difficult to break during film formation. The melting temperature can be further raised by blending the crystal nucleating agent with the polypropylene resin described above.
Tm is a sample of 1 to 10 mg packed in an aluminum pan, set in a differential scanning calorimeter (DSC), melted at 230 ° C for 5 minutes in a nitrogen atmosphere, and up to 30 ° C at a scanning speed of -10 ° C / min. This is the main peak temperature of the endothermic peak associated with melting, which is observed when the temperature is lowered, held for 5 minutes, and the temperature is raised at a scanning speed of 10 ° C./min.
本発明の二軸配向ポリプロピレンフィルムを構成する上記ポリプロピレン樹脂のDSCで測定される融解温度(Tm)の下限は好ましくは160℃であり、より好ましくは161℃であり、さらに好ましくは162℃であり、よりさらに好ましくは163℃である。Tmが160℃以上であると剛性と高温での耐熱性が得られやすい。
Tmの上限は、好ましくは170℃であり、より好ましくは169℃であり、さらに好ましくは168℃であり、よりさらに好ましくは167℃であり、特に好ましくは166℃である。Tmが170℃以下であると、ポリプロピレン製造の点でコストアップを抑制しやすかったり、製膜時に破断しにくくなる。前述のポリプロピレン樹脂に結晶核剤を配合することによって、融解温度をより上げることもできる。
Tmとは、1~10mgのサンプルをアルミパンに詰めて示差走査熱量計(DSC)にセットし、窒素雰囲気下で、230℃で5分間融解し、走査速度-10℃/分で30℃まで降温した後、5分間保持し、走査速度10℃/分で昇温した際に観察される、融解にともなう吸熱ピークの主たるピーク温度である。 (Melting temperature)
The lower limit of the melting temperature (Tm) measured by DSC of the polypropylene resin constituting the biaxially oriented polypropylene film of the present invention is preferably 160 ° C., more preferably 161 ° C., and further preferably 162 ° C. , More preferably 163 ° C. When Tm is 160 ° C. or higher, rigidity and heat resistance at high temperature can be easily obtained.
The upper limit of Tm is preferably 170 ° C., more preferably 169 ° C., even more preferably 168 ° C., even more preferably 167 ° C., and particularly preferably 166 ° C. When Tm is 170 ° C. or lower, it is easy to suppress an increase in cost in terms of polypropylene production, and it is difficult to break during film formation. The melting temperature can be further raised by blending the crystal nucleating agent with the polypropylene resin described above.
Tm is a sample of 1 to 10 mg packed in an aluminum pan, set in a differential scanning calorimeter (DSC), melted at 230 ° C for 5 minutes in a nitrogen atmosphere, and up to 30 ° C at a scanning speed of -10 ° C / min. This is the main peak temperature of the endothermic peak associated with melting, which is observed when the temperature is lowered, held for 5 minutes, and the temperature is raised at a scanning speed of 10 ° C./min.
(結晶化温度)
本発明の二軸配向ポリプロピレンフィルムを構成する上記ポリプロピレン樹脂のDSCで測定される結晶化温度(Tc)の下限は105℃であり、好ましくは108℃であり、より好ましくは110℃である。Tcが105℃以上であると、幅方向延伸とそれに続く冷却工程において結晶化が進みやすく、剛性と高温での耐熱性が得られやすい。
Tcの上限は、好ましくは135℃であり、より好ましくは133℃であり、さらに好ましくは132℃であり、よりさらに好ましくは130℃であり、特に好ましくは128℃であり、最も好ましくは127℃である。Tcが135℃以下であるとポリプロピレン製造の点でコストアップしにくかったり、製膜時に破断しにくくなる。
Tcとは、1~10mgのサンプルをアルミパンに詰めてDSCにセットし、窒素雰囲気下で、230℃で5分間融解し、走査速度-10℃/分で30℃まで降温したときに観察される発熱ピークの主たるピーク温度である。
前述のポリプロピレン樹脂に結晶核剤を配合することによって、結晶化温度をより上げることもできる。 (Crystallization temperature)
The lower limit of the crystallization temperature (Tc) measured by DSC of the polypropylene resin constituting the biaxially oriented polypropylene film of the present invention is 105 ° C., preferably 108 ° C., and more preferably 110 ° C. When Tc is 105 ° C. or higher, crystallization is likely to proceed in the widthwise stretching and subsequent cooling steps, and rigidity and heat resistance at high temperatures are likely to be obtained.
The upper limit of Tc is preferably 135 ° C., more preferably 133 ° C., still more preferably 132 ° C., even more preferably 130 ° C., particularly preferably 128 ° C., and most preferably 127 ° C. Is. If the Tc is 135 ° C. or lower, it is difficult to increase the cost in terms of polypropylene production, and it is difficult to break during film formation.
Tc is observed when a sample of 1 to 10 mg is packed in an aluminum pan, set in a DSC, melted at 230 ° C. for 5 minutes in a nitrogen atmosphere, and cooled to 30 ° C. at a scanning speed of -10 ° C./min. This is the main peak temperature of the exothermic peak.
The crystallization temperature can be further raised by blending the crystal nucleating agent with the polypropylene resin described above.
本発明の二軸配向ポリプロピレンフィルムを構成する上記ポリプロピレン樹脂のDSCで測定される結晶化温度(Tc)の下限は105℃であり、好ましくは108℃であり、より好ましくは110℃である。Tcが105℃以上であると、幅方向延伸とそれに続く冷却工程において結晶化が進みやすく、剛性と高温での耐熱性が得られやすい。
Tcの上限は、好ましくは135℃であり、より好ましくは133℃であり、さらに好ましくは132℃であり、よりさらに好ましくは130℃であり、特に好ましくは128℃であり、最も好ましくは127℃である。Tcが135℃以下であるとポリプロピレン製造の点でコストアップしにくかったり、製膜時に破断しにくくなる。
Tcとは、1~10mgのサンプルをアルミパンに詰めてDSCにセットし、窒素雰囲気下で、230℃で5分間融解し、走査速度-10℃/分で30℃まで降温したときに観察される発熱ピークの主たるピーク温度である。
前述のポリプロピレン樹脂に結晶核剤を配合することによって、結晶化温度をより上げることもできる。 (Crystallization temperature)
The lower limit of the crystallization temperature (Tc) measured by DSC of the polypropylene resin constituting the biaxially oriented polypropylene film of the present invention is 105 ° C., preferably 108 ° C., and more preferably 110 ° C. When Tc is 105 ° C. or higher, crystallization is likely to proceed in the widthwise stretching and subsequent cooling steps, and rigidity and heat resistance at high temperatures are likely to be obtained.
The upper limit of Tc is preferably 135 ° C., more preferably 133 ° C., still more preferably 132 ° C., even more preferably 130 ° C., particularly preferably 128 ° C., and most preferably 127 ° C. Is. If the Tc is 135 ° C. or lower, it is difficult to increase the cost in terms of polypropylene production, and it is difficult to break during film formation.
Tc is observed when a sample of 1 to 10 mg is packed in an aluminum pan, set in a DSC, melted at 230 ° C. for 5 minutes in a nitrogen atmosphere, and cooled to 30 ° C. at a scanning speed of -10 ° C./min. This is the main peak temperature of the exothermic peak.
The crystallization temperature can be further raised by blending the crystal nucleating agent with the polypropylene resin described above.
(メルトフローレート)
本発明の二軸配向ポリプロピレンフィルムを構成する上記ポリプロピレン樹脂のメルトフローレート(MFR)は、JIS K 7210(1995)の条件M(230℃、2.16kgf)に準拠して測定した場合において、4.0~30g/10分であることが好ましく、4.5~25g/10分であるとより好ましく、4.8~22g/10分であるとさらに好ましく、5.0~20g/10分であると特に好ましく、6.0~20g/10分であると最も好ましい。
ポリプロピレン樹脂のメルトフローレート(MFR)が4.0g/10分以上であると、熱収縮率が低い二軸配向ポリプロピレンフィルムを得られやすい。
また、ポリプロピレン樹脂のメルトフローレート(MFR)が30g/10分以下であると、フィルムの製膜性を維持しやすい。 (Melt flow rate)
The melt flow rate (MFR) of the polypropylene resin constituting the biaxially oriented polypropylene film of the present invention is 4 when measured in accordance with the condition M (230 ° C., 2.16 kgf) of JIS K 7210 (1995). It is preferably 0.0 to 30 g / 10 minutes, more preferably 4.5 to 25 g / 10 minutes, further preferably 4.8 to 22 g / 10 minutes, and 5.0 to 20 g / 10 minutes. It is particularly preferable to have it, and it is most preferably 6.0 to 20 g / 10 minutes.
When the melt flow rate (MFR) of the polypropylene resin is 4.0 g / 10 minutes or more, it is easy to obtain a biaxially oriented polypropylene film having a low heat shrinkage rate.
Further, when the melt flow rate (MFR) of the polypropylene resin is 30 g / 10 minutes or less, it is easy to maintain the film-forming property of the film.
本発明の二軸配向ポリプロピレンフィルムを構成する上記ポリプロピレン樹脂のメルトフローレート(MFR)は、JIS K 7210(1995)の条件M(230℃、2.16kgf)に準拠して測定した場合において、4.0~30g/10分であることが好ましく、4.5~25g/10分であるとより好ましく、4.8~22g/10分であるとさらに好ましく、5.0~20g/10分であると特に好ましく、6.0~20g/10分であると最も好ましい。
ポリプロピレン樹脂のメルトフローレート(MFR)が4.0g/10分以上であると、熱収縮率が低い二軸配向ポリプロピレンフィルムを得られやすい。
また、ポリプロピレン樹脂のメルトフローレート(MFR)が30g/10分以下であると、フィルムの製膜性を維持しやすい。 (Melt flow rate)
The melt flow rate (MFR) of the polypropylene resin constituting the biaxially oriented polypropylene film of the present invention is 4 when measured in accordance with the condition M (230 ° C., 2.16 kgf) of JIS K 7210 (1995). It is preferably 0.0 to 30 g / 10 minutes, more preferably 4.5 to 25 g / 10 minutes, further preferably 4.8 to 22 g / 10 minutes, and 5.0 to 20 g / 10 minutes. It is particularly preferable to have it, and it is most preferably 6.0 to 20 g / 10 minutes.
When the melt flow rate (MFR) of the polypropylene resin is 4.0 g / 10 minutes or more, it is easy to obtain a biaxially oriented polypropylene film having a low heat shrinkage rate.
Further, when the melt flow rate (MFR) of the polypropylene resin is 30 g / 10 minutes or less, it is easy to maintain the film-forming property of the film.
フィルム特性の観点からは、フィルムを構成するポリプロピレン樹脂のメルトフローレート(MFR)(230℃、2.16kgf)の下限を好ましくは5.0g/10分、より好ましくは5.5g/10分、さらに好ましくは6.0g/10分、特に好ましくは6.3g/10分、最も好ましくは6.5g/10分とするのが良い。
ポリプロピレン樹脂のメルトフローレート(MFR)が5.0g/10分以上であると、フィルムを構成するポリプロピレン樹脂の低分子量成分量が多くなるため、後述するフィルム製膜工程での幅方向延伸工程を採用することにより、ポリプロピレン樹脂の配向結晶化がより促進されること、及びフィルムにおける結晶化度がより高まりやすくなることに加えて、非晶部分のポリプロピレン分子鎖同士の絡み合いがより少なくなり、耐熱性をより高めやすい。
ポリプロピレン樹脂のメルトフローレート(MFR)を上記の範囲内とするためには、ポリプロピレン樹脂の平均分子量や分子量分布を制御する方法などが好ましく採用される。 From the viewpoint of film characteristics, the lower limit of the melt flow rate (MFR) (230 ° C., 2.16 kgf) of the polypropylene resin constituting the film is preferably 5.0 g / 10 minutes, more preferably 5.5 g / 10 minutes. It is more preferably 6.0 g / 10 minutes, particularly preferably 6.3 g / 10 minutes, and most preferably 6.5 g / 10 minutes.
When the melt flow rate (MFR) of the polypropylene resin is 5.0 g / 10 minutes or more, the amount of low molecular weight components of the polypropylene resin constituting the film increases. By adopting it, the orientation crystallization of the polypropylene resin is further promoted, the degree of crystallization in the film is more likely to be increased, and the polypropylene molecular chains in the amorphous portion are less entangled with each other, resulting in heat resistance. It is easier to improve sex.
In order to keep the melt flow rate (MFR) of the polypropylene resin within the above range, a method of controlling the average molecular weight and the molecular weight distribution of the polypropylene resin is preferably adopted.
ポリプロピレン樹脂のメルトフローレート(MFR)が5.0g/10分以上であると、フィルムを構成するポリプロピレン樹脂の低分子量成分量が多くなるため、後述するフィルム製膜工程での幅方向延伸工程を採用することにより、ポリプロピレン樹脂の配向結晶化がより促進されること、及びフィルムにおける結晶化度がより高まりやすくなることに加えて、非晶部分のポリプロピレン分子鎖同士の絡み合いがより少なくなり、耐熱性をより高めやすい。
ポリプロピレン樹脂のメルトフローレート(MFR)を上記の範囲内とするためには、ポリプロピレン樹脂の平均分子量や分子量分布を制御する方法などが好ましく採用される。 From the viewpoint of film characteristics, the lower limit of the melt flow rate (MFR) (230 ° C., 2.16 kgf) of the polypropylene resin constituting the film is preferably 5.0 g / 10 minutes, more preferably 5.5 g / 10 minutes. It is more preferably 6.0 g / 10 minutes, particularly preferably 6.3 g / 10 minutes, and most preferably 6.5 g / 10 minutes.
When the melt flow rate (MFR) of the polypropylene resin is 5.0 g / 10 minutes or more, the amount of low molecular weight components of the polypropylene resin constituting the film increases. By adopting it, the orientation crystallization of the polypropylene resin is further promoted, the degree of crystallization in the film is more likely to be increased, and the polypropylene molecular chains in the amorphous portion are less entangled with each other, resulting in heat resistance. It is easier to improve sex.
In order to keep the melt flow rate (MFR) of the polypropylene resin within the above range, a method of controlling the average molecular weight and the molecular weight distribution of the polypropylene resin is preferably adopted.
すなわち、本発明のフィルムを構成するポリプロピレン樹脂のGPC積算カーブにおける分子量10万以下の成分の量の下限は好ましくは35質量%であり、より好ましくは38質量%であり、さらに好ましくは40質量%であり、特に好ましくは41質量%であり、最も好ましくは42質量%である。
GPC積算カーブでの分子量10万以下の成分の量の上限は、好ましくは65質量%であり、より好ましくは60質量%であり、さらに好ましくは58質量%である。GPC積算カーブでの分子量10万以下の成分の量が65質量%以下であるとフィルム強度が低下しにくい。
このとき、緩和時間の長い高分子量成分や長鎖分岐成分を含むと、ポリプロピレン樹脂に含まれる分子量10万以下の成分の量を、全体の粘度を大きく変えずに、調整しやすくなるので、剛性や熱収縮にあまり影響させずに、製膜性を改善しやすい。 That is, the lower limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve of the polypropylene resin constituting the film of the present invention is preferably 35% by mass, more preferably 38% by mass, and further preferably 40% by mass. It is particularly preferably 41% by mass, and most preferably 42% by mass.
The upper limit of the amount of the component having a molecular weight of 100,000 or less on the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, and further preferably 58% by mass. When the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is 65% by mass or less, the film strength is unlikely to decrease.
At this time, if a high molecular weight component or a long chain branched component having a long relaxation time is included, the amount of the component having a molecular weight of 100,000 or less contained in the polypropylene resin can be easily adjusted without significantly changing the overall viscosity, so that the rigidity is increased. It is easy to improve the film-forming property without affecting the heat shrinkage.
GPC積算カーブでの分子量10万以下の成分の量の上限は、好ましくは65質量%であり、より好ましくは60質量%であり、さらに好ましくは58質量%である。GPC積算カーブでの分子量10万以下の成分の量が65質量%以下であるとフィルム強度が低下しにくい。
このとき、緩和時間の長い高分子量成分や長鎖分岐成分を含むと、ポリプロピレン樹脂に含まれる分子量10万以下の成分の量を、全体の粘度を大きく変えずに、調整しやすくなるので、剛性や熱収縮にあまり影響させずに、製膜性を改善しやすい。 That is, the lower limit of the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve of the polypropylene resin constituting the film of the present invention is preferably 35% by mass, more preferably 38% by mass, and further preferably 40% by mass. It is particularly preferably 41% by mass, and most preferably 42% by mass.
The upper limit of the amount of the component having a molecular weight of 100,000 or less on the GPC integration curve is preferably 65% by mass, more preferably 60% by mass, and further preferably 58% by mass. When the amount of the component having a molecular weight of 100,000 or less in the GPC integration curve is 65% by mass or less, the film strength is unlikely to decrease.
At this time, if a high molecular weight component or a long chain branched component having a long relaxation time is included, the amount of the component having a molecular weight of 100,000 or less contained in the polypropylene resin can be easily adjusted without significantly changing the overall viscosity, so that the rigidity is increased. It is easy to improve the film-forming property without affecting the heat shrinkage.
(分子量分布)
本発明に用いるポリプロピレン樹脂は、分子量分布の広さの指標である質量平均分子量(Mw)/数平均分子量(Mn)の下限が、好ましくは3.5であり、より好ましくは4.0であり、さらに好ましくは4.5であり、特に好ましくは5.0である。Mw/Mnの上限は、好ましくは30であり、より好ましくは25であり、さらに好ましくは23であり、特に好ましくは21であり、最も好ましくは20である。
Mw/Mnは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて得ることができる。Mw/Mnが上記範囲であると、分子量10万以下の成分の量を多くすることが容易である。 (Molecular weight distribution)
The polypropylene resin used in the present invention has a lower limit of mass average molecular weight (Mw) / number average molecular weight (Mn), which is an index of the breadth of molecular weight distribution, preferably 3.5, more preferably 4.0. , More preferably 4.5, and particularly preferably 5.0. The upper limit of Mw / Mn is preferably 30, more preferably 25, still more preferably 23, particularly preferably 21 and most preferably 20.
Mw / Mn can be obtained using gel permeation chromatography (GPC). When Mw / Mn is in the above range, it is easy to increase the amount of the component having a molecular weight of 100,000 or less.
本発明に用いるポリプロピレン樹脂は、分子量分布の広さの指標である質量平均分子量(Mw)/数平均分子量(Mn)の下限が、好ましくは3.5であり、より好ましくは4.0であり、さらに好ましくは4.5であり、特に好ましくは5.0である。Mw/Mnの上限は、好ましくは30であり、より好ましくは25であり、さらに好ましくは23であり、特に好ましくは21であり、最も好ましくは20である。
Mw/Mnは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて得ることができる。Mw/Mnが上記範囲であると、分子量10万以下の成分の量を多くすることが容易である。 (Molecular weight distribution)
The polypropylene resin used in the present invention has a lower limit of mass average molecular weight (Mw) / number average molecular weight (Mn), which is an index of the breadth of molecular weight distribution, preferably 3.5, more preferably 4.0. , More preferably 4.5, and particularly preferably 5.0. The upper limit of Mw / Mn is preferably 30, more preferably 25, still more preferably 23, particularly preferably 21 and most preferably 20.
Mw / Mn can be obtained using gel permeation chromatography (GPC). When Mw / Mn is in the above range, it is easy to increase the amount of the component having a molecular weight of 100,000 or less.
なお、ポリプロピレン樹脂の分子量分布は、異なる分子量の成分を多段階に一連のプラントで重合したり、異なる分子量の成分をオフラインで混練機にてブレンドしたり、異なる性能をもつ触媒をブレンドして重合したり、所望の分子量分布を実現できる触媒を用いたりすることで調整することが可能である。GPCで得られる分子量分布の形状としては、横軸に分子量(M)の対数(logM)、縦軸に微分分布値(logMあたりの重量分率)をとったGPCチャートにおいて、単一ピークを有するなだらかな分子量分布であってもよく、複数のピークやショルダーを有する分子量分布であってよい。
Regarding the molecular weight distribution of polypropylene resin, components of different molecular weights are polymerized in a series of plants in multiple stages, components of different molecular weights are blended offline with a kneader, or catalysts having different performances are blended and polymerized. It can be adjusted by using a catalyst capable of achieving a desired molecular weight distribution. The shape of the molecular weight distribution obtained by GPC has a single peak in a GPC chart in which the horizontal axis is the logarithm of the molecular weight (M) (logM) and the vertical axis is the differential distribution value (weight fraction per logM). It may have a gentle molecular weight distribution, or it may have a molecular weight distribution having a plurality of peaks and shoulders.
(二軸配向ポリプロピレンフィルムの製膜方法)
本発明の二軸配向ポリプロピレンフィルムの製造方法は、上述したポリプロピレン樹脂を主成分とするポリプロピレン樹脂組成物からなる未延伸シートを作製し、二軸延伸することによって得ることが好ましい。
二軸延伸の方法としては、インフレーション同時二軸延伸法、テンター同時二軸延伸法、テンター逐次二軸延伸法のいずれによっても得られるが、製膜安定性、厚み均一性の観点でテンター逐次二軸延伸法を採用することが好ましい。特に長手方向に延伸後、幅方向に延伸することが好ましいが、幅方向に延伸後に長手方向に延伸する方法でもよい。 (Method for forming biaxially oriented polypropylene film)
The method for producing a biaxially oriented polypropylene film of the present invention is preferably obtained by preparing an unstretched sheet made of the polypropylene resin composition containing the above-mentioned polypropylene resin as a main component and biaxially stretching the film.
As a biaxial stretching method, any of the inflation simultaneous biaxial stretching method, the tenter simultaneous biaxial stretching method, and the tenter sequential biaxial stretching method can be obtained, but from the viewpoint of film forming stability and thickness uniformity, the tenter sequential biaxial stretching method can be obtained. It is preferable to adopt the axial stretching method. In particular, it is preferable to stretch in the longitudinal direction and then in the width direction, but a method of stretching in the width direction and then stretching in the longitudinal direction may also be used.
本発明の二軸配向ポリプロピレンフィルムの製造方法は、上述したポリプロピレン樹脂を主成分とするポリプロピレン樹脂組成物からなる未延伸シートを作製し、二軸延伸することによって得ることが好ましい。
二軸延伸の方法としては、インフレーション同時二軸延伸法、テンター同時二軸延伸法、テンター逐次二軸延伸法のいずれによっても得られるが、製膜安定性、厚み均一性の観点でテンター逐次二軸延伸法を採用することが好ましい。特に長手方向に延伸後、幅方向に延伸することが好ましいが、幅方向に延伸後に長手方向に延伸する方法でもよい。 (Method for forming biaxially oriented polypropylene film)
The method for producing a biaxially oriented polypropylene film of the present invention is preferably obtained by preparing an unstretched sheet made of the polypropylene resin composition containing the above-mentioned polypropylene resin as a main component and biaxially stretching the film.
As a biaxial stretching method, any of the inflation simultaneous biaxial stretching method, the tenter simultaneous biaxial stretching method, and the tenter sequential biaxial stretching method can be obtained, but from the viewpoint of film forming stability and thickness uniformity, the tenter sequential biaxial stretching method can be obtained. It is preferable to adopt the axial stretching method. In particular, it is preferable to stretch in the longitudinal direction and then in the width direction, but a method of stretching in the width direction and then stretching in the longitudinal direction may also be used.
次に本発明の二軸配向ポリプロピレンフィルムの製造方法を以下に説明するが、必ずしもこれに限定されるものではない。なお、本発明により得られる二軸配向ポリプロピレンフィルムは、少なくとも片面に他の機能を有する層を積層させてもよい。積層するのは片面でも両面でも良い。その時は他の一方の層、また中央層の樹脂組成物を上述のポリプロピレン樹脂組成物を採用すればよい。また、上述のポリプロピレン樹脂組成物と異なるものでも良い。積層する層の数は、片面につき、1層や2層、3層以上でもよいが、製造の観点から、1層または2層が好ましい。積層の方法としては、例えば、フィードブロック方式やマルチマニホールド方式による共押出が好ましい。特に、二軸配向ポリプロピレンフィルムの加工性を向上させる目的で、ヒートシール性を有する樹脂層を、特性を低下させない範囲で積層することができる。また、印刷性付与のために、片面、もしくは両面にコロナ処理を施すこともできる。
Next, the method for producing the biaxially oriented polypropylene film of the present invention will be described below, but the method is not necessarily limited to this. The biaxially oriented polypropylene film obtained by the present invention may have a layer having another function laminated on at least one side thereof. It may be laminated on one side or both sides. At that time, the polypropylene resin composition described above may be used as the resin composition of the other one layer or the central layer. Further, it may be different from the polypropylene resin composition described above. The number of layers to be laminated may be one layer, two layers, three layers or more per one side, but one layer or two layers is preferable from the viewpoint of production. As a laminating method, for example, coextrusion by a feed block method or a multi-manifold method is preferable. In particular, for the purpose of improving the processability of the biaxially oriented polypropylene film, a resin layer having a heat-sealing property can be laminated within a range that does not deteriorate the characteristics. Further, in order to impart printability, one side or both sides may be subjected to corona treatment.
以下には、単層の場合の例について、テンター逐次二軸延伸法を採用した場合について述べる。
まず、ポリプロピレン樹脂を含む樹脂組成物を単軸または二軸の押出機で加熱溶融させ、Tダイからシート状に押出し、冷却ロール上に接地させて冷却固化する。固化を促進する目的で、冷却ロールで冷却したシートを水槽に浸漬するなどして、さらに冷却することが好ましい。 The case where the tenter sequential biaxial stretching method is adopted will be described below as an example in the case of a single layer.
First, the resin composition containing the polypropylene resin is heated and melted by a single-screw or twin-screw extruder, extruded into a sheet from a T-die, and grounded on a cooling roll to be cooled and solidified. For the purpose of promoting solidification, it is preferable to further cool the sheet cooled by a cooling roll by immersing it in a water tank or the like.
まず、ポリプロピレン樹脂を含む樹脂組成物を単軸または二軸の押出機で加熱溶融させ、Tダイからシート状に押出し、冷却ロール上に接地させて冷却固化する。固化を促進する目的で、冷却ロールで冷却したシートを水槽に浸漬するなどして、さらに冷却することが好ましい。 The case where the tenter sequential biaxial stretching method is adopted will be described below as an example in the case of a single layer.
First, the resin composition containing the polypropylene resin is heated and melted by a single-screw or twin-screw extruder, extruded into a sheet from a T-die, and grounded on a cooling roll to be cooled and solidified. For the purpose of promoting solidification, it is preferable to further cool the sheet cooled by a cooling roll by immersing it in a water tank or the like.
ついで、シートを加熱した2対の延伸ロールで、後方の延伸ロールの回転数を大きくすることでシートを長手方向に延伸し、一軸延伸フィルムを得る。
Next, the sheet is stretched in the longitudinal direction by increasing the number of rotations of the rear stretching rolls with two pairs of stretching rolls in which the sheet is heated to obtain a uniaxially stretched film.
引き続き、一軸延伸フィルムを予熱後、テンター式延伸機でフィルム端部を把持しながら、特定の温度で幅方向に延伸を行い、二軸延伸フィルムを得る。この幅方向延伸工程については後に詳細に述べる。
Subsequently, after preheating the uniaxially stretched film, the uniaxially stretched film is stretched in the width direction at a specific temperature while grasping the end of the film with a tenter type stretching machine to obtain a biaxially stretched film. This width direction stretching step will be described in detail later.
幅方向延伸工程が終了後、二軸延伸フィルムを特定の温度で熱処理を行い、二軸配向フィルムを得る。熱処理工程においては、幅方向にフィルムを弛緩してもよい。
After the width direction stretching step is completed, the biaxially stretched film is heat-treated at a specific temperature to obtain a biaxially oriented film. In the heat treatment step, the film may be relaxed in the width direction.
こうして得られた二軸配向ポリプロピレンフィルムに、必要に応じて、例えば少なくとも片面にコロナ放電処理を施した後、ワインダーで巻取ることによりフィルムロールを得ることができる。
If necessary, the biaxially oriented polypropylene film thus obtained is subjected to, for example, corona discharge treatment on at least one side, and then wound with a winder to obtain a film roll.
以下それぞれの工程について詳しく説明する。
(押出し工程)
まず、ポリプロピレン樹脂を主成分とするポリプロピレン樹脂組成物を単軸または二軸の押出機で200℃~300℃に範囲で加熱溶融させ、Tダイから出たシート状の溶融ポリプロピレン樹脂組成物を押出し、金属製の冷却ロールに接触させて冷却固化させる。得られた未延伸シートはさらに水槽に投入するのが好ましい。
冷却ロール、又は冷却ロールと水槽の温度は、10℃からTcまでの範囲であることが好ましく、フィルムの透明性を上げたい場合は、10~50℃の範囲の温度の冷却ロールで冷却固化するのが好ましい。冷却温度を50℃以下にすると未延伸シートの透明性が高まりやすく、好ましくは40℃以下であり、さらに好ましくは30℃以下である。逐次二軸延伸後の結晶配向度を増大させるには冷却温度を40℃以上とするのも好ましい場合があるが、上述のようにメソペンダット分率が97.0%以上のプロピレン単独重合体を用いる場合は、冷却温度を40℃以下とするのが次工程の延伸を容易に行い、また厚み斑を低減する上で好ましく、30℃以下とするのがより好ましい。
未延伸シートの厚みは3500μm以下とするのが、冷却効率の上で好ましく、3000μm以下とするのがさらに好ましく、逐次二軸延伸後のフィルム厚みに応じて、適宜調整できる。未延伸シートの厚みはポリプロピレン樹脂組成物の押出し速度及びTダイのリップ幅等で制御できる。 Each process will be described in detail below.
(Extrusion process)
First, the polypropylene resin composition containing polypropylene resin as a main component is heated and melted in a range of 200 ° C. to 300 ° C. with a single-screw or twin-screw extruder, and the sheet-shaped molten polypropylene resin composition discharged from the T-die is extruded. , Contact with a metal cooling roll to cool and solidify. It is preferable that the obtained unstretched sheet is further put into a water tank.
The temperature of the cooling roll or the cooling roll and the water tank is preferably in the range of 10 ° C. to Tc, and if it is desired to increase the transparency of the film, it is cooled and solidified with a cooling roll having a temperature in the range of 10 to 50 ° C. Is preferable. When the cooling temperature is 50 ° C. or lower, the transparency of the unstretched sheet tends to increase, preferably 40 ° C. or lower, and more preferably 30 ° C. or lower. In order to increase the crystal orientation after sequential biaxial stretching, it may be preferable to set the cooling temperature to 40 ° C. or higher, but as described above, a propylene homopolymer having a mesopendat fraction of 97.0% or higher is used. In this case, the cooling temperature is preferably 40 ° C. or lower in order to facilitate the stretching of the next step and to reduce the thickness unevenness, and more preferably 30 ° C. or lower.
The thickness of the unstretched sheet is preferably 3500 μm or less, more preferably 3000 μm or less in terms of cooling efficiency, and can be appropriately adjusted according to the film thickness after sequential biaxial stretching. The thickness of the unstretched sheet can be controlled by the extrusion speed of the polypropylene resin composition, the lip width of the T-die, and the like.
(押出し工程)
まず、ポリプロピレン樹脂を主成分とするポリプロピレン樹脂組成物を単軸または二軸の押出機で200℃~300℃に範囲で加熱溶融させ、Tダイから出たシート状の溶融ポリプロピレン樹脂組成物を押出し、金属製の冷却ロールに接触させて冷却固化させる。得られた未延伸シートはさらに水槽に投入するのが好ましい。
冷却ロール、又は冷却ロールと水槽の温度は、10℃からTcまでの範囲であることが好ましく、フィルムの透明性を上げたい場合は、10~50℃の範囲の温度の冷却ロールで冷却固化するのが好ましい。冷却温度を50℃以下にすると未延伸シートの透明性が高まりやすく、好ましくは40℃以下であり、さらに好ましくは30℃以下である。逐次二軸延伸後の結晶配向度を増大させるには冷却温度を40℃以上とするのも好ましい場合があるが、上述のようにメソペンダット分率が97.0%以上のプロピレン単独重合体を用いる場合は、冷却温度を40℃以下とするのが次工程の延伸を容易に行い、また厚み斑を低減する上で好ましく、30℃以下とするのがより好ましい。
未延伸シートの厚みは3500μm以下とするのが、冷却効率の上で好ましく、3000μm以下とするのがさらに好ましく、逐次二軸延伸後のフィルム厚みに応じて、適宜調整できる。未延伸シートの厚みはポリプロピレン樹脂組成物の押出し速度及びTダイのリップ幅等で制御できる。 Each process will be described in detail below.
(Extrusion process)
First, the polypropylene resin composition containing polypropylene resin as a main component is heated and melted in a range of 200 ° C. to 300 ° C. with a single-screw or twin-screw extruder, and the sheet-shaped molten polypropylene resin composition discharged from the T-die is extruded. , Contact with a metal cooling roll to cool and solidify. It is preferable that the obtained unstretched sheet is further put into a water tank.
The temperature of the cooling roll or the cooling roll and the water tank is preferably in the range of 10 ° C. to Tc, and if it is desired to increase the transparency of the film, it is cooled and solidified with a cooling roll having a temperature in the range of 10 to 50 ° C. Is preferable. When the cooling temperature is 50 ° C. or lower, the transparency of the unstretched sheet tends to increase, preferably 40 ° C. or lower, and more preferably 30 ° C. or lower. In order to increase the crystal orientation after sequential biaxial stretching, it may be preferable to set the cooling temperature to 40 ° C. or higher, but as described above, a propylene homopolymer having a mesopendat fraction of 97.0% or higher is used. In this case, the cooling temperature is preferably 40 ° C. or lower in order to facilitate the stretching of the next step and to reduce the thickness unevenness, and more preferably 30 ° C. or lower.
The thickness of the unstretched sheet is preferably 3500 μm or less, more preferably 3000 μm or less in terms of cooling efficiency, and can be appropriately adjusted according to the film thickness after sequential biaxial stretching. The thickness of the unstretched sheet can be controlled by the extrusion speed of the polypropylene resin composition, the lip width of the T-die, and the like.
(長手方向延伸工程)
長手方向延伸倍率の下限は好ましくは3倍であり、より好ましくは3.5倍であり、特に好ましくは3.8倍である。上記範囲であると強度を高めやすく、膜厚ムラも少なくなる。 長手方向延伸倍率の上限は好ましくは8倍であり、より好ましくは7.5倍であり、特に好ましくは7倍である。上記範囲であると、幅方向延伸工程での幅方向延伸がしやすく、生産性が向上する。
長手方向延伸温度の下限は、好ましくはTm-40℃であり、より好ましくはTm-37℃であり、さらに好ましくはTm-35℃である。上記範囲であると引き続いて行われる幅方向延伸が容易になり、厚みムラも少なくなる。長手方向延伸温度の上限は好ましくはTm-7℃であり、より好ましくはTm-10℃であり、さらに好ましくはTm-12℃である。上記範囲であると熱収縮率を小さくしやすく、延伸ロールに付着し延伸しにくくなったり、表面の粗さが大きくなることにより品位が低下することも少ない。
なお、長手方向延伸は3対以上の延伸ロールを使用して、2段階以上の多段階に分けて延伸してもよい。 (Longitudinal stretching process)
The lower limit of the longitudinal stretching ratio is preferably 3 times, more preferably 3.5 times, and particularly preferably 3.8 times. Within the above range, the strength can be easily increased and the film thickness unevenness can be reduced. The upper limit of the longitudinal stretching ratio is preferably 8 times, more preferably 7.5 times, and particularly preferably 7 times. Within the above range, the width direction stretching in the width direction stretching step is easy, and the productivity is improved.
The lower limit of the longitudinal stretching temperature is preferably Tm-40 ° C, more preferably Tm-37 ° C, and even more preferably Tm-35 ° C. Within the above range, the subsequent stretching in the width direction becomes easy and the thickness unevenness is reduced. The upper limit of the longitudinal stretching temperature is preferably Tm-7 ° C, more preferably Tm-10 ° C, and even more preferably Tm-12 ° C. Within the above range, the heat shrinkage rate is likely to be reduced, and it is unlikely that the heat shrinkage rate will be deteriorated due to adhesion to the stretching roll and difficulty in stretching, or an increase in surface roughness.
The longitudinal stretching may be performed by using three or more pairs of stretching rolls and stretching in two or more stages.
長手方向延伸倍率の下限は好ましくは3倍であり、より好ましくは3.5倍であり、特に好ましくは3.8倍である。上記範囲であると強度を高めやすく、膜厚ムラも少なくなる。 長手方向延伸倍率の上限は好ましくは8倍であり、より好ましくは7.5倍であり、特に好ましくは7倍である。上記範囲であると、幅方向延伸工程での幅方向延伸がしやすく、生産性が向上する。
長手方向延伸温度の下限は、好ましくはTm-40℃であり、より好ましくはTm-37℃であり、さらに好ましくはTm-35℃である。上記範囲であると引き続いて行われる幅方向延伸が容易になり、厚みムラも少なくなる。長手方向延伸温度の上限は好ましくはTm-7℃であり、より好ましくはTm-10℃であり、さらに好ましくはTm-12℃である。上記範囲であると熱収縮率を小さくしやすく、延伸ロールに付着し延伸しにくくなったり、表面の粗さが大きくなることにより品位が低下することも少ない。
なお、長手方向延伸は3対以上の延伸ロールを使用して、2段階以上の多段階に分けて延伸してもよい。 (Longitudinal stretching process)
The lower limit of the longitudinal stretching ratio is preferably 3 times, more preferably 3.5 times, and particularly preferably 3.8 times. Within the above range, the strength can be easily increased and the film thickness unevenness can be reduced. The upper limit of the longitudinal stretching ratio is preferably 8 times, more preferably 7.5 times, and particularly preferably 7 times. Within the above range, the width direction stretching in the width direction stretching step is easy, and the productivity is improved.
The lower limit of the longitudinal stretching temperature is preferably Tm-40 ° C, more preferably Tm-37 ° C, and even more preferably Tm-35 ° C. Within the above range, the subsequent stretching in the width direction becomes easy and the thickness unevenness is reduced. The upper limit of the longitudinal stretching temperature is preferably Tm-7 ° C, more preferably Tm-10 ° C, and even more preferably Tm-12 ° C. Within the above range, the heat shrinkage rate is likely to be reduced, and it is unlikely that the heat shrinkage rate will be deteriorated due to adhesion to the stretching roll and difficulty in stretching, or an increase in surface roughness.
The longitudinal stretching may be performed by using three or more pairs of stretching rolls and stretching in two or more stages.
(予熱工程)
幅方向延伸工程の前に、長手方向延伸後の一軸延伸フィルムをTm~Tm+25℃の範囲で加熱して、ポリプロピレン樹脂組成物を軟化させる必要がある。Tm以上とすることにより、軟化が進み、幅方向の延伸が容易になる。Tm+25℃以下とすることで、横延伸時の配向が進み、剛性が発現しやすくなる。より好ましくはTm+2~Tm+22℃であり、特に好ましくはTm+3~Tm+20℃である。ここで、予熱工程での最高温度を予熱温度とする。 (Preheating process)
Before the width direction stretching step, it is necessary to heat the uniaxially stretched film after the longitudinal stretching in the range of Tm to Tm + 25 ° C. to soften the polypropylene resin composition. When it is set to Tm or more, softening progresses and stretching in the width direction becomes easy. By setting the temperature to Tm + 25 ° C. or lower, the orientation at the time of lateral stretching proceeds, and the rigidity is easily developed. More preferably, it is Tm + 2 to Tm + 22 ° C, and particularly preferably Tm + 3 to Tm + 20 ° C. Here, the maximum temperature in the preheating process is defined as the preheating temperature.
幅方向延伸工程の前に、長手方向延伸後の一軸延伸フィルムをTm~Tm+25℃の範囲で加熱して、ポリプロピレン樹脂組成物を軟化させる必要がある。Tm以上とすることにより、軟化が進み、幅方向の延伸が容易になる。Tm+25℃以下とすることで、横延伸時の配向が進み、剛性が発現しやすくなる。より好ましくはTm+2~Tm+22℃であり、特に好ましくはTm+3~Tm+20℃である。ここで、予熱工程での最高温度を予熱温度とする。 (Preheating process)
Before the width direction stretching step, it is necessary to heat the uniaxially stretched film after the longitudinal stretching in the range of Tm to Tm + 25 ° C. to soften the polypropylene resin composition. When it is set to Tm or more, softening progresses and stretching in the width direction becomes easy. By setting the temperature to Tm + 25 ° C. or lower, the orientation at the time of lateral stretching proceeds, and the rigidity is easily developed. More preferably, it is Tm + 2 to Tm + 22 ° C, and particularly preferably Tm + 3 to Tm + 20 ° C. Here, the maximum temperature in the preheating process is defined as the preheating temperature.
(幅方向延伸工程)
予熱工程後の幅方向延伸工程においては、好ましい方法は以下のとおりである。 (Width direction stretching process)
In the width direction stretching step after the preheating step, a preferable method is as follows.
予熱工程後の幅方向延伸工程においては、好ましい方法は以下のとおりである。 (Width direction stretching process)
In the width direction stretching step after the preheating step, a preferable method is as follows.
幅方向延伸工程においては、Tm-10℃以上、予熱温度以下の温度で延伸するのが好ましい。このとき、幅方向延伸の開始時は予熱温度に達した時点でも良いし、予熱温度に達した後に温度を降下させ予熱温度よりも低い温度に達した時点でもよい。
幅方向延伸工程における温度の下限は、より好ましくはTm-9℃であり、さらに好ましくはTm-7℃であり、特に好ましくはTm-5℃である。幅方向延伸温度がこの範囲であると、得られる二軸配向フィルムの剛性を向上させやすい。
幅方向延伸工程における温度の上限は、好ましくはTm+10℃であり、さらに好ましくはTm+7℃であり、特に好ましくはTm+5℃である。幅方向延伸温度がこの範囲であると、延伸ムラが生じにくい。
幅方向延伸終了時、すなわち幅方向最終延伸倍率に到達した時の直後に、フィルムを冷却する。この時の冷却の温度は、幅方向延伸の温度以下で、かつTm-80℃以上、Tm-15℃以下の温度にするのが好ましく、Tm-80℃以上、Tm-20℃以下の温度にすることがより好ましく、Tm-80℃以上、Tm-30℃以下の温度とすることがさらに好ましく、Tm-70℃以上、Tm-40℃以下の温度とすることが特に好ましい。
幅方向延伸終了時の温度から冷却時の温度へは徐々に低下させることもできるが、段階的にあるいは一段階で低下させることもできる。温度を段階的にあるいは一段階で低下させると、フィルム中の結晶配向を大きくしやすいため好ましい。 In the width direction stretching step, it is preferable to stretch at a temperature of Tm-10 ° C. or higher and a preheating temperature or lower. At this time, the start of stretching in the width direction may be when the preheating temperature is reached, or when the temperature is lowered after reaching the preheating temperature and reaches a temperature lower than the preheating temperature.
The lower limit of the temperature in the width direction stretching step is more preferably Tm-9 ° C, further preferably Tm-7 ° C, and particularly preferably Tm-5 ° C. When the stretching temperature in the width direction is in this range, the rigidity of the obtained biaxially oriented film can be easily improved.
The upper limit of the temperature in the width direction stretching step is preferably Tm + 10 ° C., more preferably Tm + 7 ° C., and particularly preferably Tm + 5 ° C. When the stretching temperature in the width direction is in this range, stretching unevenness is unlikely to occur.
Immediately after the end of widthwise stretching, that is, immediately after reaching the widthwise final stretching ratio, the film is cooled. The cooling temperature at this time is preferably not more than the temperature of stretching in the width direction and preferably Tm-80 ° C. or higher and Tm-15 ° C. or lower, and is preferably Tm-80 ° C. or higher and Tm-20 ° C. or lower. It is more preferable to set the temperature to Tm-80 ° C. or higher and Tm-30 ° C. or lower, and it is particularly preferable to set the temperature to Tm-70 ° C. or higher and Tm-40 ° C. or lower.
The temperature at the end of stretching in the width direction can be gradually lowered to the temperature at the time of cooling, but it can also be lowered stepwise or in one step. It is preferable to lower the temperature stepwise or stepwise because the crystal orientation in the film tends to be increased.
幅方向延伸工程における温度の下限は、より好ましくはTm-9℃であり、さらに好ましくはTm-7℃であり、特に好ましくはTm-5℃である。幅方向延伸温度がこの範囲であると、得られる二軸配向フィルムの剛性を向上させやすい。
幅方向延伸工程における温度の上限は、好ましくはTm+10℃であり、さらに好ましくはTm+7℃であり、特に好ましくはTm+5℃である。幅方向延伸温度がこの範囲であると、延伸ムラが生じにくい。
幅方向延伸終了時、すなわち幅方向最終延伸倍率に到達した時の直後に、フィルムを冷却する。この時の冷却の温度は、幅方向延伸の温度以下で、かつTm-80℃以上、Tm-15℃以下の温度にするのが好ましく、Tm-80℃以上、Tm-20℃以下の温度にすることがより好ましく、Tm-80℃以上、Tm-30℃以下の温度とすることがさらに好ましく、Tm-70℃以上、Tm-40℃以下の温度とすることが特に好ましい。
幅方向延伸終了時の温度から冷却時の温度へは徐々に低下させることもできるが、段階的にあるいは一段階で低下させることもできる。温度を段階的にあるいは一段階で低下させると、フィルム中の結晶配向を大きくしやすいため好ましい。 In the width direction stretching step, it is preferable to stretch at a temperature of Tm-10 ° C. or higher and a preheating temperature or lower. At this time, the start of stretching in the width direction may be when the preheating temperature is reached, or when the temperature is lowered after reaching the preheating temperature and reaches a temperature lower than the preheating temperature.
The lower limit of the temperature in the width direction stretching step is more preferably Tm-9 ° C, further preferably Tm-7 ° C, and particularly preferably Tm-5 ° C. When the stretching temperature in the width direction is in this range, the rigidity of the obtained biaxially oriented film can be easily improved.
The upper limit of the temperature in the width direction stretching step is preferably Tm + 10 ° C., more preferably Tm + 7 ° C., and particularly preferably Tm + 5 ° C. When the stretching temperature in the width direction is in this range, stretching unevenness is unlikely to occur.
Immediately after the end of widthwise stretching, that is, immediately after reaching the widthwise final stretching ratio, the film is cooled. The cooling temperature at this time is preferably not more than the temperature of stretching in the width direction and preferably Tm-80 ° C. or higher and Tm-15 ° C. or lower, and is preferably Tm-80 ° C. or higher and Tm-20 ° C. or lower. It is more preferable to set the temperature to Tm-80 ° C. or higher and Tm-30 ° C. or lower, and it is particularly preferable to set the temperature to Tm-70 ° C. or higher and Tm-40 ° C. or lower.
The temperature at the end of stretching in the width direction can be gradually lowered to the temperature at the time of cooling, but it can also be lowered stepwise or in one step. It is preferable to lower the temperature stepwise or stepwise because the crystal orientation in the film tends to be increased.
幅方向延伸工程における最終幅方向延伸倍率の下限は、好ましくは10倍であり、より好ましくは11倍である。10倍以上であると剛性を高めやすく、膜厚ムラも少なくなりやすい。幅方向延伸倍率の上限は、好ましくは20倍であり、より好ましくは17倍であり、さらに好ましくは15倍である。20倍以下であると熱収縮率を小さくしやすく、延伸時に破断しにくい。
The lower limit of the final width direction stretching ratio in the width direction stretching step is preferably 10 times, more preferably 11 times. If it is 10 times or more, the rigidity is likely to be increased and the film thickness unevenness is likely to be reduced. The upper limit of the stretching ratio in the width direction is preferably 20 times, more preferably 17 times, and further preferably 15 times. When it is 20 times or less, the heat shrinkage rate is likely to be reduced, and it is difficult to break during stretching.
このように、立体規則性が高く、高融点である結晶性の高いポリプロピレン樹脂を用い、上述の幅方向延伸工程を採用することにより、ポリプロピレン樹脂の分子が高度に主配向方向に(上述した幅方向延伸工程では幅方向が該当する。)に整列するため、得られる二軸配向フィルム中の結晶配向が強く、融点も高い結晶がより多く生成しやすくなる。
また、結晶間の非晶部の配向も主配向方向(上述した幅方向延伸工程では幅方向が該当する。)に高まるため、剛性が高い。また、非晶部の周りに融点の高い結晶が多く存在するため、結晶の融点より低い温度では非晶部の伸長したポリプロピレン分子は緩和しにくく、その緊張した状態を保ちやすい。そのため、高温においても二軸配向フィルム全体が高い剛性を維持することができる。
また、着目すべきことは、このような幅方向延伸工程を採用することにより、150℃の高温での熱収縮率もより低下しやすいことである。その理由は、非晶部の周りに結晶配向が強く、融点の高い結晶がより多く存在するため、結晶の融点より低い温度では非晶部における伸長したポリプロピレン樹脂分子は緩和しにくいところにある。
さらに、着目すべきことは、結晶間の非晶部の配向も主配向方向(上述した幅方向延伸工程では幅方向が該当する。)に高まるが、極度に緊張した状態ではないため、引張破断伸度が向上することである。 As described above, by using the polypropylene resin having high stereoregularity and high crystallinity and adopting the above-mentioned width direction stretching step, the molecules of the polypropylene resin are highly oriented in the main orientation direction (the above-mentioned width). In the directional stretching step, the width direction is applicable.) Therefore, more crystals having a strong crystal orientation and a high melting point in the obtained biaxially oriented film can be easily produced.
Further, the orientation of the amorphous portion between the crystals is also increased in the main orientation direction (the width direction corresponds to the above-described width direction stretching step), so that the rigidity is high. Further, since many crystals having a high melting point are present around the amorphous portion, the expanded polypropylene molecule in the amorphous portion is difficult to relax at a temperature lower than the melting point of the crystal, and it is easy to maintain the tense state. Therefore, the entire biaxially oriented film can maintain high rigidity even at high temperatures.
In addition, it should be noted that by adopting such a stretching step in the width direction, the heat shrinkage rate at a high temperature of 150 ° C. is likely to be further reduced. The reason is that the elongated polypropylene resin molecules in the amorphous portion are difficult to relax at a temperature lower than the melting point of the crystals because the crystal orientation is strong around the amorphous portion and more crystals have a high melting point.
Furthermore, it should be noted that the orientation of the amorphous part between the crystals also increases in the main orientation direction (the width direction corresponds to the above-mentioned width direction stretching step), but it is not in an extremely tense state, so that the tensile fracture occurs. The elongation is improved.
また、結晶間の非晶部の配向も主配向方向(上述した幅方向延伸工程では幅方向が該当する。)に高まるため、剛性が高い。また、非晶部の周りに融点の高い結晶が多く存在するため、結晶の融点より低い温度では非晶部の伸長したポリプロピレン分子は緩和しにくく、その緊張した状態を保ちやすい。そのため、高温においても二軸配向フィルム全体が高い剛性を維持することができる。
また、着目すべきことは、このような幅方向延伸工程を採用することにより、150℃の高温での熱収縮率もより低下しやすいことである。その理由は、非晶部の周りに結晶配向が強く、融点の高い結晶がより多く存在するため、結晶の融点より低い温度では非晶部における伸長したポリプロピレン樹脂分子は緩和しにくいところにある。
さらに、着目すべきことは、結晶間の非晶部の配向も主配向方向(上述した幅方向延伸工程では幅方向が該当する。)に高まるが、極度に緊張した状態ではないため、引張破断伸度が向上することである。 As described above, by using the polypropylene resin having high stereoregularity and high crystallinity and adopting the above-mentioned width direction stretching step, the molecules of the polypropylene resin are highly oriented in the main orientation direction (the above-mentioned width). In the directional stretching step, the width direction is applicable.) Therefore, more crystals having a strong crystal orientation and a high melting point in the obtained biaxially oriented film can be easily produced.
Further, the orientation of the amorphous portion between the crystals is also increased in the main orientation direction (the width direction corresponds to the above-described width direction stretching step), so that the rigidity is high. Further, since many crystals having a high melting point are present around the amorphous portion, the expanded polypropylene molecule in the amorphous portion is difficult to relax at a temperature lower than the melting point of the crystal, and it is easy to maintain the tense state. Therefore, the entire biaxially oriented film can maintain high rigidity even at high temperatures.
In addition, it should be noted that by adopting such a stretching step in the width direction, the heat shrinkage rate at a high temperature of 150 ° C. is likely to be further reduced. The reason is that the elongated polypropylene resin molecules in the amorphous portion are difficult to relax at a temperature lower than the melting point of the crystals because the crystal orientation is strong around the amorphous portion and more crystals have a high melting point.
Furthermore, it should be noted that the orientation of the amorphous part between the crystals also increases in the main orientation direction (the width direction corresponds to the above-mentioned width direction stretching step), but it is not in an extremely tense state, so that the tensile fracture occurs. The elongation is improved.
また、ポリプロピレン樹脂の低分子量成分を増やすことで、フィルムの結晶化度がより高まりやすくなるとともに、非晶部分のポリプロピレン樹脂分子鎖同士の絡み合いがより少なくなり、熱収縮応力を弱めることで、熱収縮率をさらに低下させることができる。従来技術では、強度と熱収縮率のどちらかが向上すれば、他方の特性が低下する傾向となることを考慮すると、画期的なことと言える。
Further, by increasing the low molecular weight component of the polypropylene resin, the crystallinity of the film is more likely to be increased, and the entanglement of the polypropylene resin molecular chains in the amorphous portion is reduced, and the heat shrinkage stress is weakened to reduce heat. The shrinkage rate can be further reduced. It can be said that the prior art is epoch-making in consideration of the fact that if either the strength or the heat shrinkage rate is improved, the other property tends to be deteriorated.
(熱処理工程)
二軸延伸フィルムは必要に応じて、熱収縮率をさらに小さくするために、熱処理することができる。熱処理温度の上限は好ましくはTm+10℃であり、より好ましくはTm+7℃であり、特に好ましくはTm+5℃である。Tm+10℃以下にすることで、剛性が発現しやすく、フィルム表面の粗さが大きくなりすぎず、フィルムが白化しにくい。熱処理温度の下限は好ましくはTm-5℃であり、より好ましくはTm-2℃であり、特に好ましくはTm℃である。Tm-5℃未満であると熱収縮率が高くなることがある。
上述の幅方向延伸工程を採用することにより、Tm-5℃からTm+10の間の温度で熱処理を行っても、延伸工程で生成した配向の高い結晶は融解しにくく、得られたフィルムの剛性を低下させずに、熱収縮率をより小さくすることができる。熱収縮率を調整する目的で、熱処理時に幅方向にフィルムを弛緩(緩和)させてもよいが、弛緩率の上限は好ましくは4%である。上記範囲内であると、フィルム強度が低下しにくく、フィルム厚み変動が小さくなりやすい。より好ましくは3%であり、さらに好ましくは2%であり、よりさらに好ましくは1%であり、特に好ましくは0%である。 (Heat treatment process)
If necessary, the biaxially stretched film can be heat-treated to further reduce the heat shrinkage rate. The upper limit of the heat treatment temperature is preferably Tm + 10 ° C, more preferably Tm + 7 ° C, and particularly preferably Tm + 5 ° C. By setting the temperature to Tm + 10 ° C. or lower, rigidity is likely to be developed, the roughness of the film surface does not become too large, and the film is less likely to whiten. The lower limit of the heat treatment temperature is preferably Tm-5 ° C, more preferably Tm-2 ° C, and particularly preferably Tm ° C. If it is less than Tm-5 ° C, the heat shrinkage rate may increase.
By adopting the above-mentioned width direction stretching step, even if heat treatment is performed at a temperature between Tm-5 ° C. and Tm + 10, the highly oriented crystals produced in the stretching step are difficult to melt, and the rigidity of the obtained film is reduced. The heat shrinkage rate can be made smaller without lowering. The film may be relaxed (relaxed) in the width direction during heat treatment for the purpose of adjusting the heat shrinkage rate, but the upper limit of the relaxation rate is preferably 4%. When it is within the above range, the film strength is unlikely to decrease, and the fluctuation in film thickness tends to be small. It is more preferably 3%, even more preferably 2%, even more preferably 1%, and particularly preferably 0%.
二軸延伸フィルムは必要に応じて、熱収縮率をさらに小さくするために、熱処理することができる。熱処理温度の上限は好ましくはTm+10℃であり、より好ましくはTm+7℃であり、特に好ましくはTm+5℃である。Tm+10℃以下にすることで、剛性が発現しやすく、フィルム表面の粗さが大きくなりすぎず、フィルムが白化しにくい。熱処理温度の下限は好ましくはTm-5℃であり、より好ましくはTm-2℃であり、特に好ましくはTm℃である。Tm-5℃未満であると熱収縮率が高くなることがある。
上述の幅方向延伸工程を採用することにより、Tm-5℃からTm+10の間の温度で熱処理を行っても、延伸工程で生成した配向の高い結晶は融解しにくく、得られたフィルムの剛性を低下させずに、熱収縮率をより小さくすることができる。熱収縮率を調整する目的で、熱処理時に幅方向にフィルムを弛緩(緩和)させてもよいが、弛緩率の上限は好ましくは4%である。上記範囲内であると、フィルム強度が低下しにくく、フィルム厚み変動が小さくなりやすい。より好ましくは3%であり、さらに好ましくは2%であり、よりさらに好ましくは1%であり、特に好ましくは0%である。 (Heat treatment process)
If necessary, the biaxially stretched film can be heat-treated to further reduce the heat shrinkage rate. The upper limit of the heat treatment temperature is preferably Tm + 10 ° C, more preferably Tm + 7 ° C, and particularly preferably Tm + 5 ° C. By setting the temperature to Tm + 10 ° C. or lower, rigidity is likely to be developed, the roughness of the film surface does not become too large, and the film is less likely to whiten. The lower limit of the heat treatment temperature is preferably Tm-5 ° C, more preferably Tm-2 ° C, and particularly preferably Tm ° C. If it is less than Tm-5 ° C, the heat shrinkage rate may increase.
By adopting the above-mentioned width direction stretching step, even if heat treatment is performed at a temperature between Tm-5 ° C. and Tm + 10, the highly oriented crystals produced in the stretching step are difficult to melt, and the rigidity of the obtained film is reduced. The heat shrinkage rate can be made smaller without lowering. The film may be relaxed (relaxed) in the width direction during heat treatment for the purpose of adjusting the heat shrinkage rate, but the upper limit of the relaxation rate is preferably 4%. When it is within the above range, the film strength is unlikely to decrease, and the fluctuation in film thickness tends to be small. It is more preferably 3%, even more preferably 2%, even more preferably 1%, and particularly preferably 0%.
(フィルム厚み)
本発明により得られる二軸配向ポリプロピレンフィルムの厚みは各用途に合わせて設定されるが、フィルムの強度を得るには、フィルム厚みの下限は好ましくは2μmであり、より好ましくは3μmであり、さらに好ましくは4μmであり、特に好ましくは8μmであり、最も好ましくは10μmである。フィルム厚みが2μm以上であるとフィルムの剛性を得やすい。フィルム厚みの上限は好ましくは100μmであり、より好ましくは80μmであり、さらに好ましくは60μmであり、特に好ましくは50μmであり、最も好ましくは40μmである。フィルム厚みが100μm以下であると押出工程時の未延伸シートの冷却速度が小さくなりにくい。
本発明により得られる二軸配向ポリプロピレンフィルムは通常、幅2000~12000mm、長さ1000~50000m程度のロールとして製膜され、フィルムロール状に巻き取られる。さらに、各用途に合わせてスリットされ、幅300~2000mm、長さ500~5000m程度のスリットロールとして供される。本発明の二軸配向ポリプロピレンフィルムはより長尺のフィルムロールを得ることが可能である。 (Film thickness)
The thickness of the biaxially oriented polypropylene film obtained by the present invention is set according to each application, but in order to obtain the strength of the film, the lower limit of the film thickness is preferably 2 μm, more preferably 3 μm, and further. It is preferably 4 μm, particularly preferably 8 μm, and most preferably 10 μm. When the film thickness is 2 μm or more, the rigidity of the film can be easily obtained. The upper limit of the film thickness is preferably 100 μm, more preferably 80 μm, further preferably 60 μm, particularly preferably 50 μm, and most preferably 40 μm. When the film thickness is 100 μm or less, the cooling rate of the unstretched sheet during the extrusion process is unlikely to decrease.
The biaxially oriented polypropylene film obtained by the present invention is usually formed as a roll having a width of 2000 to 12000 mm and a length of about 1000 to 50000 m, and is wound into a film roll. Further, it is slit according to each application and is provided as a slit roll having a width of 300 to 2000 mm and a length of about 500 to 5000 m. The biaxially oriented polypropylene film of the present invention can obtain a longer film roll.
本発明により得られる二軸配向ポリプロピレンフィルムの厚みは各用途に合わせて設定されるが、フィルムの強度を得るには、フィルム厚みの下限は好ましくは2μmであり、より好ましくは3μmであり、さらに好ましくは4μmであり、特に好ましくは8μmであり、最も好ましくは10μmである。フィルム厚みが2μm以上であるとフィルムの剛性を得やすい。フィルム厚みの上限は好ましくは100μmであり、より好ましくは80μmであり、さらに好ましくは60μmであり、特に好ましくは50μmであり、最も好ましくは40μmである。フィルム厚みが100μm以下であると押出工程時の未延伸シートの冷却速度が小さくなりにくい。
本発明により得られる二軸配向ポリプロピレンフィルムは通常、幅2000~12000mm、長さ1000~50000m程度のロールとして製膜され、フィルムロール状に巻き取られる。さらに、各用途に合わせてスリットされ、幅300~2000mm、長さ500~5000m程度のスリットロールとして供される。本発明の二軸配向ポリプロピレンフィルムはより長尺のフィルムロールを得ることが可能である。 (Film thickness)
The thickness of the biaxially oriented polypropylene film obtained by the present invention is set according to each application, but in order to obtain the strength of the film, the lower limit of the film thickness is preferably 2 μm, more preferably 3 μm, and further. It is preferably 4 μm, particularly preferably 8 μm, and most preferably 10 μm. When the film thickness is 2 μm or more, the rigidity of the film can be easily obtained. The upper limit of the film thickness is preferably 100 μm, more preferably 80 μm, further preferably 60 μm, particularly preferably 50 μm, and most preferably 40 μm. When the film thickness is 100 μm or less, the cooling rate of the unstretched sheet during the extrusion process is unlikely to decrease.
The biaxially oriented polypropylene film obtained by the present invention is usually formed as a roll having a width of 2000 to 12000 mm and a length of about 1000 to 50000 m, and is wound into a film roll. Further, it is slit according to each application and is provided as a slit roll having a width of 300 to 2000 mm and a length of about 500 to 5000 m. The biaxially oriented polypropylene film of the present invention can obtain a longer film roll.
(厚み均一性)
本発明により得られる二軸配向ポリプロピレンフィルムの厚み均一性の下限は好ましくは0%であり、より好ましくは0.1%であり、さらに好ましくは0.5%であり、特に好ましくは1%である。厚み均一性の上限は好ましくは20%であり、より好ましくは17%であり、さらに好ましくは15%であり、特に好ましくは12%であり、最も好ましくは10%である。上記範囲だとコートや印刷などの後加工時に不良が生じにくく、精密性を要求される用途に用いやすい。
測定方法は下記のとおりとした。フィルムの長さ方向にフィルム物性が安定している定常領域から幅方向40mmの試験片を切り出し、ミクロン計測器(株)製のフィルム送り装置(製番:A90172を使用)及びアンリツ株式会社製フィルム厚み連続測定器(製品名:K-313A広範囲高感度電子マイクロメーター)を用い、20000mmにわたって連続してフィルム厚みを計測し、下式から厚み均一性を算出した。
厚み均一性(%)=[(厚みの最大値-厚みの最低値)/厚みの平均値]×100 (Thickness uniformity)
The lower limit of the thickness uniformity of the biaxially oriented polypropylene film obtained by the present invention is preferably 0%, more preferably 0.1%, further preferably 0.5%, and particularly preferably 1%. be. The upper limit of the thickness uniformity is preferably 20%, more preferably 17%, still more preferably 15%, particularly preferably 12%, and most preferably 10%. Within the above range, defects are less likely to occur during post-processing such as coating and printing, and it is easy to use for applications that require precision.
The measurement method was as follows. A test piece having a width of 40 mm is cut out from a steady region where the physical properties of the film are stable in the length direction of the film, and a film feeder manufactured by Micrometer Measuring Instruments Co., Ltd. (manufacturing number: A90172 is used) and a film manufactured by Anritsu Co., Ltd. Using a continuous thickness measuring device (product name: K-313A wide range high-sensitivity electronic micrometer), the film thickness was continuously measured over 20000 mm, and the thickness uniformity was calculated from the following formula.
Thickness uniformity (%) = [(maximum thickness-minimum thickness) / average thickness] x 100
本発明により得られる二軸配向ポリプロピレンフィルムの厚み均一性の下限は好ましくは0%であり、より好ましくは0.1%であり、さらに好ましくは0.5%であり、特に好ましくは1%である。厚み均一性の上限は好ましくは20%であり、より好ましくは17%であり、さらに好ましくは15%であり、特に好ましくは12%であり、最も好ましくは10%である。上記範囲だとコートや印刷などの後加工時に不良が生じにくく、精密性を要求される用途に用いやすい。
測定方法は下記のとおりとした。フィルムの長さ方向にフィルム物性が安定している定常領域から幅方向40mmの試験片を切り出し、ミクロン計測器(株)製のフィルム送り装置(製番:A90172を使用)及びアンリツ株式会社製フィルム厚み連続測定器(製品名:K-313A広範囲高感度電子マイクロメーター)を用い、20000mmにわたって連続してフィルム厚みを計測し、下式から厚み均一性を算出した。
厚み均一性(%)=[(厚みの最大値-厚みの最低値)/厚みの平均値]×100 (Thickness uniformity)
The lower limit of the thickness uniformity of the biaxially oriented polypropylene film obtained by the present invention is preferably 0%, more preferably 0.1%, further preferably 0.5%, and particularly preferably 1%. be. The upper limit of the thickness uniformity is preferably 20%, more preferably 17%, still more preferably 15%, particularly preferably 12%, and most preferably 10%. Within the above range, defects are less likely to occur during post-processing such as coating and printing, and it is easy to use for applications that require precision.
The measurement method was as follows. A test piece having a width of 40 mm is cut out from a steady region where the physical properties of the film are stable in the length direction of the film, and a film feeder manufactured by Micrometer Measuring Instruments Co., Ltd. (manufacturing number: A90172 is used) and a film manufactured by Anritsu Co., Ltd. Using a continuous thickness measuring device (product name: K-313A wide range high-sensitivity electronic micrometer), the film thickness was continuously measured over 20000 mm, and the thickness uniformity was calculated from the following formula.
Thickness uniformity (%) = [(maximum thickness-minimum thickness) / average thickness] x 100
(フィルム特性)
本発明の二軸配向ポリプロピレンフィルムは、下記特性に特徴がある。ここで本発明の二軸配向ポリプロピレンフィルムにおける「長手方向」とは、フィルム製造工程における流れ方向に対応する方向であり、「幅方向」とは、前記のフィルム製造工程における流れ方向と直交する方向である。フィルム製造工程における流れ方向が不明なポリプロピレンフィルムについては、フィルム表面に対して垂直方向に広角X線を入射し、α型結晶の(110)面に由来する散乱ピークを円周方向にスキャンし、得られた回折強度分布の回折強度が最も大きい方向を「長手方向」、それと直交する方向を「幅方向」とする。 (Film characteristics)
The biaxially oriented polypropylene film of the present invention is characterized by the following characteristics. Here, the "longitudinal direction" in the biaxially oriented polypropylene film of the present invention is a direction corresponding to the flow direction in the film manufacturing process, and the "width direction" is a direction orthogonal to the flow direction in the film manufacturing process. Is. For polypropylene films whose flow direction is unknown in the film manufacturing process, wide-angle X-rays are incident in the direction perpendicular to the film surface, and the scattering peaks derived from the (110) plane of the α-type crystal are scanned in the circumferential direction. The direction in which the obtained diffraction intensity distribution has the largest diffraction intensity is referred to as the "longitudinal direction", and the direction orthogonal to it is referred to as the "width direction".
本発明の二軸配向ポリプロピレンフィルムは、下記特性に特徴がある。ここで本発明の二軸配向ポリプロピレンフィルムにおける「長手方向」とは、フィルム製造工程における流れ方向に対応する方向であり、「幅方向」とは、前記のフィルム製造工程における流れ方向と直交する方向である。フィルム製造工程における流れ方向が不明なポリプロピレンフィルムについては、フィルム表面に対して垂直方向に広角X線を入射し、α型結晶の(110)面に由来する散乱ピークを円周方向にスキャンし、得られた回折強度分布の回折強度が最も大きい方向を「長手方向」、それと直交する方向を「幅方向」とする。 (Film characteristics)
The biaxially oriented polypropylene film of the present invention is characterized by the following characteristics. Here, the "longitudinal direction" in the biaxially oriented polypropylene film of the present invention is a direction corresponding to the flow direction in the film manufacturing process, and the "width direction" is a direction orthogonal to the flow direction in the film manufacturing process. Is. For polypropylene films whose flow direction is unknown in the film manufacturing process, wide-angle X-rays are incident in the direction perpendicular to the film surface, and the scattering peaks derived from the (110) plane of the α-type crystal are scanned in the circumferential direction. The direction in which the obtained diffraction intensity distribution has the largest diffraction intensity is referred to as the "longitudinal direction", and the direction orthogonal to it is referred to as the "width direction".
(150℃熱収縮率)
本発明の二軸配向ポリプロピレンフィルムの150℃での長手方向の熱収縮率の上限は10%であり、好ましくは7.0%であり、より好ましくは6.0%であり、よりさらに好ましくは5.0%であり、特に好ましくは4.0%以下である。150℃での幅方向の熱収縮率の上限は好ましくは30%であり、より好ましくは24%であり、さらに好ましくは21%であり、特に好ましくは18%以下である。
長手方向の熱収縮率が10%以下、かつ、幅方向の熱収縮率が30%以下であると、ヒートシール時のシワが生じにくく、特に150℃での長手方向の熱収縮率が8.0%以下、150℃での幅方向の熱収縮率が20%以下であると、開ロ部にチャック部を融着する際の歪みが小さく好ましい。150℃での熱収縮率を小さくするには、フィルムを構成するポリプロピレン樹脂のゲルパーミエーションクロマトグラフィー(GPC)積算カーブを測定した場合の分子量10万以下の成分の量の下限を35質量%とし、延伸倍率、延伸温度、熱固定温度の調整するのが有効である。 (150 ° C heat shrinkage rate)
The upper limit of the heat shrinkage in the longitudinal direction of the biaxially oriented polypropylene film of the present invention at 150 ° C. is 10%, preferably 7.0%, more preferably 6.0%, and even more preferably. It is 5.0%, particularly preferably 4.0% or less. The upper limit of the heat shrinkage rate in the width direction at 150 ° C. is preferably 30%, more preferably 24%, further preferably 21%, and particularly preferably 18% or less.
When the heat shrinkage rate in the longitudinal direction is 10% or less and the heat shrinkage rate in the width direction is 30% or less, wrinkles during heat sealing are less likely to occur, and in particular, the heat shrinkage rate in the longitudinal direction at 150 ° C. is 8. When the heat shrinkage rate in the width direction at 0% or less and 150 ° C. is 20% or less, the strain when the chuck portion is fused to the open portion is small, which is preferable. In order to reduce the heat shrinkage rate at 150 ° C., the lower limit of the amount of components having a molecular weight of 100,000 or less when measuring the gel permeation chromatography (GPC) integration curve of the polypropylene resin constituting the film is set to 35% by mass. It is effective to adjust the stretching ratio, stretching temperature, and heat fixing temperature.
本発明の二軸配向ポリプロピレンフィルムの150℃での長手方向の熱収縮率の上限は10%であり、好ましくは7.0%であり、より好ましくは6.0%であり、よりさらに好ましくは5.0%であり、特に好ましくは4.0%以下である。150℃での幅方向の熱収縮率の上限は好ましくは30%であり、より好ましくは24%であり、さらに好ましくは21%であり、特に好ましくは18%以下である。
長手方向の熱収縮率が10%以下、かつ、幅方向の熱収縮率が30%以下であると、ヒートシール時のシワが生じにくく、特に150℃での長手方向の熱収縮率が8.0%以下、150℃での幅方向の熱収縮率が20%以下であると、開ロ部にチャック部を融着する際の歪みが小さく好ましい。150℃での熱収縮率を小さくするには、フィルムを構成するポリプロピレン樹脂のゲルパーミエーションクロマトグラフィー(GPC)積算カーブを測定した場合の分子量10万以下の成分の量の下限を35質量%とし、延伸倍率、延伸温度、熱固定温度の調整するのが有効である。 (150 ° C heat shrinkage rate)
The upper limit of the heat shrinkage in the longitudinal direction of the biaxially oriented polypropylene film of the present invention at 150 ° C. is 10%, preferably 7.0%, more preferably 6.0%, and even more preferably. It is 5.0%, particularly preferably 4.0% or less. The upper limit of the heat shrinkage rate in the width direction at 150 ° C. is preferably 30%, more preferably 24%, further preferably 21%, and particularly preferably 18% or less.
When the heat shrinkage rate in the longitudinal direction is 10% or less and the heat shrinkage rate in the width direction is 30% or less, wrinkles during heat sealing are less likely to occur, and in particular, the heat shrinkage rate in the longitudinal direction at 150 ° C. is 8. When the heat shrinkage rate in the width direction at 0% or less and 150 ° C. is 20% or less, the strain when the chuck portion is fused to the open portion is small, which is preferable. In order to reduce the heat shrinkage rate at 150 ° C., the lower limit of the amount of components having a molecular weight of 100,000 or less when measuring the gel permeation chromatography (GPC) integration curve of the polypropylene resin constituting the film is set to 35% by mass. It is effective to adjust the stretching ratio, stretching temperature, and heat fixing temperature.
(23℃引張破断強度)
本発明の二軸配向ポリプロピレンフィルムの150℃での幅方向の熱収縮率(%)及び23℃での幅方向の引張破断強度(MPa)が下記式を満足することが必要である。
下記式を満足することにより、剛性がより高く、かつ高温での熱収縮率がより小さいため、包装袋としたときの袋形状を保持しやすさがより向上するとともに、印刷などの加工時のフィルムの変形がより起こりにくい。
23℃での幅方向の引張破断強度(MPa)≧150℃での幅方向の熱収縮率(%)×6.2+300 (23 ° C tensile breaking strength)
It is necessary that the heat shrinkage rate (%) in the width direction at 150 ° C. and the tensile breaking strength (MPa) in the width direction at 23 ° C. of the biaxially oriented polypropylene film of the present invention satisfy the following equations.
By satisfying the following formula, the rigidity is higher and the heat shrinkage rate at high temperature is smaller, so that it is easier to maintain the bag shape when it is used as a packaging bag, and at the time of processing such as printing. Deformation of the film is less likely to occur.
Width tensile breaking strength (MPa) at 23 ° C ≥ 150 ° C thermal shrinkage (%) x 6.2 + 300
本発明の二軸配向ポリプロピレンフィルムの150℃での幅方向の熱収縮率(%)及び23℃での幅方向の引張破断強度(MPa)が下記式を満足することが必要である。
下記式を満足することにより、剛性がより高く、かつ高温での熱収縮率がより小さいため、包装袋としたときの袋形状を保持しやすさがより向上するとともに、印刷などの加工時のフィルムの変形がより起こりにくい。
23℃での幅方向の引張破断強度(MPa)≧150℃での幅方向の熱収縮率(%)×6.2+300 (23 ° C tensile breaking strength)
It is necessary that the heat shrinkage rate (%) in the width direction at 150 ° C. and the tensile breaking strength (MPa) in the width direction at 23 ° C. of the biaxially oriented polypropylene film of the present invention satisfy the following equations.
By satisfying the following formula, the rigidity is higher and the heat shrinkage rate at high temperature is smaller, so that it is easier to maintain the bag shape when it is used as a packaging bag, and at the time of processing such as printing. Deformation of the film is less likely to occur.
Width tensile breaking strength (MPa) at 23 ° C ≥ 150 ° C thermal shrinkage (%) x 6.2 + 300
本発明の二軸配向ポリプロピレンフィルムの23℃での長手方向の引張破断強度の下限は、好ましくは90MPaであり、より好ましくは100MPaであり、さらに好ましくは110MPaであり、特に好ましくは120MPaである。90MPa以上だと印刷インキを転写する際の印刷ピッチずれが生じにくくなり、包装袋の耐久性にも優れやすい。長手方向の引張破断強度の上限は、現実的な値として好ましくは200MPaであり、より好ましくは180MPaであり、さらに好ましくは160MPaである。200MPa以下だとフィルムの破断や包装袋の破袋が少なくなりやすい。
本発明の二軸配向ポリプロピレンフィルムの23℃での幅方向の引張破断強度の下限は、好ましくは380MPaであり、より好ましくは400MPaであり、さらに好ましくは430MPaであり、特に好ましくは450MPaである。380MPa以上だと印刷インキを転写する際の印刷ピッチずれが生じにくくなり、包装袋の耐久性にも優れやすい。幅方向の引張破断強度の上限は、現実的な値として好ましくは550MPaであり、より好ましくは520MPaであり、さらに好ましくは500MPaである。550MPa以下だとフィルムの破断や包装袋の破袋が少なくなりやすい。引張破断強度を大きくするには、フィルムを構成するポリプロピレン樹脂のゲルパーミエーションクロマトグラフィー(GPC)積算カーブを測定した場合の分子量10万以下の成分の量の下限を35質量%とし、延伸倍率、延伸温度、熱固定温度の調整するのが有効である。 The lower limit of the tensile breaking strength in the longitudinal direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is preferably 90 MPa, more preferably 100 MPa, still more preferably 110 MPa, and particularly preferably 120 MPa. If it is 90 MPa or more, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent. The upper limit of the tensile breaking strength in the longitudinal direction is preferably 200 MPa, more preferably 180 MPa, and further preferably 160 MPa as a realistic value. If it is 200 MPa or less, the breakage of the film and the breakage of the packaging bag are likely to decrease.
The lower limit of the tensile breaking strength in the width direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is preferably 380 MPa, more preferably 400 MPa, further preferably 430 MPa, and particularly preferably 450 MPa. If it is 380 MPa or more, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent. The upper limit of the tensile breaking strength in the width direction is preferably 550 MPa, more preferably 520 MPa, and further preferably 500 MPa as a realistic value. If it is 550 MPa or less, the breakage of the film and the breakage of the packaging bag are likely to decrease. In order to increase the tensile breaking strength, the lower limit of the amount of the component having a molecular weight of 100,000 or less when the gel permeation chromatography (GPC) integration curve of the polypropylene resin constituting the film is measured is set to 35% by mass, and the draw ratio is set to 35% by mass. It is effective to adjust the stretching temperature and the heat fixing temperature.
本発明の二軸配向ポリプロピレンフィルムの23℃での幅方向の引張破断強度の下限は、好ましくは380MPaであり、より好ましくは400MPaであり、さらに好ましくは430MPaであり、特に好ましくは450MPaである。380MPa以上だと印刷インキを転写する際の印刷ピッチずれが生じにくくなり、包装袋の耐久性にも優れやすい。幅方向の引張破断強度の上限は、現実的な値として好ましくは550MPaであり、より好ましくは520MPaであり、さらに好ましくは500MPaである。550MPa以下だとフィルムの破断や包装袋の破袋が少なくなりやすい。引張破断強度を大きくするには、フィルムを構成するポリプロピレン樹脂のゲルパーミエーションクロマトグラフィー(GPC)積算カーブを測定した場合の分子量10万以下の成分の量の下限を35質量%とし、延伸倍率、延伸温度、熱固定温度の調整するのが有効である。 The lower limit of the tensile breaking strength in the longitudinal direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is preferably 90 MPa, more preferably 100 MPa, still more preferably 110 MPa, and particularly preferably 120 MPa. If it is 90 MPa or more, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent. The upper limit of the tensile breaking strength in the longitudinal direction is preferably 200 MPa, more preferably 180 MPa, and further preferably 160 MPa as a realistic value. If it is 200 MPa or less, the breakage of the film and the breakage of the packaging bag are likely to decrease.
The lower limit of the tensile breaking strength in the width direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is preferably 380 MPa, more preferably 400 MPa, further preferably 430 MPa, and particularly preferably 450 MPa. If it is 380 MPa or more, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent. The upper limit of the tensile breaking strength in the width direction is preferably 550 MPa, more preferably 520 MPa, and further preferably 500 MPa as a realistic value. If it is 550 MPa or less, the breakage of the film and the breakage of the packaging bag are likely to decrease. In order to increase the tensile breaking strength, the lower limit of the amount of the component having a molecular weight of 100,000 or less when the gel permeation chromatography (GPC) integration curve of the polypropylene resin constituting the film is measured is set to 35% by mass, and the draw ratio is set to 35% by mass. It is effective to adjust the stretching temperature and the heat fixing temperature.
本発明の二軸配向ポリプロピレンフィルムは、下記特性、構造を有するとより良い。
(23℃5%伸長時応力)
本発明の二軸配向ポリプロピレンフィルムの23℃での長手方向の5%伸長時の応力(F5)の下限は好ましくは40MPaであり、より好ましくは42MPaであり、さらに好ましくは44MPaであり、よりさらに好ましくは46MPaであり、特に好ましくは48MPaである。40MPa以上では、剛性が高いため、包装袋としたときの袋形状を保持しやすく、印刷など加工時にフィルムの変形が起こりにくい。
長手方向のF5の上限は、好ましくは70MPaであり、より好ましくは65MPaであり、さらに好ましくは62MPaであり、特に好ましくは60MPaである。70MPa以下では現実的な製造が容易となったり、縦一幅バランスが良化しやすい。
本発明の二軸配向ポリプロピレンフィルムの23℃での幅方向のF5の下限は好ましくは160MPaであり、より好ましくは170MPaであり、さらに好ましくは180MPaであり、特に好ましくは190MPaである。160MPa以上では、剛性が高いため、包装袋としたときの袋形状を保持しやすく、印刷など加工時にフィルムの変形が起こりにくい。
幅方向のF5の上限は、好ましくは250MPaであり、より好ましくは230MPaであり、さらに好ましくは220MPaである。250MPa以下だと、現実的な製造が容易であったり、縦一幅バランスが良化しやすい。
F5は延伸倍率やリラックス率を調節したり、製膜時の温度を調整することで範囲内とすることが出来る。 It is better that the biaxially oriented polypropylene film of the present invention has the following characteristics and structure.
(Stress at 23 ° C. 5% elongation)
The lower limit of the stress (F5) of the biaxially oriented polypropylene film of the present invention at 5% elongation in the longitudinal direction at 23 ° C. is preferably 40 MPa, more preferably 42 MPa, still more preferably 44 MPa, and further. It is preferably 46 MPa, particularly preferably 48 MPa. At 40 MPa or more, since the rigidity is high, it is easy to maintain the bag shape when it is used as a packaging bag, and the film is less likely to be deformed during processing such as printing.
The upper limit of F5 in the longitudinal direction is preferably 70 MPa, more preferably 65 MPa, still more preferably 62 MPa, and particularly preferably 60 MPa. At 70 MPa or less, realistic manufacturing is easy, and the vertical-width balance is easy to improve.
The lower limit of F5 in the width direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is preferably 160 MPa, more preferably 170 MPa, still more preferably 180 MPa, and particularly preferably 190 MPa. At 160 MPa or more, since the rigidity is high, it is easy to maintain the bag shape when it is used as a packaging bag, and the film is less likely to be deformed during processing such as printing.
The upper limit of F5 in the width direction is preferably 250 MPa, more preferably 230 MPa, and even more preferably 220 MPa. If it is 250 MPa or less, realistic manufacturing is easy and the vertical width balance is easy to improve.
F5 can be set within the range by adjusting the stretching ratio and the relaxing rate, and adjusting the temperature at the time of film formation.
(23℃5%伸長時応力)
本発明の二軸配向ポリプロピレンフィルムの23℃での長手方向の5%伸長時の応力(F5)の下限は好ましくは40MPaであり、より好ましくは42MPaであり、さらに好ましくは44MPaであり、よりさらに好ましくは46MPaであり、特に好ましくは48MPaである。40MPa以上では、剛性が高いため、包装袋としたときの袋形状を保持しやすく、印刷など加工時にフィルムの変形が起こりにくい。
長手方向のF5の上限は、好ましくは70MPaであり、より好ましくは65MPaであり、さらに好ましくは62MPaであり、特に好ましくは60MPaである。70MPa以下では現実的な製造が容易となったり、縦一幅バランスが良化しやすい。
本発明の二軸配向ポリプロピレンフィルムの23℃での幅方向のF5の下限は好ましくは160MPaであり、より好ましくは170MPaであり、さらに好ましくは180MPaであり、特に好ましくは190MPaである。160MPa以上では、剛性が高いため、包装袋としたときの袋形状を保持しやすく、印刷など加工時にフィルムの変形が起こりにくい。
幅方向のF5の上限は、好ましくは250MPaであり、より好ましくは230MPaであり、さらに好ましくは220MPaである。250MPa以下だと、現実的な製造が容易であったり、縦一幅バランスが良化しやすい。
F5は延伸倍率やリラックス率を調節したり、製膜時の温度を調整することで範囲内とすることが出来る。 It is better that the biaxially oriented polypropylene film of the present invention has the following characteristics and structure.
(Stress at 23 ° C. 5% elongation)
The lower limit of the stress (F5) of the biaxially oriented polypropylene film of the present invention at 5% elongation in the longitudinal direction at 23 ° C. is preferably 40 MPa, more preferably 42 MPa, still more preferably 44 MPa, and further. It is preferably 46 MPa, particularly preferably 48 MPa. At 40 MPa or more, since the rigidity is high, it is easy to maintain the bag shape when it is used as a packaging bag, and the film is less likely to be deformed during processing such as printing.
The upper limit of F5 in the longitudinal direction is preferably 70 MPa, more preferably 65 MPa, still more preferably 62 MPa, and particularly preferably 60 MPa. At 70 MPa or less, realistic manufacturing is easy, and the vertical-width balance is easy to improve.
The lower limit of F5 in the width direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is preferably 160 MPa, more preferably 170 MPa, still more preferably 180 MPa, and particularly preferably 190 MPa. At 160 MPa or more, since the rigidity is high, it is easy to maintain the bag shape when it is used as a packaging bag, and the film is less likely to be deformed during processing such as printing.
The upper limit of F5 in the width direction is preferably 250 MPa, more preferably 230 MPa, and even more preferably 220 MPa. If it is 250 MPa or less, realistic manufacturing is easy and the vertical width balance is easy to improve.
F5 can be set within the range by adjusting the stretching ratio and the relaxing rate, and adjusting the temperature at the time of film formation.
(23℃引張破断伸度)
本発明の二軸配向ポリプロピレンフィルムの23℃での長手方向の引張破断伸度の下限は、好ましくは195%であり、より好ましくは200%であり、より好ましくは210%であり、特に好ましくは220%以上である。195%以上であるとフィルムの破断や包装袋の破袋が少なくなりやすい。長手方向の引張破断伸度の上限は、現実的な値として好ましく300%であり、より好ましくは280%である。 (23 ° C tensile elongation at break)
The lower limit of the tensile elongation at break in the longitudinal direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is preferably 195%, more preferably 200%, more preferably 210%, and particularly preferably. It is 220% or more. If it is 195% or more, the breakage of the film and the breakage of the packaging bag are likely to decrease. The upper limit of the tensile elongation at break in the longitudinal direction is preferably 300% as a realistic value, and more preferably 280%.
本発明の二軸配向ポリプロピレンフィルムの23℃での長手方向の引張破断伸度の下限は、好ましくは195%であり、より好ましくは200%であり、より好ましくは210%であり、特に好ましくは220%以上である。195%以上であるとフィルムの破断や包装袋の破袋が少なくなりやすい。長手方向の引張破断伸度の上限は、現実的な値として好ましく300%であり、より好ましくは280%である。 (23 ° C tensile elongation at break)
The lower limit of the tensile elongation at break in the longitudinal direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is preferably 195%, more preferably 200%, more preferably 210%, and particularly preferably. It is 220% or more. If it is 195% or more, the breakage of the film and the breakage of the packaging bag are likely to decrease. The upper limit of the tensile elongation at break in the longitudinal direction is preferably 300% as a realistic value, and more preferably 280%.
本発明の二軸配向ポリプロピレンフィルムの23℃での幅方向の引張破断伸度の下限は、好ましくは25%であり、より好ましくは30%であり、さらに好ましくは32%であり、特に好ましくは35%以上である。25%以上だと、フィルムの破断や包装袋の破袋が少なくなりやすい。幅方向の引張破断伸度の上限は、好ましくは60%であり、より好ましくは55%であり、さらに好ましくは50%である。60%以下だと印刷インキを転写する際の印刷ピッチずれが生じにくくなり、包装袋の耐久性にも優れやすい。
引張破断伸度は延伸倍率、延伸温度、熱固定温度の調整により範囲内とすることが出来る。 The lower limit of the tensile elongation at break in the width direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is preferably 25%, more preferably 30%, still more preferably 32%, and particularly preferably. It is 35% or more. If it is 25% or more, the breakage of the film and the breakage of the packaging bag are likely to occur. The upper limit of the tensile elongation at break in the width direction is preferably 60%, more preferably 55%, and even more preferably 50%. If it is 60% or less, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent.
The tensile elongation at break can be within the range by adjusting the draw ratio, the draw temperature, and the heat fixation temperature.
引張破断伸度は延伸倍率、延伸温度、熱固定温度の調整により範囲内とすることが出来る。 The lower limit of the tensile elongation at break in the width direction of the biaxially oriented polypropylene film of the present invention at 23 ° C. is preferably 25%, more preferably 30%, still more preferably 32%, and particularly preferably. It is 35% or more. If it is 25% or more, the breakage of the film and the breakage of the packaging bag are likely to occur. The upper limit of the tensile elongation at break in the width direction is preferably 60%, more preferably 55%, and even more preferably 50%. If it is 60% or less, the printing pitch shift when transferring the printing ink is less likely to occur, and the durability of the packaging bag is likely to be excellent.
The tensile elongation at break can be within the range by adjusting the draw ratio, the draw temperature, and the heat fixation temperature.
(120℃熱収縮率)
本発明の二軸配向ポリプロピレンフィルムの120℃での長手方向の熱収縮率の上限は好ましくは2.0%であり、より好ましくは1.5%であり、さらに好ましくは1.2%であり、特に好ましくは1.0%である。2.0%以下であると、印刷インキを転写する際の印刷ピッチずれが生じにくくなる。120℃での幅方向の熱収縮率の上限は5.0%であり、好ましくは4.0%であり、より好ましくは3.5%であり、特に好ましくは2.5%である。5.0%以下であると、ヒートシール時のシワが生じにくい。
120℃での長手方向熱収縮率が120℃での幅方向熱収縮率より小さいと、印刷インキを転写する際の印刷ピッチずれがより生じにくくなる。120℃での熱収縮率と、熱収縮率の長手方向-幅方向のバランスは延伸倍率、延伸温度、熱固定温度の調整により範囲内とすることが出来る。 (120 ° C. heat shrinkage rate)
The upper limit of the heat shrinkage in the longitudinal direction of the biaxially oriented polypropylene film of the present invention at 120 ° C. is preferably 2.0%, more preferably 1.5%, and even more preferably 1.2%. , Particularly preferably 1.0%. When it is 2.0% or less, the printing pitch shift when transferring the printing ink is less likely to occur. The upper limit of the heat shrinkage rate in the width direction at 120 ° C. is 5.0%, preferably 4.0%, more preferably 3.5%, and particularly preferably 2.5%. If it is 5.0% or less, wrinkles during heat sealing are unlikely to occur.
When the longitudinal heat shrinkage rate at 120 ° C. is smaller than the width direction heat shrinkage rate at 120 ° C., the printing pitch shift when transferring the printing ink is less likely to occur. The balance between the heat shrinkage rate at 120 ° C. and the heat shrinkage rate in the longitudinal direction to the width direction can be within the range by adjusting the draw ratio, the draw temperature, and the heat fixation temperature.
本発明の二軸配向ポリプロピレンフィルムの120℃での長手方向の熱収縮率の上限は好ましくは2.0%であり、より好ましくは1.5%であり、さらに好ましくは1.2%であり、特に好ましくは1.0%である。2.0%以下であると、印刷インキを転写する際の印刷ピッチずれが生じにくくなる。120℃での幅方向の熱収縮率の上限は5.0%であり、好ましくは4.0%であり、より好ましくは3.5%であり、特に好ましくは2.5%である。5.0%以下であると、ヒートシール時のシワが生じにくい。
120℃での長手方向熱収縮率が120℃での幅方向熱収縮率より小さいと、印刷インキを転写する際の印刷ピッチずれがより生じにくくなる。120℃での熱収縮率と、熱収縮率の長手方向-幅方向のバランスは延伸倍率、延伸温度、熱固定温度の調整により範囲内とすることが出来る。 (120 ° C. heat shrinkage rate)
The upper limit of the heat shrinkage in the longitudinal direction of the biaxially oriented polypropylene film of the present invention at 120 ° C. is preferably 2.0%, more preferably 1.5%, and even more preferably 1.2%. , Particularly preferably 1.0%. When it is 2.0% or less, the printing pitch shift when transferring the printing ink is less likely to occur. The upper limit of the heat shrinkage rate in the width direction at 120 ° C. is 5.0%, preferably 4.0%, more preferably 3.5%, and particularly preferably 2.5%. If it is 5.0% or less, wrinkles during heat sealing are unlikely to occur.
When the longitudinal heat shrinkage rate at 120 ° C. is smaller than the width direction heat shrinkage rate at 120 ° C., the printing pitch shift when transferring the printing ink is less likely to occur. The balance between the heat shrinkage rate at 120 ° C. and the heat shrinkage rate in the longitudinal direction to the width direction can be within the range by adjusting the draw ratio, the draw temperature, and the heat fixation temperature.
(屈折率)
本発明の二軸配向ポリプロピレンフィルムの長手方向の屈折率(Nx)の下限は、好ましくは1.4950であり、より好ましくは1.4970であり、さらに好ましくは1.4980である。1.4950以上だとフィルムの剛性を大きくしやすい。長手方向の屈折率(Nx)の上限は、好ましくは1.5100であり、より好ましくは1.5070であり、さらに好ましくは1.5050である。1.5100以下だとフィルムの長手方向-幅方向の特性のバランスに優れやすい。 (Refractive index)
The lower limit of the refractive index (Nx) in the longitudinal direction of the biaxially oriented polypropylene film of the present invention is preferably 1.4950, more preferably 1.4970, and even more preferably 1.4980. If it is 1.4950 or more, it is easy to increase the rigidity of the film. The upper limit of the refractive index (Nx) in the longitudinal direction is preferably 1.5100, more preferably 1.5070, and even more preferably 1.5050. If it is 1.5100 or less, the balance of the characteristics in the longitudinal direction and the width direction of the film tends to be excellent.
本発明の二軸配向ポリプロピレンフィルムの長手方向の屈折率(Nx)の下限は、好ましくは1.4950であり、より好ましくは1.4970であり、さらに好ましくは1.4980である。1.4950以上だとフィルムの剛性を大きくしやすい。長手方向の屈折率(Nx)の上限は、好ましくは1.5100であり、より好ましくは1.5070であり、さらに好ましくは1.5050である。1.5100以下だとフィルムの長手方向-幅方向の特性のバランスに優れやすい。 (Refractive index)
The lower limit of the refractive index (Nx) in the longitudinal direction of the biaxially oriented polypropylene film of the present invention is preferably 1.4950, more preferably 1.4970, and even more preferably 1.4980. If it is 1.4950 or more, it is easy to increase the rigidity of the film. The upper limit of the refractive index (Nx) in the longitudinal direction is preferably 1.5100, more preferably 1.5070, and even more preferably 1.5050. If it is 1.5100 or less, the balance of the characteristics in the longitudinal direction and the width direction of the film tends to be excellent.
本発明の二軸配向ポリプロピレンフィルムの幅方向の屈折率(Ny)の下限は1.5230であり、好ましくは1.5235であり、より好ましくは1.5240である。1.5230以上だとフィルムの剛性を大きくしやすい。幅方向の屈折率(Ny)の上限は、好ましくは1.5280であり、より好ましくは1.5275であり、さらに好ましくは1.5270である。1.5280以下だとフィルムの長手方向-幅方向の特性のバランスに優れやすい。
The lower limit of the refractive index (Ny) in the width direction of the biaxially oriented polypropylene film of the present invention is 1.5230, preferably 1.5235, and more preferably 1.5240. If it is 1.5230 or more, it is easy to increase the rigidity of the film. The upper limit of the refractive index (Ny) in the width direction is preferably 1.5280, more preferably 1.5275, and even more preferably 1.5270. If it is 1.5280 or less, the balance of the characteristics in the longitudinal direction and the width direction of the film tends to be excellent.
本発明の二軸配向ポリプロピレンフィルムの厚み方向の屈折率(Nz)の下限は、好ましくは1.4960であり、より好ましくは14965であり、さらに好ましくは1.4970である。1.4960以上だとフィルムの剛性を大きくしやすい。厚み方向の屈折率(Nz)の上限は、好ましくは1.5020であり、より好ましくは1.5015であり、さらに好ましくは1.5010である。1.5020以下だとフィルムの耐熱性を高めやすい。
屈折率は延伸倍率、延伸温度、熱固定温度の調整により範囲内とすることが出来る。 The lower limit of the refractive index (Nz) in the thickness direction of the biaxially oriented polypropylene film of the present invention is preferably 1.4960, more preferably 14965, and even more preferably 1.4970. If it is 1.4960 or more, it is easy to increase the rigidity of the film. The upper limit of the refractive index (Nz) in the thickness direction is preferably 1.5020, more preferably 1.5015, and even more preferably 1.5010. If it is 1.5020 or less, the heat resistance of the film can be easily increased.
The refractive index can be set within the range by adjusting the stretching ratio, stretching temperature, and heat fixing temperature.
屈折率は延伸倍率、延伸温度、熱固定温度の調整により範囲内とすることが出来る。 The lower limit of the refractive index (Nz) in the thickness direction of the biaxially oriented polypropylene film of the present invention is preferably 1.4960, more preferably 14965, and even more preferably 1.4970. If it is 1.4960 or more, it is easy to increase the rigidity of the film. The upper limit of the refractive index (Nz) in the thickness direction is preferably 1.5020, more preferably 1.5015, and even more preferably 1.5010. If it is 1.5020 or less, the heat resistance of the film can be easily increased.
The refractive index can be set within the range by adjusting the stretching ratio, stretching temperature, and heat fixing temperature.
(△Ny)
本発明の本発明の二軸配向ポリプロピレンフィルムの△Nyの下限は0.0220であり、好ましくは0.0225であり、より好ましくは0.0228であり、さらに好ましくは0.0230である。0.0220以上だとフィルムの剛性が高くなりやすい。△Nyの上限は、現実的な値として好ましくは0.0270であり、より好ましくは0.0265であり、さらに好ましくは0.0262であり、特に好ましくは0.0260である。0.0270以下だと厚みムラも良好となりやすい。△Nyはフィルムの延伸倍率、延伸温度、熱固定温度の調整により範囲内とすることが出来る。
△Nyはフィルムの長手方向、幅方向、厚み方向に沿った屈折率をそれぞれNx、Ny、Nzとし、下記式で計算されるが、フィルムの長手方向、幅方向、厚み方向全体の配向における幅方向の配向の程度を意味する。
△Ny=Ny-[(Nx+Nz)/2] (△ Ny)
The lower limit of ΔNy of the biaxially oriented polypropylene film of the present invention of the present invention is 0.0220, preferably 0.0225, more preferably 0.0228, and further preferably 0.0230. If it is 0.0220 or more, the rigidity of the film tends to increase. The upper limit of ΔNy is preferably 0.0270, more preferably 0.0265, still more preferably 0.0262, and particularly preferably 0.0260 as a realistic value. If it is 0.0270 or less, the thickness unevenness tends to be good. ΔNy can be set within the range by adjusting the stretching ratio, stretching temperature, and heat fixing temperature of the film.
ΔNy is calculated by the following formula, where the refractive indexes along the longitudinal direction, the width direction, and the thickness direction of the film are Nx, Ny, and Nz, respectively. It means the degree of orientation in the direction.
ΔNy = Ny− [(Nx + Nz) / 2]
本発明の本発明の二軸配向ポリプロピレンフィルムの△Nyの下限は0.0220であり、好ましくは0.0225であり、より好ましくは0.0228であり、さらに好ましくは0.0230である。0.0220以上だとフィルムの剛性が高くなりやすい。△Nyの上限は、現実的な値として好ましくは0.0270であり、より好ましくは0.0265であり、さらに好ましくは0.0262であり、特に好ましくは0.0260である。0.0270以下だと厚みムラも良好となりやすい。△Nyはフィルムの延伸倍率、延伸温度、熱固定温度の調整により範囲内とすることが出来る。
△Nyはフィルムの長手方向、幅方向、厚み方向に沿った屈折率をそれぞれNx、Ny、Nzとし、下記式で計算されるが、フィルムの長手方向、幅方向、厚み方向全体の配向における幅方向の配向の程度を意味する。
△Ny=Ny-[(Nx+Nz)/2] (△ Ny)
The lower limit of ΔNy of the biaxially oriented polypropylene film of the present invention of the present invention is 0.0220, preferably 0.0225, more preferably 0.0228, and further preferably 0.0230. If it is 0.0220 or more, the rigidity of the film tends to increase. The upper limit of ΔNy is preferably 0.0270, more preferably 0.0265, still more preferably 0.0262, and particularly preferably 0.0260 as a realistic value. If it is 0.0270 or less, the thickness unevenness tends to be good. ΔNy can be set within the range by adjusting the stretching ratio, stretching temperature, and heat fixing temperature of the film.
ΔNy is calculated by the following formula, where the refractive indexes along the longitudinal direction, the width direction, and the thickness direction of the film are Nx, Ny, and Nz, respectively. It means the degree of orientation in the direction.
ΔNy = Ny− [(Nx + Nz) / 2]
(面配向係数)
本発明の二軸配向ポリプロピレンフィルムの面配向係数(ΔP)の下限は、好ましくは0.0135であり、より好ましくは0.0138であり、さらに好ましくは0.0140である。0.0135以上だとフィルムの面方向のバランスが良好で、厚みムラも良好である。面配向係数(ΔP)の上限は、現実的な値として好ましくは0.0155であり、より好ましくは0.0152であり、さらに好ましくは0.0150である。0.0155以下だと高温での耐熱性に優れやすい。面配向係数(ΔP)は延伸倍率、延伸温度、熱固定温度の調整により範囲内とすることが出来る。
また、面配向係数(ΔP)は、(式)[(Nx+Ny)/2]-Nzを用いて計算した。 (Surface orientation coefficient)
The lower limit of the plane orientation coefficient (ΔP) of the biaxially oriented polypropylene film of the present invention is preferably 0.0135, more preferably 0.0138, and even more preferably 0.0140. When it is 0.0135 or more, the balance in the surface direction of the film is good, and the thickness unevenness is also good. The upper limit of the plane orientation coefficient (ΔP) is preferably 0.0155, more preferably 0.0152, and even more preferably 0.0150 as a realistic value. If it is 0.0155 or less, the heat resistance at high temperature is likely to be excellent. The plane orientation coefficient (ΔP) can be set within the range by adjusting the stretching ratio, stretching temperature, and heat fixing temperature.
The plane orientation coefficient (ΔP) was calculated using (Equation) [(Nx + Ny) / 2] -Nz.
本発明の二軸配向ポリプロピレンフィルムの面配向係数(ΔP)の下限は、好ましくは0.0135であり、より好ましくは0.0138であり、さらに好ましくは0.0140である。0.0135以上だとフィルムの面方向のバランスが良好で、厚みムラも良好である。面配向係数(ΔP)の上限は、現実的な値として好ましくは0.0155であり、より好ましくは0.0152であり、さらに好ましくは0.0150である。0.0155以下だと高温での耐熱性に優れやすい。面配向係数(ΔP)は延伸倍率、延伸温度、熱固定温度の調整により範囲内とすることが出来る。
また、面配向係数(ΔP)は、(式)[(Nx+Ny)/2]-Nzを用いて計算した。 (Surface orientation coefficient)
The lower limit of the plane orientation coefficient (ΔP) of the biaxially oriented polypropylene film of the present invention is preferably 0.0135, more preferably 0.0138, and even more preferably 0.0140. When it is 0.0135 or more, the balance in the surface direction of the film is good, and the thickness unevenness is also good. The upper limit of the plane orientation coefficient (ΔP) is preferably 0.0155, more preferably 0.0152, and even more preferably 0.0150 as a realistic value. If it is 0.0155 or less, the heat resistance at high temperature is likely to be excellent. The plane orientation coefficient (ΔP) can be set within the range by adjusting the stretching ratio, stretching temperature, and heat fixing temperature.
The plane orientation coefficient (ΔP) was calculated using (Equation) [(Nx + Ny) / 2] -Nz.
(ヘイズ)
本発明の二軸配向ポリプロピレンフィルムのヘイズの上限は好ましくは5.0%であり、より好ましくは4.5%であり、さらに好ましくは4.0%であり、特に好ましくは3.5%であり、最も好ましくは3.0%である。5.0%以下であると透明が要求される用途で使いやすい。ヘイズの下限は、現実的値としては好ましくは0.1%であり、より好ましくは0.2%であり、さらに好ましくは0.3%であり、特に好ましくは0.4%である。0.1%以上であると製造しやすい。ヘイズは、冷却ロール(CR)温度、幅方向延伸温度、テンター幅方向延伸前予熱温度、幅方向延伸温度、又は熱固定温度、若しくはポリプロピレン樹脂の分子量が10万以下の成分の量を調節することで範囲内とすることが出来るが、ブロッキング防止剤の添加や、シール層付与により、大きくなることがある。 (Haze)
The upper limit of the haze of the biaxially oriented polypropylene film of the present invention is preferably 5.0%, more preferably 4.5%, further preferably 4.0%, and particularly preferably 3.5%. Yes, most preferably 3.0%. If it is 5.0% or less, it is easy to use in applications where transparency is required. The lower limit of the haze is preferably 0.1%, more preferably 0.2%, still more preferably 0.3%, and particularly preferably 0.4% as a realistic value. If it is 0.1% or more, it is easy to manufacture. The haze adjusts the cooling roll (CR) temperature, the stretching temperature in the width direction, the preheating temperature before stretching in the tenter width direction, the stretching temperature in the width direction, or the heat fixing temperature, or the amount of components having a molecular weight of 100,000 or less of the polypropylene resin. However, it may increase due to the addition of an antiblocking agent or the addition of a seal layer.
本発明の二軸配向ポリプロピレンフィルムのヘイズの上限は好ましくは5.0%であり、より好ましくは4.5%であり、さらに好ましくは4.0%であり、特に好ましくは3.5%であり、最も好ましくは3.0%である。5.0%以下であると透明が要求される用途で使いやすい。ヘイズの下限は、現実的値としては好ましくは0.1%であり、より好ましくは0.2%であり、さらに好ましくは0.3%であり、特に好ましくは0.4%である。0.1%以上であると製造しやすい。ヘイズは、冷却ロール(CR)温度、幅方向延伸温度、テンター幅方向延伸前予熱温度、幅方向延伸温度、又は熱固定温度、若しくはポリプロピレン樹脂の分子量が10万以下の成分の量を調節することで範囲内とすることが出来るが、ブロッキング防止剤の添加や、シール層付与により、大きくなることがある。 (Haze)
The upper limit of the haze of the biaxially oriented polypropylene film of the present invention is preferably 5.0%, more preferably 4.5%, further preferably 4.0%, and particularly preferably 3.5%. Yes, most preferably 3.0%. If it is 5.0% or less, it is easy to use in applications where transparency is required. The lower limit of the haze is preferably 0.1%, more preferably 0.2%, still more preferably 0.3%, and particularly preferably 0.4% as a realistic value. If it is 0.1% or more, it is easy to manufacture. The haze adjusts the cooling roll (CR) temperature, the stretching temperature in the width direction, the preheating temperature before stretching in the tenter width direction, the stretching temperature in the width direction, or the heat fixing temperature, or the amount of components having a molecular weight of 100,000 or less of the polypropylene resin. However, it may increase due to the addition of an antiblocking agent or the addition of a seal layer.
(配向結晶に由来する回折ピークの半値幅)
本発明の二軸配向ポリプロピレンフィルムの、フィルム面に垂直に入射した広角X線測定で得られるポリプロピレンα型結晶の(110)面の散乱ピークの方位角依存性において、フィルムの幅方向の配向結晶に由来する回折ピークの半値幅(Wh)の上限は好ましくは25°であり、より好ましくは24°であり、より好ましくは23°であり、特に好ましくは22°である。半値幅(Wh)が25°以下であるとフィルムの剛性を高くしやすい。Whの下限は、好ましくは16°であり、より好ましくは17°であり、さらに好ましくは18°である。 (Half width of diffraction peak derived from oriented crystal)
In the orientation angle dependence of the scattering peak of the (110) plane of the polypropylene α-type crystal obtained by wide-angle X-ray measurement perpendicularly incident on the film plane of the biaxially oriented polypropylene film of the present invention, the oriented crystal in the width direction of the film. The upper limit of the half-value width (Wh) of the diffraction peak derived from is preferably 25 °, more preferably 24 °, more preferably 23 °, and particularly preferably 22 °. When the full width at half maximum (Wh) is 25 ° or less, the rigidity of the film tends to be increased. The lower limit of Wh is preferably 16 °, more preferably 17 °, and even more preferably 18 °.
本発明の二軸配向ポリプロピレンフィルムの、フィルム面に垂直に入射した広角X線測定で得られるポリプロピレンα型結晶の(110)面の散乱ピークの方位角依存性において、フィルムの幅方向の配向結晶に由来する回折ピークの半値幅(Wh)の上限は好ましくは25°であり、より好ましくは24°であり、より好ましくは23°であり、特に好ましくは22°である。半値幅(Wh)が25°以下であるとフィルムの剛性を高くしやすい。Whの下限は、好ましくは16°であり、より好ましくは17°であり、さらに好ましくは18°である。 (Half width of diffraction peak derived from oriented crystal)
In the orientation angle dependence of the scattering peak of the (110) plane of the polypropylene α-type crystal obtained by wide-angle X-ray measurement perpendicularly incident on the film plane of the biaxially oriented polypropylene film of the present invention, the oriented crystal in the width direction of the film. The upper limit of the half-value width (Wh) of the diffraction peak derived from is preferably 25 °, more preferably 24 °, more preferably 23 °, and particularly preferably 22 °. When the full width at half maximum (Wh) is 25 ° or less, the rigidity of the film tends to be increased. The lower limit of Wh is preferably 16 °, more preferably 17 °, and even more preferably 18 °.
(X線配向度)
本発明の二軸配向ポリプロピレンフィルムのWhから下記式で算出されるX線配向度の下限は、好ましくは0.860であり、より好ましくは0.867であり、さらに好ましくは0.872である。0.860以上とすることで剛性を高めやすい。
X線配向度=(180-Wh)/180
X線配向度の上限は、好ましくは0.911であり、より好ましくは0.906であり、さらに好ましくは0.900である。0.911以下とすることで製膜が安定しやすい。 (X-ray orientation)
The lower limit of the X-ray orientation calculated from Wh of the biaxially oriented polypropylene film of the present invention by the following formula is preferably 0.860, more preferably 0.867, and even more preferably 0.872. .. It is easy to increase the rigidity by setting it to 0.860 or more.
X-ray orientation = (180-Wh) / 180
The upper limit of the X-ray orientation is preferably 0.911, more preferably 0.906, and even more preferably 0.900. When it is 0.911 or less, the film formation is easy to stabilize.
本発明の二軸配向ポリプロピレンフィルムのWhから下記式で算出されるX線配向度の下限は、好ましくは0.860であり、より好ましくは0.867であり、さらに好ましくは0.872である。0.860以上とすることで剛性を高めやすい。
X線配向度=(180-Wh)/180
X線配向度の上限は、好ましくは0.911であり、より好ましくは0.906であり、さらに好ましくは0.900である。0.911以下とすることで製膜が安定しやすい。 (X-ray orientation)
The lower limit of the X-ray orientation calculated from Wh of the biaxially oriented polypropylene film of the present invention by the following formula is preferably 0.860, more preferably 0.867, and even more preferably 0.872. .. It is easy to increase the rigidity by setting it to 0.860 or more.
X-ray orientation = (180-Wh) / 180
The upper limit of the X-ray orientation is preferably 0.911, more preferably 0.906, and even more preferably 0.900. When it is 0.911 or less, the film formation is easy to stabilize.
(フィルムの実用特性)
本発明の二軸配向ポリプロピレンフィルムの有する実用特性について説明する。 (Practical characteristics of film)
The practical characteristics of the biaxially oriented polypropylene film of the present invention will be described.
本発明の二軸配向ポリプロピレンフィルムの有する実用特性について説明する。 (Practical characteristics of film)
The practical characteristics of the biaxially oriented polypropylene film of the present invention will be described.
(ヒートシール時のシワ)
食品を包装する袋を形成するには、製袋済みの袋に内容物を充填し、加熱してフィルムを溶融して融着して密封する。また、食品を充填しながら製袋する際にも同様に行う場合が多い。通常は基材フィルムにポリエチレンやポリプロピレンなどからなるシーラントフィルムを積層し、このシーラントフィルム面同士を融着させる。加熱方法は基材フィルム側から加熱板で圧力をかけフィルムを押さえてシールするが、シール幅は10mm程度とする場合が多い。このとき基材フィルムも加熱されるため、その際の収縮がシワを発生させる。袋の耐久性においてシワは少ない方が良く、購買意欲を高めるためにもシワは少ない方が良い。シール温度は120℃程度である場合もあるが、製袋加工速度を高めるためにはより高温でのシール温度が求められ、その場合でも収縮が小さいことが好ましい。袋の開ロ部にチャックを融着する場合には、さらに高温でシールを行うことが求められる。 (Wrinkles during heat sealing)
To form a bag for wrapping food, the pre-made bag is filled with the contents and heated to melt the film, fuse it and seal it. In many cases, the same procedure is used when making a bag while filling food. Usually, a sealant film made of polyethylene, polypropylene, or the like is laminated on the base film, and the sealant film surfaces are fused to each other. In the heating method, pressure is applied from the base film side with a heating plate to press the film to seal it, but the sealing width is often about 10 mm. At this time, the base film is also heated, and the shrinkage at that time causes wrinkles. It is better to have less wrinkles in the durability of the bag, and it is better to have less wrinkles in order to increase purchasing motivation. The sealing temperature may be about 120 ° C., but in order to increase the bag making processing speed, a higher sealing temperature is required, and even in that case, it is preferable that the shrinkage is small. When the chuck is fused to the opening portion of the bag, it is required to seal at a higher temperature.
食品を包装する袋を形成するには、製袋済みの袋に内容物を充填し、加熱してフィルムを溶融して融着して密封する。また、食品を充填しながら製袋する際にも同様に行う場合が多い。通常は基材フィルムにポリエチレンやポリプロピレンなどからなるシーラントフィルムを積層し、このシーラントフィルム面同士を融着させる。加熱方法は基材フィルム側から加熱板で圧力をかけフィルムを押さえてシールするが、シール幅は10mm程度とする場合が多い。このとき基材フィルムも加熱されるため、その際の収縮がシワを発生させる。袋の耐久性においてシワは少ない方が良く、購買意欲を高めるためにもシワは少ない方が良い。シール温度は120℃程度である場合もあるが、製袋加工速度を高めるためにはより高温でのシール温度が求められ、その場合でも収縮が小さいことが好ましい。袋の開ロ部にチャックを融着する場合には、さらに高温でシールを行うことが求められる。 (Wrinkles during heat sealing)
To form a bag for wrapping food, the pre-made bag is filled with the contents and heated to melt the film, fuse it and seal it. In many cases, the same procedure is used when making a bag while filling food. Usually, a sealant film made of polyethylene, polypropylene, or the like is laminated on the base film, and the sealant film surfaces are fused to each other. In the heating method, pressure is applied from the base film side with a heating plate to press the film to seal it, but the sealing width is often about 10 mm. At this time, the base film is also heated, and the shrinkage at that time causes wrinkles. It is better to have less wrinkles in the durability of the bag, and it is better to have less wrinkles in order to increase purchasing motivation. The sealing temperature may be about 120 ° C., but in order to increase the bag making processing speed, a higher sealing temperature is required, and even in that case, it is preferable that the shrinkage is small. When the chuck is fused to the opening portion of the bag, it is required to seal at a higher temperature.
(印刷ピッチずれ)
包装フィルムの構成としては、基本的な構成として、印刷が施された基材フィルムとシーラントフィルムの積層フィルムからなる場合が多い。袋の製造には、製袋機が使用され、三方袋、スタンディング袋、ガゼット袋などがあり、さまざまな製袋機が使用されている。印刷ピッチズレは、印刷工程時にフィルムにテンションや熱を掛けるため、フィルムの基材が伸び縮みするため発生すると考えられる。印刷ピッチズレによる不良品をなくすことは資源の有効活用の点でも重要であり、購買意欲を高めるためにも重要である。 (Print pitch shift)
As a basic structure of the packaging film, it is often composed of a laminated film of a printed base film and a sealant film. A bag making machine is used to manufacture bags, and there are three-sided bags, standing bags, gusset bags, etc., and various bag making machines are used. It is considered that the printing pitch shift occurs because the base material of the film expands and contracts because tension and heat are applied to the film during the printing process. Eliminating defective products due to printing pitch deviation is important in terms of effective use of resources, and is also important in increasing purchasing motivation.
包装フィルムの構成としては、基本的な構成として、印刷が施された基材フィルムとシーラントフィルムの積層フィルムからなる場合が多い。袋の製造には、製袋機が使用され、三方袋、スタンディング袋、ガゼット袋などがあり、さまざまな製袋機が使用されている。印刷ピッチズレは、印刷工程時にフィルムにテンションや熱を掛けるため、フィルムの基材が伸び縮みするため発生すると考えられる。印刷ピッチズレによる不良品をなくすことは資源の有効活用の点でも重要であり、購買意欲を高めるためにも重要である。 (Print pitch shift)
As a basic structure of the packaging film, it is often composed of a laminated film of a printed base film and a sealant film. A bag making machine is used to manufacture bags, and there are three-sided bags, standing bags, gusset bags, etc., and various bag making machines are used. It is considered that the printing pitch shift occurs because the base material of the film expands and contracts because tension and heat are applied to the film during the printing process. Eliminating defective products due to printing pitch deviation is important in terms of effective use of resources, and is also important in increasing purchasing motivation.
(フィルム加工)
本発明の二軸配向ポリプロピレンフィルムの印刷は用途に応じて、凸版印刷・平版印刷・凹版印刷、孔版印刷、転写印刷方式により行うことができる。
また、低密度ポリエチレン、線状低密度ポリエチレン、エチレン-酢酸ビニル共重合体、ポリプロピレン、ポリエステルからなる未延伸シート、一軸延伸フィルム、二軸延伸フィルをシーラントフィルムとして貼り合せて、ヒートシール性を付与したラミネート体としても使用することができる。さらにガスバリア性や耐熱性を高めたいときはアルミ箔やポリ塩化ビニリデン、ナイロン、エチレンービニルアルコール共重合体、ポリビニルアルコールからなる未延伸シート、一軸延伸フィルム、二軸延伸フィルムを二軸配向ポリプロピレンフィルムとシーラントフィルムの間に中間層として設けることができる。シーラントフィルムの貼り合せには、ドライラミネーション法又はホットメルトラミネーション法により塗布した接着剤を使用することができる。
ガスバリア性を高めるには、二軸配向ポリプロピレンフィルムや中間層フィルム、あるいはシーラントフィルムにアルミや無機酸化物を蒸着加工することもできる。蒸着方法には真空蒸着、スパッタリング、イオンプレーティング法を採用できるが、特にシリカ、アルルミナ、又はこれらの混合物を真空蒸着するのが好ましい。 (Film processing)
The biaxially oriented polypropylene film of the present invention can be printed by letterpress printing, lithographic printing, intaglio printing, stencil printing, and transfer printing, depending on the application.
In addition, low-density polyethylene, linear low-density polyethylene, ethylene-vinyl acetate copolymer, polypropylene, unstretched sheet made of polyester, uniaxially stretched film, and biaxially stretched fill are bonded as a sealant film to impart heat sealability. It can also be used as a laminated body. If you want to further improve gas barrier properties and heat resistance, use aluminum foil, polyvinylidene chloride, nylon, ethylene-vinyl alcohol copolymer, unstretched sheet made of polyvinyl alcohol, uniaxially stretched film, and biaxially stretched film as biaxially oriented polypropylene film. It can be provided as an intermediate layer between the and the sealant film. An adhesive applied by a dry lamination method or a hot melt lamination method can be used for laminating the sealant film.
In order to enhance the gas barrier property, aluminum or an inorganic oxide can be vapor-deposited on a biaxially oriented polypropylene film, an intermediate layer film, or a sealant film. Vacuum vapor deposition, sputtering, and ion plating methods can be adopted as the vapor deposition method, but silica, allumina, or a mixture thereof is particularly preferable.
本発明の二軸配向ポリプロピレンフィルムの印刷は用途に応じて、凸版印刷・平版印刷・凹版印刷、孔版印刷、転写印刷方式により行うことができる。
また、低密度ポリエチレン、線状低密度ポリエチレン、エチレン-酢酸ビニル共重合体、ポリプロピレン、ポリエステルからなる未延伸シート、一軸延伸フィルム、二軸延伸フィルをシーラントフィルムとして貼り合せて、ヒートシール性を付与したラミネート体としても使用することができる。さらにガスバリア性や耐熱性を高めたいときはアルミ箔やポリ塩化ビニリデン、ナイロン、エチレンービニルアルコール共重合体、ポリビニルアルコールからなる未延伸シート、一軸延伸フィルム、二軸延伸フィルムを二軸配向ポリプロピレンフィルムとシーラントフィルムの間に中間層として設けることができる。シーラントフィルムの貼り合せには、ドライラミネーション法又はホットメルトラミネーション法により塗布した接着剤を使用することができる。
ガスバリア性を高めるには、二軸配向ポリプロピレンフィルムや中間層フィルム、あるいはシーラントフィルムにアルミや無機酸化物を蒸着加工することもできる。蒸着方法には真空蒸着、スパッタリング、イオンプレーティング法を採用できるが、特にシリカ、アルルミナ、又はこれらの混合物を真空蒸着するのが好ましい。 (Film processing)
The biaxially oriented polypropylene film of the present invention can be printed by letterpress printing, lithographic printing, intaglio printing, stencil printing, and transfer printing, depending on the application.
In addition, low-density polyethylene, linear low-density polyethylene, ethylene-vinyl acetate copolymer, polypropylene, unstretched sheet made of polyester, uniaxially stretched film, and biaxially stretched fill are bonded as a sealant film to impart heat sealability. It can also be used as a laminated body. If you want to further improve gas barrier properties and heat resistance, use aluminum foil, polyvinylidene chloride, nylon, ethylene-vinyl alcohol copolymer, unstretched sheet made of polyvinyl alcohol, uniaxially stretched film, and biaxially stretched film as biaxially oriented polypropylene film. It can be provided as an intermediate layer between the and the sealant film. An adhesive applied by a dry lamination method or a hot melt lamination method can be used for laminating the sealant film.
In order to enhance the gas barrier property, aluminum or an inorganic oxide can be vapor-deposited on a biaxially oriented polypropylene film, an intermediate layer film, or a sealant film. Vacuum vapor deposition, sputtering, and ion plating methods can be adopted as the vapor deposition method, but silica, allumina, or a mixture thereof is particularly preferable.
本発明の二軸配向ポリプロピレンフィルムには、例えば、多価アルコールの脂肪酸エステル類、高級脂肪酸のアミン類、高級脂肪酸のアマイド類、高級脂肪酸のアミンやアマイドのエチレンオキサイド付加物などの防曇剤のフィルム中での存在量を0.2~5質量%の範囲することで、野菜、果実、草花など高い鮮度が要求される植物類からなる生鮮品を包装するのに適したものとすることができる。
The biaxially oriented polypropylene film of the present invention contains, for example, antifogging agents such as fatty acid esters of polyhydric alcohols, amines of higher fatty acids, amides of higher fatty acids, amines of higher fatty acids and ethylene oxide adducts of amide. By setting the abundance in the film in the range of 0.2 to 5% by mass, it is possible to make it suitable for packaging fresh products made of plants that require high freshness such as vegetables, fruits, and flowers. can.
また、本発明の効果を損なわない範囲であれば、滑り性や帯電防止性などの品質向上のための各種添加剤、例えば、生産性の向上のためにワックス、金属石鹸などの潤滑剤、可塑剤、加工助剤や熱安定剤、酸化防止剤、帯電防止剤、紫外線吸収剤などを配合することも可能である。
Further, as long as the effects of the present invention are not impaired, various additives for improving quality such as slipperiness and antistatic property, for example, lubricants such as wax and metal soap for improving productivity, and plasticizers. It is also possible to add agents, processing aids, heat stabilizers, antioxidants, antistatic agents, ultraviolet absorbers and the like.
(産業上の利用可能性)
本発明の二軸配向ポリプロピレンフィルムは上記の様な従来にはない優れた特性を有するため、包装袋に好ましく使用することができ、またフィルムの厚みを従来よりも薄くすることが可能である。 (Industrial applicability)
Since the biaxially oriented polypropylene film of the present invention has excellent properties as described above, it can be preferably used for packaging bags, and the thickness of the film can be made thinner than before.
本発明の二軸配向ポリプロピレンフィルムは上記の様な従来にはない優れた特性を有するため、包装袋に好ましく使用することができ、またフィルムの厚みを従来よりも薄くすることが可能である。 (Industrial applicability)
Since the biaxially oriented polypropylene film of the present invention has excellent properties as described above, it can be preferably used for packaging bags, and the thickness of the film can be made thinner than before.
さらには、コンデンサーやモーターなどの絶縁フィルム、太陽電池のバックシート、無機酸化物のバリアフィルム、ITOなどの透明導電フィルムのベースフィルムなど高温で使用される用途や、セパレートフィルムなど剛性が必要とされる用途にも好適である。また、従来用いられにくかったコート剤やインキ、ラミネート接着剤などを用い、高温でのコートや印刷加工が可能となり、生産の効率化が期待できる。
Furthermore, it is required to be used at high temperatures such as insulating films for capacitors and motors, back sheets for solar cells, barrier films for inorganic oxides, and base films for transparent conductive films such as ITO, and to have rigidity such as separate films. It is also suitable for various applications. In addition, it is possible to coat and print at high temperatures by using coating agents, inks, laminating adhesives, etc., which have been difficult to use in the past, and it is expected that production efficiency will be improved.
以下、実施例により本発明を群細に説明する。なお、特性は以下の方法により測定、評価を行った。
(1)メルトフローレート
メルトフローレート(MFR)は、JISK7210に準拠し、温度230℃、荷重2.16kgfで測定した。 Hereinafter, the present invention will be described in detail with reference to Examples. The characteristics were measured and evaluated by the following methods.
(1) Melt flow rate The melt flow rate (MFR) was measured at a temperature of 230 ° C. and a load of 2.16 kgf in accordance with JIS K7210.
(1)メルトフローレート
メルトフローレート(MFR)は、JISK7210に準拠し、温度230℃、荷重2.16kgfで測定した。 Hereinafter, the present invention will be described in detail with reference to Examples. The characteristics were measured and evaluated by the following methods.
(1) Melt flow rate The melt flow rate (MFR) was measured at a temperature of 230 ° C. and a load of 2.16 kgf in accordance with JIS K7210.
(2)メソペンダット分率
ポリプロピレン樹脂のメソペンタッド分率([mmmm]%)の測定は、13C-NMRを用いて行った。メソペンタッド分率は、Zambelliら、Macromolecules、第6巻、925頁(1973)に記載の方法に従って算出した。13C-NMR測定は、BRUKER社製AVANCE500を用い、試料200mgをo-ジクロロベンゼンと重ベンゼンの8:2の混合液に135℃で溶解し、110℃で行った。 (2) Mesopendat fraction The mesopentad fraction ([mmmm]%) of the polypropylene resin was measured using 13C-NMR. The mesopentad fraction was calculated according to the method described in Zambelli et al., Macromolecules, Vol. 6, p. 925 (1973). The 13C-NMR measurement was carried out at 110 ° C. by dissolving 200 mg of a sample in an 8: 2 mixture of o-dichlorobenzene and heavy benzene using AVANCE500 manufactured by Bruker.
ポリプロピレン樹脂のメソペンタッド分率([mmmm]%)の測定は、13C-NMRを用いて行った。メソペンタッド分率は、Zambelliら、Macromolecules、第6巻、925頁(1973)に記載の方法に従って算出した。13C-NMR測定は、BRUKER社製AVANCE500を用い、試料200mgをo-ジクロロベンゼンと重ベンゼンの8:2の混合液に135℃で溶解し、110℃で行った。 (2) Mesopendat fraction The mesopentad fraction ([mmmm]%) of the polypropylene resin was measured using 13C-NMR. The mesopentad fraction was calculated according to the method described in Zambelli et al., Macromolecules, Vol. 6, p. 925 (1973). The 13C-NMR measurement was carried out at 110 ° C. by dissolving 200 mg of a sample in an 8: 2 mixture of o-dichlorobenzene and heavy benzene using AVANCE500 manufactured by Bruker.
(3)ポリプロピレン樹脂の数平均分子量、重量平均分子量、分子量10万以下の成分量、および分子量分布
ゲルパーミエーションクロマトグラフィー(GPC)を用い、単分散ポリスチレン基準としPP換算分子量として求めた。ベースラインが明確でないときは、標準物質の溶出ピークに最も近い高分子量側の溶出ピークの高分子量側のすそ野の最も低い位置までの範囲でベースラインを設定することとした。
GPC測定条件は次のとおりである。
装置:HLC-8321PC/HT(東ソー株式会社製)
検出器:RI
溶媒:1,2,4-トリクロロベンゼン+ジブチルヒドロキシトルエン(0.05%)
カラム:TSKgelguardcolumnHHR(30)HT(7.5mmI.D.×7.5cm)×1本 + TSKgelGMHHR-H(20)HT(7.8mmI.D.×30cm)×3本
流量:1.0mL/min
注入量:0.3mL
測定温度:140℃
数平均分子量(Mn)、質量平均分子量(Mw)はそれぞれ、分子量較正曲線を介して得られたGPC曲線の各溶出位置の分子量(Mi)の分子数(Ni)により次式で定義される。
数平均分子量:Mn=Σ(Ni・Mi)/ΣNi
質量平均分子量:Mw=Σ(Ni・Mi2)/Σ(Ni・Mi)
ここで、分子量分布は、Mw/Mnで得ることができる。
また、GPCで得られた分子量分布の積分曲線から、分子量10万以下の成分の割合を求めた。 (3) Number average molecular weight, weight average molecular weight, component weight of molecular weight 100,000 or less, and molecular weight distribution of polypropylene resin It was determined as a PP-equivalent molecular weight based on monodisperse polystyrene using gel permeation chromatography (GPC). When the baseline was not clear, it was decided to set the baseline up to the lowest position of the high molecular weight side skirt of the high molecular weight side elution peak closest to the elution peak of the standard substance.
The GPC measurement conditions are as follows.
Equipment: HLC-8321PC / HT (manufactured by Tosoh Corporation)
Detector: RI
Solvent: 1,2,4-trichlorobenzene + dibutylhydroxytoluene (0.05%)
Column: TSKgelgradecolum HHR (30) HT (7.5 mm I.D. x 7.5 cm) x 1 + TSKgelGMHHR-H (20) HT (7.8 mm I.D. x 30 cm) x 3 Flow rate: 1.0 mL / min
Injection volume: 0.3 mL
Measurement temperature: 140 ° C
The number average molecular weight (Mn) and the mass average molecular weight (Mw) are each defined by the following equations by the number of molecules (Ni) of the molecular weight (Mi) at each elution position of the GPC curve obtained via the molecular weight calibration curve.
Number average molecular weight: Mn = Σ (Ni ・ Mi) / ΣNi
Mass average molecular weight: Mw = Σ (Ni ・ Mi 2 ) / Σ (Ni ・ Mi)
Here, the molecular weight distribution can be obtained by Mw / Mn.
Moreover, the ratio of the components having a molecular weight of 100,000 or less was obtained from the integral curve of the molecular weight distribution obtained by GPC.
ゲルパーミエーションクロマトグラフィー(GPC)を用い、単分散ポリスチレン基準としPP換算分子量として求めた。ベースラインが明確でないときは、標準物質の溶出ピークに最も近い高分子量側の溶出ピークの高分子量側のすそ野の最も低い位置までの範囲でベースラインを設定することとした。
GPC測定条件は次のとおりである。
装置:HLC-8321PC/HT(東ソー株式会社製)
検出器:RI
溶媒:1,2,4-トリクロロベンゼン+ジブチルヒドロキシトルエン(0.05%)
カラム:TSKgelguardcolumnHHR(30)HT(7.5mmI.D.×7.5cm)×1本 + TSKgelGMHHR-H(20)HT(7.8mmI.D.×30cm)×3本
流量:1.0mL/min
注入量:0.3mL
測定温度:140℃
数平均分子量(Mn)、質量平均分子量(Mw)はそれぞれ、分子量較正曲線を介して得られたGPC曲線の各溶出位置の分子量(Mi)の分子数(Ni)により次式で定義される。
数平均分子量:Mn=Σ(Ni・Mi)/ΣNi
質量平均分子量:Mw=Σ(Ni・Mi2)/Σ(Ni・Mi)
ここで、分子量分布は、Mw/Mnで得ることができる。
また、GPCで得られた分子量分布の積分曲線から、分子量10万以下の成分の割合を求めた。 (3) Number average molecular weight, weight average molecular weight, component weight of molecular weight 100,000 or less, and molecular weight distribution of polypropylene resin It was determined as a PP-equivalent molecular weight based on monodisperse polystyrene using gel permeation chromatography (GPC). When the baseline was not clear, it was decided to set the baseline up to the lowest position of the high molecular weight side skirt of the high molecular weight side elution peak closest to the elution peak of the standard substance.
The GPC measurement conditions are as follows.
Equipment: HLC-8321PC / HT (manufactured by Tosoh Corporation)
Detector: RI
Solvent: 1,2,4-trichlorobenzene + dibutylhydroxytoluene (0.05%)
Column: TSKgelgradecolum HHR (30) HT (7.5 mm I.D. x 7.5 cm) x 1 + TSKgelGMHHR-H (20) HT (7.8 mm I.D. x 30 cm) x 3 Flow rate: 1.0 mL / min
Injection volume: 0.3 mL
Measurement temperature: 140 ° C
The number average molecular weight (Mn) and the mass average molecular weight (Mw) are each defined by the following equations by the number of molecules (Ni) of the molecular weight (Mi) at each elution position of the GPC curve obtained via the molecular weight calibration curve.
Number average molecular weight: Mn = Σ (Ni ・ Mi) / ΣNi
Mass average molecular weight: Mw = Σ (Ni ・ Mi 2 ) / Σ (Ni ・ Mi)
Here, the molecular weight distribution can be obtained by Mw / Mn.
Moreover, the ratio of the components having a molecular weight of 100,000 or less was obtained from the integral curve of the molecular weight distribution obtained by GPC.
(4)結晶化温度(Tc)、融解温度(Tm)
ティー・エイ・インスツルメント社製Q1000示差走査熱量計を用いて、窒素雰囲気下で熱測定を行った。ポリプロピレン樹脂のペレットから約5mgを切り出して測定用のアルミパンに封入した。230℃まで昇温し5分間保持した後、-10℃/分の速度で30℃まで冷却し、発熱ピーク温度を結晶化温度(Tc)とした。また、結晶化熱量(△Hc)は、発熱ピークの面積をピークの開始からピーク終了まで、スムーズにつながるようにベースラインを設定して求めた。そのまま、30℃で5分間保持し、10℃/分で230℃まで昇温し、主たる吸熱ピーク温度を融解温度(Tm)とした。 (4) Crystallization temperature (Tc), melting temperature (Tm)
Heat measurement was performed in a nitrogen atmosphere using a Q1000 differential scanning calorimeter manufactured by TA Instruments. Approximately 5 mg was cut out from polypropylene resin pellets and sealed in an aluminum pan for measurement. The temperature was raised to 230 ° C. and held for 5 minutes, then cooled to 30 ° C. at a rate of −10 ° C./min, and the exothermic peak temperature was defined as the crystallization temperature (Tc). The amount of heat of crystallization (ΔHc) was determined by setting a baseline so that the area of the exothermic peak could be smoothly connected from the start of the peak to the end of the peak. The temperature was kept as it was at 30 ° C. for 5 minutes, the temperature was raised to 230 ° C. at 10 ° C./min, and the main endothermic peak temperature was defined as the melting temperature (Tm).
ティー・エイ・インスツルメント社製Q1000示差走査熱量計を用いて、窒素雰囲気下で熱測定を行った。ポリプロピレン樹脂のペレットから約5mgを切り出して測定用のアルミパンに封入した。230℃まで昇温し5分間保持した後、-10℃/分の速度で30℃まで冷却し、発熱ピーク温度を結晶化温度(Tc)とした。また、結晶化熱量(△Hc)は、発熱ピークの面積をピークの開始からピーク終了まで、スムーズにつながるようにベースラインを設定して求めた。そのまま、30℃で5分間保持し、10℃/分で230℃まで昇温し、主たる吸熱ピーク温度を融解温度(Tm)とした。 (4) Crystallization temperature (Tc), melting temperature (Tm)
Heat measurement was performed in a nitrogen atmosphere using a Q1000 differential scanning calorimeter manufactured by TA Instruments. Approximately 5 mg was cut out from polypropylene resin pellets and sealed in an aluminum pan for measurement. The temperature was raised to 230 ° C. and held for 5 minutes, then cooled to 30 ° C. at a rate of −10 ° C./min, and the exothermic peak temperature was defined as the crystallization temperature (Tc). The amount of heat of crystallization (ΔHc) was determined by setting a baseline so that the area of the exothermic peak could be smoothly connected from the start of the peak to the end of the peak. The temperature was kept as it was at 30 ° C. for 5 minutes, the temperature was raised to 230 ° C. at 10 ° C./min, and the main endothermic peak temperature was defined as the melting temperature (Tm).
(5)フィルム厚み
セイコー・イーエム社製ミリトロン1202Dを用いて、フィルムの厚さを計測した。 (5) Film Thickness The film thickness was measured using a Millitron 1202D manufactured by Seiko EM.
セイコー・イーエム社製ミリトロン1202Dを用いて、フィルムの厚さを計測した。 (5) Film Thickness The film thickness was measured using a Millitron 1202D manufactured by Seiko EM.
(6)ヘイズ
日本電色工業株式会社製NDH5000を用い、23℃にて、JIS K 7105に従って測定した。 (6) Haze Using NDH5000 manufactured by Nippon Denshoku Industries Co., Ltd., the measurement was carried out at 23 ° C. according to JIS K 7105.
日本電色工業株式会社製NDH5000を用い、23℃にて、JIS K 7105に従って測定した。 (6) Haze Using NDH5000 manufactured by Nippon Denshoku Industries Co., Ltd., the measurement was carried out at 23 ° C. according to JIS K 7105.
(7)引張試験
JIS K 7127に準拠してフィルムの長手方向および幅方向の引張強度を23℃にて測定した。サンプルは15mm×200mmのサイズにフィルムより切り出し、チャック幅は100mmで、引張試験機(インストロンジャパンカンパニイリミテッド社製デュアルコラム卓上型試験機インストロン5965)にセットした。引張速度200mm/分にて引張試験を行った。得られた歪み-応力カーブより、5%伸長時の応力をF5とした。引張破断強度、引張破断伸度は、それぞれ、サンプルが破断した時点での強度と伸度とした。 (7) Tensile test The tensile strength of the film in the longitudinal direction and the width direction was measured at 23 ° C. according to JIS K 7127. The sample was cut out from a film to a size of 15 mm × 200 mm, had a chuck width of 100 mm, and was set in a tensile tester (dual column desktop tester Instron 5965 manufactured by Instron Japan Company Limited). A tensile test was performed at a tensile speed of 200 mm / min. From the obtained strain-stress curve, the stress at 5% elongation was defined as F5. The tensile breaking strength and the tensile breaking elongation were taken as the strength and elongation at the time when the sample broke, respectively.
JIS K 7127に準拠してフィルムの長手方向および幅方向の引張強度を23℃にて測定した。サンプルは15mm×200mmのサイズにフィルムより切り出し、チャック幅は100mmで、引張試験機(インストロンジャパンカンパニイリミテッド社製デュアルコラム卓上型試験機インストロン5965)にセットした。引張速度200mm/分にて引張試験を行った。得られた歪み-応力カーブより、5%伸長時の応力をF5とした。引張破断強度、引張破断伸度は、それぞれ、サンプルが破断した時点での強度と伸度とした。 (7) Tensile test The tensile strength of the film in the longitudinal direction and the width direction was measured at 23 ° C. according to JIS K 7127. The sample was cut out from a film to a size of 15 mm × 200 mm, had a chuck width of 100 mm, and was set in a tensile tester (dual column desktop tester Instron 5965 manufactured by Instron Japan Company Limited). A tensile test was performed at a tensile speed of 200 mm / min. From the obtained strain-stress curve, the stress at 5% elongation was defined as F5. The tensile breaking strength and the tensile breaking elongation were taken as the strength and elongation at the time when the sample broke, respectively.
(8)熱収縮率
JIS Z 1712に準拠して以下の方法で測定した。フィルムを20mm巾で200mmの長さでフィルムの長手方向、幅方向にそれぞれカットし、120℃または150℃の熱風オーブン中に吊るして5分間加熱した。加熱後の長さを測定し、元の長さに対する収縮した長さの割合で熱収縮率を求めた。 (8) Heat shrinkage rate Measured by the following method in accordance with JIS Z 1712. The film was cut with a width of 20 mm and a length of 200 mm in the longitudinal direction and the width direction of the film, respectively, and hung in a hot air oven at 120 ° C. or 150 ° C. and heated for 5 minutes. The length after heating was measured, and the heat shrinkage rate was determined by the ratio of the contracted length to the original length.
JIS Z 1712に準拠して以下の方法で測定した。フィルムを20mm巾で200mmの長さでフィルムの長手方向、幅方向にそれぞれカットし、120℃または150℃の熱風オーブン中に吊るして5分間加熱した。加熱後の長さを測定し、元の長さに対する収縮した長さの割合で熱収縮率を求めた。 (8) Heat shrinkage rate Measured by the following method in accordance with JIS Z 1712. The film was cut with a width of 20 mm and a length of 200 mm in the longitudinal direction and the width direction of the film, respectively, and hung in a hot air oven at 120 ° C. or 150 ° C. and heated for 5 minutes. The length after heating was measured, and the heat shrinkage rate was determined by the ratio of the contracted length to the original length.
(9)屈折率、△Ny、面配向係数
(株)アタゴ製アッベ屈折計を用いて波長589.3nm、温度23℃で測定した。フィルムの長手方向、幅方向に沿った屈折率をそれぞれNx、Nyとし、厚み方向の屈折率をNzとした。△Nyは、Nx、Ny、Nzを用いて、(式)Ny-[(Nx+Nz)/2]を用いて求めた。また、面配向係数(ΔP)は、(式)[(Nx+Ny)/2]-Nzを用いて計算した。 (9) Refractive index, ΔNy, plane orientation coefficient Measured at a wavelength of 589.3 nm and a temperature of 23 ° C. using an Abbe refractometer manufactured by Atago Co., Ltd. The refractive indexes along the longitudinal direction and the width direction of the film were Nx and Ny, respectively, and the refractive indexes in the thickness direction were Nz. ΔNy was determined using (formula) Ny− [(Nx + Nz) / 2] using Nx, Ny, and Nz. The plane orientation coefficient (ΔP) was calculated using (Equation) [(Nx + Ny) / 2] -Nz.
(株)アタゴ製アッベ屈折計を用いて波長589.3nm、温度23℃で測定した。フィルムの長手方向、幅方向に沿った屈折率をそれぞれNx、Nyとし、厚み方向の屈折率をNzとした。△Nyは、Nx、Ny、Nzを用いて、(式)Ny-[(Nx+Nz)/2]を用いて求めた。また、面配向係数(ΔP)は、(式)[(Nx+Ny)/2]-Nzを用いて計算した。 (9) Refractive index, ΔNy, plane orientation coefficient Measured at a wavelength of 589.3 nm and a temperature of 23 ° C. using an Abbe refractometer manufactured by Atago Co., Ltd. The refractive indexes along the longitudinal direction and the width direction of the film were Nx and Ny, respectively, and the refractive indexes in the thickness direction were Nz. ΔNy was determined using (formula) Ny− [(Nx + Nz) / 2] using Nx, Ny, and Nz. The plane orientation coefficient (ΔP) was calculated using (Equation) [(Nx + Ny) / 2] -Nz.
(10)X線半値幅、配向度
X線回折装置((株)リガク製RINT2500)を用い、透過法にて測定した。波長1.5418ÅのX線を用いて、検出器にはシンチレーションカウンタを用いた。500μmの厚みになるようにフィルムを重ね合わせて試料を調製した。ポリプロピレン樹脂のα型結晶の(110)面の回折ピーク位置(回折角度2θ=14.1°)に試料台を置き、サンプルをフィルムの厚み方向を軸として360°回転させ、(110)面の回折強度の方位角依存性を得た。この方位角依存性より、フィルムの幅方向の配向結晶に由来する回折ピークの半値幅Whを求めた。
また、Whを用いて、下記式よりX線配向度を算出した。
X線配向度=(180-Wh)/180 (10) Half width at half maximum and degree of orientation The measurement was performed by a transmission method using an X-ray diffractometer (RINT2500 manufactured by Rigaku Co., Ltd.). X-rays with a wavelength of 1.5418 Å were used, and a scintillation counter was used as the detector. A sample was prepared by superimposing films so as to have a thickness of 500 μm. A sample table is placed at the diffraction peak position (diffraction angle 2θ = 14.1 °) on the (110) plane of the α-type crystal of polypropylene resin, and the sample is rotated 360 ° about the thickness direction of the film to rotate the sample on the (110) plane. The azimuth dependence of the diffraction intensity was obtained. From this azimuth dependence, the full width at half maximum Wh of the diffraction peak derived from the oriented crystal in the width direction of the film was obtained.
Further, using Wh, the degree of X-ray orientation was calculated from the following formula.
X-ray orientation = (180-Wh) / 180
X線回折装置((株)リガク製RINT2500)を用い、透過法にて測定した。波長1.5418ÅのX線を用いて、検出器にはシンチレーションカウンタを用いた。500μmの厚みになるようにフィルムを重ね合わせて試料を調製した。ポリプロピレン樹脂のα型結晶の(110)面の回折ピーク位置(回折角度2θ=14.1°)に試料台を置き、サンプルをフィルムの厚み方向を軸として360°回転させ、(110)面の回折強度の方位角依存性を得た。この方位角依存性より、フィルムの幅方向の配向結晶に由来する回折ピークの半値幅Whを求めた。
また、Whを用いて、下記式よりX線配向度を算出した。
X線配向度=(180-Wh)/180 (10) Half width at half maximum and degree of orientation The measurement was performed by a transmission method using an X-ray diffractometer (RINT2500 manufactured by Rigaku Co., Ltd.). X-rays with a wavelength of 1.5418 Å were used, and a scintillation counter was used as the detector. A sample was prepared by superimposing films so as to have a thickness of 500 μm. A sample table is placed at the diffraction peak position (diffraction angle 2θ = 14.1 °) on the (110) plane of the α-type crystal of polypropylene resin, and the sample is rotated 360 ° about the thickness direction of the film to rotate the sample on the (110) plane. The azimuth dependence of the diffraction intensity was obtained. From this azimuth dependence, the full width at half maximum Wh of the diffraction peak derived from the oriented crystal in the width direction of the film was obtained.
Further, using Wh, the degree of X-ray orientation was calculated from the following formula.
X-ray orientation = (180-Wh) / 180
(実施例1)
ポリプロピレン樹脂として、MFR=7.5g/10分、[mmmm]=98.9%、Tc=116.2℃、Tm=162.5℃であるプロピレン単独重合体PP-1(住友化学(株)製、住友ノーブレンFLX80E4)を80重量部と、MFR=11g/10分、[mmmm]=98.8%、Tc=116.5℃、Tm=161.5℃であるプロピレン単独重合体PP-2(住友化学(株)製、EL80F5)を20重量部とをブレンドして用いた。
250℃でTダイよりシート状に押出し、20℃の冷却ロールに接触させ、そのまま20℃の水槽に投入した。その後、142℃で二対のロールで長手方向に4.5倍に延伸し、ついで両端をクリップで挟み、熱風オーブン中に導いて、170℃で予熱後、幅方向に1段目として167℃で12倍延伸を行った。幅方向延伸直後に、クリップに把持したまま100℃で冷却し、その後、幅方向の弛緩を行わずに165℃で熱処理を行った。こうして得られたフィルムの厚みは20.3μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、剛性が高く、高温での熱収縮率が低いフィルムが得られた。 (Example 1)
As a polypropylene resin, propylene homopolymer PP-1 (Sumitomo Chemical Co., Ltd.) having MFR = 7.5 g / 10 minutes, [mmmm] = 98.9%, Tc = 116.2 ° C., and Tm = 162.5 ° C. , Sumitomo Noblen FLX80E4) with 80 parts by weight, MFR = 11 g / 10 minutes, [mmmm] = 98.8%, Tc = 116.5 ° C, Tm = 161.5 ° C, propylene homopolymer PP-2 (EL80F5 manufactured by Sumitomo Chemical Co., Ltd.) was used by blending with 20 parts by weight.
It was extruded into a sheet from a T-die at 250 ° C., brought into contact with a cooling roll at 20 ° C., and put into a water tank at 20 ° C. as it was. After that, it is stretched 4.5 times in the longitudinal direction with two pairs of rolls at 142 ° C., then both ends are clipped, guided into a hot air oven, preheated at 170 ° C., and then 167 ° C. as the first step in the width direction. Was stretched 12 times. Immediately after stretching in the width direction, the mixture was cooled at 100 ° C. while being held by the clip, and then heat-treated at 165 ° C. without relaxation in the width direction. The thickness of the film thus obtained was 20.3 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As for the physical characteristics, as shown in Table 3, a film having high rigidity and low heat shrinkage at high temperature was obtained.
ポリプロピレン樹脂として、MFR=7.5g/10分、[mmmm]=98.9%、Tc=116.2℃、Tm=162.5℃であるプロピレン単独重合体PP-1(住友化学(株)製、住友ノーブレンFLX80E4)を80重量部と、MFR=11g/10分、[mmmm]=98.8%、Tc=116.5℃、Tm=161.5℃であるプロピレン単独重合体PP-2(住友化学(株)製、EL80F5)を20重量部とをブレンドして用いた。
250℃でTダイよりシート状に押出し、20℃の冷却ロールに接触させ、そのまま20℃の水槽に投入した。その後、142℃で二対のロールで長手方向に4.5倍に延伸し、ついで両端をクリップで挟み、熱風オーブン中に導いて、170℃で予熱後、幅方向に1段目として167℃で12倍延伸を行った。幅方向延伸直後に、クリップに把持したまま100℃で冷却し、その後、幅方向の弛緩を行わずに165℃で熱処理を行った。こうして得られたフィルムの厚みは20.3μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、剛性が高く、高温での熱収縮率が低いフィルムが得られた。 (Example 1)
As a polypropylene resin, propylene homopolymer PP-1 (Sumitomo Chemical Co., Ltd.) having MFR = 7.5 g / 10 minutes, [mmmm] = 98.9%, Tc = 116.2 ° C., and Tm = 162.5 ° C. , Sumitomo Noblen FLX80E4) with 80 parts by weight, MFR = 11 g / 10 minutes, [mmmm] = 98.8%, Tc = 116.5 ° C, Tm = 161.5 ° C, propylene homopolymer PP-2 (EL80F5 manufactured by Sumitomo Chemical Co., Ltd.) was used by blending with 20 parts by weight.
It was extruded into a sheet from a T-die at 250 ° C., brought into contact with a cooling roll at 20 ° C., and put into a water tank at 20 ° C. as it was. After that, it is stretched 4.5 times in the longitudinal direction with two pairs of rolls at 142 ° C., then both ends are clipped, guided into a hot air oven, preheated at 170 ° C., and then 167 ° C. as the first step in the width direction. Was stretched 12 times. Immediately after stretching in the width direction, the mixture was cooled at 100 ° C. while being held by the clip, and then heat-treated at 165 ° C. without relaxation in the width direction. The thickness of the film thus obtained was 20.3 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As for the physical characteristics, as shown in Table 3, a film having high rigidity and low heat shrinkage at high temperature was obtained.
(実施例2)
幅方向に162℃で延伸を行い、170℃で熱処理をした以外は実施例1と同様に行った。得られたフィルムの厚みは20.8μmであった。表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、剛性が高く、高温での熱収縮率が低いフィルムが得られた。 (Example 2)
The same procedure as in Example 1 was carried out except that stretching was performed at 162 ° C. in the width direction and heat treatment was performed at 170 ° C. The thickness of the obtained film was 20.8 μm. Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As for the physical characteristics, as shown in Table 3, a film having high rigidity and low heat shrinkage at high temperature was obtained.
幅方向に162℃で延伸を行い、170℃で熱処理をした以外は実施例1と同様に行った。得られたフィルムの厚みは20.8μmであった。表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、剛性が高く、高温での熱収縮率が低いフィルムが得られた。 (Example 2)
The same procedure as in Example 1 was carried out except that stretching was performed at 162 ° C. in the width direction and heat treatment was performed at 170 ° C. The thickness of the obtained film was 20.8 μm. Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As for the physical characteristics, as shown in Table 3, a film having high rigidity and low heat shrinkage at high temperature was obtained.
(実施例3)
幅方向に162℃で延伸を行った以外は実施例1と同様に行った。得られたフィルムの厚みは20.7μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、剛性が高く、高温での熱収縮率が低いフィルムが得られた。 (Example 3)
It was carried out in the same manner as in Example 1 except that it was stretched at 162 ° C. in the width direction. The thickness of the obtained film was 20.7 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As for the physical characteristics, as shown in Table 3, a film having high rigidity and low heat shrinkage at high temperature was obtained.
幅方向に162℃で延伸を行った以外は実施例1と同様に行った。得られたフィルムの厚みは20.7μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、剛性が高く、高温での熱収縮率が低いフィルムが得られた。 (Example 3)
It was carried out in the same manner as in Example 1 except that it was stretched at 162 ° C. in the width direction. The thickness of the obtained film was 20.7 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As for the physical characteristics, as shown in Table 3, a film having high rigidity and low heat shrinkage at high temperature was obtained.
(実施例4)
幅方向に162℃で延伸を行い、140℃で冷却した以外は実施例1と同様に行った。得られたフィルムの厚みは20.6μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、剛性が高く、高温での熱収縮率が低いフィルムが得られた。 (Example 4)
It was stretched at 162 ° C. in the width direction and cooled at 140 ° C. in the same manner as in Example 1. The thickness of the obtained film was 20.6 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As for the physical characteristics, as shown in Table 3, a film having high rigidity and low heat shrinkage at high temperature was obtained.
幅方向に162℃で延伸を行い、140℃で冷却した以外は実施例1と同様に行った。得られたフィルムの厚みは20.6μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、剛性が高く、高温での熱収縮率が低いフィルムが得られた。 (Example 4)
It was stretched at 162 ° C. in the width direction and cooled at 140 ° C. in the same manner as in Example 1. The thickness of the obtained film was 20.6 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As for the physical characteristics, as shown in Table 3, a film having high rigidity and low heat shrinkage at high temperature was obtained.
(比較例1)
ポリプロピレン樹脂として、MFR=7.5g/10分、[mmmm]=98.9%、Tc=116.2℃、Tm=162.5℃であるプロピレン単独重合体PP-1(住友化学(株)製、住友ノーブレンFLX80E4)を用いた。250℃でTダイよりシート状に押出し、20℃の冷却ロールに接触させ、そのまま20℃の水槽に投入した。その後、145℃で二対のロールで長手方向に4.5倍に延伸し、ついで両端をクリップで挟み、熱風オーブン中に導いて、170℃で予熱後、幅方向に1段目として160℃で6倍延伸し、引き続き、2段目として145℃で1.36倍延伸することで、合計8.2倍の延伸を行った。幅方向延伸直後に、クリップに把持したまま100℃で冷却し、その後、163℃で熱固定を行った。こうして得られたフィルムの厚みは18.7μmであった
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。横延伸工程の1段目延伸を前期区間、2段目延伸を後期区間とした。その物性は、表3に示すとおり、150℃での熱収縮率が劣るものであった。 (Comparative Example 1)
As a polypropylene resin, propylene homopolymer PP-1 (Sumitomo Chemical Co., Ltd.) having MFR = 7.5 g / 10 minutes, [mmmm] = 98.9%, Tc = 116.2 ° C., and Tm = 162.5 ° C. , Sumitomo Noblen FLX80E4) was used. It was extruded into a sheet from a T-die at 250 ° C., brought into contact with a cooling roll at 20 ° C., and put into a water tank at 20 ° C. as it was. After that, it is stretched 4.5 times in the longitudinal direction with two pairs of rolls at 145 ° C, then both ends are clipped, guided into a hot air oven, preheated at 170 ° C, and then 160 ° C as the first step in the width direction. In the second step, it was stretched 1.36 times at 145 ° C. to carry out a total of 8.2 times stretching. Immediately after stretching in the width direction, the mixture was cooled at 100 ° C. while being held by the clip, and then heat-fixed at 163 ° C. The thickness of the film thus obtained was 18.7 μm. Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. The first-stage stretching in the transverse stretching step was defined as the first-stage section, and the second-stage stretching was defined as the second-stage section. As shown in Table 3, the physical characteristics were inferior in the heat shrinkage rate at 150 ° C.
ポリプロピレン樹脂として、MFR=7.5g/10分、[mmmm]=98.9%、Tc=116.2℃、Tm=162.5℃であるプロピレン単独重合体PP-1(住友化学(株)製、住友ノーブレンFLX80E4)を用いた。250℃でTダイよりシート状に押出し、20℃の冷却ロールに接触させ、そのまま20℃の水槽に投入した。その後、145℃で二対のロールで長手方向に4.5倍に延伸し、ついで両端をクリップで挟み、熱風オーブン中に導いて、170℃で予熱後、幅方向に1段目として160℃で6倍延伸し、引き続き、2段目として145℃で1.36倍延伸することで、合計8.2倍の延伸を行った。幅方向延伸直後に、クリップに把持したまま100℃で冷却し、その後、163℃で熱固定を行った。こうして得られたフィルムの厚みは18.7μmであった
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。横延伸工程の1段目延伸を前期区間、2段目延伸を後期区間とした。その物性は、表3に示すとおり、150℃での熱収縮率が劣るものであった。 (Comparative Example 1)
As a polypropylene resin, propylene homopolymer PP-1 (Sumitomo Chemical Co., Ltd.) having MFR = 7.5 g / 10 minutes, [mmmm] = 98.9%, Tc = 116.2 ° C., and Tm = 162.5 ° C. , Sumitomo Noblen FLX80E4) was used. It was extruded into a sheet from a T-die at 250 ° C., brought into contact with a cooling roll at 20 ° C., and put into a water tank at 20 ° C. as it was. After that, it is stretched 4.5 times in the longitudinal direction with two pairs of rolls at 145 ° C, then both ends are clipped, guided into a hot air oven, preheated at 170 ° C, and then 160 ° C as the first step in the width direction. In the second step, it was stretched 1.36 times at 145 ° C. to carry out a total of 8.2 times stretching. Immediately after stretching in the width direction, the mixture was cooled at 100 ° C. while being held by the clip, and then heat-fixed at 163 ° C. The thickness of the film thus obtained was 18.7 μm. Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. The first-stage stretching in the transverse stretching step was defined as the first-stage section, and the second-stage stretching was defined as the second-stage section. As shown in Table 3, the physical characteristics were inferior in the heat shrinkage rate at 150 ° C.
(比較例2)
ポリプロピレン樹脂として、PP-1を80重量部と、MFR=11g/10分、[mmmm]=98.8%、Tc=116.5℃、Tm=161.5℃であるプロピレン単独重合体PP-2(住友化学(株)製、EL80F5)を20重量部とをブレンドして用いた。長手方向の延伸温度を142℃、幅方向の1段目の延伸温度を162℃、熱固定温度を165℃とした以外は、比較例1と同様にした。得られたフィルムの厚みは21.3μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 2)
As a polypropylene resin, 80 parts by weight of PP-1 and propylene homopolymer PP- with MFR = 11 g / 10 minutes, [mmmm] = 98.8%, Tc = 116.5 ° C., and Tm = 161.5 ° C. 2 (EL80F5 manufactured by Sumitomo Chemical Co., Ltd.) was used by blending with 20 parts by weight. The same as in Comparative Example 1 except that the stretching temperature in the longitudinal direction was 142 ° C., the stretching temperature of the first stage in the width direction was 162 ° C., and the heat fixing temperature was 165 ° C. The thickness of the obtained film was 21.3 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
ポリプロピレン樹脂として、PP-1を80重量部と、MFR=11g/10分、[mmmm]=98.8%、Tc=116.5℃、Tm=161.5℃であるプロピレン単独重合体PP-2(住友化学(株)製、EL80F5)を20重量部とをブレンドして用いた。長手方向の延伸温度を142℃、幅方向の1段目の延伸温度を162℃、熱固定温度を165℃とした以外は、比較例1と同様にした。得られたフィルムの厚みは21.3μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 2)
As a polypropylene resin, 80 parts by weight of PP-1 and propylene homopolymer PP- with MFR = 11 g / 10 minutes, [mmmm] = 98.8%, Tc = 116.5 ° C., and Tm = 161.5 ° C. 2 (EL80F5 manufactured by Sumitomo Chemical Co., Ltd.) was used by blending with 20 parts by weight. The same as in Comparative Example 1 except that the stretching temperature in the longitudinal direction was 142 ° C., the stretching temperature of the first stage in the width direction was 162 ° C., and the heat fixing temperature was 165 ° C. The thickness of the obtained film was 21.3 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
(比較例3)
熱固定時に3%の弛緩を施した以外は比較例2と同様に行った。得られたフィルムの厚みは21.1μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 3)
The same procedure as in Comparative Example 2 was carried out except that 3% relaxation was applied at the time of heat fixation. The thickness of the obtained film was 21.1 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
熱固定時に3%の弛緩を施した以外は比較例2と同様に行った。得られたフィルムの厚みは21.1μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 3)
The same procedure as in Comparative Example 2 was carried out except that 3% relaxation was applied at the time of heat fixation. The thickness of the obtained film was 21.1 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
(比較例4)
長手方向の延伸温度を145℃、幅方向の延伸直後の冷却温度を140℃とした以外は比較例2と同様に行った。得られたフィルムの厚みは18.9μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 4)
The same procedure as in Comparative Example 2 was carried out except that the stretching temperature in the longitudinal direction was 145 ° C. and the cooling temperature immediately after stretching in the width direction was 140 ° C. The thickness of the obtained film was 18.9 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
長手方向の延伸温度を145℃、幅方向の延伸直後の冷却温度を140℃とした以外は比較例2と同様に行った。得られたフィルムの厚みは18.9μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 4)
The same procedure as in Comparative Example 2 was carried out except that the stretching temperature in the longitudinal direction was 145 ° C. and the cooling temperature immediately after stretching in the width direction was 140 ° C. The thickness of the obtained film was 18.9 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
(比較例5)
幅方向延伸後、冷却せずに、クリップに把持したまま、165℃で熱固定を行った以外は、比較例2と同様に行った。得られたフィルムの厚みは19.5μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、150℃での熱収縮率が劣るものであった。 (Comparative Example 5)
After stretching in the width direction, the same procedure as in Comparative Example 2 was carried out except that the heat was fixed at 165 ° C. while being held by the clip without cooling. The thickness of the obtained film was 19.5 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical characteristics were inferior in the heat shrinkage rate at 150 ° C.
幅方向延伸後、冷却せずに、クリップに把持したまま、165℃で熱固定を行った以外は、比較例2と同様に行った。得られたフィルムの厚みは19.5μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、150℃での熱収縮率が劣るものであった。 (Comparative Example 5)
After stretching in the width direction, the same procedure as in Comparative Example 2 was carried out except that the heat was fixed at 165 ° C. while being held by the clip without cooling. The thickness of the obtained film was 19.5 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical characteristics were inferior in the heat shrinkage rate at 150 ° C.
(比較例6)
幅方向の2段目の延伸温度を155℃とした以外は、比較例2と同様に行った。こうして得られたフィルムの厚みは20.3μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 6)
The same procedure as in Comparative Example 2 was carried out except that the stretching temperature of the second stage in the width direction was set to 155 ° C. The thickness of the film thus obtained was 20.3 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
幅方向の2段目の延伸温度を155℃とした以外は、比較例2と同様に行った。こうして得られたフィルムの厚みは20.3μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 6)
The same procedure as in Comparative Example 2 was carried out except that the stretching temperature of the second stage in the width direction was set to 155 ° C. The thickness of the film thus obtained was 20.3 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
(比較例7)
長手方向延伸倍率を4.8倍とした以外は、比較例2と同様に行った。得られたフィルムの厚みは19.1μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 7)
The same procedure as in Comparative Example 2 was carried out except that the longitudinal stretching ratio was set to 4.8 times. The thickness of the obtained film was 19.1 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
長手方向延伸倍率を4.8倍とした以外は、比較例2と同様に行った。得られたフィルムの厚みは19.1μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 7)
The same procedure as in Comparative Example 2 was carried out except that the longitudinal stretching ratio was set to 4.8 times. The thickness of the obtained film was 19.1 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
(比較例8)
幅方向延伸において、1段目の延伸倍率を6.6倍、2段目の延伸倍率を1.5倍とし、合計9.9倍の延伸とした以外は、比較例2と同様に行った。得られたフィルムの厚みは20.1μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 8)
In the width direction stretching, the same procedure as in Comparative Example 2 was carried out except that the stretching ratio of the first stage was 6.6 times and the stretching ratio of the second stage was 1.5 times, for a total of 9.9 times. .. The thickness of the obtained film was 20.1 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
幅方向延伸において、1段目の延伸倍率を6.6倍、2段目の延伸倍率を1.5倍とし、合計9.9倍の延伸とした以外は、比較例2と同様に行った。得られたフィルムの厚みは20.1μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 8)
In the width direction stretching, the same procedure as in Comparative Example 2 was carried out except that the stretching ratio of the first stage was 6.6 times and the stretching ratio of the second stage was 1.5 times, for a total of 9.9 times. .. The thickness of the obtained film was 20.1 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
(比較例9)
ポリプロピレン樹脂としてPP-1を用い、250℃でTダイよりシート状に押出し、20℃の冷却ロールに接触させ、そのまま20℃の水槽に投入した。その後、143℃で4.5倍の長手方向延伸を行い、テンターにおける幅方向延伸時の予熱温度を170℃、延伸温度を158℃として8.2倍延伸を行い、続いて168℃で熱固定を行った。得られたフィルムの厚みは18.6μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件、表3に物性を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 9)
PP-1 was used as the polypropylene resin, extruded into a sheet from a T die at 250 ° C., brought into contact with a cooling roll at 20 ° C., and put into a water tank at 20 ° C. as it was. After that, it was stretched 4.5 times in the longitudinal direction at 143 ° C., preheated at 170 ° C. in the width direction in the tenter, stretched 8.2 times at a stretching temperature of 158 ° C., and subsequently heat-fixed at 168 ° C. Was done. The thickness of the obtained film was 18.6 μm.
Table 1 shows the structure of the polypropylene resin, Table 2 shows the film forming conditions, and Table 3 shows the physical properties. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
ポリプロピレン樹脂としてPP-1を用い、250℃でTダイよりシート状に押出し、20℃の冷却ロールに接触させ、そのまま20℃の水槽に投入した。その後、143℃で4.5倍の長手方向延伸を行い、テンターにおける幅方向延伸時の予熱温度を170℃、延伸温度を158℃として8.2倍延伸を行い、続いて168℃で熱固定を行った。得られたフィルムの厚みは18.6μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件、表3に物性を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 9)
PP-1 was used as the polypropylene resin, extruded into a sheet from a T die at 250 ° C., brought into contact with a cooling roll at 20 ° C., and put into a water tank at 20 ° C. as it was. After that, it was stretched 4.5 times in the longitudinal direction at 143 ° C., preheated at 170 ° C. in the width direction in the tenter, stretched 8.2 times at a stretching temperature of 158 ° C., and subsequently heat-fixed at 168 ° C. Was done. The thickness of the obtained film was 18.6 μm.
Table 1 shows the structure of the polypropylene resin, Table 2 shows the film forming conditions, and Table 3 shows the physical properties. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
(比較例10)
ポリプロピレン樹脂として、PP-1を80重量部と、PP-2を20重量部とをブレンドして用いた以外は、比較例9と同様にして行った。得られたフィルムの厚みは20.0μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件、表3に物性を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 10)
As the polypropylene resin, 80 parts by weight of PP-1 and 20 parts by weight of PP-2 were blended and used in the same manner as in Comparative Example 9. The thickness of the obtained film was 20.0 μm.
Table 1 shows the structure of the polypropylene resin, Table 2 shows the film forming conditions, and Table 3 shows the physical properties. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
ポリプロピレン樹脂として、PP-1を80重量部と、PP-2を20重量部とをブレンドして用いた以外は、比較例9と同様にして行った。得られたフィルムの厚みは20.0μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件、表3に物性を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 10)
As the polypropylene resin, 80 parts by weight of PP-1 and 20 parts by weight of PP-2 were blended and used in the same manner as in Comparative Example 9. The thickness of the obtained film was 20.0 μm.
Table 1 shows the structure of the polypropylene resin, Table 2 shows the film forming conditions, and Table 3 shows the physical properties. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
(比較例11)
ポリプロピレン樹脂として、MFR=3g/10分、[mmmm]=94.8%、Tc=117.2℃、Tm=160.6℃であるPP-3(日本ポリプロ(株)製、FL203D)を用いた。250℃でTダイよりシート状に押出し、20℃の冷却ロールに接触させ、そのまま20℃の水槽に投入した。その後、長手方向に、135℃で4.5倍延伸し、テンターでの幅方向延伸において、予熱温度を166℃とし、延伸1段目として155℃で6倍延伸を行った。2段目延伸として139℃で1.36倍延伸し、合計8.2倍延伸を行った。幅方向延伸直後に、クリップに把持したまま95℃で冷却し、その後、幅方向の弛緩を行わずに158℃で熱処理を行った。得られたフィルムの厚みは19.2μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件、表3に物性を示す。その物性は、表3に示すとおり、150℃での熱収縮率が劣るものであった。 (Comparative Example 11)
As the polypropylene resin, PP-3 (manufactured by Japan Polypropylene Corporation, FL203D) having MFR = 3 g / 10 minutes, [mmmm] = 94.8%, Tc = 117.2 ° C., and Tm = 160.6 ° C. is used. board. It was extruded into a sheet from a T-die at 250 ° C., brought into contact with a cooling roll at 20 ° C., and put into a water tank at 20 ° C. as it was. Then, it was stretched 4.5 times in the longitudinal direction at 135 ° C., and in the width direction stretching with a tenter, the preheating temperature was set to 166 ° C., and the first step of stretching was 6 times stretching at 155 ° C. As the second-stage stretching, 1.36 times was stretched at 139 ° C., and a total of 8.2 times was stretched. Immediately after stretching in the width direction, the mixture was cooled at 95 ° C. while being held by the clip, and then heat-treated at 158 ° C. without relaxation in the width direction. The thickness of the obtained film was 19.2 μm.
Table 1 shows the structure of the polypropylene resin, Table 2 shows the film forming conditions, and Table 3 shows the physical properties. As shown in Table 3, the physical characteristics were inferior in the heat shrinkage rate at 150 ° C.
ポリプロピレン樹脂として、MFR=3g/10分、[mmmm]=94.8%、Tc=117.2℃、Tm=160.6℃であるPP-3(日本ポリプロ(株)製、FL203D)を用いた。250℃でTダイよりシート状に押出し、20℃の冷却ロールに接触させ、そのまま20℃の水槽に投入した。その後、長手方向に、135℃で4.5倍延伸し、テンターでの幅方向延伸において、予熱温度を166℃とし、延伸1段目として155℃で6倍延伸を行った。2段目延伸として139℃で1.36倍延伸し、合計8.2倍延伸を行った。幅方向延伸直後に、クリップに把持したまま95℃で冷却し、その後、幅方向の弛緩を行わずに158℃で熱処理を行った。得られたフィルムの厚みは19.2μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件、表3に物性を示す。その物性は、表3に示すとおり、150℃での熱収縮率が劣るものであった。 (Comparative Example 11)
As the polypropylene resin, PP-3 (manufactured by Japan Polypropylene Corporation, FL203D) having MFR = 3 g / 10 minutes, [mmmm] = 94.8%, Tc = 117.2 ° C., and Tm = 160.6 ° C. is used. board. It was extruded into a sheet from a T-die at 250 ° C., brought into contact with a cooling roll at 20 ° C., and put into a water tank at 20 ° C. as it was. Then, it was stretched 4.5 times in the longitudinal direction at 135 ° C., and in the width direction stretching with a tenter, the preheating temperature was set to 166 ° C., and the first step of stretching was 6 times stretching at 155 ° C. As the second-stage stretching, 1.36 times was stretched at 139 ° C., and a total of 8.2 times was stretched. Immediately after stretching in the width direction, the mixture was cooled at 95 ° C. while being held by the clip, and then heat-treated at 158 ° C. without relaxation in the width direction. The thickness of the obtained film was 19.2 μm.
Table 1 shows the structure of the polypropylene resin, Table 2 shows the film forming conditions, and Table 3 shows the physical properties. As shown in Table 3, the physical characteristics were inferior in the heat shrinkage rate at 150 ° C.
(比較例12)
ポリプロピレン原料として、MFR=2.7g/10分、[mmmm]=98.7%、Tc=114.7℃、Tm=163.0℃であるPP-4(住友化学(株)製、FS2012)を用いた。250℃でTダイよりシート状に押出し、20℃の冷却ロールに接触させ、そのまま20℃の水槽に投入した。その後、長手方向に、145℃で4.5倍延伸し、テンターでの幅方向延伸において、予熱温度を170℃とし、延伸1段目として160℃で6倍延伸を行った。2段目延伸として145℃で1.36倍延伸し、合計8.2倍延伸を行った。幅方向延伸直後に、クリップに把持したまま100℃で冷却し、その後、幅方向の弛緩を行わずに163℃で熱処理を行った。得られたフィルムの厚みは21.2μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件、表3に物性を示す。その物性は、表3に示すとおり、150℃での熱収縮率が劣るものであった。 (Comparative Example 12)
As a polypropylene raw material, PP-4 (manufactured by Sumitomo Chemical Co., Ltd., FS2012) having MFR = 2.7 g / 10 minutes, [mmmm] = 98.7%, Tc = 114.7 ° C, and Tm = 163.0 ° C. Was used. It was extruded into a sheet from a T-die at 250 ° C., brought into contact with a cooling roll at 20 ° C., and put into a water tank at 20 ° C. as it was. Then, it was stretched 4.5 times in the longitudinal direction at 145 ° C., and in the width direction stretching with the tenter, the preheating temperature was set to 170 ° C., and the first step of stretching was 6 times stretching at 160 ° C. As the second-stage stretching, 1.36 times was stretched at 145 ° C., and a total of 8.2 times was stretched. Immediately after stretching in the width direction, the mixture was cooled at 100 ° C. while being held by the clip, and then heat-treated at 163 ° C. without relaxation in the width direction. The thickness of the obtained film was 21.2 μm.
Table 1 shows the structure of the polypropylene resin, Table 2 shows the film forming conditions, and Table 3 shows the physical properties. As shown in Table 3, the physical characteristics were inferior in the heat shrinkage rate at 150 ° C.
ポリプロピレン原料として、MFR=2.7g/10分、[mmmm]=98.7%、Tc=114.7℃、Tm=163.0℃であるPP-4(住友化学(株)製、FS2012)を用いた。250℃でTダイよりシート状に押出し、20℃の冷却ロールに接触させ、そのまま20℃の水槽に投入した。その後、長手方向に、145℃で4.5倍延伸し、テンターでの幅方向延伸において、予熱温度を170℃とし、延伸1段目として160℃で6倍延伸を行った。2段目延伸として145℃で1.36倍延伸し、合計8.2倍延伸を行った。幅方向延伸直後に、クリップに把持したまま100℃で冷却し、その後、幅方向の弛緩を行わずに163℃で熱処理を行った。得られたフィルムの厚みは21.2μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件、表3に物性を示す。その物性は、表3に示すとおり、150℃での熱収縮率が劣るものであった。 (Comparative Example 12)
As a polypropylene raw material, PP-4 (manufactured by Sumitomo Chemical Co., Ltd., FS2012) having MFR = 2.7 g / 10 minutes, [mmmm] = 98.7%, Tc = 114.7 ° C, and Tm = 163.0 ° C. Was used. It was extruded into a sheet from a T-die at 250 ° C., brought into contact with a cooling roll at 20 ° C., and put into a water tank at 20 ° C. as it was. Then, it was stretched 4.5 times in the longitudinal direction at 145 ° C., and in the width direction stretching with the tenter, the preheating temperature was set to 170 ° C., and the first step of stretching was 6 times stretching at 160 ° C. As the second-stage stretching, 1.36 times was stretched at 145 ° C., and a total of 8.2 times was stretched. Immediately after stretching in the width direction, the mixture was cooled at 100 ° C. while being held by the clip, and then heat-treated at 163 ° C. without relaxation in the width direction. The thickness of the obtained film was 21.2 μm.
Table 1 shows the structure of the polypropylene resin, Table 2 shows the film forming conditions, and Table 3 shows the physical properties. As shown in Table 3, the physical characteristics were inferior in the heat shrinkage rate at 150 ° C.
(比較例13)
ポリプロピレン樹脂として、PP-4を用いた。250℃でTダイよりシート状に押出し、20℃の冷却ロールに接触させ、そのまま20℃の水槽に投入した。その後、長手方向に130℃で5.8倍に延伸した後、テンターにて、予熱温度167℃としてフィルムを加熱し、続いて、延伸温度161℃で幅方向に8.6倍延伸し、その後、弛緩10%をかけながら130℃で熱固定を行い、引き続き、140℃で2段目の熱固定を行った。得られたフィルムの厚みは13.4μmであった。表1にポリプロピレン樹脂の構造、表2に製膜条件、表3に物性を示す。その物性は、表3に示すとおり、150℃での熱収縮率が劣るものであった。 (Comparative Example 13)
PP-4 was used as the polypropylene resin. It was extruded into a sheet from a T-die at 250 ° C., brought into contact with a cooling roll at 20 ° C., and put into a water tank at 20 ° C. as it was. Then, after stretching 5.8 times at 130 ° C. in the longitudinal direction, the film was heated at a preheating temperature of 167 ° C. with a tenter, and then stretched 8.6 times in the width direction at a stretching temperature of 161 ° C., and then. Heat fixation was performed at 130 ° C. while applying relaxation of 10%, and subsequently, heat fixation in the second stage was performed at 140 ° C. The thickness of the obtained film was 13.4 μm. Table 1 shows the structure of the polypropylene resin, Table 2 shows the film forming conditions, and Table 3 shows the physical properties. As shown in Table 3, the physical characteristics were inferior in the heat shrinkage rate at 150 ° C.
ポリプロピレン樹脂として、PP-4を用いた。250℃でTダイよりシート状に押出し、20℃の冷却ロールに接触させ、そのまま20℃の水槽に投入した。その後、長手方向に130℃で5.8倍に延伸した後、テンターにて、予熱温度167℃としてフィルムを加熱し、続いて、延伸温度161℃で幅方向に8.6倍延伸し、その後、弛緩10%をかけながら130℃で熱固定を行い、引き続き、140℃で2段目の熱固定を行った。得られたフィルムの厚みは13.4μmであった。表1にポリプロピレン樹脂の構造、表2に製膜条件、表3に物性を示す。その物性は、表3に示すとおり、150℃での熱収縮率が劣るものであった。 (Comparative Example 13)
PP-4 was used as the polypropylene resin. It was extruded into a sheet from a T-die at 250 ° C., brought into contact with a cooling roll at 20 ° C., and put into a water tank at 20 ° C. as it was. Then, after stretching 5.8 times at 130 ° C. in the longitudinal direction, the film was heated at a preheating temperature of 167 ° C. with a tenter, and then stretched 8.6 times in the width direction at a stretching temperature of 161 ° C., and then. Heat fixation was performed at 130 ° C. while applying relaxation of 10%, and subsequently, heat fixation in the second stage was performed at 140 ° C. The thickness of the obtained film was 13.4 μm. Table 1 shows the structure of the polypropylene resin, Table 2 shows the film forming conditions, and Table 3 shows the physical properties. As shown in Table 3, the physical characteristics were inferior in the heat shrinkage rate at 150 ° C.
(比較例14)
幅方向に162℃で8倍延伸を行い、140℃で冷却した以外は実施例1と同様に行った。得られたフィルムの厚みは19.7μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 14)
It was stretched 8 times at 162 ° C. in the width direction and cooled at 140 ° C. in the same manner as in Example 1. The thickness of the obtained film was 19.7 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
幅方向に162℃で8倍延伸を行い、140℃で冷却した以外は実施例1と同様に行った。得られたフィルムの厚みは19.7μmであった。
表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 14)
It was stretched 8 times at 162 ° C. in the width direction and cooled at 140 ° C. in the same manner as in Example 1. The thickness of the obtained film was 19.7 μm.
Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
(比較例15)
幅方向に162℃で8倍延伸を行った以外は実施例1と同様に行った。得られたフィルムの厚みは20.1μmであった。表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 15)
It was carried out in the same manner as in Example 1 except that it was stretched 8 times at 162 ° C. in the width direction. The thickness of the obtained film was 20.1 μm. Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
幅方向に162℃で8倍延伸を行った以外は実施例1と同様に行った。得られたフィルムの厚みは20.1μmであった。表1にポリプロピレン樹脂の構造、表2に製膜条件を示す。その物性は、表3に示すとおり、引張破断強度が劣るものであった。 (Comparative Example 15)
It was carried out in the same manner as in Example 1 except that it was stretched 8 times at 162 ° C. in the width direction. The thickness of the obtained film was 20.1 μm. Table 1 shows the structure of the polypropylene resin, and Table 2 shows the film forming conditions. As shown in Table 3, the physical properties were inferior in tensile breaking strength.
Claims (4)
- メソペンタッド分率が97.0%以上であるポリプロピレン樹脂を含むポリプロピレン樹脂組成物を押出して未延伸シートを得る工程、未延伸シートを長手方向に延伸する工程、長手方向延伸フィルムをTm~Tm+25℃の範囲の予熱温度に加熱する予熱工程、予熱された長手方向延伸フィルムをTm-10℃以上、予熱温度以下の温度で幅方向に10倍以上の倍率で延伸する工程、幅方向延伸終了時に幅方向延伸温度以下で、かつTm-80℃以上、Tm-15℃以下の温度でフィルムを冷却する工程、及び熱処理工程を順に含む二軸配向ポリプロピレンフィルムの製造方法。 A step of extruding a polypropylene resin composition containing a polypropylene resin having a mesopentad fraction of 97.0% or more to obtain an unstretched sheet, a step of stretching the unstretched sheet in the longitudinal direction, and a step of stretching a longitudinally stretched film at Tm to Tm + 25 ° C. A preheating step of heating to a preheating temperature in the range, a step of stretching the preheated longitudinally stretched film at a temperature of Tm-10 ° C. or higher and lower than the preheating temperature at a magnification of 10 times or more in the width direction, and a width direction at the end of widthwise stretching. A method for producing a biaxially oriented polypropylene film, which comprises a step of cooling the film at a temperature of Tm-80 ° C. or higher and Tm-15 ° C. or lower at a stretching temperature or lower, and a heat treatment step in order.
- 前記二軸配向ポリプロピレンフィルムを構成するポリプロピレン樹脂の結晶化温度が105℃以上であり、融点が160℃以上である請求項1に記載の二軸配向ポリプロピレンフィルムの製造方法。 The method for producing a biaxially oriented polypropylene film according to claim 1, wherein the polypropylene resin constituting the biaxially oriented polypropylene film has a crystallization temperature of 105 ° C. or higher and a melting point of 160 ° C. or higher.
- 前記二軸配向ポリプロピレンフィルムを構成するポリプロピレン樹脂のメルトフローレートが4.0g/10分以上である請求項1又は2に記載の二軸配向ポリプロピレンフィルムの製造方法。 The method for producing a biaxially oriented polypropylene film according to claim 1 or 2, wherein the melt flow rate of the polypropylene resin constituting the biaxially oriented polypropylene film is 4.0 g / 10 minutes or more.
- 前記二軸配向ポリプロピレンフィルムを構成するポリプロピレン樹脂の分子量10万以下の成分量が35質量%以上である請求項1~3のいずれかに記載の二軸配向ポリプロピレンフィルムの製造方法。 The method for producing a biaxially oriented polypropylene film according to any one of claims 1 to 3, wherein the component amount of the polypropylene resin constituting the biaxially oriented polypropylene film having a molecular weight of 100,000 or less is 35% by mass or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021549126A JP7563386B2 (en) | 2020-03-24 | 2021-03-22 | Manufacturing method of biaxially oriented polypropylene film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-052476 | 2020-03-24 | ||
JP2020052476 | 2020-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021193507A1 true WO2021193507A1 (en) | 2021-09-30 |
Family
ID=77892140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/011659 WO2021193507A1 (en) | 2020-03-24 | 2021-03-22 | Production method for biaxially-oriented polypropylene film |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7563386B2 (en) |
TW (1) | TW202136394A (en) |
WO (1) | WO2021193507A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014024969A1 (en) * | 2012-08-09 | 2014-02-13 | 東洋紡株式会社 | Polypropylene film |
WO2015072291A1 (en) * | 2013-11-14 | 2015-05-21 | 東レ株式会社 | Biaxially oriented polypropylene film and method for producing same |
WO2017159103A1 (en) * | 2016-03-17 | 2017-09-21 | 東レ株式会社 | Biaxially oriented polypropylene film, metal film laminated film, and film capacitor |
JP2018141122A (en) * | 2017-02-28 | 2018-09-13 | 東洋紡株式会社 | Biaxially oriented polypropylene film |
-
2021
- 2021-03-19 TW TW110109867A patent/TW202136394A/en unknown
- 2021-03-22 JP JP2021549126A patent/JP7563386B2/en active Active
- 2021-03-22 WO PCT/JP2021/011659 patent/WO2021193507A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014024969A1 (en) * | 2012-08-09 | 2014-02-13 | 東洋紡株式会社 | Polypropylene film |
WO2015072291A1 (en) * | 2013-11-14 | 2015-05-21 | 東レ株式会社 | Biaxially oriented polypropylene film and method for producing same |
WO2017159103A1 (en) * | 2016-03-17 | 2017-09-21 | 東レ株式会社 | Biaxially oriented polypropylene film, metal film laminated film, and film capacitor |
JP2018141122A (en) * | 2017-02-28 | 2018-09-13 | 東洋紡株式会社 | Biaxially oriented polypropylene film |
Also Published As
Publication number | Publication date |
---|---|
JP7563386B2 (en) | 2024-10-08 |
TW202136394A (en) | 2021-10-01 |
JPWO2021193507A1 (en) | 2021-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7014327B2 (en) | Biaxially oriented polypropylene film | |
JP6904489B2 (en) | Biaxially oriented polypropylene film | |
JP7363816B2 (en) | Biaxially oriented polypropylene film | |
JP7255733B2 (en) | biaxially oriented polypropylene film | |
JP6915753B2 (en) | Biaxially oriented polypropylene film | |
JP6904490B2 (en) | Biaxially oriented polypropylene film | |
WO2021193510A1 (en) | Biaxially oriented polypropylene film | |
JP7010390B2 (en) | Biaxially oriented polypropylene film | |
JP7563386B2 (en) | Manufacturing method of biaxially oriented polypropylene film | |
WO2021193508A1 (en) | Biaxially-oriented polypropylene film | |
JP7164053B2 (en) | biaxially oriented polypropylene film | |
WO2021193509A1 (en) | Biaxially-oriented polypropylene film | |
JP7571830B2 (en) | Biaxially oriented polypropylene film | |
WO2021261505A1 (en) | Biaxially-oriented polypropylene film | |
JP7363817B2 (en) | Biaxially oriented polypropylene film | |
JP7405099B2 (en) | Method for manufacturing biaxially oriented polypropylene film | |
JP7571788B2 (en) | Manufacturing method of biaxially oriented polypropylene film | |
WO2021261313A1 (en) | Production method for biaxially-oriented polypropylene film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021549126 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21776338 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21776338 Country of ref document: EP Kind code of ref document: A1 |