WO2024034023A1 - 半導体装置の製造方法及びプラズマ処理方法 - Google Patents

半導体装置の製造方法及びプラズマ処理方法 Download PDF

Info

Publication number
WO2024034023A1
WO2024034023A1 PCT/JP2022/030488 JP2022030488W WO2024034023A1 WO 2024034023 A1 WO2024034023 A1 WO 2024034023A1 JP 2022030488 W JP2022030488 W JP 2022030488W WO 2024034023 A1 WO2024034023 A1 WO 2024034023A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
insulating film
etching
semiconductor layer
protective insulating
Prior art date
Application number
PCT/JP2022/030488
Other languages
English (en)
French (fr)
Inventor
真 三浦
清彦 佐藤
剛平 川村
哲 酒井
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to KR1020237021679A priority Critical patent/KR20240022438A/ko
Priority to PCT/JP2022/030488 priority patent/WO2024034023A1/ja
Priority to JP2023535741A priority patent/JP7560673B2/ja
Priority to CN202280008672.XA priority patent/CN117859208A/zh
Priority to TW112129692A priority patent/TW202407803A/zh
Publication of WO2024034023A1 publication Critical patent/WO2024034023A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1211Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Definitions

  • the present disclosure relates to a method for manufacturing a semiconductor device and a method for plasma processing.
  • MOSFETs metal oxide semiconductor field effect transistors
  • planar Examples include the introduction of new structures such as the planar type to the fin type.
  • Fin-type FET improves controllability of the gate by covering the periphery of the fin-type channel, which has a three-dimensional structure, with a gate. It has a structure that can suppress the increase in Furthermore, as miniaturization progresses, the channel is expected to become a wire-like or sheet-like laminate, resulting in a gate-all-around FET (GAA) in which the channel is covered with a gate.
  • GAA-type FETs further improve gate controllability compared to Fin-type FETs by covering the entire periphery of a wire-like or sheet-like channel (nanowire channel or nanosheet channel) with a gate, and further improve the short channel effect. Suppression becomes possible.
  • the gate covering the channel is also in contact with the semiconductor substrate, so the FET is also formed on the semiconductor substrate side at the same time.
  • FETs formed on the semiconductor substrate side have a planar type structure with weaker gate controllability than GAA types, which causes deterioration of transistor characteristics.
  • Non-Patent Document 1 mentions the problem of deterioration of transistor characteristics due to planar FETs, that is, parasitic FETs, formed on the semiconductor substrate side, and describes the problem of deterioration of transistor characteristics by providing an insulating film directly under the gate to insulate between the gate and the semiconductor substrate. It points out the need for separation.
  • Patent Document 1 discloses a specific process for forming an insulating separation film between the gate and the semiconductor substrate. That is, under the laminated structure consisting of a silicon (Si) channel and a silicon germanium (SiGe) sacrificial layer to form a nanowire channel or a nanosheet channel, a second SiGe layer having a higher germanium (Ge) composition than the SiGe sacrificial layer is placed. Form a sacrificial layer. Then, only the second SiGe sacrificial layer of the stacked structure whose sidewalls were exposed during the process is selectively etched away, and the removed region is filled with an insulating film. This makes it possible to insulate and separate the nanowire channel or nanosheet channel and the silicon substrate.
  • Si silicon
  • SiGe silicon germanium
  • Patent Document 2 discloses that the sidewalls of the Si/SiGe laminated film for forming nanowire channels or nanosheet channels are covered with a protective film, and only the sidewalls of the second SiGe sacrificial layer present at the bottom of the SiGe/Si laminated structure are exposed. A process is disclosed in which the second SiGe sacrificial layer is removed and the removed region is filled with an insulating film.
  • the Ge composition in the second SiGe sacrificial layer is there is no need to make the Ge composition higher than that in the SiGe sacrificial layer, and concerns about strain relaxation and the like caused by introducing a high Ge composition SiGe layer are alleviated.
  • a second SiGe sacrificial layer is formed under a Si/SiGe laminated film for forming a nanowire channel or a nanosheet channel. It is necessary to make the Ge composition of the first SiGe sacrificial layer larger than that of the first SiGe sacrificial layer in the upper Si/SiGe stacked film to provide etching selectivity.
  • the Ge composition of the first SiGe sacrificial layer in the upper Si/SiGe laminated film is set to 15 to 25%, and the Ge composition of the second SiGe sacrificial layer is set to 40 to 50%.
  • the critical thickness at which strain relaxation occurs is approximately 20 nm or less at the standard epitaxial growth temperature (550°C to 600°C) for forming a SiGe layer.
  • the second SiGe sacrificial layer needs to be designed to be extremely thin, approximately 10 nm or less.
  • the second SiGe sacrificial layer is removed after the second SiGe sacrificial layer and the upper Si/SiGe laminated film are vertically etched along the pattern consisting of the gate and gate spacer formed on top of them. It will be done. That is, when the second SiGe sacrificial layer is etched away, the side walls of the first SiGe sacrificial layer in the upper Si/SiGe stacked film are also exposed, so when the second SiGe sacrificial layer is etched, the upper first SiGe sacrificial layer The layers are also exposed to etching.
  • the above two types of films have different Ge compositions, they are the same SiGe layer, so it is difficult to have perfect etching selectivity.
  • the top Si/ The first SiGe sacrificial layer in the SiGe stacked film is also inevitably etched by a certain amount. Therefore, there is a concern that it may affect subsequent processes and cause defects such as an increase in transistor leakage current.
  • the first SiGe sacrificial layer of the upper Si/SiGe stacked film is protected by the insulating film, so the problem of etching selectivity that was a concern in Patent Document 1 is resolved. Furthermore, since it becomes possible to make the Ge composition of the second SiGe sacrificial layer equal to that of the first SiGe sacrificial layer of the upper Si/SiGe laminated film, there is less concern about strain relaxation. Therefore, the thickness of the second SiGe sacrificial layer can be set to be large, making it possible to secure a sufficient process margin, and reducing concerns about transistor malfunction due to strain relaxation.
  • the GAA type FET process disclosed in Patent Document 2 has a significantly increased number of process steps compared to the process disclosed in Patent Document 1.
  • the method of protecting only the upper Si/SiGe laminated film portion with the insulating film and exposing only the second SiGe sacrificial layer is performed by the following process. First, the Si/SiGe stacked film and the lower second SiGe sacrificial layer are vertically etched along the pattern, and then an insulating film with a certain thickness is isotropically deposited to protect the etched sidewalls. do.
  • the grooves formed by the pattern are filled with a coating film such as a spin-on carbon film, and the carbon film is further etched by a certain amount in the vertical direction.
  • the etching amount is adjusted so that the upper end of the carbon film after etching is located between the upper end and the lower end of the second SiGe sacrificial layer.
  • a film of titanium nitride (TiN) or the like is deposited on the carbon film to refill the grooves formed by the pattern, and the underlying carbon film is removed.
  • TiN titanium nitride
  • the second SiGe sacrificial layer is selectively etched away. Finally, by etching away the TiN film and the insulating film, a structure in which only the second SiGe sacrificial layer is removed is obtained.
  • nine additional steps such as film formation and etching are added to the process disclosed in Patent Document 1, resulting in a significant increase in the number of process steps.
  • the etching amount is adjusted so that the top end of the carbon film after etching is located between the top and bottom ends of the second SiGe sacrificial layer whose sidewalls are covered with an insulating film. Adjustment is difficult because there is no method to directly evaluate the relative position of the SiGe sacrificial layer and the top of the carbon film.
  • the present disclosure discloses that after patterning a Si/SiGe laminated film and a second SiGe sacrificial layer formed under it, the sidewalls are formed into an insulating film laminated film. It is an object of the present invention to provide a plasma processing method in which a step of protecting the second SiGe sacrificial layer by etching away only the second SiGe sacrificial layer, and a plasma processing method capable of successively performing the steps from the patterning to the removal of the second SiGe sacrificial layer using the same apparatus.
  • An embodiment of the present disclosure includes: a first step of depositing a protective insulating film on the sidewall of the semiconductor laminated film partially etched vertically; a second step of vertically anisotropically etching the protective insulating film to expose the surface of the semiconductor laminated film; a third step of repeating the first step and the second step multiple times using an insulating film material different from the protective insulating film to form a laminated film of the protective insulating film on the side wall;
  • This is a semiconductor device manufacturing method or a plasma processing method that includes a fourth step of removing the semiconductor laminated film existing under the protective insulating film by isotropic etching.
  • the gate and the silicon substrate are insulated and separated, and the formation of a planar parasitic FET formed on the silicon substrate side is suppressed.
  • the increase in the number of process steps can be significantly suppressed due to the equipment's characteristics that can suppress the occurrence of defects and can perform continuous processes in which multiple steps are performed using the same device.
  • FIG. 2 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 2 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 2 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 2 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 1 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 2 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 2 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 2 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 2 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 1 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 2 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 2 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 2 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 2 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 1 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 2 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 2 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. FIG. 2 is an enlarged cross-sectional view showing a step of forming an insulating separation film between a gate and a semiconductor substrate in Example 1;
  • FIG. 2 is an enlarged cross-sectional view showing a step of forming an insulating separation film between a gate and a semiconductor substrate in Example 1;
  • FIG. 2 is an enlarged cross-sectional view showing a step of forming an insulating separation film between a gate and a semiconductor substrate in Example 1;
  • FIG. 2 is an enlarged cross-sectional view showing a step of forming an insulating separation film between a gate and a semiconductor substrate in Example 1;
  • 3 is a cross-sectional view of an element isolation region showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 3 is a cross-sectional view of an element isolation region showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 3 is a cross-sectional view of an element isolation region showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 3 is a cross-sectional view of an element isolation region showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 3 is a cross-sectional view of an element isolation region showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 3 is a cross-sectional view of an element isolation region showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 3 is a cross-sectional view of an element isolation region showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 1.
  • FIG. 1 is a diagram showing a configuration example of a plasma processing apparatus.
  • 7 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 2.
  • FIG. 7 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 2.
  • FIG. 7 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 2.
  • FIG. 7 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 2.
  • FIG. 1 is a diagram showing a configuration example of a plasma processing apparatus.
  • 7 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are
  • FIG. 7 is a bird's-eye view showing the manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 2.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 3.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 3.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 3.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 3.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 3.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 3.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 3.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 3.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 3.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 3.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 3.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 3.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 3.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to Example 3.
  • FIG. 7 is a flow diagram of a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to a third embodiment.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to a fourth embodiment.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to a fourth embodiment.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to a fourth embodiment.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to a fourth embodiment.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to a fourth embodiment.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to a fourth embodiment.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to a fourth embodiment.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to a fourth embodiment.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to a fourth embodiment.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to a fourth embodiment.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to a fourth embodiment.
  • FIG. 7 is a cross-sectional view showing a manufacturing process of a GAA type FET in which a gate and a semiconductor substrate are insulated and separated according to a fourth embodiment.
  • Example 1 in order to insulate and separate the gate and the semiconductor substrate in the manufacturing process (semiconductor device manufacturing method or plasma processing method) of a GAA type FET (Gate All Around type Field Effect Transistor) as a semiconductor device, A series of steps (also referred to as a step of forming a gate-semiconductor substrate insulating isolation film 11 or a step of forming a gate-semiconductor substrate insulating isolation film) and laminating a plurality of sidewall protection films made of different materials within the above steps.
  • FIGS. 1A to 1N FIGS. 2A to 2D, FIGS. 3A to 3F, and FIG. 4.
  • the semiconductor device manufacturing method or plasma processing method described in the examples has a stacked channel in which thin line-shaped or sheet-shaped channels are stacked in a direction perpendicular to the substrate in a gate formation region, and the gate and the semiconductor substrate are insulated. This is a method for forming a GAA type FET that is isolated by a film.
  • FIGS. 1A to 1N are bird's-eye views showing the process of manufacturing a GAA type FET, from the process of insulating and separating the gate and semiconductor substrate to completing the FET structure.
  • 1A to 1K show a series of steps related to this embodiment, from etching the Si/SiGe (silicon/silicon germanium) stacked film to removing the second SiGe sacrificial layer and removing the sidewall protection insulating film.
  • FIGS. 1L to 1M show a step of embedding an insulating film (buried insulating film) for insulating and separating the gate and the semiconductor substrate into the removed second SiGe sacrificial layer region.
  • FIGS. 1N shows a GAA type FET structure including the buried insulating film (between the gate and the substrate).
  • 2A to 2D are enlarged cross-sectional views of a region including the bottom of the Si/SiGe stacked film to the Si substrate in the steps shown in FIGS. 1D to 1G.
  • 3A to 3F show cross-sectional views of the gate in the device isolation region other than the channel region of the FET, that is, the cross section taken along line AA′ shown in FIG. 1A, in the steps corresponding to FIGS. 1C to 1K.
  • FIG. 4 shows a flow diagram of the series of manufacturing steps shown in FIGS. 1A to 1K.
  • FIG. 1A a stacked film in which a plurality of single-crystal SiGe layers (first semiconductor layer) 3 and single-crystal Si layers (second semiconductor layer) 4 are alternately stacked on a single-crystal Si substrate (semiconductor substrate) 1 is formed.
  • the laminated film of the SiGe layer 3 and the Si layer 4 has a second SiGe sacrificial layer 3A at the bottom layer, a Si sacrificial layer 4A on the second SiGe sacrificial layer 3A, and a Si sacrificial layer 4A on the SiGe sacrificial layer 4A.
  • a first SiGe sacrificial layer 3B and a Si channel 4B are alternately and repeatedly stacked.
  • the laminated film of the SiGe layer 3 and the Si layer 4 is formed by epitaxial growth using, for example, chemical vapor deposition (CVD), and the composition of Ge in the SiGe layer 3 is different from that of the second SiGe sacrificial layer.
  • Layer 3A and first SiGe sacrificial layer 3B are designed to be the same.
  • the Ge composition may be, for example, 15 to 40%.
  • the second SiGe sacrificial layer 3A and each first SiGe sacrificial layer 3B are deposited to be lattice-matched to the Si substrate 1, and inside each SiGe layer there is a difference in lattice constant between SiGe and Si. Contains strain energy.
  • the thickness of the second SiGe sacrificial layer 3A, the number of repeated stacks of the first SiGe sacrificial layer 3B and the Si channel 4B, and their respective film thicknesses are determined so that the strain energy contained in the SiGe layer is It is necessary to adjust the thickness so that it does not exceed the critical thickness at which defects occur in layer 3. Desirable film thicknesses are, for example, approximately 10 to 50 nm for the second SiGe sacrificial layer 3A, approximately 8 to 20 nm for the first SiGe sacrificial layer 3B, and approximately 5 to 10 nm for the Si channel 4B.
  • the number of repeated layers of the first SiGe sacrificial layer 3B and the Si channel 4B may be, for example, 3 to 6 layers each. Further, the thickness of the Si sacrificial layer 4A is preferably designed to be approximately 5 to 20 nm, for example. Epitaxial growth by the CVD method may be performed using, for example, monosilane (SiH 4 ) diluted with hydrogen, disilane (Si 2 H 6 ), germane (GeH 4 ), or the like as a source gas. In FIG. 1A, the top layer is the Si channel 4B, but the first SiGe sacrificial layer 3B may be the top layer.
  • the laminated film of the SiGe layer 3 and the Si layer 4 is processed into a line-shaped pattern in plan view.
  • the pattern width is preferably adjusted to about 5 to 15 nm when forming a thin line-shaped nanowire channel, and about 10 to 100 nm when forming a sheet-like nanosheet channel. . Since the nanowire channel has a short peripheral length, controllability by the gate is improved, but the current value of the drive current is small. On the other hand, nanosheet channels can obtain a large drive current, although the gate controllability is slightly worse than that of nanowires.
  • the channel shape is determined by the required device application.
  • the line-shaped pattern is a periodic pattern or a pattern similar thereto.
  • SADP self-aligned double patterning
  • the pattern period is, for example, 40 nm or more and 80 nm or less.
  • the pattern period is, for example, 20 nm or more and 40 nm or less.
  • SAQP self-aligned quadruple patterning
  • single patterning can be used until the pattern period is, for example, 40 nm. If the pattern period is, for example, 20 nm or more and 40 nm or less, SADP can be used.
  • a shallow trench isolation (STI) insulating film is used to form a device isolation region in the partially patterned trench of the Si substrate 1.
  • STI shallow trench isolation
  • the STI insulating film 2 is formed using, for example, a CVD method.
  • the material of the STI insulating film 2 may be a silicon oxide film (SiO 2 ), a silicon oxynitride film (SiON), a silicon carbon oxide film (SiCO), or the like.
  • the upper surface of the STI insulating film 2 after etching back may be set at any desired location, but the most desirable form is to adjust the etching amount so that it is located between the upper and lower ends of the second SiGe sacrificial layer 3A. That's good.
  • a dummy gate insulating film 5 made of SiO 2 or a similar insulating film, a dummy gate 6 made of amorphous Si or polycrystalline Si, Furthermore, an insulating film hard mask 7 made of SiO 2 , silicon nitride (Si 3 N 4 ), SiON, or the like is formed.
  • the dummy gate insulating film 5 may be formed using, for example, a CVD method, or may be formed by oxidizing the SiGe layer 3 and the Si layer 4 using a thermal oxidation method or a plasma oxidation method.
  • the thickness of the dummy gate insulating film 5 is preferably in the range of 1 to 3 nm, for example.
  • the dummy gate 6 and the hard mask 7 are preferably formed using a film forming method such as a CVD method, for example.
  • the film thicknesses of the dummy gate 6 and the hard mask 7 are desirably adjusted within a range of 20 to 200 nm, for example.
  • the dummy gate insulating film 5, dummy gate 6, and hard mask 7 are patterned in a direction perpendicular to the pattern of the laminated film of the SiGe layer 3 and the Si layer 4. The above patterning is performed by selectively using techniques such as SADP and single exposure depending on the gate pitch.
  • the gate pitch is set to 40 to 70 nm
  • the width of the dummy gate 6, that is, the gate length is set to a range of 10 to 30 nm
  • the hard mask 7, dummy gate 6, and dummy gate insulating film 5 are etched along the pattern.
  • the hard mask 7, dummy gate 6, and dummy gate insulating film 5 are etched along the pattern.
  • etching the hard mask 7 and the dummy gate 6 it is preferable to use vertical etching using dry etching, for example.
  • the etching of the dummy gate insulating film 5 it is preferable to use isotropic etching using dry etching or wet etching, for example. Further, the etching of the dummy gate insulating film 5 may not be performed in the main step shown in FIG.
  • a gate sidewall spacer (gate sidewall spacer film) 8 is deposited by, for example, a CVD method to obtain the structure shown in FIG. 1A.
  • a gate sidewall spacer 8 it is preferable to use, for example, a low dielectric constant film such as a SiON film, a silicon carbon oxynitride film (SiOCN), or a SiCO film.
  • the horizontal film thickness of the gate sidewall spacer 8 is adjusted within a range of, for example, 5 to 15 nm.
  • the gate sidewall spacers 8 are vertically anisotropically etched to obtain the structure shown in FIG. 1B.
  • the anisotropic etching of the gate sidewall spacer 8 is performed using, for example, methane tetrafluoride (CF 4 ), cyclobutane octafluoride (C 4 F 8 ), nitrogen (N 2 ) It is better to use a mixed gas with added gas.
  • the anisotropic etching of the gate sidewall spacer 8 can be performed using, for example, a mixed gas of fluoromethane (CH 3 F), oxygen (O 2 ), and helium (He). good.
  • the above etching is performed under conditions such that selective etching is performed on the laminated film pattern of the SiGe layer 3 and the Si layer 4.
  • the gate sidewall spacer 8 is etched under etching conditions using the dummy gate insulating film 5 as a stopper.
  • the amount of etching is adjusted so that the upper end of gate sidewall spacer 8 is located between the upper end and lower end of hard mask 7 after etching. That is, after the main etching, the sidewalls of the dummy gate 6 are adjusted so that they are all covered with the gate sidewall spacers 8.
  • This step shown in FIG. 1B corresponds to 101 in the process flow diagram of FIG. 4.
  • anisotropic etching is performed in the vertical direction of the laminated film pattern of the SiGe layer 3 and the Si layer 4 along the sidewall of the gate sidewall spacer 8.
  • the etching time is adjusted so as to etch the first SiGe sacrificial layer 3B, Si channel 4B stacked film, and Si sacrificial layer 4A, and the second SiGe sacrificial layer 3A is exposed. It is desirable to finish the etching at the structure.
  • the depth to which the second SiGe sacrificial layer 3A is etched by over-etching is preferably adjusted to a range of 0 to 40 nm, for example.
  • etching for example, chlorine (Cl 2 ), CF 4 , or a similar gas, a mixed gas of these (Cl 2 and CF 4 ), or a mixture of these (Cl 2 and CF 4 ) with nitrogen trifluoride ( It is preferable to use a gas containing NF 3 ) or O 2 .
  • the etching of the laminated film of the SiGe layer 3 and the Si layer 4 in this process corresponds to step 102 in the process flow diagram of FIG. 4, and after etching the gate sidewall spacer 8 shown in FIG. It is best if this is done consecutively.
  • FIG. 3A shows a cross section of the gate in the element isolation region (line AA' in FIG. 1A) other than the channel region of the FET after this step.
  • a first protective insulating film 9 is deposited by a film forming technique using ALD (Atomic Layer Deposition) to obtain the structure shown in FIG. 1D.
  • the protective insulating film 9 covers the top surface and sidewalls of the hard mask 7 and the gate sidewall spacer 8, the exposed sidewalls of the laminated film consisting of the first SiGe sacrificial layer 3B and the Si channel 4B, the sidewalls of the Si sacrificial layer 4A, and the second SiGe sacrificial layer. It is deposited on the upper surface of 3A and on the STI insulating film 2.
  • the material of the protective insulating film 9 is desirably an insulating film containing nitrogen, considering the etching selectivity between the stacked film consisting of the SiGe layer 3 and the Si layer 4 and the surrounding STI insulating film 2. It is preferable to use a film containing nitrogen element, for example, a Si 3 N 4 film or a similar SiON film.
  • the thickness of the protective insulating film 9 is controlled to be approximately 2 to 3 nm, for example.
  • the ALD method has the advantage of being able to form thin films with good controllability even on complex shapes with many irregularities.
  • the Si raw material may include, for example, Bis(tert-butylamino)silane (BTBAS) or Bis(diethylamino).
  • BBAS Bis(tert-butylamino)silane
  • BDEAS Bis(diethylamino)
  • dichlorosilane SiH 2 Cl 2
  • the raw material for nitrogen is N 2 gas or a mixed gas of N 2 gas and hydrogen (H 2 ) gas, or ammonia (NH 3 )
  • a gas containing nitrogen such as gas.
  • the protective insulating film 9 may be made of a film that does not contain nitrogen, such as SiO 2 , or may be formed by CVD or the like.
  • FIG. 2A shows an enlarged view including the lower part of the laminated film of the first SiGe sacrificial layer 3B and Si channel 4B in FIG. 1D to the second SiGe sacrificial layer 3A.
  • the stacked film consisting of the first SiGe sacrificial layer 3B and the Si channel 4B and the sidewalls of the Si sacrificial layer 4A often have a tapered shape slightly inclined from the vertical direction at the bottom of the pattern. This reflects the characteristics of dry etching during pattern formation shown in FIG.
  • the taper angle is controlled by the ion energy during etching, the etching gas, the pressure inside the etching chamber, etc., and is adjusted in consideration of damage to the underlying second SiGe sacrificial layer 3A.
  • the angle between the side wall and the top surface of the second SiGe sacrificial layer 3A ( ⁇ 1 in FIG. 2A) is, for example, in the range of 80 to 90 degrees. In FIG.
  • the width of the groove pattern formed in the stacked film consisting of the first SiGe sacrificial layer 3B and the Si channel 4B and the Si sacrificial layer 4A is, for example, a gate pitch of 56 nm, a gate length of 20 nm, and a horizontal direction of the gate sidewall spacer 8. If the film thickness of is 8 nm, it becomes 20 nm. It is assumed that the width of the groove pattern will further decrease with the miniaturization of transistors, and is expected to be, for example, about 10 to 15 nm in the future. In this case, considering the taper angle, the width of the groove pattern at the groove bottom is expected to be, for example, about 10 nm or less.
  • the film thickness in the vertical direction at the groove bottom (t2 in FIG. 2A) is larger than the film thickness in the horizontal direction at the sidewall (t1 in FIG. 2A). It is expected that it will become thicker. If the horizontal film thickness t1 of the protective insulating film 9 on the pattern sidewall is, for example, 2 to 3 nm, the vertical film thickness t2 at the groove bottom is expected to be, for example, 3 to 6 nm.
  • This step shown in FIG. 1D corresponds to step 103 in the process flow diagram of FIG.
  • FIG. 3B shows a cross section of the gate in the element isolation region (line AA' in FIG. 1A) other than the channel region of the FET after this step.
  • the protective insulating film 9 is etched in the vertical direction.
  • the above etching is performed under selective etching conditions for the hard mask 7, gate sidewall spacer 8, second SiGe sacrificial layer 3A, and STI insulating film 2.
  • the etching gas may be, for example, a mixed gas of halogen gas such as CF 4 or C 4 F 8 and O 2 to which Cl 2 or the like is added, or It is best to use a gas that conforms to that. This etching exposes the upper surface of the second SiGe sacrificial layer 3A.
  • the etching time is determined in consideration of the vertical film thickness of the protective insulating film 9 at the bottom of the trench. Since the vertical thickness of the protective insulating film 9 at the trench bottom is thicker than the horizontal film thickness of the protective insulating film 9 at the trench sidewalls, a portion of the protective insulating film 9 on the sidewalls is also etched at the trench bottom after etching.
  • FIG. 2B shows a cross section of the gate in the element isolation region (line AA' in FIG. 1A) other than the channel region of the FET after this step.
  • the STI insulating film 2 is also slightly etched.
  • This step shown in FIG. 1E corresponds to step 104 in the process flow diagram of FIG. 4, and is performed continuously in the chamber of the same apparatus following the step 103 of forming the protective insulating film 9 shown in FIG. 1D. Good.
  • a second protective insulating film 10 is deposited on the first protective insulating film 9 using the ALD method to obtain the structure shown in FIG. 1F.
  • the first protective insulating film 9 and the second protective insulating film 10 form a laminated film of protective insulating films.
  • the lower layer side is the first protective insulating film 9
  • the upper layer side is the second protective insulating film 10.
  • the insulating film material of the first protective insulating film 9 and the insulating film material of the second protective insulating film 10 are different insulating film materials.
  • the second protective insulating film 10 is deposited on the hard mask 7, the gate sidewall spacer 8, the upper surface and sidewalls of the protective insulating film 9, the upper surface of the second SiGe sacrificial layer 3A, and the STI insulating film 2.
  • FIG. 2C shows an enlarged view including the lower part of the laminated film of the first SiGe sacrificial layer 3B and Si channel 4B to the second SiGe sacrificial layer 3A after the second protective insulating film 10 is deposited.
  • the film thickness t1 is, for example, 2 to 3 nm
  • it is desirable that the film thickness t3 is, for example, 1 to 3 nm.
  • the second protective insulating film 10 protects the flow path a1.
  • the second protective insulating film 10 is deposited isotropically, under the eaves of the first protective insulating film 9, the film is deposited in the vertical direction from the under eaves, and the Si sacrificial layer 4A and the first The thickness of the second protective insulating film 10 (t4 in FIG.
  • the vertical film thickness (t5 in FIG. 2C) of the second protective insulating film 10 on the second SiGe sacrificial layer 3A is equal to the film thickness t3.
  • the second protective insulating film 10 is a film containing an aluminum element and an oxygen element, such as an aluminum oxide (Al 2 O 3 ) film or an aluminum oxynitride (AlON) film similar thereto.
  • trimethylaluminum (TMA: Al(CH 3 ) 3 ) is used as the raw material for aluminum (Al), and vaporized water (Al(CH 3 ) 3 ) is used as the raw material for oxygen.
  • H 2 O is preferably used.
  • the precursor consisting of Al(CH 3 ) 3 has high reactivity with hydroxyl groups (OH groups) formed on the surface by H 2 O supply, so it can coat Al with good coverage even on uneven surfaces. It becomes possible to form a 2 O 3 film. Therefore, the Al 2 O 3 film is isotropically deposited even inside the pattern of FIG. 2C, which has narrow openings.
  • the second protective insulating film 10 may be an oxide film or a nitride film that does not use Al, or may be formed by a CVD method or the like.
  • This step shown in FIGS. 1F and 2C corresponds to step 105 in the process flow diagram of FIG. It would be good if this was done consecutively.
  • FIG. 3D shows a cross section of the gate in the element isolation region (line AA' in FIG. 1A) other than the channel region of the FET after this step.
  • the second protective insulating film 10 is vertically etched.
  • the above etching is performed under selective etching conditions for the first protective insulating film 9, hard mask 7, gate sidewall spacer 8, second SiGe sacrificial layer 3A, and STI insulating film 2.
  • the etching gas may be boron trichloride (BCl 3 ), a mixed gas of BCl 3 and Cl 2 , or argon (Ar) or N 2 . , O 2 mixed gas, or a gas similar to these may be used. This etching exposes the upper surface of the second SiGe sacrificial layer 3A.
  • FIG. 2D shows an enlarged view including the lower part of the laminated film of the first SiGe sacrificial layer 3B and Si channel 4B to the second SiGe sacrificial layer 3A in the above step.
  • the opening width is the smallest near the eaves at No.9. Therefore, almost all of the etching gas ions reflected by the side wall of the first protective insulating film 9 are consumed in etching the second protective insulating film 10 in the vertical direction, and the etching gas ions deposited on the side wall of the pattern under the eaves are almost entirely consumed.
  • the second protective insulating film 10 is not etched. The above process makes it possible to open the upper part of the second SiGe sacrificial layer 3A while protecting the Si sacrificial layer 4A and the sidewalls of the opening pattern formed in the first SiGe sacrificial layer 3B and Si channel 4B. Note that FIG.
  • FIG. 3E shows a cross section of the gate in the element isolation region (line AA' in FIG. 1A) other than the channel region of the FET after this step. Due to over-etching in the etching of the second protective insulating film 10, the STI insulating film 2 is also slightly etched.
  • This step shown in FIGS. 1G and 2D corresponds to step 106 in the process flow diagram of FIG. It is preferable to do this continuously in a chamber. Note that the cycle process shown in steps 103-104 and 105-106 in FIG. 4 (gas and film forming conditions may be changed) is not limited to two cycles, and may be repeated multiple times. .
  • the etching step (104, 106) when considering the combination of the first step, the film forming step (103, 105), and the second step, the etching step (104, 106), as one cycle, in FIG.
  • the combination is carried out in two cycles (the first cycle is step 103 and step 104, the second cycle is step 105 and step 106) and constitutes the third step.
  • the gas and film forming conditions may be changed in steps 103 and 104 of the first cycle and steps 105 and 106 of the second cycle.
  • the number of cycles of the film forming process (103, 105) and the etching process (104, 106) is not limited to two cycles, but may be repeated multiple times to form a plurality of cycles.
  • the second SiGe sacrificial layer 3A is etched in the vertical direction.
  • the above etching is performed under selective etching conditions for the second protective insulating film 10, first protective insulating film 9, hard mask 7, gate sidewall spacer 8, STI insulating film 2, and Si substrate 1.
  • Etching gases include gases containing halogen-based elements, such as HBr, CF 2 Cl 2 , bromotrifluoromethane (CF 3 Br), or HBr containing about 1 to 5% CF 4 , or gases containing these.
  • a mixed gas a gas obtained by adding O 2 or a rare gas such as Ar or He, an inert gas such as N 2 , or a mixture thereof.
  • etching of the second SiGe sacrificial layer 3A maintains verticality and the etching rate remains the same as that of the Si substrate 1. It is best to adjust it so that it is about 1 to 10 times the etching rate.
  • This step shown in FIG. 1H corresponds to step 107 in the process flow diagram of FIG. 4, and is performed in the chamber of the same apparatus following the etching step 106 of the second protective insulating film 10 shown in FIGS. 1G and 2D. It is better if it is done continuously.
  • the second SiGe sacrificial layer 3A is isotropically etched away.
  • the above etching is performed under selective etching conditions for the second protective insulating film 10, first protective insulating film 9, hard mask 7, gate sidewall spacer 8, STI insulating film 2, Si substrate 1, and Si sacrificial layer 4A.
  • Etching gases include, for example, fluorine-containing gases such as sulfur hexafluoride (SF 6 ), CF 4 , or NF 3 , or mixed gases thereof, O 2 or rare gases such as Ar or He, or N It is recommended to use an inert gas such as No. 2 or a mixture of these gases.
  • the etching of the second SiGe sacrificial layer 3A is isotropic and the etching rate is, for example, It is best to adjust the etching rate to approximately 1 to 200 times the etching rate of the Si substrate 1.
  • This step shown in FIG. 1I corresponds to step 108 in the process flow diagram of FIG. It would be good if this was done.
  • this step shown in FIG. 1I is performed in the same manner as the etching step 107 of the second SiGe sacrificial layer 3A in the vertical direction shown in FIG. It may be performed continuously in the chamber of the device.
  • the Si sacrificial layer 4A is removed by isotropic etching.
  • the above etching is performed under selective etching conditions for the second protective insulating film 10, first protective insulating film 9, hard mask 7, gate sidewall spacer 8, STI insulating film 2, and first SiGe sacrificial layer 3B.
  • the etching gas used is, for example, a gas containing fluorine such as SF 6 , CF 4 , or NF 3 or a mixture thereof, to which H 2 , or a gas such as O 2 or N 2 or a mixture thereof is added. Good.
  • etching of the Si sacrificial layer 4A is isotropic and the etching rate is, for example, It is best to adjust the etching rate to approximately 1 to 100 times the etching rate of the SiGe sacrificial layer 3B.
  • This step shown in FIG. 1J corresponds to step 109 in the process flow diagram of FIG. It would be good if it was done.
  • the second protective insulating film 10 and the first protective insulating film 9 are sequentially removed by isotropic etching.
  • the second protective insulating film 10 is etched under selective etching conditions for the first protective insulating film 9, the hard mask 7, the gate sidewall spacer 8, the STI insulating film 2, the lower surface of the first SiGe sacrificial layer 3B, and the Si substrate 1. It will be held at For example, when the second protective insulating film 10 is an Al 2 O 3 film, it is preferable to use a mixed gas of O 2 , BCl 3 , and Ar, or a similar gas as the etching gas.
  • This etching is performed under conditions such that almost all of the second protective insulating film 10 is removed by etching for 1 to 2 times the etching time required to etch the second protective insulating film 10 to its thickness. It will be held at Next to the second protective insulating film 10, the first protective insulating film 9 is removed by isotropic etching. This etching is performed under selective etching conditions for the hard mask 7, the gate sidewall spacer 8, the STI insulating film 2, the lower surface and sidewalls of the first SiGe sacrificial layer 3B, the Si channel 4B, and the Si substrate 1.
  • the protective insulating film 9 is a Si 3 N 4 film
  • a gas such as trifluoromethane (CHF 3 ), difluoromethane (CH 2 F 2 ), or CH 3 F is used as the etching gas, or CF 4 or C 4
  • a mixed gas of a fluorocarbon gas such as F 8 and H 2 or a gas similar thereto. Similar to the etching of the second protective insulating film 10, this etching is performed for one to twice the etching time required to etch the first protective insulating film 9 to the thickness of the first protective insulating film 9. This is carried out under conditions such that almost all of the protective insulating film 9 is removed.
  • step 110 in the process flow diagram of FIG. 4, and is preferably performed continuously in the chamber of the same apparatus following the etching removal step 109 of the Si sacrificial layer 4A shown in FIG. 1J. That is, the steps from the gate sidewall spacer vertical etching step 101 (FIG. 1B) in FIG. 4 to the first and second protective insulating film isotropic etching removal step 110 (FIG. 1K) are performed continuously in the chamber of the same device. becomes possible.
  • FIG. 3F shows a gate cross section in an element isolation region other than the channel region of the FET (line AA' in FIG.
  • the top surface of the STI insulating film 2 is , has a curved shape in the region of the gap between adjacent gate sidewall spacers 8. This shape contributes to isotropic film deposition when depositing the interlayer insulating film (FIG. 1N: second interlayer insulating film 16) in the subsequent step, so the interlayer insulating film is formed at the bottom of the gap.
  • the film density of the film is kept constant. Therefore, the effect of suppressing the formation of cavities in the interlayer insulating film due to a decrease in film density is brought about.
  • a gate-substrate isolation insulating film 11 is deposited as a buried insulating film (first insulating film).
  • the gate-substrate isolation insulating film 11 is formed using, for example, a CVD method, and after the gate-substrate isolation insulating film 11 is formed, chemical mechanical polishing (CMP) is performed using the hard mask 7 as a stopper. Polishing) performs a planarization process to planarize the surface of the gate-substrate isolation insulating film 11.
  • CMP chemical mechanical polishing
  • Polishing performs a planarization process to planarize the surface of the gate-substrate isolation insulating film 11.
  • the material of the gate-substrate isolation insulating film 11 may be, for example, SiO 2 , SiON, SiCO, or the like.
  • the gate-substrate isolation insulating film 11 is etched back to obtain the structure shown in FIG. 1M.
  • the etching amount may be adjusted so that the upper surface of the gate-substrate isolation insulating film 11 after etching back is located between the lower and upper surfaces of the first SiGe sacrificial layer 3B, for example.
  • This process creates a structure in which the stacked film consisting of the first SiGe sacrificial layer 3B and the Si channel 4B and the Si substrate 1 are separated by the gate-substrate separation insulating film 11 (the stacked film and the Si substrate 1 are A structure separated by a gate-substrate isolation insulating film 11 is formed.
  • the gate-substrate isolation insulating film 11 can be referred to as a buried insulating film 11.
  • the transistor structure shown in FIG. 1N is obtained through a GAA type FET formation process.
  • the gate sidewall inner spacer 12 is formed, the source and drain 15 are formed, the second interlayer insulating film 16 is formed, the hard mask 7 and the dummy gate 6 are formed, and the dummy gate insulating film 5 and the first SiGe sacrificial layer 3B are formed.
  • formation of gate insulating film 13 and gate metal 14 formation of contact barrier metal 17 and contact metal 18, and subsequent post-process metal wiring process.
  • the gate sidewall inner spacer 12 is formed by, for example, performing isotropic etching of the first SiGe sacrificial layer 3B selectively with respect to the Si channel 4B and other peripheral films to remove a portion of the first SiGe sacrificial layer 3B to form a groove.
  • a low dielectric constant film is formed using a CVD method or the like and deposited in the groove formed in the first SiGe sacrificial layer 3B, and a part of the low dielectric constant film is removed by isotropic etching. It is formed through the process of Thereby, the gate sidewall inner spacer 12 formed inside the groove of the first SiGe sacrificial layer 3B can be obtained.
  • the low dielectric constant film forming the gate sidewall inner spacer 12 it is preferable to use, for example, a SiCO film, SiOCN, or SiON film, a film similar thereto, or a laminated film of these films.
  • a SiCO film, SiOCN, or SiON film a film similar thereto, or a laminated film of these films.
  • the etching amount of the first SiGe sacrificial layer 3B is, for example, It is best to adjust the etching time so that the thickness is about 1 to 10 nm.
  • fluorine such as CHF 3 , CH 2 F 2 , CH 3 F or NF 3 is used as the etching gas. It is preferable to use a mixed gas of the containing gas and N 2 or O 2 , or a gas similar thereto.
  • the source and drain 15 are formed, for example, by selectively epitaxially growing Si or SiGe on the sidewall of the Si channel 4B.
  • Si or SiGe are formed in each of the n-type FET region and the p-type FET region.
  • the n-type FET region is selectively grown with Si doped with n-type impurities such as phosphorous (P) and arsenic (As), and the p-type FET region is doped with p-type impurities such as boron (B). It is better to choose SiGe for growth.
  • the second interlayer insulating film 16 is formed using, for example, a CVD method.
  • an etching gas and etching conditions suitable for each material are used.
  • the hard mask 7 is a Si 3 N 4 film, it is preferable to use a gas such as CHF 3 , CH 2 F 2 or CH 3 F as the etching gas.
  • etching the dummy gate 6 made of poly-Si for example, dry etching using a gas such as SF 6 , CF 4 , or HBr or a similar gas, or a tetramethylammonium hydroxide aqueous solution ( It is recommended to perform wet etching using TMAH) or the like.
  • the dummy gate insulating film 5 is removed by wet etching using, for example, a hydrofluoric acid (HF) aqueous solution. It is preferable to use the same conditions as when isotropically etching the sacrificial layer 3A.
  • a high dielectric material such as hafnium oxide (HfO 2 ) or Al 2 O 3 or a laminated film of these high dielectric materials.
  • the gate metal 14 is preferably formed of, for example, a p-work function control metal that determines the threshold voltage of the p-type FET, an n-work function control metal that determines the threshold voltage of the n-type FET, and a gate-embedding metal.
  • a p-work function control metal film it is preferable to use, for example, titanium nitride (TiN), tantalum nitride film (TaN), or a metal compound having a work function equivalent to these.
  • the n-work function control metal film is, for example, titanium aluminum (TiAl), a metal containing carbon (C), oxygen (O), nitrogen (N), etc. in TiAl, or a metal compound having a work function equivalent to these.
  • the gate-embedding metal film is deposited for the purpose of reducing metal resistance within the gate, and can be made of a material such as tungsten (W), for example.
  • These gate metals 14 are formed by, for example, a CVD method or an ALD method.
  • the contact barrier metal 17 and the contact metal 18 are formed by patterning and partially etching the second interlayer insulating film 16 to expose the source and drain 15 of the n-type FET region and the p-type FET region.
  • the contact barrier metal 17 for example, TiN, TaN, or a metal similar thereto is used, and for the contact metal 18, for example, W or cobalt (Co) is preferably used.
  • the thickness of the contact barrier metal 17 is designed to be, for example, about 1 to 3 nm.
  • the gate metal 14 and the Si substrate 1 are insulated and separated by the gate-substrate separation insulating film 11, and the Si substrate 1 is prevented from operating as a parasitic FET.
  • the process of forming the gate-semiconductor substrate insulating isolation film 11 is performed using plasma processing equipped with an ALD film formation function and an anisotropic and isotropic etching control function.
  • the equipment performs a series of steps shown in FIG. 4, from gate sidewall spacer vertical etching (101 in FIG. 4) shown in FIG. 1B to isotropic etching removal of the first and second protective insulating films shown in FIG. 1K.
  • the integrated process up to (110 in FIG. 4) can be performed continuously in the same plasma processing apparatus.
  • Plasma processing equipment includes etching equipment using inductively coupled plasma (ICP), etching equipment using capacitively coupled plasma (CCP), and microwave electron cyclotron resonance (ECR). Any etching device using plasma may be used.
  • FIG. 5 shows the configuration of a plasma processing apparatus 200 using microwave ECR plasma.
  • the plasma processing apparatus 200 has a processing chamber (chamber) 201, and the processing chamber 201 is connected to a vacuum evacuation device (not shown) via a vacuum exhaust port 202. During plasma processing, the processing chamber 201 is is maintained at a vacuum of about 0.1 to 10 Pa. Further, in the processing chamber 201, a window portion 203 having the role of transmitting microwaves and hermetically sealing the processing chamber 201, and a porous plate 204 for shielding ions are arranged.
  • the processing chamber 201 is divided into an upper part 201A of the processing chamber 201 and a lower part 201B of the processing chamber 201 by the perforated plate 204.
  • the material of the window portion 203 is a material that transmits microwaves, for example, a dielectric material such as quartz.
  • the perforated plate 204 has a plurality of holes, and the material of the perforated plate 204 is preferably made of a dielectric material such as quartz or alumina.
  • the gas supply mechanism includes a gas source 205, a gas supply device 206, and a gas inlet 207, and supplies raw material gas for plasma processing.
  • Gas source 205 has multiple gas types necessary for processing.
  • the gas supply device 206 includes a control valve that controls gas supply and cutoff, and a mass flow controller that controls the gas flow rate. Further, the gas inlet 207 is provided between the window portion 203 and the perforated plate 204.
  • a waveguide 209 for propagating electromagnetic waves is connected to the upper part of the processing chamber 201, and a plasma generation high-frequency power source 208, which is a high-frequency power source, is connected to the end of the waveguide 209.
  • the high frequency power source 208 for plasma generation is a power source for generating electromagnetic waves for plasma generation, and for example, microwaves with a frequency of 2.45 GHz are used as the electromagnetic waves.
  • Microwaves generated from the plasma generation high-frequency power source 208 propagate through the waveguide 209 and enter the processing chamber 201. Since the waveguide 209 has a vertical waveguide that extends in the vertical direction and a waveguide converter that also serves as a corner that bends the direction of the microwave by 90 degrees, the microwave is vertically incident on the processing chamber 201.
  • the microwave propagates vertically within the processing chamber 201 via the window section 203.
  • a magnetic field generating coil 210 arranged around the outer periphery of the processing chamber 201 forms a magnetic field in the processing chamber 201.
  • the microwaves oscillated from the plasma generation high-frequency power source 208 generate high-density plasma in the processing chamber 201 through interaction with the magnetic field formed by the magnetic field generation coil 210.
  • a sample stage 212 is arranged below the processing chamber 201, facing the window section 203.
  • the material of the sample stage 212 is, for example, aluminum or titanium.
  • the sample stage 212 holds a semiconductor substrate 211, which is a sample, on its upper surface.
  • the central axes of the waveguide 209, the processing chamber 201, the sample stage 212, and the semiconductor substrate 211 are aligned.
  • an electrode for electrostatically adsorbing the semiconductor substrate 211 is provided inside the sample stage 212, and the semiconductor substrate 211 is electrostatically adsorbed to the sample stage 212 by applying a DC voltage.
  • a high frequency voltage is applied to the sample stage 212 from a high frequency bias power supply 213 in order to control the isotropy and anisotropy of etching.
  • the frequency of the high frequency bias to be applied may be, for example, 400 kHz.
  • Each mechanism of the plasma processing apparatus 200 is controlled by a control signal 221 from a control section 220.
  • the control unit 220 uses a control signal 221 to cause each mechanism to perform a predetermined operation according to the processing conditions (anisotropic etching processing, isotropic etching processing, ALD film forming processing, etc.) executed by the plasma processing apparatus 200.
  • Each mechanism is controlled by instructing its execution.
  • the control unit 220 controls, for example, the plasma generation high frequency power supply 208 and controls ON/OFF of electromagnetic waves for plasma generation. Further, the control unit 220 controls the gas supply mechanism and adjusts the type, flow rate, etc. of the gas introduced into the processing chamber 201.
  • the control unit 220 also controls the high frequency bias power supply 213 and controls the intensity of the high frequency voltage applied to the semiconductor substrate 211 on the sample stage 212.
  • the control unit 220 controls the magnetic field generating coil 210 so that plasma is generated in the lower part 201B of the processing chamber 201 below the perforated plate 204. Since the porous plate 204 is made of a dielectric material, the microwaves pass through the porous plate 204 and interact with the magnetic field in the lower part 201B of the processing chamber 201 to generate plasma. Furthermore, a high frequency bias is applied to the sample stage 212 on which the Si substrate 1 as the semiconductor substrate 211 is placed. As a result, ions in the plasma are attracted to the Si substrate 1 without being blocked by the porous plate 204 or the like, making it possible to perform etching while maintaining verticality.
  • the control unit 220 controls the magnetic field generating coil 210 so that the plasma generation position is in the upper part 201A of the processing chamber 201 above the porous plate 204. Since ions in the plasma generated in the upper part 201A of the processing chamber 201 are blocked by the porous plate 204, only radicals in the plasma are supplied to the lower part 201B of the processing chamber. This enables isotropic etching using radicals.
  • BTBAS or BDEAS which is a Si raw material, or SiH 2 Cl 2 , which is a gas
  • the liquid raw materials are vaporized and sent to the gas line as a gas.
  • the raw material gas is sent into the processing chamber 201 together with Ar, which is a carrier gas, and is adsorbed onto the substrate surface as a Si precursor. Thereafter, unnecessary precursors in the processing chamber 201 are exhausted using a purge gas such as Ar gas.
  • a nitrogen-containing gas such as N 2 gas, a mixed gas of N 2 gas and H 2 gas, or NH 3 gas is flowed into the processing chamber 201 to be turned into plasma and reacted with the substrate surface.
  • an inert gas such as Ar is flowed into the processing chamber 201 again to purge the processing chamber 201, and unnecessary gas inside the processing chamber 201 is exhausted.
  • a Si 3 N 4 film having a thickness on the atomic layer level is deposited on the substrate surface.
  • Al(CH 3 ) 3 is used as the Al precursor
  • vaporized H 2 O is used as the oxygen source
  • Si 3 N It is preferable to perform the same cycle process as in case 4 to form the Al 2 O 3 film.
  • Example 2 provides a method for protecting the Si channel sidewall when forming a gate-semiconductor substrate insulation separation film (311 in FIG. 6B: corresponding to the gate-semiconductor substrate insulation separation film 11 of Example 1). do.
  • FIG. 6A shows the same diagram after removing the Si sacrificial layer 4A shown in FIG. 1J in the gate-semiconductor substrate insulating isolation film formation process (steps shown in FIGS. 1A to 1N) explained in Example 1. show.
  • steps 101 to 109 in FIG. 4 from vertical etching of the gate sidewall spacer shown in FIG. 1B to isotropic etching removal of the Si sacrificial layer 4A shown in FIG. 1J, are performed continuously in the same plasma processing apparatus 200. After that, the Si substrate 1 is taken out from the plasma apparatus 200.
  • a gate-substrate isolation insulating film 311 is deposited, and the surface is planarized by CMP using the hard mask 307 as a stopper.
  • the gate-substrate isolation insulating film 311 is formed using, for example, a CVD method.
  • the material of the gate-substrate isolation insulating film 311 is, for example, SiO 2 , SiON, SiCO, or the like.
  • the region between the first SiGe sacrificial layer 303 and the Si substrate 301 is filled with the gate-substrate isolation insulating film 311, and the gate-substrate isolation insulating film 311 is filled with the first protective insulating film 309 and the first protective insulating film 309. It is also deposited on the sidewalls of the second protective insulating film 310.
  • the gate-substrate isolation insulating film 311 is etched back in the vertical direction. It is preferable to adjust the etching amount so that the upper surface of the gate-substrate isolation insulating film 311 after etching back is located between the lower surface of the second protective insulating film 310 and the upper surface of the first SiGe sacrificial layer 303 as the lowest layer. .
  • the sidewalls of the laminated film consisting of the first SiGe sacrificial layer 303 and the Si channel 304 are protected by the first protective insulating film 309 and the second protective insulating film 310. The sidewalls are not damaged by ions or radicals during etchback. Therefore, it becomes possible to manufacture a GAA type FET in which deterioration of transistor characteristics due to etching damage is suppressed.
  • the second protective insulating film 310 and the first protective insulating film 309 are sequentially removed by isotropic etching. It is preferable to use the same etching conditions as in Example 1 for the etching conditions other than the etching time. After etching, the second protective insulating film 310 and the first protective insulating film 309 are left to fill the groove formed between the gate-substrate isolation insulating film 311 and the first SiGe sacrificial layer 303. good.
  • the second protective insulating film 310 and the first protective insulating film 309 are separated so that the upper surfaces of the second protective insulating film 310 and the first protective insulating film 309 after etching almost coincide with the upper surfaces of the gate-substrate separation insulating film 311.
  • the etching time for each insulating film 309 is adjusted. Since the remaining second protective insulating film 310 and first protective insulating film 309 exist in the groove, it is possible to suppress the generation of cavities starting from the groove in subsequent processes.
  • Embodiment 3 provides a method for simplifying the process of forming gate sidewall inner spacers (12 in Embodiment 1).
  • 7A to 7K show a cross-sectional view of a process using this method, and
  • FIG. 8 shows a flow diagram of a process using this method.
  • FIG. 7A shows a direction perpendicular to the gate corresponding to the anisotropic etching process of the stacked film consisting of the first SiGe sacrificial layer 3B (402B in FIG. 7A) and the Si channel 4B (403B in FIG. 7A) shown in FIG. 1C.
  • a cross-sectional view is shown.
  • the etching is stopped above the Si sacrificial layer 403A.
  • FIG. 1C in which etching is performed up to the Si sacrificial layer 4A
  • the depth to which the Si sacrificial layer 403A is etched by over-etching is preferably adjusted to, for example, a range from 0 nm to about 90% of the thickness of the Si sacrificial layer 403A.
  • This step corresponds to step 502 in the process flow of FIG. 8, and is preferably performed continuously in the chamber of the same apparatus, following the etching of the gate sidewall spacer 8 shown in FIG. 1B (step 501 in FIG. 8).
  • the first SiGe sacrificial layer 402B is isotropically etched.
  • Etching conditions are the same as in Example 1, with selective etching conditions for the hard mask 406, gate sidewall spacer 407, STI insulating film (not shown), Si channel 403B, and Si sacrificial layer 403A.
  • the etching time is adjusted so that the etching amount is, for example, about 1 to 10 nm.
  • This step corresponds to step 503 in the process flow of FIG. 8, and is performed using the same device following the anisotropic etching (step 502 in FIG. 8) of the laminated film consisting of the first SiGe sacrificial layer 402B and Si channel 403B shown in FIG. 7A. It is best to carry out the test continuously in a chamber of
  • a first protective insulating film 408 is deposited using an ALD film formation technique.
  • the first protective insulating film 408 covers the top surface and sidewalls of the hard mask 406 and the gate sidewall spacer 407, the sidewalls of the laminated film consisting of the first SiGe sacrificial layer 402B and the Si channel 403B, the top surface of the Si sacrificial layer 403A, and the STI insulating film. (not shown).
  • the first protective insulating film 408 is also formed in the groove formed by isotropically etching the first SiGe sacrificial layer 402B in FIG. 7B, and the exposed Si A film is also formed on the upper and lower surfaces of the channel 403B.
  • the material of the first protective insulating film 408 was selected in consideration of the etching selectivity between the stacked film consisting of the first SiGe sacrificial layer 402B and the Si channel 403B, the Si sacrificial layer 403A, and the surrounding STI insulating film (not shown). Therefore, it is desirable to use an insulating film containing nitrogen, such as a Si 3 N 4 film or a similar SiON film.
  • the thickness of the first protective insulating film 408 is controlled to be approximately 2 to 3 nm, for example.
  • the film forming conditions using the ALD method are preferably the same as in Example 1. This step corresponds to step 504 in the process flow of FIG. 8, and is performed continuously in the chamber of the same device, following the isotropic etching of the first SiGe sacrificial layer 402B shown in FIG. 7B (step 503 in FIG. 8). It's good to be told.
  • the first protective insulating film 408 is etched in the vertical direction.
  • the above etching is performed under selective etching conditions for the hard mask 406, gate sidewall spacer 407, Si sacrificial layer 403A, and STI insulating film (not shown).
  • the first protective insulating film 408 is a Si 3 N 4 film
  • the upper surface of the Si sacrificial layer 403A is exposed.
  • the etching conditions are controlled so that the remaining thickness of the Si sacrificial layer 403A after the main etching is, for example, 10% to 100% of the initial thickness of the Si sacrificial layer 403A.
  • the horizontal distance between the opening area of the Si sacrificial layer 403A exposed after etching the first protective insulating film 408 in this step and the first SiGe sacrificial layer 402B is different from that in the case of FIG. 1E in Example 1. It becomes wider. Therefore, even if the first protective insulating film 408 is over-etched, the sidewall of the first SiGe sacrificial layer 402B is unlikely to be exposed, unlike the case shown in FIG. 2B.
  • This step corresponds to step 505 in the process flow of FIG. 8, and is performed continuously in the chamber of the same device following the formation of the first protective insulating film 408 shown in FIG. 7C (step 504 in FIG. 8). It's good to be told.
  • a second protective insulating film 409 is formed on the first protective insulating film 408 using the ALD method.
  • a second protective insulating film 409 is formed on the hard mask 406, the gate sidewall spacer 407, the top surface and sidewalls of the first protective insulating film 408, the top surface of the Si sacrificial layer 403A, and the STI insulating film (not shown). accumulate. If a gap caused by a groove remains after isotropically etching the first SiGe sacrificial layer 402B as shown in FIG. 7C, the second protective insulating film 408 is A protective insulating film 409 is formed to fill the gap.
  • the second protective insulating film 409 is made of an Al 2 O 3 film, an AlON film, or the like, which can be formed isotropically with good controllability even on complex shapes with finer unevenness.
  • This step corresponds to step 506 in the process flow of FIG. 8, and is performed continuously in the chamber of the same apparatus following the anisotropic etching of the first protective insulating film 408 (step 505 in FIG. 8) shown in FIG. 7D. It would be good if this was done.
  • the second protective insulating film 409 is etched in the vertical direction.
  • the above etching is performed under selective etching conditions for the first protective insulating film 408, hard mask 406, gate sidewall spacer 407, Si sacrificial layer 403A, and STI insulating film (not shown).
  • the protective insulating film 409 is an Al 2 O 3 film, it is preferable to use the etching conditions shown in Example 1. After this step, the upper surface of the Si sacrificial layer 403A is exposed.
  • the etching conditions are controlled so that the remaining thickness of the Si sacrificial layer 403A after the main etching is, for example, 10% to 100% of the initial thickness of the Si sacrificial layer 403A.
  • the second protective insulating film 409 is formed to fill the gap formed on the side wall of the first protective insulating film 408, so the second protective insulating film 409 in this step is In the etching and the etching of the Si sacrificial layer 403A and the second SiGe sacrificial layer 402A that follow this step, a sufficient distance between the sidewalls of the second protective insulating film 409 and the sidewalls of the Si channel 403B can be maintained, and the Si channel The corners of the side walls of the 403B are well protected.
  • This step corresponds to step 507 in the process flow of FIG. 8, and is performed continuously in the chamber of the same device following the formation of the second protective insulating film 409 shown in FIG. 7E (step 506 in FIG. 8). It's good to be told.
  • the Si sacrificial layer 403A and the second SiGe sacrificial layer 402A are etched in the vertical direction. This etching is anisotropic selective etching using the hard mask 406, gate sidewall spacer 407, and second protective insulating film 409 as masks, and the Si sacrificial layer 403A and the second SiGe sacrificial layer 402A are used as the second protective insulating film. It is etched vertically along the sidewalls of membrane 409. In this step, the etching ends when the Si substrate 1 is exposed.
  • the etching in this step is preferably performed under the same conditions as those used when performing anisotropic etching of the laminated film pattern of the SiGe layer 3 and the Si layer 4 in FIG. 1C of Example 1.
  • This step corresponds to step 508 in the process flow of FIG. 8, and is performed continuously in the chamber of the same device following the anisotropic etching of the second protective insulating film 409 (step 507 in FIG. 8) shown in FIG. 7F. It would be good if this was done.
  • the second SiGe sacrificial layer 402A and the Si sacrificial layer 403A are sequentially removed by isotropic etching.
  • the etching of the second SiGe sacrificial layer 402A includes a second protective insulating film 409, a first protective insulating film 408, a hard mask 406, a gate sidewall spacer 407, an STI insulating film (not shown), and a Si sacrificial layer 403A. It is preferable to use selective etching conditions for the Si substrate 401, similar to those used in FIG. 1I of Example 1.
  • the etching of the Si sacrificial layer 403A is performed on the second protective insulating film 409, the first protective insulating film 408, the hard mask 406, the gate sidewall spacer 407, the STI insulating film (not shown), and the second SiGe sacrificial layer 402B. It is preferable to use selective etching conditions similar to those used in FIG. 1J of Example 1. This step corresponds to step 509 in the process flow of FIG. 8, and is performed in the chamber of the same device following the anisotropic etching (step 508 in FIG. 8) of the Si sacrificial layer 403A and the second SiGe sacrificial layer 402A shown in FIG. 7G. It is better to do this continuously.
  • the second protective insulating film 409 and the first protective insulating film 408 are sequentially removed by isotropic etching.
  • the etching of the second protective insulating film 409 includes the first protective insulating film 408, the hard mask 406, the gate sidewall spacer 407, the STI insulating film (not shown), and the lower surface of the first SiGe sacrificial layer 402B and the Si substrate 401. Performed under selective etching conditions.
  • the second protective insulating film 409 is an Al 2 O 3 film, it is preferable to use the etching conditions shown in FIG. 1K of Example 1.
  • the first protective insulating film 408 is etched under selective etching conditions for the hard mask 406, gate sidewall spacer 407, STI insulating film (not shown), first SiGe sacrificial layer 402B, Si channel 403B, and Si substrate 401. conduct.
  • the first protective insulating film 408 is a Si 3 N 4 film
  • step 510 in the process flow diagram of FIG. 8, and is performed in the chamber of the same device following the etching removal of the second SiGe sacrificial layer 402A and Si sacrificial layer 403A shown in FIG. 7H (step 509 in FIG. 8). , it is better to do it consecutively. That is, in the process flow shown in FIG. 8, from gate sidewall spacer vertical etching 501 (FIG. 1B) to first and second protective insulating film isotropic etching removal 510 (FIG. 7I) are performed continuously in the chamber of the same device. It becomes possible to do so.
  • a gate-substrate isolation insulating film 410 is deposited, and the surface is planarized by CMP using the hard mask 406 as a stopper.
  • the gate-substrate isolation insulating film 410 is formed using, for example, a CVD method.
  • the material of the gate-substrate isolation insulating film 410 is, for example, SiO 2 , SiON, SiCO, or the like.
  • the region between the lower surface of the first SiGe sacrificial layer 402B and the Si substrate 401 is filled with the gate-substrate isolation insulating film 410, and the region between the side wall of the first SiGe sacrificial layer 402B and the upper and lower Si channels 403B is filled with the gate-substrate isolation insulating film 410.
  • the sandwiched groove portion is also filled with a gate-substrate isolation insulating film 410.
  • the gate-substrate isolation insulating film 410 is anisotropically etched in the vertical direction. Etching of the gate-substrate isolation insulating film 410 is performed under selective etching conditions for the hard mask 406, the gate sidewall spacer 407, the STI insulating film (not shown), and the sidewall of the Si channel 403B. The etching time is controlled so that the upper surface of the gate-substrate isolation insulating film 410 after etching is located between the lower and upper surfaces of the lowermost layer of the first SiGe sacrificial layer 402B.
  • the groove portion sandwiched between the sidewall of the first SiGe sacrificial layer 402B and the upper and lower Si channels 403B is filled with the interlayer insulating film 410, and at the same time as the gate-substrate isolation insulating film 410 is formed, the gate sidewall inner spacer is It becomes possible to form
  • the gate sidewall inner spacer can be formed simultaneously with the gate-semiconductor substrate insulating isolation film, and the process steps can be simplified. Further, as shown in FIG. 7D, exposure of the first SiGe sacrificial layer 402B during etching of the protective insulating film can be avoided. Furthermore, in this embodiment, the Si sacrificial layer 403A and the second SiGe sacrificial layer 402A are etched while the side walls of the first SiGe sacrificial layer 402B and the Si channel 403B stacked film have an uneven shape. , as shown in FIG. 7F, by providing the second protective insulating film 409, damage to the corners of the side walls of the Si channel 403B can also be reduced.
  • a method is provided in which the protective insulating film is also used to reinforce the gate sidewall inner spacer.
  • FIG. 9A shows a cross-sectional view after isotropically etching the first SiGe sacrificial layer 402B shown in FIG. 7B using the same process as in Example 3.
  • Remove from the device after sequentially performing steps from the gate sidewall spacer vertical etching shown at 501 in FIG. 8 to the first SiGe sacrificial film isotropic etching shown at 503 in the same chamber, Remove from the device.
  • a low dielectric constant film 608 for forming gate sidewall inner spacers is formed using, for example, a CVD method.
  • the low dielectric constant film 608 it is preferable to use, for example, a SiCO film, SiOCN, or SiON film, a film similar thereto, or a laminated film thereof.
  • the Si substrate 601 is again placed into the plasma processing apparatus that has performed the steps shown in FIG. 9A, and the steps shown in FIG. 9C and subsequent steps are performed.
  • the low dielectric constant film 608 is isotropically etched to form gate sidewall inner spacers. It is preferable to perform the above etching using the same conditions as in Example 1, and adjust the etching time so that the side wall of the Si channel 603B is exposed. After this etching, the sidewalls of the gate sidewall inner spacers 608 are assumed to have a curved shape.
  • a first protective insulating film 609 is deposited using a film forming technique using the ALD method.
  • the first protective insulating film 609 covers the hard mask 606, the top surface and sidewalls of the gate sidewall spacer 607, the sidewalls of the gate sidewall inner spacer 608, the sidewalls of the Si channel 603B, the top surface of the Si sacrificial layer 603A, and the STI insulating film (not shown). ).
  • the conditions for forming the first protective insulating film 609 are preferably the same as those shown in FIG. 1D of Example 1. This step is preferably performed continuously in the chamber of the same apparatus, following the isotropic etching of the low dielectric constant film 608 shown in FIG. 9C.
  • the first protective insulating film 609 is etched in the vertical direction.
  • the above etching is performed under selective etching conditions for the hard mask 606, gate sidewall spacer 607, Si sacrificial layer 603A, and STI insulating film (not shown).
  • the first protective insulating film 609 is a Si 3 N 4 film
  • the upper surface of the Si sacrificial layer 603A is exposed.
  • the etching conditions are controlled so that the remaining thickness of the Si sacrificial layer 603A after the main etching is, for example, 10% to 100% of the initial thickness of the Si sacrificial layer 603A.
  • a second protective insulating film 610 is formed on the first protective insulating film 609 using the ALD method.
  • a second protective insulating film 610 is formed on the hard mask 606, the gate sidewall spacer 607, the top surface and sidewalls of the first protective insulating film 609, the top surface of the Si sacrificial layer 603A, and the STI insulating film (not shown). accumulate. If a gap remains due to the curved shape of the gate sidewall spacer 607 after forming the first protective insulating film 609 as shown in FIG. 9D, the second protective insulating film 610 is removed in this step. A film is formed to fill the above gap.
  • the second protective insulating film 610 for example, an Al 2 O 3 film, an AlON film, or the like, which can be formed isotropically with good controllability even on a complex shape with finer unevenness, is used.
  • an Al 2 O 3 film it is preferable to use the same conditions as in Example 1. This step is preferably performed continuously in the chamber of the same apparatus, following the anisotropic etching of the first protective insulating film 609 shown in FIG. 9E.
  • the second protective insulating film 610 is etched in the vertical direction.
  • the above etching is performed under selective etching conditions for the first protective insulating film 609, hard mask 606, gate sidewall spacer 607, Si sacrificial layer 603A, and STI insulating film (not shown).
  • the protective insulating film 610 is an Al 2 O 3 film, it is preferable to use the etching conditions shown in Example 1. After this step, the upper surface of the Si sacrificial layer 603A is exposed.
  • the etching conditions are controlled so that the remaining thickness of the Si sacrificial layer 603A after the main etching is, for example, 10% to 100% of the initial thickness of the Si sacrificial layer 603A.
  • This step is preferably performed continuously in the chamber of the same device, following the formation of the second protective insulating film 610 shown in FIG. 9F.
  • the Si sacrificial layer 603A and the second SiGe sacrificial layer 602A are etched in the vertical direction.
  • This etching is anisotropic selective etching using the hard mask 606, gate sidewall spacer 607, and second protective insulating film 610 as masks, and the Si sacrificial layer 603A and the second SiGe sacrificial layer 602A are the second protective insulating layer 603A.
  • the membrane 610 is etched vertically along the sidewalls. In this step, the etching ends when the Si substrate 601 is exposed.
  • the etching in this step is preferably performed under the same conditions as those used when performing anisotropic etching of the laminated film pattern of the SiGe layer 3 and the Si layer 4 in FIG. 1C of Example 1.
  • This step is preferably performed continuously in the chamber of the same apparatus, following the anisotropic etching of the second protective insulating film 610 shown in FIG. 9G.
  • the second SiGe sacrificial layer 602A and the Si sacrificial layer 603A are sequentially removed by isotropic etching.
  • the etching of the second SiGe sacrificial layer 602A includes a second protective insulating film 609, a first protective insulating film 608, a hard mask 606, a gate sidewall spacer 607, an STI insulating film (not shown), and a Si sacrificial layer 603A. It is preferable to use selective etching conditions for the Si substrate 601, similar to the conditions used in FIG. 1I of Example 1.
  • the etching of the Si sacrificial layer 603A includes a second protective insulating film 610, a first protective insulating film 609, a hard mask 606, a gate sidewall spacer 607, a gate sidewall inner spacer 608, an STI insulating film (not shown), and a first protective insulating film 609. It is preferable to perform the selective etching under the same conditions as those used in FIG. 1J of Example 1 using selective etching conditions for the SiGe sacrificial layer 602B. This step is preferably performed successively in the chamber of the same device, following the anisotropic etching of the Si sacrificial layer 603A and the second SiGe sacrificial layer 602A shown in FIG. 9H.
  • the second protective insulating film 610 and the first protective insulating film 609 are isotropically etched in sequence.
  • the etching of the second protective insulating film 610 includes the first protective insulating film 609, the hard mask 606, the gate sidewall spacer 607, the STI insulating film (not shown), and the lower surface of the first SiGe sacrificial layer 602B and the Si substrate 601. Performed under selective etching conditions.
  • the second protective insulating film 610 is an Al 2 O 3 film, it is preferable to use the etching conditions shown in FIG. 1K of Example 1.
  • the isotropic etching of the second protective insulating film 610 is performed by adjusting the etching time so that the side wall of the first protective insulating film 609 is exposed after etching, but the side wall of the gate side wall inner spacer 608 is It is desirable that the second protective insulating film 610 buried in the gap caused by the curved shape be adjusted so that it remains.
  • Etching of the first protective insulating film 609 includes etching of the second protective insulating film 610, hard mask 606, gate sidewall spacer 607, STI insulating film (not shown), gate sidewall inner spacer 608, and first SiGe sacrificial layer 602B.
  • the etching time is adjusted so that the side walls of the gate side wall spacer 607, gate side wall inner spacer 608, and Si channel 603B are exposed, but the etching time is adjusted so that the side walls of the gate side wall spacer 607, gate side wall inner spacer 608, and Si channel 603B are exposed. It is desirable that the second protective insulating film 610 and the first protective insulating film 609 be adjusted so that they remain.
  • This step is preferably performed successively in the chamber of the same device, following the etching removal step of the second SiGe sacrificial layer 602A and Si sacrificial layer 603A shown in FIG. 9I. That is, from the isotropic etching of the low dielectric constant film for forming the gate sidewall inner spacer 608 shown in FIG. 9C to the isotropic etching of the second protective insulating film 610 and the first protective insulating film 609 shown in FIG. 9J. It becomes possible to perform the process continuously in the chamber of the same device.
  • the GAA type FET is completed by implementing the processes shown in FIG. 1L and subsequent figures of Example 1.
  • the recess of the gate side wall inner spacer 608 is filled with the second protective insulating film 610 and the first protective insulating film 609, the recess shape of the gate side wall inner spacer 608 is It becomes possible to avoid current leakage caused by micropores caused by this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

細線状またはシート状のチャネルが基板に垂直な方向に積層される積層チャネルを有するGAA型FET等の3次元構造において、ゲートとSi基板間が絶縁分離された構造を有するデバイスの製造工程において、積層チャネルを形成する為のSiGe犠牲層と、ゲート-基板間を絶縁分離する為に必要なSiGe犠牲層のGe組成を変えることなく、且つ製造工程が複雑化することのない手法を提供する。 このため、Siチャネル4BとSiGe犠牲層3Bから成る積層膜をエッチング後、上記積層膜の側壁に保護絶縁膜9を成膜/エッチングにより形成し、これを異なる保護膜材料で複数回繰り返す。その後、下部に残存するSi犠牲層4AとSiGe犠牲層3Aを等方性エッチングにより除去して上記絶縁分離膜を埋め込む領域を形成する。上記保護絶縁膜の積層膜の形成から犠牲層のエッチング除去までを同一装置を用いた連続プロセスにて行うことで、工程の簡略化が図られる。

Description

半導体装置の製造方法及びプラズマ処理方法
本開示は、半導体素子の製造方法及びプラズマ処理方法に関する。
集積回路チップの機能および性能の継続的な向上の為には、トランジスタの高集積化が必要不可欠となる。トランジスタの高集積化は、主にトランジスタの微細化により成されてきた。トランジスタ性能を維持、または向上させながらトランジスタの微細化を図る為、トランジスタ構造、及びトランジスタを構成する材料には数多くの改善が成されてきた。この改善としては、例えば、金属酸化膜半導体電界効果トランジスタ(MOSFET:Metal Oxide Semiconductor Field Effect Transistor)におけるソース領域およびドレイン領域への歪の導入、高誘電体ゲート絶縁膜及びメタル金属の導入、プレーナー(Planar)型からフィン(Fin)型のような新構造の導入などが挙げられる。
Fin型FETは、3次元構造を有するフィン型チャネルの周囲をゲートで覆うことでゲートの制御性を向上させ、トランジスタの微細化に伴うゲート長の縮小に起因する短チャネル効果(すなわち、リーク電流の増大)を抑制可能な構造を有する。更に、微細化が進むと、チャネルはワイヤ(細線)状またはシート状の積層体となり、チャネル周囲がゲートで覆われたゲートオールアラウンド型FET(GAA:Gate All Around)となることが予想されている。GAA型FETは、ワイヤ状またはシート状のチャネル(ナノワイヤチャネル、または、ナノシートチャネル)周囲全てをゲートで覆うことで、Fin型FETに比べて更にゲート制御性を向上させ、短チャネル効果の一層の抑制が可能になる。
しかしながら、GAA型FETにて、チャネルを覆うゲートは、半導体基板とも接している為、半導体基板側にもFETが同時形成される。半導体基板側に形成されるFETは、GAA型に比べてゲート制御性が弱いplanar型の構造を有している為、トランジスタ特性を劣化させる要因となる。
非特許文献1は、上記半導体基板側に形成されるplanar型FET、即ち寄生FETによるトランジスタ特性劣化課題に言及しており、ゲート直下に絶縁膜を設けて、ゲートと半導体基板との間を絶縁分離する必要性を指摘している。
特許文献1は、上記ゲートと半導体基板との間の絶縁分離膜を形成する為の具体的なプロセスを開示している。即ち、ナノワイヤチャネルまたはナノシートチャネルを形成する為のシリコン(Si)チャネルおよびシリコンゲルマニウム(SiGe)犠牲層から成る積層構造の下に、上記SiGe犠牲層よりもゲルマニウム(Ge)組成が大きい第二のSiGe犠牲層を形成する。そして、プロセスの途中で側壁が露出した積層構造のうち、第二のSiGe犠牲層のみを選択的にエッチング除去して、除去された領域を絶縁膜で埋め込む。これにより、ナノワイヤチャネルまたはナノシートチャネルとシリコン基板間を絶縁分離することが可能となる。
特許文献2には、ナノワイヤチャネルまたはナノシートチャネルを形成する為のSi/SiGe積層膜側壁を保護膜で覆い、且つSiGe/Si積層構造下部に存在する第二のSiGe犠牲層の側壁のみを露出させて上記第二のSiGe犠牲層を除去し、除去された領域を絶縁膜で埋め込むプロセスが開示されている。上記第二のSiGe犠牲層エッチング時に、SiGe/Si積層膜中のSiGe犠牲層は上記保護膜で覆われている為、上記第二のSiGe犠牲層中のGe組成をSiGe/Si積層膜中のSiGe犠牲層中のGe組成よりも高くする必要が無く、高Ge組成SiGe層を導入することによる歪緩和等の懸念が軽減される。
米国特許出願公開第2019/0393351号明細書 米国特許出願公開第2020/0105756号明細書
特許文献1に開示されるゲートと半導体基板との間の絶縁分離膜を形成する場合、ナノワイヤチャネルまたはナノシートチャネルを形成する為のSi/SiGe積層膜の下に形成される第二のSiGe犠牲層のGe組成を、上部Si/SiGe積層膜中の第一SiGe犠牲層のGe組成よりも大きくし、エッチング選択性を持たせる必要がある。通常、上部Si/SiGe積層膜中の第一SiGe犠牲層のGe組成を15~25%に設定し、第二SiGe犠牲層のGe組成を40~50%に設定する。この場合、SiとSiGeの格子定数の違いに起因する歪量が、上記第二SiGe犠牲層内で大きくなり、歪緩和による欠陥が発生し易くなる懸念がある。Ge組成50%のSiGe層において、歪緩和が発生する臨界膜厚は、SiGe層を成膜する為の標準的なエピタキシャル成長温度(550℃~600℃)において、約20nm以下となる。上部Si/SiGe積層膜成膜時の歪等を考慮すると、上記第二SiGe犠牲層の膜厚は10nm程度以下と、極めて薄く設計する必要があると推定される。上記膜厚は、十分なプロセスマージンの確保、及びゲートと半導体基板間の効果的な絶縁分離を行う観点からは極めて薄い膜厚となる。また、上記第二SiGe犠牲層の除去は、上記第二SiGe犠牲層と上部のSi/SiGe積層膜を、これらの上部に形成したゲートとゲートスペーサから成るパターンに沿って垂直方向にエッチングした後に行われる。即ち、上記第二SiGe犠牲層をエッチング除去する際、上部Si/SiGe積層膜中の第一SiGe犠牲層側壁も露出した状態である為、上記第二SiGe犠牲層エッチング時には上部の第一SiGe犠牲層もエッチングに曝される。上記二種の膜でGe組成は異なるものの、同じSiGe層である為に、完全なエッチング選択性を持たせることは困難であり、上記第二SiGe犠牲層をエッチングする際には、上部Si/SiGe積層膜中の第一SiGe犠牲層も不可避的に一定量エッチングされてしまう。この為、この後に続くプロセスに影響を与え、トランジスタリーク電流の増大などの不良を発生させる懸念を有する。
これに対して、特許文献2に開示されるGAA型FETのプロセスでは、Si/SiGe積層膜及び下部の第二SiGe犠牲層をパターンに沿って垂直にエッチングした後、側壁上に絶縁膜を堆積して、上部Si/SiGe積層膜部のみを上記絶縁膜で保護し、第二SiGe犠牲層のみを露出させ、第二SiGe犠牲層のみを除去する手法が取られている。第二SiGe犠牲層のエッチング時には、上部Si/SiGe積層膜の第一SiGe犠牲層は絶縁膜により保護されている為、上記特許文献1で懸念されるエッチング選択性の課題は解消される。また、上記第二SiGe犠牲層のGe組成を上部Si/SiGe積層膜の第一SiGe犠牲層と等しくすることも可能になる為、歪緩和の懸念も少なくなる。この為、第二SiGe犠牲層の膜厚を厚く設定することが出来、プロセスマージンを十分に確保することが可能になると共に、歪緩和によるトランジスタ動作不良の懸念も少なくなる。しかしながら、特許文献2に開示されるGAA型FETプロセスは、特許文献1に開示されるプロセスに比べ、プロセスの工程数が大幅に増加することが懸念される。特許文献2において、上部Si/SiGe積層膜部のみを上記絶縁膜で保護し、第二SiGe犠牲層のみを露出させる手法は、下記プロセスによって行われる。先ず、Si/SiGe積層膜及び下部の第二SiGe犠牲層をパターンに沿って垂直方向にエッチングした後、一定の膜厚を有する絶縁膜を等方的に堆積して、エッチングされた側壁を保護する。この後、スピン・オン・カーボン膜等の塗布膜にて上記パターンが形成する溝を埋め、更に上記カーボン膜を垂直方向に一定量エッチングする。ここで、エッチング後のカーボン膜の上端が第二SiGe犠牲層の上端と下端の間に位置するよう、エッチング量を調整する。次いで、上記カーボン膜上に窒化チタン(TiN)等の膜を堆積し、パターンが形成する溝を再び埋め、下地カーボン膜を除去する。この際に露出した上記絶縁膜を水平方向にエッチング除去すると、上記第二SiGe犠牲層の側壁が露出する。この後、第二SiGe犠牲層を選択的にエッチング除去する。最後に上記TiN膜及び上記絶縁膜をエッチング除去することで、第二SiGe犠牲層のみが除去された構造が得られる。上記プロセスは、特許文献1に開示されるプロセスに対し、成膜・エッチング等のプロセスが9工程追加され、プロセス工程数の大幅な増大を招く。また、カーボン膜を垂直方向に一定量エッチングする際、エッチング後のカーボン膜の上端が、側壁を絶縁膜で覆われた第二SiGe犠牲層の上端と下端の間に位置するようにエッチング量を調整するのは、SiGe犠牲層とカーボン膜上端の相対的な位置を直接的に評価する手法が無い為、困難を有する。
本開示は、ゲートと半導体基板が絶縁分離されたGAA型FETの製造工程において、Si/SiGe積層膜とその下部に形成した第二SiGe犠牲層をパターニング後、その側壁を絶縁膜の積層膜にて保護し、第二SiGe犠牲層のみをエッチング除去する工程、及び上記パターニングから第二SiGe犠牲層の除去までを同一装置で連続して実行可能なプラズマ処理方法を提供することにある。
本開示のうち代表的なものの概要を簡単に説明すれば下記の通りである。
本開示の一実施の形態は、
 一部が垂直にエッチングされた半導体積層膜の側壁に保護絶縁膜を堆積する第1の工程と、
 前記保護絶縁膜を垂直方向に異方性エッチングし、半導体積層膜の表面を露出させる第2の工程と、
 前記第1の工程と第2の工程を、前記保護絶縁膜とは異なる絶縁膜材料を用いて複数回繰り返し、保護絶縁膜の積層膜を前記側壁上に形成する第3の工程と、
 保護絶縁膜の下部に存在する半導体積層膜を等方性エッチングにより除去する第4の工程を有する半導体素子の製造方法、あるいは、プラズマ処理方法である。
本開示の一実施の形態によれば、GAA型FET等の3次元構造デバイスの製造工程において、ゲートとシリコン基板間を絶縁分離し、シリコン基板側に形成されるプレーナー型寄生FETの形成を抑制するプロセスにおいて、欠陥の発生を抑制することが可能で、且つ同一装置で複数工程を行う連続プロセスを行うことが出来る装置特性によって、プロセス工程数の増大を大幅に抑制することが可能となる。
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例1のゲートと半導体基板間絶縁分離膜形成工程を示す断面拡大図である。 実施例1のゲートと半導体基板間絶縁分離膜形成工程を示す断面拡大図である。 実施例1のゲートと半導体基板間絶縁分離膜形成工程を示す断面拡大図である。 実施例1のゲートと半導体基板間絶縁分離膜形成工程を示す断面拡大図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す素子分離領域の断面図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す素子分離領域の断面図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す素子分離領域の断面図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す素子分離領域の断面図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す素子分離領域の断面図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す素子分離領域の断面図である。 実施例1のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程のフロー図である。 プラズマ処理装置の構成例を示す図である。 実施例2のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例2のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例2のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例2のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す鳥瞰図である。 実施例3のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例3のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例3のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例3のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例3のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例3のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例3のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例3のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例3のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例3のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例3のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例3のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程のフロー図である。 実施例4のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例4のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例4のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例4のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例4のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例4のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例4のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例4のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例4のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。 実施例4のゲートと半導体基板間が絶縁分離されたGAA型FETの製造工程を示す断面図である。
以下、図面に基づいて本開示の実施の形態を説明する。なお、本開示は以下に記述する実施例に限定されるものではなく、その技術思想の範囲において種々の変形が可能である。実施例を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略することがある。また、本実施例として開示する内容に対して材料や製造工程の組合せを変える等、多くの変更が可能であることはいうまでもない。また、図面は必ずしも正確に縮尺を合せているわけではなく、論理が明確になるように重要な部分を強調して模式的に描画してある。また、図面は説明をより明確にするため、実際の態様に比べ、模式的に表される場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。
実施例1では、半導体装置としてのGAA型FET(Gate All Around type Field Effect Transistor)の製造工程(半導体装置の製造方法またはプラズマ処理方法)における、ゲートと半導体基板との間を絶縁分離させる為の一連の工程(ゲート-半導体基板絶縁分離膜11を形成する工程、または、ゲート-半導体基板絶縁分離膜形成工程とも言う)、及び上記工程内にて異なる材料から成る複数の側壁保護膜を積層させるプロセスの詳細について説明する。まず、図1A~図1N、図2A~図2D、図3A~図3F、図4を用いて、上記工程を説明する。実施例で説明される半導体装置の製造方法またはプラズマ処理方法は、ゲート形成領域に細線状またはシート状のチャネルが基板に垂直な方向に積層される積層チャネルを有し、ゲートと半導体基板が絶縁膜によって絶縁分離されたGAA型FETの形成方法である。
図1A~図1Nは、GAA型FETの製造工程において、ゲートと半導体基板間を絶縁分離させる為の工程からFET構造を完成させるまでのプロセスを示す鳥瞰図である。図1A~図1Kは、本実施例に関わるSi/SiGe(シリコン/シリコンゲルマニウム)の積層膜のエッチングから第二SiGe犠牲層除去及び側壁保護絶縁膜除去までを行う一連の工程を示している。図1L~図1Mは、除去した第二SiGe犠牲層領域にゲートと半導体基板との間の絶縁分離を行う為の絶縁膜(埋め込み絶縁膜)を埋め込む工程を示している。図1Nは、上記埋め込み絶縁膜(ゲート-基板間)を含むGAA型FET構造を示す。図2A~図2Dは、図1D~図1Gで示す工程において、Si/SiGe積層膜の下部からSi基板までを含む領域を拡大した断面図を示す。図3A~図3Fは、図1C~図1Kに相当する工程における、FETのチャネル領域以外の素子分離領域、即ち図1Aに示したAA’線に沿った断面におけるゲート断面図を示す。図4は、図1A~図1Kに示す一連の製造工程のフロー図を示す。
図1Aにおいて、単結晶Si基板(半導体基板)1上に単結晶SiGe層(第1の半導体層)3と単結晶Si層(第2の半導体層)4が交互に複数層積層された積層膜が形成されている。上記SiGe層3とSi層4の積層膜は、最下層に第二SiGe犠牲層3Aを有し、上記第二SiGe犠牲層3A上にSi犠牲層4Aを有し、更に上記Si犠牲層4A上には第一SiGe犠牲層3BとSiチャネル4Bが交互に繰り返し積層されている。SiGe層3とSi層4の積層膜は、例えば、化学気相成長法(CVD:Chemical Vapor Deposition)等を用いたエピタキシャル成長により成膜し、SiGe層3内のGeの組成は、第二SiGe犠牲層3Aと第一SiGe犠牲層3Bで同一になるように設計する。上記Ge組成は、例えば、15~40%であるとよい。第二SiGe犠牲層3Aとそれぞれの第一SiGe犠牲層3BはSi基板1に格子整合するように成膜されており、それぞれのSiGe層内部にはSiGeとSiとの格子定数の違いに起因する歪エネルギーが含有されている。第二SiGe犠牲層3Aの膜厚、及び第一SiGe犠牲層3BとSiチャネル4Bの繰り返し積層数とそれぞれの膜厚は、FETに求められる特性とともに、SiGe層に含有される歪エネルギーが、SiGe層3中に欠陥が発生する臨界膜厚を超えない条件で調整される必要がある。望ましい膜厚は、例えば、第二SiGe犠牲層3Aが約10~50nm程度で、第一SiGe犠牲層3Bが約8~20nm程度で、Siチャネル4Bが約5~10nm程度である。第一SiGe犠牲層3BとSiチャネル4Bの繰り返し積層数は、例えば、それぞれ3~6層とするとよい。また、Si犠牲層4Aの膜厚は、例えば、5~20nm程度に設計すると良い。CVD法によるエピタキシャル成長は、例えば、原料ガスには水素希釈したモノシラン(SiH4)、ジシラン(Si2H6)、ゲルマン(GeH4)等を用いて行うとよい。尚、図1Aでは、最上層をSiチャネル4Bとしているが、第一SiGe犠牲層3Bを最上層としても良い。
SiGe層3とSi層4の積層膜は、平面視において、ライン状のパターンに加工されている。そのパターン幅は、細線状のナノワイヤチャネルを形成する場合は、例えば、約5~15nm程度に調整するとよく、シート状のナノシートチャネルを形成する場合は、例えば、約10~100nm程度に調整するとよい。ナノワイヤチャネルは、チャネルの周辺長が短いため、ゲートによる制御性が高まる一方、駆動電流の電流値が小さい。一方、ナノシートチャネルはゲートによる制御性はナノワイヤに比べてやや悪くなるものの、大きな駆動電流を得ることができる。
チャネル形状は、必要とされるデバイスの応用を鑑みて決定される。ライン状のパターンは、周期状またはそれに準じたパターンとなっている。例えば、フッ化アルゴンガス(ArF)を光源とするレーザを用いる場合、パターン周期が、例えば、40nm以上80nm以下であれば自己整合ダブルパターニング(SADP:Self-Aligned Double Patterning)を用いることができる。また、パターン周期が、例えば、20nm以上40nm以下であれば自己整合4倍パターニング(SAQP:Self-Aligned Quadruple Patterning)を用いることができる。また、波長13.5nmの極端紫外線(EUV:Extreme Ultraviolet)露光を行う場合には、パターン周期が、例えば、40nmまでは、単一露光(Single Patterning)を用いることができる。パターン周期が、例えば、20nm以上40nm以下であれば、SADPを用いることができる。
SiGe層3とSi層4の積層膜パターンを形成後、一部がパターニングされたSi基板1の溝内に、素子分離領域を形成するための素子分離(STI:Shallow Trench Isolation)絶縁膜(STI絶縁膜という)2を堆積し、STI絶縁膜2のエッチバックを行うことで、図1Aに示す絶縁膜2の構造を得る。STI絶縁膜2は、例えば、CVD法等を用いて成膜する。STI絶縁膜2の材料はシリコン酸化膜(SiO2)またはシリコン酸窒化膜(SiON)やシリコンカーボン酸化膜(SiCO)等でもよい。エッチバック後のSTI絶縁膜2の上面は、任意の場所に設定しても良いが、最も望ましい形態としては、第二SiGe犠牲層3Aの上端と下端の間に位置させるべく、エッチング量を調整すると良い。
SiGe層3とSi層4の積層膜パターン上には、SiO2またはそれに準じる絶縁膜から成るダミーゲート絶縁膜5と非晶質(アモルファス)Siまたは多結晶(poly)Siから成るダミーゲート6、更にSiO2またはシリコン窒化膜(Si3N4)、SiON等の絶縁膜ハードマスク7が形成されている。ダミーゲート絶縁膜5は、例えば、CVD法を用いて成膜しても良いし、熱酸化法やプラズマ酸化法を用いてSiGe層3及びSi層4を酸化して形成してもよい。ダミーゲート絶縁膜5の膜厚は、例えば、1~3nmの範囲とすることが望ましい。ダミーゲート6とハードマスク7は、例えば、CVD法等の成膜手法を用いて成膜すると良い。ダミーゲート6とハードマスク7の膜厚は、例えば、20~200nmの範囲で調整されていることが望ましい。上記ダミーゲート絶縁膜5、ダミーゲート6、ハードマスク7は、SiGe層3とSi層4の積層膜のパターンと垂直方向にパターニングされる。上記パターニングは、ゲートのピッチに応じてSADPや単一露光等の手法を使い分けることにより行う。例えば、ゲートピッチを40~70nm、ダミーゲート6の幅、即ちゲート長を10~30nmの範囲に設定し、パターンに沿ってハードマスク7、ダミーゲート6、ダミーゲート絶縁膜5をエッチングする。ここで、ハードマスク7とダミーゲート6のエッチングは、例えば、ドライエッチングによる垂直エッチングを用いると良い。ダミーゲート絶縁膜5のエッチングは、例えば、ドライエッチングまたはウェットエッチングを用いた等方エッチングを用いると良い。また、ダミーゲート絶縁膜5のエッチングは、図1Aに示す本工程では行わず、図1Bのスペーサーエッチング後に行っても良い。ハードマスク7、ダミーゲート6、ダミーゲート絶縁膜5のエッチング後、ゲート側壁スペーサ(ゲート側壁スペーサ膜)8を、例えば、CVD法等にて堆積し、図1Aに示す構造を得る。ゲート側壁スペーサ8は、例えば、低比誘電率膜であるSiON膜やシリコンカーボン酸窒化膜(SiOCN)、またはSiCO膜を用いるとよい。ゲート側壁スペーサ8の水平方向の膜厚は、例えば、5~15nmの範囲で調整する。
図1Aに示す構造から、ゲート側壁スペーサ8を垂直方向に異方性エッチングし、図1Bに示す構造を得る。ゲート側壁スペーサ8の異方性エッチングは、ゲート側壁スペーサ8にSiCO膜を用いた場合は、例えば、四フッ化メタン(CF4)と八フッ化シクロブタン(C4F8)に窒素(N2)ガスを添加した混合ガスを用いると良い。ゲート側壁スペーサ8にSiOCN膜を用いた場合は、ゲート側壁スペーサ8の異方性エッチングは、例えば、フルオロメタン(CH3F)と酸素(O2)、ヘリウム(He)の混合ガスを用いると良い。上記エッチングは、SiGe層3とSi層4の積層膜パターンに対する選択エッチングとなるような条件下で行う。図1Aでダミーゲート絶縁膜5をエッチングしなかった場合は、上記ゲート側壁スペーサ8のエッチングは、ダミーゲート絶縁膜5をストッパとするエッチング条件にて行う。本エッチングは、エッチング後に、ゲート側壁スペーサ8の上端がハードマスク7の上端と下端の間に位置するようにエッチング量を調整する。即ち、本エッチング後にはダミーゲート6の側壁は全てゲート側壁スペーサ8で覆われるように調整される。図1Bに示す本工程は、図4のプロセスフロー図の101に相当する。
図1Cにおいて、ゲート側壁スペーサ8の側壁に沿ってSiGe層3とSi層4の積層膜パターンの垂直方向への異方性エッチングを行う。この異方性エッチングは、第一SiGe犠牲層3BとSiチャネル4Bの積層膜とSi犠牲層4Aをエッチングするようにエッチング時間を調整し、第二SiGe犠牲層3Aが露出した状態の積層膜の構造体でエッチングを終了することが望ましい。オーバーエッチングにより、第二SiGe犠牲層3Aがエッチングされる深さは、例えば、0~40nmの範囲に調整されると良い。本エッチングには、例えば、塩素(Cl2)やCF4、またはそれに準じたガス、または、これら(Cl2とCF4)の混合ガスやこれら(Cl2とCF4)に三フッ化窒素(NF3)やO2を含有したガスを用いると良い。本工程におけるSiGe層3とSi層4の積層膜のエッチングは、図4のプロセスフロー図の102に相当し、図1Bに示すゲート側壁スペーサ8のエッチング101を行った後に、同一装置のチャンバにて、連続して行われると良い。また、図3Aには、本工程後の、FETのチャネル領域以外の素子分離領域(図1AのAA’線)におけるゲート断面を示す。
その後、ALD(Atomic Layer Deposition:原子層堆積)法による成膜技術により、第一の保護絶縁膜9を堆積し、図1Dに示す構造を得る。保護絶縁膜9は、ハードマスク7とゲート側壁スペーサ8の上面及び側壁、露出した第一SiGe犠牲層3BとSiチャネル4Bから成る積層膜の側壁、Si犠牲層4Aの側壁、第二SiGe犠牲層3Aの上面、及びSTI絶縁膜2の上に堆積する。保護絶縁膜9の材料は、SiGe層3とSi層4から成る積層膜及び周辺のSTI絶縁膜2とのエッチング選択比を考慮して、窒素を含む絶縁膜であることが望ましく、シリコン元素と窒素元素を含有する膜、例えば、Si3N4膜またはそれに準じたSiON膜などとすると良い。保護絶縁膜9の膜厚は、例えば、約2~3nm程度に制御される。ALD法は薄膜を凹凸の多い複雑な形状に対しても制御性よく成膜できる利点がある。保護絶縁膜9がALD法により成膜されたSi3N4膜の場合、Siの原料には、例えば、ビス(tert‐ブチルアミノ)シラン(Bis(tertbutylamino)silane:BTBAS)かビス(ジエチルアミノ)シラン(Bis(DiEthylAmino)Silane:BDEAS)、またはジクロロシラン(SiH2Cl2)を用い、窒素の原料にはN2ガスまたはN2ガスと水素(H2)ガスの混合ガス、あるいはアンモニア(NH3)ガス等、窒素を含むガスを用いる。尚、保護絶縁膜9はSiO2等、窒素を含まない膜を用いても良いし、CVD法等によって成膜してもよい。本工程において、図1Dの第一SiGe犠牲層3BとSiチャネル4Bの積層膜下部から第二SiGe犠牲層3Aまでを含む拡大図を図2Aに示す。第一SiGe犠牲層3BとSiチャネル4Bから成る積層膜とSi犠牲層4Aの側壁は、パターン底部において垂直方向からやや傾いたテーパー形状を有することが多い。これは、図1Cに示すパターン形成時のドライエッチングの特徴を反映しており、エッチング中に反応生成物または原料ガスが側壁に堆積し易いことに起因する。テーパー角は、エッチング中のイオンエネルギー、エッチングガス、エッチングチャンバ内圧力等により制御されるが、下地の第二SiGe犠牲層3Aへのダメージも考慮して調整される。上記側壁と第二SiGe犠牲層3A上面との角度(図2Aのθ1)は、例えば、80~90度の範囲となる。図1Cで第一SiGe犠牲層3BとSiチャネル4Bから成る積層膜とSi犠牲層4Aに形成された溝パターンの幅は、例えばゲートピッチを56nm、ゲート長を20nm、ゲート側壁スペーサ8の水平方向の膜厚を8nmとすると、20nmとなる。溝パターンの幅はトランジスタの微細化とともに更に縮小することが想定され、将来には、例えば、10~15nm程度となることが予想される。この場合、上記テーパー角を考慮すると、溝底部での溝パターンの幅は、例えば、10nm程度以下となることが想定される。上記のような幅の狭いパターンに保護絶縁膜9を成膜すると、溝底部での垂直方向の膜厚(図2Aのt2)は側壁での水平方向の膜厚(図2Aのt1)よりも厚くなることが想定される。パターン側壁上の保護絶縁膜9の水平方向の膜厚t1を、例えば、2~3nmとすると、溝底部での垂直方向の膜厚t2は、例えば、3~6nmになると予想される。図1Dに示す本工程は、図4のプロセスフロー図の103に相当し、図1Cに示す第一SiGe犠牲層3BとSiチャネル4Bから成る積層膜及びSi犠牲層4Aのエッチング102に続いて、同一装置のチャンバにて、連続して行われると良い。また、図3Bには、本工程後の、FETのチャネル領域以外の素子分離領域(図1AのAA’線)におけるゲート断面を示す。
図1Eに示す工程では、保護絶縁膜9を垂直方向にエッチングする。上記エッチングは、ハードマスク7、ゲート側壁スペーサ8、第二SiGe犠牲層3A、STI絶縁膜2に対する選択エッチング条件にて行う。例えば保護絶縁膜9がSi3N4膜の場合、エッチングガスには、例えば、CF4やC4F8等のハロゲン系のガスとO2の混合ガスにCl2等を添加したガス、またはそれに準じたガスを用いると良い。本エッチングにより、第二SiGe犠牲層3Aの上面が露出する。図2Bに、上記工程での、第一SiGe犠牲層3BとSiチャネル4Bの積層膜下部から第二SiGe犠牲層3Aまでを含む拡大図を示す。本エッチングでは、溝底部における保護絶縁膜9の垂直方向の膜厚を考慮してエッチング時間を決定する。溝底部における保護絶縁膜9の垂直方向の膜厚は、溝側壁における保護絶縁膜9の水平方向の膜厚よりも厚い為、エッチング後の溝底部では、側壁の保護絶縁膜9も一部エッチング除去され、図2Bに示すように、Si犠牲層4Aと、第一SiGe犠牲層3Bの一部が露出する可能性を有する。この際、保護絶縁膜9の下部は、図2Bに示すように庇構造を有し、Si犠牲層4A、及び第一SiGe犠牲層3BとSiチャネル4Bから成る積層膜の側壁と庇のなす角度θ2は90度以下の鋭角となる。図3Cには、本工程後の、FETのチャネル領域以外の素子分離領域(図1AのAA’線)におけるゲート断面を示す。保護絶縁膜9のエッチングにおけるオーバーエッチングにより、STI絶縁膜2も僅かにエッチングされる。図1Eに示す本工程は、図4のプロセスフロー図の工程104に相当し、図1Dに示す保護絶縁膜9の成膜工程103に続いて、同一装置のチャンバにて、連続して行われると良い。
上記工程に続き、ALD法を用いて、第二の保護絶縁膜10を第一の保護絶縁膜9上に堆積し、図1Fに示す構造を得る。第一の保護絶縁膜9と第二の保護絶縁膜10とにより保護絶縁膜の積層膜が形成される。保護絶縁膜の積層膜において、下層側が第一の保護絶縁膜9であり、上層側が第二の保護絶縁膜10である。第一の保護絶縁膜9の絶縁膜材料と第二の保護絶縁膜10の絶縁膜材料とは異なる絶縁膜材料とされている。第二の保護絶縁膜10は、ハードマスク7、ゲート側壁スペーサ8、及び保護絶縁膜9の上面及び側壁、第二SiGe犠牲層3Aの上面、及びSTI絶縁膜2の上に堆積する。上記第二の保護絶縁膜10を堆積した後の、第一SiGe犠牲層3BとSiチャネル4Bの積層膜下部から第二SiGe犠牲層3Aまでを含む拡大図を、図2Cに示す。図2Cにおいて、第二の保護絶縁膜10の水平方向の膜厚(図2Cのt3)は、第一の保護絶縁膜9の水平方向の膜厚t1と同等(t3=t1)か、または薄く(t3<t1)設定すると良い。膜厚t1が、例えば、2~3nmの場合、膜厚t3は、例えば、1~3nmになることが望ましい。図2Bに示した工程で、Si犠牲層4A、及び第一SiGe犠牲層3BとSiチャネル4Bから成る積層膜の側壁の下部が露出した場合、第二の保護絶縁膜10は、流路a1を通る原料ガスにより、第一の保護絶縁膜9の下部に形成された庇、及び露出したSi犠牲層4A、及び第一SiGe犠牲層3BとSiチャネル4Bから成る積層膜の側壁上にも堆積する。また、第二の保護絶縁膜10は等方的に堆積する為、第一の保護絶縁膜9の庇下部では、庇下部からの垂直方向への成膜と、Si犠牲層4A、及び第一SiGe犠牲層3BとSiチャネル4Bから成る積層膜の側壁からの水平方向への成膜が重なり、第二の保護絶縁膜10の膜厚(図2Cのt4)は、第一の保護絶縁膜9側壁上の第二の保護絶縁膜10の水平方向への膜厚t3よりも厚くなる。また、膜厚t3を膜厚t1よりも薄く設定したことにより、第二SiGe犠牲層3A上の、第二の保護絶縁膜10の垂直方向の膜厚(図2Cのt5)は、膜厚t3と膜厚t1の合計値と同等(t3+t1=t5)か、または、膜厚t3と膜厚t1の合計値よりも小さくなる(t3+t1>t5)。第二の保護絶縁膜10には、凹凸がより細かい複雑な形状に対しても制御性よく等方的に成膜可能な膜を用いる。第二の保護絶縁膜10は、アルミニウム元素と酸素元素を含有する膜、例えば、酸化アルミニウム(Al2O3)膜またはそれに準じた酸窒化アルミニウム(AlON)膜などとする。Al2O3膜を成膜する場合、アルミニウム(Al)の原料には、例えば、トリメチルアルミニウム(Trimethylaluminum [TMA]:Al(CH3)3)を用い、酸素の原料には気化された水(H2O)を用いると良い。Al(CH3)3から成る前駆体は、H2O供給により表面上に形成された水酸基(OH基)との反応性が高い為、凹凸を有する表面上にも良好な被覆率にてAl2O3膜を成膜することが可能となる。従って、Al2O3膜は、狭い開口部を有する図2Cのパターン内部にも等方的に成膜される。尚、第二の保護絶縁膜10はAlを用いない酸化膜または窒化膜等の膜を用いても良く、CVD法等によって成膜してもよい。図1F及び図2Cに示す本工程は、図4のプロセスフロー図の工程105に相当し、図1E及び図2Bに示す第一の保護絶縁膜9のエッチング工程104に続いて、同一装置のチャンバにて、連続して行われると良い。また、図3Dには、本工程後の、FETのチャネル領域以外の素子分離領域(図1AのAA’線)におけるゲート断面を示す。
次いで、図1Gに示す工程では、第二の保護絶縁膜10を垂直方向にエッチングする。上記エッチングは、第一の保護絶縁膜9、ハードマスク7、ゲート側壁スペーサ8、第二SiGe犠牲層3A、STI絶縁膜2に対する選択エッチング条件にて行う。例えば第二の保護絶縁膜10がAl2O3膜の場合、エッチングガスには例えば三塩化ホウ素(BCl3)や、BCl3とCl2の混合ガス、またはこれらにアルゴン(Ar)やN2、O2を混合ガスさせたガス、またはこれらに準じたガスを用いると良い。本エッチングにより、第二SiGe犠牲層3Aの上面が露出する。図2Dに、上記工程での、第一SiGe犠牲層3BとSiチャネル4Bの積層膜下部から第二SiGe犠牲層3Aまでを含む拡大図を示す。本エッチング実施時には、エッチングガスから生成されたイオンが基板1に垂直方向から斜め方向に入射した場合においても、第一の保護絶縁膜9側壁で反射され、角度を変える(図2Dのa2)。図2Cに示したように、Si犠牲層4A、及び第一SiGe犠牲層3BとSiチャネル4Bに形成された開口部パターンは、第二の保護絶縁膜10形成後には、第一の保護絶縁膜9の庇近傍で開口幅が最も小さくなる。この為、前述の第一の保護絶縁膜9側壁で反射されたエッチングガスイオンは、ほぼ全て第二の保護絶縁膜10の垂直方向のエッチングに消費され、上記庇下部のパターン側壁に堆積した第二の保護絶縁膜10はエッチングされない。上記プロセスにより、Si犠牲層4A、及び第一SiGe犠牲層3BとSiチャネル4Bに形成された開口パターンの側壁を保護したまま第二SiGe犠牲層3Aの上部を開口することが可能になる。尚、図3Eには、本工程後の、FETのチャネル領域以外の素子分離領域(図1AのAA’線)におけるゲート断面を示す。第二の保護絶縁膜10のエッチングにおけるオーバーエッチングにより、STI絶縁膜2も僅かにエッチングされる。図1G及び図2Dに示す本工程は、図4のプロセスフロー図の工程106に相当し、図1F及び図2Cに示す第二の保護絶縁膜10の成膜工程105に続いて、同一装置のチャンバにて、連続して行われると良い。尚、図4の工程103-104、105-106に示したサイクルプロセス(ガスや成膜条件は変えてもいい)は、2サイクルに限定されるものでは無く、更に複数回繰り返し行っても良い。つまり、第1の工程である成膜工程(103、105)と第2の工程であるエッチング工程(104,106)の組合せを1つのサイクルと考えた場合に、図4では、成膜工程とエッチング工程との組合せが2サイクル(1サイクル目が工程103と工程104、2サイクル目が工程105と工程106)実施され、第3の工程を構成していることを意味する。1サイクル目の工程103と工程104と、2サイクル目の工程105と工程106とにおいて、ガスや成膜条件は変えてもいい。また、成膜工程(103、105)とエッチング工程(104,106)のサイクル数は、2サイクルに限定されず、複数回繰り返し行って複数サイクルとしてもよい。
図1Hに示す工程(第4の工程)にて、第二SiGe犠牲層3Aを垂直方向にエッチングする。上記エッチングは、第二の保護絶縁膜10、第一の保護絶縁膜9、ハードマスク7、ゲート側壁スペーサ8、STI絶縁膜2、及びSi基板1に対する選択エッチング条件にて行う。エッチングガスには、例えばHBr、CF2Cl2やブロモトリフルオロメタン(CF3Br)、またはHBrにCF4を1~5%程度含有させたガス等の、ハロゲン系元素を含むガス、またはこれらの混合ガスや、これらにO2またはArやHe等の希ガス、またはN2等の不活性ガスまたはこれらの混合ガスを加えたガスを用いると良い。ガス流量比や、エッチング中のイオンエネルギー、エッチングガスの組合せ、エッチングチャンバ内圧力等の条件を調整して、第二SiGe犠牲層3Aのエッチングが垂直性を保ち、且つエッチングレートがSi基板1のエッチングレートの約1倍~10倍となるように調整すると良い。図1Hに示す本工程は、図4のプロセスフロー図の工程107に相当し、図1G及び図2Dに示す第二の保護絶縁膜10のエッチング工程106に続いて、同一装置のチャンバにて、連続して行われると良い。
次いで、図1Iに示す工程(第4の工程)にて、第二SiGe犠牲層3Aを等方的にエッチング除去する。上記エッチングは、第二の保護絶縁膜10、第一の保護絶縁膜9、ハードマスク7、ゲート側壁スペーサ8、STI絶縁膜2、及びSi基板1とSi犠牲層4Aに対する選択エッチング条件にて行う。エッチングガスには、例えば六フッ化硫黄(SF6)やCF4、またはNF3などのフッ素を含むガス、またはこれらの混合ガスや、これらにO2またはArやHe等の希ガス、またはN2等の不活性ガスまたはこれらの混合ガスを加えたガスを用いると良い。ガス流量比や、エッチング中のイオンエネルギー、エッチングガスの組合せ、エッチングチャンバ内圧力等の条件を調整して、第二SiGe犠牲層3Aのエッチングが等方性を持ち、且つエッチングレートが、例えば、Si基板1のエッチングレートの約1倍~200倍となるように調整すると良い。図1Iに示す本工程は、図4のプロセスフロー図の工程108に相当し、図1Hに示す第二SiGe犠牲層3Aの垂直方向のエッチング工程107に続いて、同一装置のチャンバにて、連続して行われると良い。また、図1Iに示す本工程は、図1Hに示す第二SiGe犠牲層3Aの垂直方向のエッチング工程107を省いて、図1Gに示す第二の保護絶縁膜10のエッチング106に続いて、同一装置のチャンバにて、連続して行っても良い。
図1Jに示す工程(第4の工程)では、Si犠牲層4Aを等方的にエッチング除去する。上記エッチングは、第二の保護絶縁膜10、第一の保護絶縁膜9、ハードマスク7、ゲート側壁スペーサ8、STI絶縁膜2、及び第一SiGe犠牲層3Bに対する選択エッチング条件にて行う。エッチングガスには、例えばSF6やCF4、またはNF3等のフッ素を含むガスやその混合ガスに、H2、またはO2やN2等のガスまたはこれらの混合ガスを加えたガスを用いると良い。ガス流量比や、エッチング中のイオンエネルギー、エッチングガスの組合せ、エッチングチャンバ内圧力等の条件を調整して、Si犠牲層4Aのエッチングが等方性を持ち、且つエッチングレートが、例えば、第一SiGe犠牲層3Bのエッチングレートの約1倍~100倍となるように調整すると良い。図1Jに示す本工程は、図4のプロセスフロー図の工程109に相当し、図1Iに示す第二SiGe犠牲層3Aのエッチング除去工程108に続いて、同一装置のチャンバにて、連続して行われると良い。
図1Kに示す工程にて、第二の保護絶縁膜10と第一の保護絶縁膜9を順次等方エッチングにて除去する。第二の保護絶縁膜10のエッチングは、第一の保護絶縁膜9、ハードマスク7、ゲート側壁スペーサ8、STI絶縁膜2、及び第一SiGe犠牲層3Bの下面とSi基板1に対する選択エッチング条件にて行う。例えば第二の保護絶縁膜10がAl2O3膜の場合、エッチングガスにはO2とBCl3、及びArの混合ガス、またはそれに準じたガスを用いると良い。本エッチングは、第二の保護絶縁膜10を膜厚分エッチングするのに必要なエッチング時間の1倍~2倍の時間でエッチングし、第二の保護絶縁膜10がほぼ全て除去される条件下にて行う。第二の保護絶縁膜10に次いで、第一の保護絶縁膜9を等方エッチングにて除去する。本エッチングは、ハードマスク7、ゲート側壁スペーサ8、STI絶縁膜2、及び第一SiGe犠牲層3Bの下面と側壁、及びSiチャネル4BとSi基板1に対する選択エッチング条件にて行う。例えば保護絶縁膜9がSi3N4膜の場合、エッチングガスにはトリフルオロメタン(CHF3)またはジフルオロメタン(CH2F2)またはCH3F等のガスを用いるか、あるいはCF4やC4F8等のフロロカーボン系ガスとH2の混合ガス、またはそれらに準じたガスを用いると良い。第二の保護絶縁膜10のエッチングと同様、本エッチングは、第一の保護絶縁膜9を膜厚分エッチングするのに必要なエッチング時間の1倍~2倍の時間でエッチングし、第一の保護絶縁膜9がほぼ全て除去される条件下にて行う。本工程により、第一SiGe犠牲層3BとSiチャネル4Bの側壁が露出する。本工程は、図4のプロセスフロー図の工程110に相当し、図1Jに示すSi犠牲層4Aのエッチング除去工程109に続いて、同一装置のチャンバにて、連続して行われると良い。すなわち、図4のゲート側壁スペーサ垂直エッチング工程101(図1B)から第一、第二の保護絶縁膜等方性エッチング除去工程110(図1K)までを同一装置のチャンバにて連続的に行うことが可能となる。図3Fには、図1Kに対応する工程の、FETのチャネル領域以外の素子分離領域(図1AのAA’線)におけるゲート断面を示す。第一の保護絶縁膜9の垂直エッチング(図1E、図3C)、及び第二の保護絶縁膜10の垂直エッチング(図1G、図3E)によるオーバーエッチングの影響により、STI絶縁膜2の上面は、隣接するゲート側壁スペーサ8間の隙間の領域において湾曲した形状を有する。本形状は、この後の工程において層間絶縁膜(図1N:第二の層間絶縁膜16)を堆積する際に、等方的な膜の堆積に寄与する為、上記隙間の底部において上記層間絶縁膜の膜密度が一定に保たれる。この為、膜密度の低下に起因する層間絶縁膜への空洞の発生等を抑制する効果をもたらす。
上記一連の工程に続き、図1Lに示す工程にて、埋め込み絶縁膜(第一の絶縁膜)としてのゲート-基板間分離絶縁膜11を堆積する。ゲート-基板間分離絶縁膜11は、例えば、CVD法等を用いて成膜し、ゲート-基板間分離絶縁膜11の成膜後に、ハードマスク7をストッパとする化学機械研磨(CMP:Chemical Mechanical Polishing)で、ゲート-基板間分離絶縁膜11の表面を平坦化する平坦化プロセスを行う。ゲート-基板間分離絶縁膜11の材料は、例えば、SiO2またはSiONやSiCO等でもよい。上記成膜により、第二SiGe犠牲層3AとSi犠牲層4Aが存在していた領域はゲート-基板間分離絶縁膜11で埋められる。
続く工程で上記ゲート-基板間分離絶縁膜11のエッチバックを行い、図1Mに示す構造を得る。エッチバック後のゲート-基板間分離絶縁膜11の上面は、例えば、最下層の第一SiGe犠牲層3Bの下面と上面の間に位置するようにエッチング量を調整すると良い。本工程により、第一SiGe犠牲層3BとSiチャネル4Bからなる積層膜と、Si基板1との間をゲート-基板間分離絶縁膜11で隔てた構造(積層膜とSi基板1との間がゲート-基板間分離絶縁膜11で分離された構造)が形成される。ゲート-基板間分離絶縁膜11は、埋め込み絶縁膜11と言い換えることができる。
この後、GAA型FET形成プロセスを経て図1Nに示すトランジスタ構造を得る。本プロセスでは、ゲート側壁インナースペーサ12の形成、ソースおよびドレイン15の形成、第二の層間絶縁膜16の形成、ハードマスク7とダミーゲート6、及びダミーゲート絶縁膜5と第一SiGe犠牲層3Bのエッチング除去、ゲート絶縁膜13とゲート金属14の形成、コンタクトバリア金属17とコンタクト金属18の形成、更にその後に続く後工程金属配線工程から成る。
ゲート側壁インナースペーサ12は、例えば、第一SiGe犠牲層3BをSiチャネル4B及びその他周辺膜に対して選択的に等方エッチングを行って第一SiGe犠牲層3Bの一部を除去して溝部を形成した後、低比誘電率膜を、CVD法等を用いて成膜して第一SiGe犠牲層3Bに形成した溝部に堆積させる工程と、低比誘電率膜を等方エッチングによって一部除去する工程を経て形成される。これにより、第一SiGe犠牲層3Bの溝部の内部に形成されたゲート側壁インナースペーサ12を得ることができる。ゲート側壁インナースペーサ12を形成する上記低比誘電率膜は、例えば、SiCO膜やSiOCN、またはSiON膜、及びそれに準じた膜やこれらの積層膜を用いると良い。上記第一SiGe犠牲層3Bの等方エッチングには、図1Iに示した第二SiGe犠牲層3Aの等方エッチング時と同様の条件を用い、第一SiGe犠牲層3Bのエッチング量が、例えば、1~10nm程度となるようにエッチング時間を調整すると良い。低比誘電率膜の等方エッチングには、例えば上記低比誘電率膜がSiCO膜の場合、エッチン時ガスとして、例えば、CHF3、CH2F2、CH3FやNF3等のフッ素を含むガスとN2やO2との混合ガス、またはそれに準じたガスを用いると良い。
ソースおよびドレイン15は、例えば、Siチャネル4Bの側壁上に選択的にSiまたはSiGeをエピタキシャル成長することで形成する。パターニングを施すことにより、n型FET領域とp型FET領域とのそれぞれに別々のSiまたはSiGeの成膜を行う。ここでは、n型FET領域には燐(P)や砒素(As)等のn型不純物をドーピングしたSiを選択成長させ、p型FET領域にはボロン(B)等のp型不純物をドーピングしたSiGeを選択成長すると良い。
第二の層間絶縁膜16は、例えば、CVD法等を用いて成膜する。第二の層間絶縁膜16の材料には、例えば、SiO2またはSiONやSiCO等を用いると良い。ハードマスク7、ダミーゲート6、ダミーゲート絶縁膜5、及び第一SiGe犠牲層3Bのエッチング除去には、それぞれの材料に適したエッチングガス及びエッチング条件を用いる。ハードマスク7がSi3N4膜の場合、エッチングガスには、例えば、CHF3またはCH2F2またはCH3F等のガスを用いと良い。poly-Siから成るダミーゲート6のエッチングには、例えば、SF6やCF4、またはHBr等のガスやそれらに準じたガスを用いたドライエッチングを行うか、あるいは、水酸化テトラメチルアンモニウム水溶液(TMAH)等を用いたウェットエッチングを行うと良い。ダミーゲート絶縁膜5は、例えば、フッ化水素酸(HF)水溶液等を用いたウェットエッチングにて除去し、その後の第一SiGe犠牲層3Bのエッチング除去には、図1Iに示した第二SiGe犠牲層3Aの等方エッチング時と同様の条件を用いると良い。ゲート絶縁膜13には、例えば、酸化ハフニウム(HfO2)やAl2O3等の高誘電体材料やこれら高誘電体材料の積層膜を用いると良い。
ゲート金属14は、例えば、p型FETの閾値電圧を決めるp-仕事関数制御金属と、n型FETの閾値電圧を決めるn-仕事関数制御金属と、ゲート埋め込み金属から形成されると良い。p-仕事関数制御金属膜には、例えば、窒化チタン(TiN)またはタンタル窒化膜(TaN)またはこれらと同等の仕事関数を有する金属化合物を用いると良い。n-仕事関数制御金属膜は、例えば、チタンアルミニウム(TiAl)またはTiAlに炭素(C)、酸素(O)、窒素(N)等が含有された金属またはこれらと同等の仕事関数を有する金属化合物を用いると良い。ゲート埋め込み金属膜はゲート内の金属抵抗を低減する目的で堆積され、例えば、タングステン(W)等の材料を用いることが出来る。これらゲート金属14は、例えば、CVD法またはALD法によって成膜される。
コンタクトバリア金属17とコンタクト金属18は、パターニングを施して第二の層間絶縁膜16を部分的にエッチングし、n型FET領域とp型FET領域のソースおよびドレイン15が露出した部分に形成する。コンタクトバリア金属17には、例えば、TiNまたはTaNまたはこれらに準じた金属を用い、コンタクト金属18には、例えば、Wまたはコバルト(Co)等を用いると良い。コンタクトバリア金属17の膜厚は、例えば、1~3nm程度に設計する。図1Nに示したGAA型FET構造において、ゲート金属14とSi基板1はゲート-基板間分離絶縁膜11によって絶縁分離されており、Si基板1が寄生FETとして動作することは防がれる。
このような、ゲート-半導体基板絶縁分離膜11を形成する工程(図1A~図1Nで示した工程)を、ALD成膜機能、及び異方性および等方性エッチング制御機能を搭載したプラズマ処理装置で行うことにより、図4に示す一連の工程、すなわち、図1Bに示すゲート側壁スペーサ垂直エッチング(図4の101)から図1Kに示す第一、第二の保護絶縁膜等方性エッチング除去(図4の110)までの一貫プロセスを同一のプラズマ処理装置内で連続して処理することができる。プラズマ処理装置としては、誘導結合プラズマ(ICP:Inductively Coupled Plasma)を用いたエッチング装置、容量結合プラズマ(CCP:Capacitively Coupled Plasma)を用いたエッチング装置、マイクロ波電子サイクロトロン共鳴(ECR:Electron Cyclotron Resonance)プラズマを用いたエッチング装置のいずれであってもよい。
一例として、図5に、マイクロ波ECRプラズマを用いたプラズマ処理装置200の構成を示す。プラズマ処理装置200は、処理室(チャンバ)201を有し、処理室201は真空排気口202を介して真空排気装置(図示せず)に接続されており、プラズマ処理中には処理室201内は0.1~10Pa程度の真空に保たれる。また、処理室201には、マイクロ波を透過させる役割と処理室201を気密に封止する役割を有する窓部203と、更にイオンを遮蔽する為の多孔板204が配置されている。多孔板204によって、処理室201は処理室201の上部201Aと処理室201の下部201Bに分けられている。窓部203の材質は、マイクロ波を透過する材料から成り、例えば石英などの誘電体を用いる。多孔板204は、複数の孔を有し、多孔板204の材質は、例えば、石英やアルミナなどの誘電体から成ると良い。
ガス供給機構はガス源205、ガス供給装置206、ガス導入口207を有し、プラズマ処理用の原料ガスを供給する。ガス源205は処理に必要な複数のガス種を有する。ガス供給装置206はガスの供給および遮断を制御する制御バルブと、ガス流量を制御するマスフローコントローラと、を有する。また、ガス導入口207は、窓部203と多孔板204との間に設けられている。
処理室201の上部には電磁波を伝播する導波管209が接続されており、導波管209の端部には高周波電源であるプラズマ生成用高周波電源208が接続されている。プラズマ生成用高周波電源208はプラズマ生成用の電磁波を発生するための電源であり、例えば電磁波としては周波数2.45GHzのマイクロ波を用いる。プラズマ生成用高周波電源208から発生されたマイクロ波は導波管209を伝播し、処理室201内に入射する。導波管209が垂直方向に延在する垂直導波管とマイクロ波の方向を90度曲げるコーナーを兼ねた導波管変換器とを有することにより、マイクロ波は処理室201に垂直に入射される。マイクロ波は窓部203を経由して処理室201内を垂直に伝播する。処理室201の外周に配置された磁場発生コイル210は、処理室201に磁場を形成する。プラズマ生成用高周波電源208から発振されたマイクロ波は、磁場発生コイル210により形成された磁場との相互作用により、処理室201内に高密度プラズマを生成する。
処理室201の下方には、窓部203に対向して試料台212が配置されている。試料台212の材質には、例えば、アルミニウムやチタンを用いる。試料台212は、試料である半導体基板211を上面に載置して保持する。ここで、導波管209、処理室201、試料台212及び半導体基板211の中心軸は一致している。また、試料台212内部には半導体基板211を静電吸着するための電極が設けられており、直流電圧を印加することにより半導体基板211が試料台212に静電吸着される。さらに、試料台212には、エッチングの等方性および異方性を制御するため高周波バイアス電源213から高周波電圧が印加される。印加する高周波バイアスの周波数は、例えば、400kHzとするとよい。
プラズマ処理装置200の各機構は制御部220からの制御信号221により制御される。制御部220は、プラズマ処理装置200が実行する処理条件(異方性エッチング処理、等方性エッチング処理、ALD成膜処理等)に応じて、制御信号221を用いて各機構に所定の動作の実行を指示することにより、各機構が制御される。制御部220は、例えば、プラズマ生成用高周波電源208を制御し、プラズマ発生のための電磁波のON-OFFを制御する。また、制御部220は、ガス供給機構を制御し、処理室201に導入するガスの種類、流量等を調整する。制御部220は、また、高周波バイアス電源213を制御し、試料台212上の半導体基板211に印加される高周波電圧の強度を制御する。
本プラズマ処理装置200を用いて異方性エッチングを行う場合は、制御部220は、プラズマが多孔板204下方の処理室201の下部201Bで生成されるように、磁場発生コイル210を制御する。多孔板204は誘電体で出来ている為、マイクロ波は多孔板204を通過して、処理室201の下部201Bで磁場と相互作用してプラズマを生成する。更に、半導体基板211としてのSi基板1を載せる試料台212に高周波バイアスを印加する。これにより、プラズマ内のイオンは、多孔板204等によって遮られることなくSi基板1に引き寄せられ、垂直性を保ったエッチングが可能となる。
本プラズマ処理装置200を用いて等方性エッチングを行う場合は、制御部220は、プラズマ生成位置が多孔板204上方の処理室201の上部201Aとなるように磁場発生コイル210を制御する。処理室201の上部201Aで生成されたプラズマの内、イオンは多孔板204で遮蔽される為、処理室下部201Bにはプラズマ中のラジカルのみが供給される。これにより、ラジカルを用いた等方性のエッチングが可能となる。
本プラズマ処理装置200を用いてALD法により成膜を行う場合は、制御部220の制御による下記サイクルプロセスを適用すると良い。例えばSi3N4膜をALD法により成膜する場合、Siの原料であるBTBASかBDEAS、または気体ガスであるSiH2Cl2を用いる。液体原料であるBTBASやBDEASを用いる場合は、液体原料を気化させて気体ガスとしてガスラインに送る。原料の気体ガスはキャリアガスであるArとともに処理室201へと送り込まれ、Siの前駆体(precursor)として基板表面に吸着する。その後、Arガス等のパージガスを用いて処理室201内の不要な前駆体を排気する。次いで、N2ガスまたはN2ガスとH2ガスの混合ガス、あるいはNH3ガス等、窒素を含むガスを処理室201内に流入してプラズマ化し、基板表面に反応させる。この後、処理室201内に再びAr等の不活性ガスを流入して処理室201内のパージを行い、処理室201内の不要なガスを排気する。この一連のプロセスにより、原理的には原子層レベルの膜厚を有するSi3N4膜が基板表面に堆積する。この一連のプロセスを繰り返して実施(サイクルプロセスの実施)することにより、薄膜の絶縁膜がALD法により成膜される。例えばAl2O3膜をALD法により成膜する場合には、Alの前駆体にはAl(CH3)3を用い、酸素の原料には気化されたH2Oを用い、上記Si3N4の場合と同様のサイクルプロセスを実施して、Al2O3膜の成膜を行うと良い。
実施例2においては、ゲート-半導体基板絶縁分離膜(図6Bの311:実施例1のゲート-半導体基板絶縁分離膜11に対応する)を形成する際に、Siチャネル側壁を保護する手法を提供する。
図6Aには、実施例1において説明したゲート-半導体基板絶縁分離膜形成工程(図1A~図1Nで示した工程)のうち、図1Jに示したSi犠牲層4A除去後と同一の図を示す。本実施例では、図4の工程101から工程109、すなわち図1Bに示すゲート側壁スペーサ垂直エッチングから図1Jに示すSi犠牲層4Aの等方性エッチング除去までを同一のプラズマ処理装置200内で連続して処理し、その後、Si基板1をプラズマ装置200から取り出す。
その後、図6Bに示す工程にて、ゲート-基板間分離絶縁膜311を堆積し、ハードマスク307をストッパとするCMPにて表面の平坦化を行う。ゲート-基板間分離絶縁膜311は、例えば、CVD法等を用いて成膜する。ゲート-基板間分離絶縁膜311の材料は、例えば、SiO2またはSiONやSiCO等を用いる。上記成膜により、第一SiGe犠牲層303とSi基板301間の領域はゲート-基板間分離絶縁膜311で埋められ、且つゲート-基板間分離絶縁膜311は第一の保護絶縁膜309と第二の保護絶縁膜310の側壁上にも堆積する。
図6Cに示す工程にて、ゲート-基板間分離絶縁膜311を垂直方向にエッチバックする。エッチバック後のゲート-基板間分離絶縁膜311の上面は、第二の保護絶縁膜310の下面と最下層の第一SiGe犠牲層303の上面の間に位置するようにエッチング量を調整すると良い。本エッチバック時においては、第一SiGe犠牲層303とSiチャネル304からなる積層膜の側壁は第一の保護絶縁膜309と第二の保護絶縁膜310によって保護されている為、Siチャネル304の側壁はエッチバック時のイオンやラジカルによるダメージを受けない。この為、エッチングダメージによるトランジスタ特性の劣化が抑制されたGAA型FETの作製が可能になる。
次いで、図6Dに示す工程にて、第二の保護絶縁膜310と第一の保護絶縁膜309を順次等方エッチングにて除去する。エッチング時間以外のエッチング条件は、実施例1と同一条件を用いると良い。エッチング後は、ゲート-基板間分離絶縁膜311と第一SiGe犠牲層303の間に形成される溝内を埋めるように第二の保護絶縁膜310と第一の保護絶縁膜309を残存させると良い。エッチング後の第二の保護絶縁膜310と第一の保護絶縁膜309の上面がゲート-基板間分離絶縁膜311の上面とほぼ一致するように、第二の保護絶縁膜310と第一の保護絶縁膜309それぞれのエッチング時間を調整する。残存した第二の保護絶縁膜310と第一の保護絶縁膜309が上記溝内に存在することで、その後のプロセスにおいて、上記溝を起点とする空洞の発生を抑制出来る。
実施例3においては、ゲート側壁インナースペーサ(実施例1の12)の形成プロセスを簡略化する手法を提供する。図7A~図7Kには本手法を用いたプロセスの断面図、図8には本手法を用いたプロセスのフロー図を示す。
図7Aには、図1Cに示す第一SiGe犠牲層3B(図7Aでは、402B)とSiチャネル4B(図7Aでは、403B)からなる積層膜の異方性エッチング工程に対応するゲートに垂直方向の断面図を示す。但し、Si犠牲層4Aまでエッチングする図1Cとは異なり、Si犠牲層403A上部でエッチングを止める。本実施例では、図7Aにおいて、第一SiGe犠牲層402BとSiチャネル403Bからなる積層膜を垂直方向にエッチングした後、Si犠牲層403Aが露出した状態でエッチングを終了することが望ましい。オーバーエッチングにより、Si犠牲層403Aがエッチングされる深さは、例えば、0nmからSi犠牲層403A膜厚の90%程度の範囲に調整されると良い。本工程は、図8のプロセスフローの502に相当し、図1Bに示すゲート側壁スペーサ8のエッチング(図8の501)に続いて、同一装置のチャンバにて、連続して行われると良い。
図7Bにおいて、第一SiGe犠牲層402Bを等方的にエッチングする。エッチング条件は、実施例1と同等の条件を用い、ハードマスク406、ゲート側壁スペーサ407、STI絶縁膜(図示せず)、及びSiチャネル403BとSi犠牲層403A対する選択エッチング条件にて行う。エッチング量が、例えば、1~10nm程度となるようにエッチング時間を調整する。本工程は、図8のプロセスフローの503に相当し、図7Aに示す第一SiGe犠牲層402BとSiチャネル403Bからなる積層膜の異方性エッチング(図8の502)に続いて、同一装置のチャンバにて、連続して行われると良い。
図7Cにおいて、ALD法による成膜技術により、第一の保護絶縁膜408を堆積する。第一の保護絶縁膜408は、ハードマスク406とゲート側壁スペーサ407の上面及び側壁、第一SiGe犠牲層402BとSiチャネル403Bから成る積層膜の側壁、Si犠牲層403Aの上面、及びSTI絶縁膜(図示せず)の上に堆積する。ここで、上記第一の保護絶縁膜408は、図7Bで第一SiGe犠牲層402Bを等方的にエッチングすることにより形成された溝の中にも成膜され、当該領域においては露出したSiチャネル403Bの上面及び下面にも成膜される。第一の保護絶縁膜408の材料は、第一SiGe犠牲層402BとSiチャネル403Bから成る積層膜とSi犠牲層403A、及び周辺のSTI絶縁膜(図示せず)とのエッチング選択比を考慮して、窒素を含む絶縁膜であることが望ましく、例えばSi3N4膜またはそれに準じたSiON膜などとする。第一の保護絶縁膜408の膜厚は、例えば、約2~3nm程度に制御される。ALD法を用いた成膜条件は実施例1と同様とすると良い。本工程は、図8のプロセスフローの504に相当し、図7Bに示す第一SiGe犠牲層402Bの等方エッチング(図8の503)に続いて、同一装置のチャンバにて、連続して行われると良い。
図7Dに示す工程では、第一の保護絶縁膜408を垂直方向にエッチングする。上記エッチングは、ハードマスク406、ゲート側壁スペーサ407、Si犠牲層403A、STI絶縁膜(図示せず)に対する選択エッチング条件にて行う。例えば第一の保護絶縁膜408がSi3N4膜の場合、エッチング条件には実施例1で示した条件を用いると良い。本工程後、Si犠牲層403Aの上面が露出する。本エッチング後にSi犠牲層403Aの残膜厚は、Si犠牲層403Aの初期膜厚に対して、例えば、10%~100%となるようにエッチング条件を制御する。本工程での第一の保護絶縁膜408のエッチング後に露出したSi犠牲層403Aの開口領域と第一SiGe犠牲層402Bの間の水平方向の距離は、実施例1における図1Eの場合に比べて広くなる。この為、第一の保護絶縁膜408にオーバーエッチングを行っても、図2Bに示した場合と異なり、第一SiGe犠牲層402Bの側壁が露出する可能性は低い。本工程は、図8のプロセスフローの505に相当し、図7Cに示す第一の保護絶縁膜408の成膜(図8の504)に続いて、同一装置のチャンバにて、連続して行われると良い。
図7Eに示す工程で、第二の保護絶縁膜409を第一の保護絶縁膜408上にALD法を用いて成膜する。第二の保護絶縁膜409は、ハードマスク406、ゲート側壁スペーサ407、及び第一の保護絶縁膜408の上面及び側壁、Si犠牲層403Aの上面、及びSTI絶縁膜(図示せず)の上に堆積する。図7Cに示す、第一の保護絶縁膜408の成膜後に、第一SiGe犠牲層402Bを等方エッチングしたことに因る溝に起因した隙間が残存している場合、本工程にて第二の保護絶縁膜409が上記隙間を埋めるように成膜される。第二の保護絶縁膜409には、凹凸がより細かい複雑な形状に対しても制御性よく等方的に成膜可能なAl2O3膜やAlON膜等を用いる。例えばAl2O3膜を成膜する場合には、実施例1と同様の条件を用いると良い。本工程は、図8のプロセスフローの506に相当し、図7Dに示す第一の保護絶縁膜408の異方性エッチング(図8の505)に続いて、同一装置のチャンバにて、連続して行われると良い。
図7Fに示す工程では、第二の保護絶縁膜409を垂直方向にエッチングする。上記エッチングは、第一の保護絶縁膜408、ハードマスク406、ゲート側壁スペーサ407、Si犠牲層403A、STI絶縁膜(図示せず)に対する選択エッチング条件にて行う。例えば保護絶縁膜409がAl2O3膜の場合、エッチング条件には実施例1で示した条件を用いると良い。本工程後、Si犠牲層403Aの上面が露出する。本エッチング後にSi犠牲層403Aの残膜厚は、Si犠牲層403Aの初期膜厚に対して、例えば、10%~100%となるようにエッチング条件を制御する。図7Eの工程で、第二の保護絶縁膜409を、第一の保護絶縁膜408の側壁に形成された隙間を埋めるように形成している為、本工程における第二の保護絶縁膜409のエッチング、及び本工程の後に続くSi犠牲層403A及び第二SiGe犠牲層402Aのエッチング等において、第二の保護絶縁膜409側壁とSiチャネル403Bの側壁との距離を十分保つことが出来、Siチャネル403Bの側壁の角部は十分に保護される。第二の保護絶縁膜409が無かった場合は、第一の保護絶縁膜408の膜厚がSiチャネル403Bの側壁の角部で薄くなった際に、本工程及び本工程に続くエッチングの際にSiチャネル403Bの側壁の角部がダメージを受ける懸念を有する。本工程は、図8のプロセスフローの507に相当し、図7Eに示す第二の保護絶縁膜409の成膜(図8の506)に続いて、同一装置のチャンバにて、連続して行われると良い。
図7Gに示す工程では、Si犠牲層403Aと第二SiGe犠牲層402Aを垂直方向にエッチングする。本エッチングは、ハードマスク406、ゲート側壁スペーサ407、及び第二の保護絶縁膜409をマスクとする異方性の選択エッチングとなり、Si犠牲層403Aと第二SiGe犠牲層402Aは第二の保護絶縁膜409の側壁に沿って垂直にエッチングされる。本工程では、Si基板1が露出した時点でエッチングを終了する。本工程のエッチングは、実施例1の図1Cにおいて、SiGe層3とSi層4の積層膜パターンの異方性エッチングを行う際に用いた条件と同一の条件にて行うと良い。本工程は、図8のプロセスフローの508に相当し、図7Fに示す第二の保護絶縁膜409の異方性エッチング(図8の507)に続いて、同一装置のチャンバにて、連続して行われると良い。
図7Hに示す工程では、第二SiGe犠牲層402AとSi犠牲層403Aを順次等方エッチングにて除去する。第二SiGe犠牲層402Aのエッチングは、第二の保護絶縁膜409、第一の保護絶縁膜408、ハードマスク406、ゲート側壁スペーサ407、STI絶縁膜(図示せず)、及びSi犠牲層403AとSi基板401に対する選択エッチング条件を用い、実施例1の図1Iで用いた条件と同様の条件で行うと良い。Si犠牲層403Aのエッチングは、第二の保護絶縁膜409、第一の保護絶縁膜408、ハードマスク406、ゲート側壁スペーサ407、STI絶縁膜(図示せず)、及び第二SiGe犠牲層402B対する選択エッチング条件を用い、実施例1の図1Jで用いた条件と同様の条件で行うと良い。本工程は、図8のプロセスフローの509に相当し、図7Gに示すSi犠牲層403Aと第二SiGe犠牲層402Aの異方性エッチング(図8の508)に続いて、同一装置のチャンバにて、連続して行われると良い。
図7Iに示す工程にて、第二の保護絶縁膜409と第一の保護絶縁膜408を順次等方エッチングにて除去する。第二の保護絶縁膜409のエッチングは、第一の保護絶縁膜408、ハードマスク406、ゲート側壁スペーサ407、STI絶縁膜(図示せず)、及び第一SiGe犠牲層402Bの下面とSi基板401に対する選択エッチング条件にて行う。例えば第二の保護絶縁膜409がAl2O3膜の場合、エッチング条件は実施例1の図1Kで示した条件を用いると良い。第一の保護絶縁膜408のエッチングは、ハードマスク406、ゲート側壁スペーサ407、STI絶縁膜(図示せず)、第一SiGe犠牲層402B、及びSiチャネル403BとSi基板401に対する選択エッチング条件にて行う。例えば第一の保護絶縁膜408がSi3N4膜の場合、エッチング条件は実施例1の図1Kで示した条件を用いると良い。本工程により、ゲート側壁スペーサ407、及び第一SiGe犠牲層402BとSiチャネル403Bの側壁が露出する。また、第一SiGe犠牲層402Bを等方エッチングしたことにより形成された溝の領域におけるSiチャネル403Bの上面と下面も同時に露出する。本工程は、図8のプロセスフロー図の510に相当し、図7Hに示す第二SiGe犠牲層402AとSi犠牲層403Aのエッチング除去(図8の509)に続いて、同一装置のチャンバにて、連続して行われると良い。すなわち、図8に示すプロセスフローの、ゲート側壁スペーサ垂直エッチング501(図1B)から第一、第二の保護絶縁膜等方性エッチング除去510(図7I)までを同一装置のチャンバにて連続的に行うことが可能となる。
次いで、図7Jに示す工程にて、ゲート-基板間分離絶縁膜410を堆積し、ハードマスク406をストッパとするCMPにて表面の平坦化を行う。ゲート-基板間分離絶縁膜410は、例えば、CVD法等を用いて成膜する。ゲート-基板間分離絶縁膜410の材料は、例えば、SiO2またはSiONやSiCO等を用いる。上記成膜により、第一SiGe犠牲層402Bの下面とSi基板401間の領域はゲート-基板間分離絶縁膜410で埋められ、且つ第一SiGe犠牲層402Bの側壁と上下のSiチャネル403B間に挟まれた溝部もゲート-基板間分離絶縁膜410で埋められる。
図7Kに示す工程にて、ゲート-基板間分離絶縁膜410の垂直方向の異方性エッチングを行う。ゲート-基板間分離絶縁膜410のエッチングは、ハードマスク406、ゲート側壁スペーサ407、STI絶縁膜(図示せず)、及びSiチャネル403Bの側壁に対する選択エッチング条件にて行う。エッチング後のゲート-基板間分離絶縁膜410の上面が、第一SiGe犠牲層402Bの最下層の下面と上面の間に位置するようにエッチング時間を制御する。本工程によって、第一SiGe犠牲層402Bの側壁と上下のSiチャネル403B間に挟まれた溝部は層間絶縁膜410によって埋められ、ゲート-基板間分離絶縁膜410の形成と同時に、ゲート側壁インナースペーサの形成が可能となる。
上述のように、本実施例では、ゲート側壁インナースペーサをゲート-半導体基板絶縁分離膜と同時に形成することが可能になり、プロセス工程の簡略化が図られる。また、図7Dで示したように、保護絶縁膜のエッチング時に第一SiGe犠牲層402Bが露出することが避けられる。また、本実施例では、第一SiGe犠牲層402BとSiチャネル403B積層膜の側壁が凹凸形状を持った状態で、Si犠牲層403Aと第二SiGe犠牲層402Aのエッチングが行われる形態を有するが、図7Fで示したように、第二の保護絶縁膜409を設けることで、Siチャネル403Bの側壁の角部へのダメージも軽減可能となる。
実施例4においては、保護絶縁膜を、ゲート側壁インナースペーサの補強にも用いる手法を提供する。
図9Aには、実施例3と同一プロセスを用いて、図7Bに示す第一SiGe犠牲層402Bの等方エッチングを行った後の断面図を示す。本実施例においては、図8の501に示すゲート側壁スペーサ垂直エッチングから503に示す第一SiGe犠牲膜等方性エッチングまでを同一装置のチャンバにて、連続して行った後に、一度Si基板601を装置から取り出す。
その後、図9Bにおいて、ゲート側壁インナースペーサを形成する為の低比誘電率膜608を、例えば、CVD法等を用いて成膜する。低比誘電率膜608には、例えば、SiCO膜やSiOCN、またはSiON膜、及びそれに準じた膜やこれらの積層膜を用いると良い。本工程後、Si基板601を再び図9Aに示す工程の処理を行ったプラズマ処理装置に投入し、図9C以下の工程を実施する。
図9Cにおいて、上記低比誘電率膜608の等方エッチングを行い、ゲート側壁インナースペーサを形成する。上記エッチングは、実施例1と同等の条件を用い、Siチャネル603Bの側壁が露出するようにエッチング時間を調整すると良い。本エッチング後、ゲート側壁インナースペーサ608の側壁は湾曲した形状を有していることが想定される。
図9Dにおいて、ALD法による成膜技術により、第一の保護絶縁膜609を堆積する。第一の保護絶縁膜609は、ハードマスク606とゲート側壁スペーサ607の上面及び側壁、ゲート側壁インナースペーサ608の側壁、Siチャネル603Bの側壁、Si犠牲層603Aの上面、及びSTI絶縁膜(図示せず)の上に堆積する。上記第一の保護絶縁膜609の成膜条件は、実施例1の図1Dで示した条件と同等の条件を用いると良い。本工程は、図9Cに示す低比誘電率膜608の等方エッチングに続いて、同一装置のチャンバにて、連続して行われると良い。
図9Eに示す工程では、第一の保護絶縁膜609を垂直方向にエッチングする。上記エッチングは、ハードマスク606、ゲート側壁スペーサ607、Si犠牲層603A、STI絶縁膜(図示せず)に対する選択エッチング条件にて行う。例えば第一の保護絶縁膜609がSi3N4膜の場合、エッチング条件には実施例1で示した条件を用いると良い。本工程後、Si犠牲層603Aの上面が露出する。本エッチング後にSi犠牲層603Aの残膜厚は、Si犠牲層603Aの初期膜厚に対して、例えば、10%~100%となるようにエッチング条件を制御する。
 図9Fに示す工程で、第二の保護絶縁膜610を第一の保護絶縁膜609上にALD法を用いて成膜する。第二の保護絶縁膜610は、ハードマスク606、ゲート側壁スペーサ607、及び第一の保護絶縁膜609の上面及び側壁、Si犠牲層603Aの上面、及びSTI絶縁膜(図示せず)の上に堆積する。図9Dに示す、第一の保護絶縁膜609の成膜後に、ゲート側壁スペーサ607が湾曲形状を有することに起因した隙間が残存している場合、本工程にて第二の保護絶縁膜610が上記隙間を埋めるように成膜される。第二の保護絶縁膜610には、例えば、凹凸がより細かい複雑な形状に対しても制御性よく等方的に成膜可能なAl2O3膜やAlON膜等を用いる。例えばAl2O3膜を成膜する場合には、実施例1と同様の条件を用いると良い。本工程は、図9Eに示す第一の保護絶縁膜609の異方性エッチングに続いて、同一装置のチャンバにて、連続して行われると良い。
図9Gに示す工程では、第二の保護絶縁膜610を垂直方向にエッチングする。上記エッチングは、第一の保護絶縁膜609、ハードマスク606、ゲート側壁スペーサ607、Si犠牲層603A、STI絶縁膜(図示せず)に対する選択エッチング条件にて行う。例えば保護絶縁膜610がAl2O3膜の場合、エッチング条件には実施例1で示した条件を用いると良い。本工程後、Si犠牲層603Aの上面が露出する。本エッチング後にSi犠牲層603Aの残膜厚は、例えば、Si犠牲層603Aの初期膜厚に対して10%~100%となるようにエッチング条件を制御する。本工程は、図9Fに示す第二の保護絶縁膜610の成膜に続いて、同一装置のチャンバにて、連続して行われると良い。
図9Hに示す工程では、Si犠牲層603Aと第二SiGe犠牲層602Aを垂直方向にエッチングする。本エッチングは、ハードマスク606、ゲート側壁スペーサ607、及び第二の保護絶縁膜610をマスクとする異方性の選択エッチングとなり、Si犠牲層603Aと第二SiGe犠牲層602Aは第二の保護絶縁膜610の側壁に沿って垂直にエッチングされる。本工程では、Si基板601が露出した時点でエッチングを終了する。本工程のエッチングは、実施例1の図1Cにおいて、SiGe層3とSi層4の積層膜パターンの異方性エッチングを行う際に用いた条件と同一の条件にて行うと良い。本工程は、図9Gに示す第二の保護絶縁膜610の異方性エッチングに続いて、同一装置のチャンバにて、連続して行われると良い。
図9Iに示す工程では、第二SiGe犠牲層602AとSi犠牲層603Aを順次等方エッチングにて除去する。第二SiGe犠牲層602Aのエッチングは、第二の保護絶縁膜609、第一の保護絶縁膜608、ハードマスク606、ゲート側壁スペーサ607、STI絶縁膜(図示せず)、及びSi犠牲層603AとSi基板601に対する選択エッチング条件を用い、実施例1の図1Iで用いた条件と同様の条件で行うと良い。Si犠牲層603Aのエッチングは、第二の保護絶縁膜610、第一の保護絶縁膜609、ハードマスク606、ゲート側壁スペーサ607、ゲート側壁インナースペーサ608、STI絶縁膜(図示せず)、及び第一SiGe犠牲層602B対する選択エッチング条件を用い、実施例1の図1Jで用いた条件と同様の条件で行うと良い。本工程は、図9Hに示すSi犠牲層603Aと第二SiGe犠牲層602Aの異方性エッチングに続いて、同一装置のチャンバにて、連続して行われると良い。
図9Jに示す工程にて、第二の保護絶縁膜610と第一の保護絶縁膜609の等方エッチングを順次行う。第二の保護絶縁膜610のエッチングは、第一の保護絶縁膜609、ハードマスク606、ゲート側壁スペーサ607、STI絶縁膜(図示せず)、及び第一SiGe犠牲層602Bの下面とSi基板601に対する選択エッチング条件にて行う。例えば第二の保護絶縁膜610がAl2O3膜の場合、エッチング条件は実施例1の図1Kで示した条件を用いると良い。ここで、第二の保護絶縁膜610の等方エッチングは、エッチング後に第一の保護絶縁膜609の側壁が露出するようにエッチング時間を調整して行われるが、ゲート側壁インナースペーサ608の側壁の湾曲形状に起因する隙間に埋め込まれた第二の保護絶縁膜610は残存するように調整されることが望ましい。第一の保護絶縁膜609のエッチングは、第二の保護絶縁膜610、ハードマスク606、ゲート側壁スペーサ607、STI絶縁膜(図示せず)、ゲート側壁インナースペーサ608、第一SiGe犠牲層602Bの下面、及びSiチャネル603BとSi基板601に対する選択エッチング条件にて行う。例えば第一の保護絶縁膜609がSi3N4膜の場合、エッチング条件は実施例1の図1Kで示した条件を用いると良い。本工程におけるエッチングでは、ゲート側壁スペーサ607、ゲート側壁インナースペーサ608、Siチャネル603Bの側壁が露出するようにエッチング時間を調整するが、ゲート側壁インナースペーサ608の側壁の湾曲形状に起因する隙間に埋め込まれた第二の保護絶縁膜610と第一の保護絶縁膜609は残存するように調整されることが望ましい。本工程は、図9Iに示す第二SiGe犠牲層602AとSi犠牲層603Aのエッチング除去工程に続いて、同一装置のチャンバにて、連続して行われると良い。すなわち、図9Cに示す、ゲート側壁インナースペーサ608形成の為の低誘電率膜の等方エッチングから図9Jに示す第二の保護絶縁膜610と第一の保護絶縁膜609の等方エッチングまでを同一装置のチャンバにて連続的に行うことが可能となる。
この後、実施例1の図1L以降に示したプロセスを実施することによってGAA型FETが完成される。本実施例によって作成されたGAA型FETは、ゲート側壁インナースペーサ608の窪みが第二の保護絶縁膜610と第一の保護絶縁膜609で埋められている為、ゲート側壁インナースペーサ608の窪み形状に起因して発生する微細孔がもたらす電流リーク等を回避することが可能になる。
1, 301, 401, 601:シリコン基板、2, 302:素子分離(STI)絶縁膜、3:単結晶シリコンゲルマニウム層、3A, 402A, 602A:第二シリコンゲルマニウム犠牲層、3B, 303, 402B, 602B:第一シリコンゲルマニウム犠牲層、4:単結晶シリコン層、4A, 403A, 603A:シリコン犠牲層、4B, 304, 403B, 603B:シリコンチャネル層、5, 305, 404, 604:ダミーゲート絶縁膜、6, 306, 405, 605:多結晶シリコンダミーゲート、7, 307, 406, 606:ハードマスク、8, 308, 407, 607:ゲート側壁スペーサ、9, 309, 408, 609:第一保護絶縁膜、10, 310, 409, 610:第二保護絶縁膜、11, 311, 410:ゲート-基板間分離絶縁膜、12, 608:ゲート側壁インナースペーサ、13:ゲート絶縁膜、14:ゲート金属、15:ソース/ドレイン、16:第二層間絶縁膜、17:コンタクトバリア金属、18:コンタクト金属、101, 501:ゲート側壁スペーサ垂直エッチング工程、102, 502:シリコン/シリコンゲルマニウム積層膜垂直エッチング工程、503:第一SiGe犠牲膜等方性エッチング、103, 504:第一保護絶縁膜堆積工程、104, 505:第一保護絶縁膜垂直エッチング工程、105, 506:第二保護絶縁膜堆積工程、106, 507:第二保護絶縁膜垂直エッチング工程、107:第二シリコンゲルマニウム犠牲膜異方性エッチング工程、108:第二シリコンゲルマニウム犠牲膜等方性エッチング工程、109:シリコン犠牲膜等方性エッチング工程、508:シリコン犠牲膜/第二シリコンゲルマニウム犠牲膜異方性エッチング、509:シリコン犠牲膜/第二シリコンゲルマニウム犠牲膜等方性エッチング、110, 510:第一/第二保護絶縁膜等方性エッチング工程、201:処理室(チャンバ)、201A:処理室上部領域、201B:処理室下部領域、202:真空排気口、203:窓部、204:多孔板、205:ガス源、206:ガス供給装置、207:ガス導入口、208:プラズマ生成用高周波電源、209:導波管、210:磁場発生コイル、211:半導体基板、212:試料台、213:高周波バイアス電源、220:制御部、221:制御信号、t1:第一保護絶縁膜の水平方向膜厚、t2:溝底部における第一保護絶縁膜の垂直方向膜厚、t3:第二保護絶縁膜の水平方向膜厚、t4:溝底部における第二保護絶縁膜の水平方向膜厚、t5:溝底部における第二保護絶縁膜の垂直方向膜厚、θ1:シリコン/シリコンゲルマニウム積層膜側壁と第二シリコンゲルマニウム犠牲層3A上面が成す角度、θ2:シリコン/シリコンゲルマニウム積層膜側壁とエッチング後の第一保護絶縁膜下面が成す角度、a1:第二の保護絶縁膜形成時の原料ガス流路、a2:第二の保護絶縁膜エッチング時のイオン照射経路。

Claims (15)

  1.  ゲート形成領域に細線状またはシート状のチャネルが基板に垂直な方向に積層される積層チャネルを有し、ゲートと半導体基板が絶縁膜によって絶縁分離された半導体装置の製造方法であって、
     前記半導体装置は、前記半導体基板上に第1の半導体層と第2の半導体層が交互に複数層積層された積層膜を有し、更に前記積層膜上に前記ゲート及びゲート側壁スペーサ膜が形成され、前記ゲート側壁スペーサ膜に沿って前記積層膜の一部がエッチング除去され、且つ最下層の第1の半導体層の一部または全て、あるいは最下層の第1の半導体層上に形成された最下層の第2の半導体層の一部または全てがエッチングされずに残された構造体を有しており、
     前記エッチングによって形成された前記第1の半導体層と前記第2の半導体層から成る前記積層膜の側壁に保護絶縁膜を堆積する第1の工程と、
     前記保護絶縁膜を垂直方向に異方性エッチングし、前記最下層の第1の半導体層または前記最下層の第2の半導体層の表面を露出させる第2の工程と、
     前記第1の工程と前記第2の工程を、前記保護絶縁膜とは異なる絶縁膜材料を用いて複数回繰り返し、前記保護絶縁膜と前記保護絶縁膜と異なる複数の保護絶縁膜から成る保護絶縁膜の積層膜を前記側壁上に形成する第3の工程と、
     前記最下層の第1の半導体層、または前記最下層の第1の半導体層と前記最下層の第2の半導体層をエッチング除去する第4の工程を有する半導体装置の製造方法。
  2.  請求項1において、
     前記第1の工程乃至前記第4の工程を、同一のプラズマ処理装置内にて連続して行う半導体装置の製造方法。
  3.  請求項1において、
     前記半導体基板はシリコンであり、前記第1の半導体層はシリコンゲルマニウムであり、前記第2の半導体層はシリコンであることを特徴とする半導体装置の製造方法。
  4.  請求項1において、
     前記保護絶縁膜の積層膜のうち、前記第1の半導体層と前記第2の半導体層から成る前記積層膜の側壁に接する膜がシリコン元素と窒素元素を含有する膜から構成され、前記保護絶縁膜の前記積層膜のうち、上層側に位置する膜がアルミニウム元素と酸素元素を含有する膜から構成されることを特徴とする半導体装置の製造方法。
  5.  請求項1において、
     前記第2の工程後に、前記最下層の第1の半導体層上に積層された2層目以降の第1の半導体層の側壁が露出し、前記側壁は前記第3の工程で形成された前記保護絶縁膜の前記積層膜によって覆われることを特徴とする半導体装置の製造方法。
  6.  請求項1において、
     前記ゲート側壁スペーサ膜を形成する為の、前記ゲート側壁スペーサ膜の垂直エッチングと、前記第1の半導体層と前記第2の半導体層から成る前記積層膜の一部を垂直エッチングにより除去する工程と、前記第1の工程乃至前記第4の工程と、前記保護絶縁膜の前記積層膜を等方エッチングにより除去する工程を同一のプラズマ処理装置内にて連続して行う半導体装置の製造方法。
  7.  請求項1において、
     前記ゲート側壁スペーサ膜を形成する為の、前記ゲート側壁スペーサ膜の垂直エッチングと、前記第1の半導体層と前記第2の半導体層から成る前記積層膜の一部を垂直エッチングにより除去する工程と、前記第1の工程乃至前記第4の工程を同一のプラズマ処理装置内にて連続して行い、その後の工程で前記ゲートと前記半導体基板を絶縁分離する為の第一の絶縁膜を堆積して垂直エッチングすることを特徴とする半導体装置の製造方法。
  8.  請求項1において、
     前記第1の半導体層と前記第2の半導体層から成る前記積層膜の一部を垂直エッチングにより除去した後、最下層以外の前記第1の半導体層の側壁を等方エッチングし、その後、前記第1の工程乃至前記第4の工程および前記保護絶縁膜の前記積層膜を等方エッチングにより除去する工程を同一のプラズマ処理装置内にて連続して行うことを特徴とする半導体装置の製造方法。
  9.  請求項1において、
     前記第1の半導体層と前記第2の半導体層から成る前記積層膜の一部を垂直エッチングにより除去した後、最下層以外の前記第1の半導体層の側壁を等方エッチングし、前記等方エッチングによって形成された溝部に低誘電率膜を堆積する工程を有し、
     前記低誘電率膜を等方エッチングによって一部除去し、前記溝部に前記低誘電率膜から成るゲート側壁インナースペーサを形成する工程と、前記第1の工程乃至前記第4の工程と、前記保護絶縁膜の前記積層膜を等方エッチングにより一部除去する工程を同一のプラズマ処理装置内にて連続して行い、前記連続工程後には、前記保護絶縁膜の前記積層膜が前記ゲート側壁インナースペーサの側壁に形成された隙間を埋めていることを特徴とする半導体装置の製造方法。
  10.  半導体基板上に第1の半導体層と第2の半導体層が交互に複数層積層された積層膜を有し、更に前記積層膜上にゲート及びゲート側壁スペーサ膜が形成され、前記ゲート側壁スペーサ膜に沿って前記積層膜の一部がエッチング除去され、且つ最下層の第1の半導体層の一部または全て、あるいは、前記最下層の第1の半導体層上に形成された最下層の第2の半導体層の一部または全てがエッチングされずに残された構造体に対してプラズマ処理を行うプラズマ処理方法であって、
     前記エッチングによって形成された前記第1の半導体層と前記第2の半導体層から成る前記積層膜の側壁に保護絶縁膜を堆積する第1の工程と、
     前記保護絶縁膜を垂直方向に異方性エッチングし、前記最下層の第1の半導体層または前記最下層の第2の半導体層の表面を露出させる第2の工程と、
     前記第1の工程と前記第2の工程を、前記保護絶縁膜とは異なる絶縁膜材料を用いて複数回繰り返し、保護絶縁膜の積層膜を前記側壁上に形成する第3の工程と、
     前記最下層の第1の半導体層、または前記最下層の第1の半導体層と前記最下層の第2の半導体層を等方エッチングにより除去する第4の工程と、を連続して実行する、
     プラズマ処理方法。
  11.  請求項10において、
     前記ゲート側壁スペーサ膜を形成する為の、前記ゲート側壁スペーサ膜の垂直エッチングと、前記第1の半導体層と前記第2の半導体層から成る前記積層膜の一部を垂直エッチングにより除去する工程と、前記第1の工程乃至前記第4の工程と、前記保護絶縁膜の前記積層膜を等方エッチングにより除去する工程と、を1つのプラズマ処理装置内において連続して実行する、プラズマ処理方法。
  12.  請求項10において、
     前記ゲート側壁スペーサ膜を形成する為の、前記ゲート側壁スペーサ膜の垂直エッチングと、前記第1の半導体層と前記第2の半導体層から成る前記積層膜の一部を垂直エッチングにより除去する工程と、前記第1の工程乃至前記第4の工程と、を1つのプラズマ処理装置内において連続して実行する、プラズマ処理方法。
  13.  請求項10において、
     前記第1の半導体層と前記第2の半導体層から成る前記積層膜の一部を垂直エッチングにより除去した後、前記最下層の前記第1の半導体層以外の前記第1の半導体層の側壁を等方エッチングし、その後、前記第1の工程乃至前記第4の工程および前記保護絶縁膜の積層膜を等方エッチングにより除去する工程と、を1つのプラズマ処理装置内において連続して実行する、プラズマ処理方法。
  14.  請求項10において、
     前記第1の半導体層と前記第2の半導体層から成る前記積層膜の一部を垂直エッチングにより除去した後、前記最下層の前記第1の半導体層以外の前記第1の半導体層の側壁を等方エッチングし、前記等方エッチングによって形成された溝部に低誘電率膜を堆積する工程を有し、
     前記低誘電率膜を等方エッチングによって一部除去し、前記溝部に前記低誘電率膜から構成されたゲート側壁インナースペーサを形成する工程と、前記第1の工程乃至前記第4の工程と、前記保護絶縁膜の前記積層膜を等方エッチングにより一部除去する工程と、を1つのプラズマ処理装置内において連続して実行する、プラズマ処理方法。
  15.  請求項10から請求項14のいずれか一項において、
     前記第1の工程及び前記第3の工程において、ALD法により前記保護絶縁膜を堆積させる、プラズマ処理方法。
PCT/JP2022/030488 2022-08-09 2022-08-09 半導体装置の製造方法及びプラズマ処理方法 WO2024034023A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237021679A KR20240022438A (ko) 2022-08-09 2022-08-09 반도체 장치의 제조 방법 및 플라스마 처리 방법
PCT/JP2022/030488 WO2024034023A1 (ja) 2022-08-09 2022-08-09 半導体装置の製造方法及びプラズマ処理方法
JP2023535741A JP7560673B2 (ja) 2022-08-09 2022-08-09 半導体装置の製造方法及びプラズマ処理方法
CN202280008672.XA CN117859208A (zh) 2022-08-09 2022-08-09 半导体装置的制造方法以及等离子处理方法
TW112129692A TW202407803A (zh) 2022-08-09 2023-08-08 半導體裝置的製造方法及電漿處理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030488 WO2024034023A1 (ja) 2022-08-09 2022-08-09 半導体装置の製造方法及びプラズマ処理方法

Publications (1)

Publication Number Publication Date
WO2024034023A1 true WO2024034023A1 (ja) 2024-02-15

Family

ID=89851261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030488 WO2024034023A1 (ja) 2022-08-09 2022-08-09 半導体装置の製造方法及びプラズマ処理方法

Country Status (5)

Country Link
JP (1) JP7560673B2 (ja)
KR (1) KR20240022438A (ja)
CN (1) CN117859208A (ja)
TW (1) TW202407803A (ja)
WO (1) WO2024034023A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190109052A1 (en) * 2017-10-06 2019-04-11 International Business Machines Corporation Nanosheet substrate isolated source/drain epitaxy by nitrogen implantation
US20200279913A1 (en) * 2019-03-01 2020-09-03 International Business Machines Corporation Nanosheet transistor barrier for electrically isolating the substrate from the source or drain regions
US20210242327A1 (en) * 2020-01-30 2021-08-05 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor Device and Method
WO2021181613A1 (ja) * 2020-03-12 2021-09-16 株式会社日立ハイテク プラズマ処理方法
JP2022027614A (ja) * 2020-07-30 2022-02-10 台湾積體電路製造股▲ふん▼有限公司 マルチゲートデバイス及びその関連方法
JP2022027740A (ja) * 2020-07-31 2022-02-14 台湾積體電路製造股▲ふん▼有限公司 トランジスタゲート構造体及び形成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11404578B2 (en) 2018-06-22 2022-08-02 Intel Corporation Dielectric isolation layer between a nanowire transistor and a substrate
US12002810B2 (en) 2018-09-28 2024-06-04 Intel Corporation Gate-all-around integrated circuit structures having depopulated channel structures using bottom-up approach

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190109052A1 (en) * 2017-10-06 2019-04-11 International Business Machines Corporation Nanosheet substrate isolated source/drain epitaxy by nitrogen implantation
US20200279913A1 (en) * 2019-03-01 2020-09-03 International Business Machines Corporation Nanosheet transistor barrier for electrically isolating the substrate from the source or drain regions
US20210242327A1 (en) * 2020-01-30 2021-08-05 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor Device and Method
WO2021181613A1 (ja) * 2020-03-12 2021-09-16 株式会社日立ハイテク プラズマ処理方法
JP2022027614A (ja) * 2020-07-30 2022-02-10 台湾積體電路製造股▲ふん▼有限公司 マルチゲートデバイス及びその関連方法
JP2022027740A (ja) * 2020-07-31 2022-02-14 台湾積體電路製造股▲ふん▼有限公司 トランジスタゲート構造体及び形成方法

Also Published As

Publication number Publication date
JPWO2024034023A1 (ja) 2024-02-15
KR20240022438A (ko) 2024-02-20
JP7560673B2 (ja) 2024-10-02
CN117859208A (zh) 2024-04-09
TW202407803A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
KR102500552B1 (ko) 반도체 장치의 제조 방법 및 플라스마 처리 장치
US10468259B2 (en) Charge-trap layer separation and word-line isolation in a 3-D NAND structure
US10692880B2 (en) 3D NAND high aspect ratio structure etch
US11569257B2 (en) Multi-layer stacks for 3D NAND extendability
JP6810059B2 (ja) 先進的なパターニングプロセスにおけるスペーサ堆積および選択的除去のための装置および方法
CN111681959B (zh) 用于制作半导体器件的方法
US20210233997A1 (en) Semiconductor Device and Method
US12087638B2 (en) Multi-channel devices and methods of manufacture
US20220384593A1 (en) Inter-Layer Dielectrics and Etch Stop Layers for Transistor Source/Drain Regions
CN107039272A (zh) 鳍式晶体管的形成方法
CN110349852B (zh) 用于改善finfet效能的栅极裙氧化及其制造方法
WO2024034023A1 (ja) 半導体装置の製造方法及びプラズマ処理方法
WO2024189714A1 (ja) 半導体装置の製造方法及びプラズマ処理方法
US11791216B2 (en) Nanostructure field-effect transistor device and method of forming
US11699620B2 (en) Shallow trench isolation structures having uniform step heights
TW202437402A (zh) 半導體裝置之製造方法及電漿處理方法
US20230298944A1 (en) Shallow trench isolation structures having uniform step heights
TW202336823A (zh) 半導體裝置的形成方法
CN117790401A (zh) 隔离槽结构的制作方法及半导体工艺设备
CN117810082A (zh) 半导体结构及其形成方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023535741

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280008672.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954942

Country of ref document: EP

Kind code of ref document: A1