WO2024032627A1 - 一种抗开裂高铝含量弥散强化铜电极材料制备工艺 - Google Patents

一种抗开裂高铝含量弥散强化铜电极材料制备工艺 Download PDF

Info

Publication number
WO2024032627A1
WO2024032627A1 PCT/CN2023/111803 CN2023111803W WO2024032627A1 WO 2024032627 A1 WO2024032627 A1 WO 2024032627A1 CN 2023111803 W CN2023111803 W CN 2023111803W WO 2024032627 A1 WO2024032627 A1 WO 2024032627A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
copper
aluminum
oxygen
alloy
Prior art date
Application number
PCT/CN2023/111803
Other languages
English (en)
French (fr)
Inventor
曹先杰
牛立业
郭慧稳
许春伟
Original Assignee
中铝洛阳铜加工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铝洛阳铜加工有限公司 filed Critical 中铝洛阳铜加工有限公司
Publication of WO2024032627A1 publication Critical patent/WO2024032627A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • B22F3/101Changing atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water

Definitions

  • the invention relates to the technical fields of powder metallurgy and non-ferrous metal processing, and in particular to a preparation process for a crack-resistant, high aluminum content dispersion-strengthened copper electrode material.
  • Dispersion strengthening is a method of strengthening materials by introducing stable, uniform, and fine oxide material points into the metal matrix to pin dislocations, grain boundaries, and sub-grain boundaries to hinder the movement of dislocations.
  • Dispersion-strengthened copper has high strength and high softening temperature due to the dispersed distribution of fine and uniform oxide material points in the copper matrix. At the same time, the fine and dispersed oxide material points will not adversely affect the electrical and thermal conductivity of the copper alloy itself. This allows dispersion-strengthened copper to improve its strength while maintaining its excellent electrical and thermal conductivity.
  • Dispersion-strengthened copper alloys are considered to be new functional materials with great development potential and application prospects due to their excellent high temperature resistance, high strength, and high electrical conductivity. They have been used in very large-scale integrated circuit lead frames, high pulse magnetic field conductors, and large-scale applications. It has been widely used in many high-tech fields such as power microwave tubes, overhead wires for high-speed rail transit, resistance welding electrodes and continuous casting machine crystallizers.
  • the alumina protective layer formed on the top working surface of the alumina-reinforced copper electrode can It effectively prevents the electrode surface layer from adhering to the steel plate during the welding process of low carbon steel plates, greatly reduces electrode loss, increases the electrode service life by 2 to 5 times, and significantly improves production efficiency.
  • High-aluminum dispersed copper materials There are two core problems: First, the material hardness must be high. High hardness can ensure the service life of the dispersed copper electrode material. The higher the aluminum content of the dispersed copper, the higher the hardness. , it is generally required that the HRB is greater than 80; the second is that the material cannot crack during cold processing and use. High-aluminum dispersed copper powder is mostly prepared by water atomization and nitrogen atomization. Relatively speaking, nitrogen atomization has less coarse alumina formed during the atomization process due to the protection of nitrogen. It is beneficial to the cold working deformation of high-aluminum dispersed copper.
  • the purpose of the present invention is to overcome the deficiencies in the prior art and provide a crack-resistant high-aluminum content dispersion-strengthened copper electrode material preparation process.
  • the process is greatly improved. Due to the surface conditions of high-content dispersed copper rods, the surface layer is prevented from cracking during cold processing and use of high-aluminum dispersed copper caused by low processing plasticity.
  • the present invention solves the problem of the existing pure nitrogen atomization powdering method for preparing high-aluminum.
  • the high cost of dispersed copper electrode materials and the high cracking rate of high-aluminum dispersed copper electrode materials prepared by pure water atomization powdering have greatly reduced the cracking rate of high-aluminum dispersed copper electrode materials during cooling and use, reducing production costs. cost.
  • the present invention adopts the following technical solution: a crack-resistant high-aluminum content dispersion-strengthened copper electrode material preparation process, the process flow: preparation of high-aluminum dispersion copper powder-oxygen source preparation-powder mixing-cold isostatic pressing forming process - Integrated heat treatment of internal oxidation, reduction and sintering - oxygen-free copper cladding - hot extrusion - stretching - finishing.
  • the first step is to prepare high-aluminum dispersed copper powder: high-purity nitrogen atomization to make powder, and smelting in a 100kg intermediate frequency smelting furnace. First, add high-purity oxygen-free electric copper to the intermediate frequency furnace and smelt for 40 to 70 minutes. The smelting process is covered with charcoal.
  • the second step is to make powder by water atomization.
  • the Al content in the Cu-Al alloy is controlled at 0.5 to 0.8wt%, and then mist with water at a pressure of 7 to 9.5Mpa. Pulverize, dry and sieve out -100 mesh Cu-Al alloy raw powder for later use;
  • the third step is to prepare the oxygen source: sieve the water-atomized -100 mesh Cu-Al alloy original powder, sieve out the -200 mesh Cu-Al powder, and oxidize it for 20 ⁇ 80 hours, and then decompose into cuprous oxide solid oxygen source at 400°C ⁇ 950°C under nitrogen protection conditions;
  • the fourth step mix the powder: atomize the prepared -200 mesh cuprous oxide oxygen source and 65% nitrogen, and use the 35% water atomized original powder to calculate the added amount of the oxygen source according to the formula.
  • the oxidant excess coefficient is 0.3 to 0.9, and the mixing time is 0.5 to 2.0 hours;
  • the fifth step, cold isostatic pressing processing Seal the dispersed copper alloy powder mixed in proportion with a cold isostatic pressing rubber sleeve, and vibrate on a vibrating machine for 1 to 3 minutes to make the bulk density uniform and the compact density consistent. Then seal it with a rubber cap and tighten it with iron wire; put the rubber sleeve encapsulating the dispersed copper powder into the cold isostatic pressing cylinder, perform cold isostatic pressing treatment, and obtain cold isostatic pressed powder ingots; pressing pressure: 150 ⁇ 300Mpa, pressure increasing speed: 10 ⁇ 20Mpa/min, pressure holding time 5 ⁇ 10 minutes;
  • the sixth step, integrated heat treatment of internal oxidation, reduction and sintering Put the cold isostatically pressed powder ingot into the furnace of the heat treatment furnace, and perform "integrated" heat treatment in the order of internal oxidation, reduction and sintering.
  • the internal oxidation treatment is Let the Al in the cold isostatically pressed alloy powder ingot be converted into Al 2 O 3 , internal oxidation temperature: 830°C ⁇ 950°C, internal oxidation time: 1 to 8 hours, protective atmosphere: nitrogen; reduction temperature: 880°C ⁇ 950°C , reduction time: 1 to 8 hours, reduction atmosphere: high-purity hydrogen, dew point: -60°C, oxygen content: ⁇ 5PPm; sintering temperature: 950°C to 1020°C, sintering time: 1 to 6 hours, sintering atmosphere: high purity Hydrogen, dew point: -60°C, oxygen content: ⁇ 5PPm;
  • Step 7 Oxygen-free copper cladding: Install the heat-treated powder ingots to the specified thickness. For different powder ingot sizes, select copper sleeves of different thicknesses. According to calculations, ensure that the thickness of the outer layer of oxygen-free copper for ⁇ 16-sized rods is 0.4mm. ;
  • Step 8 hot extrusion: heating temperature of powder ingot: 830°C ⁇ 960°C, heating time: 1 ⁇ 5 hours, extrusion ratio 10 ⁇ 35;
  • Step 9 Stretching: Remove the head and tail of the extruded rod blank, straighten it, and perform stretching processing. The pass processing rate is controlled within 15% and processed to the size required by the user;
  • Step 10 finishing: Straighten the stretched diffused oxygen-free copper rod and cut off the head and tail.
  • the beneficial effects of the present invention are: mixing nitrogen atomized and water atomized dispersed copper powder in a certain proportion.
  • the mixing ratio is 60-80% of the nitrogen atomized powder and 20-40% of the water atomized powder.
  • the cost per ton is reduced by more than 4,000 yuan to avoid pure water Atomized preparation can easily lead to cracking defects during cold processing and use of electrode materials.
  • the cracking rate of high-aluminum dispersed copper electrode materials prepared by mixed powder is reduced to less than 0.5% compared with 1% to 5% of pure water atomization, which meets the requirements. Quality and performance requirements for automotive automatic welding electrode materials;
  • the present invention solves the existing problems of high cost of high-aluminum dispersed copper electrode materials prepared by pure nitrogen atomization powdering and high cracking rate of pure water atomized powdering prepared of high-aluminum dispersed copper electrode materials, greatly reducing The cracking rate of the high-aluminum dispersed copper electrode material during cooling and use is reduced, and the production cost is reduced; the parts not described in detail in the present invention are existing common technologies.
  • a low-cost, high-aluminum-content dispersion copper electrode ⁇ 16 specification rod for automatic welding of automobiles, with an Al 2 O 3 content of 0.58wt%, and its preparation method includes the following steps:
  • the ⁇ 100/ ⁇ 94 ⁇ 300 powder ingot is extruded on an 800-ton extruder.
  • the powder ingot is heated on a resistance furnace.
  • the heating temperature is 940°C.
  • the heating time is 3 hours.
  • the extrusion specification is ⁇ 25 and the extrusion ratio is 16. ;
  • the extruded extruded bar blank is removed from the head and tail, straightened, and stretched.
  • the finished product is ⁇ 16mm, and the pass processing rate is controlled within 15%; the stretched ⁇ 16mm dispersed copper bar is straightened and Cut off the head and tail.
  • the ⁇ 245/ ⁇ 235 ⁇ 300 powder ingot is extruded on a 4000-ton extruder.
  • the powder ingot is heated on a ring gas furnace. Heating temperature: 950°C. Heating time: 2.5 hours.
  • Extrusion specification is ⁇ 60. Extrusion ratio is 16.7;
  • the extruded bar blank is cut and straightened, and the finished product is ⁇ 60mm.

Abstract

一种抗开裂高铝含量弥散强化铜电极材料制备工艺,工艺流程:制备高铝弥散铜粉末‑氧源制备‑混粉‑冷等静压成形加工‑内氧化、还原、烧结一体化热处理‑无氧铜包套‑热挤压‑拉伸‑精整;通过对弥散铜高铝粉锭进行无氧铜包套,改善了高铝含量弥散铜棒材的表层条件,防止表层因加工塑性偏低而导致高铝弥散铜冷加工及使用过程中开裂情况发生,解决了现有的纯氮气雾化制粉制备高铝弥散铜电极材料高成本以及纯水雾化制粉制备高铝弥散铜电极材料的高开裂率问题,降低了高铝弥散铜电极材料在冷加工和使用过程中的开裂率,降低了生产成本。

Description

一种抗开裂高铝含量弥散强化铜电极材料制备工艺 技术领域
本发明涉及粉末冶金和有色金属加工技术领域,尤其涉及一种抗开裂高铝含量弥散强化铜电极材料制备工艺。
背景技术
弥散强化是通过在金属基体中引入稳定、均匀、细小的氧化物质点,钉扎位错、晶界、亚晶界,阻碍位错的移动,从而强化材料的方法。弥散强化铜由于在铜基体中弥散分布着细小均匀的氧化物质点,其强度较高,软化温度高;同时细小弥散分布的氧化物质点又不会对铜合金本身的导电导热性造成不良影响,使得弥散强化铜在提高强度的同时还能保持自身优异的导电导热性。
弥散强化铜合金因其优良的耐高温性能、高的强度、高导电性,被认为是极有发展潜力和应用前景的新型功能材料,已在超大规模集成电路引线框架、高脉冲磁场导体、大功率微波管、高速轨道交通用架空导线、电阻焊电极和连铸机结晶器等众多高新技术领域得到了广泛的应用。
在现代工业中,汽车生产线自动焊接机、机械手的大量运用,要求焊接在高速、高节拍、高质量中完成,这样对焊接设备各部件均提出了更高的要求。电阻焊电极,因为在高温、高压下频繁地与工件接触,在使用中需经常地更换。现大量使用的电极材料铬锆铜(Cu-Cr-Zr系列),由于软化温度(在500℃左右)较低,因此损坏严重,使焊接成本大幅提高,由于经常地更换,也严重影响了焊接设备的高效率。随着汽车行业的发展,耐蚀性优良的镀锌板得到了广泛的应用。而在使用Cu-Cr-Zr系列电极进行点焊时,钢板镀层中的锌很容易固溶到电极材料中去,使电极与钢板粘接在一起,影响接合质量并可造成自动生产线中断,导致生产率下降。基于以上原因国内外采用氧化铝弥散强化铜(ODS/Cu)的越来越多。由于其高导电(>80%IACS)及高的抗高温软化性能(软化温度≥900℃)优良,焊接镀锌的钢板时,在氧化铝强化铜电极顶部工作面形成的氧化铝保护层,能有效防止电极表面层在焊接低碳钢板过程中与钢板粘接,很大程度上减轻电极损耗,提高电极使用寿命2~5倍并显著提高生产效率。
目前汽车电阻焊电极主要用高铝弥散铜材料,有两个核心问题:一是材料硬度要高,高硬度能保证弥散铜电极材料的使用寿命,弥散铜的铝含量越高,硬度就越高,一般要求HRB大于80以上;其二是材料在冷加工和使用过程中不能开裂。高铝弥散铜粉末制备大多采用水雾化制粉和氮气雾化制粉,相对来讲,氮气雾化制粉,由于有氮气的保护,在雾化过程中形成的粗大氧化铝较少,有利于高铝弥散铜的冷加工变形,在冷加工变形过程及后续制备成电极材料在使用过程中不容易开裂,但氮气雾化制备粉末成本较高;水雾化制备的粉末,由于水中含氧高,形成的粗大氧化铝较氮气雾化制备的要高,因此,在冷加工过程及电极使用过程中容易开裂,在汽车自动焊生产线上,最忌讳的是电极在使用过程中的开裂,它会导致生产线中断,造成很大的损失;怎样解决电极材料开裂,降低生产成本,成为长期以来难以解决的技术难题。
鉴于上述原因,现研发出一种抗开裂高铝含量弥散强化铜电极材料制备工艺。
发明内容
本发明的目的是为了克服现有技术中的不足,提供一种抗开裂高铝含量弥散强化铜电极材料制备工艺,通过对弥散铜高铝粉锭进行无氧铜包套,极大的改善了因高含量弥散铜棒材的表层条件,防止表层因加工塑性偏低而导致的高铝弥散铜冷加工及使用过程中开裂情况发生,本发明解决了现有的纯氮气雾化制粉制备高铝弥散铜电极材料高成本以及纯水雾化制粉制备高铝弥散铜电极材料的高开裂率问题,极大的降低了高铝弥散铜电极材料在冷静和使用过程中的开裂率,降低了生产成本。
本发明为了实现上述目的,采用如下技术方案:一种抗开裂高铝含量弥散强化铜电极材料制备工艺,工艺流程:制备高铝弥散铜粉末-氧源制备-混粉-冷等静压成形加工-内氧化、还原、烧结一体化热处理-无氧铜包套-热挤压-拉伸-精整。
第一步,制备高铝弥散铜粉末:高纯氮气雾化制粉,采用100kg中频熔炼炉进行熔炼,首先在中频炉内加入高纯无氧电铜熔炼40~70分钟,熔炼过程用木炭覆盖;然后加入铜-13%磷中间合金脱氧0.5~3分钟,再加入铜-30%铝中间合金熔炼1~10分钟,Al在Cu—Al合金中的含量控制在0.5~0.8wt%,然后用0.5~1.5Mpa压力的高纯氮气进行雾化制粉,干燥、筛分出-100目Cu—Al合金原始粉末待用;
第二步,水雾化制粉,采用100kg中频熔炼炉进行熔炼,首先在中频炉内加入高纯无氧电铜熔炼40~70分钟,熔炼过程用木炭覆盖;然后加入铜-13%磷中间合金脱氧0.5~3分钟,再加入铜-30%铝中间合金熔炼1~10分钟,Al在Cu—Al合金中的含量控制在0.5~0.8wt%,然后用7~9.5Mpa压力的水进行雾化制粉,干燥、筛分出-100目Cu—Al合金原始粉末待用;
第三步,氧源制备:将水雾化的-100目Cu—Al合金原始粉末再进行过筛,筛分出-200目Cu—Al粉,在100℃~500℃条件下,氧化20~80小时,然后在氮气保护条件下,400℃~950℃分解成氧化亚铜固体氧源;
第四步,混粉:把制得的-200目的氧化亚铜氧源和65%的氮气雾化,35%的水雾化原始粉按配比公式计算出氧源的添加量,所述的配比公式:M/N=9A/8B×P,M为原始粉重量,N为氧化剂重量,A为氧化剂氧含量的重量百分比,可用氢损值代替,B为原始粉中铝的重量百分比,P为氧化剂过剩系数0.3~0.9,混料时间为0.5~2.0小时;
第五步,冷等静压加工:将按比例混合好的弥散铜合金粉末用冷等静压胶套进行密封,在振动机上震动1~3分钟,使松装密度均匀,压坯密度一致,然后用橡胶帽封口,再用铁丝紧固;把封装好弥散铜粉的胶套放入冷等静压缸体内,进行冷等静压处理,制得冷等静压粉锭;压制压力:150~300Mpa,升压速度:10~20Mpa/分钟,保压时间5~10分钟;
第六步,内氧化、还原、烧结一体化热处理:把冷等静压粉锭放入热处理炉的炉胆内,按照内氧化、还原、烧结的顺序进行“一体化”热处理,内氧化处理是让冷等静压合金粉锭中的Al转化为Al 2O 3,内氧化温度:830℃~950℃,内氧化时间:1~8小时,保护气氛:氮气;还原温度:880℃~950℃,还原时间:1~8小时,还原气氛:高纯氢气,露点:-60℃,氧含量:≯5PPm;烧结温度:950℃~1020℃,烧结时间:1~6小时,烧结气氛:高纯氢气,露点:-60℃,氧含量:≯5PPm;
第七步,无氧铜包套:把热处理好的粉锭装到指定厚度,不同粉锭尺寸,选择不同厚度的铜套,按测算,保证Ф16规格的棒材外层无氧铜厚度0.4mm;
第八步,热挤压:粉锭加热温度:830℃~960℃,加热时间:1~5小时,挤压比10~35;
第九步,拉伸:把挤压后的挤制棒坯进行去头尾、矫直,进行拉伸加工,道次加工率控制在15%以内,加工到用户需要的尺寸;
第十步,精整:对拉伸后的弥散无氧铜棒材进行矫直并切除头尾。
本发明的有益效果是:把氮气雾化和水雾化弥散铜粉末按一定比例进行混合,混合比例为氮气雾化粉末占比60-80%,水雾化粉末20-40%,在氮气雾化粉末中,添加20-40%的水雾化粉末后,增加了高铝弥散铜电极材料的开裂倾向,按常用规格Ф16mm的棒材吨加工成本测算,吨费用降低4000元以上,避免单纯水雾化制备容易导致电极材料冷加工和使用过程中开裂缺陷,采用混合粉末制备的高铝弥散铜电极材料的开裂率较纯水雾化的1%~5%降低到万分之五以内,满足了汽车自动焊电极材料的质量和性能要求;
通过对弥散铜高铝粉锭进行无氧铜包套,极大的改善了因高含量弥散铜棒材的表层条件,防止表层因加工塑性偏低而导致的高铝弥散铜冷加工及使用过程中开裂情况发生,本发明解决了现有的纯氮气雾化制粉制备高铝弥散铜电极材料高成本以及纯水雾化制粉制备高铝弥散铜电极材料的高开裂率问题,极大的降低了高铝弥散铜电极材料在冷静和使用过程中的开裂率,降低了生产成本;本发明未详细说明处为现有常用技术。
实施方式
下面结合实施例与具体实施方式对本发明作进一步详细说明:
实施例1
一种用于汽车自动焊抗开裂低成本高铝含量弥散铜电极Φ16规格棒材,Al 2O 3含量为0.58wt%,其制备方法包含以下步骤:
Ф93mm×290规格粉锭制备:
把Al 2O 3含量为0.58wt%的备用的纯氮气雾化粉末和水雾化粉末按75%/25%+氧源,氧含量为5.3%,添加比例按M/N=9A/8B×P,过剩系数P取0.67,混合1小时,装入等静压胶套中进行等静压加工,压力取200MPa,保压时间:7分钟,制得Ф93mm规格的粉锭,把冷等静压粉锭放入热处理炉炉胆内,内氧化温度:850℃,内氧化时间:2.5小时,保护气氛:氮气;还原温度:890℃,还原时间:,3小时,还原气氛:高纯氢气,露点:-60℃,氧含量:≯5PPm;烧结温度:970℃,烧结时间:2.5小时,烧结气氛:高纯氢气,露点:-60℃,氧含量:≯5PPm;
把热处理好的粉锭装入Ф100/Ф94×300的无氧铜套中进行氩弧焊密封;
把Ф100/Ф94×300粉锭在800吨挤压机上进行挤压加工,粉锭在电阻炉上加热,加热温度:940℃,加热时间:3小时,挤制规格为Ф25,挤压比为16;
把挤压后的挤制棒坯进行去头尾、矫直,进行拉伸加工,成品为Ф16mm,道次加工率控制在15%以内;对拉伸后的Ф16mm弥散铜棒材进行矫直并切除头尾。
Ф16mm弥散铜实测性能
规格 状态 Rm (MPa) Rp0.2 (MPa) A (%) 硬度 ( HRB) 导电率 (%IACS)
Φ16 Y 598 580 12 82 79
实施例2
一种用于汽车自动焊抗开裂低成本高铝含量弥散铜电极Φ60规格棒材,A l2O 3含量为0.58wt%;
把Al2O3含量为0.58wt%的备用的纯氮气雾化粉末和水雾化粉末按65%/35%+氧源,氧含量为5.3%,添加比例按M/N=9A/8B×P,过剩系数P取0.67,混合1小时,装入等静压胶套中进行等静压加工,压力取200MPa,保压时间:10分钟,制得Ф93mm规格的粉锭,把冷等静压粉锭放入热处理炉炉胆内,内氧化温度:850℃,内氧化时间:3.5小时,保护气氛:氮气;还原温度:890℃,还原时间:,3.5小时,还原气氛:高纯氢气,露点:-60℃,氧含量:≯5PPm;烧结温度:970℃,烧结时间:3小时,烧结气氛:高纯氢气,露点:-60℃,氧含量:≯5PPm;
把热处理好的粉锭装入Ф245/Ф235×400的无氧铜套中进行氩弧焊密封;
把Ф245/Ф235×300粉锭在4000吨挤压机上进行挤压加工,粉锭在环形煤气炉上加热,加热温度:950℃,加热时间:2.5小时,挤制规格为Ф60,挤压比为16.7;
把挤压后的挤制棒坯进行切头去尾、矫直,成品为Ф60mm。
Ф60mm弥散铜实测性能
规格 状态 Rm (MPa) Rp0.2 (MPa) A (%) 硬度 ( HRB) 导电率 (%IACS)
Φ60 M 535 467 20 79.5 80.5

Claims (2)

  1. 一种抗开裂高铝含量弥散强化铜电极材料制备工艺,其特征在于:工艺流程:制备高铝弥散铜粉末-氧源制备-混粉-冷等静压成形加工-内氧化、还原、烧结一体化热处理-无氧铜包套-热挤压-拉伸-精整。
  2. 根据权利要求1所诉的一种抗开裂高铝含量弥散强化铜电极材料制备工艺,其特征在于:
    第一步,制备高铝弥散铜粉末:高纯氮气雾化制粉,采用100kg中频熔炼炉进行熔炼,首先在中频炉内加入高纯无氧电铜熔炼40~70分钟,熔炼过程用木炭覆盖;然后加入铜-13%磷中间合金脱氧0.5~3分钟,再加入铜-30%铝中间合金熔炼1~10分钟,Al在Cu—Al合金中的含量控制在0.5~0.8wt%,然后用0.5~1.5Mpa压力的高纯氮气进行雾化制粉,干燥、筛分出-100目Cu—Al合金原始粉末待用;
    第二步,水雾化制粉,采用100kg中频熔炼炉进行熔炼,首先在中频炉内加入高纯无氧电铜熔炼40~70分钟,熔炼过程用木炭覆盖;然后加入铜-13%磷中间合金脱氧0.5~3分钟,再加入铜-30%铝中间合金熔炼1~10分钟,Al在Cu—Al合金中的含量控制在0.5~0.8wt%,然后用7~9.5Mpa压力的水进行雾化制粉,干燥、筛分出-100目Cu—Al合金原始粉末待用;
    第三步,氧源制备:将水雾化的-100目Cu—Al合金原始粉末再进行过筛,筛分出-200目Cu—Al粉,在100℃~500℃条件下,氧化20~80小时,然后在氮气保护条件下,400℃~950℃分解成氧化亚铜固体氧源;
    第四步,混粉:把制得的-200目的氧化亚铜氧源和65%的氮气雾化,35%的水雾化原始粉按配比公式计算出氧源的添加量,所述的配比公式:M/N=9A/8B×P,M为原始粉重量,N为氧化剂重量,A为氧化剂氧含量的重量百分比,可用氢损值代替,B为原始粉中铝的重量百分比,P为氧化剂过剩系数0.3~0.9,混料时间为0.5~2.0小时;
    第五步,冷等静压加工:将按比例混合好的弥散铜合金粉末用冷等静压胶套进行密封,在振动机上震动1~3分钟,使松装密度均匀,压坯密度一致,然后用橡胶帽封口,再用铁丝紧固;把封装好弥散铜粉的胶套放入冷等静压缸体内,进行冷等静压处理,制得冷等静压粉锭;压制压力:150~300Mpa,升压速度:10~20Mpa/分钟,保压时间5~10分钟;
    第六步,内氧化、还原、烧结一体化热处理:把冷等静压粉锭放入热处理炉的炉胆内,按照内氧化、还原、烧结的顺序进行“一体化”热处理,内氧化处理是让冷等静压合金粉锭中的Al转化为Al 2O 3,内氧化温度:830℃~950℃,内氧化时间:1~8小时,保护气氛:氮气;还原温度:880℃~950℃,还原时间:1~8小时,还原气氛:高纯氢气,露点:-60℃,氧含量:≯5PPm;烧结温度:950℃~1020℃,烧结时间:1~6小时,烧结气氛:高纯氢气,露点:-60℃,氧含量:≯5PPm;
    第七步,无氧铜包套:把热处理好的粉锭装到指定厚度,不同粉锭尺寸,选择不同厚度的铜套,按测算,保证Ф16规格的棒材外层无氧铜厚度0.4mm;
    第八步,热挤压:粉锭加热温度:830℃~960℃,加热时间:1~5小时,挤压比10~35;
    第九步,拉伸:把挤压后的挤制棒坯进行去头尾、矫直,进行拉伸加工,道次加工率控制在15%以内,加工到用户需要的尺寸;
    第十步,精整:对拉伸后的弥散无氧铜棒材进行矫直并切除头尾。
PCT/CN2023/111803 2022-08-09 2023-08-08 一种抗开裂高铝含量弥散强化铜电极材料制备工艺 WO2024032627A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210946648.2A CN115319100A (zh) 2022-08-09 2022-08-09 一种抗开裂高铝含量弥散强化铜电极材料制备工艺
CN202210946648.2 2022-08-09

Publications (1)

Publication Number Publication Date
WO2024032627A1 true WO2024032627A1 (zh) 2024-02-15

Family

ID=83921187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111803 WO2024032627A1 (zh) 2022-08-09 2023-08-08 一种抗开裂高铝含量弥散强化铜电极材料制备工艺

Country Status (2)

Country Link
CN (1) CN115319100A (zh)
WO (1) WO2024032627A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115319100A (zh) * 2022-08-09 2022-11-11 中铝洛阳铜加工有限公司 一种抗开裂高铝含量弥散强化铜电极材料制备工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186801A (ja) * 1992-01-09 1993-07-27 Daido Steel Co Ltd 粉末射出成形用金属粉末
CN1563447A (zh) * 2004-03-30 2005-01-12 洛阳铜加工集团有限责任公司 弥散强化铜合金及其制备工艺方法
JP2007066753A (ja) * 2005-08-31 2007-03-15 Toshiba Corp 真空バルブ用接点材料及びその製造方法
CN104259692A (zh) * 2014-10-10 2015-01-07 中铝洛阳铜业有限公司 一种用于汽车机器人自动焊工位电阻焊电极的制备方法
CN104289830A (zh) * 2014-10-10 2015-01-21 中铝洛阳铜业有限公司 一种用于锂电池联接镍片的电阻焊电极的制备方法
JP2016211043A (ja) * 2015-05-11 2016-12-15 株式会社アテクト タービンホイールの製造方法
CN108057732A (zh) * 2017-12-05 2018-05-22 中铝洛阳铜加工有限公司 一种弥散强化铜与无氧铜复合棒材的制备方法
CN109536771A (zh) * 2018-11-23 2019-03-29 中铝洛阳铜加工有限公司 一种弥散强化无氧铜合金板材的制备方法
CN110625126A (zh) * 2019-10-14 2019-12-31 中铝洛阳铜加工有限公司 一种高导电高耐热弥散无氧铜制备方法
CN115319100A (zh) * 2022-08-09 2022-11-11 中铝洛阳铜加工有限公司 一种抗开裂高铝含量弥散强化铜电极材料制备工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186801A (ja) * 1992-01-09 1993-07-27 Daido Steel Co Ltd 粉末射出成形用金属粉末
CN1563447A (zh) * 2004-03-30 2005-01-12 洛阳铜加工集团有限责任公司 弥散强化铜合金及其制备工艺方法
JP2007066753A (ja) * 2005-08-31 2007-03-15 Toshiba Corp 真空バルブ用接点材料及びその製造方法
CN104259692A (zh) * 2014-10-10 2015-01-07 中铝洛阳铜业有限公司 一种用于汽车机器人自动焊工位电阻焊电极的制备方法
CN104289830A (zh) * 2014-10-10 2015-01-21 中铝洛阳铜业有限公司 一种用于锂电池联接镍片的电阻焊电极的制备方法
JP2016211043A (ja) * 2015-05-11 2016-12-15 株式会社アテクト タービンホイールの製造方法
CN108057732A (zh) * 2017-12-05 2018-05-22 中铝洛阳铜加工有限公司 一种弥散强化铜与无氧铜复合棒材的制备方法
CN109536771A (zh) * 2018-11-23 2019-03-29 中铝洛阳铜加工有限公司 一种弥散强化无氧铜合金板材的制备方法
CN110625126A (zh) * 2019-10-14 2019-12-31 中铝洛阳铜加工有限公司 一种高导电高耐热弥散无氧铜制备方法
CN115319100A (zh) * 2022-08-09 2022-11-11 中铝洛阳铜加工有限公司 一种抗开裂高铝含量弥散强化铜电极材料制备工艺

Also Published As

Publication number Publication date
CN115319100A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
CN101121974B (zh) 一种高强高导弥散强化铜合金及其制备方法
CN109371271B (zh) 铜铁合金的非真空熔炼及连铸工艺
CN109536771B (zh) 一种弥散强化无氧铜合金板材的制备方法
CN105483419A (zh) 一种高强高导氧化铝弥散强化铜基复合材料的制备方法
CN105132736A (zh) 弥散铜复合材料及其制备方法
WO2024032627A1 (zh) 一种抗开裂高铝含量弥散强化铜电极材料制备工艺
CN105506329B (zh) 一种高Al2O3浓度Cu‑Al2O3纳米弥散强化合金的制备方法
CN110355363B (zh) 一种氧化铝铬锆铜复合材料的制备方法
CN105039883A (zh) 一种Cu-Cr-Zr合金接触线的制备方法
CN106676319B (zh) 一种高强高导铜镁合金接触线及其制备方法
CN109332706B (zh) 一种高导电性高强度耐热铝合金导线的制备方法
CN1120245C (zh) 含有氧化物弥散强化铜的铬锆铜棒材生产工艺方法
CN101178958B (zh) 超高张力铜线及其制备方法
CN104259692A (zh) 一种用于汽车机器人自动焊工位电阻焊电极的制备方法
CN112264732B (zh) 一种铜/钢异种焊接的焊丝及其制备方法、铜/钢异种焊接的方法
CN104561638A (zh) 一种Al2O3弥散强化铜基复合材料的制备方法
CN111172422B (zh) 氧化铝弥散强化铜基复合材料的制备方法
CN112958785A (zh) 一种3d打印铜铝复合材料及其制备方法
CN112663006A (zh) 一种镍钒合金管靶及生产方法
CN104289830A (zh) 一种用于锂电池联接镍片的电阻焊电极的制备方法
CN111850340A (zh) 高导高硬的铬锆铜合金、制备方法及其应用
CN110421004A (zh) 一种氧化铝弥散强化铜大块板带材料的制备方法
CN112430763B (zh) 一种Al2O3弥散强化铜基复合材料的制备方法
CN110527856B (zh) 一种高表面质量、高强度镍合金带材的制备方法
CN110964942B (zh) 一种高强耐磨铜合金管材的制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851848

Country of ref document: EP

Kind code of ref document: A1