WO2024032583A1 - 母线装置 - Google Patents

母线装置 Download PDF

Info

Publication number
WO2024032583A1
WO2024032583A1 PCT/CN2023/111665 CN2023111665W WO2024032583A1 WO 2024032583 A1 WO2024032583 A1 WO 2024032583A1 CN 2023111665 W CN2023111665 W CN 2023111665W WO 2024032583 A1 WO2024032583 A1 WO 2024032583A1
Authority
WO
WIPO (PCT)
Prior art keywords
busbar
conductive coating
contact
conductive
connection area
Prior art date
Application number
PCT/CN2023/111665
Other languages
English (en)
French (fr)
Other versions
WO2024032583A8 (zh
Inventor
宋显凤
黄剑远
黄剑良
林添闻
何燕兵
Original Assignee
施耐德电气(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 施耐德电气(中国)有限公司 filed Critical 施耐德电气(中国)有限公司
Publication of WO2024032583A1 publication Critical patent/WO2024032583A1/zh
Publication of WO2024032583A8 publication Critical patent/WO2024032583A8/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R25/00Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits
    • H01R25/16Rails or bus-bars provided with a plurality of discrete connecting locations for counterparts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/06Intermediate parts for linking two coupling parts, e.g. adapter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars

Definitions

  • Embodiments of the present disclosure relate generally to the field of power transmission, and in particular to busbar devices.
  • Busbars are widely used in power systems for power transmission.
  • the busbar is usually made of aluminum or copper and is generally flat in shape and has a certain cross-sectional area, which is related to the amount of current allowed to flow.
  • Multi-segment busbars usually need to be connected to each other to extend the length that the busbar can reach; in addition, the busbar can also be equipped with multiple power points to allow multiple downstream lines to branch from the busbar.
  • busbars With long-term use, busbars usually have surface oxidation problems, which will cause the contact resistance at the joints of the busbar to significantly increase and seriously degrade the conductive performance of the busbar.
  • bimetallic sheets are usually provided in the traditional joint area to inhibit oxidation.
  • the bimetallic sheet needs to be attached using spot welding, which results in complicated processing.
  • electric welding machines need to be used when laying out busbars on site, which increases the user's fixed investment cost.
  • the bimetallic piece can only be placed at a location suitable for spot welding, which results in a limitation in the arrangement area of the bimetallic piece. It is desirable to be able to improve conventional busbars to reduce the cost of the busbars and/or to improve the performance of the busbars.
  • Embodiments of the present disclosure provide a busbar device intended to solve one or more of the above problems and other potential problems.
  • Busbar devices include: A first busbar and a second busbar, each busbar including a busbar connection area, the busbar connection area including a first conductive coating, wherein the busbar connection area of the first busbar and the busbar connection area of the second busbar are in the longitudinal direction are in direct contact with each other to form electrical contact, or the busbar connection area of the first busbar and the busbar connection area of the second busbar are longitudinally spaced apart from each other and configured to be electrically connected via additional connection conductors.
  • the busbar device by forming the first conductive coating in the busbar connection area, the electrical contact performance at the busbar connection joint is improved, the contact resistance is reduced, and the electrical contact reliability is improved.
  • the busbar device may further include a busbar connector including the connecting conductor at least in a busbar connection area with the first busbar and/or with the second busbar.
  • the portion of the busbar that the busbar connection area contacts includes a second conductive coating, wherein the busbar connection area and the connection conductor form electrical contact via contact of the first conductive coating with the second conductive coating.
  • the connecting conductor includes the second conductive coating over at least the entire surface of the contact side. Thereby, the second conductive coating can be easily formed, and even if the conductive coating is provided, assembly can be easily performed. In some embodiments, the connecting conductor includes a second conductive coating on both surfaces. This can further facilitate the assembly work of the busbar device.
  • the busbar includes: a conductive body made of a first conductive material; and the first conductive coating made of a second conductive material different from the first conductive material.
  • a first conductive coating is applied to the busbar connection area by cold spraying particles of the second conductive material.
  • the conductive coating can be formed in a convenient and low-cost manner.
  • cold spraying can be used to form a conductive coating on any suitable area of the busbar, which makes it possible to provide a conductive coating at any conductive joint.
  • the conductive coating can be formed during the busbar manufacturing process, additional coating operations at the installation site are avoided, thereby reducing hardware at the installation site. cost of investment.
  • the first conductive material is selected from one of copper and aluminum
  • the second conductive material is selected from at least one material selected from copper, silver, and tin.
  • the thickness of the conductive coating is no less than 0.02 mm. Thus, the performance of the electrically conductive contact can be ensured.
  • the longitudinal length of the conductive coating is no less than 3 times the thickness of the bus bar. Thus, the performance of the electrically conductive contact can be ensured.
  • the electrically conductive body includes a first longitudinal end and a second longitudinal end, at least one of the first longitudinal end and the second longitudinal end including the first electrically conductive coating. And formed into the busbar connection area. As a result, the electrical contact performance of the busbar device at the longitudinal joints can be improved.
  • the conductive body includes an intermediate section between the first longitudinal end and the second longitudinal end, the intermediate section includes a top surface and a bottom surface, wherein the top surface and at least one of the bottom surfaces includes one or more areas where the third conductive coating is disposed, the busbar is configured to transversely extend at the one or more areas via the third conductive coating. making electrical contact with at least one conductor. As a result, the electrical contact performance at the lateral power extraction points of the busbar can be improved through the third conductive coating.
  • the one or more regions include two regions arranged side by side, such that the busbar can respectively form electrical contact with a plurality of conductors laterally via the two regions; and/or the The one or more regions include a plurality of regions arranged longitudinally such that the busbar can each form electrical contact with at least one conductor via the plurality of regions.
  • the busbar further includes a pair of contact pads, each contact pad of the pair of contact pads including a fourth conductive coating at least in a portion that is in electrical contact with the other conductor, wherein the pair of contact pads Can be secured together by fasteners in a manner that clamps the other conductor. Therefore, the pair of contact pieces can be used to realize the lateral power extraction point, and the electrical contact performance at the lateral power extraction point of the busbar can be improved by the fourth conductive coating.
  • each contact of the pair of contacts is at least on the contact side.
  • the entire surface includes said fourth conductive coating.
  • the busbar further includes at least one ridge protruding from a lateral side of the conductive body, the ridge including a top surface and a bottom surface, at least one of the top surface and the bottom surface including a fifth conductive Coating, the busbar is configured to make electrical contact laterally with another conductor via the ridge.
  • the ridges can be used to realize lateral power extraction points, and the electrical contact performance at the lateral power extraction points of the busbar can be improved by the fifth conductive coating.
  • FIG. 1 shows a perspective view of a busbar device according to an embodiment of the present disclosure.
  • Figure 2 shows an exploded view of a busbar arrangement according to an embodiment of the present disclosure.
  • Figure 3 shows a schematic diagram of two busbar connections according to an embodiment of the present disclosure.
  • FIG. 4 shows a schematic diagram of a busbar device according to another embodiment of the present disclosure.
  • FIG. 5 shows a three-dimensional schematic view of a busbar with transverse power extraction points according to an embodiment of the present disclosure.
  • FIG. 6 shows a three-dimensional schematic view of a busbar with transverse power extraction points according to another embodiment of the present disclosure.
  • Figure 7 shows a perspective view of a busbar with transverse power extraction points according to yet another embodiment of the present disclosure, in which the power extraction connector is installed to the busbar;
  • FIG. 8 shows a three-dimensional schematic view of a busbar with transverse power extraction points according to yet another embodiment of the present disclosure, in which the power extraction connector is separated from the busbar.
  • FIG. 9 shows a three-dimensional schematic view of a busbar with transverse power extraction points according to yet another embodiment of the present disclosure.
  • FIG. 10 shows a perspective view of a busbar with transverse power extraction points according to yet another embodiment of the present disclosure, wherein the power extraction connector is installed to the busbar.
  • FIG. 11 illustrates a flowchart of a method for manufacturing a busbar according to an embodiment of the present disclosure.
  • Figure 12 shows a schematic diagram of a system for manufacturing a busbar according to an embodiment of the present disclosure.
  • the term “include” and its variations mean an open inclusion, ie, "including but not limited to.” Unless otherwise stated, the term “or” means “and/or”. The term “based on” means “based at least in part on.” The terms “one example embodiment” and “an embodiment” mean “at least one example embodiment.” The term “another embodiment” means “at least one additional embodiment”.
  • the terms “upper”, “lower”, “front”, “back” and other words indicating placement or positional relationship are based on the orientation or positional relationship shown in the drawings. They are only used to facilitate the description of the principles of the present disclosure and do not indicate or imply Elements referred to must have a specific orientation, be constructed or operate in a specific orientation and therefore are not to be construed as limitations on the disclosure.
  • the busbar includes a conductive coating made of a second conductive material different from the material of the busbar body at the joint, so that the conductive coating is implemented at the joint.
  • An electrical connection between two conductors Through conductive coating, not only the molding method is simple, but also the conductive coating can be formed at any appropriate location as needed, which can significantly improve the performance of the busbar.
  • the busbar device 100 may include a busbar 10 extending along a longitudinal direction (only one busbar is illustrated in the figures).
  • the bus bar 10 is formed to have a predetermined longitudinal length.
  • the term "longitudinal” here refers to the extension direction of the busbar, which extension direction is consistent with the direction of current flow.
  • Multiple busbars 10 may be connected to each other to form an extended busbar. According to the distance of power transmission, multiple busbars 10 can be connected in series with each other in the longitudinal direction to provide power to required places.
  • the busbar arrangement 100 is three-phase and may include three first busbars arranged side by side. It should be noted that, by way of example only, the busbar device may also include other numbers of busbars.
  • Busbar device 100 may also include busbar connectors 20 .
  • the busbar connector 20 may be used to fasten adjacent busbars 10 to each other to achieve electrical connection between adjacent busbars.
  • Busbar connectors can include various implementations.
  • adjacent busbars are not in direct contact with each other, but the electrical connection of adjacent busbars can be achieved through connecting conductors provided in the busbar connector.
  • the busbar connector 20 can be used for connecting multi-phase busbars, and can include a plurality of connecting conductors 22 , insulating plates 26 , fasteners 28 and other components.
  • the connecting conductor 22 can be provided with a through hole, and the fastener 28 can be used to fix the connecting conductor 22, the insulating plate 26 and the adjacent bus bar 10 together.
  • a part of the connection conductor 22 is in contact with one bus bar, and the other part of the connection conductor 22 is in contact with the other bus bar.
  • Adjacent busbars and connecting conductors are mounted to each other via fasteners 28 to achieve electrical connection of adjacent busbars.
  • the busbar 10 may include a conductive body 15 made of a first conductive material and a first conductive coating made of a second conductive material different from the first conductive material. Layer 12.
  • the conductive coating 12 is shown in the form of filled lines.
  • the conductive coating 12 may be provided on the contact surface area of the conductive body 15 .
  • the term "contact surface area" refers to the joint area of a busbar, i.e. that area of the busbar where it will make electrical contact with another busbar or conductor.
  • a conductive coating made of a material different from that of the conductive body 15 at the joint area of the bus bar, and realizing electrical connection between the bus bar and other conductors through the conductive coating, it is possible to effectively Defects caused by surface oxidation, potential corrosion and other problems of the busbar. Since it is formed by coating, no electric welding is required, so the complexity of the process can be effectively reduced. In addition, the coating can be pre-formed during the factory, for example, and the user only needs to perform assembly operations on site rather than Additional welding and other processes are required, which reduces user inconvenience and associated hardware and labor costs. In addition, the conductive coating can be easily formed using only a small amount of metal, which can reduce the cost of the busbar.
  • the coating since the coating is formed using a spraying process, the coating can be formed in any appropriate position. As long as the shape or structural features of each part of the busbar do not interfere with the coating process, the coating can be applied. Unlike traditional double-sided Compared to sheet metal construction, the area over which coatings can be applied is significantly increased.
  • Forming the conductive coating on the conductive body 15 may include various methods. As an example, the conductive coating 12 may be applied on the contact surface area by cold spraying particles of a second conductive material. An exemplary manufacturing method will be described in detail later with reference to FIG. 9 . It should be understood that cold spraying is only one example of forming a coating, and any other suitable method may be used to form the conductive coating.
  • the thickness of the conductive coating is no less than 0.02 mm. As a result, the desired effect can be achieved with extremely thin conductive coatings. In some embodiments, the thickness of the conductive coating may be 0.02mm, 0.03mm, 0.04mm, 0.05mm, 0.06mm, 0.07mm or greater.
  • the longitudinal spray length of the conductive coating is no less than 3 times the thickness of the busbar. This ensures that the conductive coating performs its properties effectively. In some embodiments, the longitudinal spray length of the conductive coating may be 4 times, 5 times, 6 times, 7 times, 8 times, or more times the thickness of the bus bar.
  • the term "longitudinal spray length" here refers to the length in the direction of current flow when the busbar is in contact with another conductor.
  • the first conductive material used to form conductive body 15 is selected from one of copper and aluminum.
  • the second conductive material is selected from at least one material selected from copper, silver and tin.
  • an aluminum surface may be coated with a silver, tin and/or copper coating; a copper surface may be coated with a silver and/or tin coating.
  • the aluminum surface is coated with only a silver layer, or only a tin layer, or only a copper layer.
  • multiple metal layers of different materials can be coated on the aluminum surface, for example, a copper layer is coated first, and then a silver layer and/or a tin layer is coated.
  • conductive body 15 may include a first longitudinal end 17 and the second longitudinal end 19 .
  • the first longitudinal end 17 and the second longitudinal end 19 may each include an electrically conductive coating 12 .
  • the busbar 10 can be electrically connected to adjacent busbars through the first longitudinal end 17 and the second longitudinal end 19 . This ensures that the joint areas of adjacent busbars are effectively protected by conductive coatings.
  • the conductive coating 12 may cover the entire width arrangement of the first longitudinal end 17 and the second longitudinal end 19 .
  • FIG. 3 schematically shows an example of using a busbar connector 20 to realize the longitudinal connection of two busbars 10 .
  • the two bus bars 10 are not in direct contact but are in contact with the two bus bars respectively via the connecting conductor 22 , thereby electrically connecting the two bus bars together.
  • the first conductive coating 12 is provided at least in the surface contact area between the bus bar and the connecting conductor 22 .
  • a second conductive coating 25 is provided at least on the electrical contact surface of the connecting conductor 22 .
  • the busbar 10 is arranged sandwiched by two connecting conductors 22 .
  • both the front and back surfaces of the bus bar may be provided with the first conductive coating 12 .
  • a second conductive coating 25 is provided on the surface of the connecting conductor 22 that is in contact with the busbar. This ensures that the conductive coating is formed on all interface surfaces.
  • the connection method shown in FIG. 3 uses two connecting conductors 22 for one phase of electricity. It should be understood that this is only exemplary. For each phase of electricity, the number of connecting conductors can be more.
  • all of the electrical contact-forming portions of the connecting conductors include conductive coatings; in other embodiments, some of the electrical contact-forming portions of the connecting conductors may include conductive coatings.
  • busbars and connecting conductors may be connected in any other suitable manner, as long as firm (e.g. pressure) contact between the two is ensured.
  • connection conductor 22 is provided with a conductive coating. In some embodiments, the conductive coating is provided only on portions of the connecting conductors 22 that are in contact with the busbars. Furthermore, in some embodiments, the entire surface of the connecting conductor 22 facing the busbar 10 may be provided with a conductive coating. In some embodiments, both the front and back surfaces of the connection conductor 22 may be provided with conductive coatings. This has advantages during assembly.
  • FIG. 3 also shows the longitudinal spraying lengths d1 , d2 of the conductive coatings 12 , 14 , which may correspond to the longitudinal lengths of the joint areas of the busbar 10 .
  • Spray vertically The coating lengths d1 and d2 are not less than 6 times the thickness of the conductive coatings 12 and 14. This ensures that the conductive coating performs its properties effectively.
  • the longitudinal spraying lengths d1, d2 may be 7, 8, 10 or even more times the thickness of the conductive coatings 12, 14 to provide a greater contact margin.
  • FIG. 4 shows a schematic diagram of a busbar device 200 according to another embodiment of the present disclosure. Different from the busbar device 100 shown in FIGS. 1 and 2 , in the busbar device 200 , two adjacent busbars 10 can directly form electrical contact through overlapping. As shown in FIG. 4 , the overlapping areas of busbar arrangement 200 may include conductive coating 12 .
  • busbars 300, 400, and 500 having transverse power extraction points according to different embodiments of the present disclosure.
  • the conductive body 15 may include an intermediate section 18 between the first longitudinal end 17 and the second longitudinal end 19 .
  • One or more areas of the intermediate section 18 may be provided with a third conductive coating 14 .
  • the busbar 10 is able to make electrical contact laterally with a plurality of conductors at one or more areas via the third conductive coating 14 .
  • lateral power extraction points can be conveniently provided on the busbar 10 .
  • the power extraction point can be set arbitrarily as needed, which is low cost and easy to implement.
  • the third conductive coating 14 can be conveniently provided according to the type of power interface.
  • the third conductive coating may be provided on only one surface of the middle section 18; in some embodiments, the conductive coating may be provided on both front and back surfaces of the middle section 18.
  • the third conductive coating 14 can be formed into various patterns according to the setting requirements of the power extraction point.
  • the third conductive coating 14 may be adjacent to the lateral edges of the bus bars and may be arranged side by side.
  • the busbar 10 can respectively form two power extraction points suitable for lateral power extraction via transversely separated conductive coatings. This advantageously saves the amount of the third conductive coating 14 and ensures reliable performance of the power extraction point.
  • the third conductive coating 14 is laterally spaced apart, this is exemplary only. In other embodiments, the third conductive coating 14 may extend across the entire width of the busbar.
  • the third conductive coatings 14 are arranged laterally in pairs, this is exemplary only. In other embodiments, only one conductive coating may be provided.
  • the third conductive coating 14 may be adjacent the lateral edge of the busbar and And can be set vertically. Therefore, the busbar 10 can respectively form a plurality of power extraction points suitable for longitudinal power extraction via longitudinally separated conductive coatings. This advantageously saves the amount of the third conductive coating 14 and ensures reliable performance of the power extraction point. It is worth noting that the number of the third conductive coating layers 14 shown in the figure is only exemplary, and the third conductive coating layers 14 may be formed in any other appropriate number.
  • the busbar 300 may include a lateral power extraction interface 330 .
  • the lateral power extraction interface may include a pair of contacts 30 .
  • This structure of paired contacts is particularly suitable for scenarios with large currents.
  • a power-taking conductor (not shown) may be secured to the third conductive coating 14 via a pair of contacts 30 .
  • a portion of the contact blade 30 may be in contact with the third conductive coating 14, and another part of the contact blade 30 may be in contact with a power-taking conductor (not shown). Thereby, the contact piece 30 clamps the busbar and the power-taking conductor in surface contact.
  • the contact blade 30 may include fastening holes 336 through which fasteners (not shown) may be used to fasten the contact blade 30 , the power-taking conductors, and the bus bar 10 together.
  • fourth conductive coatings 332 and 334 are provided on both the upper and lower surfaces of the contact piece 30 (ie, the shaded portions shown in the figure).
  • the contact between the busbar and the contact pair 30 is made by means of an electrically conductive coating. As a result, the electrical performance at the joint can be significantly improved.
  • busbar 300 is shown to include only four conductive coatings 14, this is by way of example only. Busbar 300 may be provided with any other suitable number of conductive coatings.
  • the busbar 400 may include a horizontal power extraction interface 430 .
  • the horizontal power extraction interface may also include pairs of contacts 30 .
  • the difference between Figure 6 and Figure 5 is that only the electrical contact portion of the contact piece 30 (ie, the hatched portion shown in the figure) is provided with a fourth conductive coating 434; while the non-electrical contact portion 432 of the contact piece is not provided with a conductive coating. layer. Both front and back surfaces of the contact piece 30 are provided with conductive coatings, which has great advantages during assembly.
  • no contacts may be provided.
  • the power-taking conductor can be directly connected to the busbar.
  • the power-taking conductor 550 may include a pair of claws, and the pair of claws may engage with the bus bar 500 at the conductive coating 14 . Since the busbar 500 and the power-taking conductor 550 are in direct contact through the conductive coating 14, the joint can be significantly improved. electrical properties. This busbar structure is particularly suitable for scenarios with small currents.
  • the busbar 600 also includes at least one ridge 13 protruding from the lateral sides of the conductive body 15 .
  • the ridge 13 includes a top surface and a bottom surface, at least one of which includes a fifth conductive coating 132 . Therefore, the power-drawing connector of the busbar 600 can form electrical contact with the power-drawing connector 650 through the fifth conductive coating 132 on the protrusion 13 .
  • both the top and bottom surfaces of the bump 13 may be provided with a fifth conductive coating 132 .
  • one of the top and bottom surfaces of bump 13 is provided with a fifth electrically conductive coating 132 .
  • the power extraction connector 650 may be formed in the form of a power extraction claw.
  • the electrical contact surface of the power extraction connector 650 may be selectively provided with a conductive coating according to embodiments of the present disclosure, which may further improve the performance at the power extraction connector. It should be understood that this is only an example, and the power connection 650 may also be formed in any other suitable manner.
  • Figure 11 illustrates a flowchart of a method 700 for manufacturing a busbar in accordance with an embodiment of the present disclosure.
  • method 700 may include: at block 702, providing a conductive body made of a first conductive material; at block 704, providing particles made of a second conductive material; at block 706, by means of In the cold spray method, particles are sprayed onto a predetermined area of a conductive body to form a conductive coating in the predetermined area.
  • Figure 12 shows a schematic diagram of a system 800 for manufacturing busbars in accordance with an embodiment of the present disclosure.
  • System 800 may be used to implement the method shown in FIG. 11 , for example using a high-velocity cold spray method.
  • the system 800 may include a gas controller 810, a gas heating storage tank 820, a central controller 830, a metal powder tank 840, a spray gun 850, and the like.
  • the high-pressure gas is controlled by the gas controller 810 to divert the high-pressure gas.
  • a part of the diverted gas is transported to the gas heating storage tank 820 , and the other part is transported to the metal powder tank 840 .
  • the heated gas from the gas heating storage tank 820 is delivered to the spray gun 850.
  • the metal powder tank 840 The medium powder is delivered to a spray gun 850 (such as a Lavalli spray gun).
  • the heated high-speed gas preheats the metal powder on the one hand and applies kinetic energy to the powder on the other hand.
  • the fully mixed powder fluid forms a high-speed fluid during the process of passing through the Lavalli tube and splashes onto the base material 860, forming a mechanical anchoring bonding effect, thus forming a coating on the base material 860.
  • the central controller 830 Through the control of the central controller 830, the fluid can be continuously sprayed at high speed to form a coating with a corresponding thickness on the substrate as needed.
  • the coating 870 can be conveniently formed in an appropriate area by appropriately selecting the spray area of the substrate 860 .
  • system 800 is exemplary only. System 800 may include any other suitable implementation.

Landscapes

  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本公开涉及一种母线装置。母线装置(100)包括:第一母线和第二母线,每个母线(10)包括母线连接区,所述母线连接区包括第一导电涂层(12),其中所述第一母线的母线连接区和所述第二母线的母线连接区在纵向上彼此直接接触而形成电接触,或者所述第一母线的母线连接区和所述第二母线的母线连接区在纵向上彼此间隔开并且被配置为经由附加的连接导体(22)而被电连接。由此,提高了母线装置的母线接头处的电接触性能。

Description

母线装置
本申请要求于2022年8月9日提交中国专利局、申请号为202210951410.9、发明名称为“母线装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例总体上涉及电力输送领域,特别涉及母线装置。
背景技术
母线广泛地用于电力系统实现电力传输。母线通常为铝材或铜材,并且为大致扁平形状并且具有一定横截面积,横截面积与允许流过的电流大小相关。多段母线通常需要彼此连接在一起以延长母线能到达的长度;此外,母线还可设置多个取电点,以使得能从母线分支出多个下游线路。
随着长期使用,母线通常存在表面氧化的问题,将导致母线的接头处的接触电阻显著增大,严重劣化母线的导电性能。为了解决这种问题,传统的接头区域通常设置双金属片来抑制氧化。尽管双金属片能够解决上述问题,但是双金属片需要利用点焊来附接,这导致加工复杂。此外,需要在现场布置母线时,使用电焊机,这增加了用户的固定投资成本。此外,双金属片仅能设置在适合进行点焊的部位,这导致双金属片的布置区域受到限制。期望能够对传统的母线进行改进以降低母线的成本和/或提高母线的性能。
发明内容
本公开的实施例提供了一种母线装置,旨在解决上述问题以及其他潜在的问题中的一个或多个。
根据本公开的第一方面,提供一种母线装置。母线装置包括: 第一母线和第二母线,每个母线包括母线连接区,所述母线连接区包括第一导电涂层,其中所述第一母线的母线连接区和所述第二母线的母线连接区在纵向上彼此直接接触而形成电接触,或者所述第一母线的母线连接区和所述第二母线的母线连接区在纵向上彼此间隔开并且被配置为经由附加的连接导体而被电连接。根据本公开实施例的母线装置,通过在母线连接区形成第一导电涂层,提高了母线连接接头处的电接触性能,降低接触电阻并提升电接触可靠性。
在一些实施例中,母线装置还可包括母线连接器,所述母线连接器包括所述连接导体,所述连接导体至少在与所述第一母线的母线连接区和/或与所述第二母线的母线连接区接触的部分包括第二导电涂层,其中所述母线连接区和所述连接导体经由所述第一导电涂层与所述第二导电涂层的接触而形成电接触。由此,可通过母线连接器实现相邻母线之间的可靠连接,并且通过第二导电涂层,可以确保在母线与连接导体之间的连接接头处的电接触性能,以进一步提高母线装置的性能。
在一些实施例中,所述连接导体至少在接触侧的整个表面包括所述第二导电涂层。由此,可以便于形成第二导电涂层,并且即使设置导电涂层,也可以方便地进行装配。在一些实施例中,所述连接导体两个表面上均包括第二导电涂层。由此,可以进一步便于母线装置的装配作业。
在一些实施例中,所述母线包括:由第一导电材料制成的导电主体;以及由与所述第一导电材料不同的第二导电材料制成的所述第一导电涂层。
在一些实施例中,第一导电涂层通过冷喷涂所述第二导电材料的颗粒而被涂覆在所述母线连接区上。由此,可以方便且低成本方式来形成导电涂层。此外,采用冷喷涂可以在母线的任何适当的区域来形成导电涂层,这使得可以在任何导电接头处提供导电涂层称为可能。此外,由于导电涂层可以在母线制造过程中形成,因此避免了在安装现场进行额外的涂覆作业,进而降低了安装现场的硬件 投资成本。
在一些实施例中,所述第一导电材料选自铜和铝之一,所述第二导电材料选自铜、银和锡中的至少一种材料。
在一些实施例中,所述导电涂层的厚度不小于0.02mm。由此,可以确保导电接触的性能。
在一些实施例中,所述导电涂层的纵向长度不小于所述母线的厚度的3倍。由此,可以确保导电接触的性能。
在一些实施例中,所述导电主体包括第一纵向端部和第二纵向端部,所述第一纵向端部和所述第二纵向端部中的至少一个包括所述第一导电涂层并且形成为所述母线连接区。由此,可以在提高母线装置在纵向接头处的电接触性能。
在一些实施例中,其中所述导电主体包括位于所述第一纵向端部和所述第二纵向端部之间的中间段,所述中间段包括顶表面和底表面,其中所述顶表面和所述底表面中的至少一个包括设置所述第三导电涂层的一个或多个区域,所述母线被配置为在所述一个或多个区域处经由所述第三导电涂层在横向上与至少一个导体形成电接触。由此,可以通过第三导电涂层提高母线的横向取电点处的电接触性能。
在一些实施例中,所述一个或多个区域包括并排布置的两个区域,以使得所述母线能够经由所述两个区域在横向上与多个导体分别形成电接触;和/或所述一个或多个区域包括纵向布置的多个区域,以使得所述母线能够经由所述多个区域与至少一个导体分别形成电接触。
在一些实施例中,母线还包括成对触片,所述成对触片中的每个触片至少在与另一导体电接触的部分包括第四导电涂层,其中所述成对触片能够通过紧固件以夹持所述另一导体的方式被固定在一起。由此,可以利用成对触片来实现横向取电点,并且通过可以通过第四导电涂层提高母线的横向取电点处的电接触性能。
在一些实施例中,所述成对触片中的每个触片至少在接触侧的 整个表面包括所述第四导电涂层。
在一些实施例中,所述母线还包括从导电主体的横向侧面突出的至少一个隆起,所述隆起包括顶表面和底表面,所述顶表面和所述底表面中的至少一个包括第五导电涂层,所述母线被配置为经由所述隆起在横向上与另一导体形成电接触。由此,可以利用隆起来实现横向取电点,并且通过可以通过第五导电涂层提高母线的横向取电点处的电接触性能。
附图说明
通过参考附图阅读下文的详细描述,本公开的实施例的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例而非限制性的方式示出本公开的若干实施例。
图1示出根据本公开的实施例的母线装置的立体图。
图2示出根据本公开的实施例的母线装置的爆炸图。
图3示出根据本公开实施例的两个母线连接的示意图。
图4示出根据本公开另一实施例的母线装置的示意图。
图5示出根据本公开实施例的具有横向取电点的母线的立体示意图。
图6示出根据本公开另一实施例的具有横向取电点的母线的立体示意图。
图7示出示出根据本公开又一实施例的具有横向取电点的母线的立体示意图,其中取电接头被安装至母线;
图8示出示根据本公开又一实施例的具有横向取电点的母线的立体示意图,其中取电接头与母线分离。
图9示出根据本公开又一实施例的具有横向取电点的母线的立体示意图。
图10示出示出根据本公开又一实施例的具有横向取电点的母线的立体示意图,其中取电接头被安装至母线。
图11示出根据本公开的实施例用于制造母线的方法的流程图。
图12示出根据本公开的实施例用于制造母线的系统的示意图。
在各个附图中,相同或对应的标号表示相同或对应的部分。
具体实施方式
下面将参照附图更详细地描述本公开的优选实施例。虽然附图中显示了本公开的优选实施例,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。
在本文中使用的术语“包括”及其变形表示开放性包括,即“包括但不限于”。除非特别申明,术语“或”表示“和/或”。术语“基于”表示“至少部分地基于”。术语“一个示例实施例”和“一个实施例”表示“至少一个示例实施例”。术语“另一实施例”表示“至少一个另外的实施例”。术语“上”、“下”、“前”、“后”等指示放置或者位置关系的词汇均基于附图所示的方位或者位置关系,仅为了便于描述本公开的原理,而不是指示或者暗示所指的元件必须具有特定的方位、以特定的方位构造或操作,因此不能理解为对本公开的限制。
如前所述,铜或铝制母线通常面临氧化而导致接触电阻显著增大。通过在母线接头处提供双金属片,能够缓解或解决部分问题。然而,双金属片的形成需要较大的成本,操作复杂。针对此,根据本公开的实施例提供了一种新型母线,母线在接头处包括由与母线主体的材料不同的第二导电材料制成的导电涂层,以使得在接头处通过导电涂层实现两个导体之间的电连接。通过导电涂层,不仅成型方法简单,而且还可以根据需要在任何适当的位置处形成导电涂层,可以显著提升母线的性能。下面结合附图详细说明根据本公开实施例的母线。
图1和图2示出根据本公开实施例的母线装置100的立体图。如图1和图2所示,母线装置100可包括沿着纵向延伸的母线10(图中仅示例性示出了一个母线)。母线10形成为具有预定的纵向长度。 这里的术语“纵向”是指母线的延伸方向,该延伸方向与电流流动方向一致。多个母线10可以彼此连接以形成延长的母线。根据电力传输的距离,可以将多个母线10沿纵向彼此串联连接在一起,以将电力提供至所需的地方。在图示的实施例中,母线装置100为三相电并且可包括三个并排布置的第一母线。应当说明的是,仅仅是示例性的,母线装置也可以包括其他数目的母线。
母线装置100还可包括母线连接器20。母线连接器20可用于将相邻的母线10彼此紧固在一起以实现相邻母线之间的电连接。母线连接器可包括各种实现方式。
在一些实施例中,相邻母线彼此不直接接触,而是可通过设置在母线连接器中的连接导体实现相邻母线的电连接。如图2所示,母线连接器20可用于多相母线的连接,并且可包括多个连接导体22、绝缘板26、紧固件28等部件。连接导体22可设置通孔,紧固件28可用于将连接导体22、绝缘板26和相邻母线10固定在一起。连接导体22的一部分与一个母线接触,连接导体22的另一部分与另一个母线接触。通过紧固件28将相邻母线和连接导体彼此安装在一起,以实现相邻母线的电连接。
在一些实施例中,如图1和图2所示,母线10可包括由第一导电材料制成的导电主体15和由与第一导电材料不同的第二导电材料制成的第一导电涂层12。在图示的实施例中,导电涂层12以填充线的形式被示出。导电涂层12可被设置在导电主体15的接触表面区域上。术语“接触表面区域”是指母线的接头区域,即在母线的该区域处,该母线将与另一母线或导体进行电接触。
根据本公开的实施例,通过在母线的接头区域处设置由与导电主体15的材料不同的材料制成导电涂层,并且通过导电涂层来实现母线与其他导体的电连接,可以有效地因母线的表面氧化、电位腐蚀等问题所造成的缺陷。由于是通过涂层的方式来形成,不需要进行电焊,因此可以有效地降低工艺的复杂度。此外,涂层例如可以在工厂期间预先形成,用户只需要在现场执行装配作业即可,而不 需要进行附加的电焊等工艺,降低了用户使用不便利性以及相关联的硬件和人力成本。此外,导电涂层还可以使得仅使用少量的金属即可方便地形成,可以降低母线的成本。此外,由于涂层是利用喷涂工艺形成,因此涂层可以形成为任何适当的位置,只要母线各部分的形状或构造特征不会干涉到涂覆工艺,则均可以应用涂层,与传统的双金属片构造相比,显著地提高了涂层可施加的区域。在导电主体15上形成导电涂层可包括多种方式。作为示例,导电涂层12可通过冷喷涂第二导电材料的颗粒而被涂覆在接触表面区域上。稍后将参照图9详细说明示例性的制造方法。应当理解,冷喷涂仅仅是形成涂层的一个实施例,可以用任何其他适当的方法来形成导电涂层。
在一些实施例中,导电涂层的厚度不小于0.02mm。由此,可以极其薄的导电涂层即可实现期望的效果。在一些实施例中,导电涂层的厚度可以为0.02mm、0.03mm、0.04mm、0.05mm、0.06mm、0.07mm或更厚的厚度。
在一些实施例中,导电涂层的纵向喷涂长度不小于母线的厚度的3倍。由此,可以确保导电涂层有效地发挥其性能。在一些实施例中,导电涂层的纵向喷涂长度可以是母线的厚度的4倍、5倍、6倍、7倍、8倍或更多倍。这里的术语“纵向喷涂长度”是指母线和另一导体接触时在电流方向上的长度。
在一些实施例中,用于形成导电主体15的第一导电材料选自铜和铝之一。第二导电材料选自铜、银和锡中的至少一种材料。作为示例,可以在铝表面上涂覆银、锡和/或铜涂层;在铜表面上涂覆银和/或锡涂层。在一些实施例中,铝表面上仅涂覆银层,或者仅涂覆锡层,或者仅涂覆铜层。在一些实施例中,可以在铝表面上涂覆多层不同材料的金属层,例如先涂覆铜层,然后涂覆银层和/或锡层。
采用这样的材料,可以有效地抑制前面所述的表面氧化、表面电腐蚀等相关问题。
在一些实施例中,如图2所示,导电主体15可包括第一纵向端 部17和第二纵向端部19。第一纵向端部17和第二纵向端部19可均包括导电涂层12。母线10可通过第一纵向端部17和第二纵向端部19与相邻的母线进行电连接。由此,可以确保相邻母线的接头区域均能够通过导电涂层实现有效保护。在一些实施例中,导电涂层12可覆盖第一纵向端部17和第二纵向端部19的整个宽度布置。
图3示意性示出了利用母线连接器20来实现两个母线10的纵向连接的示例。如图3所示,两个母线10不直接接触而是经由连接导体22分别与两个母线接触,由此将两个母线电连接在一起。
如图3所示,至少在母线与连接导体22的表面接触区域设置第一导电涂层12。连接导体22的至少电接触表面处设置第二导电涂层25。
在图3所示的实施例中,母线10通过两个连接导体22夹持的方式来布置。在这种情况下,在一些实施例中,在图示的实施例中,母线的正反表面可以均设置第一导电涂层12。连接导体22的与母线接触的表面处设置第二导电涂层25。由此,可以确保在所有的接口表面处均能形成导电涂层。应当理解,在图3所示的连接方式针对一相电,采用了两个连接导体22,应当理解这仅仅是示例性的,针对每相电,连接导体的数目可以为更多个。在一些实施例中,所有的连接导体的形成电接触部分均包括导电涂层;在其他实施例中,可在部分连接导体的形成电接触部分均包括导电涂层。此外,母线和连接导体可以采用任何其他适当的方式来实现连接,只要能够确保两者之间的牢固(例如压力)接触即可。
在一些实施例中,连接导体22的整个接触表面均被设置导电涂层。在一些实施例中,仅在连接导体22的与母线接触的部分设置导电涂层。此外,在一些实施例中,连接导体22面对母线10的整个表面可设置导电涂层。在一些实施例中,连接导体22的正反表面可均设置导电涂层。这在装配时具有好处。
图3还示出了导电涂层12、14的纵向喷涂长度d1、d2,该纵向喷涂长度d1、d2可与母线10的接头区域的纵向长度对应。纵向喷 涂长度d1、d2不小于导电涂层12、14的厚度的6倍。由此,可以确保导电涂层有效地发挥其性能。该纵向喷涂长度d1、d2可以是导电涂层12、14的厚度的7、8、10甚至更多倍以提供更大的接触裕量。
图4示出根据本公开另一实施例的母线装置200的示意图。与图1和图2所示的母线装置100不同,在母线装置200中,两个相邻母线10可通过搭接的方式直接形成电接触。如图4所示,母线装置200的搭接区域可包括导电涂层12。
图5-图8示出根据本公开不同实施例具有横向取电点的母线300、400、500的立体示意图。
如图5-图8所示,导电主体15可包括位于第一纵向端部17和第二纵向端部19之间的中间段18。中间段18的一个或多个区域可设置第三导电涂层14。由此,母线10能够在一个或多个区域处经由第三导电涂层14在横向上与多个导体形成电接触。通过形成导电涂层,可以方便地在母线10上设置横向的取电点。取电点可以根据需要任意进行设置,成本低廉且易于实施。可以根据取电接口的类型方便地设置第三导电涂层14。在一些实施例中,可以仅在中间段18的一个表面上设置第三导电涂层;在一些实施例中,可以在中间段18的正反两个表面上都设置导电涂层。
可以根据取电点的设置要求,第三导电涂层14可以形成为各种图案。在一些实施例中,第三导电涂层14可邻近母线的横向边缘,并且可以并排布置。由此,母线10能够经由横向分隔开的导电涂层分别形成适于进行横向取电的两个取电点。这有利地可以节省第三导电涂层14的用量并且能够确保取电点性能可靠。尽管在图示的实施例中,第三导电涂层14横向分隔开,这仅仅是示例性的。在其他实施例中,第三导电涂层14可跨母线的整个宽度延伸。尽管在图示的实施例中,第三导电涂层14横向成对设置,这仅仅是示例性的。在其他实施例中,可以仅设置一个导电涂层。
在一些实施例中,第三导电涂层14可邻近母线的横向边缘,并 且可以沿纵向设置。由此,母线10能够经由纵向分隔开的导电涂层分别形成适于进行纵向取电的多个取电点。这有利地可以节省第三导电涂层14的用量并且能够确保取电点性能可靠。值得说明的是,图示的第三导电涂层14的数目仅仅示例性的,第三导电涂层14可以形成为任何其他适当的数目。
在一些实施例中,如图5所示,母线300可包括横向取电接口330。横向取电接口可包括成对触片30。这种通过成对触片的结构特别地适合于电流较大的场景。取电导体(未示出)可通过成对触片30被固定至第三导电涂层14。触片30的一部分可以与第三导电涂层14接触,触片30的另一部分可与取电导体(未示出)接触。由此,触片30将母线和取电导体以面接触的方式夹持。此外,触片30可包括紧固孔336,可通过紧固件(未示出)将触片30、取电导体和母线10紧固在一起。
如图5所示,触片30的上下两个表面均设置第四导电涂层332、334(即图中所表示的阴影部分)。在母线和成对触片30之间通过导电涂层进行接触。由此,可以显著地提升接头处的电性能。
应当理解,尽管在图示的实施例中,母线300仅示出了包括四个导电涂层14,这仅仅是示例性的。母线300可设置任何其他适当数目的导电涂层。
图6所示的实施例与图5所示的实施例类似,如图6所示,母线400可包括横向取电接口430。横向取电接口也可包括成对触片30。图6与图5的不同之处在于,触片30的仅电接触部分(即图中所表示的阴影部分)设置第四导电涂层434;而触片的非电接触部分432不设置导电涂层。触片30的正反两个表面均设置导电涂层,这在装配时具有的好处。
在一些实施例中,可以不设置触片。取电导体可直接与母线接合。如图7-图8所示的实施例,取电导体550可包括一对卡爪,一对卡爪可在导电涂层14处与母线500卡合。由于,在母线500和取电导体550直接通过导电涂层14进行接触,可以显著地提升接头处 的电性能。这种母线结构特别地适合于电流较小的场景。
图9和图10示出根据本公开不同实施例具有横向取电点的母线600的立体示意图。如图9和图10所示,母线600还包括从导电主体15的横向侧面突出的至少一个隆起13。隆起13包括顶表面和底表面,顶表面和底表面中的至少一个包括第五导电涂层132。由此,母线600的取电接头可通过隆起13上的第五导电涂层132与取电接头650形成电接触。在一些实施例中,隆起13的顶表面和底表面均可设置第五导电涂层132。在一些实施例中,隆起13的顶表面和底表面之一设置导第五电涂层132。通过顶表面和底表面之一设置导电涂层,可以在一定程度上提高取电接头处的性能。
如图10所示,取电接头650可被形成为取电卡爪的形式。在一些实施例中,取电接头650的电接触面上可选择性地设置根据本公开实施例所述的导电涂层,这可以进一步提高取电接头处的性能。应当理解的是,这仅仅是示例性的,取电接头650也可以形成为任何其他适当的方式。
图11示出根据本公开的实施例用于制造母线的方法700的流程图。如图11所示,方法700可包括:在框702处,提供由第一导电材料制成的导电主体;在框704处,提供由第二导电材料制成的颗粒;在框706处,借助冷喷涂方法,将颗粒喷涂至导电主体的预定区域,以在预定区域形成导电涂层。
图12示出根据本公开的实施例用于制造母线的系统800的示意图。系统800例如利用高速冷喷方式来实施可用于实施图11所示的方法。
如图12所示,系统800可包括气体控制器810、气体加热储罐820、中央控制器830、金属粉末罐840、喷枪850等。高压气体通过气体控制器810控制以对高压气体进行分流。经分流的一部分气体被输送至气体加热储罐820中,另一路输送到金属粉末罐840。在中央控制器830的控制下,来自气体加热储罐820的经加热的气体被输送至喷枪850。同时,经另一路气体作用,将金属粉末罐840 中粉末输送至喷枪850(例如拉瓦利喷枪)。在喷枪850处,经加热过的高速气体,一方面对金属粉末进行预热,另一方面给粉末施加动能。喷枪850处,经过充分混合的粉末流体在通过拉瓦利管的过程中,形成高速流体并喷溅到基材860上并形成机械锚接的结合效果,由此在基材860上形成涂层870。通过中央控制器830的控制,可以根据需要,流体通过连续高速的喷射则可在基材上形成相应厚度的涂层。可通过对于基材860的喷射区域进行适当的选择而能方便地在适当的区域形成涂层870。
应当理解,系统800仅仅是示例性的。系统800可以包括任何其他适当的实现方式。
此外,虽然采用特定次序描绘了各操作,但是这应当理解为要求这样操作以所示出的特定次序或以顺序次序执行,或者要求所有图示的操作应被执行以取得期望的结果。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实现中。相反地,在单个实现的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实现中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (14)

  1. 一种母线装置(100),包括:
    第一母线和第二母线,每个母线(10)包括母线连接区,所述母线连接区包括第一导电涂层(12),
    其中所述第一母线的母线连接区和所述第二母线的母线连接区在纵向上彼此直接接触而形成电接触,或者
    所述第一母线的母线连接区和所述第二母线的母线连接区在纵向上彼此间隔开并且被配置为经由附加的连接导体(22)而被电连接。
  2. 根据权利要求1所述的母线装置,还包括母线连接器(20),所述母线连接器包括所述连接导体(22),所述连接导体(22)至少在与所述第一母线的母线连接区和/或与所述第二母线的母线连接区接触的部分包括第二导电涂层(25),其中所述母线连接区和所述连接导体(22)经由所述第一导电涂层(12)与所述第二导电涂层(25)的接触而形成电接触。
  3. 根据权利要求2所述的母线装置,其中所述连接导体(22)至少在接触侧的整个表面包括所述第二导电涂层(25)。
  4. 根据权利要求1所述的母线装置,其中所述母线(10)包括:由第一导电材料制成的导电主体(15);以及由与所述第一导电材料不同的第二导电材料制成的所述第一导电涂层(12)。
  5. 根据权利要求4所述的母线装置,其中所述第一导电涂层(12)通过冷喷涂所述第二导电材料的颗粒而被涂覆在所述母线连接区上。
  6. 根据权利要求4所述的母线装置,其中所述第一导电材料选自铜和铝之一,所述第二导电材料选自铜、银和锡中的至少一种材料。
  7. 根据权利要求4所述的母线装置,其中所述第一导电涂层(12)的厚度不小于0.02mm。
  8. 根据权利要求4所述的母线装置,其中所述第一导电涂层(12)的纵向长度不小于所述母线(10)的厚度的3倍。
  9. 根据权利要求4-8中任一项所述的母线装置,其中所述导电主体(15)包括第一纵向端部(17)和第二纵向端部(19),所述第一纵向端部(17)和所述第二纵向端部(19)中的至少一个包括所述第一导电涂层(12)并且形成所述母线连接区。
  10. 根据权利要求9所述的母线装置,其中所述导电主体(15)包括位于所述第一纵向端部(17)和所述第二纵向端部(19)之间的中间段(18),所述中间段(18)包括顶表面和底表面,其中所述顶表面和所述底表面中的至少一个包括设置所述第三导电涂层(14)的一个或多个区域,所述母线(10)被配置为在所述一个或多个区域处经由所述第三导电涂层(14)在横向上与至少一个导体形成电接触。
  11. 根据权利要求10所述的母线装置,其中所述一个或多个区域包括并排布置的两个区域,所述母线(10)被配置为经由所述两个区域在横向上与多个导体分别形成电接触;和/或
    所述一个或多个区域包括纵向布置的多个区域,所述母线(10)被配置为经由所述多个区域与多个导体分别形成电接触。
  12. 根据权利要求10或11所述的母线(10),还包括成对触片(30),所述成对触片(30)中的每个触片(30)至少在与另一导体电接触的部分包括第四导电涂层(334,434),其中所述成对触片被配置为通过紧固件以夹持所述另一导体的方式被固定在一起。
  13. 根据权利要求12所述的母线(10),其中所述成对触片(30)中的每个触片(30)至少在接触侧的整个表面包括所述第四导电涂层(334,434)。
  14. 根据权利要求4-8和10中任一项所述的母线装置,其中所述母线(10)还包括从导电主体(15)的横向侧面突出的至少一个隆起(13),所述隆起(13)包括顶表面和底表面,所述顶表面和 所述底表面中的至少一个包括第五导电涂层(132),所述母线(10)被配置为经由所述隆起(13)在横向上与另一导体形成电接触。
PCT/CN2023/111665 2022-08-09 2023-08-08 母线装置 WO2024032583A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210951410.9 2022-08-09
CN202210951410.9A CN117637243A (zh) 2022-08-09 2022-08-09 母线装置

Publications (2)

Publication Number Publication Date
WO2024032583A1 true WO2024032583A1 (zh) 2024-02-15
WO2024032583A8 WO2024032583A8 (zh) 2024-03-28

Family

ID=89850883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111665 WO2024032583A1 (zh) 2022-08-09 2023-08-08 母线装置

Country Status (2)

Country Link
CN (1) CN117637243A (zh)
WO (1) WO2024032583A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016945A (ja) * 2008-07-02 2010-01-21 Showa Denko Kk 水冷式ブスバー及びその製造方法
US20130292152A1 (en) * 2011-01-07 2013-11-07 Nhk Spring Co., Ltd. Conductive member
CN106410467A (zh) * 2016-09-19 2017-02-15 中国电子科技集团公司第十八研究所 一种铝汇流条及加工工艺
CN113097952A (zh) * 2021-04-29 2021-07-09 珠海光乐电力母线槽有限公司 铜铝合金智慧母线干线系统
CN215600594U (zh) * 2021-04-27 2022-01-21 施耐德电气工业公司 用于插接式母线的导体装置和插接式母线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016945A (ja) * 2008-07-02 2010-01-21 Showa Denko Kk 水冷式ブスバー及びその製造方法
US20130292152A1 (en) * 2011-01-07 2013-11-07 Nhk Spring Co., Ltd. Conductive member
CN106410467A (zh) * 2016-09-19 2017-02-15 中国电子科技集团公司第十八研究所 一种铝汇流条及加工工艺
CN215600594U (zh) * 2021-04-27 2022-01-21 施耐德电气工业公司 用于插接式母线的导体装置和插接式母线
CN113097952A (zh) * 2021-04-29 2021-07-09 珠海光乐电力母线槽有限公司 铜铝合金智慧母线干线系统

Also Published As

Publication number Publication date
CN117637243A (zh) 2024-03-01
WO2024032583A8 (zh) 2024-03-28

Similar Documents

Publication Publication Date Title
US10777691B2 (en) Formed photovoltaic module busbars
US10454190B1 (en) Bonding clip for metal roofing
GB1282326A (en) Method of connecting electrical conductors
US2749382A (en) Foil strip wiring system
WO2024032583A1 (zh) 母线装置
WO2024087926A1 (zh) 母线装置
CN110168800A (zh) 用于连接电池单格的板
CN217468447U (zh) 光伏电池及光伏组件
CN205829107U (zh) 一种密集型母线槽限位连接器
CN207183596U (zh) 两排触点夹持端子及两排触点大电流连接器
CN215600594U (zh) 用于插接式母线的导体装置和插接式母线
CN103456407A (zh) 一种具备散热功能的复合母排
CN105048130B (zh) 一种分裂线夹金具
CN208767038U (zh) 一种导电膜、电子组件及电子产品
JPH08251779A (ja) 分岐部用帯板導体および帯板導体電路の分岐装置
CN201126879Y (zh) 一种电连接端子
CN220325844U (zh) 发热芯片和发热地板
CN113243599B (zh) 一种金属和非金属之间的连接方法
CN217240227U (zh) 明装线槽转角连接件
JP4197597B2 (ja) 絶縁バスダクト接続部
CN212573000U (zh) 一种全绝缘的云母片电发热板
JP3132051U (ja) フィルム式ヒータ
CN216120884U (zh) 一种便于安装的母线相线导体插头结构
KR102210276B1 (ko) 라미네이티드 션트의 커넥터
CN206611379U (zh) 光伏逆变器用高性能硬连接件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851804

Country of ref document: EP

Kind code of ref document: A1