WO2024032580A1 - 测量方法、装置和系统 - Google Patents

测量方法、装置和系统 Download PDF

Info

Publication number
WO2024032580A1
WO2024032580A1 PCT/CN2023/111652 CN2023111652W WO2024032580A1 WO 2024032580 A1 WO2024032580 A1 WO 2024032580A1 CN 2023111652 W CN2023111652 W CN 2023111652W WO 2024032580 A1 WO2024032580 A1 WO 2024032580A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication system
measurement window
resource
resources
measurement
Prior art date
Application number
PCT/CN2023/111652
Other languages
English (en)
French (fr)
Inventor
张天虹
刘云
杨帆
黄海宁
李君瑶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032580A1 publication Critical patent/WO2024032580A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • This application relates to the field of communications. In particular, it relates to a measurement method, device and system.
  • the channel status can be determined, for example, the channel occupancy.
  • SL-U sidelink on unlicensed spectrum
  • Wi-Fi wireless fidelity
  • Bluetooth terminals devices etc.
  • This application provides a measurement method that can improve the accuracy of resource status measurement in unlicensed spectrum.
  • embodiments of the present application provide a measurement method, which can be executed by a terminal device, or can also be executed by a chip or circuit used in the terminal device.
  • This application does not limit this.
  • the following description takes execution by a terminal device as an example.
  • the method can be applied to an unlicensed spectrum communication system, and the unlicensed spectrum communication system includes a first communication system.
  • the method can include: determining the number of resource units occupied by the first communication system in the first measurement window, the first The number of resource units occupied by the communication system in the first measurement window is less than or equal to the number of resource units in which the received signal strength indication RSSI measurement value is greater than the first threshold in the first measurement window; according to the first communication system in the first measurement The number of resource units occupied within the window and/or the number of resource units with an RSSI measurement value greater than the first threshold within the first measurement window determines the status of the channel of the first communication system within the first measurement window.
  • the first communication system is a SL communication system, or the first communication system is a SL-U communication system.
  • the method may also be: determining a first parameter, where the first parameter includes the number of resource units occupied by the first communication system within the first measurement window, and/or the RSSI measurement value within the first measurement window is greater than the first threshold.
  • the number of resource units, the number of resource units occupied by the first communication system in the first measurement window is less than or equal to the number of resource units in which the received signal strength indication RSSI measurement value is greater than the first threshold in the first measurement window; according to the first measurement window;
  • a parameter determines the status of a channel of the first communication system within the first measurement window.
  • the terminal device determines the number of resource units occupied by the first communication system within the measurement window, and determines the total number of resources occupied on the unlicensed spectrum within the measurement window (that is, the resource units whose RSSI measurement value is greater than the first threshold). number) to determine the channel status of the first communication system. That is to say, when determining the channel status, the terminal device considers the possibility that other communication systems occupy the channel, and can accurately calculate the channel of the first communication system. status, improving the accuracy of resource status measurement in unlicensed spectrum.
  • it is determined according to the ratio of the number of resource units occupied by the first communication system in the first measurement window to the number of resource units in the first measurement window.
  • the channel busy status of the first communication system within the first measurement window is determined according to the ratio of the number of resource units occupied by the first communication system in the first measurement window to the number of resource units in the first measurement window.
  • the channel busy state can be characterized by the channel busy rate or other parameters. This application does not limit this, and this application does not limit the names of parameters used to represent the channel busy state.
  • the Y represents the channel busy status of the first communication system within the first measurement window
  • the A1 represents the first communication system in The number of resource units occupied in the first measurement window
  • the A represents the number of resource units whose RSSI measurement value is greater than the first threshold in the first measurement window
  • the B represents the number of resource units included in the first measurement window.
  • A-A1 can be understood as the resources occupied in the first measurement window other than the resources occupied by the first communication system.
  • A-A1 is the resources occupied by other communication systems
  • B-( A-A1) can be understood as resources that can be occupied by the first communication system in the first measurement window.
  • the resources that can be occupied include A1 that has been occupied, and also include resources that may be occupied.
  • Y can be understood as the ratio of the resources occupied by the first communication system to the resources that can be used by the first communication system.
  • the number of resources occupied by other communication systems is excluded, and the duty cycle of the first communication system within the measurement window is calculated, further improving the accuracy of resource measurement.
  • the ratio of the number of resource units occupied by the second communication system in the first measurement window to the number of resource units in the first measurement window indeed The channel busy status of the second communication system within the first measurement window.
  • the second communication system may be a communication system other than the first communication system on the unlicensed spectrum, that is, a different system (or also called other communication system).
  • the terminal device can also calculate the channel busy status of the second communication system within the first measurement window, and can determine the channel busy status of different communication systems on the unlicensed spectrum, further improving the accuracy of resource measurement.
  • the Y represents the channel busy status of the first communication system in the first measurement window
  • the A2 represents the number of resource units occupied by the second communication system in the first measurement window
  • the A represents the number of resource units occupied by the second communication system in the first measurement window.
  • the number of resource units whose RSSI measurement value within the window is greater than the first threshold
  • B represents the number of resource units included in the first measurement window.
  • a method for calculating the resource duty cycle of the second communication system within the first measurement window is provided, which further improves the accuracy of determining the channel status of different systems.
  • the above method may be applicable to resource measurement of unlicensed spectrum when the first communication system and the second communication system coexist, such as unlicensed spectrum in a dynamic access mode.
  • the ratio of the number of resource units with RSSI measurement values greater than the first threshold in the first measurement window to the number of resource units in the first measurement window according to the ratio of the number of resource units with RSSI measurement values greater than the first threshold in the first measurement window to the number of resource units in the first measurement window.
  • the value of the first offset and/or the first coefficient is predefined, preconfigured or configured by the network.
  • This method can be applied to the resource measurement of unlicensed spectrum in the semi-static access mode.
  • the semi-static access mode there is only the first communication system on the unlicensed spectrum, and the RSSI measurement value in the first measurement window is greater than the first threshold.
  • the number of resource units and the number of resource units occupied by the first communication system within the first measurement window are numerically the same.
  • the resources existing in the idle time within the measurement window are considered, and the channel measurement results are adjusted through offset values and coefficients, further improving the accuracy of resource measurement.
  • the Y represents the channel busy status of the first communication system within the first measurement window
  • the A1 represents the number of resources occupied by the first communication system within the first measurement window
  • the B represents that the first measurement window includes The number of resource units
  • the offset is the first offset
  • the ⁇ is the first coefficient.
  • the channel busy state of the first communication system in the first measurement window is greater than and/or equal to the second threshold, and the method further includes at least one of the following: item:
  • Periodic reservation in the first communication system is enabled
  • Preemption is enabled in the first communications system
  • the first SL information and the second SL information of the first communication system are transmitted in the first COT, and the first COT is determined according to parameters corresponding to the first SL information of the first communication system.
  • first SL information and the second SL information are different.
  • the first SL information and the second SL information may be SL information of different terminal devices, or may be SL information corresponding to different services of the same terminal device.
  • the measurement results within the measurement window can be used to determine whether to enable period reservation, COT sharing, and/or preemption.
  • service transmission can be controlled based on the measurement results.
  • business transmission control can also be more accurate, such as more accurate congestion control, which improves user experience.
  • the first threshold is an energy detection threshold for channel access.
  • embodiments of the present application provide a measurement method, which can be executed by a terminal device, or can also be executed by a chip or circuit used in the terminal device.
  • This application does not limit this.
  • the following description takes execution by a terminal device as an example.
  • the measurement method can be applied to an unlicensed spectrum communication system, which includes a first communication system.
  • the first communication system may be a SL communication system.
  • the method may include: determining the number of resource units occupied by the first communication system in the second measurement window.
  • the number of resource units occupied by the first communication system in the second measurement window is less than or equal to that in the second measurement window.
  • the number of resource units whose RSSI measurement value is greater than the second threshold according to the number of resource units occupied by the first communication system in the second measurement window, determine the status of the channel of the first communication system in the third measurement window, the The third measurement window includes the second measurement window.
  • the method may also be: determining the number of resource units occupied by the first communication system in the second measurement window, and determining the number of resource units occupied by the first communication system in the third measurement window based on the number of resource units occupied by the first communication system in the second measurement window.
  • the state of the channel within the measurement window, the third measurement window includes the second measurement window.
  • the second measurement window may be a part of the third measurement window.
  • this method can be applied to the measurement of channel occupancy status.
  • the third measurement window can include occupied resources and authorized resources (that is, resources that are about to be used).
  • the second measurement window can be measurements corresponding to occupied resources. window.
  • the third measurement window includes the time slot [n-a, n+b] in the time domain, and the second measurement window includes the time slot [1, n-a] in the time domain.
  • the number of resource units with an RSSI measurement value greater than the second threshold within the second measurement window includes the number of resources already occupied by the first communication system, and may also include the number of resources already occupied by other communication systems.
  • the third measurement window also includes a fourth measurement window, wherein the third measurement window includes time slots [n-a, n+b] in the time domain, and the second measurement window
  • the measurement window includes time slots [n-a, n-1] in the time domain.
  • the fourth measurement window includes time slots [n, n+b] in the time domain.
  • Time slot n is the time slot for measuring the state of the channel.
  • the resource occupancy situation of different systems is taken into account, and the accuracy of the terminal device in determining the resources occupied by the first communication system is improved.
  • the channel status in the measurement window is determined by the number of resources occupied by the first communication system, further improving the the measurement accuracy.
  • Z represents the channel occupancy status of the first communication system in the third measurement window
  • the E represents the number of resource units transmitted by the first terminal device in the second measurement window
  • the F represents the number of resource units transmitted by the first terminal device in the second measurement window.
  • the number of authorized resource units in the fourth measurement window the D represents the number of resource units in the third measurement window
  • the G represents the number of resource units whose RSSI measurement value is greater than the second threshold in the second measurement window
  • the G1 represents the number of resource units occupied by the first communication system within the second measurement window.
  • G-G1 can be understood as the resources occupied in the second measurement window other than the resources occupied by the first communication system.
  • G-G1 is the resources occupied by other communication systems
  • D-( G-G1) can be understood as the resources that can be occupied by the first communication system in the third measurement window.
  • the resources that can be occupied include G1 that has been occupied, and also include authorized resources. They can also include unmeasured resources or the measured value is lower than Second threshold resources.
  • Y can be understood as the ratio of the resources occupied by the first communication system to the resources that can be used by the first communication system.
  • the number of resources occupied by other communication systems is excluded, and the duty cycle of the first communication system within the measurement window is calculated, further improving the accuracy of resource measurement.
  • Z represents the channel occupancy status of the first communication system in the third measurement window
  • E represents the number of resource units transmitted by the first terminal device in the second measurement window
  • F represents the number of resource units transmitted by the first terminal device in the fourth measurement window.
  • the number of authorized resource units D represents the number of resource units within the third measurement window
  • G represents the number of resource units with RSSI measurement values greater than the second threshold within the second measurement window
  • G1 represents the first communication system within the second measurement window
  • the number of occupied resource units ⁇ is the adjustment factor
  • is the scaling factor.
  • may represent the number of resource units authorized by the second communication system in the fourth measurement window, and ⁇ may be divided by the number of resource units authorized by the first communication system in the fourth measurement window based on the number of authorized resources in the fourth measurement window.
  • the number of resources other than the number of resource units is calculated.
  • is a value preconfigured for the first terminal device or configured by the network for the first terminal device.
  • the resources occupied by other communication systems in the second measurement window are excluded, as well as the resources authorized by other communication systems, and the duty cycle of the first communication system within the measurement window is calculated, further improving the accuracy of resource measurement.
  • the above method may be applicable to resource measurement of unlicensed spectrum when the first communication system and the second communication system coexist, such as unlicensed spectrum in a dynamic access mode.
  • the ratio to the number of resource units in the third measurement window, and the second offset and/or the second coefficient determine the channel occupancy status of the first communication system, wherein the second offset and/or the second coefficient
  • the value of the second coefficient is predefined, preconfigured or network configured.
  • This method can be applied to the resource measurement of unlicensed spectrum in the semi-static access mode.
  • the semi-static access mode there is only the first communication system on the unlicensed spectrum, and the RSSI measurement value in the second measurement window is greater than the second threshold.
  • the number of resource units and the number of resource units occupied by the first communication system within the second measurement window are numerically the same.
  • the resources existing in the idle time within the measurement window are considered, and the channel measurement results are adjusted through offset values and coefficients, further improving the accuracy of resource measurement.
  • the number of resources authorized to the first terminal device within the fourth measurement window is determined according to the service priority or CAPC of the first terminal device.
  • the second aspect it is determined to transmit the first SL information on the first time unit m according to the first channel occupancy status, and the N time units before the first time unit m
  • the time unit is the time unit mN for measuring the first channel occupancy status, and the first channel status satisfies at least one of the following: ⁇ i ⁇ k CR(i) ⁇ CR Limit (k)+offset, ⁇ i ⁇ k CR(i) ⁇ CR Limit (k), ⁇ i ⁇ k C R (i) ⁇ CR Limit (k),
  • the i is the priority value corresponding to the first SL information
  • the k is the priority value less than or equal to i
  • the values of i and k are integers from 1 to 8 respectively
  • the offset is the offset
  • the ⁇ is the scaling factor
  • CR(i) is the channel occupancy status when the measured priority value is i
  • CR Limit (k) is the channel occupancy status limit when the priority value is k
  • N is the congestion control processing time.
  • the first channel occupancy state may be an example of the channel occupancy state, or the first channel occupancy state may be an occupancy state corresponding to a part of the channels corresponding to the channel occupancy state.
  • the embodiments of the present application do not limit this.
  • the measurement results and channel status conditions are used to determine whether to transmit service information on the starting time unit of the measurement window. It will not transmit when the channel is occupied, but can transmit when there are idle resources on the channel. It can effectively adjust service transmission and avoid Excessive congestion and improve communication reliability.
  • the second SL information is transmitted in the first COT according to the second channel occupancy status, and the second SL information belongs to the SL information of the second terminal device, the The first COT is the initial COT of the first terminal device,
  • the second channel occupancy status satisfies at least one of the following: ⁇ i ⁇ k CR(i) ⁇ CR Limit (k)+offset, ⁇ i ⁇ k CR(i) ⁇ CR Limit (k), ⁇ i ⁇ k C R (i) ⁇ CR Limit (k),
  • the i is the priority value corresponding to the second SL information
  • the k is the priority value less than or equal to i
  • the values of i and k are integers from 1 to 8 respectively
  • the offset is the offset
  • the ⁇ is the scaling factor
  • CR(i) is the channel occupancy status when the measured priority value is i
  • CR Limit (k) is the channel occupancy status limit when the priority value is k.
  • the second channel occupancy state may be an example of a channel occupancy state, or the second channel occupancy state may be a channel occupancy state.
  • the time unit N time units before the time unit m where the second SL information is located is the time unit m-N for measuring the channel occupancy status.
  • the channel occupancy state of the first terminal device is It can be shared when the sharing conditions are met, which can avoid excessive congestion in business transmission, improve resource utilization, and improve communication reliability.
  • the second threshold is an energy detection threshold for channel access.
  • the RSSI measurement value of the resource unit is determined based on the linear average of the sum of RSSI received powers of U resource sub-units, where U is less than or equal to A positive integer of L, where L is the number of resource sub-units included in the resource unit.
  • U is greater than or equal to the third threshold, or U ⁇ L is greater than or equal to the fourth threshold, or L-U is less than or equal to the fifth threshold, and the resource unit is determined
  • the RSSI measurement value is greater than the first threshold or the second threshold, and U is the number of resource sub-units in the resource unit whose RSSI measurement value is greater than the first threshold or the second threshold.
  • the resource unit includes a time domain unit and/or a frequency domain unit, and the time domain unit includes a sensing time slot, a symbol, a sensing time slot, and a channel occupancy time.
  • the frequency domain unit includes at least one of sub-channels, sub-channels of continuous RBs, sub-channels of interleaved RBs, channels, RB sets, resource pools, guard bands, resource blocks, and resource units RE.
  • the resource subunit includes a time domain unit and/or a frequency domain unit.
  • the time domain unit includes a sensing time slot, a symbol, a sensing time slot, and a channel occupancy time.
  • the frequency domain unit includes at least one of subchannels, subchannels of continuous RBs, subchannels of interleaved RBs, channels, RB sets, resource pools, guard bands, resource blocks, and REs.
  • a measurement device in a third aspect, includes a transceiver module and a processing module.
  • the processing module is used to determine the number of resource units occupied by the first communication system in the first measurement window.
  • the number of resource units occupied in a measurement window is less than or equal to the number of resource units in which the received signal strength indicator RSSI measurement value is greater than the first threshold in the first measurement window.
  • the processing module is also configured to perform the processing according to the first communication system in the first measurement window.
  • the number of resource units occupied within a measurement window and/or the number of resource units with RSSI measurement values greater than the first threshold within the first measurement window determines the channel status of the first communication system within the first measurement window.
  • the processing module is specifically configured to calculate the number of resource units occupied by the first communication system in the first measurement window and the number of resource units in the first measurement window. The ratio of the numbers determines the channel busy status of the first communication system within the first measurement window.
  • the Y represents the channel busy status of the first communication system in the first measurement window
  • the A1 represents the number of resource units occupied by the first communication system in the first measurement window
  • the A represents the number of resource units occupied by the first communication system in the first measurement window.
  • the number of resource units whose RSSI measurement value within the window is greater than the first threshold
  • B represents the number of resource units included in the first measurement window.
  • the processing module is specifically configured to calculate the number of resource units occupied by the second communication system in the first measurement window and the number of resource units in the first measurement window. The ratio of the numbers determines the channel busy status of the second communication system within the first measurement window.
  • the Y represents the channel busy status of the first communication system in the first measurement window
  • the A2 represents the number of resource units occupied by the second communication system in the first measurement window
  • the A represents the number of resource units occupied by the second communication system in the first measurement window.
  • the number of resource units whose RSSI measurement value within the window is greater than the first threshold
  • B represents the number of resource units included in the first measurement window.
  • the processing module is specifically configured to calculate the number of resource units whose RSSI measurement value is greater than the first threshold in the first measurement window and the number of resource units in the first measurement window.
  • the ratio of the number of resource units and the first offset is determined at the The channel busy status of the first communication system in a measurement window;
  • the processing module is specifically configured to determine the number of resource units in the first measurement window based on the ratio of the number of resource units with RSSI measurement values greater than the first threshold in the first measurement window to the number of resource units in the first measurement window and the first coefficient.
  • the channel busy status of the first communication system in the window is specifically configured to determine the number of resource units in the first measurement window based on the ratio of the number of resource units with RSSI measurement values greater than the first threshold in the first measurement window to the number of resource units in the first measurement window and the first coefficient.
  • the value of the first offset and/or the first coefficient is predefined, preconfigured or configured by the network.
  • the Y represents the channel busy status of the first communication system within the first measurement window
  • the A1 represents the number of resources occupied by the first communication system within the first measurement window
  • the B represents that the first measurement window includes The number of resource units
  • the offset is the first offset
  • the ⁇ is the first coefficient.
  • the channel busy state of the first communication system in the first measurement window is greater than and/or equal to the second threshold, and at least one of the following is performed:
  • the processing module is specifically configured to enable period reservation in the first communication system
  • the transceiver module is specifically used to transmit the second SL information of the first communication system within the first COT, where the first COT is determined according to the parameters of the first SL information of the first communication system;
  • the processing module is specifically configured to enable preemption in the first communication system
  • the transceiver module is specifically used to transmit the first SL information and the second SL information of the first communication system in the first COT, and the first COT is determined according to the parameters corresponding to the first SL information of the first communication system. .
  • a measurement device in a fourth aspect, includes a processing module and a transceiver module.
  • the processing module is used to determine the number of resource units occupied by the first communication system in the second measurement window.
  • the number of resource units occupied in the second measurement window is less than or equal to the number of resource units in which the RSSI measurement value is greater than the second threshold in the second measurement window.
  • the processing module is also configured to calculate the number of resource units in the second measurement window according to the first communication system.
  • the number of resource units occupied in the third measurement window determines the status of the channel of the first communication system in the third measurement window, and the third measurement window includes the second measurement window.
  • the third measurement window further includes a fourth measurement window, wherein the third measurement window includes time slots [n-a, n+b] in the time domain, and the second measurement window
  • the measurement window includes time slots [n-a, n-1] in the time domain.
  • the fourth measurement window includes time slots [n, n+b] in the time domain.
  • Time slot n is the time slot for measuring the state of the channel.
  • Z represents the channel occupancy status of the first communication system in the third measurement window
  • the E represents the number of resource units transmitted by the first terminal device in the second measurement window
  • the F represents the number of resource units transmitted by the first terminal device in the second measurement window.
  • the number of authorized resource units in the fourth measurement window the D represents the number of resource units in the third measurement window
  • the G represents the number of resource units whose RSSI measurement value is greater than the second threshold in the second measurement window
  • the G1 represents the number of resource units occupied by the first communication system within the second measurement window.
  • Z represents the channel occupancy status of the first communication system in the third measurement window
  • E represents the number of resource units transmitted by the first terminal device in the second measurement window
  • F represents the number of resource units transmitted by the first terminal device in the fourth measurement window.
  • the number of authorized resource units D represents the number of resource units within the third measurement window
  • G represents the number of resource units with RSSI measurement values greater than the second threshold within the second measurement window
  • G1 represents the first communication system within the second measurement window
  • the number of occupied resource units ⁇ is the adjustment factor
  • is the scaling factor.
  • may represent the number of resource units authorized by the second communication system in the fourth measurement window, and ⁇ may be divided by the number of resource units authorized by the first communication system in the fourth measurement window based on the number of authorized resources in the fourth measurement window. The number of resources other than the number of resource units is calculated.
  • is A value preconfigured to the first terminal device or configured by the network to the first terminal device.
  • the processing module is specifically configured to calculate the number of resource units transmitted by the first terminal device in the second measurement window and the number of resource units authorized in the fourth measurement window.
  • the ratio of the sum of the number of resource units to the number of resource units in the third measurement window, and the second offset and/or the second coefficient determine the channel occupancy status of the first communication system, wherein the second offset
  • the shift amount and/or the value of the second coefficient are predefined, preconfigured or network configured.
  • the number of resources authorized to the first terminal device within the fourth measurement window is determined based on the service priority or CAPC of the first terminal device.
  • the processing module is specifically configured to determine to transmit the first SL information on the first time unit m according to the first channel occupancy status, and in the first time unit m
  • the time units of the previous N time units are the time units mN for measuring the first channel occupancy status, and the first channel status satisfies at least one of the following: ⁇ i ⁇ k CR(i) ⁇ CR Limit (k)+offset, ⁇ i ⁇ k CR(i) ⁇ CR Limit (k), ⁇ i ⁇ k C R (i) ⁇ CR Limit (k),
  • the i is the priority value corresponding to the first SL information
  • the k is the priority value less than or equal to i
  • the values of i and k are integers from 1 to 8 respectively
  • the offset is the offset
  • the ⁇ is the scaling factor
  • CR(i) is the channel occupancy status when the measured priority value is i
  • CR Limit (k) is the channel occupancy status limit when the priority value is k
  • N is the congestion control processing time.
  • the first channel occupancy state may be an example of the channel occupancy state, or the first channel occupancy state may be an occupancy state corresponding to a part of the channels corresponding to the channel occupancy state.
  • the embodiments of the present application do not limit this.
  • the processing module is specifically configured to transmit second SL information in the first COT based on the determination of the second channel occupancy status, and the second SL information belongs to the second terminal.
  • SL information of the device, the first COT is the initial COT of the first terminal device,
  • the second channel occupancy status satisfies at least one of the following: ⁇ i ⁇ k CR(i) ⁇ CR Limit (k)+offset, ⁇ i ⁇ k CR(i) ⁇ CR Limit (k), ⁇ i ⁇ k C R (i) ⁇ CR Limit (k),
  • the i is the priority value corresponding to the second SL information
  • the k is the priority value less than or equal to i
  • the values of i and k are integers from 1 to 8 respectively
  • the offset is the offset
  • the ⁇ is the scaling factor
  • CR(i) is the channel occupancy status when the measured priority value is i
  • CR Limit (k) is the channel occupancy status limit when the priority value is k.
  • the second channel occupancy state may be an example of the channel occupancy state, or the second channel occupancy state may be an occupancy state corresponding to a part of the channels corresponding to the channel occupancy state.
  • the embodiments of the present application do not limit this.
  • the time unit N time units before the time unit m where the second SL information is located is the time unit m-N for measuring the channel occupancy status.
  • the second threshold is an energy detection threshold for channel access.
  • the RSSI measurement value of the resource unit is determined based on the linear average of the sum of RSSI received powers of U resource sub-units, where U is less than or equal to A positive integer of L, where L is the number of resource sub-units included in the resource unit.
  • U is greater than or equal to the third threshold, or U ⁇ L is greater than or equal to the fourth threshold, and it is determined that the RSSI measurement value of the resource unit is greater than the first threshold, or The second threshold, the U is the number of resource sub-units in the resource unit whose RSSI measurement value is greater than the first threshold or the second threshold.
  • the resource unit includes a time domain unit and/or a frequency domain unit, and the time domain unit includes a sensing time slot, a symbol, a sensing time slot, and a channel occupancy time.
  • the frequency domain unit includes at least one of sub-channels, sub-channels of continuous RBs, sub-channels of interleaved RBs, channels, RB sets, resource pools, guard bands, resource blocks, and resource units RE.
  • the resource subunit includes a time domain unit and/or a frequency domain unit.
  • the time domain unit includes a sensing time slot, a symbol, a sensing time slot, and a channel occupancy time.
  • the frequency domain unit includes at least one of subchannels, subchannels of continuous RBs, subchannels of interleaved RBs, channels, RB sets, resource pools, guard bands, resource blocks, and REs.
  • third and fourth aspects are implementations on the device side corresponding to the first and second aspects respectively, and the relevant explanations, supplements, possible implementations and descriptions of beneficial effects of the first and second aspects. The same applies to the third and fourth aspects respectively, and will not be repeated here.
  • embodiments of the present application provide a communication device, including an interface circuit and a processor.
  • the interface circuit is used to implement the first
  • the function of the transceiver module in the third aspect the processor is used to realize the function of the processing module in the third aspect.
  • embodiments of the present application provide a communication device, including an interface circuit and a processor.
  • the interface circuit is used to implement the functions of the transceiver module in the fourth aspect.
  • the processor is used to implement the functions of the processing module in the fourth aspect. .
  • embodiments of the present application provide a computer-readable medium that stores program code for execution by a terminal device, where the program code includes a program code for executing the first aspect or the second aspect, or, Instructions for any possible way in one aspect or the second aspect, or all possible ways in the first aspect or the second aspect.
  • embodiments of the present application provide a computer-readable medium that stores a program code for execution by a network device.
  • the program code includes a program code for executing the first aspect or the second aspect, or the second aspect. Instructions for any possible way in one aspect or the second aspect, or all possible ways in the first aspect or the second aspect.
  • a ninth aspect provides a computer program product storing computer readable instructions.
  • the computer is caused to execute the first aspect, or any possible method of the first aspect, Or, the method in all possible ways in the first aspect.
  • a tenth aspect provides a computer program product that stores computer-readable instructions.
  • the computer is caused to execute the above-mentioned second aspect, or any possible method in the second aspect. , or, the method in all possible ways in the second aspect.
  • a communication system includes a method and various possible methods for implementing the above first aspect, or any possible way in the first aspect, or all possible ways in the first aspect. Possibly designed functional devices and the second aspect, or any possible way in the second aspect, or all possible ways and methods in the second aspect and various possible designed functional devices.
  • a processor is provided, coupled to a memory, for executing the above-mentioned first aspect, or any possible method in the first aspect, or all possible methods in the first aspect. .
  • a thirteenth aspect provides a processor, coupled to a memory, for executing the method of the second aspect, or any possible method in the second aspect, or all possible methods in the second aspect.
  • a fourteenth aspect provides a chip system.
  • the chip system includes a processor and may also include a memory for executing computer programs or instructions stored in the memory, so that the chip system implements any of the foregoing first or second aspects. Methods in one aspect, and in any possible implementation of either aspect.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • a computer program product that stores computer-readable instructions.
  • the computer-readable instructions When the computer-readable instructions are run on a computer, the computer is caused to execute the above-mentioned first aspect, or any possible method in the first aspect. way, or, the method of all possible ways in the first aspect.
  • a sixteenth aspect provides a computer program product that stores computer-readable instructions.
  • the computer is caused to execute the above-mentioned second aspect, or any possible method in the second aspect. way, or, the method of all possible ways in the second aspect.
  • a measurement system including at least one measurement device according to the third aspect and/or at least one measurement device according to the fourth aspect, and the communication system is used to implement the above first or second aspect. , or any possible implementation method in the first aspect or the second aspect, or all possible implementation methods in the first aspect or the second aspect.
  • Figure 1 shows a schematic architectural diagram of a communication system suitable for embodiments of the present application.
  • Figure 2 shows a schematic diagram of an interleaved resource.
  • Figure 3 shows a schematic diagram of a listen-before-talk mechanism.
  • Figure 4 shows a schematic diagram of yet another listen-before-talk mechanism.
  • Figure 5 shows a schematic resource diagram in a semi-static channel access mode.
  • Figure 6 shows a schematic diagram of a CBR measurement.
  • Figure 7 shows a schematic diagram of a CR measurement.
  • Figure 8 shows a schematic diagram of a measurement method proposed by the embodiment of the present application.
  • Figure 9 shows a schematic diagram of a resource occupation situation proposed by the embodiment of the present application.
  • Figure 10 shows a schematic diagram of yet another measurement method proposed by the embodiment of the present application.
  • Figure 11 shows a schematic diagram of yet another resource occupation situation proposed by the embodiment of the present application.
  • Figure 12 shows a schematic block diagram of a communication device proposed by an embodiment of the present application.
  • Figure 13 shows a schematic block diagram of yet another communication device provided by an embodiment of the present application.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, such as 5G (5th generation, 5G) or new radio (NR) systems, long term evolution (long term evolution, LTE) systems, LTE Frequency division duplex (FDD) system, LTE time division duplex (TDD) system, etc.
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the technical solution provided by this application can also be applied to device-to-device (D2D) communication, vehicle-to-everything (V2X) communication, machine-to-machine (M2M) communication, machine type Communication (machine type communication, MTC), and Internet of things (Internet of things, IoT) communication system or other communication system).
  • D2D device-to-device
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • MTC machine type Communication
  • Internet of things Internet of things
  • D2D links can also be called side links, where side links can also be called side links or secondary links.
  • D2D links, side links or secondary links all refer to links established between devices of the same type, and have the same meaning.
  • the so-called devices of the same type can be links from terminal devices to terminal devices, links from network devices to network devices, links from relay nodes to relay nodes, etc. The embodiments of the present application do not limit this.
  • V2X specifically includes vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-pedestrian (V2P) direct communication. communications, and vehicle-to-network (V2N) or vehicle-to-any-entity V2X links, including Rel-14/15.
  • V2X also includes Rel-16 and subsequent versions of V2X links based on NR systems currently being studied by 3GPP.
  • V2V refers to communication between vehicles
  • V2P refers to communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers)
  • V2I refers to communication between vehicles and infrastructure, such as roadside units (road side unit, RSU) or network equipment.
  • RSU roadside units
  • V2N refers to the communication between vehicles and network equipment.
  • RSU includes two types: terminal type RSU. Since it is deployed on the roadside, this terminal type RSU is in a non-mobile state and does not need to consider mobility; base station type RSU can provide timing synchronization for vehicles communicating with it. and resource scheduling.
  • Figure 1 is a schematic architectural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes a wireless access network 100.
  • the communication system 1000 may also include a core network 200 and the Internet 300.
  • the radio access network 100 may include at least one radio access network device (110a and 110b in Figure 1), and may also include at least one terminal (120a-120j in Figure 1).
  • the terminal is connected to the wireless access network equipment through wireless means, and the wireless access network equipment is connected to the core network through wireless or wired means.
  • the core network equipment and the radio access network equipment can be independent and different physical devices, or the functions of the core network equipment and the logical functions of the radio access network equipment can be integrated on the same physical device, or they can be one physical device. It integrates the functions of some core network equipment and some functions of wireless access network equipment. Terminals and terminals and wireless access network equipment and wireless access network equipment can be connected to each other in a wired or wireless manner.
  • Figure 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Figure 1 .
  • the information sending end in the communication system of the present application can be a network device or a terminal device
  • the information receiving end can be a network device or a terminal device. This application does not limit this.
  • UE may be called terminal equipment, terminal device, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, user Agent or user device.
  • the terminal device may be a device that provides voice/data to users, for example, a handheld device with wireless connection function, a vehicle-mounted device, etc.
  • Terminal equipment may include user equipment, sometimes also referred to as terminals, access stations, UE stations, remote stations, wireless communication equipment, or user devices, among others.
  • the terminal equipment is used to connect people, things, machines, etc., and can be widely used in various scenarios, including but not limited to the following scenarios: cellular communication, D2D, V2X, machine-to-machine communication (machine-to-machine communication), etc.
  • M2M/MTC machine-type communications
  • IoT Internet of things
  • VR virtual reality
  • AR augmented reality
  • industrial control self-driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city city), drones, robots and other scenarios.
  • the terminal device may be a mobile phone, a tablet computer (Pad), a computer with wireless transceiver functions, a VR terminal, an AR terminal, a wireless terminal in industrial control, a complete vehicle, or a wireless communication module in the complete vehicle , vehicle T-box (Telematics BOX), roadside unit RSU, wireless terminal in driverless driving, smart speakers in IoT network, wireless terminal equipment in telemedicine, wireless terminal equipment in smart grid, wireless in transportation safety Terminal equipment, wireless terminal equipment in smart cities, or wireless terminal equipment in smart homes, etc. are not limited in the embodiments of this application.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • the terminal device may also be a terminal device in the IoT system.
  • IoT is an important part of the future development of information technology. Its main technical feature is to connect objects to the network through communication technology, thereby realizing human-machine Interconnection, an intelligent network that interconnects things.
  • the various terminal equipment introduced above can be considered as vehicle-mounted terminal equipment if they are located on the vehicle (for example, placed or installed in the vehicle).
  • vehicle-mounted terminal equipment is also called an on-board unit (OBU), for example.
  • OBU on-board unit
  • the terminal device of this application can also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit built into the vehicle as one or more components or units.
  • the vehicle uses the built-in vehicle-mounted module, vehicle-mounted module, Vehicle-mounted components, vehicle-mounted chips or vehicle-mounted units can implement the method of the present application.
  • the network device in the wireless communication system may be a device that can communicate with the terminal device.
  • the network device may also be called an access network device or a wireless access network device.
  • the network device may be a base station.
  • the network device in the embodiment of this application may refer to a radio access network (radio access network, RAN) node (or device) that connects the terminal device to the wireless network.
  • radio access network radio access network, RAN
  • the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), master station (master eNodeB, MeNB), secondary station (secondary eNodeB, SeNB), multi-standard radio (multi standard radio, MSR) node, home base station, network controller, access node, wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), radio frequency remote unit (remote radio unit, RRU), active antenna unit (active antenna unit, AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved base station
  • gNB next
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and equipment that performs base station functions in D2D, V2X, and M2M communications, network-side equipment in 6G networks, equipment that performs base station functions in future communication systems, etc.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem that includes the base station functions.
  • the control subsystem containing base station functions here can be the control center in the above application scenarios such as smart grid, industrial control, smart transportation, smart city, etc.
  • the functions of the terminal can also be performed by modules in the terminal (such as chips or modems), or by a device containing the terminal functions.
  • Resources can be understood as time-frequency resources.
  • the resource unit of PSCCH/PSSCH scheduling granularity in the time domain is a time slot, and the resource unit in the frequency domain is one or more consecutive sub-channels.
  • the sending terminal device can send sidelink information on this resource, and one resource can carry physical sidelink control channel (PSCCH), physical sidelink shared channel (PSSCH), physical sidelink Three channels of feedback channel (physical sidelink feedback channel, PSFCH) and demodulation reference signal (DMRS), channel state information reference signal (CSI-RS), PT-RS (phase tracking reference signal, phase-tracking reference signal), sidelink synchronization signal and PBCH block (sidelink synchronization signal and PBCH block, S-SSB), Cyclic Prefix Extension (Cyclic Prefix Extension or CP extension, CPE) and other signals.
  • the PSCCH carries the first-order SCI
  • the PSSCH carries the second-order SCI and/or data
  • the PSFCH carries feedback information.
  • Sidelink information (or SL information) includes one or more of PSCCH, PSSCH, PSFCH, DM-RS, CSI-RS, PT-RS, synchronization, and CPE.
  • PSCCH carries first-order SCI.
  • PSCCH and SCI have the same meaning when no distinction is made.
  • the PSCCH occupies two or three OFDM symbols starting from the second sidelink symbol; in the frequency domain, the PRB carrying the PSCCH starts from the lowest PRB of the lowest subchannel of the associated PSSCH, and the PSCCH occupies The number of PRBs is within the subband range of a PSSCH.
  • PSCCH consists of ⁇ 10, 12, 15, 20, 25 ⁇ RBs, and the specific value is indicated by RRC signaling or preconfigured.
  • PSSCH carries at least 2 of the second-order SCI, MAC CE and data.
  • SCI can refer to first-order SCI and/or second-order SCI.
  • SCI refers to any one of first-order SCI, second-order SCI, first-order and second-order SCI.
  • the time domain on resources without PSFCH, 12 symbols are used to carry PSSCH; on resources with PSFCH, 9 symbols are used to carry PSSCH.
  • the frequency domain it occupies continuous LsubCh sub-channels.
  • the first OFDM symbol copies the information sent on the second symbol for automatic gain control (Automatic Gain Control, AGC).
  • AGC Automatic Gain Control
  • PSFCH carries feedback information.
  • the penultimate and third OFDM symbols carry PSFCH.
  • the signal on the third to last symbol is a repetition of the signal on the second to last symbol so that the receiving terminal device can perform AGC adjustment.
  • the terminal device may receive and transmit the PSSCH separately in two consecutive time slots, or the terminal device may receive and transmit the PSSCH and PSFCH separately in the same time slot. Therefore, after the PSSCH and after the PSFCH symbol, an additional symbol needs to be added for the terminal device's transceiver conversion.
  • Time domain resource unit and frequency domain resource unit are identical to Time domain resource unit and frequency domain resource unit:
  • Time domain resource units include symbols, slots, mini-slots, partial slots, sub-frames, radio frames, and sensing slots. (sensing slot) etc.
  • the frequency domain resource unit includes resource element (RE), resource block (RB), RB set (RB set), subchannel (subchannel), resource pool (resource pool), bandwidth part (BWP) ), carrier, channel, interlace, etc.
  • RE resource element
  • RB resource block
  • RB set RB set
  • subchannel subchannel
  • resource pool resource pool
  • BWP bandwidth part
  • this article uses time domain resources as time slots and frequency domain resources as subchannels or interleaving to describe the resources for transmitting PSCCH/PSSCH.
  • Unlicensed spectrum also called shared spectrum.
  • wireless communication systems according to the different frequency bands used, it can be divided into licensed frequency bands and unlicensed frequency bands.
  • the licensed frequency band users use spectrum resources based on the scheduling of the central node.
  • the unlicensed frequency band transmitting nodes need to use spectrum resources in a competitive manner. Specifically, they compete for channels through a listen-before-talk (LBT) method.
  • LBT listen-before-talk
  • the NR protocol technology in the unlicensed frequency band is collectively called NR-U, and it is expected that NR-U will further improve communication performance.
  • SL communication in unlicensed frequency bands is an important evolution direction, and the corresponding protocol technology can be collectively referred to as SL-U.
  • SL-U SL communication on unlicensed spectrum
  • the unlicensed spectrum can also have communication with at least any terminal device such as Wi-Fi terminal device, Bluetooth terminal device, Zigbee terminal device, etc.
  • these devices can be referred to as different-system terminal devices.
  • Occupied channel bandwidth (OCB) requirements The nominal channel bandwidth is the widest frequency band allocated to a single channel, including the guard band. OCB is the bandwidth that contains 99% of the signal power. The nominal channel bandwidth of a single operating channel is 20MHz. The occupied channel bandwidth should be between 80% and 100% of the nominal channel bandwidth. For terminal devices with multiple transmit chains, each transmit chain shall meet this requirement. Occupied channel bandwidth can vary with time/payload. During the channel occupancy time (COT), the terminal device can temporarily transmit at less than 80% of its nominal channel bandwidth, and the minimum transmission bandwidth is 2MHz.
  • COT channel occupancy time
  • Interleaved transmission is to meet OCB requirements. Take 20MHz bandwidth, 30kHz SCS as an example.
  • the transmission bandwidth has 51 RBs (as shown in Figure 2). If a subchannel consists of 10 RBs, there are 5 subchannels (remaining 1 RB is free). If the terminal device transmits on a sub-channel, the occupied bandwidth is about 4MHz, which does not meet the OCB requirement that "the occupied channel bandwidth should be between 80% and 100% of the nominal channel bandwidth".
  • interleaved transmission with index 0 will occupy about 20MHz of bandwidth, that is, 100% nominal bandwidth; if interleaved transmission with index 1 is used, the bandwidth occupied is about 18MHz, that is, about 46/51 ⁇ 90% of the bandwidth. Can meet the needs of OCB.
  • Interlace also called interlaced resource blocks
  • Interleaving m consists of common resource blocks (CRB) ⁇ m,M+m,2M+m,3M+m,... ⁇ .
  • C common resource blocks
  • M is the staggered number, and there are m ⁇ 0,1,...,M-1 ⁇ .
  • BWP i and interleave m The relationship with interleaved resource blocks, BWP i and interleave m satisfies: Among them, among Indicates the common resource block starting from BWP, which is the number of CBR relative to common resource block 0. The index ⁇ can be omitted when there is no risk of confusion. The terminal device expects that the number of common resource blocks in the interlace included in BWP i is not less than 10. For ease of expression, the common resource block CRB can be understood as RB.
  • Resource allocation methods include continuous and staggered methods. Among them, interlacing can also be recorded as interleaving, interlacing, progressive, and combing.
  • One interleave includes N non-consecutive RBs, and the transmission bandwidth contains M interleaves.
  • the spacing between RBs within the interlace may be the same or different.
  • the RB interval may be M RBs.
  • the horizontal axis represents the frequency domain, and the unit is RB
  • the vertical axis represents the time domain, and the unit is symbol.
  • 51 resource blocks (RB) that is, 51 grids.
  • RB can also be called physical resource block (PRB).
  • PRB physical resource block
  • Table 1 lists the number of interleaves M and the number of PRBs (RBs) in the interleave N.
  • the combination of at least one interleave number M and the number of RBs in the interleave N can be determined according to the configuration or preconfiguration.
  • transmitting, sending or receiving PSCCH in an interleaved manner can also be understood as “mapping PSCCH in an interleaved manner", or “decoding PSCCH in an interleaved manner”
  • transmitmitting, sending or receiving PSCCH in an interleaved manner can also be understood as It is “mapping the PSSCH in an interleaved manner", or “decoding the PSSCH in an interleaved manner”.
  • Resource pool NR SL communication is based on resource pool.
  • the so-called resource pool refers to a time-frequency resource dedicated to SL communication.
  • the frequency domain resources contained in the resource pool are continuous.
  • the time domain resources contained in the resource pool can be continuous or discontinuous.
  • Different resource pools are distinguished by RRC signaling.
  • the terminal device receives on the receiving resource pool and sends on the sending resource pool. If the resource pools have the same resource pool index, the time-frequency resources of the resource pools can be considered to be completely overlapping.
  • the SL resource pool can also be understood as: a collection of resources that can be used for SL transmission.
  • the resource pool may also be called an RB set, a channel, an operating channel, and a nominal channel bandwidth (bandwith).
  • the meanings of channel and RB set can be interchanged. That is, the resource pool, channel, bandwidth, and RB set are all used to represent the resource set that can be used for SL transmission.
  • the bandwidth of the resource pool may be at least one of ⁇ 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100 ⁇ MHz.
  • the resource pool includes a channel with a channel bandwidth of 20MHz and a resource pool bandwidth of 20MHz.
  • the resource pool includes 2 channels, the channel bandwidth is 20MHz, and the resource pool bandwidth is 40MHz.
  • the resource pool includes 5 channels, the channel bandwidth is 20MHz, and the resource pool bandwidth is 100MHz.
  • the frequency domain bandwidth of RB set is 20MHz.
  • the bandwidth of the resource pool is 20MHz, and the resource pool contains 1 RB set.
  • the bandwidth of the resource pool is 50MHz, and the resource pool contains 2 RB sets. These two RB sets can be adjacent or not adjacent in the frequency domain.
  • the terminal device may transmit PSCCH and/or PSSCH on D adjacent RB sets, or may transmit PSCCH and/or PSSCH on one RB set.
  • the terminal device transmits PSCCH on interlace A and transmits PSSCH on interlace B.
  • the terminal device transmits PSCCH on the RB set with the smallest RB set index on A interlaces; the terminal device transmits on D RB sets and a total of B interlaces.
  • LBT is a channel access rule. The UE needs to listen to whether the channel is idle before accessing the channel and starting to send data. If the channel has remained idle for a certain period of time, the UE can occupy the channel; if the channel is not idle, the UE needs to wait for the channel to become idle again. Can occupy the channel.
  • energy-based detection and signal type detection can be used to determine the channel status.
  • NR-U uses energy detection
  • WiFi uses a combination of the two detection methods.
  • Energy-based detection requires setting a detection threshold (energy detection threshold). When the detected energy exceeds the detection threshold, it is determined that the channel is busy and access to the channel is not allowed. When the detected energy is lower than the detection threshold, if it continues for a period of time, access to the channel is allowed.
  • energy detection threshold energy detection threshold
  • one channel can refer to a 20MHz bandwidth. To access a 20MHz channel, you need to meet at least the minimum OCB requirement before you can occupy the channel.
  • the minimum OCB must be at least 80% of the normal bandwidth. Taking the normal bandwidth as 20MHz as an example, that is, the UE needs to occupy at least 16MHz of bandwidth before it can preempt it. the 20MHz channel. It should be understood that the bandwidth of a channel can also be other values, and 20 MHz is only used as an example and not a limitation.
  • LBT LBT-LBT
  • channel access There are many types of LBT.
  • LBT can also be called the type of channel access.
  • Type 1 LBT Communication equipment needs to perform random backoff before it can access the channel and send data.
  • the terminal device may sense that the channel is idle for the first time in a period of continuous detection (defer sensing) time (denoted as T d ), and after decrementing the counter N to zero during the sensing slot duration, initiate data transmission.
  • T d a period of continuous detection (defer sensing) time
  • T sl m p consecutive listening slot periods
  • Step 2 where CWp can be the contention window for a given priority class when the priority is p. );
  • Step 3 If the channel during the listening time slot is idle, go to step 4;
  • Step 5 Listen to the channel until the channel is busy in another T d or all listening time slots in another T d are detected as channel idle;
  • Step 6 If the listening time slots in another T d are all detected as channel idle, then perform step 4;
  • CW min,p ⁇ CW p ⁇ CW max,p
  • CW min,p is the minimum value of the competition window when the priority is p
  • CW max,p is the maximum value of the competition window when the priority is p .
  • whether the channel is idle or busy is determined based on the channel detection threshold. For example, if the received power (detected power) is greater than the energy detection threshold X Thresh , the channel is busy. For another example, if the received power (detected power) is less than the energy detection threshold X Thresh , the channel is idle.
  • CW min,p and CW max,p are selected before step 1 above, m p , CW min,p and CW max,p are determined based on the channel access priority level p associated with the network device or terminal device transmission, As shown in Table 2 or Table 3:
  • T m cot,p is the maximum channel occupancy time for a given priority class (maximum channel occupancy time for a given priority class) when the priority is p, and the channel occupancy time of network equipment or terminal equipment transmitting on the channel (channel occupancy time, COT) does not exceed T m cot,p .
  • COT refers to the time that the communication device is allowed to occupy the channel after successfully accessing the channel.
  • the communication device can seize the channel within a period of time after completing the LBT process. Rights of use.
  • the channel access process is performed based on the channel access priority level p associated with network equipment or terminal equipment transmission. The smaller the priority level value in Table 1, the higher the priority. For example, priority 1 is the highest priority. class.
  • the network device or terminal device maintains the competition window value CW p , and adjusts the value of CW p according to the following steps before step 1:
  • the reference subframe k is the starting subframe of the latest data transmission by the network device or terminal device on the channel.
  • the terminal device determines through listening that the channel has been idle within the duration of the first T d .
  • the terminal device detects that the channel status is busy, waits for the channel status to be idle for T d , and then decrements N to 3 in the third T sl .
  • the terminal device detects that the channel is busy again, waits for the channel status to be idle again for T d , then decrements N to 2 in the fourth T sl , and decrements N to 1 in the fifth T sl . Decrement N to 0 in the sixth T sl . Then, the terminal device accesses the channel and transmits data within the COT.
  • the second type of LBT is LBT without random backoff, which is divided into three situations:
  • situation B After the communication device detects that the channel is idle for a period of 25us, it can send data without random backoff. Compared to case A, case B corresponds to multiple switching gaps.
  • communication equipment is in COT Send immediately after the conversion interval from receiving state to sending state.
  • the conversion interval can be no more than 16us.
  • the specific conversion time may be preset or configured by the base station, or may be related to the hardware capabilities of the communication device.
  • Case C The communication device can transmit without channel listening, and the transmission time is up to 584us.
  • the communication device listens to the channel and determines that the channel is idle within a time interval (gap), and then the channel can be accessed at the end of the time interval.
  • the channel access process can also be divided into dynamic channel access and semi-static channel access.
  • the terminal device determines to adopt the dynamic or semi-static channel access method based on configuration or pre-configuration.
  • the dynamic channel access may be the above-mentioned first type LBT and second type LBT. Dynamic channel access is suitable for scenarios where SL terminals and terminals of different systems transmit on unlicensed spectrum.
  • the base station or terminal device occupies the channel with T x as a period in every two consecutive wireless frames.
  • the time point at which the occupation starts is i ⁇ T x or i ⁇ T x +offset of the even-numbered wireless frame.
  • the maximum length of time the channel is occupied is 0.95T x .
  • the last max (0.05T x , 100us) duration within the period T x is the idle time (idle duration) of the period.
  • the base station or terminal device does not transmit during this idle time.
  • T x is configured or preconfigured, for example, it is at least any one of ⁇ 1, 2, 2.5, 4, 5, 10 ⁇ ms;
  • Semi-static channel access is suitable for scenarios where only SL terminals transmit on unlicensed spectrum.
  • Semi-static channel access can also be called frame-based equipment (FBE) channel access. Or it can also be understood as: FBE accesses the channel through semi-static access mode.
  • Dynamic channel access can also be called load-based equipment (LBE) channel access. Or it can also be understood as: LBE accesses the channel through dynamic access mode.
  • FBE frame-based equipment
  • LBE load-based equipment
  • CO Channel occupancy
  • COT channel occupancy time
  • the frequency domain unit of COT is the channel, and the time domain unit is ms or time slot.
  • COT can be a time concept, that is, the time of SL transmission; it can also be a resource concept, that is, the time-frequency resources occupied by SL transmission.
  • COT and CO are the same concept.
  • the terminal device may transmit on multiple adjacent or non-adjacent channels.
  • the terminal device's transmission on multiple channels can be understood as: the terminal device's transmission occupies one COT, and the COT occupies multiple channels in the frequency domain; or, the terminal device's transmission occupies multiple COTs, each of which occupies one COT. Each COT occupies 1 channel in the frequency domain.
  • the network equipment or terminal equipment transmits within the COT after successfully accessing the channel based on the first type of LBT.
  • This COT can be called the initial COT of the network device or terminal device.
  • the first type of LBT is executed with different priorities p, and the COT may also be called a COT initialized based on priority p.
  • initial means initiated, initial, initialization or initiate.
  • the initial COT can also be translated as the created COT.
  • COT can be shared for transmission between terminal devices (COT sharing).
  • the terminal device of the initial COT can share the COT with other terminal devices, that is, used for SL transmission of other terminal devices.
  • the terminal device of the initial COT and the terminal device sharing the COT occupy the channel for a continuous period of time to transmit COT sharing. The corresponding conditions must be met.
  • the terminal device of the initial COT is the receiving terminal device or the sending terminal device of the terminal device sharing the COT.
  • the terminal device of the initial COT and the terminal device of the shared COT are members of the same group.
  • the transmission of the terminal device cannot exceed the limit of the maximum channel occupancy time (MCOT), which is recorded as T m cot,p .
  • the value of access priority p is different for different channels, as shown in Table 2 or Table 3.
  • the transmission time does not exceed the maximum channel occupancy time T m cot,p .
  • the transmission time of the terminal device of the initial COT and the terminal device sharing the COT does not exceed the maximum channel occupancy time T m cot,p .
  • P is the channel access priority class (CAPC) of the terminal device of the initial COT; or, P is the CAPC with the smallest CAPC value among the terminal devices transmitted by COT.
  • CAC channel access priority class
  • the service priority of terminal device B is specifically the transmission priority of terminal device B. Because terminal device B may send multiple services at the same time, the priorities of the multiple services may be different. Service priority can also be called L1 priority (L1 priority), physical layer priority, priority carried in SCI, priority carried in first-order SCI, priority corresponding to PSSCH associated with SCI, transmission priority, The priority of transmitting the PSSCH, the priority for resource selection, the priority of the logical channel, or the highest level priority of the logical channel.
  • L1 priority L1 priority
  • physical layer priority priority carried in SCI
  • priority carried in first-order SCI priority corresponding to PSSCH associated with SCI
  • transmission priority The priority of transmitting the PSSCH, the priority for resource selection, the priority of the logical channel, or the highest level priority of the logical channel.
  • the priority level There is a certain correspondence between the priority level and the priority value. For example, the higher the priority level, the lower the corresponding priority value. Or the lower the priority level, the lower the corresponding priority value.
  • the priority value range can be an integer from 1 to 8 or an integer from 0 to 7. If the priority value range is 1-8, then a priority value of 1 represents the highest level of priority. When a lower priority value represents a lower level of priority, a priority value of 1 represents the lowest level of priority.
  • CAPC can also be translated as channel access priority class.
  • CAPC is priority p in the first type of LBT.
  • the CAPC terminal device may also be used to determine whether the second SL information is transmitted within the CAPC initial COT associated with the first SL information.
  • CAPC level There is a certain corresponding relationship between the CAPC level and the CAPC value. For example, the higher the CAPC level, the lower the CAPC value, or the lower the CAPC level, the lower the CAPC value.
  • the CAPC value range can be an integer from 1 to 4.
  • a CAPC value of 1 represents the highest level of CAPC.
  • a lower CAPC value represents a lower level of CAPC
  • a CAPC value of 1 represents the lowest level of CAPC.
  • the priority may refer to either the service priority or the channel access priority CAPC.
  • the signal strength measurement of SL includes received signal strength indicator (received signal strength indicator, RSSI) measurement and or reference signal received power (reference signal received power, RSRP) measurement.
  • RSSI received signal strength indicator
  • RSRP reference signal received power
  • signal strength includes RSSI and or RSRP.
  • signal strength thresholds include RSSI thresholds and or RSRP thresholds.
  • RSSI is used as an example of a signal strength measurement method.
  • the signal strength can also be measured based on RSRP. That is, "RSSI measurement” can be synonymously replaced by “RSRP measurement”, that is, “RSSI threshold” can be synonymously replaced by “RSRP threshold”.
  • RSSI is defined as the linear average of the total received power of the OFDM symbols configured for PSCCH and PSSCH within a time slot within the configured subchannel, starting from the second OFDM symbol (that is, excluding the AGC symbol). The symbol where the PSFCH is located does not measure RSSI.
  • the energy of the resource of 1 symbol * 1 sub-channel is measured, and then the energy of the symbols in the time slot is linearly averaged to obtain 1 RSSI measurement value for the resource of 1 time slot * 1 sub-channel.
  • the symbols without PSFCH it is equivalent to measuring the average energy value of the 12th symbols from the 2nd to the 13th; among the symbols with PSFCH, it is equivalent to measuring the energy of the 9th symbols from the 2nd to the 10th. average value.
  • RSSI is one RSSI measurement value for the resource of 1 timeslot*1 subchannel. That is to say, if PSCCH/PSSCH occupies three sub-channels, three RSSI measurement values of each of the three sub-channels will be obtained.
  • PSSCH-RSRP is by definition the average of the useful signal (i.e. PSSCH-DMRS) power (excluding the power of the CP part) on all REs carrying PSSCH-DMRS in the linear domain.
  • PSCCH-RSRP is by definition the average of the useful signal (PCSCH-DMRS) power (excluding the power of the CP part) on all REs carrying PSCCH-DMRS in the linear domain.
  • PCSCH-DMRS useful signal
  • RSRP is 1 RSRP measurement value for the resources of 1 timeslot*PSSCH or total subchannel of PSCCH. In other words, if PSSCH occupies 3 sub-channels, one RSRP measurement value for 3 sub-channels will be obtained.
  • CBR measurement CBR measurement of R16 NR SL.
  • the CBR measured in time slot n is defined as 1 time in a CBR measurement window time slot [n-a, n-1] in a resource pool.
  • a is equal to 100slots or 100ms according to the configuration of high-level parameters. Which one to use is indicated by the RRC field sl-TimeWindowSizeCBR.
  • the threshold of SL RSSI is indicated by the RRC field sl-ThreshS-RSSI-CBR.
  • the time slot index is the physical time slot index.
  • the number of single-slot sub-channels (that is, 1 time slot * 1 sub-channel resource, single-slot sub-channels can also be called sub-channels) is 33 .
  • the measurement window is 11 time slots and the frequency domain bandwidth as 3 sub-channels as an example to illustrate the principle (actually the measurement window is 100 time slots or 100ms, and the frequency domain bandwidth is more than 3 sub-channels.)
  • Figure shows that the number of occupied sub-channels is 7, then the CBR is 7/33.
  • An occupied subchannel that is, a subchannel whose SL-RSSI measurement value is higher than a critical value is considered an occupied subchannel.
  • the number of sub-channels counted as molecules is 7.
  • the sub-channels whose RSSI measurement value detected by the terminal device is lower than or equal to the threshold value are not counted as occupied sub-channels, that is, the number of sub-channels that are not counted as molecules is 33-7 equal to 26.
  • CR also supports the calculation of a specific priority. At this time, the numerator of CR should be replaced by the terminal device itself that has been used within the range of physical slot [na, n+b] and has obtained permission to be used to transmit specific The total number of subchannels for priority transmission.
  • the number of single-slot sub-channels (that is, 1 time slot*1 sub-channel resource) is 36.
  • the measurement window is 12 time slots and the frequency domain bandwidth as 3 sub-channels as an example to illustrate the principle.
  • the measurement window is 1000 time slots or 1000ms, and the frequency domain bandwidth is more than 3 sub-channels.
  • the figure shows that the number of used sub-channels is 3 and the number of authorized sub-channels is 2, then the CR is (3+2)/36.
  • CR is calculated based on priority, in the data with priority 1, the number of used sub-channels is 2 and the number of authorized sub-channels is 1, then the CR of priority 1 is (2+1)/ 36; In the data with priority 2, the number of used sub-channels is 1 and the number of authorized sub-channels is 1, then the CR of priority 2 is (1+1)/36.
  • CR(i) is the measured CR with priority i
  • CR Limit (k) is the CR limit with priority k
  • the priority value k is less than or equal to the priority value i (the higher the priority level, the higher the CR limit).
  • the priority level k is higher than or equal to the priority level i).
  • CR Limit (k) is related by the priority value k and the CBR range where the CBR measurement value of time slot nN is located.
  • the CBR measurement value is the measurement value of time slot nN, where N is the congestion control processing time. For specific values, see Table 4 or
  • the terminal device uses either capability 1 or capability 2.
  • the congestion control processing time N of the terminal device processing capabilities 1 and 2 is related to the subcarrier spacing, where ⁇ corresponds to the subcarrier spacing where the PSSCH is transmitted. How to ensure ⁇ i ⁇ k CR(i) ⁇ CR Limit (k) may depend on the implementation of the terminal device.
  • the terminal device when the terminal device transmits PSCCH/PSSCH with priority level 6, it needs to satisfy CR(6)+CR(7)+CR(8) ⁇ CR Limit (8), CR(6)+CR(7) ⁇ CR Limit (7) and CR (6) ⁇ CR Limit (6) three conditions. In other words, for services with larger priority values, they need to occupy as few resources as possible.
  • the terminal devices in the system are controlled to reduce transmission, thereby reducing the resource occupancy rate. That is, when the CBR is large, transmission can be reduced by associating a smaller CR limit . For example, a few more packets can be lost for low-priority services and a few fewer packets can be lost for high-priority services. Similarly, when the CBR is small, you can increase sending by associating a larger CR limit . For example, for low-priority services, you can send more packets, for example, send a few more packets. For high-priority services, you can send more packets than low-priority services. Business increases with more sending.
  • the channel occupancy is determined by measuring the channel status, and service transmission can be controlled based on the channel occupancy, which is beneficial to improving communication reliability.
  • SL transmissions there are not only SL transmissions, but also systematic transmissions such as WiFi, Bluetooth, and Zigbee.
  • non-SL systems operating on unlicensed spectrum are referred to as heterogeneous systems, such as one or more of WiFi, Bluetooth, and zigbee.
  • the above measurement process does not consider the channel occupancy of different systems.
  • the occupancy of different systems may cause the CBR measurement result to be greater or less than the actual CBR of the SL terminal device.
  • CBR increase the CBR measurement value is greater than the actual value (referred to as "CBR increase")
  • CBR increase the CBR measurement value is greater than the actual value (referred to as "CBR increase)
  • CBR reduction the CBR measurement value is smaller than the actual value (referred to as "CBR reduction”
  • CBR reduction the CBR measurement value is smaller than the actual value (referred to as "CBR reduction”
  • CBR reduction the CBR measurement value is smaller than the actual value
  • CBR reduction this will correspond to a larger CR limit , which is equivalent to increasing the transmission of SL services.
  • the terminal device of the different system will not increase transmission due to the congestion control of the SL.
  • the SL terminal device therefore increases the transmission. This is unfair to terminal devices with different systems.
  • the unlicensed spectrum communication system includes a first communication system, such as an SL communication system.
  • a terminal device as a measurement execution device as an example to illustrate the solutions of the embodiments of the present application, but the present application is not limited thereto.
  • the channel measurement in the embodiments of this application is explained by taking CBR measurement or CR measurement as an example.
  • CBR measurement and CR measurement are terms in R16/R17, and what is measured is the occupation of resources in the resource pool by SL terminals. Proportion.
  • the terms CBR measurement and CR measurement may be used for channel state measurement of different systems, or other terms may be used to refer to this process. This is not the case in the embodiments of this application. limited.
  • the method may include the following steps:
  • Step 801 Determine the number of resource units occupied by the first communication system within the first measurement window.
  • Step 801 may be performed by a terminal device.
  • the number of resource units occupied by the first communication system in the first measurement window is less than or equal to the number of resource units in which the RSSI measurement value is greater than the first threshold in the first measurement window.
  • the resource unit may be a time-frequency resource unit.
  • the time-frequency granularity of resource units is described below and is temporarily skipped here. It should be understood that the "number of resource units” may also be referred to as the “number of resources” below, and the “resource unit” may also be referred to as the "resource”.
  • the first measurement window may be a CBR measurement window, also called the first CBR measurement window.
  • the CBR measurement window can refer to the description in Figure 6 .
  • the time domain length of the CBR measurement window may be predefined, indicated, or preconfigured.
  • the frequency domain width of the CBR measurement window can be the width of the resource pool, or it can be one or more RB sets. The embodiments of the present application do not limit this.
  • the first communication system may be an SL communication system.
  • the terminal device may be an SL terminal device.
  • the number of resource units occupied by the first communication system within the first measurement window can be understood as the number of resource units occupied by the terminal device in the first communication system within the first measurement window.
  • the first communication system includes a plurality of terminal devices, and the terminal device is one of the plurality of terminal devices. These multiple terminal devices all transmit services within the first measurement window, that is to say, they all occupy resources in the channel.
  • the terminal device may determine the number of resource units occupied by all terminal devices in the first communication system within the first measurement window.
  • the number of resource units whose RSSI measurement value is greater than the first threshold in the first measurement window can be understood as the number of occupied resource units in the first measurement window, or in other words, the number of busy resource units in the first measurement window.
  • the number of resource units whose RSSI measurement value is greater than the first threshold in the first measurement window can also be understood as the terminal device of the SL system and the different system in the first measurement window.
  • the second communication system is used as the name of the different system. For example, as shown in Figure 9, assuming that the first communication system is the SL communication system and the second communication system is the wifi system, the channel within the measurement window is occupied by the SL communication system and the wifi system.
  • the terminal device can determine whether a certain resource is a resource occupied by the first communication system based on whether the resource carries SL information and whether the RSSI value of the resource is greater than the first threshold. For example: resource unit #A carries SL information, and the RSSI value of the resource unit is greater than the first threshold, then the terminal device can determine that the resource unit is occupied by the first communication system. or, The terminal device can determine whether a certain resource is a resource occupied by the first communication system by whether the resource carries SL information. For example, if resource unit #A carries SL information, the terminal device can determine that the resource unit is occupied by the first communication system.
  • the terminal device determines the resource carrying the SL information in any of the following ways:
  • the resources carrying SL information include carrying at least one of PSCCH, PSSCH, PSFCH, PSBCH, S-SSB, DMRS, CSI-RS, and CPE (CP extension).
  • carrying the PSCCH includes carrying information that passes the CRC check.
  • the resources carrying SL information include resources carrying sideline control information (SCI) indication, or the resources indicated by SCI include resources occupied by SL-U.
  • SCI sideline control information
  • At least one of the time domain indication field, frequency domain indication resource, and period indication field in the SCI indicates the reserved resources of the SL-U.
  • the reserved resources can be regarded as resources occupied by SL-U.
  • Resources carrying SL information include resources carrying COT indication information and/or COT sharing information indication, or resources indicated by COT indication information and/or COT sharing information include resources occupied by SL-U.
  • the COT indication information is used to indicate resources occupied by the terminal device of the initial COT and/or the terminal device sharing the COT.
  • COT sharing information indicates resources shared by a certain terminal device to other terminal devices.
  • Resources carrying SL information include resources carrying AGC symbols (also called signals) and/or CPE symbols (also called signals).
  • SL-U will perform AGC before transmission. Usually the first symbol of the slot is the symbol used for AGC.
  • SL-U may also have CPE before transmission.
  • SL-U may access the channel on any symbol. If the channel is accessed before the AGC symbol, CPE needs to be transmitted.
  • Resources carrying SL information include resources carrying SL synchronization signals.
  • the SL synchronization signal includes at least one of a primary synchronization signal (primary synchronization signal, PSS), a secondary synchronization signal (secondary synchronization signal, SSS), and PSBCH.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PSBCH PSBCH
  • Resources carrying SL information include resources carrying SL sequences and/or SL preamble sequences.
  • the SL sequence includes a DMRS sequence.
  • the SL preamble sequence is located in the first symbol of the timeslot where the SL is located.
  • the power of the RB carrying the preamble sequence is equal to the power of the RB carrying the PSCCH, or the power of the RB carrying the preamble sequence is equal to the power of the RB carrying the PSSCH.
  • the above-mentioned resources carrying SL information include resources whose RSSI measurement value is greater than the threshold, resources equal to the first threshold, and/or resources less than the threshold.
  • resources equal to the first threshold and/or resources smaller than the threshold other terminal devices (for example, terminal devices far away) can transmit on overlapping resources, and the two terminal devices will not interfere with each other.
  • congestion control needs to be performed. That is to say, the resources occupied by the first communication system determined by the terminal device are resources that carry SL information and the RSSI measurement value is greater than the threshold.
  • the above-mentioned first threshold may be the energy detection threshold X Thresh of channel access.
  • the energy detection threshold may refer to the previous description and will not be described again here.
  • the first threshold may be predefined, configured, preconfigured, or indicated, which is not limited in the embodiments of the present application.
  • Step 802 Based on the number of resource units occupied by the first communication system in the first measurement window and/or the number of resource units with RSSI measurement values greater than the first threshold in the first measurement window, determine whether the first communication system is in the first measurement window. The status of the channel within the window.
  • Step 802 may be performed by a terminal device.
  • the terminal device may determine the number of resources according to the number of resources A1 occupied by the first communication system, the number of resources A2 occupied by the second communication system, the number of resources A whose RSSI measurement value exceeds the first threshold, and the number of resources whose RSSI measurement value does not exceed the first threshold. At least two of the number C, the number of resources within the CBR measurement window B, and the number of resources B1 that can be used by the SL determine the channel busy rate of the SL.
  • the number of resources B within the CBR measurement window is the total number of resources within the CBR measurement window, or the total number of resources within the CBR measurement window in the resource pool.
  • the number A of resources whose RSSI measurement value exceeds the first threshold can be understood as the number of resources occupied by SL-U (or the number of resources carrying SL information) and the number of resources occupied by different systems (or the number of resources carrying different system information). At least any one.
  • resources whose RSSI measurement value exceeds the first threshold can be understood as resources whose RSSI measurement value exceeds the first threshold within the CBR measurement window, or resources whose RSSI measurement value within the CBR measurement window exceeds the first threshold in the resource pool.
  • resources whose RSSI measurement value within the CBR measurement window exceeds the first threshold or as resources in the resource pool whose RSSI measurement value within the CBR measurement window exceeds the first threshold.
  • the number C of resources whose RSSI measurement value does not exceed the first threshold can be understood as the number of unoccupied resources and/or the number of unmeasured resources.
  • the number of unoccupied resources can be understood as the number of resources whose RSSI measurement value is less than or equal to the first threshold.
  • the unmeasured resources can be understood as resources in the time slot in which the first terminal device transmits.
  • the resource number C includes at least any one of the number of resources not occupied by the SL-U, the number of resources not occupied by different systems, and the number of resources for which RSSI is not measured.
  • unoccupied resources can be understood as resources whose RSSI measurement value is lower than or equal to the first threshold within the CBR measurement window, or, Resources in the resource pool whose RSSI measurement value within the CBR measurement window is lower than or equal to the first threshold.
  • the number C of resources whose RSSI measurement value does not exceed the first threshold is the number of resources whose RSSI measurement value in the CBR measurement window is lower than or equal to the first threshold, or is the number of resources in the resource pool whose RSSI measurement value in the CBR measurement window is lower than or equal to the first threshold. The number of resources equal to the first threshold.
  • the resources with no RSSI measured within the CBR measurement window can also be understood as the resources with no RSSI measured within the CBR measurement window in the resource pool.
  • the resources for which RSSI is not measured may be resources on the transmission time slot of the first terminal device.
  • the number of resources whose RSSI measurement value does not exceed the first threshold may be the sum of the number of resources whose RSSI measurement value is lower than or equal to the first threshold within the CBR measurement window and the number of resources whose RSSI is not measured, or the RSSI measurement value does not exceed the first threshold.
  • the number of resources exceeding the first threshold is the sum C of the number of resources in the resource pool whose RSSI measurement value is lower than or equal to the first threshold within the CBR measurement window and the number of resources whose RSSI has not been measured.
  • the resources occupied by the above-mentioned first communication system include resources that carry SL information and the RSSI measurement value exceeds the first threshold, or resources that carry SL information among the resources whose RSSI measurement value exceeds the first threshold, or include resources that carry SL information. Resources whose RSSI measurement value exceeds the first threshold.
  • the resources occupied by SL can also be understood as resources that carry SL information in the CBR measurement window and the RSSI measurement value exceeds the first threshold, or that the SL information is carried in the CBR measurement window in the SL resource pool and the RSSI measurement value exceeds the first threshold. Threshold resources.
  • the number of resources A1 occupied by SL is the number of resources A1 that carry SL information in the CBR measurement window and the RSSI measurement value exceeds the first threshold, or the number of resources A1 occupied by SL is the number of resources A1 that carry SL information in the CBR measurement window in the SL resource pool. And the number of resources A1 whose RSSI measurement value exceeds the first threshold.
  • the resources occupied by the above-mentioned second communication system include resources that do not carry SL information and whose RSSI measurement value exceeds the first threshold, or resources that do not carry SL-U information among the resources whose RSSI measurement value exceeds the first threshold, or include resources that do not carry SL-U information.
  • the RSSI measurement value exceeds the first threshold.
  • the resources occupied by the second communication system include resources that do not carry SL information within the CBR measurement window and the RSSI measurement value exceeds the first threshold, or include resources that do not carry SL information within the CBR measurement window and the RSSI measurement value in the SL resource pool Resources that exceed the first threshold.
  • the resources occupied by the second communication system include at least any one of the following resources: resources associated with the preamble sequence of the second communication system, resources indicated by the control information of the second communication system, and COT indication of the second communication system.
  • resources that do not carry SL-U information include resources that do not meet the determination conditions for resources that carry SL-U information.
  • the resources occupied by the second communication system include resources within the CBR measurement window that carry the second communication system information and the RSSI measurement value exceeds the first threshold, or the resources occupied by the second communication system include resources within the CBR measurement window in the resource pool. Resources that carry the second communication system information and whose RSSI measurement value exceeds the first threshold.
  • the resource number A2 is the resource number A whose RSSI measurement value exceeds the first threshold minus the resource number A1 that carries SL information and whose RSSI measurement value exceeds the first threshold.
  • A2 A-A1.
  • the number of resources A2 is the total number of resources B minus the number C of resources whose RSSI measurement value does not exceed the first threshold and the number of resources A1 that carry SL information and whose RSSI measurement value exceeds the first threshold.
  • A2 B-C-A1.
  • the number of resources A1 occupied by the SL-U and whose RSSI measurement value exceeds the first threshold the number A2 of resources occupied by the second communication system and whose RSSI measurement value exceeds the first threshold, and the number of resources whose RSSI measurement value does not exceed the first threshold.
  • the number of resources A2 is the number of resources A2 occupied by the second communication system within the CBR measurement window and the RSSI measurement value exceeds the first threshold, or the number of resources A2 is the number A2 of resources occupied by the second communication system within the CBR measurement window within the resource pool and RSSI measurement exceeds first threshold
  • the number of resources is A2.
  • Resources that can be used by SL include at least one of resources carrying SL information, resources with RSSI measurement values less than or equal to the first threshold, and resources with unmeasured RSSI.
  • the resources that can be used by the SL include resources that can be used by the SL within the CBR measurement window, or resources that can be used by the SL within the CBR measurement window in the resource pool.
  • the number of resources that can be used by the SL is the number of resources that can be used by the SL within the CBR measurement window B1, or is the number of resources that can be used by the SL within the CBR measurement window B1 in the resource pool.
  • the resources that can be used by the SL can also be understood as resources that are not occupied by the second communication system within the CBR measurement window, or include resources that are not occupied by the second communication system within the CBR measurement window in the resource pool.
  • the number of resources that can be used by the SL is the number B1 of resources not occupied by the second communication system within the CBR measurement window, or is the number B1 of resources not occupied by the second communication system within the CBR measurement window in the resource pool.
  • the terminal device can determine the channel busy status within the first measurement window.
  • the channel busy state can be characterized by a channel busy rate, a channel busy degree, or other names, which are not limited in the embodiments of the present application.
  • the method for the terminal device to determine the channel busy status within the first measurement window is as follows:
  • Method 1 The terminal device determines the channel busy state of the first communication system in the first measurement window based on the ratio of the number of resource units occupied by the first communication system in the first measurement window to the number of resource units in the first measurement window.
  • the number of resource units occupied by the first communication system in the first measurement window is A1
  • the number of resource units in the first measurement window is B
  • the channel busy status of the first communication system in the first measurement window is Y
  • the channel busy status of the first communication system within the first measurement window can also be expressed as the ratio of the number of resources carrying SL information and RSSI measurement values exceeding the first threshold to the number of resources within the CBR measurement window.
  • the channel busy state of the first communication system within the first measurement window can also be expressed as the ratio of the number of resources occupied by the SL and whose RSSI measurement value exceeds the first threshold, to the number of resources within the CBR measurement window.
  • the terminal device can also determine the channel status of the second communication system within the first measurement window, such as the channel busy status, which can also be called the second communication system.
  • the channel is busy.
  • the channel busy status of the second communication system within the first measurement window can be characterized by "the ratio of the number of resources occupied by the second communication system within the first measurement window to the number of resources within the first measurement window.”
  • the number of resource units occupied by the second communication system in the first measurement window is A2
  • the number of resource units in the first measurement window is B
  • the channel busy status of the above-mentioned second communication system within the first measurement window can also be expressed as the number of resources carrying the second communication system information and the RSSI measurement value exceeding the first threshold, and the number of resources within the CBR measurement window. ratio.
  • the busy channel status of the second communication system within the first measurement window can also be expressed as the ratio of the number of resources occupied by the second communication system and with RSSI measurement values exceeding the first threshold to the number of resources within the CBR measurement window.
  • the channel busy status of the second communication system within the first measurement window can also be expressed as the ratio of the number of resources that do not carry the first communication system information and whose RSSI measurement value exceeds the first threshold, and the number of resources within the CBR measurement window.
  • the busy channel status of the second communication system within the first measurement window can also be expressed as the ratio of the number of resources that are not occupied by the first communication system and whose RSSI measurement value exceeds the first threshold and the number of resources within the CBR measurement window.
  • channel busy status of the second communication system can also be characterized by parameters in the first communication system.
  • B-A1 represents the total number of resources that can be used by the second communication system within the CBR measurement window.
  • the resources that can be used by the second communication system include resources that do not carry SL information, resources with RSSI measurement values less than or equal to the first threshold, At least one of the resources for which RSSI is not measured.
  • the resources that can be used by the second communication system include resources that can be used by the second communication system within the CBR measurement window, or include resources The resources that can be used by the second communication system within the CBR measurement window in the pool.
  • the number B2 of resources that can be used by the second communication system is the number of resources B-A1 that can be used by the second communication system within the CBR measurement window, or is the number of resources that can be used by the second communication system within the CBR measurement window in the resource pool. Count B-A1.
  • the resources that can be used by the second communication system can also be understood as resources that are not occupied by the first communication system within the CBR measurement window, or include resources that are not occupied by the first communication system within the CBR measurement window in the resource pool.
  • the number B2 of resources that can be used by the second communication system is the number B-A1 of resources that are not occupied by the first communication system within the CBR measurement window, or is the number of resources that are not occupied by the first communication system within the CBR measurement window in the resource pool.
  • the number of resources that can be used by the second communication system can also be expressed as at least any one of B-A+A2, B-A1, or A2+C.
  • B-A2 represents the resources that can be used by the first communication system. For details, please refer to the above description and will not be repeated here.
  • Y represents the channel busy status of the first communication system in the first measurement window
  • A1 represents the number of resource units occupied by the first communication system in the first measurement window
  • C represents that the RSSI measurement value in the first measurement window is greater than the first
  • the number of resource units of the threshold B represents the number of resource units included in the first measurement window.
  • the denominator equivalent to the CBR measurement excludes the resources occupied by the second communication system. Calculate the ratio of resources occupied by SL relative to the resources that SL can use. That is equivalent to calculating the duty cycle of the SL system.
  • the channel busy status of the second communication system within the first measurement window can also be determined.
  • the denominator equivalent to the CBR measurement excludes the resource A1 occupied by SL. Calculate the ratio of the resources occupied by the different system to the resources that can be used by the second communication system. That is equivalent to calculating the duty cycle of the second communication system.
  • the number of resources occupied by the second communication system is at least any one of A2, A-A1, or B-C-A1.
  • the total number of resources that can be occupied by the second communication system is at least any one of B-A+A2, B-A1, or A2+C.
  • A is the number of resources whose RSSI measurement value exceeds the first threshold
  • A1 is the number of resources occupied by SL
  • A1 is the number of resources that carry SL information and whose RSSI measurement value exceeds the first threshold
  • A2 is the number of resources occupied by the second communication system.
  • the number of resources, B is the number of resources within the CBR measurement window
  • C is the number of resources whose RSSI measurement value does not exceed the first threshold and/or is not measured.
  • the terminal device can determine the channel idle state within the first measurement window. It should be understood that the channel idle state can be characterized by a channel idle rate or other names, which are not limited in the embodiments of the present application.
  • Method a According to the number of resource units whose RSSI measurement value is less than or equal to the first threshold, divide the second one from the resources within the CBR measurement window. The ratio of the number of resources other than resources occupied by the communication system determines the channel idle state of the first communication system within the first measurement window.
  • X is the channel idle state of the first communication system within the first measurement window.
  • the denominator excludes the resource A2 occupied by the second communication system, and the numerator is the number C of resources in the entire communication system whose RSSI measurement value does not exceed the first threshold. That is, the ratio of unoccupied resources to the resources that SL can use is calculated.
  • the total number of resources that can be occupied by the first communication system is B-A+A1, B-A2 or A1+C.
  • A is the number of resources whose RSSI measurement value exceeds the first threshold in the first measurement window
  • A1 is the number of resources occupied by the first communication system
  • A1 is the number of resources that carry SL information and whose RSSI measurement value exceeds the first threshold
  • A2 is the number of resources occupied by the second communication system
  • B is the number of resources within the CBR measurement window
  • C is the number of resources whose RSSI measurement value does not exceed the first threshold.
  • Method b Based on the ratio of the number of resource units whose RSSI measurement value is less than or equal to the first threshold and the number of resources in the CBR measurement window other than the resources occupied by the first communication system, determine whether the second communication system is in the first communication system. Channel idle status within the measurement window.
  • X’ is the channel idle state of the second communication system within the first measurement window.
  • the resource A1 occupied by the first communication system is excluded from the denominator, and the numerator is the number of resources in the entire system whose RSSI measurement value does not exceed the first threshold. That is, the ratio of unoccupied resources to the resources that can be used by the second communication system is calculated.
  • the number C of resources whose RSSI measurement value does not exceed the first threshold may be B-A.
  • the total number of resources that can be occupied by the second communication system is B-A+A2, B-A1 or A2+C.
  • A is the number of resources whose RSSI measurement value exceeds the first threshold
  • A1 is the number of resources occupied by SL
  • A1 is the number of resources that carry SL information and whose RSSI measurement value exceeds the first threshold
  • A2 is the number of resources occupied by the second communication system.
  • the number of resources, B is the number of resources within the CBR measurement window
  • C is the number of resources whose RSSI measurement value does not exceed the first threshold.
  • the terminal device can determine the resources occupied by the first communication system and the resources occupied by the second communication system within the first measurement window.
  • the channel busy state can be characterized by a two-dimensional array of resources occupied by the first communication system and resources occupied by the second communication system.
  • congestion control is performed on the first communication system according to the two-dimensional array.
  • the resource ratio of the first communication system is the ratio of the number of resources A1 occupied by the first communication system in the first measurement window to the total number of resources that can be occupied by the first communication system in the first measurement window. That is, A1 ⁇ (B-A+A1), A1 ⁇ (B-A2) or A1 ⁇ (A1+C), where A1 is the number of resources occupied by the first communication system, or A1 is the RSSI measurement value carrying SL information
  • A2 is the number of resources occupied by the second communication system
  • B is the number of resources within the CBR measurement window
  • C is the number of resources whose RSSI measurement value does not exceed the first threshold.
  • the resource proportion of the second communication system is the ratio of the number of resources A2 occupied by the second communication system and the total number of resources that can be occupied by the second communication system within the CBR measurement window. That is, A2 ⁇ (B-A1), (A-A1) ⁇ (B-A1) or (B-C-A1) ⁇ (B-A1), where A is the number of resources whose RSSI measurement value exceeds the first threshold, and A1 is SL
  • the number of occupied resources, or A1 is the number of resources that carry SL information and the RSSI measurement value exceeds the first threshold, A2 is the number of resources occupied by the second communication system, B is the number of resources within the first measurement window, and C is the RSSI measurement The number of resources whose value does not exceed the first threshold.
  • the busy state of the channel is jointly reflected by the two-digit array of the resources occupied by the first communication system and the resources occupied by the second communication system.
  • the resource proportion of the first communication system can be characterized by the parameters of the second communication system, and the resource proportion of the second communication system can also be characterized by the parameters of the first communication system.
  • Method (2) The resources occupied by the first communication system and the resources occupied by the second communication system can be characterized by the ratio of the resources occupied by the first communication system and the resources occupied by the second communication system.
  • the ratio of resource occupancy of the first communication system and resource occupancy of the second communication system may be: resources occupied by the first communication system
  • the number of sources is divided by the number of resources occupied by the second communication system, that is, A1 ⁇ A2, A1 ⁇ (A-A1) or A1 ⁇ (BC-A1).
  • the ratio of the resources occupied by the first communication system to the resources occupied by the second communication system is: the number of resources occupied by the second communication system divided by the number of resources occupied by the first communication system, that is, A2 ⁇ A1, (A-A1) ⁇ A1 or (BC-A1) ⁇ A1.
  • A is the number of resources whose RSSI measurement value exceeds the first threshold
  • A1 is the number of resources occupied by the first communication system
  • A1 is the number of resources that carry SL information and the RSSI measurement value exceeds the first threshold
  • A2 is the second communication system
  • B is the number of resources within the first measurement window
  • C is the number of resources whose RSSI measurement value does not exceed the first threshold.
  • Method (3) The situation of the resources occupied by the first communication system and the resources occupied by the second communication system can be characterized by the difference between the resources occupied by the first communication system and the resources occupied by the second communication system.
  • the difference between the resource occupancy of the first communication system and the resource occupancy of the second communication system is: the number of resources occupied by the first communication system minus the number of resources occupied by the second communication system, that is, A1-A2, A1-(A -A1), 2 ⁇ A1-A, A1-(B-C-A1) or (2 ⁇ A1)-B+C.
  • the number of resources occupied by the second communication system minus the number of resources occupied by the SL satisfies A2-A1, (A-A1)-A1, A-2 ⁇ A1, (B-C-A1)-A1 or B-C-(2 ⁇ A1) at least one.
  • A is the number of resources whose RSSI measurement value exceeds the first threshold
  • A1 is the number of resources occupied by the first communication system
  • A1 is the number of resources that carry SL information and the RSSI measurement value exceeds the first threshold
  • A2 is the second communication system
  • B is the number of resources within the CBR measurement window
  • C is the number of resources whose RSSI measurement value does not exceed the first threshold.
  • the above two-dimensional array, ratio or difference between the resources occupied by the first communication system and the resources occupied by the second communication system is used to represent the channel state in the first measurement window.
  • the way in which the resources occupied by the first communication system and the resources occupied by the second communication system represent the channel status in the first measurement window should also be within the protection scope of this application.
  • the RSSI in the first measurement window is greater than the first measurement window.
  • A2 is the number A of resources whose RSSI measurement value exceeds the first threshold minus the number A1 of resources that carry SL information and whose RSSI measurement value exceeds the first threshold.
  • the resource number A2 is the resource number A2 whose RSSI measurement value exceeds the first threshold.
  • the number A minus the number of resources occupied by SL A1, that is, A2 A-A1.
  • the above method can be applied to a scenario where both the first communication system and the second communication system operate in an unlicensed spectrum, such as a scenario of dynamic channel access.
  • the following introduces a channel measurement method that can be applied to a scenario where the first communication system is in a working state, such as a scenario of semi-static channel access.
  • the values of the first offset and/or the first coefficient are predefined, preconfigured or network configured.
  • the duration of a measurement window includes a period of idle time, resulting in inaccurate measurement results.
  • the above-mentioned first offset or first coefficient is used to adjust the measurement result.
  • the CBR measurement result is the CBR measurement value + offset, or the CBR measurement result is the CBR measurement value multiplied by ⁇ , or the CBR measurement result is the CBR measurement value divided by ⁇ .
  • the CBR measurement value is a ratio of the number of resources whose RSSI measurement value exceeds the first threshold and the total number of resources within the CBR measurement window.
  • Y represents the channel busy state of the first communication system within the first measurement window.
  • A1 represents the number of resources occupied by the first communication system, which is the same as the number of resources whose RSSI measurement value exceeds the first threshold in the semi-static channel access mode.
  • B represents the number of resource units included in the first measurement window, offset is the first offset, and ⁇ or ⁇ is the first coefficient.
  • the value range of offset is greater than or equal to 0 and less than or equal to 1.
  • the value of offset is at least one value configured in the list, for example, the list is ⁇ 0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7 ,0.75,0.8,0.85,0.9,0.95,1 ⁇ at least 2 values, the configured or pre-configured offset value is 0.05.
  • is a value whose value range is greater than or equal to 1.
  • the value of ⁇ is at least 1 value configured in the list, for example, the list is at least 2 values in ⁇ 1,1.01,1.02,1.03,1.04,1.05,1.06,1.07,1.08,1.09,1.1 ⁇ , Configure or pre-configure ⁇ with a value of 1.05.
  • the value range of ⁇ is greater than or equal to 0 and less than or equal to 1.
  • the value of ⁇ is at least one value configured in the list, for example, the list is ⁇ 0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7 ,0.75,0.8,0.85,0.9,0.95,1 ⁇ at least 2 values, configure or pre-configure the value of ⁇ to 0.95.
  • the first coefficient is used to adjust the number of resources in the CBR measurement window.
  • the channel busy state of the first communication system in the first CBR measurement window is determined according to the ratio of the number of resource units with RSSI measurement values greater than the first threshold in the first CBR measurement window to the number of resource units in the first CBR measurement window.
  • the number of resource units in the first CBR measurement window is the actual number of transmission resources in the CBR measurement window multiplied by M.
  • the first coefficient is M
  • the number B of resources in the CBR measurement window is the actual number of resources in the CBR measurement window multiplied by M.
  • the value range of M is greater than or equal to 0 and less than or equal to 1.
  • the value of M is at least 1 value configured in the list, for example, the list is at least 2 values in ⁇ 0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1 ⁇ , Configure or pre-configure M with a value of 0.95.
  • the first coefficient is used to adjust the size of the CBR measurement window.
  • the channel busy state of the first communication system in the first CBR measurement window is determined according to the ratio of the number of resource units with RSSI measurement values greater than the first threshold in the first CBR measurement window to the number of resource units in the first CBR measurement window.
  • the first CBR measurement window includes the top M resources in the time domain within each transmission period T, or the first CBR measurement window does not include idle time resources.
  • the CBR measurement window includes the top M resources in the time domain within each transmission period T, or the CBR measurement window does not include idle time resources.
  • the value range of M is greater than or equal to 0 and less than or equal to 100%.
  • the value of M is at least 1 value configured in the list, for example, the list is ⁇ 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% ,100% ⁇ , configure or pre-configure M with a value of 95%.
  • the value of M is determined according to the value of the transmission period T,
  • the CBR measurement window includes the resources located in the first min ⁇ M ⁇ T,T-0.1 ⁇ ms in the time domain within each transmission period T.
  • the value range of M is greater than or equal to 0 and less than or equal to 1.
  • the value of M is at least one value configured in the list, for example, the list is ⁇ 0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7 ,0.75,0.8,0.85,0.9,0.95,1 ⁇ , configure or pre-configure the value of M to be 0.95.
  • each transmission period T is a transmission period within 1 or 2 radio frames.
  • the value of period T is at least one value among ⁇ 1,2,2.5,4,5,10 ⁇ ms.
  • two radio frames include 20/T transmission periods, or one radio frame includes 10/T transmission periods.
  • the first coefficient is used to adjust the number of resources whose RSSI measurement value exceeds the first threshold within the first measurement window.
  • the channel busy state of the first communication system in the first CBR measurement window is determined according to the ratio of the number of resource units with RSSI measurement values greater than the first threshold in the first CBR measurement window to the number of resource units in the first CBR measurement window.
  • the number of resource units whose RSSI measurement value is greater than the first threshold is the actual number of resource units whose RSSI measurement value is greater than the first threshold plus offset, or is the number of resource units whose RSSI measurement value exceeds the first threshold.
  • the actual number of resources whose RSSI measurement value exceeds the first threshold is multiplied by ⁇ , or the actual number of resources whose RSSI measurement value exceeds the first threshold is divided by ⁇ .
  • the number A of resources whose RSSI measurement value exceeds the first threshold is the actual number A' of resources whose RSSI measurement value exceeds the first threshold plus offset, or is the actual number A of resources whose RSSI measurement value exceeds the first threshold.
  • the value range of offset is greater than or equal to 1.
  • the value of offset is a fixed value.
  • the value of offset is at least one value configured in the offset list.
  • is a value whose value range is greater than or equal to 1.
  • the value of ⁇ is at least 1 value configured in the list, for example, the list is at least 2 values in ⁇ 1,1.01,1.02,1.03,1.04,1.05,1.06,1.07,1.08,1.09,1.1 ⁇ , configured Or the preconfigured ⁇ value is 1.05.
  • the value range of ⁇ is greater than or equal to 0 and less than or equal to 1.
  • the value of ⁇ is at least one value configured in the list, for example, the list is ⁇ 0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7 At least 2 of ,0.75,0.8,0.85,0.9,0.95,1 ⁇ are configured or pre-configured with a ⁇ value of 0.95.
  • the terminal device determines the number of resources occupied by the first communication system and the second communication system respectively; in the semi-static channel access scenario, the terminal device redefines the measurement window.
  • the size, or redefining the number of resources included in the measurement window, or redefining the number of occupied resources determines the actual occupied resources, further determines the channel status, and improves the accuracy of channel measurement.
  • this embodiment may also include the following steps:
  • Step 803 Determine whether to enable at least one of the following features according to the channel measurement result: whether to enable period reservation (resource period reservation), whether to enable preemption (pre-emption checking) and/or re-evaluation (re- evaluation), or whether to enable transmission of the second SL information within the initial COT of the first SL information.
  • a possible implementation can determine to enable at least one of the above features based on the CBR condition, which is at least one of the following:
  • the channel busy status of the first communication system is greater than and/or equal to threshold #A;
  • the channel busy status of the second communication system is less than and/or equal to threshold #B;
  • the difference between the channel busy status of the first communication system and the channel busy status of the second communication system is greater than the threshold #C;
  • the ratio of the channel busy state of the first communication system to the channel busy state of the second communication system is greater than the threshold #D.
  • threshold #A, threshold #B, threshold #C and/or threshold #D may be predefined, preconfigured, configured, or indicated, which is not limited in the embodiments of the present application.
  • the channel busy status of the first communication system is less than threshold #A;
  • the channel busy status of the second communication system is greater than threshold #B;
  • the difference between the channel busy status of the first communication system and the channel busy status of the second communication system is less than the threshold #C;
  • Periodic reservation and preemption may be disabled, or transmission of the second SL information within the initial COT of the first SL information may be disabled.
  • enabling period reservation can be understood as enabling the terminal device to reserve between COTs.
  • enabling and/or disabling periodic reservation of the terminal device includes enabling and/or disabling periodic reservation of the terminal device in the resource pool.
  • the cycle reservation of the terminal device may be indicated by the first field in the first-order SCI.
  • the first field indicates a non-zero period value, such as ⁇ 1,2,3,...,98,99 ⁇ ms or ⁇ 100,200,300,...,900, Any one of 1000 ⁇ ms.
  • the value of the first field is 0 or the first field indicates that the reservation interval value is 0.
  • the above-mentioned preemption enabling preemption check and/or re-evaluation includes enabling preemption check and/or re-evaluation of resources in the COT.
  • the first terminal device may determine that the first resource is preempted.
  • the priority value of the first terminal device is greater than the first priority threshold and the channel status satisfies the above CBR condition
  • the first terminal device determines that the first resource is preempted.
  • the priority value of the second terminal device is less than the first priority threshold and the channel status satisfies the above CBR condition
  • the first terminal device determines that the first resource is preempted.
  • the priority value may be a CAPC value, a priority value indicated in the SCI, and/or a priority value indicated in the first-order SCI.
  • the first resource is a resource indicated by the SCI of the first terminal device, and/or the first resource is a resource indicated by the COT sharing information of the first terminal device.
  • the second resource is a resource indicated by the SCI of the second terminal device, and/or the second resource is a resource indicated by the COT sharing information of the second terminal device.
  • the second terminal device can determine that the second resource has not been preempted.
  • the priority value of the first terminal device is greater than the first priority threshold and the channel status satisfies the above CBR condition
  • the second terminal device determines that the second resource has not been preempted.
  • the priority value of the second terminal device is less than the first priority threshold and the channel status satisfies the above CBR condition
  • the second terminal device determines that the second resource has not been preempted.
  • the priority value may be a CAPC value, a priority value indicated in the SCI, and/or a priority value indicated in the first-order SCI.
  • the second resource is a resource indicated by the SCI of the second terminal device, and/or the second resource is a resource indicated by the COT sharing information of the second terminal device.
  • the first terminal device may report to a higher layer to re-evaluate the first resource determined by the first terminal device.
  • the first signal strength threshold may be determined according to the priority of the first terminal device and the priority indicated in the SCI of the second terminal device.
  • the priority of the first terminal device is the priority used by the first terminal device to select the first resource.
  • the first terminal device may be an SL terminal
  • the second terminal device may be a terminal in the second communication system; or, the first terminal device and the second terminal device are both SL terminals.
  • the embodiments of the present application do not limit this.
  • the above-mentioned transmission of the second SL information within the initial COT of the first SL information can also be understood as COT sharing.
  • the first SL information and the second SL information come from different terminal devices.
  • enabling COT sharing includes enabling COT sharing of the terminal device and/or enabling COT sharing between the sending terminal device and the receiving terminal device.
  • COT sharing includes transmission on different sub-channels or different interleaved channels in the same time slot within the COT, or transmission on different time slots within the COT.
  • the first terminal device initiates the first COT.
  • the second terminal device shares the first COT and transmits SL information in the first COT.
  • the SL transmission of the second terminal device within the first COT is sent to the first terminal device.
  • enabling COT sharing can also be understood as the first terminal device allowing the second terminal device to share the first COT, and/or the second terminal device confirms sharing the first COT initialized by the first terminal device.
  • the second terminal device initializes the first COT.
  • the first terminal device shares the first COT and transmits SL information within the first COT.
  • the SL transmission of the first terminal device within the first COT is sent to the second terminal device.
  • enabling COT sharing can also be understood as the second terminal device allowing the first terminal device to share the first COT, and/or the first terminal device confirms sharing the second terminal device's initial first COT.
  • the above-mentioned transmission of the second SL information within the initial COT of the first SL information can also be understood as the transmission of the second SL information of the first terminal device within the initial COT of the first terminal device's first SL information.
  • the first SL information and the second SL information come from the same terminal device.
  • the initial COT of the first SL information can also be understood as the initial COT of the CAPC according to the first SL information.
  • the first SL information and the second SL information may be transmitted on different sub-channels or different interleaved channels in the same time slot within the COT, or the first SL information and the second SL information may be transmitted on different time slots within the COT.
  • the first terminal device reserves resources, and the second terminal device detects the reservation information of the first terminal device and excludes the resources.
  • the first terminal device may not necessarily be able to successfully access the channel before reserving resources or before reserving resources. It may be caused that neither the first terminal device nor the second terminal device uses the first resource for transmission. Preemptive checking and re-evaluation are similar.
  • the first terminal device and the second terminal device select overlapping resources. When the second communication system occupies a large number of channels, even if the first terminal device does not use the first resource, the second terminal device may not be able to use the first resource to transmit. .
  • the SL reservation mechanism may not necessarily bring gains, but will instead cause the SL terminal device to excessively exclude resources that could be used.
  • This application proposes yet another embodiment.
  • This embodiment provides a measurement method applied to an unlicensed spectrum communication system. This method can improve the accuracy of channel occupancy status measurement.
  • the unlicensed spectrum communication system includes a first communication system, where the first communication system may be an SL communication system. It should be understood that the following uses a terminal device as a measurement execution device as an example to illustrate the solutions of the embodiments of the present application, but the present application is not limited thereto.
  • the method may include the following steps:
  • Step 1001 Determine the number of resource units occupied by the first communication system within the second measurement window.
  • Step 1001 may be performed by a terminal device.
  • the number of resource units occupied by the first communication system in the second measurement window is less than or equal to the number of resource units in which the RSSI measurement value is greater than the second threshold in the second measurement window.
  • the first communication system may be an SL communication system.
  • the terminal device may be an SL terminal.
  • the second measurement window may be a CR measurement window.
  • the CR measurement window may refer to the description in FIG. 7 . It should be understood that the length of the CR measurement window may be predefined, indicated, or preconfigured, which is not limited in the embodiments of the present application. Measuring CR can also be understood as evaluating CR.
  • the number of resource units occupied by the first communication system within the second measurement window can be understood as the number of resource units occupied by the terminal devices in the first communication system within the second measurement window.
  • the first communication system includes multiple terminal devices.
  • the terminal device is one of the plurality of terminal devices. These multiple terminal devices all transmit services within the first measurement window, that is to say, they all occupy resources in the channel.
  • the terminal device may determine the number of resource units occupied by all terminal devices in the second communication system within the second measurement window.
  • the number of resource units whose RSSI measurement value is greater than the first threshold in the second measurement window can be understood as the number of occupied resource units in the second measurement window, or in other words, the number of busy resource units in the second measurement window.
  • the number of resource units whose RSSI measurement value is greater than the first threshold in the second measurement window can also be understood as the terminal device of the SL system in the second measurement window. and the sum of the number of resource units occupied by terminal devices of different systems. For example, as shown in Figure 11, assuming that the first communication system is the SL communication system and the second communication system is the wifi system, the channel within the measurement window is occupied by the SL communication system and the wifi system.
  • the terminal device can determine whether a certain resource is a resource occupied by the first communication system based on whether the resource carries SL information and whether the RSSI value of the resource is greater than the first threshold. For example: resource unit #A carries SL information, and the RSSI value of the resource unit is greater than the first threshold, then the terminal device can determine that the resource unit is occupied by the first communication system.
  • the method for the terminal device to determine the resource carrying the SL information may refer to method a) to method f) in step 801, which will not be described again here.
  • the measurement window includes time slots [n-a, n+b] in the time domain.
  • the measurement window may be called a third measurement window (or CR measurement window).
  • the third measurement window further includes a second measurement window (also called the first CR window) and the fourth measurement window (also called the second CR window).
  • the second measurement window includes the time slot [n-a, n-1] in the time domain
  • the fourth measurement window includes the time slot in the time domain.
  • Time slot [n, n+b] time slot n is the time slot for measuring CR.
  • the number of resource units occupied by the first communication system in the second measurement window is less than the number of resource units with RSSI measurement values greater than the second threshold in the second measurement window. It may be that there are other communication systems on the channel of the second measurement window.
  • the second communication system can refer to the relevant instructions in step 801, which will not be described again here.
  • the number of resource units occupied by the first communication system in the second measurement window is equal to the number of resource units whose RSSI measurement value is greater than the second threshold in the second measurement window. It may be that only the first communication system is on the channel of the second measurement window. Work (or run).
  • the above-mentioned second threshold may be the energy detection threshold X Thresh of channel access.
  • the energy detection threshold may refer to the previous description and will not be described again here.
  • the second threshold may be predefined, configured, preconfigured, or indicated. This application implements This example does not limit this.
  • Step 1002 Determine the channel status of the first communication system in the third measurement window according to the number of resource units occupied by the first communication system in the second measurement window.
  • the third measurement window includes the second measurement window.
  • Step 1002 may be performed by a terminal device.
  • the number of resources G1 occupied by the SL, the number G2 of resources occupied by different systems, the number G of resources whose RSSI measurement value exceeds the second threshold, the number of resources G whose RSSI measurement value does not exceed the second threshold, and/or the number of resources whose RSSI is not measured can be used.
  • G' the total number of resources in the first CR window D1, the total number of resources in the second CR window D2, the number of resources in the CR measurement window D, the number of resources transmitted by the first terminal device E, the resources authorized by the first terminal device
  • At least two of the numbers F determine the channel occupancy status of the SL.
  • the number of resources D within the CR measurement window is the total number of resources within the CR measurement window, or the total number of resources within the CR measurement window in the resource pool.
  • the total number of resources in the first CR window is D1
  • the total number of resources in the second CR window is D2.
  • the total number of resources in the first CR window in the resource pool is D1
  • the total number of resources in the second CR window in the resource pool is D2.
  • the total number of resources D in the CR measurement window is the sum of the total number of resources D1 in the first CR window and the total number D2 in the second CR window.
  • the number G of resources whose RSSI measurement value exceeds the second threshold can be understood as the number of resources occupied by the SL in the first CR window (or the number of resources carrying SL information), the number of resources occupied by the second communication system (or the number of resources carrying the second communication At least any one of the number of system information resources).
  • resources whose RSSI measurement value exceeds the second threshold can be understood as resources whose RSSI measurement value exceeds the second threshold within the first CR window, or resources whose RSSI measurement value within the first CR window exceeds the second threshold in the resource pool.
  • the resource number G can also be understood as the number of resources whose RSSI measurement value exceeds the second threshold in the first CR window, or the resource number G is the resources in the resource pool whose RSSI measurement value exceeds the second threshold in the first CR window. number.
  • the number G' of resources whose RSSI measurement value does not exceed the second threshold can be understood as the number of unoccupied resources and/or the number of unmeasured resources.
  • the number of unoccupied resources can be understood as the number of resources whose RSSI measurement value is less than or equal to the second threshold.
  • the unmeasured resources can be understood as resources in the time slot in which the first terminal device transmits.
  • the number of resources G' includes at least any one of the number of resources not occupied by the SL, the number of resources not occupied by the second communication system, and the number of resources for which RSSI has not been measured.
  • unoccupied resources can be understood as resources whose RSSI measurement value in the first CR window is lower than or equal to the second threshold, or resources in the resource pool whose RSSI measurement value in the first CR window is lower than or equal to the second threshold.
  • resource the number G' of resources whose RSSI measurement value does not exceed the second threshold is the number of resources whose RSSI measurement value is lower than or equal to the second threshold in the first CR window, or is the RSSI measurement value in the first CR window in the resource pool. The number of resources below or equal to the second threshold.
  • resources with no RSSI measured within the CR measurement window can also be understood as resources with no RSSI measured within the first CR window in the resource pool.
  • the resources for which RSSI is not measured may be resources on the transmission time slot of the first terminal device.
  • the number of resources whose RSSI measurement value does not exceed the second threshold may be the sum of the number of resources whose RSSI measurement value is lower than or equal to the second threshold in the first CR window and the number of resources whose RSSI is not measured, or the RSSI measurement value
  • the number of resources that does not exceed the second threshold is the sum G' of the number of resources in the resource pool whose RSSI measured value is lower than or equal to the second threshold in the first CR window and the number of resources whose RSSI has not been measured.
  • the resources occupied by the above-mentioned first communication system include resources that carry SL information and the RSSI measurement value exceeds the second threshold, or resources that carry SL information among the resources whose RSSI measurement value exceeds the second threshold, or include resources that carry SL information. Resources whose RSSI measurement value exceeds the second threshold.
  • the resources occupied by SL can also be understood as resources that carry SL information in the first CR window and the RSSI measurement value exceeds the second threshold, or that the SL information is carried in the first CR window in the SL resource pool and the RSSI measurement value exceeds Second threshold resources.
  • the number of resources G1 occupied by SL is the number of resources G1 that carry SL information in the first CR window and the RSSI measurement value exceeds the second threshold, or the number of resources G1 occupied by SL is the number of resources G1 that are carried in the first CR window in the SL resource pool.
  • step 801 For the manner in which the terminal device determines the resource carrying the SL information, reference may be made to the description in step 801, which will not be described again here.
  • the resources occupied by the above-mentioned second communication system include resources that do not carry SL information and whose RSSI measurement value exceeds the second threshold, or resources that do not carry SL-U information among the resources whose RSSI measurement value exceeds the second threshold, or include resources that do not carry SL-U information.
  • the RSSI measurement value exceeds the second threshold.
  • the resources occupied by the second communication system include resources that do not carry SL information in the first CR window and the RSSI measurement value exceeds the second threshold, or include resources that do not carry SL information in the first CR window and RSSI in the SL resource pool. Resources whose measurements exceed the second threshold.
  • the resources occupied by the second communication system include at least any one of the following resources: the preamble sequence of the second communication system; resources indicated by the control information of the second communication system, resources indicated by the COT indication information of the second communication system, resources indicated by the COT sharing information of the second communication system, and resources indicated by the sequence of the second communication system.
  • resources that do not carry SL information include resources that do not meet the determination conditions for resources that carry SL information.
  • the resources occupied by the second communication system include resources that carry the second communication system information within the first CR window and the RSSI measurement value exceeds the second threshold, or the resources occupied by the second communication system include the first CR in the resource pool. Resources within the window that carry the second communication system information and whose RSSI measurement value exceeds the second threshold.
  • the resource number G2 is the number of resources G2 occupied by the second communication system in the first CR window and the RSSI measurement value exceeds the second threshold, or the resource number G2 is the second communication system in the first CR window in the resource pool.
  • the resources transmitted by the first terminal device include resources within the first CR window, or the resources transmitted by the first terminal device include resources within the first CR window in the resource pool.
  • the resource number E is the number of resources transmitted by the first terminal device within the first CR window, or the resource number E is the number of resources transmitted by the first terminal device within the first CR window in the resource pool.
  • the resources transmitted by the first terminal device include resources within the second measurement window.
  • the resource number E is the number of resources transmitted by the first terminal device within the first CR window.
  • the number E of resources transmitted by the first terminal device may be determined based on priority or CAPC. For example, for transmissions with priorities 1 to 8, the number of resources transmitted by the first terminal device are ⁇ E 1 , E 2 , E 3 ,..., E 7 ⁇ ; for another example, for transmissions with CAPCs 1 to 4, the first The number of resources transmitted by the terminal device are ⁇ E i , E ii , E iii , E iv ⁇ respectively.
  • the resources authorized by the first terminal device are resources belonging to the selected sidelink grant.
  • the resources authorized to the first terminal device are a set of resources selected by the MAC layer of the first terminal device.
  • the first terminal device may use resources in the resource set to transmit SL information.
  • the resources authorized by the first terminal device are resources within the second CR window, or the resources authorized by the first terminal device are resources within the second CR window within the resource pool.
  • the resource number E is the number of resources authorized to the first terminal device in the second CR window, or the resource number E is the number of resources authorized to the first terminal device in the second CR window in the resource pool.
  • the number F of resources authorized to the first terminal device may be determined based on priority or CAPC. For example, for transmissions with priorities 1 to 8, the number of resources authorized by the first terminal device are ⁇ F 1 , F 2 , F 3 ,..., F 7 ⁇ ; for another example, for transmissions with CAPCs 1 to 4, the first The number of resources authorized by the terminal device are ⁇ Fi , F ii , F iii , F iv ⁇ respectively.
  • the terminal device can determine the channel occupancy status within the third measurement window. It should be understood that the channel occupancy status can be characterized by channel occupancy rate, or other names, which are not limited in the embodiments of this application.
  • the method for the terminal device to determine the channel occupancy status within the first measurement window is as follows:
  • Z represents the channel occupancy status of the first communication system in the second measurement window
  • E represents the number of resource units transmitted by the first terminal device in the second measurement window
  • F represents the number of resource units transmitted by the first terminal device in the fourth measurement window.
  • the number of authorized resource units D represents the number of resource units within the third measurement window
  • G represents the number of resource units with RSSI measurement values greater than the second threshold within the second measurement window
  • G1 represents the first communication system within the second measurement window
  • the number of occupied resource units, or G1 represents resources that carry the first communication system information within the second measurement window and whose RSSI measurement value exceeds the second threshold.
  • the number of resource units transmitted by the first terminal device within the second measurement window can also be understood as resources carrying SL information of the first terminal device.
  • the SL information includes at least one of PSCCH, PSSCH, PSFCH, S-SSB, and CPE. one of them.
  • the number of resource units transmitted by the first terminal device within the third measurement window can also be understood as the resources within the initial COT of the first terminal device.
  • the resources within the COT include resources carrying the SL information of the first terminal device and /Or share resources for transmitting SL information with other terminal devices.
  • the first terminal device is a resource unit that is authorized within the fourth measurement window, and the authorized resource is a resource belonging to a selected sidelink resource (selected sidelink grant).
  • the resources authorized to the first terminal device may be a resource set selected by the MAC layer of the first terminal device, and the first terminal device may use the resources in the resource set to transmit SL information.
  • the resource unit to which the first terminal device is authorized in the fourth measurement window can be understood as the resource unit to which the first terminal device is authorized in the fourth measurement window, such as the COT to which the first terminal device is authorized in the fourth measurement window.
  • the resources within the COT include resources that authorize the first terminal device to transmit SL information and/or resources that are authorized to be shared with other terminal devices to transmit SL information.
  • the fourth measurement window contains resources carrying SL information of the first terminal device.
  • the SL information includes at least one of PSCCH, PSSCH, PSFCH, S-SSB, and CPE.
  • the channel occupancy status of the SL is the sum of the number of resources E transmitted by the first terminal device and the number of authorized resources F, accounting for the proportion of the number of resources not occupied by the second system in the third measurement window.
  • the channel occupancy status of the SL is the sum of the number of resources E transmitted by the first terminal device and the number of authorized resources F, divided by the number of remaining resources in the CR measurement window excluding resources occupied by the second communication system.
  • Z represents the channel occupancy status of the first communication system in the third measurement window
  • E represents the number of resource units transmitted by the first terminal device in the second measurement window
  • F represents the number of resource units transmitted by the first terminal device in the fourth measurement window.
  • the number of authorized resource units D represents the number of resource units within the third measurement window
  • G represents the number of resource units with RSSI measurement values greater than the second threshold within the second measurement window
  • G1 represents the first communication system within the second measurement window
  • the number of occupied resource units ⁇ is the adjustment factor
  • is the scaling factor.
  • may represent the number of resource units authorized by the second communication system in the fourth measurement window, and ⁇ may be divided by the number of resource units authorized by the first communication system in the fourth measurement window according to the number of authorized resources in the fourth measurement window. The number of resources other than the number of authorized resource units is calculated.
  • is a value preconfigured for the first terminal device or configured by the network for the first terminal device.
  • can also be understood as the number of resources authorized by the second communication system in the third measurement window, or in other words, the number of resources authorized by the second communication system in the fourth measurement window.
  • This calculation process is equivalent to excluding the number G2 of resources occupied by the second communication system and the number ⁇ of resources authorized by the second communication system from the denominator.
  • the channel occupancy status of SL is the sum of the number of resources E transmitted by the first terminal device and the number of authorized resources F, accounting for the number of resources not occupied by the second communication system and not occupied by the second communication system in the CR measurement window.
  • the proportion of the number of authorized resources of the communication system is the channel occupancy status of the SL.
  • the channel occupancy status of the SL is the sum of the number of resources E transmitted by the first terminal device and the number of authorized resources F, divided by the remainder of the CR measurement window that excludes occupied by the second communication system and is authorized by the second communication system.
  • the number of resources is D-G2- ⁇ .
  • the number of authorized resources ⁇ of the second communication system may be a preconfigured or network device configured value.
  • the number of authorized resources ⁇ of the second communication system is a value in a preconfigured or network configuration list.
  • is an integer.
  • the number ⁇ of authorized resources of the second communication system may be determined based on priority or CAPC. For example, for transmissions with priorities 1 to 8, the number of resources authorized by the second communication system are ⁇ 1 , ⁇ 2 , ⁇ 3 ,..., ⁇ 7 ⁇ ; for another example, for transmissions with CAPCs 1 to 4, The authorized resources of the two communication systems are ⁇ i , ⁇ ii , ⁇ iii , ⁇ iv ⁇ respectively.
  • This method 2 can also be transformed into: (E+F) ⁇ (D-G2- ⁇ ) or (E+F) ⁇ (G1+D2+G’- ⁇ ).
  • Z represents the channel occupancy status of the first communication system in the third measurement window
  • E represents the number of resource units transmitted by the first terminal device in the second measurement window
  • F represents the number of resource units transmitted by the first terminal device in the fourth measurement window.
  • the number of authorized resource units D represents the number of resource units within the third measurement window
  • G represents the number of resource units with RSSI measurement values greater than the second threshold within the second measurement window
  • G1 represents the first communication system within the second measurement window
  • the number of occupied resource units, ⁇ is the scaling factor.
  • the sum ⁇ G2 of the number of resources occupied and authorized by the second communication system can be determined based on the product of the number of resources occupied by the second communication system and the scaling factor.
  • the above calculation method is equivalent to excluding the sum of the number of resources occupied by the second communication system and authorized by the second communication system ⁇ G2 in the denominator.
  • the channel occupancy status of the SL is the sum of the number of resources E transmitted by the first terminal device and the number of authorized resources F accounting for the number of resources not occupied by the second communication system and not authorized by the second communication system in the CR measurement window.
  • the ratio of the number of resources is the channel occupancy status of the SL.
  • the channel occupancy status of the SL is the sum of the number of resources E transmitted by the first terminal device and the number of authorized resources F, divided by the remaining resources in the CR measurement window excluding those occupied by the second communication system and authorized by the second communication system. Number D- ⁇ G2.
  • the scaling factor ⁇ is a preconfigured or network configured value.
  • the scaling factor ⁇ is a value in a preconfigured or network configured list.
  • Another possible implementation where ⁇ is a number greater than or equal to 1 can determine the scaling factor ⁇ based on priority or CAPC.
  • the number of resources authorized by the second communication system are ⁇ 1 , ⁇ 2 , ⁇ 3 ,..., ⁇ 7 ⁇ ; for another example, for transmissions with CAPCs 1 to 4,
  • the authorized resources of the two communication systems are ⁇ i , ⁇ ii , ⁇ iii , ⁇ iv ⁇ respectively.
  • the above method is suitable for scenarios where a first communication system and a second communication system exist at the same time, for example, a scenario where a channel is dynamically accessed.
  • the following describes the calculation method of the channel occupancy status in a scenario where only the first communication system is working.
  • the ratio of the sum of the number of resource units transmitted by the first terminal device in the third measurement window and the number of authorized resource units in the third measurement window to the number of resource units in the third measurement window, And the second offset and/or the second coefficient determine the channel occupancy status of the first communication system, wherein the values of the second offset and/or the second coefficient are predefined, preconfigured, or network configured.
  • the value of the second offset and/or the second coefficient is related to the proportion of idle time to the total number of resources in the measurement window.
  • the number of resource units transmitted by the first terminal device in the second measurement window, the number of resource units authorized in the fourth measurement window and The number of resource units in the third measurement window may refer to the previous description, and will not be described again here.
  • the above-mentioned second offset or second coefficient is used to adjust the measurement results.
  • the CR measurement result is the CR measurement value + offset', or the CR measurement result is the CR measurement value multiplied by ⁇ ', or the CR measurement result is the CR measurement value divided by ⁇ '.
  • the CR measurement result is the CR actual measurement value + offset’, or the CR measurement result is the CR actual measurement value multiplied by ⁇ ’, or the CR measurement result is the CR actual measurement value divided by ⁇ ’.
  • the CR measurement value is the ratio of the sum of the number of resources E transmitted by the first terminal device and the number of authorized resources F to the number of resources in the CR measurement window.
  • the CR measurement value is the sum of the number of resources E transmitted by the first terminal device and the number of authorized resources F, divided by the number of resources D in the CR measurement window. That is, the CR measurement value is the ratio of E+F to D, or the CR measurement value is the value of E+F divided by D.
  • Offset’ is the second offset
  • ⁇ ’ or ⁇ ’ is the second coefficient
  • the value range of offset’ is greater than or equal to 0 and less than or equal to 1.
  • the value of offset' is at least 1 value configured in the list, for example, the list is ⁇ 0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65, At least 2 values among 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1 ⁇ , the configured or pre-configured offset' value is 0.05.
  • ⁇ ’ is a value with a value range greater than or equal to 1.
  • the value of ⁇ ' is at least 1 value configured in the list, for example, the list is at least 2 values in ⁇ 1,1.01,1.02,1.03,1.04,1.05,1.06,1.07,1.08,1.09,1.1 ⁇ , configure or pre-configure the value of ⁇ ' to 1.05.
  • the value range of ⁇ ’ is greater than or equal to 0 and less than or equal to 1.
  • the value of ⁇ ' is at least one value configured in the list, for example, the list is ⁇ 0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65, At least 2 values among 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1 ⁇ , configure or pre-configure the value of ⁇ ' to 0.95.
  • the first coefficient is used to adjust the number of resources in the CR measurement window.
  • the third measurement window includes resources within each transmission period T.
  • the first coefficient is M’.
  • the number of resources D in the CR measurement window is the number of transmission resources in the CR measurement window multiplied by M'.
  • the value range of M’ is greater than or equal to 0 and less than or equal to 1.
  • the value of M' is at least 1 value configured in the list, for example, the list is at least 2 values in ⁇ 0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1 ⁇ , configure or pre-configure the value of M' to 0.95.
  • the first coefficient is used to adjust the size of the CR measurement window.
  • the CR measurement window includes resources located in the top M' in the time domain within each transmission period T, or the CR measurement window does not include resources in idle time.
  • the value range of M' is greater than or equal to 0 and less than or equal to 100%.
  • the value of M' is at least 1 value configured in the list, for example, the list is ⁇ 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95 At least 2 of %,100% ⁇ configure or pre-configure the value of M' to 95%.
  • the value of M’ is determined based on the value of the transmission period T,
  • the CR measurement window includes the resources located in the first min ⁇ M ⁇ T,T-0.1 ⁇ ms in the time domain within each transmission period T.
  • the value range of M’ is greater than or equal to 0 and less than or equal to 1.
  • the value of M' is at least one value configured in the list, for example, the list is ⁇ 0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65, At least 2 of 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1 ⁇ , configure or pre-configure the value of M' to 0.95.
  • each transmission period T is a transmission period within 1 or 2 radio frames.
  • the value of period T is at least one value among ⁇ 1,2,2.5,4,5,10 ⁇ ms.
  • two radio frames include 20/T transmission periods, or one radio frame includes 10/T transmission periods.
  • the first coefficient is used to adjust the number of resources E transmitted by the first terminal device and the number E of which the first terminal device is authorized. Resource quantity F.
  • the number E of resources transmitted by the first terminal device is the actual number E' of resources transmitted by the first terminal device plus offset, or is the actual number E' of resources transmitted by the first terminal device multiplied by ⁇ ', or , is the actual number E' of resources transmitted by the first terminal device divided by ⁇ '.
  • the number F of resources authorized by the first terminal device is the actual number F' of resources authorized by the first terminal device plus offset, or is the actual number F' of resources authorized by the first terminal device multiplied by ⁇ ' , or the actual number F' of resources authorized for the first terminal device is divided by ⁇ '.
  • the value range of offset’ is greater than or equal to 0 and less than or equal to 1.
  • the value of offset' is at least 1 value configured in the list, for example, the list is ⁇ 0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65, At least 2 values among 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1 ⁇ , the configured or pre-configured offset' value is 0.05.
  • ⁇ ’ is a value with a value range greater than or equal to 1.
  • the value of ⁇ ' is at least 1 value configured in the list, for example, the list is at least 2 values in ⁇ 1,1.01,1.02,1.03,1.04,1.05,1.06,1.07,1.08,1.09,1.1 ⁇ , configure or pre-configure the value of ⁇ ' to 1.05.
  • the value range of ⁇ ’ is greater than or equal to 0 and less than or equal to 1.
  • the value of ⁇ ' is at least one value configured in the list, for example, the list is ⁇ 0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65, At least 2 values among 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1 ⁇ , configure or pre-configure the value of ⁇ ' to 0.95.
  • Congestion control is based on ⁇ i ⁇ k CR(i) ⁇ CR Limit (k)+Offset.
  • offset is a value greater than or equal to 0 and less than or equal to 1.
  • the value of offset is a fixed value.
  • the value of offset is at least one value configured in the offset list.
  • a possible implementation can determine the value of offset based on priority or CAPC. For example, for transmissions with priorities 1 to 8, the offset offset values are ⁇ offset 1 , offset 2 , offset 3 ,...,offset 7 ⁇ ; for another example, for transmissions with CAPCs 1 to 4, the offset offset values are They are ⁇ offset i , offset ii , offset iii , offset iv ⁇ respectively.
  • Congestion control is based on ⁇ i ⁇ k CR(i) ⁇ CR Limit (k).
  • the scale factor ⁇ is a value greater than or equal to 1.
  • the value of the scale factor ⁇ is a fixed value.
  • the value of the scale factor ⁇ is at least one value configured in the scale factor list.
  • One possible implementation is to determine the value of the scaling factor ⁇ based on priority or CAPC.
  • the values of the scaling factor ⁇ are ⁇ 1 , ⁇ 2 , ⁇ 3 ,..., ⁇ 7 ⁇ ; for another example, for transmissions with CAPCs from 1 to 4, the values of the scaling factor ⁇ They are ⁇ i , ⁇ ii , ⁇ iii , ⁇ iv ⁇ respectively.
  • determining the channel occupancy status requires determining the number of resources E occupied by the first terminal device and the number of resources F authorized by the first terminal device.
  • the calculation of the channel occupancy status may be specific to a certain terminal device.
  • this embodiment may also include the following steps:
  • Step 1003 Determine whether the channel measurement result satisfies the CR condition.
  • Step 1003 may be performed by the terminal device.
  • the CR condition is that the sum of CR is less than CR limit, for example, ⁇ i ⁇ k CR(i) ⁇ CR Limit (k).
  • i is the priority of SL information.
  • the terminal device needs to satisfy the CR condition of any k value of i ⁇ k when transmitting SL information.
  • the value range of i and k is an integer from 1 to 8.
  • the CR estimated in time unit mN is used for congestion control of transmitting SL information in time unit m, where N is the processing time of congestion control.
  • the terminal device can satisfy the CR condition by transmitting certain SL information or not transmitting certain SL information.
  • the CR condition may be at least one of the following: ⁇ i ⁇ k CR(i) ⁇ CR Limit (k)+Offset, ⁇ i ⁇ k CR(i) ⁇ CR Limit (k), ⁇ i ⁇ k C R (i) ⁇ CR Limit (k)
  • i is the priority value corresponding to the first SL information
  • k is the priority value less than or equal to i
  • the values of i and k are integers from 1 to 8 respectively
  • offset is the offset
  • CR(i) is the measured The channel occupancy status with priority value i
  • CR Limit (k) is the channel occupancy status limit with priority value k.
  • the first terminal device may determine whether to transmit SL information in time unit m based on the CR estimated at time unit mN.
  • the time unit m is the time unit for channel access, or the time unit m is the first time unit for channel access after LBT is successful.
  • N is the congestion control processing time.
  • the first terminal device may determine whether to start channel access in time unit m according to the CR estimated at time unit m-N.
  • the channel access includes first type channel access and/or second type channel access.
  • the priority i is associated with a CAPC, which is a priority for the first terminal device to perform channel access of the first type.
  • CR conditions can be used to determine whether COT is shared.
  • COT sharing includes the first terminal device initializing the first COT, and the second terminal device sharing the first COT.
  • the second terminal device transmits the second SL information within the first COT, or the second terminal device will transmit the second SL information within the first COT.
  • the COT sharing means that the service information of different terminal devices share the same COT.
  • the first terminal device determines whether to allow the second SL information of the second terminal device to be transmitted within the first COT based on whether the CR estimated in time unit m-N satisfies the CR condition.
  • the first terminal device determines whether the second SL information indicating the second terminal device is transmitted within the first COT based on whether the CR estimated in time unit m-N satisfies the CR condition.
  • the second terminal device determines whether to transmit the second SL information within the first COT based on whether the CR estimated in time unit m-N satisfies the CR condition.
  • the second SL information can be transmitted on time unit m.
  • the priority in the SCI of the second SL information is i.
  • the second SL information may transmit information in time unit m.
  • the COT sharing includes the first terminal device initializing the first COT, and the first terminal device transmits within the first COT. The first terminal device transmits the second SL information within the first COT, or the first terminal device will transmit the second SL information within the first COT.
  • the COT sharing means that different service information of the first terminal device shares the same COT.
  • the first terminal device determines whether the second SL information is transmitted within the first COT based on whether the CR estimated in time unit m-N satisfies the CR condition.
  • the second SL information can be transmitted in time unit n.
  • the priority in the SCI of the second SL information is i.
  • the sideline terminal device when calculating the channel occupancy status, the sideline terminal device considers the channel occupancy status of other systems, or considers the impact of idle time on the channel occupancy status in the measurement cycle, thereby improving the accuracy of channel measurement.
  • a resource unit may be a counting unit, and a resource unit may include resource subunits.
  • a resource unit can be composed of resource subunits.
  • the above resource unit may be a time domain unit or a frequency domain unit. Details below.
  • the resource unit may be at least one of a slot, a symbol, a sensing slot or a channel occupancy time (COT).
  • the resource unit can be pre-configured or the network configures the resource unit to be at least one of a time slot, a symbol, a sensing time slot, and a channel occupancy time.
  • the resource unit may be pre-configured or the network may configure the resource unit to be at least one of a time slot, a symbol, a sensing time slot, and a channel occupancy time according to the type of information carried by the resource.
  • the resource unit is a time slot.
  • the resource unit is a sensing time slot.
  • the resource subunit may be a time unit, such as at least one of a time slot, a symbol, a sensing time slot, and a channel occupancy time.
  • the time subunit is a symbol.
  • the RSSI measurement value of a resource unit is the linear average of the sum of received powers of the symbols belonging to the resource unit.
  • the symbols include symbols carrying PSCCH and PSSCH.
  • the time subunit is a sensing time slot.
  • the RSSI measurement value of a resource unit is the linear average of the sum of the received powers of the sensing slots belonging to the resource unit.
  • the sensing time slot includes a sensing time slot carrying SL information and/or a sensing time slot carrying different system information.
  • a possible implementation method 1 is that the measured value of RSSI is the linear average of the sum of received power (received power) of the time sub-units included in the resource unit.
  • the RSSI of the resource unit is determined based on the linear average of the sum of the received powers of all time subunits included in the resource unit.
  • the time subunit may be at least one of a time subunit carrying PSCCH, a time subunit carrying PSSCH, a time subunit carrying PSFCH, a time subunit carrying AGC, and a time subunit carrying CPE.
  • the time subunit may be preconfigured according to the type of information carried by the resource or the network may configure the time subunit to be at least any one of a time slot, a symbol, a sensing time slot, and a channel occupancy time.
  • the preconfiguration or network configuration time subunit is a symbol.
  • the preconfigured or network configured time subunit is the sensing time slot.
  • the resource unit includes L time sub-units, and uses the RSSI receiving function of U time sub-units.
  • the linear average of the sum of the rates determines the RSSI measurement for the resource.
  • U is less than or equal to L.
  • the RSSI of the resource unit is determined based on the linear average of the sum of the received powers of a part of the time subunits included in the resource unit.
  • the U time subunits are time subunits in which the received power exceeds the first threshold (or the second threshold).
  • the RSSI measurement value of the resource may be determined according to at least any one of the above implementation methods 1 and 2.
  • the RSSI measurement value of the resource can be determined by at least any one of preconfiguration or network configuration methods 1 and 2.
  • the RSSI measurement value of the resource is determined according to at least one of preconfiguration of the information type carried by the resource or network configuration method 1 and method 2.
  • the information type carried by the resource includes SL information carried by the resource and/or different system information carried by the resource.
  • the resource unit includes L time sub-units, wherein the RSSI measurement values of U time sub-units are greater than the first threshold (or the second threshold), and the RSSI measurement values of the P time sub-units do not exceed the first threshold (or the second threshold).
  • the method for determining whether the RSSI of the resource unit is greater than the first threshold (or the second threshold) is at least one of the following methods:
  • the number U of time sub-units where the RSSI measurement value is greater than the first threshold (or the second threshold) is greater than and/or equal to the number P of the time sub-units where the RSSI measurement value does not exceed the first threshold (or the second threshold), then The RSSI of the resource exceeds the first threshold (or the second threshold). That is, for U greater than or equal to P, the RSSI of the resource exceeds the first threshold (or the second threshold).
  • the first value is preconfigured or network configured. That is, if U is greater than or equal to the first value, the RSSI of the resource exceeds the first threshold (or the second threshold).
  • the first proportion threshold is pre-configured or configured by the network.
  • the RSSI of the resource exceeds the first threshold. (or second threshold). That is, if L-U is less than or equal to the fifth threshold, the RSSI of the resource exceeds the first threshold (or the second threshold).
  • the RSSI measurement value of the resource may be determined according to at least any one of the methods a)-d) above.
  • the RSSI measurement value of the resource may be determined in at least any one of preconfiguration or network configuration a)-d).
  • the information type carried by the resource includes SL information carried by the resource and/or different system information carried by the resource.
  • the first threshold or the second threshold is an energy detection threshold (ED threshold).
  • ED threshold energy detection threshold
  • the RSSI measurement value is greater than the first threshold, and the time unit is busy.
  • the RSSI measurement value is not greater than the first threshold, and the time unit is idle.
  • the above-mentioned first numerical value and the first proportion threshold may be predefined, configured, or indicated, which are not limited in the embodiments of the present application.
  • the resource unit is a frequency domain unit:
  • the resource unit can be a sub-channel, a contiguous RB-based sub-channel, an interlace RB-based sub-channel, a channel, an RB set, At least one of resource pool, guard band, resource block (RB, resource block), and resource unit (RE, resource element).
  • the resource unit can be pre-configured or the network configures the resource unit to be at least one of a sub-channel, a sub-channel of consecutive RBs, a sub-channel of interleaved RBs, a channel, an RB set, a resource pool, a guard band, a resource block, and a resource unit. kind.
  • the resource unit may be pre-configured or network-configured according to the type of information carried by the resource to be a sub-channel, a sub-channel of consecutive RBs, a sub-channel of interleaved RBs, a channel, an RB set, a resource pool, a guard band, a resource block, or a resource unit in an RE. At least one.
  • the resource units are sub-channels of interleaved RBs.
  • the resource unit is a sub-channel of consecutive RBs.
  • the resource subunit may be a frequency domain subunit, such as at least one of a subchannel, a subchannel of continuous RBs, a subchannel of interleaved RBs, a channel, an RB set, a resource pool, a guard band, a resource block, and a resource unit.
  • the frequency domain subunit is a subchannel.
  • the RSSI measurement value of a resource unit is the linear average of the sum of received powers of the sub-channels belonging to the resource unit.
  • the subchannel includes symbols carrying PSCCH and PSSCH.
  • the frequency domain subunit is a resource block.
  • the RSSI measurement value of a resource unit is the linear average of the sum of received powers of the resource blocks belonging to the resource unit.
  • the resource blocks include sensing time slots carrying SL information and/or resource blocks carrying inter-system information.
  • the measured value of RSSI is the linear average of the sum of received powers (received power) of the frequency domain sub-units included in the resource unit.
  • the RSSI of the resource unit is determined based on the linear average of the sum of the received powers of all frequency domain sub-units included in the resource unit.
  • the frequency domain subunit may be a frequency domain subunit that carries PSCCH, a frequency domain subunit that carries PSSCH, a frequency domain subunit that carries PSFCH, a frequency domain subunit that carries AGC, or a frequency domain subunit that carries CPE. at least one of them.
  • the resource unit includes L frequency domain subunits, and the RSSI measurement value of the resource is determined using the linear average of the sum of RSSI received powers of the U first frequency domain subunits.
  • U is less than or equal to L.
  • the RSSI of the resource unit is determined based on the linear average of the sum of the received powers of a part of the frequency domain sub-units included in the resource unit.
  • the U frequency domain sub-units are frequency domain sub-units whose received power exceeds the first threshold.
  • the RSSI measurement value of the resource may be determined according to at least any one of the above implementation methods A and B.
  • the RSSI measurement value of the resource can be determined by at least any one of preconfiguration or network configuration methods 1 and 2.
  • the RSSI measurement value of the resource is determined according to at least one of preconfiguration of the information type carried by the resource or network configuration method 1 and method 2.
  • the information type carried by the resource includes SL information carried by the resource and/or different system information carried by the resource.
  • the measurement granularity of the measured RSSI is symbol (15kHz SCS is about 71.35us), and the time domain granularity of the resource is time slot (15kHz SCS is 1ms); in the unlicensed frequency band, the measurement granularity is sensing time slot (9us).
  • the measurement granularity of RSSI measurement, CR measurement, and CBR measurement is aligned with the measurement granularity of unlicensed spectrum. The accuracy of RSSI measurement is improved and can accurately reflect resource occupancy and/or resource busyness.
  • the network device can configure and/or pre-configure various thresholds, parameters, and adjustment factors in this application for the terminal device.
  • the network device may configure and/or pre-configure the first threshold, the second threshold, the third threshold, the fourth threshold, the fifth threshold, the first offset offset, the first coefficient ⁇ , the adjustment factor ⁇ , and the proportion for the terminal device. At least one of the factors ⁇ and so on.
  • the network device may configure and/or pre-configure at least one of the time domain granularity of resource units, the granularity of time subunits, the frequency domain granularity of resource units, the granularity of frequency domain subunits, etc., for the terminal device.
  • the network device may configure and/or pre-configure a method for determining the RSSI measurement value of the resource for the terminal device, such as possible implementation method 1, possible implementation method 2, possible implementation method A, possible implementation method B, etc. at least one of them.
  • the network device may configure a third threshold for the terminal device.
  • the network device may send indication information to the terminal device, where the indication information is used to indicate the third threshold.
  • the embodiments of the present application do not limit this. It should be understood that the third threshold is only an example of the content configured by the network device and is not limited thereto.
  • LBT is used as an example of a way for the terminal device to listen to the channel and access the channel, but the embodiments of the present application are not limited thereto.
  • the terminal device may listen to the channel, or may access the channel after a period of time indicated by the network device, or predefined by the network device and the terminal device, or determined independently by the terminal device.
  • the network device or terminal device may include a hardware structure and/or a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is performed as a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in various embodiments of the present application can be integrated into a processor, or can exist physically alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • the embodiment of the present application provides a measurement device 1200 for realizing the functions of the terminal device in the above method.
  • the device may be a software module or a system on a chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device 1200 may include: a processing unit 1210 and a communication unit 1220.
  • the communication unit may also be called a transceiver unit, and may include a sending unit and/or a receiving unit, respectively configured to perform the steps of sending and receiving by the terminal device in the above method embodiment.
  • a communication unit may also be called a transceiver, a transceiver, a transceiver device, etc.
  • the processing unit can also be called a processor, a processing board, a processing module, a processing device, etc.
  • the device used to implement the receiving function in the communication unit 1220 can be regarded as a receiving unit
  • the device used to implement the sending function in the communication unit 1220 can be regarded as a sending unit, that is, the communication unit 1220 includes a receiving unit and a sending unit.
  • the communication unit may sometimes be called a transceiver, transceiver, or interface circuit.
  • the receiving unit may also be called a receiver, receiver, or receiving circuit.
  • the sending unit may sometimes be called a transmitter, transmitter or transmitting circuit.
  • the communication unit may be used to send downlink control information and/or RRC signaling.
  • the communication unit can also be used to configure thresholds, adjustment factors, scaling factors, etc.
  • the processing unit may be used to pre-configure sidelink unlicensed resources, etc.
  • the communication unit can be used to receive downlink control information, RRC signaling and sidelink control information, and to send data.
  • the processing unit can be used to parse downlink control information and sidelink control information, determine transmission resources, and determine channel status, for example, determine channel occupancy status and/or channel busy status;
  • the processing unit may also be used to perform LBT processes, etc.
  • the processing unit 1210 and the communication unit 1220 can also perform other functions.
  • the processing unit 1210 and the communication unit 1220 can also perform other functions.
  • Figure 13 shows a measurement device 1300 provided by an embodiment of the present application.
  • the device shown in Figure 13 can be a hardware circuit implementation of the device shown in Figure 12.
  • the communication device can be adapted to the flow chart shown above to perform the functions of the terminal device or network device in the above method embodiment.
  • Figure 13 shows only the main components of the measuring device.
  • the measurement device 1300 may be a terminal device, capable of realizing the functions of the first terminal device or the second terminal device in the method provided by the embodiments of the present application.
  • the communication device 1300 may also be a device that can support the first terminal device or the second terminal device to implement the corresponding functions in the method provided by the embodiment of the present application.
  • the measurement device 1300 may be a chip system. In the embodiments of this application, the chip system may be composed of chips, or may include chips and other discrete devices. For specific functions, please refer to the description in the above method embodiment.
  • the measurement device 1300 includes one or more processors 1310, which are used to implement or support the communication device 1300 to implement the functions of the first terminal device or the second terminal device in the method provided by the embodiments of this application.
  • the processor 1310 can also be called a processing unit or processing module, and can implement certain control functions.
  • the processor 1310 may be a general-purpose processor or a special-purpose processor, or the like. For example, include: central processing unit, application processor, modem processor, graphics processor, image signal processor, digital signal processor, video codec processor, controller, memory, and/or neural network processor wait.
  • the central processing unit may be used to control the communication device 1300, execute software programs and/or process data.
  • processors may be independent devices, or may be integrated in one or more processors, for example, integrated on one or more application specific integrated circuits.
  • the processor in the embodiment of the present application can be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the measurement device 1300 includes one or more memories 1320 to store instructions 1340, which can be executed on the processor 1310, so that the communication device 1300 executes the method described in the above method embodiment.
  • Memory 1320 and processor 1310 are coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • Processor 1310 may cooperate with memory 1320. At least one of the at least one memory may be included in the processor. It should be noted that the memory 1320 is not necessary, so it is illustrated with a dotted line in FIG. 13 .
  • the memory 1320 may also store data.
  • the processor and memory can be provided separately or integrated together.
  • the memory 1320 can be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it can also be a volatile memory (volatile memory). For example, random-access memory (RAM).
  • HDD hard disk drive
  • SSD solid-state drive
  • RAM random-access memory
  • the processor may also be flash memory, read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM) ), electrically erasable programmable read-only memory (electrically EEPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or any other form of storage media well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in network equipment or terminal equipment.
  • the processor and the storage medium can also exist as discrete components in network equipment or terminal equipment.
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • the measurement device 1300 may include instructions 1330 (sometimes also referred to as codes or programs), and the instructions 1330 may be run on the processor, so that the measurement device 1300 performs the method described in the above embodiments. .
  • Data may be stored in processor 1310.
  • the measurement device 1300 may also include a transceiver 1350 and an antenna 1360.
  • the transceiver 1350 may be called a transceiver unit, transceiver module, transceiver, transceiver circuit, transceiver, input/output interface, etc., and is used to realize the transceiver function of the measurement device 1300 through the antenna 1360.
  • the processor 1310 and transceiver 1350 described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency identification (RFID), mixed signal ICs, ASICs, printed circuit boards (printed circuit boards) board, PCB), or electronic equipment, etc.
  • ICs integrated circuits
  • RFID radio frequency identification
  • ASICs integrated circuits
  • PCB printed circuit boards
  • electronic equipment etc.
  • ICs integrated circuits
  • it can be an independent device (for example, an independent integrated circuit, a mobile phone, etc.), or it can be a part of a larger device (for example, a module that can be embedded in other devices).
  • ICs integrated circuits
  • RFID radio frequency identification
  • ASICs integrated circuits
  • PCB printed circuit boards
  • the measurement device 1300 may also include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (USB) interface, a power management module, and an antenna. Speakers, microphones, input and output modules, sensor modules, motors, cameras, or displays, etc. It can be understood that in some embodiments, the communication device 1300 may include more or fewer components, or some components may be integrated, or some components may be separated. These components may be implemented in hardware, software, or a combination of software and hardware.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • a computer-usable storage media including, but not limited to, disk storage, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种测量的方法、装置和系统,该测量方法可以应用于非授权频谱测量,终端装置通过确定非授权频谱上不同通信系统各自占用的资源,从而确定信道占用情况。该测量方法可以适用于V2X,车联网等领域,提高了非授权频谱测量的准确度。进一步地,根据测量结果实现拥塞控制,能够避免传输拥堵,提高了资源利用率,提高了通信可靠度。

Description

测量方法、装置和系统
本申请要求于2022年8月12日提交中国专利局、申请号为202210969400.8、申请名称为“测量方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域。尤其涉及一种测量方法、装置和系统。
背景技术
在新无线(new radio,NR)系统的侧行链路(sidelink,SL)中,SL传输所在资源池或者频谱中仅有SL终端装置传输,因此在R16、R17中只需要测量本系统终端装置(也就是SL终端装置)对于资源的占用情况,就可以确定信道状态,比如,信道占用情况。但是在侧行非授权频谱(sidelink on unlicensed spectrum,SL-U)中,非授权频谱上还有其他类型的终端装置,如无线保真(wireless fidelity,Wi-Fi)终端装置,或者,蓝牙终端装置等等(简称异系统终端装置)。目前,对于非授权频谱资源状态的测量不够准确,影响通信质量。
因此,如何提高非授权频谱中资源状态测量的准确度,是亟待解决的问题。
发明内容
本申请提供一种测量方法,能够提高非授权频谱中资源状态测量的准确度。
第一方面,本申请实施例提供一种测量方法,该方法可以由终端设备执行,或者,也可以由用于终端设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由终端设备执行为例进行说明。
该方法可以应用于非授权频谱通信系统,该非授权频谱通信系统中包括第一通信系统,该方法可以包括:确定该第一通信系统在第一测量窗内占用的资源单元数,该第一通信系统在第一测量窗内占用的资源单元数,小于或等于在该第一测量窗内接收信号强度指示RSSI测量值大于第一阈值的资源单元数;根据该第一通信系统在第一测量窗内占用的资源单元数,和/或在该第一测量窗内RSSI测量值大于第一阈值的资源单元数,确定该第一通信系统在该第一测量窗内的信道的状态。
可选地,第一通信系统为SL通信系统,或者,第一通信系统为SL-U通信系统。
或者,该方法也可以是:确定第一参数,第一参数包括第一通信系统在第一测量窗内占用的资源单元数,和/或在该第一测量窗内RSSI测量值大于第一阈值的资源单元数,该第一通信系统在第一测量窗内占用的资源单元数,小于或等于在该第一测量窗内接收信号强度指示RSSI测量值大于第一阈值的资源单元数;根据第一参数确定第一通信系统在该第一测量窗内的信道的状态。
该方法中,终端设备确定在测量窗内第一通信系统占用的资源单元数,并确定在该测量窗内非授权频谱上总共被占用的资源数(即RSSI测量值大于第一阈值的资源单元数),来确定第一通信系统的信道的状态,也就是说,终端装置在确定信道的状态时,考虑了可能存在其他通信系统占用信道的情况,能够精确地计算出第一通信系统的信道的状态,提高了非授权频谱中资源状态测量的准确度。
结合第一方面,在第一方面的某些实现方式中,根据该第一通信系统在该第一测量窗内占用的资源单元数与该第一测量窗内的资源单元数的比值,确定在该第一测量窗内该第一通信系统的信道繁忙状态。
应理解,信道繁忙状态可以通过信道繁忙率表征,也可以是通过其他参数表征,本申请对此不作限定,本申请对用于表征信道繁忙状态的参数的名称也不作限定。
结合第一方面,在第一方面的某些实现方式中,根据下述关系确定在第一测量窗内该第一通信系统的信道繁忙状态:
Y=A1÷[B-(A-A1)],
其中该Y表示在该第一测量窗内该第一通信系统的信道繁忙状态,该A1表示该第一通信系统在 该第一测量窗内占用的资源单元数,该A表示在该第一测量窗内RSSI测量值大于第一阈值的资源单元数,该B表示该第一测量窗包括的资源单元数。
其中,A-A1的含义可以理解为第一测量窗中被占用的资源中除第一通信系统占用资源以外的资源,换句话说,A-A1为其他通信系统占用的资源,则B-(A-A1)可以理解为第一测量窗中第一通信系统可以占用的资源,该可以占用的资源包括已经占用的A1,也包括有可能占用的资源。Y可以理解为第一通信系统占用的资源相对于第一通信系统能够使用的资源的比例。
该方式中,排除了其他通信系统占用的资源数,计算第一通信系统在测量窗内的占空比,进一步提高了资源测量的准确度。
结合第一方面,在第一方面的某些实现方式中,根据该第二通信系统在该第一测量窗内占用的资源单元数与该第一测量窗内的资源单元数的比值,确在该第一测量窗内该第二通信系统的信道繁忙状态。
应理解,第二通信系统可以是非授权频谱上除第一通信系统以外的通信系统,也就是异系统(或者也称其他通信系统)。
该方式中,终端设备也可以计算第二通信系统在第一测量窗内的信道繁忙状态,能够确定不同的通信系统在非授权频谱上各自的信道繁忙状态,进一步提高了资源测量的准确度。
结合第一方面,在第一方面的某些实现方式中,根据下述关系确定在第一测量窗内该第一通信系统的信道繁忙状态:
Y=A2÷[B-(A-A2)],
其中该Y表示在该第一测量窗内该第一通信系统的信道繁忙状态,该A2表示该第二通信系统在该第一测量窗内占用的资源单元数,该A表示在该第一测量窗内RSSI测量值大于第一阈值的资源单元数,该B表示该第一测量窗包括的资源单元数。
该方式中,提供了第二通信系统在第一测量窗内资源占空比的计算方式,进一步提高了确定异系统信道状态的准确度。
应理解,上述方式可以适用于第一通信系统与第二通信系统共存时的非授权频谱的资源测量,比如动态接入方式下的非授权频谱。
结合第一方面,在第一方面的某些实现方式中,根据该在该第一测量窗内RSSI测量值大于第一阈值的资源单元数与该第一测量窗内的资源单元数的比值和第一偏移量,确定在该第一测量窗中该第一通信系统的信道繁忙状态;
或者,
根据该在该第一测量窗内RSSI测量值大于第一阈值的资源单元数与该第一测量窗内的资源单元数的比值和第一系数,确定在该第一测量窗中该第一通信系统的信道繁忙状态,
其中,该第一偏移量和/或该第一系数的取值为预定义、预配置或者网络配置的。
该方式可以适用于半静态接入方式下的非授权频谱的资源测量,半静态接入方式下非授权频谱上只存在第一通信系统,在第一测量窗内RSSI测量值大于第一阈值的资源单元数和第一通信系统在第一测量窗内占用的资源单元数,在数值上相同。
该方式中,考虑了测量窗内存在的空闲时间上的资源,通过偏移值和系数调整信道测量结果,进一步提高了资源测量的准确度。
结合第一方面,在第一方面的某些实现方式中,在该第一测量窗中该第一通信系统的信道繁忙状态满足下述关系:
Y=(A1÷B)+offset,
或者,
Y=(A1÷B)*α,
其中,该Y表示在该第一测量窗内该第一通信系统的信道繁忙状态,该A1表示在该第一测量窗内第一通信系统占用的资源数,该B表示该第一测量窗包括的资源单元数,该offset为该第一偏移量,该α为该的第一系数。
结合第一方面,在第一方面的某些实现方式中,在该第一测量窗中该第一通信系统的信道繁忙状态大于和/或等于第二阈值,该方法还包括以下中的至少一项:
在该第一通信系统中的周期预留被使能;
在第一COT内传输该第一通信系统的第二SL信息,该第一COT是根据该第一通信系统的第一SL信息的参数确定的;
在该第一通信系统中的抢占被使能;
在第一COT内传输该第一通信系统的第一SL信息和该第二SL信息,该第一COT是根据该第一通信系统的第一SL信息对应的参数确定的。
应理解,第一SL信息和第二SL信息不同。示例地,第一SL信息和第二SL信息可以是不同的终端装置的SL信息,也可以是同一终端装置的不同业务对应的SL信息。
该方式中,测量窗内的测量结果可以用于确定是否使能周期预留、COT共享和/或抢占,换句话说,可以根据测量结果控制业务传输。由于测量结果的准确度得到提升,业务传输的控制也能够更准确,比如更准确地拥塞控制,提升了用户体验。
结合第一方面,在第一方面的某些实现方式中,第一阈值为信道接入的能量检测门限。
第二方面,本申请实施例提供一种测量方法,该方法可以由终端设备执行,或者,也可以由用于终端设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由终端设备执行为例进行说明。该测量方法可以应用于非授权频谱通信系统,该非授权频谱通信系统包括第一通信系统。可选地,第一通信系统可以是SL通信系统。
该方法可以包括:确定该第一通信系统在第二测量窗内占用的资源单元数,该第一通信系统在该第二测量窗内占用的资源单元数,小于或等于在该第二测量窗内RSSI测量值大于第二阈值的资源单元数;根据该第一通信系统在第二测量窗内占用的资源单元数,确定该第一通信系统在该第三测量窗内的信道的状态,该第三测量窗包括该第二测量窗。
或者,该方法也可以是:确定第一通信系统在第二测量窗内占用的资源单元数,根据第一通信系统在第二测量窗内占用的资源单元数,确定第一通信系统在第三测量窗内的信道的状态,第三测量窗包括第二测量窗。
其中,第二测量窗可以是第三测量窗的一部分。示例地,该方法可以适用于信道占用状态的测量,第三测量窗可以包括已经占用的资源和授权的资源(也就是即将使用的资源),第二测量窗可以是已经占用的资源对应的测量窗。示例地,第三测量窗在时域上包括时隙[n-a,n+b],第二测量窗在时域上包括时隙[1,n-a]。在第二测量窗内RSSI测量值大于第二阈值的资源单元数包括第一通信系统已经占用的资源数,也可以包括其他通信系统已经占用的资源数。
结合第二方面,在第二方面的某些实现方式中,第三测量窗还包括第四测量窗,其中,第三测量窗在时域上包括时隙[n-a,n+b],第二测量窗在时域上包括时隙[n-a,n-1],第四测量窗在时域上包括时隙[n,n+b],时隙n为测量信道的状态的时隙。
该方法中,考虑了异系统的资源占用情况,终端设备确定第一通信系统已经占用的资源的准确度得到提高,通过第一通信系统已经占用的资源数确定测量窗中的信道状态,进一步提高了测量准确度。
结合第二方面,在第二方面的某些实现方式中,根据下述关系确定该第一通信系统在该第三测量窗内的信道占用状态:
Z=(E+F)÷[D-(G-G1)],
其中,Z表示该第一通信系统在该第三测量窗内的信道占用状态,该E表示第一终端装置在该第二测量窗内传输的资源单元数,该F表示该第一终端装置在该第四测量窗内被授权的资源单元数,该D表示该第三测量窗内的资源单元数,该G表示在该第二测量窗内RSSI测量值大于第二阈值的资源单元数,该G1表示该第一通信系统在第二测量窗内占用的资源单元数。
其中,G-G1的含义可以理解为第二测量窗中被占用的资源中除第一通信系统占用资源以外的资源,换句话说,G-G1为其他通信系统占用的资源,则D-(G-G1)可以理解为第三测量窗中第一通信系统可以占用的资源,该可以占用的资源包括已经占用的G1,也包括授权的资源,还可以包括未测量的资源或者测量值低于第二阈值的资源。Y可以理解为第一通信系统占用的资源相对于第一通信系统能够使用的资源的比例。
该方式中,排除了其他通信系统占用的资源数,计算第一通信系统在测量窗内的占空比,进一步提高了资源测量的准确度。
结合第二方面,在第二方面的某些实现方式中,根据下述关系确定该第一通信系统在该第三测量窗内的信道占用状态:
Z=(E+F)÷(D-G+G1-δ),
或者,
Z=(E+F)÷[D-γ×(G-G1)]
其中,Z表示第一通信系统在第三测量窗内的信道占用状态,E表示第一终端装置在第二测量窗内传输的资源单元数,F表示第一终端装置在第四测量窗内被授权的资源单元数,D表示第三测量窗内的资源单元数,G表示在第二测量窗内RSSI测量值大于第二阈值的资源单元数,G1表示第一通信系统在第二测量窗内占用的资源单元数,δ为调整因子,γ为比例因子。
上述δ可以表示第二通信系统在第四测量窗内被授权的资源单元数,δ可以根据在第四测量窗内被授权的资源数中除第一通信系统在第四测量窗内被授权的资源单元数以外的资源数计算。或者,δ为预配置给第一终端装置或者网络配置给第一终端装置的值。
该方式中,排除了其他通信系统在第二测量窗占用的资源,以及,其他通信系统被授权的资源,计算第一通信系统在测量窗内的占空比,进一步提高了资源测量的准确度。
应理解,上述方式可以适用于第一通信系统与第二通信系统共存时的非授权频谱的资源测量,比如动态接入方式下的非授权频谱。
结合第二方面,在第二方面的某些实现方式中,根据该第一终端装置在该第二测量窗内传输的资源单元数与在该第四测量窗内被授权的资源单元数之和,与该第三测量窗内的资源单元数的比值,以及第二偏移量和/或第二系数确定该第一通信系统的信道占用状态,其中,该第二偏移量和/或该第二系数的取值为预定义、预配置或者网络配置的。
该方式可以适用于半静态接入方式下的非授权频谱的资源测量,半静态接入方式下非授权频谱上只存在第一通信系统,在第二测量窗内RSSI测量值大于第二阈值的资源单元数和第一通信系统在第二测量窗内占用的资源单元数,在数值上相同。
该方式中,考虑了测量窗内存在的空闲时间上的资源,通过偏移值和系数调整信道测量结果,进一步提高了资源测量的准确度。
结合第二方面,在第二方面的某些实现方式中,该第一终端装置在该第四测量窗内被授权的资源数量,是根据该第一终端装置的业务优先级或者CAPC确定的。
结合第二方面,在第二方面的某些实现方式中,根据第一信道占用状态确定在第一时间单元m上传输第一SL信息,在所述第一时间单元m之前N个时间单元的时间单元为测量所述第一信道占用状态的时间单元m-N,该第一信道状态满足以下中的至少一项:
i≥kCR(i)≤CRLimit(k)+offset,∑i≥kCR(i)≤θ×CRLimit(k),∑i≥kCR(i)≤CRLimit(k),
该i为该第一SL信息对应的优先级值,该k为小于或等于i的优先级值,该i和k的取值分别为1到8的整数,该offset为偏移量,该θ为比例因子,CR(i)为测量的优先级值为i时的信道占用状态,CRLimit(k)为优先级值为k时的信道占用状态限制,N为拥塞控制处理时间。
第一信道占用状态可以是信道占用状态的一个示例,或者,第一信道占用状态可以是信道占用状态对应的信道中的一部分信道对应的占用状态。本申请实施例对此不做限定。
该方式中,通过测量结果以及信道状态条件确定是否在测量窗的起始时间单元上传输业务信息,在信道被占用时不传输,在信道存在空闲资源时可以传输,能够有效调整业务传输,避免过度拥塞,提高通信可靠度。
结合第二方面,在第二方面的某些实现方式中,根据第二信道占用状态确定,在第一COT内传输第二SL信息,该第二SL信息属于第二终端装置的SL信息,该第一COT为第一终端装置的初始COT,
该第二信道占用状态满足以下中的至少一项:
i≥kCR(i)≤CRLimit(k)+offset,∑i≥kCR(i)≤θ×CRLimit(k),∑i≥kCR(i)≤CRLimit(k),
该i为该第二SL信息对应的优先级值,该k为小于或等于i的优先级值,该i和k的取值分别为1到8的整数,该offset为偏移量,该θ为比例因子,CR(i)为测量的优先级值为i时的信道占用状态,CRLimit(k)为优先级值为k时的信道占用状态限制。
第二信道占用状态可以是信道占用状态的一个示例,或者,第二信道占用状态可以是信道占用状 态对应的信道中的一部分信道对应的占用状态。本申请实施例对此不做限定。
可选地,第二SL信息所在时间单元m之前N个时间单元的时间单元为测量信道占用状态的时间单元m-N。
该方式中,通过测量结果以及信道状态条件确定是否在将第一终端装置的资源共享给第二终端装置,在第一终端装置的信道被占用时不共享,在第一终端装置的信道占用状态满足共享条件时可以共享,能够避免业务传输过度拥塞,提高了资源利用率,提高了通信可靠度。
结合第二方面,在第二方面的某些实现方式中,该第二阈值为信道接入的能量检测门限。
结合第一方面或者第二方面,在某些实现方式中,该资源单元的该RSSI测量值是根据U个资源子单元的RSSI接收功率之和的线性平均值确定的,该U为小于或等于L的正整数,该L为该资源单元包括的该资源子单元的数量。
结合第一方面或者第二方面,在某些实现方式中,U大于或等于第三阈值,或者,U÷L大于或等于第四阈值,或者,L-U小于或等于第五阈值,确定该资源单元的RSSI测量值大于该第一阈值或者该第二阈值,该U为该资源单元中,RSSI测量值大于该第一阈值或者该第二阈值的该资源子单元的数量。
结合第一方面或者第二方面,在某些实现方式中,该资源单元包括时域单元和/或频域单元,该时域单元包括感知时隙、符号、感知时隙、信道占用时间中的至少一项,该频域单元包括子信道、连续RB的子信道、交错RB的子信道、信道、RB集合、资源池、保护带、资源块、资源单元RE中的至少一种。
结合第一方面或者第二方面,在某些实现方式中,该资源子单元包括时域单元和/或频域单元,该时域单元包括感知时隙、符号、感知时隙、信道占用时间中的至少一项,该频域单元该频域单元包括子信道、连续RB的子信道、交错RB的子信道、信道、RB集合、资源池、保护带、资源块、RE中的至少一种。
第三方面,提供一种测量装置,该测量装置包括收发模块和处理模块,该处理模块用于确定该第一通信系统在第一测量窗内占用的资源单元数,该第一通信系统在第一测量窗内占用的资源单元数,小于或等于在该第一测量窗内接收信号强度指示RSSI测量值大于第一阈值的资源单元数,该处理模块还用于根据该第一通信系统在第一测量窗内占用的资源单元数,和/或在该第一测量窗内RSSI测量值大于第一阈值的资源单元数,确定该第一通信系统在该第一测量窗内的信道的状态。
结合第三方面,在第三方面的某些实现方式中,该处理模块具体用于根据该第一通信系统在该第一测量窗内占用的资源单元数与该第一测量窗内的资源单元数的比值,确定在该第一测量窗内该第一通信系统的信道繁忙状态。
结合第三方面,在第三方面的某些实现方式中,该处理模块具体用于根据下述关系确定在第一测量窗内该第一通信系统的信道繁忙状态:
Y=A1÷[B-(A-A1)],
其中该Y表示在该第一测量窗内该第一通信系统的信道繁忙状态,该A1表示该第一通信系统在该第一测量窗内占用的资源单元数,该A表示在该第一测量窗内RSSI测量值大于第一阈值的资源单元数,该B表示该第一测量窗包括的资源单元数。
结合第三方面,在第三方面的某些实现方式中,该处理模块具体用于根据该第二通信系统在该第一测量窗内占用的资源单元数与该第一测量窗内的资源单元数的比值,确定在该第一测量窗内该第二通信系统的信道繁忙状态。
结合第三方面,在第三方面的某些实现方式中,该处理模块具体用于根据下述关系确定在第一测量窗内该第一通信系统的信道繁忙状态:
Y=A2÷[B-(A-A2)],
其中该Y表示在该第一测量窗内该第一通信系统的信道繁忙状态,该A2表示该第二通信系统在该第一测量窗内占用的资源单元数,该A表示在该第一测量窗内RSSI测量值大于第一阈值的资源单元数,该B表示该第一测量窗包括的资源单元数。
结合第三方面,在第三方面的某些实现方式中,该处理模块具体用于根据该在该第一测量窗内RSSI测量值大于第一阈值的资源单元数与该第一测量窗内的资源单元数的比值和第一偏移量,确定在该第 一测量窗中该第一通信系统的信道繁忙状态;
或者,
该处理模块具体用于根据该在该第一测量窗内RSSI测量值大于第一阈值的资源单元数与该第一测量窗内的资源单元数的比值和第一系数,确定在该第一测量窗中该第一通信系统的信道繁忙状态,
其中,该第一偏移量和/或该第一系数的取值为预定义、预配置或者网络配置的。
结合第三方面,在第三方面的某些实现方式中,在该第一测量窗中该第一通信系统的信道繁忙状态满足下述关系:
Y=(A1÷B)+offset,
或者,
Y=(A1÷B)*α,
其中,该Y表示在该第一测量窗内该第一通信系统的信道繁忙状态,该A1表示在该第一测量窗内第一通信系统占用的资源数,该B表示该第一测量窗包括的资源单元数,该offset为该第一偏移量,该α为该的第一系数。
结合第三方面,在第三方面的某些实现方式中,在该第一测量窗中该第一通信系统的信道繁忙状态大于和/或等于第二阈值,以下中的至少一项被执行:
该处理模块具体用于在该第一通信系统中的周期预留被使能;
该收发模块具体用于在第一COT内传输该第一通信系统的第二SL信息,该第一COT是根据该第一通信系统的第一SL信息的参数确定的;
该处理模块具体用于在该第一通信系统中的抢占被使能;
该收发模块具体用于在第一COT内传输该第一通信系统的第一SL信息和该第二SL信息,该第一COT是根据该第一通信系统的第一SL信息对应的参数确定的。
第四方面,提供一种测量装置,该测量装置包括处理模块和收发模块,该处理模块用于确定该第一通信系统在第二测量窗内占用的资源单元数,该第一通信系统在该第二测量窗内占用的资源单元数,小于或等于在该第二测量窗内RSSI测量值大于第二阈值的资源单元数,该处理模块还用于根据该第一通信系统在第二测量窗内占用的资源单元数,确定该第一通信系统在该第三测量窗内的信道的状态,该第三测量窗包括该第二测量窗。
结合第四方面,在第四方面的某些实现方式中,第三测量窗还包括第四测量窗,其中,第三测量窗在时域上包括时隙[n-a,n+b],第二测量窗在时域上包括时隙[n-a,n-1],第四测量窗在时域上包括时隙[n,n+b],时隙n为测量信道的状态的时隙。
结合第四方面,在第四方面的某些实现方式中,该处理模块具体用于根据下述关系确定该第一通信系统在该第三测量窗内的信道占用状态:
Z=(E+F)÷[D-(G-G1)],
其中,Z表示该第一通信系统在该第三测量窗内的信道占用状态,该E表示第一终端装置在该第二测量窗内传输的资源单元数,该F表示该第一终端装置在该第四测量窗内被授权的资源单元数,该D表示该第三测量窗内的资源单元数,该G表示在该第二测量窗内RSSI测量值大于第二阈值的资源单元数,该G1表示该第一通信系统在第二测量窗内占用的资源单元数。
结合第四方面,在第四方面的某些实现方式中,该处理模块具体用于根据下述关系确定该第一通信系统在该第三测量窗内的信道占用状态:
Z=(E+F)÷(D-G+G1-δ),
或者,
Z=(E+F)÷[D-γ×(G-G1)]
其中,Z表示第一通信系统在第三测量窗内的信道占用状态,E表示第一终端装置在第二测量窗内传输的资源单元数,F表示第一终端装置在第四测量窗内被授权的资源单元数,D表示第三测量窗内的资源单元数,G表示在第二测量窗内RSSI测量值大于第二阈值的资源单元数,G1表示第一通信系统在第二测量窗内占用的资源单元数,δ为调整因子,γ为比例因子。
上述δ可以表示第二通信系统在第四测量窗内被授权的资源单元数,δ可以根据在第四测量窗内被授权的资源数中除第一通信系统在第四测量窗内被授权的资源单元数以外的资源数计算。或者,δ为 预配置给第一终端装置或者网络配置给第一终端装置的值。
结合第四方面,在第四方面的某些实现方式中,该处理模块具体用于根据该第一终端装置在该第二测量窗内传输的资源单元数与在该第四测量窗内被授权的资源单元数之和,与该第三测量窗内的资源单元数的比值,以及第二偏移量和/或第二系数确定该第一通信系统的信道占用状态,其中,该第二偏移量和/或该第二系数的取值为预定义、预配置或者网络配置的。
结合第四方面,在第四方面的某些实现方式中,该第一终端装置在该第四测量窗内被授权的资源数量,是根据该第一终端装置的业务优先级或者CAPC确定的。
结合第四方面,在第四方面的某些实现方式中,该处理模块具体用于根据第一信道占用状态确定在第一时间单元m上传输第一SL信息,在所述第一时间单元m之前N个时间单元的时间单元为测量所述第一信道占用状态的时间单元m-N,该第一信道状态满足以下中的至少一项:
i≥kCR(i)≤CRLimit(k)+offset,∑i≥kCR(i)≤θ×CRLimit(k),∑i≥kCR(i)≤CRLimit(k),
该i为该第一SL信息对应的优先级值,该k为小于或等于i的优先级值,该i和k的取值分别为1到8的整数,该offset为偏移量,该θ为比例因子,CR(i)为测量的优先级值为i时的信道占用状态,CRLimit(k)为优先级值为k时的信道占用状态限制,N为拥塞控制处理时间。
第一信道占用状态可以是信道占用状态的一个示例,或者,第一信道占用状态可以是信道占用状态对应的信道中的一部分信道对应的占用状态。本申请实施例对此不做限定。
结合第四方面,在第四方面的某些实现方式中,该处理模块具体用于根据第二信道占用状态确定,在第一COT内传输第二SL信息,该第二SL信息属于第二终端装置的SL信息,该第一COT为第一终端装置的初始COT,
该第二信道占用状态满足以下中的至少一项:
i≥kCR(i)≤CRLimit(k)+offset,∑i≥kCR(i)≤θ×CRLimit(k),∑i≥kCR(i)≤CRLimit(k),
该i为该第二SL信息对应的优先级值,该k为小于或等于i的优先级值,该i和k的取值分别为1到8的整数,该offset为偏移量,该θ为比例因子,CR(i)为测量的优先级值为i时的信道占用状态,CRLimit(k)为优先级值为k时的信道占用状态限制。
第二信道占用状态可以是信道占用状态的一个示例,或者,第二信道占用状态可以是信道占用状态对应的信道中的一部分信道对应的占用状态。本申请实施例对此不做限定。
可选地,第二SL信息所在时间单元m之前N个时间单元的时间单元为测量信道占用状态的时间单元m-N。
结合第四方面,在第四方面的某些实现方式中,该第二阈值为信道接入的能量检测门限。
结合第三方面或者第四方面,在某些实现方式中,该资源单元的该RSSI测量值是根据U个资源子单元的RSSI接收功率之和的线性平均值确定的,该U为小于或等于L的正整数,该L为该资源单元包括的该资源子单元的数量。
结合第三方面或者第四方面,在某些实现方式中,U大于或等于第三阈值,或者,U÷L大于或等于第四阈值,确定该资源单元的RSSI测量值大于该第一阈值或者该第二阈值,该U为该资源单元中,RSSI测量值大于该第一阈值或者该第二阈值的该资源子单元的数量。
结合第三方面或者第四方面,在某些实现方式中,该资源单元包括时域单元和/或频域单元,该时域单元包括感知时隙、符号、感知时隙、信道占用时间中的至少一项,该频域单元包括子信道、连续RB的子信道、交错RB的子信道、信道、RB集合、资源池、保护带、资源块、资源单元RE中的至少一种。
结合第三方面或者第四方面,在某些实现方式中,该资源子单元包括时域单元和/或频域单元,该时域单元包括感知时隙、符号、感知时隙、信道占用时间中的至少一项,该频域单元该频域单元包括子信道、连续RB的子信道、交错RB的子信道、信道、RB集合、资源池、保护带、资源块、RE中的至少一种。
应理解,第三方面、第四方面是与第一方面、第二方面分别对应的装置侧的实现方式,第一方面、第二方面的相关解释、补充、可能的实现方式和有益效果的描述分别对第三方面、第四方面同样适用,此处不再赘述。
第五方面,本申请实施例提供了一种通信装置,包括接口电路和处理器,该接口电路用于实现第 三方面中收发模块的功能,该处理器用于实现第三方面中处理模块的功能。
第六方面,本申请实施例提供了一种通信装置,包括接口电路和处理器,该接口电路用于实现第四方面中收发模块的功能,该处理器用于实现第四方面中处理模块的功能。
第七方面,本申请实施例提供了一种计算机可读介质,该计算机可读介质存储用于终端设备执行的程序代码,该程序代码包括用于执行第一方面或第二方面,或,第一方面或第二方面中任一可能的方式,或,第一方面或第二方面中所有可能的方式的方法的指令。
第八方面,本申请实施例提供了一种计算机可读介质,该计算机可读介质存储用于网络设备执行的程序代码,该程序代码包括用于执行第一方面或第二方面,或,第一方面或第二方面中任一可能的方式,或,第一方面或第二方面中所有可能的方式的方法的指令。
第九方面,提供了一种存储有计算机可读指令的计算机程序产品,当该计算机可读指令在计算机上运行时,使得计算机执行第一方面,或,第一方面中任一可能的方式,或,第一方面中所有可能的方式的方法。
第十方面,提供了一种存储有计算机可读令的计算机程序产品,当该计算机可读指令在计算机上运行时,使得计算机执行上述第二方面,或,第二方面中任一可能的方式,或,第二方面中所有可能的方式的方法。
第十一方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面,或,第一方面中任一可能的方式,或,第一方面中所有可能的方式的方法及各种可能设计的功能的装置和第二方面,或,第二方面中任一可能的方式,或,第二方面中所有可能的方式的方法及各种可能设计的功能的装置。
第十二方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面,或,第一方面中任一可能的方式,或,第一方面中所有可能的方式的方法。
第十三方面,提供了一种处理器,用于与存储器耦合,用于执行第二方面,或,第二方面中任一可能的方式,或,第二方面中所有可能的方式的方法。
第十四方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于执行该存储器中存储的计算机程序或指令,使得芯片系统实现前述第一方面或第二方面中任一方面、以及任一方面的任意可能的实现方式中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十五方面,提供了一种存储有计算机可读令的计算机程序产品,当该计算机可读指令在计算机上运行时,使得计算机执行上述第一方面,或,第一方面中任一可能的方式,或,第一方面中所有可能的方式的方法。
第十六方面,提供了一种存储有计算机可读令的计算机程序产品,当该计算机可读指令在计算机上运行时,使得计算机执行上述第二方面,或,第二方面中任一可能的方式,或,第二方面中所有可能的方式的方法。
第十七方面,提供一种测量系统,包括至少一个如第三方面该的测量装置和/或至少一个如第四方面该的测量装置,该通信系统用于实现上述第一方面或第二方面,或,第一方面或第二方面中任一可能的方式,或,第一方面或第二方面中所有可能的实现方式的方法。
附图说明
图1示出了适用于本申请实施例的一种通信系统的架构示意图。
图2示出了一种交错资源的示意图。
图3示出了一种先听后说机制的示意图。
图4示出了又一种先听后说机制的示意图。
图5示出了一种半静态信道接入方式下的资源示意图。
图6示出了一种CBR测量的示意图。
图7示出了一种CR测量的示意图。
图8示出了本申请实施例提出的一种测量方法的示意图。
图9示出了本申请实施例提出的一种资源占用情况的示意图。
图10示出了本申请实施例提出的又一种测量方法的示意图。
图11示出了本申请实施例提出的又一种资源占用情况的示意图。
图12示出了本申请实施例提出的一种通信装置的示意性框图。
图13示出了本申请实施例提供的又一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,比如5G(第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统)。
另外,本申请实施例提供的技术方案可以应用于网络设备到终端设备之间的链路,也可以应用于设备间的链路,例如设备到设备(device to device,D2D)链路。D2D链路,也可以称为侧行链路,其中侧行链路也可以称为边链路或副链路等。在本申请实施例中,D2D链路,或边链路或副链路都是指相同类型的设备之间建立的链路,其含义相同。所谓相同类型的设备,可以是终端设备到终端设备之间的链路,也可以是网络设备到网络设备之间的链路,还可以是中继节点到中继节点之间的链路等,本申请实施例对此不做限定。对于终端设备和终端设备之间的链路,有第三代合作伙伴计划(3rd generation partnership project,3GPP)的版本(release,Rel)-12/13定义的D2D链路,也有3GPP为车联网定义的车联万物链路。应理解,V2X具体又包括车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)或车到任何实体的V2X链路,包括Rel-14/15。V2X还包括目前3GPP正在研究的Rel-16及后续版本的基于NR系统的V2X链路等。V2V指的是车辆间的通信;V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客)的通信;V2I指的是车辆与基础设施的通信,基础设施例如路侧单元(road side unit,RSU)或者网络设备,另外还有一种V2N可以包括在V2I中,V2N指的是车辆与网络设备的通信。其中,RSU包括两种类型:终端类型的RSU,由于布在路边,该终端类型的RSU处于非移动状态,不需要考虑移动性;基站类型的RSU,可以给与之通信的车辆提供定时同步及资源调度。
本申请实施例应用的移动通信系统的架构示意图。如图1所示,图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100,可选的,可选的,通信系统1000还可以包括核心网200和互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
应理解,本申请通信系统中的信息发送端可以是网络设备,也可以是终端设备,信息接收端可以是网络设备,也可以是终端设备,本申请对此不作限定。
本申请实施例中UE可以称为终端设备、终端装置、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据的设备,例如,具有无线连接功能的手持式设备、车载设备等。终端设备可包括用户设备,有时也称为终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、D2D、V2X、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented  reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通、智慧城市(smart city)、无人机、机器人等场景的终端设备。例如,所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、VR终端、AR终端、工业控制中的无线终端、整车、整车中的无线通信模块、车载T-box(Telematics BOX)、路侧单元RSU、无人驾驶中的无线终端、IoT网络中智能音箱、远程医疗中的无线终端设备、智能电网中的无线终端设备、运输安全中的无线终端设备、智慧城市中的无线终端设备,或智慧家庭中的无线终端设备等等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征测量的智能手环、智能首饰等。此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
应理解,该无线通信系统中的网络设备可以是能和终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站(master eNodeB,MeNB)、辅站(secondary eNodeB,SeNB)、多制式无线(multi standard radio,MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及D2D、V2X、M2M通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
为了便于理解本申请,对随机接入过程和相关概念进行简单描述。
1.资源:可以理解为时频资源。按照Rel-16/Rel-17NR协议,PSCCH/PSSCH的调度粒度在时域上的资源单位为一个时隙,在频域上的资源单位为连续一个或者多个个子信道。发送终端装置可以在该资源上发送侧行信息,在一个资源上可以承载物理侧行控制信道(physical sidelink control channel,PSCCH)、物理侧行共享信道(physical sidelink shared channel,PSSCH)、物理侧行反馈信道(physical sidelink feedback channel,PSFCH)三种信道和解调参考信号(demodulation reference signal,DMRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、PT-RS(相位追踪参考信号,phase-tracking reference signal)、侧行链路同步信号和PBCH块(sidelink synchronization signal  and PBCH block,S-SSB)、循环前缀扩展(Cyclic Prefix Extension或者CP extension,CPE)等信号。PSCCH中承载一阶SCI,PSSCH中承载二阶SCI和/或数据,PSFCH承载反馈信息。侧行信息(或SL信息)包括PSCCH、PSSCH、PSFCH、DM-RS、CSI-RS、PT-RS、同步、CPE中的一种或者几种。
PSCCH:PSCCH承载一阶SCI。为了便于描述,在不做区分时,PSCCH和SCI表示含义相同。在时域上,PSCCH占用从第二个侧行符号开始的两个或三个OFDM符号;在频域上,承载PSCCH的PRB从关联的PSSCH的最低子信道的最低PRB开始,且PSCCH占据的PRB个数在一个PSSCH的子带范围内。PSCCH由{10,12,15,20,25}个RB组成,具体取值由RRC信令指示或者预配置。
PSSCH:PSSCH承载二阶SCI、MAC CE和数据中的至少2种。SCI可以指一阶SCI和/或二阶SCI。为了便于描述,在不做区分时,SCI指一阶SCI、二阶SCI、一阶和二阶SCI中的任意一种。时域上,在没有PSFCH的资源上,有12个符号用于承载PSSCH;在有PSFCH的资源上,有9个符号用于承载PSSCH。频域上,占据连续LsubCh个子信道。另外,在一个时隙内,第一个OFDM符号复制第二个符号上发送的信息,用于自动增益控制(Automatic Gain Control,AGC)。
PSFCH:PSFCH承载反馈信息。在有PSFCH的资源上,倒数第二个和第三个OFDM符号承载PSFCH。倒数第三个符号上的信号是倒数第二个符号上信号的重复,以便接收终端装置进行AGC调整。
GAP符号:此外,终端装置可能在连续两个时隙分别接收和发送PSSCH,或者终端装置可能在同一个时隙分别接收和发送PSSCH和PSFCH。因此,在PSSCH后和PSFCH符号之后,均需要额外增加一个符号用于终端装置的收发转换。
2.时域资源单元、频域资源单元:
时域资源单元包括符号(symbol)、时隙(slot)、迷你时隙(mini-slot)、部分时隙(partial slot)、子帧(sub-frame)、无线帧(frame)、感知时隙(sensing slot)等。
频域资源单元包括资源单元(resource element,RE)、资源块(resource block,RB)、RB集合(RB set)、子信道(subchannel)、资源池(resource pool)、带宽部分(bandwidth part,BWP)、载波(carrier)、信道(channel)、交错(interlace)等。
为了便于描述,本文以时域资源为时隙、频域资源为子信道或交错描述传输PSCCH/PSSCH的资源。
3.非授权频段(unlicensed spectrum):也称共享频谱(shared Spectrum),在无线通信系统中,按照使用频段的不同,可以分为授权频段和非授权频段。在授权频段中,用户基于中心节点的调度使用频谱资源。在非授权频段中,发射节点需要按照竞争的方式使用频谱资源,具体地,通过先听后说(listen-before-talk,LBT)的方式竞争信道。在5G NR系统中,非授权频段中的NR协议技术统称为NR-U,期望通过NR-U进一步提升通信性能。非授权频段的SL通信是一个重要演进方向,相应协议技术可以统称为SL-U。通过SL-U工作的UE需要基于LBT机制与附近的Wi-Fi等设备共存。之所以LBT机制成为非授权频段的必选特性,是因为世界各个地区对于非授权频段的使用有法规(regulation)要求。工作于不同通信协议的各种形态的UE,只有满足法规才能使用非授权频段,进而能够相对公平、高效地使用频谱资源。在非授权频谱上的SL通信称为SL-U。其中,在非授权频谱上还可以有Wi-Fi终端装置、蓝牙终端装置、Zigbee终端装置等至少任意一种终端的通信,对于SL终端装置而言,这些装置可以简称为异系统终端装置。
4.占用信道带宽(occupied channel bandwidth,OCB)需求:名义信道带宽是分配给单个信道的最宽频带,包括保护频带。OCB是包含信号功率99%的带宽。单个工作信道的名义信道带宽为20MHz。占用信道带宽应在名义信道带宽的80%和100%之间。对于具有多个发射链(transmit chains)的终端装置,每个发射链都应满足此要求。占用信道带宽可以随时间/有效负载而变化。在信道占用时间(channel occupancy time,COT)期间,终端装置可以临时以低于其名义信道带宽的80%传输,且最小传输带宽为2MHz。
交错传输就是为了满足OCB需求。以20MHz带宽、30kHz SCS为例。传输带宽有51个RB(如图2所示)。如果一个子信道由10个RB组成,则有5个子信道(剩余1个RB空闲)。若终端装置在一个子信道上发送,占用带宽约4MHz,不满足“占用信道带宽应在名义信道带宽的80%和100%之间”的OCB需求。若以交错形式发送为例,如在索引为0的交错发送,则占用带宽约20MHz,即 100%的名义带宽;如在索引为1的交错发送,则占用带宽约18MHz,即约46/51≈90%的带宽。可以满足OCB的需求。
5.交错(interlace,也称就交错资源块(interlaced resource blocks))
协议定义了多个交错的资源块(Multiple interlaces of resource blocks),以下简称交错。交错m由公共资源块(common resource block,CRB){m,M+m,2M+m,3M+m,…}组成。其中M为交错数,且有m∈{0,1,…,M-1}。可选地,M的取值与SCS有关。例如,在μ=0(即子载波间隔为15kHz)时,M取值为10。再例如,在μ=1(即子载波间隔为30kHz)时,M取值为5。
CRB与交错资源块、BWP i和交错m的关系满足: 其中,其中表示BWP开始的公共资源块,是相对于公共资源块0的CBR个数。当没有混淆的风险时,索引μ可省略。终端装置期望BWP i包含的交错中的公共资源块的数量不小于10。为了便于表述,公共资源块CRB可以理解为RB。
资源分配方式包括连续的和交错的两种方式。其中,交错还可以记作交织、隔行、逐行、梳齿。1个交错包括N个不连续的RB,传输带宽中包含M个交错。可选地,交错内的RB之间的间隔可以相同或者不同。例如,1个交错内,RB的间隔可以为M个RB。例如图2所示,横轴代表频域,单位为RB,纵轴代表时域,单位为符号。在20MHz频率带宽内,30KHz子载波间隔下,共有51个资源块(RB),即51个格子。这51个资源块中,10个或者11个等间隔的资源块组成一个交错,共计有5个交错。11个编号为0的RB对应交错0,10个编号为1、编号为2、编号为3、编号为4的RB分别对应交错1、交错2、交错3、交错4。另外,RB还可以称为物理资源块(physical resource block,PRB)。
以20MHz传输带宽为例,表1中列举了交错个数M和交错里的PRB(即RB)个数N。可以根据配置或者预配置确定至少一个交错个数M和交错里的RB个数N的组合。
表1 20MHz传输带宽时,不同SCS下交错个数M和交错的PRB个数N的组合
本文中的“以交错方式传输、发送或接收PSCCH”还可以理解为“以交错方式映射PSCCH”,或“以交错方式译码PSCCH”,“以交错方式传输、发送或接收PSSCH”还可以理解为“以交错方式映射PSSCH”,或“以交错方式译码PSSCH”。
6.资源池:NR SL通信基于资源池(resource pool)进行。所谓资源池指的是一块专用于SL通信的时频资源。资源池包含的频域资源是连续的。资源池包含的时域资源可以是连续的,也可以是不连续的。不同的资源池由RRC信令区分。终端装置在收资源池上接收,在发资源池上发送。如果资源池具有相同的资源池索引,则可以认为资源池的时频资源是完全重合的。
在SL-U中,由于频带是由多种形式的终端装置共享的,如SL终端装置与Wi-Fi终端装置、蓝牙终端装置在相同的频带上传输。因此,不一定有SL专用资源池的概念。SL资源池还可以理解为:可以用于SL传输的资源集合。在本实施例中,资源池还可以称作RB集合(RB set)、信道(channel)、工作信道(Operating channel)、名义信道(Nominal Channel Bandwidth)带宽(bandwith)。其中,信道和RB集合的含义可以互相替换。即资源池、信道、带宽、RB集合均用于表示可以用于SL传输的资源集合。
资源池的带宽可以是{5,10,15,20,25,30,40,50,60,70,80,90,100}MHz中的至少其中一种。
下面解释资源池与信道的关系。资源池的带宽为C*20Mhz,C为正整数,如C={1,2,3,4,5}。资源池中有至少一个信道。例如,资源池包括一个信道,信道带宽为20MHz,资源池带宽为20MHz。再例如,资源池包括2个信道,信道带宽为20MHz,资源池带宽为40MHz。再例如,资源池包括5个信道,信道带宽为20MHz,资源池带宽为100MHz。
类似地,解释资源池与RB set的关系。RB set的频域带宽为20MHz。资源池的带宽为C*20Mhz或者C*20+C2Mhz,C为正整数,如C={1,2,3,4,5}。例如,资源池的带宽为20MHz,资源池包含1个RB set。再例如,资源池的带宽为50MHz,资源池包含2个RB set,这两个RB set可以在频域相邻或者不相邻。
终端装置在资源池中,可以在相邻的D个RB集合上传输PSCCH和/或PSSCH,也可以在1个RB集合上传输PSCCH和/或PSSCH。以终端装置在A个交错上传输PSCCH、在B个交错上传输PSSCH为例。对于终端装置在相邻的D个RB集合上传输,终端装置在RB集合索引最小的RB集合上,在A个交错上传输PSCCH;终端装置在D个RB集合上,总共在B个交错上传输PSSCH。例如,A=1,B=4,D=2,RB集合索引分别为0和1,则终端装置在索引为0的RB集合上传输。
7.LBT:LBT是一种信道接入规则。UE在接入信道并开始发送数据之前需要侦听信道是否空闲(idle),如果信道已经保持空闲一定时间,则UE可以占用信道;如果信道非空闲,则UE需要等待信道重新恢复为空闲后才可以占用信道。
一般可以采用基于能量的检测和信号类型的检测来判断信道的状态,比如NR-U采用能量的检测,而WiFi采用两种相结合的检测方法。基于能量的检测需要设定一个检测门限(energy detection threshold),当检测的能量超过检测门限时,判决为信道忙,则不允许接入信道。当检测的能量低于检测门限时,如果持续一段时间后,则允许接入信道。根据国家和地区对于使用非授权频段的法规要求,以5GHz频段为例,一个信道可以是指20MHz的带宽。接入20MHz的一个信道,需要满足至少最小OCB的要求才可以占用信道,一般最小OCB要至少是正常带宽的80%,以正常带宽为20MHz为例,即UE至少需要占用16MHz的带宽才可以抢占该20MHz信道。应理解,一个信道的带宽也可以是其他数值,20MHz只作为一种示例而非限定。
LBT有多种类型。LBT的类型还可以称为信道接入的类型。以下主要介绍两种:
第一类型LBT:通信设备需要进行随机退避(random backoff)后才能接入信道并发送数据。示例地,终端装置可以在一段连续检测(defer sensing)时间(记作Td)中首次侦听到信道为空闲,在检测时隙时段(sensing slot duration)上将计数器N递减为零之后,发起数据传输。紧随Td后的是mp个连续的侦听时隙时段(记作Tsl)。具体地,终端装置可以根据以下步骤接入信道:
步骤1.设置N=Ninit,其中Ninit为均匀分布在0和CWp之间的随机数,执行步骤2,其中CWp可以为优先级为p时的竞争窗口(contention window for a given priority class);
步骤2.如果N>0,网络设备或终端设备选择递减计数器,取N=N-1;
步骤3.如果侦听时隙期间的信道是空闲的,则转至步骤4;
否则,转至步骤5;
步骤4.如果N=0,停止;
否则,执行步骤2。
步骤5.侦听信道,直到在另一个Td内侦听到信道繁忙或侦听到另一个Td内所有侦听时隙都被检测为信道空闲;
步骤6.如果在另一个Td内的侦听时隙都被检测为信道空闲,则执行步骤4;
否则,执行步骤5。
其中,CWmin,p≤CWp≤CWmax,p,CWmin,p为优先级为p时的竞争窗口的最小取值,CWmax,p为优先级为p时的竞争窗口的最大取值。
其中,信道空闲还是繁忙是根据信道检测门限确定的。例如,接收功率(detected power)大于能量检测门限XThresh,则信道繁忙。再例如,接收功率(detected power)小于能量检测门限XThresh,则信道空闲。
在上述步骤1之前选择CWmin,p和CWmax,p,mp、CWmin,p和CWmax,p是基于与网络设备或终端设备传输相关联的信道接入优先级等级p确定的,如表2或者表3所示:
表2信道接入优先级与CWp的关系表
表3信道接入优先级与CWp的关系表
表2或者表3中Tm cot,p为优先级为p时的信道占用最大时长(maximum channel occupancy time for a given priority class),网络设备或终端设备在信道上传输的信道占用时间(channel occupancy time,COT)不超过Tm cot,p,换句话说,COT指通信设备在成功接入信道后允许占用信道的时间,再换句话说,通信设备完成LBT过程可以抢占一段时间内该信道的使用权。信道接入过程是基于与网络设备或终端设备传输相关联的信道接入优先级等级p执行的,表1中的优先级等级数值越小,表示优先级越高,比如优先级1为最高优先级。
网络设备或终端设备维护竞争窗口值CWp,并在步骤1之前根据以下步骤调整CWp的取值:
对于表中的每个优先级,设置该优先级对应的CWp=CWmin,p
网络设备或终端设备在参考子帧k中发送的数据所对应的反馈HARQ-ACK值中,如果至少80%的数据被反馈否定应答(negative acknowledgment,NACK),则将每个优先级所对应的CWp值增加到下一个较高的允许值,在步骤2中使用;否则,执行步骤1。其中,参考子帧k是网络设备或终端设备在信道上最近一次数据传输的起始子帧。
上述第一类型LBT的一个示例如图3所示,以N为6为例,终端装置通过侦听确定信道在第一个Td的时长范围内一直为空闲状态,在第一个Tsl中将N从6递减为5,在第二个Tsl中将N从5递减为4。此后,终端装置侦听到信道状态为繁忙,等待信道状态为空闲且持续Td的时长后,在第三个Tsl中将N递减为3。此后,终端装置又侦听到信道繁忙,重新等待信道状态为空闲且持续Td的时长后,在第四个Tsl中将N递减为2,第五个Tsl中将N递减为1,在第六个Tsl中将N递减为0。再后,终端装置接入信道,在COT内传输数据。
第二类型LBT为无随机退避的LBT,分为三种情况:
情况A:通信设备在侦听到信道处于空闲状态并持续一段时间16us后,不进行随机退避就可以进行数据发送。
情况B:通信设备在侦听到信道处于空闲状态并持续一段时间25us后,不进行随机退避就可以进行数据发送。情况B相对于情况A,相当于多个转换间隔(switching gap)。比如,通信设备在COT 中由接收状态到发送状态的转换间隔后立即进行发送,转换间隔的时间可以不大于16us。具体的转换时间可以是预设的或者基站配置的,也可以与通信设备的硬件能力相关。
情况C:通信设备不进行信道侦听即可传输,传输时间最多584us。
如图4所示,通信设备侦听信道,确定该信道在时间间隔(gap)内状态为空闲,则在该时间间隔的结束时刻可以接入信道。
信道接入过程也可以分为动态(dynamic)的信道接入和半静态(semi Static)的信道接入,终端装置基于配置或者预配置确定采用动态或者半静态的信道接入方法。其中,动态的信道接入可以是上述第一类型LBT和第二类型LBT。动态的信道接入适用于SL终端和异系统终端在非授权频谱上传输的场景。
半静态的信道接入如图5所示,基站或者终端装置在每两个连续的无线帧中以Tx为周期占用信道。占用开始的时间点为偶数索引的无线帧的i·Tx处或者i·Tx+offset处。占用信道的时长最多为0.95Tx。在周期Tx内的最后max(0.05Tx,100us)时长为该周期的空闲时间(idle duration)。基站或者终端装置不在该空闲时间传输。其中,Tx为配置或者预配置的,例如为{1,2,2.5,4,5,10}ms中的至少任意一种;半静态的信道接入适用于非授权频谱上仅有SL终端传输的场景。
半静态的信道接入还可以称为基于帧结构的设备(frame based equipment,FBE)信道接入。或者还可以理解为:FBE通过半静态接入模式接入信道。动态的信道接入还可以称为基于负载的设备(load based equipment,LBE)信道接入。或者还可以理解为:LBE通过动态接入模式接入信道。
8.信道占用和信道占用时间
信道占用(channel occupancy,CO)是指终端装置在执行信道接入过程后在一个或者多个信道上的传输。
终端装置执行Type1信道接入后在一段连续的时间内占用信道传输,称为信道占用时间(channel occupancy time,COT)。COT的频域单元为信道,时域单元为ms或者时隙。在本专利中,COT可以是一个时间概念,即SL传输的时间;也可是一个资源的概念,即SL传输所占的时频资源。在本申请中,若不做进一步区分,COT和CO为同一概念。终端装置可以在相邻或者不相邻的多个信道传输。在本申请中,终端装置在多个信道传输可以理解成:终端装置的传输占用了1个COT,COT在频域上占用了多个信道;或者,终端装置的传输占用了多个COT,每个COT在频域上占用了1个信道。
网络设备或终端设备基于第一类型LBT接入信道成功后在COT内传输。这个COT可以称为该网络设备或终端设备初始的COT。第一类型LBT是以不同的优先级p执行的,该COT也可以称为基于优先级p初始的COT。其中,初始即为initiated、initial、initialization或者initiate。初始的COT还可以译为创建的COT。
COT可以共享用于终端装置之间的传输(COT sharing)。初始COT的终端装置可以把COT共享给其他终端装置,即用于其他终端装置的SL传输。初始COT的终端装置和共享COT的终端装置在一段连续的时间内占用信道传输COT共享需要满足相应条件,如初始COT的终端装置为共享COT的终端装置的接收终端装置或者发送终端装置,再如初始COT的终端装置和共享COT的终端装置为同一个组内的组员。
终端装置的传输不能超过最大信道占用时间的限制(maximum channel occupancy time,MCOT),记为Tm cot,p。对于不同的信道接入优先级级p的值不同,如表2或者表3所示。对于1个终端装置接入信道并在COT内传输,传输时间不超过最大信道占用时间Tm cot,p。对于多个终端装置在COT内传输,初始COT的终端装置和共享COT的终端装置的传输时间不超过最大信道占用时间Tm cot,p。P为初始COT的终端装置的的信道接入优先级(channel access priority class,CAPC);或者,P为在COT传输的终端装置中CAPC值最小的CAPC。
9.优先级:终端装置B的业务优先级具体而言是终端装置B的发送优先级(transmission priority)。因为终端装置B可能同时发送了多个业务,多个业务的优先级可能不一样。业务优先级,还可以称为L1优先级(L1 priority)、物理层优先级、SCI中携带的优先级、一阶SCI中携带的优先级、SCI关联的PSSCH对应的优先级、发送优先级、发送PSSCH的优先级、用于资源选择的优先级、逻辑信道的优先级或者逻辑信道的最高等级的优先级。
其中优先级等级与优先级数值具有某种对应关系,例如优先级等级越高对应的优先级数值越低, 或者优先级等级越低对应的优先级数值越低。当更低的优先级值代表更高等级的优先级时,优先级数值取值范围可以为1-8的整数或者0-7的整数。若以优先级数值取值范围为1-8,则优先级的值为1时代表最高等级的优先级。当更低的优先级值代表更低等级的优先级时,则优先级的值为1时代表最低等级的优先级。
在非授权频谱中,有CAPC这一概念。CAPC还可以译为通道访问优先级类。CAPC关联SL信息的重要程度,用于第一类型LBT。例如,CAPC是第一类型LBT中的优先级p。可选地,CAPC终端设备也可以用于确定第二SL信息是否在由第一SL信息关联的CAPC初始的COT内传输。
其中CAPC等级与CAPC值具有某种对应关系,例如CAPC等级越高对应的CAPC值越低,或者CAPC等级越低对应的CAPC值越低。CAPC值取值范围可以为1-4的整数。当更低的CAPC值代表更高等级的CAPC时,则CAPC的值为1时代表最高等级的CAPC。当更低的CAPC值代表更低等级的CAPC时,则CAPC的值为1时代表最低等级的CAPC。
在本申请中,优先级既可以指业务优先级也可以指信道接入优先级CAPC。
10.信号强度测量:
SL的信号强度测量包括接收信号强度指示(received singnal strengthen indicator,RSSI)测量和或参考信号接收功率(reference signal received power,RSRP)测量。或者,信号强度包括RSSI和或RSRP。类似地,信号强度阈值包括RSSI阈值和或RSRP阈值。
在本申请中,以RSSI举例信号强度测量方法。实际上,还可以是基于RSRP测量信号强度。即“RSSI测量”可以同义替换为“RSRP测量”,即即“RSSI阈值”可以同义替换为“RSRP阈值”。
RSSI定义为被配置的子信道内在一个时隙内,从第二个OFDM符号开始(即不包括AGC符号),被配置用于PSCCH和PSSCH的OFDM符号的总接收功率的线性平均。其中PSFCH所在符号不测量RSSI。
在实际测量过程中,是以1个符号*1个子信道的资源的测量能量,然后对时隙内符号的能量线性平均,得到针对1个时隙*1个子信道的资源的1个RSSI测量值。其中,在没有PSFCH的符号中,相当于测量了第2到第13这12个符号的能量值的平均;在有PSFCH的符号中,相当于测量了第2到第10这9个符号的能量值的平均。
在NR中,RSSI是针对1个时隙*1个子信道的资源的1个RSSI测量值。也就是说,如果PSCCH/PSSCH占3个子信道,则会得到3个子信道分别的3个RSSI测量值。
PSSCH-RSRP在定义上是所有承载了PSSCH-DMRS的RE上的有用信号(即PSSCH-DMRS)功率(不计算CP部分的功率)在线性域的平均。PSCCH-RSRP在定义上是所有承载了PSCCH-DMRS的RE上的有用信号(即PCSCH-DMRS)功率(不计算CP部分的功率)在线性域的平均。其中PSFCH所在符号不测量RSRP。
在NR中,RSRP是针对1个时隙*PSSCH或PSCCH的总子信道的资源的1个RSRP测量值。也就是说,如果PSSCH占3个子信道,则会得到3个子信道的1个RSRP测量值。
目前,为了合理分配信道的使用,通过测量信道状态来控制业务的发送。一种测量信道状态的方式为CBR测量:R16 NR SL的CBR测量,在时隙n测量的CBR的定义为一个资源池内在一个CBR测量窗时隙[n-a,n-1]内,1个时隙*1个子信道的资源的RSSI测量值超过预配置或配置的门限的比例。其中a根据高层参数的配置,等于100slots或100ms,具体使用哪一个由RRC字段sl-TimeWindowSizeCBR指示。SL RSSI的门限由RRC字段sl-ThreshS-RSSI-CBR指示。时隙索引为物理时隙索引。如图6所示,假设资源池内CBR测量窗内,单时隙子信道(即1个时隙*1个子信道的资源,单时隙子信道还可以称为子信道)的个数为33个。这里为了方便理解,我们以测量窗是11个时隙,频域带宽是3个子信道来举例说明原理(实际上测量窗是100时隙或100ms,频域带宽也不止是3个子信道。)图示被占用的子信道个数为7个,则CBR为7/33。被占用的子信道,即SL-RSSI测量值高于一个临界值的子信道被认为是被占用的子信道。也就是说,被算作分子的子信道个数为7。终端装置检测到的RSSI测量值低于或等于该临界值的子信道不算做被占用的子信道,即不算做分子的子信道个数为33-7等于26。
另一种测量信道状态的方式为:R16 NR SL的CR测量,在定义上,物理slot n上的SL CR指的是终端装置自己在物理slot[n-a,n+b]的范围内已经使用和已经获得授权即将使用的子信道的总数, 在物理slot[n-a,n+b]的范围内所有的子信道总个数中的占比。具体来说,已使用和即将使用的子信道的总数=物理slot[n-a,n-1]的范围内使用的子信道的个数+物理slot[n,n+b]的范围内获得MAC层许可计划使用的子信道的个数。其中a,b的取值由终端装置自行决定,但必须满足约束:a+b+1=T,T等于1000ms或者1000个slot,具体取值通过RRC字段sl-TimeWindowSizeCR来指示;n+b不能晚于用于当前传输的许可的最后一个传输机会。此外CR也支持就某个特定的优先级进行计算,此时CR的分子应该替换为终端装置自己在物理slot[n-a,n+b]的范围内已经用于和已经获得许可即将用于传输特定优先级传输的子信道的总数。
如图7所示,假设资源池内CR测量窗内,单时隙子信道(即1个时隙*1个子信道的资源)的个数为36个。这里为了方便理解,我们以测量窗是12个时隙,频域带宽是3个子信道来举例说明原理,但是实际上测量窗是1000时隙或1000ms,频域带宽也不止是3个子信道。图示被已经使用的子信道个数为3个、授权的子信道个数为2个,则CR为(3+2)/36。如果按照优先级计算CR,优先级为1的数据中,已经使用的子信道个数为2个、授权的子信道个数为1个,则优先级为1的CR为(2+1)/36;优先级为2的数据中,已经使用的子信道个数为1个、授权的子信道个数为1个,则优先级为2的CR为(1+1)/36。
终端装置在时隙n传输优先级为i的PSCCH/PSSCH时,需要保证∑i≥kCR(i)≤CRLimit(k)。其中CR(i)为测量的优先级为i的CR,CRLimit(k)为优先级为k的CR限制,并且优先级值k值小于等于优先级值i(以优先级等级越高对应的优先级数值越低为例,优先级等级k高于等于优先级等级i)。其中,CRLimit(k)由优先级值k与时隙n-N的CBR测量值所处的CBR范围有关。CBR测量值为时隙n-N的测量值,N为拥塞控制处理时间,具体数值见表4或
表5。终端装置要么使用能力1要么使用能力2。终端装置处理能力1和2的拥塞控制处理时间N与子载波间隔有关,其中μ对应于传输PSSCH所在的子载波间隔。至于如何保证∑i≥kCR(i)≤CRLimit(k),可以取决于终端装置的实现。
例如,终端装置在传输优先级为6的PSCCH/PSSCH时,需要满足CR(6)+CR(7)+CR(8)≤CRLimit(8)、CR(6)+CR(7)≤CRLimit(7)和CR(6)≤CRLimit(6)三个条件。也就是说,对于优先级值较大的业务,需要占用尽可能少的资源。
表4拥塞控制处理时间N能力1
表5拥塞控制处理时间N能力2
当系统内较多资源被占用时,则控制系统内的终端装置减少发送,进而减少资源占用率。也就是说,当CBR大时,可以通过关联更小的CRlimit来减少发送。例如,对于低优先级的业务可以多丢几个包,对于高优先级的业务少丢几个包。同理,当CBR小时,可以通过关联更大的CRlimit来增加发送。例如,对于低优先级的业务可以增加发送,比如,多发几个包,对于高优先级的业务,可以比低优先级 业务增加更多的发送。
通过对信道状态的测量确定信道占用情况,根据信道占用情况能够控制业务传输,有利于提高通信可靠度。但是,在非授权频谱中,既存在SL传输,也有可能存在WiFi、蓝牙、zigbee等以系统的传输。以下简称在非授权频谱上运行的非SL系统为异系统,例如WiFi、蓝牙、zigbee中的一种或者几种。上述测量过程中未考虑异系统的信道占用情况,异系统的占用可能导致CBR测量结果大于或者小于SL终端装置的实际CBR。如果CBR测量值大于实际值(简称“CBR增加”),这会对应更低的CRlimit,相当于限制了SL业务的发送。这种情况下,异系统终端装置不会因为SL的拥塞控制而减少发送。从结果来看,相当于由于异系统终端装置过度占用了信道,SL终端装置却要因此而减少发送。这对SL终端装置是不公平的。类似地,如果CBR测量值小于实际值(简称“CBR降低”),这会对应更大的CRlimit,相当于增加了SL业务的发送。这种情况下,异系统终端装置不会因为SL的拥塞控制增加发送。从结果来看,相当于由于异系统终端装置发送占用的资源减少,SL终端装置因此而增加了发送。这对异系统终端装置是不公平的。
换句话说,由于目前在非授权频谱的信道状态的测量过程中,未考虑异系统的信道占用情况,导致测量结果不准。进一步影响了业务传输,比如影响拥塞控制,可能无法满足当前SL系统或者异系统的业务传输需求,影响用户体验。
针对上述问题,本申请实施例提出一种测量方法,应用于非授权频谱通信系统,能够提高信道状态测量的准确性。该非授权频谱通信系统中包括第一通信系统,比如SL通信系统。应理解,下述以终端装置作为测量的执行装置为例,对本申请实施例的方案进行说明,但本申请不限于此。还应理解,本申请实施例中的信道测量以CBR测量或者CR测量为例进行说明,但是CBR测量、CR测量是R16/R17中的用语,测量的是SL终端对于资源池中的资源的占用比例。相对的,在R18或者未来的技术发展过程中,对异系统的信道状态测量,可能沿用CBR测量、CR测量这些名词,也可能用其他的名词指代这一过程,本申请实施例对此不作限定。
下面先对CBR测量方法进行说明。
如图8所示,该方法可以包括下述步骤:
步骤801:确定第一通信系统在第一测量窗内占用的资源单元数。
步骤801可以由终端装置执行。
其中,第一通信系统在第一测量窗内占用的资源单元数,小于或等于在第一测量窗内RSSI测量值大于第一阈值的资源单元数。
该资源单元可以是时频资源单元。资源单元的时频粒度在下文展开描述,这里暂时略过。应理解,下文也可以将“资源单元数”简称为“资源数”,也将“资源单元”简称为“资源”。
第一测量窗可以是CBR测量窗,也称第一CBR测量窗。具体地,CBR测量窗可以参考图6中的说明。应理解,CBR测量窗的时域长度可以是预定义的,可以是指示的,也可以是预配置的。CBR测量窗的频域宽度可以是资源池的宽度,也可以是一个或者多个RB set。本申请实施例对此不作限定。
第一通信系统可以是SL通信系统。终端装置可以是SL终端装置。
第一通信系统在第一测量窗内占用的资源单元数,可以理解为第一通信系统中的终端装置在第一测量窗内占用的资源单元数。比如,第一通信系统包括多个终端装置,终端装置为该多个终端装置中的一个。这多个终端装置在第一测量窗内都有业务传输,也就是说,都分别占用了信道中的资源。终端装置可以确定所有第一通信系统中的终端装置在第一测量窗内占用的资源单元数。
在第一测量窗内RSSI测量值大于第一阈值的资源单元数,可以理解为第一测量窗内被占用的资源单元数,或者说,第一测量窗内繁忙的资源单元数。考虑到非授权频谱中,可能同时存在异系统通信,该在第一测量窗内RSSI测量值大于第一阈值的资源单元数,也可以理解为在第一测量窗内SL系统的终端装置和异系统的终端装置分别占用的资源单元数之和。下文以第二通信系统作为异系统的称谓。举个例子,如图9所示,以第一通信系统为SL通信系统,第二通信系统为wifi系统为例,该测量窗内的信道被SL通信系统和wifi系统占用。
一种可能的方式,终端装置可以通过某块资源是否承载了SL信息,并且该资源的RSSI值是否大于第一阈值,来判断该资源是否为第一通信系统占用的资源。比如:资源单元#A承载了SL信息,并且,资源单元的RSSI值大于第一阈值,则终端装置可以确定该资源单元被第一通信系统占用。或者, 终端装置可以通过某块资源是否承载了SL信息,来判断该资源是否为第一通信系统占用的资源。比如:资源单元#A承载了SL信息,则终端装置可以确定该资源单元被第一通信系统占用。
可选地,终端装置确定承载SL信息的资源的方式包括以下中的任一种:
a)承载SL信息的资源包括承载PSCCH、PSSCH、PSFCH、PSBCH、S-SSB、DMRS、CSI-RS、CPE(CP extension)中的至少一种。可选地,承载PSCCH,包括承载通过CRC校验的信息。
b)承载SL信息的资源包括承载侧行控制信息(SCI)指示的资源,或者,SCI指示的资源包括SL-U占用的资源。SCI中的时域指示字段、频域指示资源、周期指示字段中的至少一种指示SL-U的预留资源。该预留资源可以视作SL-U占用的资源。
c)承载SL信息的资源包括承载COT指示信息和/或COT共享信息指示的资源,或者,COT指示信息和/或COT共享信息指示的资源包括SL-U占用的资源。COT指示信息用于指示初始COT的终端装置和/或共享COT的终端装置占用的资源。COT共享信息指示某个终端装置共享给其他终端装置的资源。
d)承载SL信息的资源包括承载AGC符号(也称信号)和/或CPE符号(也称信号)的资源。SL-U在传输前会进行AGC。通常时隙的首个符号为用于AGC的符号。SL-U在传输前也可能会有CPE,SL-U可能在任意符号上接入信道,如果在AGC符号前接入信道,需要传输CPE。
e)承载SL信息的资源包括承载SL同步信号的资源。SL同步信号包括主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、PSBCH中的至少一种。可选地,可以根据某资源上存在PSS和/或SSS确定该资源为被SL-U占用的资源。
f)承载SL信息的资源包括承载SL序列和/或SL前导序列的资源。可选地,SL序列包括DMRS序列。示例地,SL前导序列位于SL所在时隙的首个符号。可选地,承载前导序列的RB的功率与承载PSCCH的RB的功率相等,或者,承载前导序列的RB的功率与承载PSSCH的RB的功率相等。
应理解,上述承载SL信息的资源包括了RSSI测量值大于阈值的资源、等于第一阈值的资源和/或小于阈值的资源。对于该等于第一阈值的资源和/或小于阈值的资源,其他终端装置(例如距离远的终端装置)可以在重合的资源上传输,两个终端装置之间不会彼此干扰。对于该RSSI测量值大于阈值的资源,需要进行拥塞控制,也就是说,终端装置确定的第一通信系统占用的资源为承载SL信息且RSSI测量值大于阈值的资源。
上述第一阈值可以是信道接入的能量检测门限XThresh,该能量检测门限可以参考前文说明,这里不再赘述。该第一阈值可以是预定义的,可以是配置的,可以是预配置的,也可以是指示的,本申请实施例对此不作限定。
步骤802:根据第一通信系统在第一测量窗内占用的资源单元数,和/或在第一测量窗内RSSI测量值大于第一阈值的资源单元数,确定第一通信系统在第一测量窗内的信道的状态。
步骤802可以由终端装置执行。
可选地,终端装置可以根据第一通信系统占用的资源数A1、第二通信系统占用的资源数A2、RSSI测量值超过第一阈值的资源数A、RSSI测量值不超过第一阈值的资源数C、CBR测量窗内的资源数B、SL可以使用的资源数B1中的至少其中2种确定SL的信道繁忙率。
CBR测量窗内的资源数B为CBR测量窗内的资源总数,或者为资源池中CBR测量窗内的资源总数。
RSSI测量值超过第一阈值的资源数A可以理解为SL-U占用的资源数(或,承载SL信息的资源数)、异系统占用的资源数(或,承载异系统信息的资源数)中的至少任意一种。可选地,RSSI测量值超过第一阈值的资源可以理解为CBR测量窗内RSSI测量值超过第一阈值的资源,或者为资源池中CBR测量窗内RSSI测量值超过第一阈值的资源。对应地,也可以理解为CBR测量窗内RSSI测量值超过第一阈值的资源,或者为资源池中CBR测量窗内RSSI测量值超过第一阈值的资源。
RSSI测量值不超过第一阈值的资源数C可以理解为未占用的资源数和/或未测量的资源数。该未占用的资源数可以理解为RSSI测量值小于等于第一阈值的资源数。该未测量的资源可以理解为第一终端装置发送所在时隙的资源。可选地,该资源数C包括SL-U未占用的资源数、异系统未占用的资源数、未测量RSSI的资源数中的至少任意一种。
可选地,未占用的资源可以理解为CBR测量窗内RSSI测量值低于或等于第一阈值的资源,或者, 资源池中CBR测量窗内RSSI测量值低于或等于第一阈值的资源。对应地,RSSI测量值不超过第一阈值的资源数C为CBR测量窗内RSSI测量值低于或等于第一阈值的资源数,或者,为资源池中CBR测量窗内RSSI测量值低于或等于第一阈值的资源数。
可选地,CBR测量窗内未测量RSSI的资源,也可以理解为资源池中CBR测量窗内未测量RSSI的资源。举个例子,未测量RSSI的资源可以是第一终端装置发送时隙上的资源。
可选地,RSSI测量值不超过第一阈值的资源数可以为CBR测量窗内RSSI测量值低于或等于第一阈值的资源数与未测量RSSI的资源数之和,或者,RSSI测量值不超过第一阈值的资源数为资源池中CBR测量窗内RSSI测量值低于或等于第一阈值的资源数与未测量RSSI的资源数之和C。
可选地,RSSI测量值不超过第一阈值的资源数可以是CBR测量窗内资源总数B减去RSSI测量值超过第一阈值的资源数A,也就是说C=B-A。
上述第一通信系统占用的资源包括承载SL信息并且RSSI测量值超过第一阈值的资源,或者,RSSI测量值超过第一阈值的资源中承载SL信息的资源,或者,包括承载SL信息的资源中RSSI测量值超过第一阈值的资源。可选地,SL占用的资源也可以理解为CBR测量窗内承载SL信息并且RSSI测量值超过第一阈值的资源,或者,SL资源池中CBR测量窗内承载SL信息并且RSSI测量值超过第一阈值的资源。对应地,SL占用的资源数A1为CBR测量窗内承载SL信息并且RSSI测量值超过第一阈值的资源数A1,或者,SL占用的资源数A1为SL资源池中CBR测量窗内承载SL信息并且RSSI测量值超过第一阈值的资源数A1。
上述第二通信系统占用的资源包括未承载SL信息并且RSSI测量值超过第一阈值的资源,或者,RSSI测量值超过第一阈值的资源中未承载SL-U信息的资源,或者,包括未承载SL-U信息的资源中RSSI测量值超过第一阈值的资源。可选地,第二通信系统占用的资源包括CBR测量窗内未承载SL信息并且RSSI测量值超过第一阈值的资源,或者,包括SL资源池中CBR测量窗内未承载SL信息并且RSSI测量值超过第一阈值的资源。
可选地,第二通信系统占用的资源包括以下资源中的至少任意一种:第二通信系统的前导序列关联的资源、第二通信系统的控制信息指示的资源、第二通信系统的COT指示信息指示的资源、第二通信系统的COT共享信息指示的资源、第二通信系统的序列指示的资源。可选地,未承载SL-U信息的资源包括不满足承载SL-U信息的资源的判断条件的资源。
可选地,第二通信系统占用的资源包括CBR测量窗内承载第二通信系统信息并且RSSI测量值超过第一阈值的资源,或者,第二通信系统占用的资源包括资源池中CBR测量窗内承载第二通信系统信息并且RSSI测量值超过第一阈值的资源。
可选地,该资源数A2为RSSI测量值超过第一阈值的资源数A减去承载SL信息且RSSI测量值超过第一阈值的资源数A1。也就是说,A2=A-A1。
可选地,该资源数A2为RSSI测量值超过第一阈值的资源数A减去SL占用的资源数A1。也就是说,A2=A-A1。
可选地,承载SL信息且RSSI测量值超过第一阈值的资源数A1、第二通信系统占用的资源数A2、RSSI测量值超过第一阈值的资源数A满足关系:A=A1+A2、A1=A-A2、A2=A-A1中的至少任意一种。
可选地,SL占用的资源数A1、第二通信系统占用的资源数A2、RSSI测量值超过第一阈值的资源数A满足关系:A=A1+A2、A1=A-A2、A2=A-A1中的至少任意一种。
可选地,该资源数A2为资源总数B减去RSSI测量值不超过第一阈值的资源数C以及SL占用的资源数A1。也就是说,A2=B-C-A1。
可选地,该资源数A2为资源总数B减去RSSI测量值不超过第一阈值的资源数C以及承载SL信息且RSSI测量值超过第一阈值的资源数A1。也就是说,A2=B-C-A1。
可选地,RSSI测量值超过第一阈值的资源数A、RSSI测量值不超过第一阈值的资源数C、资源总数B满足关系:B=A+C、A=B-C、C=B-A中的至少任意一种。
可选地,SL-U占用且RSSI测量值超过第一阈值的资源数A1、第二通信系统占用且RSSI测量值超过第一阈值的资源数A2、RSSI测量值不超过第一阈值的资源数C、资源总数B满足关系:B=A1+A2+C。
可选地,该资源数A2为CBR测量窗内第二通信系统占用且RSSI测量值超过第一阈值的资源数A2,或者,该资源数A2为资源池内CBR测量窗内第二通信系统占用且RSSI测量值超过第一阈值的 资源数A2。
SL可以使用的资源包括承载SL信息的资源、RSSI测量值小于或等于第一阈值的资源、未测量RSSI的资源中的至少其中一种。
SL可以使用的资源包括CBR测量窗内SL可以使用的资源,或者,包括资源池中CBR测量窗内SL可以使用的资源。对应地,SL可以使用的资源的数量为CBR测量窗内SL可以使用的资源数B1,或者,为资源池中CBR测量窗内SL可以使用的资源数B1。
SL可以使用的资源也可以理解为CBR测量窗内未被第二通信系统占用的资源,或者,包括资源池中CBR测量窗内未被第二通信系统占用的资源。对应地,SL可以使用的资源的数量为CBR测量窗内未被第二通信系统占用的资源的数量B1,或者,为资源池中CBR测量窗内未被第二通信系统占用的资源的数量B1。
可选地,SL可以使用的资源数B1为CBR测量窗内的资源数B减去第二通信系统占用的资源数A2,即B1=B-A2。
可选地,SL可以使用的资源数B1、SL占用的资源数A1、RSSI测量值大于第一阈值的资源数A、CBR测量窗内的资源数B满足关系B=B1+A-A1。
可选地,SL可以使用的资源数B1、SL占用的资源数A1、未占用和/或未测量的资源数C满足关系B1=C+A1。
一种可能的方式,终端装置可以确定第一测量窗内的信道繁忙状态。应理解,信道繁忙状态可以通过信道繁忙率、信道繁忙程度表征,又或是其他称谓,本申请实施例对此不作限定。
终端装置确定第一测量窗内的信道繁忙状态的方法如下:
方法1:终端装置根据第一通信系统在第一测量窗内占用的资源单元数与第一测量窗内的资源单元数的比值,确定在第一测量窗内第一通信系统的信道繁忙状态。
示例地,第一通信系统在第一测量窗内占用的资源单元数为A1,第一测量窗内的资源单元数为B,第一测量窗内第一通信系统的信道繁忙状态为Y,则满足:
Y=A1÷B。
应理解,第一通信系统在第一测量窗内的信道繁忙状态也可以表述为承载SL信息且RSSI测量值超过第一阈值的资源的数量,与CBR测量窗内资源数的比值。或者,第一通信系统在第一测量窗内的信道繁忙状态也可以表述为SL占用且RSSI测量值超过第一阈值的资源的数量,与CBR测量窗内资源数的比值。
类似地,当非授权频谱上存在第二通信系统在工作时,终端装置也可以确定第二通信系统在第一测量窗内的信道状态,比如,信道繁忙状态,还可以称为第二通信系统的信道繁忙状态。
示例地,第二通信系统在第一测量窗内的信道繁忙状态可以通过“第一测量窗内中第二通信系统占用的资源数与第一测量窗内资源数的比值”来表征。第二通信系统在第一测量窗内占用的资源单元数为A2,第一测量窗内的资源单元数为B,第一测量窗内第一通信系统的信道繁忙状态为Y’,则:
Y’=A2÷B。
应理解,上述第二通信系统在第一测量窗内的信道繁忙状态也可以表述为,承载第二通信系统信息且RSSI测量值超过第一阈值的资源的数量,与CBR测量窗内资源数的比值。或者,第二通信系统在第一测量窗内的信道繁忙状态也可以表述为,第二通信系统占用且RSSI测量值超过第一阈值的资源的数量与CBR测量窗内资源数的比值。或者,第二通信系统在第一测量窗内的信道繁忙状态也可以表述为,未承载第一通信系统信息且RSSI测量值超过第一阈值的资源的数量,与CBR测量窗内资源数的比值。或者,第二通信系统在第一测量窗内的信道繁忙状态也可以表述为,第一通信系统未占用且RSSI测量值超过第一阈值的资源的数量与CBR测量窗内资源数的比值。
还应理解,第二通信系统的信道繁忙状态也可以通过第一通信系统中的参数来表征。
示例地,Y’=(B-A1)÷B。
其中,B-A1表示CBR测量窗内可以被第二通信系统使用的资源的总数,第二通信系统可以使用的资源包括不承载SL信息的资源、RSSI测量值小于或等于第一阈值的资源、未测量RSSI的资源中的至少其中一种。
第二通信系统可以使用的资源包括CBR测量窗内第二通信系统可以使用的资源,或者,包括资源 池中CBR测量窗内第二通信系统可以使用的资源。对应地,第二通信系统可以使用的资源的数量B2为CBR测量窗内第二通信系统可以使用的资源数B-A1,或者,为资源池中CBR测量窗内第二通信系统可以使用的资源数B-A1。
第二通信系统可以使用的资源也可以理解为CBR测量窗内未被第一通信系统占用的资源,或者,包括资源池中CBR测量窗内未被第一通信系统占用的资源。对应地,第二通信系统可以使用的资源的数量B2为CBR测量窗内未被第一通信系统占用的资源的数量B-A1,或者,为资源池中CBR测量窗内未被第一通信系统占用的资源的数量B-A1。
可选地,第二通信系统可以使用的资源数为CBR测量窗内的资源数B减去第一通信系统占用的资源数A1,即B2=B-A1。
可选地,第二通信系统可以使用的资源数B2、SL占用的资源数A1、RSSI测量值大于第一阈值的资源数A、CBR测量窗内的资源数B满足关系B=B2+A-A1。
可选地,第二通信系统可以使用的资源数B2、第二通信系统占用的资源数A2、未占用和/或未测量的资源数C满足关系B2=C+A2。
可选地,第二通信系统可以使用的资源数也可以表示为B-A+A2、B-A1或者A2+C中的至少任意一种。
同理,第一通信系统的信道繁忙状态也可以通过第二通信系统中的参数来表征
Y=(B-A2)÷B。
B-A2表示第一通信系统可以使用的资源,具体可以参考前文所述,这里不再赘述。
方法2:根据下述关系确定在第一测量窗内第一通信系统的信道繁忙状态:
Y=A1÷[B-(C-A1)],
其中Y表示在第一测量窗内第一通信系统的信道繁忙状态,A1表示第一通信系统在第一测量窗内占用的资源单元数,C表示在第一测量窗内RSSI测量值大于第一阈值的资源单元数,B表示第一测量窗包括的资源单元数。
换句话说,在上述关系中,相当于CBR测量的分母排除了第二通信系统占用的资源。计算SL占用的资源相对于SL能够使用的资源的比例。也就是相当于计算SL系统的占空比。上述关系也可以变形为下述关系:
Y=A1÷[B-A+A1],
可选地,SL的信道繁忙率也可以表述为:承载SL信息且RSSI测量值超过第一阈值的资源的数量A1与CBR测量窗内可以被SL占用的资源的总数的比值。即Y=A1÷(B-A+A1)、Y=A1÷(B-A2)或者Y=A1÷(A1+C)。其中,C为第一测量窗内RSSI测量值不超过第一阈值的资源数。换句话说,该可以被SL占用的资源的总数为B-A+A1、B-A2或者A1+C中的至少任意一种。
同理地,也可以确定第二通信系统在第一测量窗内的信道繁忙状态。
示例地,根据下述关系确定在第一测量窗内第二通信系统的信道繁忙状态:
Y’=A2÷(B-A1)。
相当于CBR测量的分母排除了SL占用的资源A1。计算异系统占用的资源相对于第二通信系统能够使用的资源的比例。也就是相当于计算第二通信系统的占空比。
可选地,第一测量窗内第二通信系统的信道繁忙状态也可以表述为,为第二通信系统占用的资源的数量与CBR测量窗内可以被第二通信系统占用的资源的总数的比值。即Y’=(A-A1)÷(B-A1)或者Y’=(B-C-A1)÷(B-A1)。
也就是说,该第二通信系统占用的资源的数量为A2、A-A1或者B-C-A1中的至少任意一种。该可以被第二通信系统占用的资源的总数为B-A+A2、B-A1或者A2+C中的至少任意一种。其中,A为RSSI测量值超过第一阈值的资源数,A1为SL占用的资源数,或者,A1为承载SL信息且RSSI测量值超过第一阈值的资源数,A2为第二通信系统占用的资源数,B为CBR测量窗内的资源数,C为RSSI测量值不超过第一阈值的资源数和/或未测量。
另一种可能的方式,终端装置可以确定第一测量窗内的信道空闲状态。应理解,信道空闲状态可以通过信道空闲率表征,又或是其他称谓,本申请实施例对此不作限定。
方法a:根据RSSI测量值小于或等于第一阈值的资源单元数,与CBR测量窗内的资源中除第二 通信系统占用的资源以外的资源的数量的比值,确定第一通信系统在第一测量窗内的信道空闲状态。
示例地,第一通信系统在第一测量窗内的信道空闲状态可以根据下述关系得到:
X=C÷(B-A2),
其中,X为第一通信系统在第一测量窗内的信道空闲状态。
相当于信道空闲率计算方式中,分母中排除了第二通信系统占用的资源A2,分子为整个通信系统中RSSI测量值不超过第一阈值的资源数C。即计算未被占用的资源相对于SL能够使用的资源的比例。
可选地,第一通信系统在第一测量窗内的信道空闲状态也可以表述为,RSSI测量值不超过第一阈值的资源数与CBR测量窗内可以被第一通信系统占用的资源的总数的比值。即X=C÷(B-A+A1)、X=C÷(B-A2)或者X=C÷(A1+C)。该可以被第一通信系统占用的资源的总数为B-A+A1、B-A2或者A1+C。其中,A为第一测量窗内RSSI测量值超过第一阈值的资源数,A1为第一通信系统占用的资源数,或者,A1为承载SL信息且RSSI测量值超过第一阈值的资源数,A2为第二通信系统占用的资源数,B为CBR测量窗内的资源数,C为RSSI测量值不超过第一阈值的资源数。
方法b:根据RSSI测量值小于或等于第一阈值的资源单元数,与CBR测量窗内的资源中除第一通信系统占用的资源以外的资源的数量的比值,确定第二通信系统在第一测量窗内的信道空闲状态。
示例地,第二通信系统在第一测量窗内的信道空闲状态可以根据下述关系得到:
X’=C÷(B-A1),
其中,X’为第二通信系统在第一测量窗内的信道空闲状态。
相当于信道空闲状态的计算中,从分母中排除了第一通信系统占用的资源A1,分子为整系统中RSSI测量值不超过第一阈值的资源数。即计算未占用资源相对于第二通信系统系统能够使用的资源的比例。
可选地,第二通信系统的信道空闲率为RSSI测量值不超过第一阈值的资源数C与CBR测量窗内可以被第二通信系统占用的资源的总数的比值。即X’=(B-A)÷(B-A+A2)、X’=(B-A)÷(B-A1)或者X’=C÷(A2+C)。该RSSI测量值不超过第一阈值的资源数C可以为B-A。该可以被第二通信系统占用的资源的总数为B-A+A2、B-A1或者A2+C。其中,A为RSSI测量值超过第一阈值的资源数,A1为SL占用的资源数,或者,A1为承载SL信息且RSSI测量值超过第一阈值的资源数,A2为第二通信系统占用的资源数,B为CBR测量窗内的资源数,C为RSSI测量值不超过第一阈值的资源数。
又一种可能的方式,终端装置可以确定第一测量窗内,第一通信系统占用的资源和第二通信系统占用的资源的情况。
方法(1):其中,信道繁忙状态可以通过第一通信系统占用的资源和第二通信系统占用的资源的二维数组来表征。可选地,根据该二维数组,对第一通信系统拥塞控制。
示例地,第一通信系统的资源占比为第一测量窗内,第一通信系统占用的资源数A1与第一测量窗内可以被第一通信系统占用的资源的总数的比值。即A1÷(B-A+A1)、A1÷(B-A2)或者A1÷(A1+C),其中A1为第一通信系统占用的资源数,或者,A1为承载SL信息且RSSI测量值超过第一阈值的资源数,A2为第二通信系统占用的资源数,B为CBR测量窗内的资源数,C为RSSI测量值不超过第一阈值的资源数。
第二通信系统的资源占比为第二通信系统占用的资源数A2与CBR测量窗内可以被第二通信系统占用的资源的总数的比值。即A2÷(B-A1)、(A-A1)÷(B-A1)或者(B-C-A1)÷(B-A1),其中A为RSSI测量值超过第一阈值的资源数,A1为SL占用的资源数,或者,A1为承载SL信息且RSSI测量值超过第一阈值的资源数,A2为第二通信系统占用的资源数,B为第一测量窗内的资源数,C为RSSI测量值不超过第一阈值的资源数。
也就是说,通过第一通信系统占用的资源和第二通信系统占用的资源的二位数组来共同体现信道的繁忙状态。
也就是说,第一通信系统的资源占比可以通过第二通信系统的参数表征,第二通信系统的资源占比也可以通过第一通信系统的参数表征。
方法(2):第一通信系统占用的资源和第二通信系统占用的资源的情况,可以通过第一通信系统占用的资源和第二通信系统占用的资源的比值来表征。
示例地,第一通信系统资源占用和第二通信系统资源占用的比值可以是:第一通信系统占用的资 源数除以第二通信系统占用的资源数,即A1÷A2、A1÷(A-A1)或者A1÷(B-C-A1)。或者,第一通信系统占用的资源和第二通信系统占用的资源的比值为,第二通信系统占用的资源数除以第一通信系统占用的资源数,即A2÷A1、(A-A1)÷A1或者(B-C-A1)÷A1。其中A为RSSI测量值超过第一阈值的资源数,A1为第一通信系统占用的资源数,或者,A1为承载SL信息且RSSI测量值超过第一阈值的资源数,A2为第二通信系统占用的资源数,B为第一测量窗内的资源数,C为RSSI测量值不超过第一阈值的资源数。
方法(3):第一通信系统占用的资源和第二通信系统占用的资源的情况,可以通过第一通信系统占用的资源和第二通信系统占用的资源的差值来表征。
示例地,第一通信系统资源占用和第二通信系统资源占用的差值为:第一通信系统占用的资源数减去第二通信系统占用的资源数,即满足A1-A2、A1-(A-A1)、2×A1-A、A1-(B-C-A1)或者(2×A1)-B+C。或者,第二通信系统占用的资源数减去SL占用的资源数,即满足A2-A1、(A-A1)-A1、A-2×A1、(B-C-A1)-A1或者B-C-(2×A1)中的至少一个。其中A为RSSI测量值超过第一阈值的资源数,A1为第一通信系统占用的资源数,或者,A1为承载SL信息且RSSI测量值超过第一阈值的资源数,A2为第二通信系统占用的资源数,B为CBR测量窗内的资源数,C为RSSI测量值不超过第一阈值的资源数。
应理解,上述通过第一通信系统占用的资源和第二通信系统占用的资源的二维数组、比值或者差值来表征第一测量窗内的信道状态,只作为示例而非限定,其他能够通过第一通信系统占用的资源和第二通信系统占用的资源来表征第一测量窗内的信道状态的方式,也应在本申请保护范围之内,比如,上述第一测量窗内的RSSI大于第一阈值的资源数,还可以通过RSSI小于或等于第一阈值的资源数来表征,比如,A=B-C,C为RSSI小于或等于第一阈值的资源数。又比如,A2为RSSI测量值超过第一阈值的资源数A减去承载SL信息且RSSI测量值超过第一阈值的资源数A1,或者,该资源数A2为RSSI测量值超过第一阈值的资源数A减去SL占用的资源数A1,也就是说,A2=A-A1。再比如,CBR测量窗内未被第二通信系统占用的资源的数量B2,也可以理解为SL可以使用的资源数B2,为CBR测量窗内的资源数B减去异系统占用的资源数A2,即B2=B-A2。再比如,SL可以使用的资源数B2、SL占用的资源数A1、RSSI测量值大于第一阈值的资源数A、CBR测量窗内的资源数B满足关系B=B2+A-A1。再比如,SL可以使用的资源数B2、SL占用的资源数A1、未占用和/或未测量的资源数C(也就是RSSI测量值不超过第一阈值的资源数)满足关系B2=C+A1。
还应理解,上述方法能够适用于第一通信系统与第二通信系统均运行于非授权频谱的场景,比如动态信道接入的场景。下面介绍能够适用于第一通信系统处于工作状态的场景,比如半静态信道接入的场景中的信道测量方法。
根据在第一测量窗内RSSI测量值大于第一阈值的资源单元数与第一CBR测量窗内的资源单元数的比值和第一偏移量,确定在第一CBR测量窗中第一通信系统的信道繁忙状态,
或者,
根据在第一CBR测量窗内RSSI测量值大于第一阈值的资源单元数与第一CBR测量窗内的资源单元数的比值和第一系数,确定在第一CBR测量窗中第一通信系统的信道繁忙状态,
其中,第一偏移量和/或第一系数的取值为预定义、预配置或者网络配置的。
结合图5可知,在半静态信道接入场景中,一个测量窗的时长包括一段空闲时间,导致了测量结果不准确。
因此,一种可能的方式,上述第一偏移量或者第一系数,用于调整测量结果。
示例地,CBR测量结果为CBR测量值+offset,或者CBR测量结果为CBR测量值乘以α,或者CBR测量结果为CBR测量值除以β。
可选地,该CBR测量值为RSSI测量值超过第一阈值的资源的数量与CBR测量窗内资源的总数的比值。
也就是说,上述CBR测量结果可以满足下述关系:
Y=(A1÷B)+offset,
或者,
Y=(A1÷B)*α,
或者,
Y=(A1÷B)÷β,
其中,Y表示在第一测量窗内第一通信系统的信道繁忙状态A1表示第一通信系统占用的资源数,在半静态信道接入方式下与RSSI测量值超过第一阈值的资源数相同,B表示第一测量窗包括的资源单元数,offset为第一偏移量,α或者β为第一系数。
可选地,offset的取值范围大于等于0小于等于1。一种可能的实现,offset的值为定值,例如offset=0.05。可选地,offset的值为列表中配置的至少1个值,例如列表为{0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1}中的至少2个值,配置或者预配置offset的值为0.05。
可选地,α为取值范围大于等于1的值。一种可能的实现,α的值为定值,例如α=1.05。可选地,α的值为列表中配置的至少1个值,例如列表为{1,1.01,1.02,1.03,1.04,1.05,1.06,1.07,1.08,1.09,1.1}中的至少2个值,配置或者预配置α的值为1.05。
可选地,β的取值范围大于等于0小于等于1。一种可能的实现,β的值为定值,例如β=0.95。可选地,β的值为列表中配置的至少1个值,例如列表为{0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1}中的至少2个值,配置或者预配置β的值为0.95。
另一种可能的方式,第一系数用于调整CBR测量窗中的资源数。
根据在第一CBR测量窗内RSSI测量值大于第一阈值的资源单元数与第一CBR测量窗内的资源单元数的比值,确定在第一CBR测量窗中第一通信系统的信道繁忙状态。其中,第一CBR测量窗内的资源单元数为CBR测量窗内实际的传输资源数乘以M。
也就是说,上述CBR测量结果可以满足下述关系:
Y=(A1÷B)*M,
示例地,第一系数为M,CBR测量窗内资源的数量B为CBR测量窗内实际的资源数乘以M。可选地,M的取值范围大于等于0小于等于1。一种可能的实现,M的值为定值,例如M=0.95。可选地,M的值为列表中配置的至少1个值,例如列表为{0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1}中的至少2个值,配置或者预配置M的值为0.95。
又一种可能的方式,第一系数用于调整CBR测量窗的大小。
根据在第一CBR测量窗内RSSI测量值大于第一阈值的资源单元数与第一CBR测量窗内的资源单元数的比值,确定在第一CBR测量窗中第一通信系统的信道繁忙状态。其中,第一CBR测量窗包括每个传输周期T内,时域上位于前M的资源,或者,第一CBR测量窗不包括空闲时间的资源。
也就是说,上述CBR测量结果可以满足下述关系:
Y=(A1÷B)*M,
示例地,CBR测量窗包括每个传输周期T内,时域上位于前M的资源,或者,CBR测量窗不包括空闲时间的资源。可选地,M的取值范围大于等于0小于等于100%。一种可能的实现,M的值为定值,例如M=95%。可选地,M的值为列表中配置的至少1个值,例如列表为{50%,55%,60%,65%,70%,75%,80%,85%,90%,95%,100%}中的至少2个,配置或者预配置M的值为95%。可选地,M的值根据传输周期T的值确定,
例如或者转化为百分比的值。
另一个示例,CBR测量窗包括每个传输周期T内,时域上位于前min{M×T,T-0.1}ms的资源。可选地,M的取值范围大于等于0小于等于1。一种可能的实现,M的值为定值,例如M=0.95。可选地,M的值为列表中配置的至少1个值,例如列表为{0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1}中的至少2个,配置或者预配置M的值为0.95。
可选地,每个传输周期T为1个或2个无线帧内的传输周期。周期T的取值为{1,2,2.5,4,5,10}ms中至少一个值。其中,2个无线帧内包括20/T个传输周期,或者,1个无线帧内包括10/T个传输周期。
再一种可能的方式,第一系数用于调整第一测量窗内RSSI测量值超过第一阈值的资源的数量。
根据在第一CBR测量窗内RSSI测量值大于第一阈值的资源单元数与第一CBR测量窗内的资源单元数的比值,确定在第一CBR测量窗中第一通信系统的信道繁忙状态。其中,RSSI测量值大于第一阈值的资源单元数为RSSI测量值大于第一阈值的资源单元的实际数加offset,或者,为RSSI测量值超 过第一阈值的资源的实际数量乘以α,或者,为RSSI测量值超过第一阈值的资源的实际数量除以β。
也就是说,上述CBR测量结果可以满足下述关系:
Y=(A1+offset)÷B,
或者,
Y=(A1*α)÷B,
或者,
Y=(A1÷β)÷B,
示例地,RSSI测量值超过第一阈值的资源的数量A为RSSI测量值超过第一阈值的资源的实际数量A’加上offset,或者,为RSSI测量值超过第一阈值的资源的实际数量A’乘以α,或者,为RSSI测量值超过第一阈值的资源的实际数量A’除以β。
可选地,offset的取值范围大于等于1。一种可能的实现,offset的值为定值。可选地,offset的值为offset列表中配置的至少1个值。
可选地,α为取值范围大于等于1的值。一种可能的实现,α的值为定值,例如α=1.05。可选地,α的值为列表中配置的至少1个值,例如列表为{1,1.01,1.02,1.03,1.04,1.05,1.06,1.07,1.08,1.09,1.1}中的至少2个,配置或者预配置α的值为1.05。
可选地,β的取值范围大于等于0小于等于1。一种可能的实现,β的值为定值,例如β=0.95。可选地,β的值为列表中配置的至少1个值,例如列表为{0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1}中的至少2个,配置或者预配置β的值为0.95。
在该实施例中,在动态信道接入场景下,终端装置通过确定第一通信系统和第二通信系统分别占用的资源数量;在半静态信道接入场景下,终端装置通过重新定义测量窗的大小,或者,重新定义测量窗中包括的资源数量,又或者重新定义被占用的资源数量,确定了实际占用的资源,进一步确定信道状态,提高了信道测量的准确性。
可选地,该实施例还可以包括下述步骤:
步骤803:根据信道测量结果确定是否使能下述特性中的至少一项:是否使能周期预留(resource period reservation)、是否使能抢占(pre-emption checking)和/或重评估(re-evaluation),或者,是否使能第二SL信息在第一SL信息初始的COT内传输。
一种可能的实现,可以根据CBR条件确定使能上述特性中的至少一项,CBR条件为以下中的至少一项:
第一通信系统的信道繁忙状态大于和/或等于阈值#A;
第二通信系统的信道繁忙状态小于和/或等于阈值#B;
第一通信系统的信道繁忙状态与第二通信系统的信道繁忙状态之差大于阈值#C;
第一通信系统的信道繁忙状态与第二通信系统的信道繁忙状态的比值大于阈值#D。
上述阈值#A、阈值#B、阈值#C和/或阈值#D可以是预定义的,可以是预配置的,可以是配置的,也可以是指示的,本申请实施例对此不作限定。
可以理解的是,当
第一通信系统的信道繁忙状态小于阈值#A;
第二通信系统的信道繁忙状态大于阈值#B;
第一通信系统的信道繁忙状态与第二通信系统的信道繁忙状态之差小于阈值#C;
第一通信系统的信道繁忙状态与第二通信系统的信道繁忙状态的比值小于阈值#D时,
可以去使能周期预留、去使能抢占,或者,去使能第二SL信息在第一SL信息初始的COT内传输。
上述使能周期预留,可以理解为使能终端装置在COT间的预留。可选地,使能和/或去使能终端装置的周期预留包括使能和/或去使能资源池内的终端装置的周期预留。
示例地,终端装置的周期预留可以通过一阶SCI中的第一字段指示。对于使能周期预留或者使能COT间的预留,该第一字段指示非0的周期值,例如为{1,2,3,…,98,99}ms或者{100,200,300,…,900,1000}ms中的任意一种。对于去使能周期预留或者去使能COT间的预留,该第一字段的值为0或者第一字段指示预留间隔值为0。
上述抢占使能抢占检查和/或重评估包括使能COT内资源的抢占检查和/或重评估。
一种可能的情况,第一终端装置预留的第一资源与第二终端预留的第二资源重叠或者部分重叠。当第一终端装置的优先级值大于第二终端装置的优先级值时,且信道状态满足上述CBR条件,则第一终端装置可以确定第一资源被抢占。或者,当第一终端装置的优先级值大于第一优先级阈值,且信道状态满足上述CBR条件,则第一终端装置确定第一资源被抢占。又或者,当第二终端装置的优先级值小于第一优先级阈值,且信道状态满足上述CBR条件,则第一终端装置确定第一资源被抢占。可选地,该优先级值可以是CAPC值、SCI中指示的优先级值和/或一阶SCI中指示的优先级值。可选地,该第一资源是第一终端装置的SCI指示的资源,和/或,该第一资源是第一终端装置的COT共享信息指示的资源。可选地,该第二资源是第二终端装置的SCI指示的资源,和/或,该第二资源是第二终端装置的COT共享信息指示的资源。
一种可能的情况,第一终端装置预留的第一资源与第二终端预留的第二资源重叠或者部分重叠。当第一终端装置的优先级值大于第二终端装置的优先级值时,且信道状态满足上述CBR条件,则第二终端装置可以确定第二资源未被抢占。或者,当第一终端装置的优先级值大于第一优先级阈值,且信道状态满足上述CBR条件,则第二终端装置确定第二资源未被抢占。又或者,当第二终端装置的优先级值小于第一优先级阈值,且信道状态满足上述CBR条件,则第二终端装置确定第二资源未被抢占。可选地,该优先级值可以是CAPC值、SCI中指示的优先级值和/或一阶SCI中指示的优先级值。可选地,该第二资源是第二终端装置的SCI指示的资源,和/或,该第二资源是第二终端装置的COT共享信息指示的资源。
另一种可能的情况,第一终端装置确定的第一资源与第二终端装置预留的第二资源重叠或者部分重叠。对于第二终端装置预留的第二资源的RSRP测量值大于第一信号强度阈值,第一终端装置可以向高层上报重评估该第一终端装置确定的第一资源。可选地,该第一信号强度阈值可以根据第一终端装置的的优先级和第二终端装置的SCI中指示的优先级确定。可选地,第一终端装置的的优先级为第一终端装置用于选择第一资源的的优先级。
其中,第一终端装置可以是SL终端,第二终端装置可以是第二通信系统中的终端;或者,第一终端装置和第二终端装置都是SL终端。本申请实施例对此不作限定。
上述第二SL信息在第一SL信息初始的COT内传输还可以理解为COT共享。换句话说,第一SL信息和第二SL信息来自于不同的终端装置。
可选地,使能COT共享包括使能终端装置的COT共享和/或使能发送终端装置和接收终端装置之间的COT共享。COT共享包括在COT内相同时隙不同子信道或不同的交错信道上传输,或者,在COT内不同的时隙上传输。
一种可能的情况,第一终端装置初始(initiate)第一COT。第二终端装置共享该第一COT,并在第一COT内传输SL信息。可选地,第二终端装置在第一COT内的SL传输是发送给第一终端装置的。这种情况下,使能COT共享也可以理解为第一终端装置允许第二终端装置共享第一COT,和/或,第二终端装置确认共享第一终端装置初始的第一COT。
另一种可能的情况,第二终端装置初始第一COT。第一终端装置共享第一COT,并在第一COT内传输SL信息。可选地,第一终端装置在第一COT内的SL传输是发送给第二终端装置的。这种情况下,使能COT共享也可以理解为第二终端装置允许第一终端装置共享第一COT,和/或,第一终端装置确认共享第二终端装置初始的第一COT。
上述第二SL信息在第一SL信息初始的COT内传输还可以理解为,第一终端装置的第二SL信息在第一终端装置的第一SL信息初始的COT内传输。换句话说,第一SL信息和第二SL信息来自于同一个终端装置。第一SL信息初始的COT还可以理解为根据第一SL信息的CAPC初始的COT。第一SL信息和第二SL信息可以在COT内相同时隙不同子信道或不同的交错信道上传输,或者,第一SL信息和第二SL信息可以在COT内不同时隙上传输。
应理解,上述方案中是以使能为例进行说明的,去使能的方案与之对应,这里不赘述。
还应理解,上述使能还可以理解为激活,去使能可以理解为去激活,或者,也可以是其他的功能类似的称谓,本申请实施例对此不作限定。
还应理解,上述方案中的数字只作为示例而非限定。
总结来说,第一终端装置预留了资源,第二终端装置检测到第一终端装置的预留信息,则会排除该资源。但是,在第二通信系统占用较多信道的时候,第一终端装置不一定能够在预留资源或者预留资源前成功接入信道。可能造成第一终端装置和第二终端装置都没有使用第一资源传输。抢占检查和重评估是类似的道理。第一终端装置和第二终端装置选择了重叠的资源,在第二通信系统占用较多信道的时候,即使第一终端不使用第一资源,第二终端装置也不一定能够使用第一资源发送。也就是说,在第二通信系统占用较多资源时,SL的预留机制不一定能够带来增益,反而会让SL终端装置过度排除了本可以使用的资源。通过上述方法,能够避免这些问题,避免了可能的资源浪费,提高资源利用率,同时能够使得终端装置的业务信息及时发送,降低时延,进一步提高用户体验。
上面介绍了信道繁忙状态、信道空闲状态的测量方式和测量结果的使用方式,下面对非授权频谱上的信道占用状态的测量和使用方式进行详细说明。
本申请提出又一个实施例,该实施例提供一种测量方法,应用于非授权频谱通信系统,该方法能够提高信道占用状态测量的准确性。非授权频谱通信系统包括第一通信系统,其中,第一通信系统可以是SL通信系统。应理解,下述以终端装置作为测量的执行装置为例,对本申请实施例的方案进行说明,但本申请不限于此。
如图10所示,该方法可以包括下述步骤:
步骤1001:确定第一通信系统在第二测量窗内占用的资源单元数。
步骤1001可以由终端装置执行。
第一通信系统在第二测量窗内占用的资源单元数,小于或等于在第二测量窗内RSSI测量值大于第二阈值的资源单元数。
其中,第一通信系统可以是SL通信系统。终端装置可以是SL终端。
第二测量窗可以是CR测量窗,具体地,CR测量窗可以参考图7中的说明。应理解,CR测量窗的长度可以是预定义的,可以是指示的,也可以是预配置的,本申请实施例对此不作限定。测量CR还可以理解为评估(evaluate)CR。
第一通信系统在第二测量窗内占用的资源单元数,可以理解为第一通信系统中的终端装置在第二测量窗内占用的资源单元数,比如,第一通信系统包括多个终端装置,终端装置为该多个终端装置中的一个。这多个终端装置在第一测量窗内都有业务传输,也就是说,都分别占用了信道中的资源。终端装置可以确定所有第二通信系统中的终端装置在第二测量窗内占用的资源单元数。
在第二测量窗内RSSI测量值大于第一阈值的资源单元数,可以理解为第二测量窗内被占用的资源单元数,或者说,第二测量窗内繁忙的资源单元数。考虑到非授权频谱中,可能同时存在第二通信系统通信,该在第二测量窗内RSSI测量值大于第一阈值的资源单元数,也可以理解为在第二测量窗内SL系统的终端装置和异系统的终端装置分别占用的资源单元数之和。举个例子,如图11所示,以第一通信系统为SL通信系统,第二通信系统为wifi系统为例,该测量窗内的信道被SL通信系统和wifi系统占用。
一种可能的方式,终端装置可以通过某块资源是否承载了SL信息,并且该资源的RSSI值是否大于第一阈值,来判断该资源是否为第一通信系统占用的资源。比如:资源单元#A承载了SL信息,并且,资源单元的RSSI值大于第一阈值,则终端装置可以确定该资源单元被第一通信系统占用。具体地,终端装置确定承载SL信息的资源的方式,可以参考步骤801中的方式a)-方式f),这里不再赘述。
在图11中,测量窗在时域上包括时隙[n-a,n+b],该测量窗可以称为第三测量窗(或者CR测量窗),第三测量窗进一步包括第二测量窗(也称第一CR窗)和第四测量窗(也称第二CR窗),比如第二测量窗在时域上包括时隙[n-a,n-1],第四测量窗在时域上包括时隙[n,n+b],时隙n为测量CR的时隙。
第一通信系统在第二测量窗内占用的资源单元数,小于在第二测量窗内RSSI测量值大于第二阈值的资源单元数,可能是第二测量窗的信道上还存在其他通信系统,比如异系统(也称第二通信系统),第二通信系统可以参考步骤801中的相关说明,这里不再赘述。
第一通信系统在第二测量窗内占用的资源单元数,等于在第二测量窗内RSSI测量值大于第二阈值的资源单元数,可能是第二测量窗的信道上只有第一通信系统在工作(或者运行)。
上述第二阈值可以是信道接入的能量检测门限XThresh,该能量检测门限可以参考前文说明,这里不再赘述。该第二阈值可以时预定义的,可以是配置的,可以是预配置的,也可以是指示的,本申请实施 例对此不作限定。
步骤1002:根据第一通信系统在第二测量窗内占用的资源单元数,确定第一通信系统在第三测量窗内的信道的状态,第三测量窗包括第二测量窗。
步骤1002可以由终端装置执行。
可选地,可以根据SL占用的资源数G1、异系统占用的资源数G2、RSSI测量值超过第二阈值的资源数G、RSSI测量值不超过第二阈值和/或未测量RSSI的资源数G’、第一CR窗内的资源总数D1、第二CR窗内的资源总数D2、CR测量窗内的资源数D、第一终端装置传输的资源数E、第一终端装置被授权的资源数F中的至少其中2种确定SL的信道占用状态。
CR测量窗内的资源数D为CR测量窗内的资源总数,或者为资源池中CR测量窗内的资源总数。第一CR窗内的资源总数为D1,第二CR窗内的资源总数为D2。或者,资源池中第一CR窗内的资源总数为D1,资源池中第二CR窗内的资源总数为D2。CR测量窗内的资源总数D为第一CR窗内的资源总数D1和第二CR窗内的总数D2之和。
RSSI测量值超过第二阈值的资源数G可以理解为第一CR窗内SL占用的资源数(或,承载SL信息的资源数)、第二通信系统占用的资源数(或,承载第二通信系统信息的资源数)中的至少任意一种。可选地,RSSI测量值超过第二阈值的资源可以理解为第一CR窗内RSSI测量值超过第二阈值的资源,或者为资源池中第一CR窗内RSSI测量值超过第二阈值的资源。对应地,该资源数G也可以理解为第一CR窗内RSSI测量值超过第二阈值的资源数,或者该资源数G为资源池中第一CR窗内RSSI测量值超过第二阈值的资源数。
RSSI测量值不超过第二阈值的资源数G‘可以理解为未占用的资源数和/或未测量的资源数。该未占用的资源数可以理解为RSSI测量值小于等于第二阈值的资源数。该未测量的资源可以理解为第一终端装置发送所在时隙的资源。可选地,该资源数G’包括SL未占用的资源数、第二通信系统未占用的资源数、未测量RSSI的资源数中的至少任意一种。
可选地,未占用的资源可以理解为第一CR窗内RSSI测量值低于或等于第二阈值的资源,或者,资源池中第一CR窗内RSSI测量值低于或等于第二阈值的资源。对应地,RSSI测量值不超过第二阈值的资源数G’为第一CR窗内RSSI测量值低于或等于第二阈值的资源数,或者,为资源池中第一CR窗内RSSI测量值低于或等于第二阈值的资源数。
可选地,CR测量窗内未测量RSSI的资源,也可以理解为资源池中第一CR窗内未测量RSSI的资源。举个例子,未测量RSSI的资源可以是第一终端装置发送时隙上的资源。
可选地,RSSI测量值不超过第二阈值的资源数可以为第一CR窗内RSSI测量值低于或等于第二阈值的资源数与未测量RSSI的资源数之和,或者,RSSI测量值不超过第二阈值的资源数为资源池中第一CR窗内RSSI测量值低于或等于第二阈值的资源数与未测量RSSI的资源数之和G’。
可选地,RSSI测量值不超过第二阈值的资源数可以是第一CR窗内资源总数D1减去RSSI测量值超过第二阈值的资源数G,也就是说G’=D1-G。
上述第一通信系统占用的资源包括承载SL信息并且RSSI测量值超过第二阈值的资源,或者,RSSI测量值超过第二阈值的资源中承载SL信息的资源,或者,包括承载SL信息的资源中RSSI测量值超过第二阈值的资源。可选地,SL占用的资源也可以理解为第一CR窗内承载SL信息并且RSSI测量值超过第二阈值的资源,或者,SL资源池中第一CR窗内承载SL信息并且RSSI测量值超过第二阈值的资源。对应地,SL占用的资源数G1为第一CR窗内承载SL信息并且RSSI测量值超过第二阈值的资源数G1,或者,SL占用的资源数G1为SL资源池中第一CR窗内承载SL信息并且RSSI测量值超过第二阈值的资源数G1。
其中,确定终端装置确定承载SL信息的资源的方式可以参考步骤801中的说明,这里不再赘述。
上述第二通信系统占用的资源包括未承载SL信息并且RSSI测量值超过第二阈值的资源,或者,RSSI测量值超过第二阈值的资源中未承载SL-U信息的资源,或者,包括未承载SL-U信息的资源中RSSI测量值超过第二阈值的资源。可选地,第二通信系统占用的资源包括第一CR窗内未承载SL信息并且RSSI测量值超过第二阈值的资源,或者,包括SL资源池中第一CR窗内未承载SL信息并且RSSI测量值超过第二阈值的资源。
可选地,第二通信系统占用的资源包括以下资源中的至少任意一种:第二通信系统的前导序列关 联的资源、第二通信系统的控制信息指示的资源、第二通信系统的COT指示信息指示的资源、第二通信系统的COT共享信息指示的资源、第二通信系统的序列指示的资源。可选地,未承载SL信息的资源包括不满足承载SL信息的资源的判断条件的资源。
可选地,第二通信系统占用的资源包括第一CR窗内承载第二通信系统信息并且RSSI测量值超过第二阈值的资源,或者,第二通信系统占用的资源包括资源池中第一CR窗内承载第二通信系统信息并且RSSI测量值超过第二阈值的资源。
可选地,该资源数G2为RSSI测量值超过第二阈值的资源数G减去承载SL信息且RSSI测量值超过第二阈值的资源数G1。也就是说,G2=G-G1。
可选地,该资源数G2为RSSI测量值超过第二阈值的资源数G减去SL占用的资源数G1。也就是说,G2=G-G1。
可选地,承载SL信息且RSSI测量值超过第二阈值的资源数G1、第二通信系统占用的资源数G2、RSSI测量值超过第二阈值的资源数G满足关系:G=G1+G2、G1=G-G2、G2=G-G1中的至少任意一种。
可选地,SL占用的资源数G1、第二通信系统占用的资源数G2、RSSI测量值超过第二阈值的资源数G满足关系:G=G1+G2、G1=G-G2、G2=G-G1中的至少任意一种。
可选地,该资源数G2为第一CR窗内资源总数D1减去RSSI测量值不超过第二阈值的资源数G’以及SL占用的资源数G1。也就是说,G2=D1-G’-G1。
可选地,该资源数G2为资源总数D减去RSSI测量值不超过第二阈值的资源数G’以及承载SL信息且RSSI测量值超过第二阈值的资源数G1。也就是说,G2=D-G’-G1。
可选地,RSSI测量值超过第二阈值的资源数G、RSSI测量值不超过第二阈值的资源数G’、资源总数D满足关系:D=G+G’、G=D-G’、G’=D-G中的至少任意一种。
可选地,SL-U占用且RSSI测量值超过第二阈值的资源数G1、第二通信系统占用且RSSI测量值超过第二阈值的资源数G2、RSSI测量值不超过第二阈值的资源数G’、资源总数D满足关系:D=G1+G2+G’。
可选地,SL-U占用且RSSI测量值超过第一阈值的资源数G1、第二通信系统占用且RSSI测量值超过第一阈值的资源数G2、RSSI测量值不超过第一阈值的资源数G’、未测量RSSI的资源数G’2、资源总数D满足关系:D=G1+G2+G’+G’2。
可选地,该资源数G2为第一CR窗内第二通信系统占用且RSSI测量值超过第二阈值的资源数G2,或者,该资源数G2为资源池内第一CR窗内第二通信系统占用且RSSI测量值超过第二阈值的资源数G2。
第一终端装置传输的资源,包括第一CR窗内的资源,或者,第一终端装置传输的资源包括资源池内第一CR窗内的资源。可选地,该资源数E为第一终端装置在第一CR窗内传输的资源数,或者,该资源数E为第一终端装置在资源池内第一CR窗内传输的资源数。
示例地,第一终端装置传输的资源包括第二测量窗内的资源。该资源数E为第一终端装置在第一CR窗内传输的资源数。一种可能的实现,可以基于优先级或者CAPC确定第一终端装置传输的资源数E。例如对于优先级为1至8的传输,第一终端装置传输的资源数分别为{E1,E2,E3,…,E7};再例如对于CAPC为1至4的传输,第一终端装置传输的资源数分别为{Ei,Eii,Eiii,Eiv}。
第一终端装置被授权的资源为属于selected sidelink grant的资源。第一终端装置被授权的资源为第一终端装置的MAC层选出的资源集合。第一终端装置可以使用该资源集合中的资源传输SL信息。可选地,第一终端装置被授权的资源为第二CR窗内的资源,或者,第一终端装置被授权的资源为资源池内第二CR窗内的资源。可选地,该资源数E为第一终端装置在第二CR窗内被授权的资源数,或者,该资源数E为第一终端装置在资源池内第二CR窗内被授权的资源数。
一种可能的实现,可以基于优先级或者CAPC确定第一终端装置被授权的资源数F。例如对于优先级为1至8的传输,第一终端装置授权的资源数分别为{F1,F2,F3,…,F7};再例如对于CAPC为1至4的传输,第一终端装置授权的资源数分别为{Fi,Fii,Fiii,Fiv}。
一种可能的方式,终端装置可以确定第三测量窗内的信道占用状态。应理解,信道占用状态可以通过信道占用率表征,又或是其他称谓,本申请实施例对此不作限定。
终端装置确定第一测量窗内的信道占用状态的方法如下:
方法1:根据下述关系确定第一通信系统在第一CR测量窗内的信道占用状态:
Z=(E+F)÷[D-(G-G1)],
其中,Z表示第一通信系统在第二测量窗内的信道占用状态,E表示第一终端装置在第二测量窗内传输的资源单元数,F表示第一终端装置在第四测量窗内被授权的资源单元数,D表示第三测量窗内的资源单元数,G表示在第二测量窗内RSSI测量值大于第二阈值的资源单元数,G1表示第一通信系统在第二测量窗内占用的资源单元数,或者,G1表示在第二测量窗内承载第一通信系统信息的并且RSSI测量值超过第二阈值的资源。
其中,第一终端装置在第二测量窗内传输的资源单元数,也可以理解为承载第一终端装置的SL信息的资源,SL信息包括PSCCH、PSSCH、PSFCH、S-SSB、CPE中的至少其中一种。或者,第一终端装置在第三测量窗内传输的资源单元数,也可以理解为第一终端装置初始的COT内的资源,该COT内的资源包括承载第一终端装置的SL信息的资源和/或共享给其他终端装置传输SL信息的资源。
第一终端装置在第四测量窗内被授权的资源单元,该授权的资源为属于被选择的侧行资源(selected sidelink grant)的资源。第一终端装置被授权的资源可以是第一终端装置的MAC层选出的资源集合,第一终端装置可以使用该资源集合中的资源传输SL信息。第一终端装置在第四测量窗内被授权的资源单元,可以理解为第一终端装置在第四测量窗内被授权的资源单元,比如第一终端装置在第四测量窗内被授权的COT内的资源,该COT内的资源包括承载授权第一终端装置传输SL信息的资源和/或授权共享给其他终端装置传输SL信息的资源。又比如,第四测量窗内承载第一终端装置的SL信息的资源。可选地,SL信息包括PSCCH、PSSCH、PSFCH、S-SSB、CPE中的至少一种。
上述计算过程中,在分母中排除了第二通信系统占用的资源数。换句话说,SL的信道占用状态为第一终端装置传输的资源数E和被授权的资源数F之和,占第三测量窗中未被第二系统占用的资源数的比例。或者说,SL的信道占用状态为第一终端装置传输的资源数E和被授权的资源数F之和,除以CR测量窗中排除第二通信系统占用的资源剩余的资源数。
其中,第二通信系统占用的资源数G2,可以通过RSSI测量值超过第二阈值的资源数G和SL占用的资源数G1确定。比如G2=G-G1。
第二测量窗中排除第二通信系统占用的资源剩余的资源数D-G2,可以根据SL占用的资源数G1、RSSI测量值不超过第一阈值和/或未测量RSSI的资源数G’和第二CR窗内的资源总数D2确定。例如D-G2=G1+G’+D2。
可选地,上述信道占用状态的计算方法还可以变形为:Z=(E+F)÷(D-G2)或者Z=(E+F)÷(G1+G’+D2)。
方法2:根据下述关系确定第一通信系统在第三测量窗内的信道占用状态:
Z=(E+F)÷(D-G+G1-δ),
其中,Z表示第一通信系统在第三测量窗内的信道占用状态,E表示第一终端装置在第二测量窗内传输的资源单元数,F表示第一终端装置在第四测量窗内被授权的资源单元数,D表示第三测量窗内的资源单元数,G表示在第二测量窗内RSSI测量值大于第二阈值的资源单元数,G1表示第一通信系统在第二测量窗内占用的资源单元数,δ为调整因子,γ为比例因子。
其中,δ可以表示第二通信系统在所述第四测量窗内被授权的资源单元数,该δ可以根据在第四测量窗内被授权的资源数中除第一通信系统在第四测量窗内被授权的资源单元数以外的资源数计算。又或者,δ为预配置给第一终端装置或者网络配置给第一终端装置的值。
δ也可以理解为在第三测量窗内第二通信系统被授权的资源数,或者说在第四测量窗中第二通信系统被授权的资源数。
该计算过程,相当于分母中排除了第二通信系统占用的资源数G2以及第二通信系统被授权的资源数δ。
该计算方式也可以理解为,SL的信道占用状态为第一终端装置传输的资源数E和被授权的资源数F之和,占CR测量窗中未被第二通信系统占用以及未被第二通信系统被授权的资源数的比例。或者,SL的信道占用状态为第一终端装置传输的资源数E和被授权的资源数F之和,除以CR测量窗中排除第二通信系统占用的、第二通信系统被授权的剩余的资源数D-G2-δ。
一种可能的实现,第二通信系统被授权的资源数δ可以是预配置或者网络设备配置的值。比如,第二通信系统被授权的资源数δ为预配置或者网络配置的列表中的值。δ为整数。
另一种可能的实现,可以基于优先级或者CAPC确定第二通信系统被授权的资源数δ。例如对于优先级为1至8的传输,第二通信系统被授权的资源数分别为{δ123,…,δ7};再例如对于CAPC为1至4的传输,第二通信系统被授权的资源数分别为{δiiiiiiiv}。
下面介绍几种第二通信系统被授权的资源数δ的计算方式:
第二通信系统被授权的资源数δ可以根据第二通信系统占用的资源数G2、第一CR窗内的资源总数D1、第二CR窗内的资源总数D2确定。例如δ=G2×D2÷D1。
第二通信系统被授权的资源数δ可以根据第二通信系统占用的资源数G2、第一CR窗内的时隙数a、第二CR窗内的时隙数D+1确定。例如δ=G2×(D+1)÷a。
第二通信系统占用的资源数G2根据RSSI测量值超过第一阈值的资源数G和SL占用的资源数G1确定。例如G2=G-G1。
CR测量窗中排除第二通信系统占用的资源剩余的资源数D-G2可以根据SL占用的资源数G1、RSSI测量值不超过第一阈值和/或未测量RSSI的资源数G’和第二CR窗内的资源总数D2确定。例如D-G2=G1+G’+D2。
该方法2还可以变形为:(E+F)÷(D-G2-δ)或者(E+F)÷(G1+D2+G’-δ)。
方法3:根据下述关系确定第一通信系统在第三测量窗内的信道占用状态:
Z=(E+F)÷[D-γ×(G-G1)]
其中,Z表示第一通信系统在第三测量窗内的信道占用状态,E表示第一终端装置在第二测量窗内传输的资源单元数,F表示第一终端装置在第四测量窗内被授权的资源单元数,D表示第三测量窗内的资源单元数,G表示在第二测量窗内RSSI测量值大于第二阈值的资源单元数,G1表示第一通信系统在第二测量窗内占用的资源单元数,γ为比例因子。
第二通信系统占用的以及被授权的资源数之和γ×G2可以根据第二通信系统占用的资源数与比例因子之积确定。
上述计算方式,相当于分母排除了第二通信系统占用的以及被授权的资源数之和γ×G2。
换句话说,SL的信道占用状态为第一终端装置传输的资源数E和被授权的资源数F之和占CR测量窗中未被第二通信系统占用、未被第二通信系统被授权的资源数的比例。或者,SL的信道占用状态为第一终端装置传输的资源数E和被授权的资源数F之和,除以CR测量窗中排除第二通信系统占用的、第二通信系统授权的剩余的资源数D-γ×G2。
一种可能的实现,比例因子γ为预配置或者网络配置的值。比如,比例因子γ为预配置或者网络配置的列表中的值。γ为大于等于1的数另一种可能的实现,可以基于优先级或者CAPC确定比例因子γ。例如对于优先级为1至8的传输,第二通信系统被授权的资源数分别为{γ123,…,γ7};再例如对于CAPC为1至4的传输,第二通信系统被授权的资源数分别为{γiiiiiiiv}。
下面介绍几种比例因子的计算方式:
比例因子γ可以根据CR测量窗内的资源数D、第一CR窗内的资源总数D1确定。例如γ=D÷D1。
比例因子γ可以根据CR测量窗内的时隙数b、第一CR窗内的时隙数a确定。例如γ=(a+b+1)÷a。
第二通信系统占用的资源数G2根据RSSI测量值超过第一阈值的资源数G和SL占用的资源数G1确定。例如G2=G-G1。
CR测量窗中排除第二通信系统占用的资源剩余的资源数D-G2可以根据SL占用的资源数G1、RSSI测量值不超过第一阈值和/或未测量RSSI的资源数G’和第二CR窗内的资源总数D2确定。例如D-G2=G1+G’+D2。
可选地,方法3还可以变形为下述计算方式:Z=(E+F)÷(D-γ×G2)或者(E+F)÷[D-γ×(D-D2-G1-G’)]。
上述方式适用于同时存在第一通信系统和系第二通信系统的场景,比如,动态接入信道的场景。下面介绍只有第一通信系统工作的场景中的信道占用状态的计算方式。
可选地,可以根据第一终端装置在第三测量窗内传输的资源单元数与在第三测量窗内被授权的资源单元数之和,与第三测量窗内的资源单元数的比值,以及第二偏移量和/或第二系数确定第一通信系统的信道占用状态,其中,第二偏移量和/或第二系数的取值为预定义、预配置或者网络配置的。可选地,第二偏移量和/或第二系数的取值与空闲时间占所在测量窗的总资源数的比例有关。
其中,第一终端装置在第二测量窗内传输的资源单元数、在第四测量窗内被授权的资源单元数与 第三测量窗内的资源单元数可以参考前文的说明,这里不再赘述。
结合图5可知,在半静态信道接入场景中,CR测量窗的时长包括一段空闲时间,导致了测量结果不准确。
因此,一种可能的方式,上述第二偏移量或者第二系数,用于调整测量结果。
示例地,CR测量结果为CR测量值+offset’,或者CR测量结果为CR测量值乘以α’,或者CR测量结果为CR测量值除以β’。
还可以理解为,CR测量结果为CR实际测量值+offset’,或者CR测量结果为CR实际测量值乘以α’,或者CR测量结果为CR实际测量值除以β’。
可选地,CR测量值为第一终端装置传输的资源数E和被授权的资源数F之和占CR测量窗中的资源数的比例。或者,CR测量值为第一终端装置传输的资源数E和被授权的资源数F之和,除以CR测量窗中的资源数D。即CR测量值为E+F占D的比例,或者CR测量值为E+F除以D的值。
也就是说,上述CR测量结果可以满足下述关系:
Z=[(E+F)÷D]+offset’,
或者,
Z=[(E+F)÷D]*α’,
或者,
Z=[(E+F)÷D]÷β’,
Offset’为第二偏移量,α’或者β’为第二系数。
可选地,offset’的取值范围大于等于0小于等于1。一种可能的实现,offset’的值为定值,例如offset’=0.05。可选地,offset’的值为列表中配置的至少1个值,例如列表为{0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1}中的至少2个值,配置或者预配置offset’的值为0.05。
可选地,α’为取值范围大于等于1的值。一种可能的实现,α’的值为定值,例如α’=1.05。可选地,α’的值为列表中配置的至少1个值,例如列表为{1,1.01,1.02,1.03,1.04,1.05,1.06,1.07,1.08,1.09,1.1}中的至少2个值,配置或者预配置α’的值为1.05。
可选地,β’的取值范围大于等于0小于等于1。一种可能的实现,β’的值为定值,例如β’=0.95。可选地,β’的值为列表中配置的至少1个值,例如列表为{0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1}中的至少2个值,配置或者预配置β’的值为0.95。
另一种可能的方式,第一系数用于调整CR测量窗中的资源数。
示例地,该第三测量窗包括每个传输周期T内的资源。第一系数为M’。CR测量窗内资源的数量D为CR测量窗内的传输资源数乘以M’。可选地,M’的取值范围大于等于0小于等于1。一种可能的实现,M’的值为定值,例如M’=0.95。可选地,M’的值为列表中配置的至少1个值,例如列表为{0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1}中的至少2个值,配置或者预配置M’的值为0.95。
又一种可能的方式,第一系数用于调整CR测量窗的大小。
示例地,CR测量窗包括每个传输周期T内,时域上位于前M’的资源,或者,CR测量窗不包括空闲时间的资源。可选地,M’的取值范围大于等于0小于等于100%。一种可能的实现,M’的值为定值,例如M’=95%。可选地,M’的值为列表中配置的至少1个值,例如列表为{50%,55%,60%,65%,70%,75%,80%,85%,90%,95%,100%}中的至少2个,配置或者预配置M’的值为95%。可选地,M’的值根据传输周期T的值确定,
例如或者转化为百分比的值。
另一个示例,CR测量窗包括每个传输周期T内,时域上位于前min{M×T,T-0.1}ms的资源。可选地,M’的取值范围大于等于0小于等于1。一种可能的实现,M’的值为定值,例如M‘=0.95。可选地,M’的值为列表中配置的至少1个值,例如列表为{0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1}中的至少2个,配置或者预配置M’的值为0.95。
可选地,每个传输周期T为1个或2个无线帧内的传输周期。周期T的取值为{1,2,2.5,4,5,10}ms中至少一个值。其中,2个无线帧内包括20/T个传输周期,或者,1个无线帧内包括10/T个传输周期。
再一种可能的方式,第一系数用于调整第一终端装置传输的资源数量E和第一终端装置被授权的 资源数量F。
一个示例,第一终端装置传输的资源数量E为第一终端装置传输的资源的实际数量E’加上offset,或者,为第一终端装置传输的资源的实际数量E’乘以α’,或者,为第一终端装置传输的资源的实际数量E’除以β’。
又一个示例,第一终端装置被授权的资源数量F为第一终端装置授权的资源的实际数量F’加上offset,或者,为第一终端装置授权的资源的实际数量F’乘以α’,或者,为第一终端装置授权的资源的实际数量F’除以β’。
可选地,offset’的取值范围大于等于0小于等于1。一种可能的实现,offset’的值为定值,例如offset’=0.05。可选地,offset’的值为列表中配置的至少1个值,例如列表为{0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1}中的至少2个值,配置或者预配置offset’的值为0.05。
可选地,α’为取值范围大于等于1的值。一种可能的实现,α’的值为定值,例如α’=1.05。可选地,α’的值为列表中配置的至少1个值,例如列表为{1,1.01,1.02,1.03,1.04,1.05,1.06,1.07,1.08,1.09,1.1}中的至少2个值,配置或者预配置α’的值为1.05。
可选地,β’的取值范围大于等于0小于等于1。一种可能的实现,β’的值为定值,例如β’=0.95。可选地,β’的值为列表中配置的至少1个值,例如列表为{0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1}中的至少2个值,配置或者预配置β’的值为0.95。
下面给出CR limit的确定方式。
方式1:根据偏移offset调整CR limit
根据∑i≥kCR(i)≤CRLimit(k)+Offset拥塞控制。可选地,offset为大于等于0小于的等于1的值。可选地,offset的值为定值。可选地,offset的值为offset列表中配置的至少1个值。一种可能的实现,可以基于优先级或者CAPC确定偏移offset的值。例如对于优先级为1至8的传输,偏移offset的值分别为{offset1,offset2,offset3,…,offset7};再例如对于CAPC为1至4的传输,偏移offset的值分别为{offseti,offsetii,offsetiii,offsetiv}。
方式2:根据比例因子θ偏移调整CR limit
根据∑i≥kCR(i)≤θ×CRLimit(k)拥塞控制。可选地,比例因子θ为大于等于1的值。可选地,比例因子θ的值为定值。可选地,比例因子θ的值为比例因子列表中配置的至少1个值。一种可能的实现,可以基于优先级或者CAPC确定比例因子θ的值。例如对于优先级为1至8的传输,比例因子θ的值分别为{θ123,…,θ7};再例如对于CAPC为1至4的传输,比例因子θ的值分别为{θiiiiiiiv}。
总结来说,确定信道占用状态需要确定第一终端装置占用的资源数E和第一终端装置被授权的资源数F,作为计算方式中的分母有不同的计算方式。也就是说,信道占用状态的计算可以是针对某一个终端装置的。
可选地,该实施例还可以包括下述步骤:
步骤1003:确定信道测量结果是否满足CR条件。
步骤1003可以由终端装置执行。
可选地,CR条件为CR之和小于CR limit,例如∑i≥kCR(i)≤CRLimit(k)。其中,i为SL信息的优先级,终端装置传输SL信息需要满足i≥k的任意k值的CR条件,i、k的取值范围是1到8的整数。时间单元m-N估计的CR用于时间单元m的传输SL信息的拥塞控制,其中N为拥塞控制的处理时间。终端装置可以通过传输某SL信息或者不传输某SL信息的方式来满足CR条件。
可选地,结合步骤1002中的CR limit的确定方式,CR条件可以是以下中的至少一项:
i≥kCR(i)≤CRLimit(k)+Offset,∑i≥kCR(i)≤θ×CRLimit(k),∑i≥kCR(i)≤CRLimit(k)
i为第一SL信息对应的优先级值,k为小于或等于i的优先级值,i和k的取值分别为1到8的整数,offset为偏移量,CR(i)为测量的优先级值为i的信道占用状态,CRLimit(k)为优先级值为k的信道占用状态限制。
一种可能的实现:第一终端装置可以根据在时间单元m-N上估计的CR,确定是否在时间单元m传输SL信息。其中时间单元m为信道接入的时间单元,或者,时间单元m为LBT成功后首个接入信道的时间单元。N为拥塞控制处理时间。
另一种可能的实现:第一终端装置可以根据在时间单元m-N上估计的CR确定是否在时间单元m开始信道接入。
可选地,该信道接入包括第一类型信道接入和/或第二类型信道接入。可选地,优先级i与CAPC关联,该CAPC为第一终端装置执行第一类型信道接入的优先级。
又一种可能的实现,CR条件可以用于确定是否COT共享。
一个示例,COT共享包括第一终端装置初始第一COT,第二终端装置共享该第一COT。第二终端装置在第一COT内传输第二SL信息,或者,第二终端装置将在第一COT内传输第二SL信息。换句话说,该COT共享为不同的终端装置的业务信息共享同一COT。
可选地,第一终端装置根据时间单元m-N估计的CR是否满足CR条件,确定是否允许第二终端装置的第二SL信息在该第一COT内传输。
可选地,第一终端装置根据时间单元m-N估计的CR是否满足CR条件,确定是否指示第二终端装置的第二SL信息在该第一COT内传输。
可选地,第二终端装置根据时间单元m-N估计的CR是否满足CR条件,确定是否在第一COT内传输第二SL信息。满足CR条件时,第二SL信息可以在时间单元m上传输。该第二SL信息的SCI中的优先级为i。
可选地,满足CR条件时,第二SL信息可以在时间单元m传输信息。又一个示例,该COT共享包括第一终端装置初始第一COT,第一终端装置在该第一COT内传输。第一终端装置在第一COT内传输第二SL信息,或者,第一终端装置将在第一COT内传输第二SL信息。换句话说,该COT共享为第一终端装置不同的业务信息共享同一COT。
可选地,第一终端装置根据时间单元m-N估计的CR是否满足CR条件,确定该第二SL信息是否在该第一COT内传输。满足CR条件时,第二SL信息可以在时间单元n传输。可选地,该第二SL信息的SCI中的优先级为i。
该实施例中,侧行终端装置在计算信道占用状态时,考虑了其他系统对信道的占用情况,或者,考虑了测量周期中空闲时间对信道占用状态的影响,提高了信道测量的准确度。
下面对本申请实施例中提到的资源(资源单元)以及相关的RSSI测量进行说明。
上述资源单元可以是预定义的,可以是配置的,本申请实施例对此不作限定。资源单元可以是计数单位,资源单元可以包括资源子单元。比如,一个资源单元可以是由资源子单元组成的。
上述资源单元可以是时域单元,也可以是频域单元。下面详细说明。
当资源单元为时域单元时:
该资源单元可以是时隙(slot)、符号(symbol)、感知时隙(sensing slot)或者信道占用时间(COT)中的至少一种。一种可能的实现,可以预配置或者网络配置资源单元为时隙、符号、感知时隙、信道占用时间中的至少一种。示例地,可以根据资源承载的信息类型预配置或者网络配置资源单元为时隙、符号、感知时隙、信道占用时间中的至少一种。例如,对于SL信息,资源单元为时隙。再例如,对于第二通信系统信息,资源单元为感知时隙。
对应地,资源子单元可以是时间单元,比如时隙、符号、感知时隙、信道占用时间中的至少一种。
示例地,该时间子单元为符号。资源单元的RSSI测量值为属于该资源单元的符号的接收功率之和的线性平均值。该符号包括承载PSCCH、PSSCH的符号。
示例地,该时间子单元为感知时隙。资源单元的RSSI测量值为属于该资源单元的感知时隙的接收功率之和的线性平均值。该感知时隙包括承载SL信息的感知时隙和/或承载异系统信息的感知时隙。
一种可能的实现方式1,RSSI的测量值为资源单元包括的时间子单元的接收功率(received power)之和的线性平均值。换句话说,根据资源单元包括的所有时间子单元的接收功率之和的线性平均值确定资源单元的RSSI。可选地,该时间子单元可以是承载PSCCH的时间子单元、承载PSSCH的时间子单元、承载PSFCH的时间子单元、承载AGC的时间子单元、承载CPE的时间子单元中的至少一种。
可选地,可以根据资源承载的信息类型预配置或者网络配置时间子单元为时隙、符号、感知时隙、信道占用时间中的至少任意一种。例如,对于SL信息,预配置或者网络配置时间子单元为符号。再例如,对于异系统信息,预配置或者网络配置时间子单元为感知时隙。
另一种可能的实现方式2,资源单元包括L个时间子单元,利用U个时间子单元的的RSSI接收功 率之和的线性平均值确定资源的RSSI测量值。其中,U小于等于L。换句话说,根据资源单元包括的一部分时间子单元的接收功率之和的线性平均值确定资源单元的RSSI。可选地,该U个时间子单元为接收功率超过第一阈值(或者第二阈值)的时间子单元。
可以根据上述实现方式1和实现方式2中的至少任意一种方法来确定资源的RSSI测量值。可选地,可以预配置或者网络配置方式1和方式2中的至少任意一种方法确定资源的RSSI测量值。或者,根据资源承载的信息类型预配置或者网络配置方式1和方式2中的至少任意一种方法确定资源的RSSI测量值。可选地,所述资源承载的信息类型包括该资源承载SL信息和/或该资源承载异系统信息。
资源单元包括L个时间子单元,其中U个时间子单元的RSSI测量值大于第一阈值(或者第二阈值),P个时间子单元的RSSI测量值不超过第一阈值(或者第二阈值)。可选地,L、U、P均为整数,满足U+P=L。判断该资源单元的RSSI是否大于第一阈值(或者第二阈值)的方式为如下方式中的至少任意一种:
a)RSSI测量值大于第一阈值(或者第二阈值)的时间子单元个数U大于和/或等于RSSI测量值不超过第一阈值(或者第二阈值)的时间子单元个数P,则该资源的RSSI超过第一阈值(或者第二阈值)。即,对于U大于等于P,该资源的RSSI超过第一阈值(或者第二阈值)。
b)RSSI测量值大于第一阈值(或者第二阈值)的时间子单元个数U大于和/或等于第一数值(即第三阈值),则该资源的RSSI超过第一阈值(或者第二阈值)。所述第一数值为预配置或者网络配置的。即,对于U大于等于第一数值,该资源的RSSI超过第一阈值(或者第二阈值)。
c)RSSI测量值大于第一阈值(或者第二阈值)的时间子单元个数U占资源中时间单元总数L=U+P的比值大于第一比例阈值(即第四阈值),则该资源的RSSI超过第一阈值(或者第二阈值)。即,对于U÷L大于等于第一比例阈值,该资源的RSSI超过第一阈值(或者第二阈值);或者,对于U÷(U+P)大于等于第一比例阈值,该资源的RSSI超过第一阈值(或者第二阈值)。所述第一比例阈值为预配置或者网络配置的。
d)资源单元包括时间子单元的总数与RSSI测量值大于第一阈值(或者第二阈值)的时间子单元个数U的差值小于或等于第五阈值,则该资源的RSSI超过第一阈值(或者第二阈值)。即,对于L-U小于或等于第五阈值,则该资源的RSSI超过第一阈值(或者第二阈值)。
可以根据上述a)-d)中的至少任意一种方法来确定资源的RSSI测量值。可选地,可以预配置或者网络配置a)-d)中的至少任意一种方法确定资源的RSSI测量值。或者,根据资源承载的信息类型预配置或者网络配置a)-d)中的至少任意一种方法确定资源的RSSI测量值。可选地,所述资源承载的信息类型包括该资源承载SL信息和/或该资源承载异系统信息。
可选地,第一阈值或者第二阈值为能量检测门限(ED threshold)。RSSI测量值大于第一阈值,所述时间单元为繁忙(busy)。RSSI测量值不大于第一阈值,所述时间单元为空闲(idle)。上述第一数值,第一比例阈值可以是预定义的,可以是配置的,也可以是指示的,本申请实施例对此不作限定。
当资源单元为频域单元时:
该资源单元可以是子信道、连续RB的子信道(contiguous RB-based sub-channel)、交错RB的子信道(interlace RB-based sub-channel)、信道(channel)、RB集合(RB set)、资源池(resource pool)、保护带(guard band)、资源块(RB,resource block)、资源单元(RE,resource element)中的至少一种。一种可能的实现,可以预配置或者网络配置资源单元为子信道、连续RB的子信道、交错RB的子信道、信道、RB集合、资源池、保护带、资源块、资源单元中的至少一种。示例地,可以根据资源承载的信息类型预配置或者网络配置资源单元为子信道、连续RB的子信道、交错RB的子信道、信道、RB集合、资源池、保护带、资源块、RE中的至少一种。例如,对于SL信息,资源单元为交错RB的子信道。再例如,对于第二通信系统信息,资源单元为连续RB的子信道。
对应地,资源子单元可以是频域子单元,比如子信道、连续RB的子信道、交错RB的子信道、信道、RB集合、资源池、保护带、资源块、资源单元中的至少一种。
示例地,该频域子单元为子信道。资源单元的RSSI测量值为属于该资源单元的子信道的接收功率之和的线性平均值。该子信道包括承载PSCCH、PSSCH的符号。
示例地,该频域子单元为资源块。资源单元的RSSI测量值为属于该资源单元的资源块的接收功率之和的线性平均值。该资源块包括承载SL信息的感知时隙和/或承载异系统信息的资源块。
一种可能的实现方式A,RSSI的测量值为资源单元包括的频域子单元的接收功率(received power)之和的线性平均值。换句话说,根据资源单元包括的所有频域子单元的接收功率之和的线性平均值确定资源单元的RSSI。可选地,该频域子单元可以是承载PSCCH的频域子单元、承载PSSCH的频域子单元、承载PSFCH的频域子单元、承载AGC的频域子单元、承载CPE的频域子单元中的至少一种。
另一种可能的实现方式B,资源单元包括L个频域子单元,利用U个第一频域子单元的的RSSI接收功率之和的线性平均值确定资源的RSSI测量值。其中,U小于等于L。换句话说,根据资源单元包括的一部分频域子单元的接收功率之和的线性平均值确定资源单元的RSSI。可选地,该U个频域子单元为接收功率超过第一阈值的频域子单元。
可以根据上述实现方式A和实现方式B中的至少任意一种方法来确定资源的RSSI测量值。可选地,可以预配置或者网络配置方式1和方式2中的至少任意一种方法确定资源的RSSI测量值。或者,根据资源承载的信息类型预配置或者网络配置方式1和方式2中的至少任意一种方法确定资源的RSSI测量值。可选地,所述资源承载的信息类型包括该资源承载SL信息和/或该资源承载异系统信息。
判断某资源单元的RSSI是否大于第一阈值的方式,可以参考上述时域部分的说明,把“时间子单元”替换为“频域子单元”即可,这里不再赘述。
在R16的SL中,测量的RSSI的测量粒度为符号(15kHz SCS约71.35us),资源的时域粒度为时隙(15kHz SCS为1ms);在非授权频段中,测量的粒度为感知时隙(9us)。该方案中,对齐了RSSI测量、CR测量、CBR测量的测量粒度与非授权频谱的测量粒度。提高了RSSI测量的准确度,能够准确地体现资源占用情况和/或资源繁忙情况。
应理解,上述方案中主要说明了终端装置的相关步骤,网络装置可以为终端装置配置和/或预配置本申请中的各种阈值、参数、调整因子。比如网络装置可以为终端装置配置和/或预配置第一阈值、第二阈值、第三阈值、第四阈值、第五阈值,第一偏移量offset、第一系数α、调整因子δ、比例因子γ等等中的至少一项。又或者网络装置可以为终端装置配置和/或预配置资源单元的时域粒度、时间子单元的粒度、资源单元的频域粒度、频域子单元的粒度等等中的至少一项。又或者,网络装置可以为终端装置配置和/或预配置确定资源的RSSI测量值的方式,比如可能的实现方式1、可能的实现方式2、可能的实现方式A、可能的实现方式B等等中的至少一项。
示例地,网络装置可以为终端装置配置第三阈值。又或者,网络装置可以向终端装置发送指示信息,该指示信息用于指示该第三阈值。本申请实施例对此不作限定。应理解,第三阈值只作为网络装置配置的内容的一个示例,对此不作限定。
还应理解,上述各实施例中以LBT作为终端装置侦听信道以及接入信道的途径的一种示例,但本申请实施例不限于此。示例地,终端装置可以侦听信道,也可以在网络设备指示的,或者,网络设备与终端设备预定义的,又或者,终端设备自主确定的一段时长后接入信道。
还应理解,上述各实施例中以SL通信系统为例进行说明,但对此不作限定。比如,上述各实施例的方法也可以适用于SL-U通信系统,等等。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。应理解,上述实施例的步骤只是为了清楚描述实施例的技术方案,不对步骤执行的先后顺序做限定。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备或终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
以下,结合图12至图13详细说明本申请实施例提供的测量装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再 赘述。
与上述构思相同,如图12所示,本申请实施例提供一种测量装置1200用于实现上述方法中终端装置的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置1200可以包括:处理单元1210和通信单元1220。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中终端装置发送和接收的步骤。
通信单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将通信单元1220中用于实现接收功能的器件视为接收单元,将通信单元1220中用于实现发送功能的器件视为发送单元,即通信单元1220包括接收单元和发送单元。通信单元有时也可以称为收发机、收发器、或接口电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
测量装置1200执行上面实施例中图8至图11中任一所示的流程中网络装置的功能时:
通信单元可以用于发送下行控制信息和/或RRC信令。
通信单元还可以用于配置阈值、调整因子、比例因子等等。
处理单元可以用于预配置侧行链路非授权资源等。
通信装置1200执行上面实施例中8至图11中任一所示的流程中终端装置的功能时:
通信单元,可以用于下行控制信息、RRC信令和侧行链路控制信息的接收,以及数据的发送。
处理单元可以用于解析下行控制信息和侧行链路控制信息,确定传输资源,确定信道状态,比如,确定信道占用状态和/或信道繁忙状态;
处理单元还可以用于执行LBT过程等。
以上只是示例,处理单元1210和通信单元1220还可以执行其他功能,更详细的描述可以参考图8至图11所示的方法实施例或其他方法实施例中的相关描述,这里不加赘述。
如图13所示为本申请实施例提供的测量装置1300,图13所示的装置可以为图12所示的装置的一种硬件电路的实现方式。该通信装置可适用于前面所示出的流程图中,执行上述方法实施例中终端设备或者网络设备的功能。为了便于说明,图13仅示出了该测量装置的主要部件。
测量装置1300可以是终端装置,能够实现本申请实施例提供的方法中第一终端装置或第二终端装置的功能。通信装置1300也可以是能够支持第一终端装置或第二终端装置实现本申请实施例提供的方法中对应的功能的装置。其中,该测量装置1300可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。具体的功能可以参见上述方法实施例中的说明。
测量装置1300包括一个或多个处理器1310,用于实现或用于支持通信装置1300实现本申请实施例提供的方法中第一终端装置或第二终端装置的功能。具体参见方法示例中的详细描述,此处不做赘述。处理器1310也可以称为处理单元或处理模块,可以实现一定的控制功能。处理器1310可以是通用处理器或者专用处理器等。例如,包括:中央处理器,应用处理器,调制解调处理器,图形处理器,图像信号处理器,数字信号处理器,视频编解码处理器,控制器,存储器,和/或神经网络处理器等。所述中央处理器可以用于对通信装置1300进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是集成在一个或多个处理器中,例如,集成在一个或多个专用集成电路上。可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
可选地,测量装置1300中包括一个或多个存储器1320,用以存储指令1340,所述指令可在所述处理器1310上被运行,使得通信装置1300执行上述方法实施例中描述的方法。存储器1320和处理器1310耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1310可能和存储器1320协同操作。所述至少一个存储器中的至少一个可以包括于处理器中。需要说明的是,存储器1320不是必须的,所以在图13中以虚线进行示意。
可选地,所述存储器1320中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。在本申请实施例中,存储器1320可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。本申请的实施例中处理器还可以是闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
可选地,测量装置1300可以包括指令1330(有时也可以称为代码或程序),所述指令1330可以在所述处理器上被运行,使得所述测量装置1300执行上述实施例中描述的方法。处理器1310中可以存储数据。
可选地,测量装置1300还可以包括收发器1350以及天线1360。所述收发器1350可以称为收发单元,收发模块、收发机、收发电路、收发器,输入输出接口等,用于通过天线1360实现测量装置1300的收发功能。
本申请中描述的处理器1310和收发器1350可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、ASIC、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的测量装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于终端设备,以及网络设备的说明,在此不再赘述。
可选地,测量装置1300还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,通信装置1300可以包括更多或更少部件,或者某些部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之 内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (49)

  1. 一种测量方法,应用于非授权频谱通信系统,所述非授权频谱通信系统中包括第一通信系统,其特征在于:
    确定所述第一通信系统在第一测量窗内占用的资源单元数,所述第一通信系统在第一测量窗内占用的资源单元数,小于或等于在所述第一测量窗内RSSI测量值大于第一阈值的资源单元数;
    根据所述第一通信系统在第一测量窗内占用的资源单元数,和/或在所述第一测量窗内RSSI测量值大于第一阈值的资源单元数,确定所述第一通信系统在所述第一测量窗内的信道的状态。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一通信系统在第一测量窗内占用的资源单元数,和/或在所述第一测量窗内RSSI测量值大于第一阈值的资源单元数,确定在第一测量窗内所述第一通信系统的信道的状态包括:
    根据所述第一通信系统在所述第一测量窗内占用的资源单元数与所述第一测量窗内的资源单元数的比值,确定在所述第一测量窗内所述第一通信系统的信道繁忙状态。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述第一通信系统在第一测量窗内占用的资源单元数,和/或在所述第一测量窗内RSSI测量值大于第一阈值的资源单元数,确定在第一测量窗内所述第一通信系统的信道的状态包括:
    根据下述关系确定在第一测量窗内所述第一通信系统的信道繁忙状态:
    Y=A1÷[B-(A-A1)],
    其中所述Y表示在所述第一测量窗内所述第一通信系统的信道繁忙状态,所述A1表示所述第一通信系统在所述第一测量窗内占用的资源单元数,所述A表示在所述第一测量窗内RSSI测量值大于第一阈值的资源单元数,所述B表示所述第一测量窗包括的资源单元数。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述第一通信系统在第一测量窗内占用的资源单元数,和/或在所述第一测量窗内RSSI测量值大于第一阈值的资源单元数,确定所述第一通信系统在所述第一测量窗内的信道的状态包括:
    根据所述在所述第一测量窗内RSSI测量值大于第一阈值的资源单元数与所述第一测量窗内的资源单元数的比值和第一偏移量,确定在所述第一测量窗中所述第一通信系统的信道繁忙状态;
    或者,
    根据所述在所述第一测量窗内RSSI测量值大于第一阈值的资源单元数与所述第一测量窗内的资源单元数的比值和第一系数,确定在所述第一测量窗中所述第一通信系统的信道繁忙状态,
    其中,所述第一偏移量和/或所述第一系数的取值为预定义、预配置或者网络配置的。
  5. 根据权利要求4所述的方法,其特征在于,所述在所述第一测量窗中所述第一通信系统的信道繁忙状态满足下述关系:
    Y=(A1÷B)+offset,
    或者,
    Y=(A1÷B)*α,
    其中,所述Y表示在所述第一测量窗内所述第一通信系统的信道繁忙状态,所述A1表示在所述第一测量窗内第一通信系统占用的资源数,所述B表示所述第一测量窗包括的资源单元数,所述offset为所述第一偏移量,所述α为所述的第一系数。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述在所述第一测量窗中所述第一通信系统的信道繁忙状态大于和/或等于第二阈值,所述方法还包括以下中的至少一项:
    在所述第一通信系统中的周期预留被使能;
    在第一COT内传输所述第一通信系统的第二SL信息,所述第一COT是根据所述第一通信系统的第一SL信息的参数确定的;
    在所述第一通信系统中的抢占被使能;
    在第一COT内传输所述第一通信系统的第一SL信息和所述第二SL信息,所述第一COT是根据所述第一通信系统的第一SL信息对应的参数确定的。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一阈值为信道接入的能量检测门限。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一通信系统为侧行通信系统。
  9. 一种测量方法,应用于非授权频谱通信系统,所述非授权频谱通信系统包括第一通信系统,其特征在于,包括:
    确定所述第一通信系统在第二测量窗内占用的资源单元数,所述第一通信系统在所述第二测量窗内占用的资源单元数,小于或等于在所述第二测量窗内RSSI测量值大于第二阈值的资源单元数;
    根据所述第一通信系统在第二测量窗内占用的资源单元数,确定所述第一通信系统在所述第三测量窗内的信道的状态,所述第三测量窗包括所述第二测量窗。
  10. 根据权利要求9所述的方法,其特征在于,所述第三测量窗还包括第四测量窗,其中,所述第三测量窗在时域上包括时隙[n-a,n+b],所述第二测量窗在时域上包括时隙[n-a,n-1],所述第四测量窗在时域上包括时隙[n,n+b],所述时隙n为测量信道的状态的时隙。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述第一通信系统在第二测量窗内占用的资源单元数,确定所述第一通信系统在所述第三测量窗内的信道的状态包括:
    根据下述关系确定所述第一通信系统在所述第三测量窗内的信道占用状态:
    Z=(E+F)÷[D-(G-G1)],
    其中,Z表示所述第一通信系统在所述第三测量窗内的信道占用状态,所述E表示第一终端装置在所述第二测量窗内传输的资源单元数,所述F表示所述第一终端装置在所述第四测量窗内被授权的资源单元数,所述D表示所述第三测量窗内的资源单元数,所述G表示在所述第二测量窗内RSSI测量值大于第二阈值的资源单元数,所述G1表示所述第一通信系统在所述第二测量窗内占用的资源单元数。
  12. 根据权利要求10所述的方法,其特征在于,所述根据所述第一通信系统在第二测量窗内占用的资源单元数,确定所述第一通信系统在所述第三测量窗内的信道的状态包括:
    根据下述关系确定所述第一通信系统在所述第三测量窗内的信道占用状态:
    Z=(E+F)÷(D-G+G1-δ),
    或者,
    Z=(E+F)÷[D-γ×(G-G1)]
    其中,Z表示所述第一通信系统在所述第三测量窗内的信道占用状态,所述E表示第一终端装置在所述第二测量窗内传输的资源单元数,所述F表示所述第一终端装置在所述第四测量窗内被授权的资源单元数,所述D表示所述第三测量窗内的资源单元数,所述G表示在所述第二测量窗内RSSI测量值大于第二阈值的资源单元数,所述G1表示所述第一通信系统在第二测量窗内占用的资源单元数,所述δ为调整因子,所述γ为比例因子。
  13. 根据权利要求10所述的方法,其特征在于,所述根据所述第一通信系统在第二测量窗内占用的资源单元数,确定所述第一通信系统在所述第三测量窗内的信道的状态包括:
    根据所述第一终端装置在所述第二测量窗内传输的资源单元数与在所述第四测量窗内被授权的资源单元数之和,与所述第三测量窗内的资源单元数的比值,以及第二偏移量和/或第二系数确定所述第一通信系统的信道占用状态,其中,所述第二偏移量和/或所述第二系数的取值为预定义、预配置或者网络配置的。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述第一终端装置在所述第四测量窗内被授权的资源单元数,是根据所述第一终端装置的业务优先级或者信道接入优先级CAPC确定的。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,所示第一通信系统为侧行通信系统。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    根据第一信道占用状态确定在第一时间单元m上传输第一SL信息,在所述第一时间单元m之前N个时间单元的时间单元为测量所述第一信道占用状态的时间单元m-N,所述第一信道状态满足以下中的至少一项:
    i≥kCR(i)≤CRLimit(k)+offset,∑i≥kCR(i)≤θ×CRLimit(k),∑i≥kCR(i)≤CRLimit(k)
    所述i为所述第一SL信息对应的优先级值,所述k为小于或等于i的优先级值,所述i和k的取 值分别为1到8的整数,所述offset为偏移量,CR(i)为测量的优先级值为i时的信道占用状态,CRLimit(k)为优先级值为k时的信道占用状态限制,所述N为拥塞控制处理时间。
  17. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    根据第二信道占用状态确定,在第一COT内传输第二SL信息,所述第二SL信息属于第二终端装置或第一终端装置的SL信息,所述第一COT为第一终端装置的初始COT,
    所述第二信道占用状态满足以下中的至少一项:
    i≥kCR(i)≤CRLimit(k)+offset,∑i≥kCR(i)≤θ×CRLimit(k),∑i≥kCR(i)≤CRLimit(k)
    所述i为所述第二SL信息对应的优先级值,所述k为小于或等于i的优先级值,所述i和k的取值分别为1到8的整数,所述offset为偏移量,CR(i)为测量的优先级值为i时的信道占用状态,CRLimit(k)为优先级值为k时的信道占用状态限制。
  18. 根据权利要求10至17中任一项所述的方法,其特征在于,所述第二阈值为信道接入的能量检测门限。
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,所述资源单元的所述RSSI测量值是根据U个资源子单元的RSSI接收功率之和的线性平均值确定的,所述U为小于或等于L的正整数,所述L为所述资源单元包括的所述资源子单元的数量。
  20. 根据权利要求19所述的方法,其特征在于,
    U大于或等于第三阈值,或者,U÷L大于或等于第四阈值,或者,L-U小于或等于第五阈值,确定所述资源单元的RSSI测量值大于所述第一阈值或者所述第二阈值,所述U为所述资源单元中,RSSI测量值大于所述第一阈值或者所述第二阈值的所述资源子单元的数量。
  21. 根据权利要求1至20中任一项所述的方法,其特征在于,所述资源单元包括时域单元和/或频域单元,所述时域单元包括感知时隙、符号、感知时隙、信道占用时间中的至少一项,所述频域单元包括子信道、连续RB的子信道、交错RB的子信道、信道、RB集合、资源池、保护带、资源块、资源单元RE中的至少一种。
  22. 根据权利要求1至21中任一项所述的方法,其特征在于,所述资源子单元包括时域单元和/或频域单元,所述时域单元包括感知时隙、符号、感知时隙、信道占用时间中的至少一项,所述频域单元所述频域单元包括子信道、连续RB的子信道、交错RB的子信道、信道、RB集合、资源池、保护带、资源块、资源单元RE中的至少一种。
  23. 一种测量装置,所述测量装置属于第一通信系统,所述第一通信系统属于非授权频谱通信系统,所述测量装置包括收发模块和处理模块,其特征在于:
    所述处理模块用于确定所述第一通信系统在第一测量窗内占用的资源单元数,所述第一通信系统在第一测量窗内占用的资源单元数,小于或等于在所述第一测量窗内RSSI测量值大于第一阈值的资源单元数;
    所述处理模块还用于根据所述第一通信系统在第一测量窗内占用的资源单元数,和/或在所述第一测量窗内RSSI测量值大于第一阈值的资源单元数,确定所述第一通信系统在所述第一测量窗内的信道的状态。
  24. 根据权利要求23所述的装置,其特征在于,所述处理模块用于根据所述第一通信系统在所述第一测量窗内占用的资源单元数与所述第一测量窗内的资源单元数的比值,确定在所述第一测量窗内所述第一通信系统的信道繁忙状态。
  25. 根据权利要求23所述的装置,其特征在于,所述处理模块用于根据下述关系确定在第一测量窗内所述第一通信系统的信道繁忙状态:
    Y=A1÷[B-(A-A1)],
    其中所述Y表示在所述第一测量窗内所述第一通信系统的信道繁忙状态,所述A1表示所述第一通信系统在所述第一测量窗内占用的资源单元数,所述A表示在所述第一测量窗内RSSI测量值大于第一阈值的资源单元数,所述B表示所述第一测量窗包括的资源单元数。
  26. 根据权利要求23所述的装置,其特征在于,所述处理模块用于根据所述在所述第一测量窗内RSSI测量值大于第一阈值的资源单元数与所述第一测量窗内的资源单元数的比值和第一偏移量,确定在所述第一测量窗中所述第一通信系统的信道繁忙状态;
    或者,
    所述处理模块具体用于根据所述在所述第一测量窗内RSSI测量值大于第一阈值的资源单元数与所述第一测量窗内的资源单元数的比值和第一系数,确定在所述第一测量窗中所述第一通信系统的信道繁忙状态,
    其中,所述第一偏移量和/或所述第一系数的取值为预定义、预配置或者网络配置的。
  27. 根据权利要求26所述的装置,其特征在于,在所述第一测量窗中所述第一通信系统的信道繁忙状态满足下述关系:
    Y=(A1÷B)+offset,
    或者,
    Y=(A1÷B)*α,
    其中,所述Y表示在所述第一测量窗内所述第一通信系统的信道繁忙状态,所述A1表示在所述第一测量窗内第一通信系统占用的资源数,所述B表示所述第一测量窗包括的资源单元数,所述offset为所述第一偏移量,所述*α为所述的第一系数。
  28. 根据权利要求23至27中任一项所述的装置,其特征在于,在所述第一测量窗中所述第一通信系统的信道繁忙状态大于和/或等于第二阈值,
    所述处理模块用于在所述第一通信系统中的周期预留被使能;
    所述收发模块用于在第一COT内传输所述第一通信系统的第二SL信息,所述第一COT是根据所述第一通信系统的第一SL信息的参数确定的;
    所述处理模块用于在所述第一通信系统中的抢占被使能;
    所述收发模块用于在第一COT内传输所述第一通信系统的第一SL信息和所述第二SL信息,所述第一COT是根据所述第一通信系统的第一SL信息对应的参数确定的。
  29. 根据权利要求23至28中任一项所述的装置,其特征在于,所述第一阈值为信道接入的能量检测门限。
  30. 根据权利要求23至29中任一项所述的装置,其特征在于,所述第一通信系统为侧行通信系统。
  31. 一种测量装置,所述测量装置属于第一通信系统,所述第一通信系统属于非授权频谱通信系统,所述测量装置包括收发模块和处理模块,其特征在于:
    所述处理模块用于确定所述第一通信系统在第二测量窗内占用的资源单元数,所述第一通信系统在所述第二测量窗内占用的资源单元数,小于或等于在所述第二测量窗内RSSI测量值大于第二阈值的资源单元数;
    所述处理模块还用于根据所述第一通信系统在第二测量窗内占用的资源单元数,确定所述第一通信系统在所述第三测量窗内的信道的状态,所述第三测量窗包括所述第二测量窗。
  32. 根据权利要求31所述的装置,其特征在于,所述第三测量窗还包括第四测量窗,其中,所述第三测量窗在时域上包括时隙[n-a,n+b],所述第二测量窗在时域上包括时隙[n-a,n-1],所述第四测量窗在时域上包括时隙[n,n+b],所述时隙n为测量信道的状态的时隙。
  33. 根据权利要求32所述的装置,其特征在于,所述处理模块用于根据下述关系确定所述第一通信系统在所述第三测量窗内的信道占用状态:
    Z=(E+F)÷[D-(G-G1)],
    其中,Z表示所述第一通信系统在所述第三测量窗内的信道占用状态,所述E表示第一终端装置在所述第二测量窗内传输的资源单元数,所述F表示所述第一终端装置在所述第四测量窗内被授权的资源单元数,所述D表示所述第三测量窗内的资源单元数,所述G表示在所述第二测量窗内RSSI测量值大于第二阈值的资源单元数,所述G1表示所述第一通信系统在所述第二测量窗内占用的资源单元数。
  34. 根据权利要求32所述的装置,其特征在于,所述处理模块用于根据下述关系确定所述第一通信系统在所述第三测量窗内的信道占用状态:
    Z=(E+F)÷(D-G+G1-δ),
    或者,
    Z=(E+F)÷[D-γ×(G-G1)]
    其中,Z表示所述第一通信系统在所述第三测量窗内的信道占用状态,所述E表示第一终端装置在所述第二测量窗内传输的资源单元数,所述F表示所述第一终端装置在所述第四测量窗内被授权的资源单元数,所述D表示所述第三测量窗内的资源单元数,所述G表示在所述第二测量窗内RSSI测量值大于第二阈值的资源单元数,所述G1表示所述第一通信系统在第二测量窗内占用的资源单元数,所述δ为调整因子,所述γ为比例因子。
  35. 根据权利要求31所述的装置,其特征在于,所述处理模块用于根据所述第一终端装置在所述第二测量窗内传输的资源单元数与在所述第四测量窗内被授权的资源单元数之和,与所述第三测量窗内的资源单元数的比值,以及第二偏移量和/或第二系数确定所述第一通信系统的信道占用状态,其中,所述第二偏移量和/或所述第二系数的取值为预定义、预配置或者网络配置的。
  36. 根据权利要求31至34中任一项所述的装置,其特征在于,所述第一终端装置在所述第四测量窗内被授权的资源数量,是根据所述第一终端装置的业务优先级或者CAPC确定的。
  37. 根据权利要求31至35中任一项所述的装置,其特征在于,所示第一通信系统为侧行通信系统。
  38. 根据权利要求37所述的装置,其特征在于,所述处理模块用于根据第一信道占用状态确定在第一时间单元m上传输第一SL信息,在所述第一时间单元m之前N个时间单元的时间单元为测量所述第一信道占用状态的时间单元m-N,所述第一信道状态满足以下中的至少一项:
    i≥kCR(i)≤CRLimit(k)+offset,∑i≥kCR(i)≤θ×CRLimit(k),∑i≥kCR(i)≤CRLimit(k)
    所述i为所述第一SL信息对应的优先级值,所述k为小于或等于i的优先级值,所述i和k的取值分别为1到8的整数,所述offset为偏移量,CR(i)为测量的优先级值为i时的信道占用状态,CRLimit(k)为优先级值为k时的信道占用状态限制,所述N为拥塞控制处理时间。
  39. 根据权利要求37所述的装置,其特征在于,所述处理模块具体根据第二信道占用状态确定,在第一COT内传输第二SL信息,所述第二SL信息属于第二终端装置的SL信息,所述第一COT为第一终端装置的初始COT,
    所述第二信道占用状态满足以下中的至少一项:
    i≥kCR(i)≤CRLimit(k)+offset,∑i≥kCR(i)≤θ×CRLimit(k),∑i≥kCR(i)≤CRLimit(k)
    所述i为所述第二SL信息对应的优先级值,所述k为小于或等于i的优先级值,所述i和k的取值分别为1到8的整数,所述offset为偏移量,CR(i)为测量的优先级值为i时的信道占用状态,CRLimit(k)为优先级值为k时的信道占用状态限制。
  40. 根据权利要求31至39中任一项所述的装置,其特征在于,所述第二阈值为信道接入的能量检测门限。
  41. 根据权利要求23至40中任一项所述的装置,其特征在于,所述资源单元的所述RSSI测量值是根据U个资源子单元的RSSI接收功率之和的线性平均值确定的,所述U为小于或等于L的正整数,所述L为所述资源单元包括的所述资源子单元的数量。
  42. 根据权利要求23至41中任一项所述的装置,其特征在于,U大于或等于第三阈值,或者,U÷L大于或等于第四阈值,或者,L-U小于或等于第五阈值,确定所述资源单元的RSSI测量值大于所述第一阈值或者所述第二阈值,所述U为所述资源单元中,RSSI测量值大于所述第一阈值或者所述第二阈值的所述资源子单元的数量。
  43. 根据权利要求23至42中任一项所述的装置,其特征在于,所述资源单元包括时域单元和/或频域单元,所述时域单元包括感知时隙、符号、感知时隙、信道占用时间中的至少一项,所述频域单元包括子信道、连续RB的子信道、交错RB的子信道、信道、RB集合、资源池、保护带、资源块、资源单元RE中的至少一种。
  44. 根据权利要求23至43中任一项所述的装置,其特征在于,所述资源子单元包括时域单元和/或频域单元,所述时域单元包括感知时隙、符号、感知时隙、信道占用时间中的至少一项,所述频域单元所述频域单元包括子信道、连续RB的子信道、交错RB的子信道、信道、RB集合、资源池、保护带、资源块、资源单元RE中的至少一种。
  45. 一种通信系统,其特征在于,包括如权利要求23至44中任一项所述的通信装置。
  46. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机指令,以使得所述装置执行:如权利要求1至22中任一项所述的方法。
  47. 根据权利要求46所述的装置,其特征在于,所述装置还包括所述存储器。
  48. 根据权利要求46或47所述的装置,其特征在于,所述装置还包括通信接口,所述通信接口与所述处理器耦合,
    所述通信接口,用于输入和/或输出信息。
  49. 根据权利要求46至48中任一项所述的装置,其特征在于,所述装置为芯片。
PCT/CN2023/111652 2022-08-12 2023-08-08 测量方法、装置和系统 WO2024032580A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210969400.8 2022-08-12
CN202210969400.8A CN117641389A (zh) 2022-08-12 2022-08-12 测量方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2024032580A1 true WO2024032580A1 (zh) 2024-02-15

Family

ID=89850878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111652 WO2024032580A1 (zh) 2022-08-12 2023-08-08 测量方法、装置和系统

Country Status (2)

Country Link
CN (1) CN117641389A (zh)
WO (1) WO2024032580A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114128346A (zh) * 2019-07-16 2022-03-01 三星电子株式会社 用于在无线通信系统中控制拥塞的装置和方法
WO2022150247A1 (en) * 2021-01-07 2022-07-14 Qualcomm Incorporated Congestion control for sidelink communication
WO2022150246A1 (en) * 2021-01-07 2022-07-14 Qualcomm Incorporated Congestion control for sidelink communication based on non-sidelink activity detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114128346A (zh) * 2019-07-16 2022-03-01 三星电子株式会社 用于在无线通信系统中控制拥塞的装置和方法
WO2022150247A1 (en) * 2021-01-07 2022-07-14 Qualcomm Incorporated Congestion control for sidelink communication
WO2022150246A1 (en) * 2021-01-07 2022-07-14 Qualcomm Incorporated Congestion control for sidelink communication based on non-sidelink activity detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPORTON: "New test case for V2X Sidelink using Tx parameters based on measured CBR and PPPP", 3GPP TSG RAN WG5 MEETING#79, R5-182757, 19 May 2018 (2018-05-19), XP051447956 *

Also Published As

Publication number Publication date
CN117641389A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2020168946A1 (zh) 传输数据的方法和通信装置
WO2023274012A1 (zh) 侧行链路反馈信息传输的方法和通信装置
CN115604825A (zh) 一种侧行通信方法及装置
WO2022213705A1 (zh) 一种通信方法及装置
WO2024032580A1 (zh) 测量方法、装置和系统
WO2023165468A1 (zh) 一种资源确定方法及装置
WO2024012129A1 (zh) 指示信息发送方法、装置及系统
WO2023165416A1 (zh) 通信方法、装置及系统
WO2023165417A1 (zh) 一种通信方法、装置及系统
WO2023207723A1 (zh) 通信方法和通信装置
WO2024032324A1 (zh) 通信方法和通信装置
WO2024066989A1 (zh) 侧行链路通信的方法和装置
WO2024016899A1 (zh) 一种通信方法及通信装置
WO2023143378A1 (zh) 一种通信方法及通信装置
WO2023207506A1 (zh) 共享资源分配方法及装置
WO2024065475A1 (en) Method and device for performing sidelink communications
WO2023030147A1 (zh) 一种资源配置方法及通信装置
WO2024012372A1 (zh) 一种资源选择的方法及第一终端
WO2024140322A1 (zh) 波束测量方法、装置及系统
WO2024067017A1 (zh) 一种通信方法、装置和系统
WO2023207774A1 (zh) 一种通信方法及装置
WO2024099260A1 (zh) 用于资源选择的方法、通信装置和通信系统
WO2024032565A1 (zh) 资源排除方法和相关产品
WO2024032418A1 (zh) 一种通信方法及装置
WO2024169518A1 (zh) 资源使用方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851801

Country of ref document: EP

Kind code of ref document: A1