WO2022213705A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022213705A1
WO2022213705A1 PCT/CN2022/072883 CN2022072883W WO2022213705A1 WO 2022213705 A1 WO2022213705 A1 WO 2022213705A1 CN 2022072883 W CN2022072883 W CN 2022072883W WO 2022213705 A1 WO2022213705 A1 WO 2022213705A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
terminal device
resources
candidate
sensing
Prior art date
Application number
PCT/CN2022/072883
Other languages
English (en)
French (fr)
Inventor
黎超
黄海宁
张天虹
杨帆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022213705A1 publication Critical patent/WO2022213705A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2P vehicle-to-pedestrian
  • V2P vehicle-to-network
  • V2X vehicle to everything
  • the terminal device at the transmitting end can detect possible sidelink transmissions of other terminal devices at every step on part of the time domain resources on the time axis, and the obtained monitoring results for the transmission resources can be It is called partial listening result. Based on these partial monitoring results, the terminal device at the transmitting end may select time-frequency resources for transmission within a selection window.
  • Such a resource selection scheme may be referred to as partial awareness. Because the UE only performs partial sensing in the process of determining the transmission resource in the selection window, the power consumption of the UE can be saved.
  • 3GPP also discussed a way to reduce the power consumption of the receiver through discontinuous reception (DRX). Since the terminal equipment cannot perform resource monitoring during the non-receiving time of DRX, when the discontinuous reception and partial sensing functions are used in combination, it is necessary to consider the condition of reducing the power consumption of the UE as much as possible, so as not to affect the partial sensing function as much as possible. Effectiveness of resource selection.
  • the present application provides a communication method and device for improving the effectiveness of a partial sensing scheme of a terminal device in a scenario where DRX is in effect.
  • a communication method is provided, and the method is executed by a first terminal device.
  • the first terminal device includes a first terminal device or a component in the first terminal device, and the first terminal device may be a data sender in V2X communication.
  • the relevant information of the accident is sent to the sender vehicle of other vehicles, or it can be the roadside unit that has detected the sudden traffic accident, and the components in the first terminal device can be, for example, a processor loaded in the sender vehicle, Vehicle communication module, chip or chip system, etc.
  • the first terminal device supports direct communication (PC5) interface communication.
  • the method provided by the first aspect includes that the first terminal device may determine candidate resources according to at least one of discontinuous reception DRX configuration information, the first resource, or the second resource; wherein, the first resource is a part of the sensing resource at periodic intervals, and the first resource is a periodic interval.
  • the second resource is a continuously distributed partial sensing resource; or, the first resource is a continuously distributed partial sensing resource, and the second resource is a periodically spaced partial sensing resource; the DRX configuration information is used to determine the receiving time and the non-receiving time.
  • the first terminal device may also send the first data packet according to the candidate resource.
  • the first terminal device needs to consider at least one of the DRX configuration information, the first resource and the second resource when determining the candidate resource of the first data packet, so the determination of the candidate resource can be improved in the scenario where DRX is in effect effectiveness to improve sidelink communication reliability.
  • the first terminal device may determine a candidate resource according to the first resource, where the first condition includes at least one of the following: the second resource is located at a non-receiving time; or, The first resource is at reception time.
  • the first terminal device can only determine based on the first resource when the first resource is configured with the first resource and the second resource, and when the first resource is located at the non-receiving time and/or the second resource is located at the receiving time. Candidate resources to reduce perceived power consumption.
  • the first resource is located at a non-reception time, and when the second condition is satisfied, the first terminal device may determine the candidate resource at least according to the first resource.
  • the first terminal device can still determine the candidate resource according to the first resource when the first resource is located at the non-receiving time, so as to improve the effectiveness of the determination of the candidate resource.
  • the first terminal device may determine the candidate resource at least according to the monitoring result of the second resource .
  • the first terminal device can determine candidate resources according to the second resource when the second resource is at the receiving time, or when the second resource is at the non-receiving time and satisfies the second condition, to improve communication reliability. Moreover, when the second condition is satisfied, even if the first resource and/or the second resource is in a non-receiving time, the candidate resource can still be determined according to the first resource and the second resource, which can further improve the effectiveness of the determination of the candidate resource.
  • the second condition may include at least one of the following: the first terminal device receives a negative acknowledgement of the second data packet, where the second data packet is a data packet sent before the first data packet; Or, the priority of the first data packet is not lower than the first threshold; or, the channel state parameter value of the resource pool where the candidate resource is located is not lower than the second threshold; or, the first terminal device is configured to perform re-evaluation or preemption evaluation ; or, the first resource is located at a non-receiving time, and the first terminal device receives the first indication information, wherein the first indication information is used to indicate that: when the first resource is located at a non-receiving time, the first terminal device at least according to the first A sensing result corresponding to a resource determines a candidate resource.
  • the first resource is a part of the sensing resources at periodic intervals
  • the second resource is a part of the sensing resources distributed continuously
  • some or all of the first resources are located in the non-receiving time
  • the first terminal device can at least The candidate resource is determined according to the monitoring result of the third resource in the perception window, wherein the third resource is one or more groups of monitoring resources closest to the first moment, and the first moment is the moment when the first terminal device is triggered to determine the uplink resource.
  • the DRX configuration may be used to determine the receiving time of the second terminal device, one or more sets of monitoring resources are located at the receiving time of the second terminal device, and the second terminal device is a receiving device of the first data packet.
  • the first resource is a partial sensing resource at periodic intervals
  • the second resource is a continuous distributed partial sensing resource.
  • the candidate resources may not be different. Including resources associated with M time units in the selection window, where M is a positive integer.
  • the first terminal device may determine candidate resources according to a random selection method when the following conditions are met: part or all of the first resources and part or all of the second resources are located at non-reception times.
  • the first terminal device may determine the candidate resource according to the first resource and the second resource.
  • the first terminal device may determine candidate resources according to at least L fourth resources in the selection window, where the fourth resources are continuously distributed partial sensing resources other than the first resources and the second resources, and L is positive integer.
  • the candidate resource may include K resource units, and K is less than or equal to a third threshold, where the third threshold may be determined according to one or more of the following information, and K is a positive integer: the first The number of resource units required for N transmissions of the data packet, where N is a positive integer; or, the channel state parameter value on the resource pool; or, the priority of the first data packet; or, configuration signaling; or, a predefined value.
  • the DRX configuration information may include the DRX configuration information of the first terminal device and/or the DRX configuration information of the second terminal device, where the second terminal device is a receiving device of the first data packet.
  • the candidate resource may be located at the reception time of the second terminal device.
  • the DRX configuration information may include one or more of a DRX cycle, a start time, a DRX reception duration, or a DRX non-reception duration.
  • a communication method is provided, and the method is executed by a first terminal device.
  • the first terminal device includes a first terminal device or a component in the first terminal device, and the first terminal device may be a data sender in V2X communication.
  • the relevant information of the accident is sent to the sender vehicle of other vehicles, or it can be the roadside unit that has detected the sudden traffic accident, and the components in the first terminal device can be, for example, a processor loaded in the sender vehicle, Vehicle communication module, chip or chip system, etc.
  • the first terminal device supports direct communication interface communication.
  • the method provided by the second aspect includes that the first terminal device may determine, according to the first information, a resource for signal quality measurement of the first time slot, where the first information instructs the first terminal device to perform a power saving operation and/or is used to indicate resource.
  • the first terminal device may also measure the signal quality on the resource.
  • the first terminal device can determine, according to the first information, to measure the signal quality on the resource used for signal quality measurement, thereby improving the accuracy of the signal quality measurement.
  • the power-saving operation includes at least one of the following: discontinuous reception; or, an energy-saving resource selection manner; or, discontinuous transmission.
  • the energy-saving resource selection method includes any one of the following: random resource selection; or, partially-aware resource selection; or, resource selection based on configuration scheduling type 1; or, configuration-based resource selection Resource selection for scheduling type 2.
  • the resources used for signal quality measurement include resources occupied by the demodulation reference signal of the control channel in the first time slot, and the size of the subchannel of the data channel indicated by the control channel is less than 20 physical resource blocks PRB.
  • the first terminal device may not perform signal quality measurement on the resources occupied by the DMRS of the data channel, so as to save power consumption.
  • the resources include the resources occupied by the demodulation reference signal of the control channel in the first time slot, and/or the demodulation reference signal of the data channel on the symbols occupied by the control channel in the first time slot Resources.
  • the sub-channel of the data channel indicated by the control channel is greater than or equal to 20 PRBs.
  • the first terminal device can measure the signal quality on the resources occupied by the DMRS in the control channel, and measure the signal quality on the resources occupied by the DMRS in the control channel and the data channel, so as to improve the measurement accuracy.
  • the signal quality is RSSI
  • the received signal strength indicator the resource in the time domain is the symbol where the control channel is located in the first time slot
  • in the frequency domain is the frequency domain occupied by the control channel and the data channel in the symbol resource.
  • the sub-channel of the data channel indicated by the control channel is greater than or equal to 20 PRBs.
  • the first terminal device can perform RSSI measurement on fewer resources to save power consumption.
  • control channel is PSCCH
  • data channel is PSSCH
  • channel quality includes RSRP and RSSI.
  • an embodiment of the present application provides a communication device, which can implement the method implemented by the first terminal device in the first aspect, the second aspect, or any possible designs thereof.
  • the apparatus comprises corresponding units or components for carrying out the above-described method.
  • the units included in the apparatus may be implemented by software and/or hardware.
  • the device may be, for example, a first terminal device, or a component or a chip, a chip system, an in-vehicle communication module, or a processor that can support the implementation of the above method in the first terminal device.
  • the communication device may include modular components such as a transceiver unit (or a communication module, a transceiver module) and a processing unit (or a processing module), and these modules may perform the first aspect, the second aspect or any of the above.
  • the transceiving unit may be a transmitting unit when performing the sending step
  • the transceiving unit may be a receiving unit when performing the receiving step
  • the transceiving unit may be replaced by a transceiver
  • the transmitting unit may be replaced by a transmitter
  • the receiving unit can be replaced by a receiver.
  • the transceiver unit may include an antenna, a radio frequency circuit, and the like, and the processing unit may be a processor, such as a baseband chip.
  • the transceiver unit may be a radio frequency unit, and the processing unit may be a processor.
  • the transceiver unit may be an input/output interface of the system-on-chip, and the processing unit may be a processor of the system-on-chip, such as a CPU.
  • the transceiving unit may be configured to perform the actions of receiving and/or sending performed by the first terminal device in the first aspect, the second aspect, or any possible designs thereof.
  • the processing unit may be configured to perform actions other than the receiving and transmitting performed by the first terminal device in the first aspect, the second aspect, or any possible designs thereof.
  • the communication device may include a transceiver module and/or a communication module.
  • the communication device may include a processor and/or a transceiver.
  • the communication device may also include a memory.
  • a communication system in a fourth aspect, includes the communication device shown in the third aspect and a second communication device, the second communication device can be used to receive a first data packet from the first communication device, and the second communication device The device may support sidelink communication.
  • a fifth aspect provides a computer-readable storage medium for storing computer instructions or programs, and when the computer instructions or programs are run on a computer, the computer is made to execute the above-mentioned first aspect, second A method as described in an aspect or any of its possible embodiments.
  • a computer program product that, when run on a computer, causes the computer to perform the method described in the first aspect, the second aspect, or any possible designs thereof.
  • a circuit is provided, the circuit being coupled to a memory, the circuit being used to perform the method described in the first aspect, the second aspect or any one of the possible embodiments thereof.
  • the circuit may include a chip circuit, a chip or a system of chips, or the like.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the architecture of another communication system provided by an embodiment of the present application.
  • FIG. 3 is a time-domain schematic diagram of resource sensing provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a time domain structure of a DRX provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 8 is a time-domain schematic diagram of another resource perception provided by an embodiment of the present application.
  • FIG. 9 is a time-domain schematic diagram of another resource perception provided by an embodiment of the present application.
  • FIG. 10 is a time-domain schematic diagram of another resource sensing provided by an embodiment of the present application.
  • FIG. 11 is a time-domain schematic diagram of another resource sensing provided by an embodiment of the present application.
  • FIG. 12 is a time-domain schematic diagram of another resource perception provided by an embodiment of the present application.
  • FIG. 13 is a time-domain schematic diagram of another resource sensing provided by an embodiment of the present application.
  • FIG. 15 is a time-domain schematic diagram of a DMRS symbol provided by an embodiment of the present application.
  • FIG. 16 is a time-domain schematic diagram of another DMRS symbol provided by an embodiment of the present application.
  • a terminal device such as a terminal device, or a module for realizing the functions of the terminal device, such as a chip system, and the chip system can be set in the terminal device.
  • the terminal device includes a device that provides data connectivity to a user, specifically, includes a device that provides data connectivity to a user, or includes a device that provides data connectivity to a user. For example, it may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), exchange data with the RAN, or exchange data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device (D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (Internet of things, IoT) terminal equipment.
  • UE user equipment
  • D2D device-to-device
  • V2X terminal equipment
  • machine-to-machine/machine-type communication machine-to-machine/machine-type communications
  • M2M/MTC Internet of things terminal equipment
  • IoT Internet of things
  • direct communication (PC5) interface communication is supported between terminal devices, that is, transmission through a side link is supported.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes. Wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as vehicle-mounted terminal equipment.
  • the terminal device may further include a relay (relay).
  • a relay relay
  • any device capable of data communication with the base station can be regarded as a terminal device.
  • the communication method provided by the embodiment of the present application may be described by taking a terminal device as an example.
  • the transmitting terminal equipment can be replaced by the transmitting terminal device or the transmitting terminal device
  • the receiving terminal equipment can be replaced by the receiving terminal device or the receiving terminal device
  • the auxiliary terminal equipment can be replaced by the auxiliary terminal device.
  • Network equipment including, for example, access network (AN) equipment, such as a base station (for example, an access point), which may refer to a device in an access network that communicates with a terminal device through one or more cells over an air interface,
  • AN access network
  • base station for example, an access point
  • RSU road side unit
  • the RSU can be a fixed infrastructure entity supporting V2X applications and can exchange messages with other entities supporting V2X applications.
  • the network equipment may include the next generation node B (gNB) in the fifth generation mobile communication technology (the 5th generation, 5G) new radio (new radio, NR) system (also referred to as the NR system for short), or also It may include a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, Cloud RAN) system, which is not limited in this embodiment of the present application.
  • gNB next generation node B
  • 5G fifth generation mobile communication technology
  • NR new radio
  • NR new radio
  • NR new radio access network
  • Cloud RAN cloud radio access network
  • the network devices described refer to access network devices.
  • network equipment and/or access network equipment may be represented by base stations.
  • the apparatus for implementing the function of the network device may be the network device, or may be an apparatus capable of supporting the network device to implement the function, such as a chip system, and the apparatus may be installed in the network device.
  • the technical solutions provided by the embodiments of the present application are described by taking the device for realizing the function of the network device being a network device as an example.
  • the mode (mode) of sideline communication includes two modes: mode 1 and mode 2.
  • under mode1 there are configuration-based scheduling type 1 and configuration-based scheduling type 2.
  • the configuration-based scheduling type 1 refers to: the base station configures resources for the terminal equipment to perform transmission, and the terminal equipment performs transmission according to the configured resources according to the situation of the service without further scheduling.
  • the configuration-based scheduling type 2 means that the base station configures a resource available for transmission, and the terminal device uses the configured resource to perform continuous transmission. Among them, as shown in FIG.
  • the base station in mode 1, can schedule resources for sideline transmission (or sideline communication resources) to the terminal device 1 and/or the terminal device 2, and the terminal device 1 can schedule the resources according to the base station.
  • the resources are transmitted sideways to the terminal device 2 .
  • the resource pool can be configured or pre-configured by the base station, and the terminal device 1 performs resource perception (or called listening, resource perception or perception, etc.) and resource selection in the resource pool, and performs side-by-side to the terminal device 2 through the selected resources. line transfer.
  • the terminal device 1 that performs mode sidelink transmission it needs to have sensing capability or support selection of transmission resources for sidelink communication through sensing.
  • the resource pool may be continuous or discontinuous in the time domain, and may also be continuous or discontinuous in the frequency domain. This application does not limit this.
  • Sidelink communication resources refer to the resources scheduled by the base station for sidelink transmission in this application, or refer to the time-frequency resources in the resource pool used for sidelink communication.
  • the terminal device 1 can perform sidelink transmission on this resource.
  • a physical sidelink control channel (PSCCH), a physical sidelink share channel (PSSCH), and a physical sidelink feedback channel (physical sidelink feedback channel) can be carried on one resource.
  • PSFCH physical sidelink control channel
  • PSFCH physical sidelink share channel
  • DMRS physical sidelink feedback channel
  • the reference signal may be carried in one or more resource elements (REs), and the RE may occupy one symbol in the time domain and one subcarrier in the frequency domain.
  • the time-domain scheduling unit of the sidelink resource is a time slot
  • the frequency-domain scheduling unit is a subchannel.
  • the terminal device 1 may measure the signal strength of the resource within the sensing window, for example, the reference signal received power (RSRP) measurement value of the detection resource, if the RSRP measurement value is greater than or equal to a certain A threshold (eg, the RSRP threshold Th RSRP , hereinafter referred to as the RSRP threshold), it is considered that the resource is occupied by other terminal devices.
  • RSRP reference signal received power
  • the terminal device 1 excludes the resource in the resource selection window corresponding to the resource from the candidate resource set.
  • the resource in the resource selection window corresponding to the excluded resource may be the resource determined according to the resource and the resource reservation period.
  • the resource reservation period is a signaling-configured or predefined period value, and the reservation period can be indicated by the SCI.
  • the SCI can indicate the reservation period and the time-frequency resources currently used.
  • the currently used time-frequency resources and the reservation period can correspond to the resources reserved after the time of sending the SCI, which may be referred to as period reserved resources in this application.
  • the periodic reservation resource is reserved by the sending device through the SCI sent by the sending device. From the perspective of the receiving device, it receives the SCIs sent by other devices, thereby determining the resources that these devices periodically reserve through the SCIs it sends.
  • the RSRP threshold is determined according to the priority of the data to be sent by the terminal device 1 and the priority of the data corresponding to the resource.
  • the data corresponding to the resource includes data being transmitted by the resource and/or data reserved for transmission on the corresponding resource.
  • the priority of the data corresponding to the resource can be obtained by sensing the resource in the monitoring window.
  • the terminal device 1 can obtain the indication information of the priority of the data being transmitted on the resource 1 by sensing the resource 1, so as to know the priority of the data being transmitted on the resource 1.
  • terminal device 1 may obtain priority indication information in resource 2 by sensing resource 2 in the listening window, and the indication information may indicate the priority of data reserved for transmission of resource 1 in the resource selection window, wherein the resource 2 can be placed before resource 1.
  • the signal strength may include a received signal strength indicator (RSSI), a reference signal received quality (reference signal received quality, RSRQ) or other parameters that can represent signal strength.
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • a subchannel refers to a set of a frequency domain resource unit that is sufficient for L continuous or discontinuous physical resource blocks (PRBs) occupied continuously in the frequency domain.
  • L is a preset positive integer, for example: 8, 10, 12, 15, 20, 25 or 50, etc. The specific value is not limited in the embodiment of the present application.
  • a certain measurement quantity can be used to describe the busyness of the resource pool being occupied at a specific moment.
  • Channel busy rate channel busy rate
  • CR channel occupancy ratio
  • CBR is defined as: on the resource pool, in the time unit [na, n-1], the number of sub-channels exceeding a specific RSSI threshold accounts for the ratio of the total sub-channels.
  • the measurement of the CBR may be obtained by measurement in a continuous time unit in the time domain, or may be obtained by measurement in a discontinuous time unit, which is not limited in this embodiment of the present application.
  • a larger value of CBR indicates that the channel is used by more users, or occupied by more transmissions, and/or indicates that the channel is more congested. Conversely, if the value of CBR is smaller, the channel is more idle.
  • CR is defined as: on the resource pool, the number of sub-channels S1 to be used for transmission in the time unit [na, n-1], and the sub-channels to be used for human sub-channels in the time unit [n, n+b] Number of channels S2; the ratio of the sum of S1 and S2 divided by the total number of sub-channels S over [na,n+b]. That is, the value of CR is (S1+S2)/S.
  • n is the moment when resource selection is triggered, and a and b are non-negative integers.
  • a+b+1 ⁇ c, c is a predefined constant, for example, c is 1000 or 1000*2 u .
  • u is the carrier spacing value used in transmission.
  • the measurement of CR may be obtained by measurement in a continuous time unit in the time domain, or may be obtained by measurement in a discontinuous time unit, which is not limited in this embodiment of the present application.
  • a larger value of CR indicates that the channel is used by more users or occupied by more transmissions. Indicates that the channel is more congested. On the contrary, the more idle the channel is.
  • the terminal device 1 can exclude the periodically reserved resources of the resource in the candidate resource set through resource sensing.
  • the remaining resources in the listening window ie, the resources that are not excluded
  • a resource or candidate resource for sideline transmission refers to a resource or a set of resources that is used or considered by the sending terminal device to perform the sideline transmission to the receiving terminal device. It should be understood that the resources in this application refer to time-frequency resources.
  • the moment when the resource selection is triggered is also called the resource selection trigger moment, that is, the time point when the resource selection is triggered.
  • the higher layer requests the terminal device to determine the time of a set of resource sets used for resource selection during data transmission.
  • the upper layer here may be the protocol or signaling of the base station, or may be the upper layer protocol stack of the terminal device (such as upper layer software, media access control (media access control, MAC) layer, etc.).
  • this trigger moment can be represented as n.
  • the moment can be a certain symbol, a certain time slot, a certain mini-slot (the number of occupied symbols is any number of symbols from 1 to 12 or 1 to 14 symbols), a position of a certain subframe or radio frame, etc. .
  • the upper layer will provide the terminal device with parameters for resource selection. These parameters include one or more of the following: the resource pool used, the priority of the physical layer, the remaining PDBs, the number of sub-channels required in a time slot, the interval for resource reservation, and the like.
  • the moment when the resource selection is triggered is usually the moment when the application layer data has been assembled in the protocol stack and the packet is about to be delivered through the physical layer.
  • the moment of triggering resource selection may be the time when a transport block (TB) of the MAC layer arrives (or is about to be sent, or is about to arrive) at the physical layer.
  • TB transport block
  • time slot n is used as an example to describe the moment of triggering resource selection in the embodiments of the present application, but it does not exclude that the time slot n here can be replaced by symbol n, mini-slot n and other durations The time n of the transmission of the unit.
  • one transport block may be used to carry one or more data packets transmitted through the sidelink.
  • the monitoring window may also be referred to as a resource monitoring window, or may also be referred to as a listening window, a detection window, or a perception window.
  • the listening window is a set of time-frequency resources of the terminal device within a period of time before the moment when resource selection is triggered. Because the time when the terminal device needs to perform the resource selection of the physical layer occurs at the time when the resource selection is triggered, the terminal device only knows whether the resource selection needs to be performed after the time when the resource selection is triggered arrives. Therefore, the terminal device will always sense resources, so that when the time for triggering resource selection arrives, appropriate transmission resources after the time for triggering resource selection are determined according to the sensing results before the time for triggering resource selection. Optionally, the terminal device usually performs detection and analysis forward by the length of the listening window.
  • the time domain position of the listening window is [nT 0 , nT proc,0 ).
  • nT 0 is the starting position of the resource monitoring window, for example, T 0 may be 1100 milliseconds (ms) or 100 ms, or may be other values.
  • T proc,0 is the time for the sending terminal device to process the monitoring result. The value of T proc,0 will be different according to the different capabilities of the terminal device, and T proc,0 ⁇ 0.
  • the selection window may also be referred to as a resource selection window.
  • the terminal device can exclude the unavailable time-frequency resources in the resource selection window [n+T 1 , n+T 2 ] according to the sensing result, and then send the terminal device to obtain the available time for sending the TB.
  • frequency resources which are used to obtain the resources used for sideline transmission through resource selection.
  • T 1 is a non-negative constant
  • T 2 is a constant that does not exceed the remaining PDB. The terminal device needs to determine the transmission resource for the TB to be transmitted within the selection window.
  • the terminal device needs to send the TB to be transmitted according to the determined transmission resource within the selection window.
  • the terminal device (such as the physical layer) may determine candidate or available resource sets (which may be referred to as candidate resource sets, and the resources therein may be referred to as candidate resources) in the selection window, and then report these resource sets to higher layers. (such as the MAC layer), and then the upper layer determines the transmission resources from this resource set.
  • the physical layer of the terminal device may directly determine the transmission resource according to the determined candidate or available resource set, and send the TB to be transmitted.
  • the time when the service layer of the terminal device generates data is the start time of the PDB, the PBD is the maximum delay, and the start time may be before time n.
  • the PDB after time n is the remaining PDB.
  • the time domain range of the listening window in this application may not be limited to [nT 0 , nT proc, 0 ), and/or the time range of the resource selection window may not be limited to [n+T 1 , n+T 2 ]. That is to say, there may be no specific constraints on the time domain range of the listening window and/or the resource selection window.
  • the manner in which the terminal device selects resources for sidelink transmission from the resource pool includes random resource selection, partial sensing resource selection, and full sensing ) resource selection, etc.
  • the random resource selection means that the terminal device determines resources by random selection from the resource selection window.
  • This resource selection method does not require the terminal device to support perception, and the terminal device may even have no resource perception capability.
  • the terminal performing random resource selection may also have a perception capability, which is not limited in this embodiment of the present application.
  • the terminal device Under partial sensing, the terminal device only senses the occupancy of a part of the resources in the resource pool, but does not sense other resources, and then the terminal device can select transmission from the sensed unoccupied resources and/or the unsensed resources resource.
  • the terminal devices that select resources in this way are partial sensing devices, such as partial sensing devices being studied in the 3GPP standard R17.
  • Partial sensing includes periodic based partial sensing (PPS) and/or short term sensing (STS).
  • PPS periodic based partial sensing
  • STS short term sensing
  • Period-based partial sensing or periodic sensing means that the terminal device will use every step Pstep to determine partial sensing resources for detection on partial time domain resources on the time axis. A possible sideline transmission is then sensed from all or some of these partial sense resources. It can be described as: tyk*Pstep .
  • k is an integer
  • the step length Pstep may be a complete set or a subset in the set formed by all reservation period values, and the reservation period is configured or predefined by signaling.
  • ty may be a candidate time slot in a candidate resource of size Y determined from a selection window based on period-based partial sensing.
  • y in ty can be y 0 ,y 1 ,...,y Y-1 .
  • each candidate sensing resource subset can be called a set of sensing resources, and its positions are: t y-10Pstep , ty-9Pstep , ... and ty -Pstep, these subsets of candidate perception resources can be represented by ty-10Pstep, ty -9Pstep , ... and ty-Pstep , respectively.
  • the size (or length) of each candidate perceptual resource listening subset is Y time slots (or subframes).
  • ty can be the first time slot in Y, or a certain time slot in the middle, or the last time slot.
  • the resources sensed by the terminal device may be referred to as periodic-interval partial sensing resources or periodic partial sensing resources, or the like.
  • the periodic interval partial sensing resources may include one or more sets of sensing resources of ty-10Pstep, ty -9Pstep , ... and ty-Pstep .
  • the time slot for performing the partial sensing operation may be one or more sets of sensing resources, and each set of sensing resources is determined by tyk*Pstep according to the corresponding k value.
  • the value of k is fixed to a predefined integer, there is only this set of values for k.
  • the value of k can take 1 and 2, there can be two groups of ty -Pste and ty -2*Pste .
  • the value of k can be 1, 2, 3, there can be three groups of ty -Pste , ty -2*Pste and ty -3*Pste .
  • the "period" in the periodic partial sensing operation more refers to the fact that the resources for performing partial sensing are determined based on the interval Pstep. When it has only one set, it does not mean that other operations are to be performed. When it has multiple groups, it refers to multiple groups determined by interval Pstep.
  • Pstep when Pstep has different values, different Psteps will determine different partial sensory resources according to tyk *Pstep .
  • the partial sensing of the period may be before time slot n, or after time slot n. This embodiment of the present application does not limit this.
  • V2X communication takes V2X communication as an example to describe the manner in which the terminal device performs partial sensing based on the period.
  • the terminal device detects SCIs sent by other devices, and these SCIs will indicate at least one of the following information: the time-frequency resources occupied by the corresponding data in the current time slot, the time-frequency resources occupied by the corresponding data in the current time slot, and the time-frequency resources occupied by the corresponding data in the current time slot. Pass the corresponding reserved resources or sending period.
  • the terminal device can determine the resources occupied or reserved respectively for the transmission of the current data packet and the subsequent retransmission according to the occupied resources and the reserved resources. Further, combined with the period indicated in the SCI, the resources occupied on the corresponding time-frequency resources in the subsequent period can also be determined.
  • the resources occupied in the resource selection window in the future can be determined.
  • the resource occupied or reserved by the terminal device detected by another terminal device is R(x,y), where x represents the frequency domain location, and y represents the time domain location where the SCI is detected or the reserved location indicated by the current SCI.
  • the terminal device can determine that all the resources R(x, y+j*P) are reserved by the other terminal device, where j is a non-negative integer, and P is the detected SCI. period value.
  • the terminal device can determine the resources occupied or reserved by other terminal devices on the perception window and the resource selection window in combination with the information, so that these resources can be excluded from the resource selection window.
  • excluding resources refers to not using some resources as resources in the candidate resource set and/or not using some resources as resources for sideline transmission.
  • Short-term sensing means that the terminal device performs sensing on all or part of the time units within a period of time determined in the resource selection window and/or the sensing window.
  • the terminal device determines candidate resources according to the sensing result.
  • the difference from the period-based partial sensing is that the short-term sensing resources are not determined according to the preset interval Pstep, and only need to measure the position for a period of time.
  • the short-term sensing resource can be located after the moment when the resource selection is triggered and before ty , so the short-term sensing does not need to be performed frequently, and only needs to be performed after the resource selection is triggered, to save power consumption.
  • the terminal device can obtain the reservation or occupation of resources in the selection window by other terminal devices according to the short-term perception in the selection window, thereby excluding resources reserved and/or occupied by other terminal devices in the selection window.
  • the terminal device may use the period-based partial sensing listening window to determine the resource occupancy information of periodic services, and/or use the short-term sensing resource to monitor the occupancy information of periodic or aperiodic services.
  • the terminal device can combine the occupancy information of these two parts of resources to obtain a complete monitoring result.
  • both the partial sensing and the complete sensing resource selection methods require the terminal device to have sensing capability.
  • the sensing and resource selection process of the sending terminal device may include the following steps:
  • the sending terminal device receives the SCI from other terminal devices on the sensing resource, where the SCI includes resource reservation information of other terminal devices.
  • n represents the time at which the transmitting terminal apparatus is triggered to perform resource selection.
  • the SCI is a first-level SCI (1st-stage SCI), which is sent on PSCCH.
  • the sensing resources here include periodic-based partial sensing sensing resources and/or short-term sensing sensing resources, and if it is full sensing, sensing resources may include all resources within the listening window.
  • the resources in the monitoring window may be a part of the resources in the resource pool determined according to time n.
  • one SCI can schedule three transmissions of the same TB.
  • the first transmission among the three transmissions is an initial transmission, and the last two transmissions are retransmissions, or the three transmissions are all retransmissions.
  • the perception information included in the SCI includes the time-frequency resource information of the second and third retransmitted scheduling data, the periodic time-frequency resource information and data priority information reflecting the data service period, and the like. It can be understood that, at a given moment, a terminal device reserves resources (including time-frequency resources) after the moment by sending an SCI for data retransmission and new periodic data transmission.
  • the transmitting terminal device knows from the received perception information of the SCI from the terminal device 1, the time-frequency resource reserved by the terminal device 1 is located in the resource selection window [n+T 1 ,n+T 2 ] of the transmitting terminal device.
  • the transmitting terminal device measures the data and/or the DMRS of the control channel that the terminal device 1 needs to send on the time-frequency resource according to the sensing information, and obtains the RSRP measurement value. If the RSRP measurement value is greater than the RSRP threshold, the sending terminal device excludes the periodic reserved resource corresponding to the time - frequency resource from the set SA.
  • the terminal device can follow the time domain position of the unsensed resources in the listening window and all the cycles in the service cycle set configured for the resource pool. , excluding resources from set S A.
  • the initialization state of the set SA is the set of all candidate single-slot resources in the resource selection window.
  • the candidate single-slot resource refers to a time-frequency resource whose time domain length is one time slot.
  • SA represents a candidate resource set, and the initial state of the candidate resource set includes all candidate single-slot resources in the resource selection window.
  • the sending terminal device may determine the available time-frequency resources among the remaining resources in the listening window. Thus, the transmitting terminal device selects time-frequency resources from the available time-frequency resources to transmit data.
  • M total is the total number of all candidate single-slot resources in the resource selection window, or, M total is the total number of all resources that can be used for sideline transmission by the second terminal in the resource selection window.
  • steps 1 to 4 are also referred to as the process of determining candidate resources, and the process of determining candidate resources in this application may be implemented with reference to the above steps 1 to 4, or implemented in other ways.
  • the time-frequency resource used by the transmitting terminal device when sending data is selected in the resource selection window based on the monitoring result of the transmitting terminal device in the resource monitoring window.
  • the perception result can be regarded as being obtained on the basis of the listening result.
  • the listening results include the results determined through the above steps 1, 2 and 3 or 1, 2, 3 and 4.
  • the perception result is the set of remaining resources after resource exclusion.
  • the transmitting terminal device does not know the channel conditions around the receiving terminal device. If there are other terminal devices communicating around the receiving terminal device, but the transmitting terminal device is not aware of it, the receiving terminal device may receive data from the transmitting terminal device when receiving data from the transmitting terminal device. The strong interference caused by the communication leads to poor signal reception quality of the receiving terminal device, and may even fail to receive.
  • the priority of the data may be the priority of the service to which the data belongs.
  • the priority of the data expected to be sent is known, for example, obtained from a higher layer.
  • the terminal device can learn the priorities of services transmitted by other terminal devices according to the priority information carried in the SCI.
  • the higher the service priority means that the data in the data packet corresponding to the service to be transmitted is more important.
  • the higher the priority of the service the higher the quality of service (quality of service, QoS) parameter requirements of the service.
  • the QoS parameter of the service includes at least one of the following: a reliability requirement of the service, a transmission delay requirement of the service, a transmission rate or a transmission throughput requirement of the service.
  • the priority of the service may be negatively correlated with the priority value indicated in the SCI, or may be positively correlated. Taking negative correlation as an example, the smaller the priority value indicated in the SCI, the more important the business is, and vice versa, the lower the importance of the business is.
  • the priority in the SCI may be indicated by 3 bits, and its value may correspond to an integer from 1 to 8. When the SCI indicator is 1, it indicates that the business priority is higher; when the SCI indicator is 8, it indicates that the business priority is lower.
  • the priority of the data may be the priority of the TB to be sent transmitted from the MAC layer to the physical layer.
  • a TB of a service to be transmitted may include: at least one MAC control element and/or at least one logical channel.
  • each MAC control element corresponds to a priority
  • each logical channel corresponds to a priority.
  • the highest priority in at least one MAC control element and/or at least one logical channel included in the service to be transmitted may be determined as the priority of the entire TB of the service to be transmitted.
  • the signaling configuration includes the configuration by signaling sent by the base station, and these signaling can be radio resource control (radio resource control, RRC) messages, downlink control information (downlink control information, DCI) or system information blocks ( system information block, SIB).
  • the signaling configuration may also be configured to the terminal device by pre-configured signaling, or configured to the terminal device in a pre-configured manner.
  • the pre-configuration here is to define or configure the values of the corresponding parameters in advance by means of a protocol, and store them in the terminal device when communicating with the terminal device.
  • the preconfigured messages can be modified or updated under the condition that the terminal device is connected to the network.
  • the signaling configuration may limit the value of the relevant parameter or the configuration information to the resource pool sent or received by the terminal device.
  • the resource pool is a collection of resources used for transmission on a particular carrier or portion of bandwidth.
  • the DRX refers to a sleep mode in which the terminal device performs cyclically and repeatedly during non-reception time and an operation mode in which reception is performed during reception time.
  • the non-reception time or sleep time here refers to: in a DRX cycle, the non-reception period (DRX off duration) or the non-reception period in the time domain position, at which time the terminal device is in a non-reception state or a sleep state .
  • the receiving time refers to: in one DRX cycle, the receiving period (DRX on duration) or the receiving duration in the time domain position, at which time the terminal device is in the receiving state.
  • a non-reception time and reception time together can be called a DRX cycle (DRX cycle).
  • the terminal device in the non-reception time does not perform sensing, or in other words, the terminal device does not determine candidate resources according to the sensing result.
  • the terminal device at the receiving time may perform sensing, or in other words, the terminal device may determine candidate resources according to the sensing result.
  • the DRX cycle may be configured by DRX configuration information or other signaling.
  • the configuration of DRX is determined based on the service characteristics between sending and receiving UEs on the sidelink. For example, it is determined according to information such as the cycle, priority or reliability requirements of the service. For example, if the period of service sent by terminal device 1 is 100ms, and the duration of service transmission is 10ms, the configuration of DRX received by terminal device 2 may be the same as the period and duration of service sent by terminal device 1. Under this condition, the terminal device 2 only needs to receive 10% of the time, and the remaining 90% of the time can be turned off to sleep. Therefore, the receiving power consumption of the terminal device 2 can be saved to the greatest extent without affecting the service reception.
  • An ideal DRX configuration (including the period and the receiving time and sleep time in the period) is determined only according to the service characteristics of the terminal device at the transmitting end. In individual cases, coordination can also be performed according to a plurality of concurrently to be received services of the receiving terminal device. But even so, the configuration of the DRX is mainly determined based on the services transmitted between the terminal devices. And it can be understood that the configuration information of the DRX can be interacted or shared among terminal devices that communicate with each other.
  • discontinuous reception and partial sensing mechanisms coexist, the sensing of the resources originally required by the receiving terminal device during the non-reception time cannot be performed, which will adversely affect the result of resource selection. Therefore, when the functions of discontinuous reception and partial sensing are used jointly (or simultaneously) (or configured or activated), it is necessary to consider the resource selection when doing partial sensing as much as possible under the condition of reducing the power consumption of the terminal device as much as possible. In order to achieve the purpose of minimizing the impact on the system communication performance.
  • the solution that can effectively coexist the discontinuous reception and partial sensing mechanisms of the terminal device still needs to be studied, because in the case of the coexistence of the discontinuous reception and the partial sensing mechanism, the terminal device cannot effectively obtain the energy-saving effects of the two mechanisms.
  • the combination of these two mechanisms may have a greater impact on the resource selection result of the terminal device, resulting in a decrease in the quality of sidelink communication.
  • the embodiment of the present application provides a communication method, which is used to provide a solution of discontinuous reception and partial sensing coexistence, and enables the terminal device to obtain discontinuous reception on the premise that the sidelink communication performance of the terminal device is not greatly affected.
  • the energy saving effect brought by the two mechanisms of reception and partial perception.
  • the communication method can be implemented by a first terminal device, wherein the first terminal device refers to a transmitting end terminal device in sidelink communication.
  • the first terminal device may determine candidate resources according to the communication method provided in the embodiment of the present application, and send sidelink data (or simply referred to as data) to the second terminal device according to the candidate resources.
  • the second terminal device in this application may refer to a receiving end terminal device in sidelink communication.
  • FIG. 5 and FIG. 6 schematic structural diagrams of a terminal device provided by an embodiment of the present application are used to implement the communication method provided by the embodiment of the present application.
  • FIG. 5 shows a schematic structural diagram of a possible terminal device, and the structure may include a processing module (or a processing unit) 510 and a transceiver module (or a transceiver unit) 520 .
  • the structure shown in FIG. 5 may be a terminal device, a chip applied in the terminal device, or other combined devices, components (or components), etc. having the functions of the terminal device shown in this application.
  • the transceiver module 520 may be a transceiver, and the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 510 may be a processor, such as a baseband processor, and the baseband processor may include one or more central Processing unit (central processing unit, CPU).
  • the transceiver module 520 may be a radio frequency unit
  • the processing module 510 may be a processor, such as a baseband processor.
  • the transceiver module 520 may be an input/output interface of a chip (eg, a baseband chip), and the processing module 510 may be a processor of the chip system, which may include one or more central processing units. It should be understood that the processing module 510 in this embodiment of the present application may be implemented by a processor or a circuit component related to the processor, and the transceiver module 520 may be implemented by a transceiver or a circuit component related to the transceiver.
  • the processing module 510 may be configured to perform all operations performed by the first terminal device in any embodiment of the present application except for the transceiving operations, such as processing operations, and/or other operations for supporting the techniques described herein Processes, such as generating messages, information, and/or signaling sent by the transceiving module 520, and processing messages, information, and/or signaling received by the transceiving module 520.
  • the transceiver module 520 may be used to perform all receiving and sending operations performed by the first terminal device in any embodiment of the present application, and/or used to support other processes described herein, such as data sending and/or take over.
  • the transceiver module 520 can be a functional module that can perform both sending and receiving operations.
  • the transceiver module 520 can be used to perform all sending operations and/or all sending operations performed by the relay node and/or the remote node.
  • the transceiver module 520 can be considered as a sending module, and when performing a receiving operation, the transceiver module 520 can be considered as a receiving module;
  • the module 520 can be regarded as a general term for these two functional modules, the two functional modules are respectively a sending module and a receiving module, the sending module is used to complete the sending operation, for example, the sending module can be used to execute all the functions performed by the first terminal device.
  • the receiving module is used to complete the receiving operation, and the receiving module can be used to perform all the receiving operations performed by the relay node and/or the remote node.
  • FIG. 6 shows a schematic structural diagram of another terminal device, which is used to perform the action performed by the first terminal device provided by the embodiment of the present application. Easy to understand and easy to illustrate.
  • the terminal device may include a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminal devices, execute software programs, process data of software programs, and the like.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 6 . In an actual end device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with the transceiver function can be regarded as the transceiver unit of the terminal device (the transceiver unit may be a functional unit, and the function unit can realize the sending function and the receiving function; alternatively, the transceiver unit may also It includes two functional units, namely a receiving unit capable of realizing a receiving function and a transmitting unit capable of realizing a transmitting function), and a processor with a processing function is regarded as a processing unit of the terminal device. As shown in FIG. 6 , the terminal device includes a transceiver unit 610 and a processing unit 620 .
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
  • the processing unit may also be referred to as a processor, a processing single board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 610 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 610 may be regarded as a transmitting unit, that is, the transceiver unit 610 includes a receiving unit and a transmitting unit.
  • the transceiver unit may also sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the transceiver unit 610 may correspond to the transceiver module 520 , or the transceiver module 520 may be implemented by the transceiver unit 610 .
  • the transceiver unit 610 is configured to perform the sending operation and the receiving operation of the first terminal device in the embodiments shown in this application, and/or to support other processes of the technology described herein.
  • the processing unit 620 may correspond to the processing module 510 , or in other words, the processing module 510 may be implemented by the processing unit 620 .
  • the processing unit 620 is configured to perform operations other than the sending and receiving operations of the first terminal device in the embodiment shown in this application, for example, is configured to perform operations other than receiving and sending performed by the first terminal device in the embodiment shown in this application. All operations, and/or other processes used to support the techniques described herein.
  • the communication method provided by the embodiment of the present application may be implemented by the first terminal device.
  • the first terminal device may be used as a transmitting terminal device or a component in the transmitting terminal device to perform sidelink transmission to the second terminal device.
  • the second terminal device may be a receiving end terminal device or a component received into the terminal device.
  • the structure of the first terminal device is shown in FIG. 5 and/or FIG. 6 .
  • the transceiving module 520 and/or the transceiving unit 610 may be configured to perform the sending and/or receiving operations performed by the first terminal device in the communication method.
  • the processing module 510 and/or the processing unit 620 may be configured to perform processing operations performed by the first terminal device in the communication method and/or all operations except receiving and sending.
  • the communication method provided by the embodiment of the present application may include the following steps:
  • the first terminal device determines a candidate resource according to at least one of DRX configuration information, a first resource or a second resource.
  • the first resource and the second resource are part of the periodically spaced sensing resources or part of the continuously distributed sensing resources, respectively.
  • Partial sensing resources at periodic intervals are resources used for periodic partial sensing, such as multiple candidate sensing resource subsets distributed at intervals of Pstep in the listening window.
  • the continuously distributed partial sensing resources are resources used for short-term partial sensing, such as the short-term sensing resources shown in FIG. 3 .
  • the DRX configuration information is used to determine reception time and non-reception time.
  • the DRX configuration information here may be the DRX configuration information of the first terminal device and/or the DRX configuration information of the second terminal device, which is not specifically limited in this application.
  • the DRX configuration information may specifically be used to configure one or more of the period of DRX, the start time of DRX, the duration of DRX reception, or the duration of DRX non-reception.
  • the DRX acceptance duration is the time domain length of the DRX reception time
  • the DRX non-reception duration is the time domain length of the DRX non-reception time.
  • the first terminal device determines candidate resources according to at least one of the DRX configuration information, the first resource or the second resource, including the first terminal device according to at least one of the DRX configuration information, the first resource or the second resource, It is determined that a candidate resource is determined according to the first resource and/or the second resource, and the candidate resource is determined according to the first resource and/or the second resource.
  • the first terminal device determines the candidate resource according to at least one of the DRX configuration information, the first resource, or the second resource, including the first terminal device determining, according to at least one of the DRX configuration information, the first resource, or the second resource, to pass Random resource selection determines candidate resources.
  • determining the candidate resource according to the first resource and/or the second resource means that the first terminal device determines the candidate resource according to the sensing result obtained by sensing the first resource and/or the sensing result obtained by sensing the second resource.
  • the first resource is part of the sensing resources at periodic intervals, and the second resource is part of the sensing resources distributed continuously.
  • the first resource is a part of the sensing resources distributed continuously, and the second resource is a part of the sensing resources at periodic intervals.
  • the candidate resource may be a resource in the candidate resource set reported by the physical layer of the first terminal device to the MAC layer.
  • S102 The first terminal device sends the first data packet according to the candidate resource.
  • the first data packet can be received by the second terminal device.
  • the second terminal device may be a certain receiving device of the first terminal device; it may also be a group of receiving devices of the first terminal device under multicast; it may also be unlimited One or more receiving apparatuses of a specific receiving object, which is not limited in this embodiment of the present application.
  • the first terminal device may send the first data packet through some or all of the candidate resources.
  • the first terminal device may send the first data packet by using a resource located at the receiving time of the second terminal device among the candidate resources, or in other words, the candidate resource is located at the receiving time of the second terminal device, so as to ensure that the sent data packet is received.
  • the data can be received by the second terminal device to improve communication reliability.
  • the first terminal device uses the above process shown in FIG. 7 to improve the quality of the sidelink communication of the first terminal device.
  • the first terminal device when the first condition is satisfied, the first terminal device may determine the candidate resource according to the first resource. At this time, the first terminal device may not sense the second resource, so as to further save power consumption.
  • the first resource and the second resource may be one of periodically spaced partial sensing resources or continuously distributed partial sensing resources.
  • the first condition includes: the second resource is located at a non-receiving time, and/or some or all of the first resources are located at a receiving time.
  • the second resource is a part of the sensing resources at periodic intervals, the second resource being located at the non-receiving time may mean that all the resources in the listening window of the first terminal device are located at the non-receiving time.
  • a resource is located at a non-receiving time, which means that the start position and the end position of the resource are both within the same non-receiving time, or that all the time domain positions of the resource belong to the non-receiving time. , or all the time domain locations of the resource are not part of the reception time.
  • the resource is located at the receiving time, it means that the starting position and the ending position of the resource are both within the same receiving time, or that all the time domain positions of the resource belong to the receiving time, or, all the time domain positions of the resource Neither is a non-reception time.
  • the first terminal device may determine candidate resources according to the periodically spaced partial sensing resources. Wherein, the first terminal device may determine the candidate resources according to the sensing results of the partial sensing resources located at periodic intervals within the receiving time.
  • the process of determining the candidate resource by the first terminal device does not consider the sensing result of the second resource, or the first terminal The device may not perceive the second resource when the first condition is satisfied.
  • the first terminal device may re-evaluate or preempt the determined candidate resource.
  • re-evaluation refers to a process of re-checking the determined resource before sending.
  • Preemption evaluation refers to the process of checking the resources reserved by previous transmissions before making further new transmissions after transmission is initiated.
  • the candidate resource determined by the first terminal device does not include the resources associated with the M time units in the selection window.
  • the time unit may be a time slot, a symbol, a combination of multiple time slots or symbols, etc.
  • M is a positive integer.
  • the first terminal device excludes the resources in the selection window associated with the M time units.
  • the resources associated with the M time unit intervals here refer to the resources that are separated from the M time units by m transmission periods P, where m is a positive integer.
  • P is a transmission period value configured on the resource pool where the first terminal device is located.
  • the first terminal device can The sensing result of the resource determines the candidate resource.
  • the third resource is one or more sets of sensing resources closest to the first moment, and the first moment may be the moment when resource selection is triggered.
  • some or all of the resources of the third resource are located in the perception window.
  • the one or more sets of sensing resources belong to the subset of candidate sensing resources determined according to the step size Pstep.
  • part or all of the third resource may be within the receiving time of the second communication device, so as to further improve the quality of sidelink communication.
  • the first terminal device can sense ty-Pstep , and determine candidate resources according to the sensing result.
  • the first terminal device may not sense ty-2Pstep to reduce power consumption.
  • the first terminal device may determine candidate resources according to the continuously distributed partial sensing resources. Wherein, the first terminal device may determine the candidate resources according to the sensing results of the continuously distributed partial sensing resources within the receiving time.
  • the first terminal device may determine candidate resources according to the sensing results of the continuously distributed partial sensing resources.
  • the first terminal device or all resources to determine candidate resources.
  • the first resource may be part of the sensing resources at periodic intervals or part of the sensing resources distributed continuously. In this case, even if the first resource is located at a non-receiving time, the first terminal device can still sense some or all of the resources in the first resource, and determine the candidate resource according to the sensing result, so as to improve the validity of the determination of the candidate resource, and transmission reliability.
  • the second condition includes at least one of the following conditions:
  • the first terminal device receives a negative response of the second data packet or does not receive a positive response.
  • the second data packet is a data packet sent before the first data packet.
  • the second data packet is a data packet sent by the first terminal device before sending the first data packet (or before triggering resource selection for the first data packet).
  • the first data packet and the second data packet are both retransmitted data packets of the same initial transmission data packet, and the transmission of the second data packet is before the transmission of the first data packet; or, the first data packet and the second data packet are sent.
  • the data packets are respectively different data packets, and the transmission of the second data packet precedes the transmission of the first data packet.
  • the negative acknowledgment (or no positive acknowledgment) may indicate that the reception of the second data packet fails, and the reason may be that the quality of the candidate resource channel previously determined by the first terminal device is poor, so the resource selection is performed for the first data packet. It is necessary to improve the perception accuracy to improve the communication quality.
  • the first terminal device may sense the first resource, and determine candidate resources according to the sensing result.
  • the priority of the first data packet is not lower than the first threshold. If the priority of the data packet transmitted by the first terminal device is higher, the first terminal device can sense the first resource, and determine candidate resources according to the sensing result, so as to improve the effectiveness of resource selection and ensure the first data packet transmission is reliable.
  • the first threshold may be a value configured by signaling.
  • the channel state parameter value on the resource pool where the candidate resource is located is not lower than the second threshold.
  • the channel state parameter value here includes, but is not limited to, CBR, CR, RSRP, or RSSI of the resources in the resource pool obtained by the first terminal device.
  • CBR CBR
  • CR CCR
  • RSRP RSRP
  • RSSI RSSI of the resources in the resource pool obtained by the first terminal device.
  • the first terminal device can sense the first resource and determine candidate resources according to the sensing result, so as to improve resource selection validity, to ensure the reliability of the transmission of the first data packet.
  • the second threshold may be a value configured by signaling.
  • the first terminal device is configured (or activated or enabled) to re-evaluate or preempt evaluation. If the first terminal device is configured with re-evaluation or preemption evaluation, it means that the first terminal device needs to ensure the reliability of sidelink communication through re-evaluation or preemption evaluation, that is to say, the transmission of the first data packet is not sufficient for sidelink communication. There are certain requirements for quality. At this time, the first terminal device may sense the first resource, and determine candidate resources according to the sensing result, so as to improve the effectiveness of resource selection and ensure reliable transmission of the first data packet.
  • the first terminal device receives first indication information, where the first indication information is used to indicate that when the first resource is at a non-reception time, the first terminal device determines a candidate resource at least according to the sensing result corresponding to the first resource .
  • the first terminal device may perform the determination of candidate resources based on the first indication information, that is, when receiving the first indication information, even if the first resource is at a non-reception time, the first terminal device The first resource is still sensed, and candidate resources are determined according to the sensing result.
  • the first terminal device still needs to sense the first resource, and determine candidate resources according to the sensing result of the first resource.
  • the first terminal device needs to at least determine the candidate resource according to the perception result of the first resource when the second condition is satisfied, which can improve the effectiveness of candidate resource selection and further improve the sidelink chain. road communication quality.
  • the second terminal device may determine the candidate resource according to the first resource and the second resource, that is, the first terminal device may determine the candidate resource according to the first resource and the second resource.
  • the sensing result of the resource and the sensing result of the second resource determine candidate resources, which further improves the communication quality of the sidelink.
  • the first terminal device may determine candidate resources according to the sensing results of the continuously distributed partial sensing resources.
  • the first terminal device can perform sensing on part of the sensing resources in the first resources, and determine candidate resources according to the sensing results, where the part of the sensing resources in the first resources is, for example, a group of the first resources or sets of perception resources.
  • the first terminal device may at least Some or all of the resources determine candidate resources.
  • the second resource may be part of the sensing resources at periodic intervals or part of the sensing resources distributed continuously.
  • the first terminal device may determine candidate resources through random resource selection, so as to reduce power consumption caused by perception.
  • the first resource is part of the sensing resources at periodic intervals shown in FIG. 11
  • the second resource is part of the continuously distributed sensing resources shown in FIG. 11 , since the first resource and the second resource are located at the non-receiving time of the first device Therefore, the first terminal device can determine candidate resources through random resource selection.
  • the first terminal device can Or the second resource determines candidate resources to improve communication quality.
  • the method of determining candidate resources according to the first resource and/or the second resource may refer to the aforementioned method of determining the candidate resource according to the first resource and/or determining the candidate resource according to the second resource when the second condition is satisfied, which will not be repeated here. Expand.
  • the first indication information may be used to indicate that the first terminal device is located in the first terminal device when part or all of the resources of the first resources are located in the During the non-receiving time of the terminal device, the candidate resource is determined according to the sensing result corresponding to the first resource and/or the second resource.
  • the first terminal The device may determine candidate resources based on the first resource and the second resource.
  • the first terminal device may determine the candidate resource at least according to the fourth resource in the selection window.
  • the fourth resource is at least one group of continuously distributed partial sensing resources that do not overlap with the first resource and the second resource.
  • the fourth resource is a part of the first resource and/or the second resource in the selection window. Therefore, determining the candidate resource according to the fourth resource can determine the candidate resource more accurately, and can further improve the communication quality of the sidelink.
  • the first terminal device may determine candidate resources according to the first resource, the second resource and the fourth resource.
  • the determination of candidate resources according to the fourth resource in this application may be that the first terminal device determines the first candidate resource subset according to the first resource and the second resource, and then determines the candidate resource according to the fourth resource and the first candidate resource.
  • the subset determines a second subset of candidate resources as a result of resource selection (ie, as candidate resources). For example, the process of determining the second candidate resource subset.
  • the first terminal device may, according to the sensing result of the fourth resource, exclude the sensing result of the fourth resource from the first candidate resource subset as a resource that is an occupied resource, and/or set the sensing result of the fourth resource as an unoccupied resource.
  • the occupied resources are added to the first subset of candidate resources.
  • the first terminal device may determine candidate resources according to the first resource, the second resource, and the fourth resource, without first determining the first candidate resource subset and then determining the second candidate resource subset, which is not specifically limited in this application.
  • the first resource is a part of the sensing resources distributed continuously, which can be represented as STS1
  • the second resource is a part of the sensing resources at periodic intervals, including but not limited to t y-2Pstep and t y- Pstep
  • the fourth resource may be STS2 shown in FIG. 11
  • the time domain position is [n+T c , n+T d ].
  • the number and/or size of the fourth resource (or the value of T c and/or T d ) may be configured by signaling or predefined.
  • the fourth resource may be determined according to the reception time of the second terminal device, so as to improve the effectiveness of resource selection.
  • the time domain position of the fourth resource is located Tu time slots before the start time (or the time slot where the start time is located) of the reception time of the second terminal device.
  • Tu can be a signaling configuration or a predefined value.
  • the value of Tu can be 0 timeslots, 1 timeslots, or 2 timeslots.
  • Tu may be a value between 0 and 32 time slots. Before the start time of the reception time of the second terminal device, it is to ensure that the first terminal device has enough time to determine a suitable candidate resource through STS2 before the second terminal device starts to receive.
  • the first terminal device may determine the candidate resource according to at least the fourth resource when the following fourth condition is satisfied.
  • the fourth condition includes: the candidate resource determined according to the first resource and the second resource includes K resource units, and K is less than or equal to a third threshold, wherein the third threshold is based on N times of transmission of the first data packet (including the first One of the number of resource units required for the initial transmission and/or retransmission of a data packet, the channel state parameter value of the resource pool of the first terminal device, the priority of the first data packet, configuration signaling, or a predefined value one or more types of information.
  • the channel state parameter value here is, for example, any one or more of channel busy ratio, channel occupancy ratio, RSRP or RSSI, and the like.
  • the fourth resource may include multiple sets of subsets.
  • each subset is a set of continuously distributed partial sensing resources.
  • the fourth resource includes the second sensing resource determined in the selection window by the periodically spaced partial sensing resources, and the continuously distributed partial sensing resources before the second sensing resource.
  • the time domain position of the subset of the ith group of fourth resources is located after the time domain position of the ith group of candidate resource subsets, and/or is located before the time domain position of the i+1th group of candidate resource subsets.
  • the first terminal device may determine candidate resources according to the sensing result of each fourth resource subset. For example, the total set of candidate resource subsets determined according to the sensing result of the first resource and the sensing result of the second resource is used as the candidate resource.
  • the number of subsets and/or the size of the subsets of the fourth resource may be configured by signaling or predefined.
  • the first resource is a continuous distributed partial sensing resource
  • the second resource is a periodic interval partial sensing resource, including but not limited to ty-2Pstep and ty -Pstep shown in FIG. 13 .
  • the subset of candidate resources in the resource selection window of the two-resource determination includes ty , ty +Pstep . . . ty+p*Pstep .
  • the fourth resource subset #j is located before ty+j*Pstep and after ty+(j-1)*Pstep .
  • the first terminal device may determine the subset of the candidate resource according to the second resource, including ty , ty+Pstep whil ty + p*Pstep , and further exclude ty , ty+Pstep . . . ...t y+p*Pstep resources.
  • each candidate resource subset and each fourth resource subset are within the receiving time of the second terminal device.
  • the first terminal device may periodically send the data packet of the service according to the candidate resource determined in the embodiment of the present application and the service period of the service .
  • the first terminal device may perform preemption evaluation in each transmission, so as to improve the communication quality of the sidelink.
  • condition 6 includes: the first terminal device receives second indication information, where the second indication information is used to indicate that when the preemption-evaluated sensing resource is at a non-reception time, the first terminal device at least according to the preemption-evaluated sensing resource corresponding to the The perception results determine candidate resources.
  • the manner in which the first terminal device determines the candidate resources according to the continuously distributed partial sensing resources includes: performing the timing of a timer (such as an in-active-timer), and determining according to the count of the timer. Start and end times for at least one of perception, re-evaluation, or preemptive evaluation.
  • the timing start and end time of the timer are located before the first candidate resource set.
  • the first candidate resource may be a candidate resource set determined according to periodic partial sensing resources and/or a periodic resource used for preemption evaluation.
  • the first terminal device when the first terminal device is in a non-receiving state, but because the conditions provided in the embodiments of this application are satisfied, the first terminal device performs a receiving operation (such as a receiving operation in perception), During the non-reception time, the time at which the first terminal device starts to perform the reception operation and the time at which the operation ends may be maintained using a timer.
  • the start time and the end time of the receiving operation may be determined by the count start time of the activated timer and the technical deadline.
  • the size of the timer (or the value at the start time, or the value at the end time) in this embodiment of the present application is configured by signaling on the resource pool, and this size may be related to the priority of sending data packets or resources.
  • the signal quality of the pool is correlated.
  • the signal quality at the source may be one or more of CBR, CR, RSSI or RSRP.
  • an embodiment of the present application further provides another communication method, which is used to reduce the power consumption of a terminal device that performs sidelink communication.
  • the method can be implemented by the first terminal device and the network device.
  • the first terminal device determines, according to the first information, a resource used for signal quality measurement of the first time slot.
  • the first information instructs the first terminal device to perform an energy saving operation and/or is used to indicate the resource.
  • the energy saving operation in this application may be DRX, energy saving resource selection, or discontinuous transmission.
  • the energy-saving resource selection manner may include partially-aware resource selection, or resource selection based on configured scheduling type 1, or resource selection based on configured scheduling type 2.
  • Whether to perform the energy saving operation may be configured according to the resource pool of the first terminal device. For example, the first terminal device may perform the energy saving operation in some resource pools and not perform the energy saving operation in other resource pools. Thus, unnecessary power consumption is further reduced when supporting the terminal device during measurement.
  • the first information is configured by signaling, and may come from a network device (such as a base station); or, may also be determined in a pre-configured manner. Accordingly, the network device can be used to determine and send the first information.
  • the sending manner of the first information may be unicast, multicast or broadcast.
  • the signal quality includes RSRP and/or RSSI.
  • the resource may be part or all of the resources in the symbols occupied by the DMRS in the control channel in the first time slot, and/or part or all of the resources in the symbols occupied by the DMRS in the data channel in the first time slot.
  • the control channel in this application includes PSCCH
  • the data channel includes PSSCH.
  • the DMRS may be located in the symbol occupied by the PSCCH, and/or in the symbol occupied by the PSSCH scheduled by the PSCCH.
  • the symbols occupied by the PSSCH scheduled by the PSCCH include at least one symbol located after the PSCCH and before the gap symbol in the time slot.
  • automatic gain control (automatic gain control, AGC) symbols are also included, which are used to carry AGC information, and the AGC information is used to make the receiving terminal device adjust the strength of the received signal to be required for accurate decoding. strength), possibly also in symbols occupied by PSSCH scheduled by PSCCH.
  • the resources used for signal quality measurement include resources occupied by the DMRS of the control channel in the time slot, and/or resources occupied by the DMRS of the data channel on the symbols occupied by the control channel in the time slot.
  • the resources used for signal quality measurement do not include the first symbol used for AGC operation in the time slot.
  • S202 The first terminal device performs signal quality measurement on the resource.
  • the first terminal device may measure the signal quality on the resources occupied by the DMRS in the control channel and/or the data channel in the first time slot.
  • the first terminal device can perform signal quality measurement on the resources occupied by the DMRS of the control channel in the first time slot. Measurement.
  • the data channel indicated by the control channel may also be replaced by the data channel indicated by the control channel SCI. At this time, the first terminal device may not perform signal quality measurement on the resources occupied by the DMRS of the data channel, so as to save power consumption.
  • the first terminal device may measure the signal quality on the resources occupied by the control channel and/or the DMRS in the data channel in the first time slot, such as The first terminal device may measure the signal quality on the resources occupied by the DMRS in the control channel, and/or measure the signal quality on the resources occupied by the DMRS in the control channel and the data channel, so as to improve the measurement accuracy.
  • the resource is the symbol in the first time slot where the control channel is located in the time domain, and the frequency domain resource occupied by the control channel and the data channel in the symbol in the frequency domain. Therefore, the first terminal device can perform RSSI measurement on fewer resources to save power consumption.
  • the size of the sub-channel of the data channel is greater than or equal to 20 PRBs.
  • the above first information may be a configuration signaling, used to indicate that execution of the method as described in FIG. 7 and/or FIG. 14 is allowed.
  • This configuration signaling may be indicated by direct signaling or implicitly indicated by other signaling.
  • a field may be used to directly instruct to perform the method described in FIG. 7 and/or FIG. 14, and/or instruct the first terminal device to perform a power saving operation and/or to
  • the resources used for signal quality measurement involved in the embodiment shown in FIG. 14 are indicated, and accordingly, the first terminal device may perform signal quality processing according to the method shown in FIG. 14 .
  • the method shown in FIG. 14 may perform signal quality processing according to the method shown in FIG. 14 .
  • a field may be used to directly instruct the first terminal device not to perform the method described in FIG. 7 and/or FIG. 14 , and/or to indicate that the first terminal device does not Perform a power saving operation, or may instruct to perform signal quality measurement over the entire first time slot, accordingly, the first terminal device does not perform signal quality processing according to the method shown in FIG. The measurement of signal quality is performed on the first time slot.
  • an embodiment of the present application further provides a communication device for implementing the above functions implemented by the first terminal device.
  • the device may include the structure shown in FIG. 5 and/or FIG. 6 .
  • the transceiver module 520 and/or the transceiver unit 610 in FIG. 5 may be configured to perform the action shown in S102, and/or perform the receiving action performed by the first terminal device on the sensing resource in this application, and/or, for DMRS Wait for the signal reception action.
  • the processing module 510 and/or the processing unit 620 can be used for the actions shown in S101, S201 and S202, and/or, perform resource selection actions other than the receiving action performed on the sensory resource, and/or, according to the received DMRS and other signals Take signal quality measurements.
  • Embodiments of the present application provide a communication system.
  • the communication system may include the first terminal device and/or the second terminal device involved in the above embodiments.
  • the communication system may include any one of the structures shown in FIG. 1 to FIG. 2 .
  • the communication device may be used to implement the steps implemented by the first terminal device in the communication method shown in FIG. 7 and/or FIG. 14 .
  • Embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the methods shown in FIG. 7 and/or FIG. 14 provided by the foregoing method embodiments. flow related to the first terminal device in the illustrated embodiment.
  • Embodiments of the present application further provide a computer program product, where the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the embodiments shown in FIG. 7 and/or FIG. 14 provided by the foregoing method embodiments The process related to the first terminal device in .
  • Embodiments of the present application further provide a chip or a chip system (or circuit), where the chip may include a processor, and the processor may be configured to call a program or an instruction in a memory to execute FIG. 7 and/or FIG. 7 provided by the foregoing method embodiments.
  • the chip system may include the chip and other components such as memory or transceivers.
  • processors in the embodiments of the present application may be a CPU, or other general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (application specific integrated circuits, ASICs), Field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGA Field programmable gate array
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions may be composed of corresponding software modules, and software modules may be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC. Alternatively, the ASIC may be located in the first end device.
  • the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions.
  • the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website site, computer, A server or data center transmits by wire or wireless to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, data center, or the like that integrates one or more available media.
  • the usable media may be magnetic media, such as floppy disks, hard disks, magnetic tapes; optical media, such as digital video discs; and semiconductor media, such as solid-state drives.
  • “at least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are a kind of "or” relationship; in the formula of this application, the character "/” indicates that the related objects are a kind of "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,应用于无线通信技术领域。该方法包括:第一终端装置可根据非连续接收配置信息、第一资源或者第二资源中的至少一个确定候选资源;其中,第一资源和第二资源分别是周期间隔的部分感知资源或连续分布的部分感知资源中的一个,该非连续接收配置信息用于确定接收时间和非接收时间。第一终端装置可根据候选资源发送第一数据包。因此,第一终端装置在确定第一数据包的候选资源时需要考虑非连续接收配置信息、第一资源和第二资源中的至少一个,因此能够在非连续接收生效的场景下提高候选资源的确定的有效性。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年04月06日提交中华人民共和国知识产权局、申请号为202110369478.1、发明名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
目前,车辆可以通过车辆与车辆(vehicle to vehicle,V2V)、车辆与路边基础设施(vehicle to infrastructure,V2I)、车辆与行人之间的通信(vehicle to pedestrian,V2P)或者车辆与网络(vehicle to network,V2N)等通信方式来及时获取路况信息或接收信息服务,这些通信方式可以统称为车与任何事物(vehicle to everything,V2X)通信。在V2X通信中,由发送端终端设备通过侧行链路(sidelink,SL)向接收端终端设备发送侧行控制信息(sidelink control information,SCI)和侧行数据,接收端终端设备通过接收SCI来接收和译码该侧行数据,该通信过程可称为侧行链路通信。
目前的侧行链路通信中,发送端终端设备可以在时间轴上的部分时域资源上每隔步长来检测可能出现的其他终端设备的侧行传输,获得的对于传输资源的监听结果可称为部分监听结果。基于这些部分监听结果,发送端终端设备可在选择窗(selection window)内选择出用于传输的时频资源。此种资源选择方案可称为部分感知。因为在选择窗中确定传输资源的过程UE仅做部分感知,可节省UE的功耗。
进一步地,3GPP还讨论了通过不连续接收(discontinuous reception,DRX)来降低接收机的功耗的方式。由于在DRX的非接收时间,终端设备不能进行资源监听,因此在不连续接收和部分感知的功能联合使用时,需要考虑在尽可能降低UE的功耗的条件下,尽可能不影响部分感知的资源选择的有效性。
然而,目前并没有在DRX生效的场景下终端装置的部分感知如何实施的方案,导致DRX生效时部分感知的有效性降低。
发明内容
本申请提供一种通信方法及装置,用以提高DRX生效的场景下终端装置的部分感知方案的有效性。
第一方面,提供一种通信方法,该方法由第一终端装置执行。其中,第一终端装置包括第一终端设备或第一终端设备中的部件,第一终端设备可以为V2X通信中的数据发送端,例如可以为在行驶过程中遇到突发交通事故而需要将此事故的相关信息发送给其它车辆的发送端车辆,或者可以为检测到了此突发交通事故的路边单元,而第一终端设备中的部件例如可以为装载于发送端车辆中的处理器、车载通信模组、芯片或芯片系统等。其中,第一终端装置支持直接通信(PC5)接口通信。
第一方面提供的方法包括,第一终端装置可根据非连续接收DRX配置信息、第一资 源或者第二资源中的至少一个确定候选资源;其中,第一资源为周期间隔的部分感知资源,第二资源为连续分布的部分感知资源;或者,第一资源为连续分布的部分感知资源,第二资源为周期间隔的部分感知资源;DRX配置信息用于确定接收时间和非接收时间。第一终端装置还可根据候选资源发送第一数据包。
采用以上方法,第一终端装置在确定第一数据包的候选资源时需要考虑DRX配置信息、第一资源和第二资源中的至少一个,因此能够在DRX生效的场景下提高候选资源的确定的有效性,以提高侧行链路通信可靠性。
在一种可能的设计中,在满足第一条件时,第一终端装置可以根据第一资源确定候选资源,其中,第一条件包括以下中的至少一个:第二资源位于非接收时间;或者,第一资源位于接收时间。
采用该设计,第一终端装置可在配置有第一资源和第二资源的情况下,在第一资源位于非接收时间和/或第二资源位于接收时间确定情况下,仅根据第一资源确定候选资源,以降低感知功耗。
在一种可能的设计中,第一资源位于非接收时间,且在满足第二条件时,第一终端装置可以至少根据第一资源确定候选资源。
采用该设计,第一终端装置可在第一资源位于非接收时间的情况下,仍然根据第一资源确定候选资源,以提高候选资源确定的有效性。
在一种可能的设计中,在第二资源位于接收时间时,或者,在第二资源位于非接收时间并且满足第二条件时,第一终端装置可至少根据第二资源的监听结果确定候选资源。
采用该设计,第一终端装置可在第二资源位于接收时间,或者在第二资源位于非接收时间且满足第二条件的情况下,根据第二资源确定候选资源,以提高通信的可靠性。并且,在满足第二条件时,即便第一资源和/或第二资源位于非接收时间,仍然可以根据第一资源和第二资源确定候选资源,可进一步提高候选资源确定的有效性。
在一种可能的设计中,第二条件可以包括以下中的至少一个:第一终端装置接收到第二数据包的否定应答,其中,第二数据包为第一数据包之前发送的数据包;或者,第一数据包的优先级不低于第一门限;或者,候选资源所在的资源池的信道状态参数值不低于第二门限;或者,第一终端装置被配置进行重评估或抢占评估;或者,第一资源位于非接收时间,且第一终端装置接收到第一指示信息,其中,第一指示信息用于指示:在第一资源位于非接收时间时,第一终端装置至少根据第一资源对应的感知结果确定候选资源。
在一种可能的设计中,第一资源为周期间隔的部分感知资源,第二资源为连续分布的部分感知资源,第一资源的部分或全部资源位于非接收时间,则第一终端装置可以至少根据感知窗中第三资源的监听结果确定候选资源,其中,第三资源为距离第一时刻最近的一组或多组监听资源,第一时刻为触发第一终端装置确定上行资源的时刻。
采用该设计,可进一步提高候选资源确定的有效性。
在一种可能的设计中,DRX配置可用于确定第二终端装置的接收时间,一组或多组监听资源位于第二终端装置的接收时间,第二终端装置为第一数据包的接收装置。
采用该设计,可进一步提高候选资源确定的有效性。
在一种可能的设计中,第一资源为周期间隔的部分感知资源,第二资源为连续分布的部分感知资源,在第一资源中的M个时间单元位于非接收时间时,候选资源可以不包括M个时间单元在选择窗中关联的资源,M为正整数。
采用该设计,可进一步提高候选资源确定的有效性。
在一种可能的设计中,在满足以下条件时,第一终端装置可根据随机选择方式确定候选资源:第一资源的部分或全部资源和第二资源的部分或全部资源,位于非接收时间。
采用该设计,可进一步降低候选资源确定过程中的功耗。
在一种可能的设计中,在第一资源和第二资源位于DRX配置确定的接收时间时,第一终端装置可以根据第一资源和第二资源确定候选资源。
采用该设计,可进一步提高候选资源确定的有效性。
在一种可能的设计中,第一终端装置可至少根据选择窗中的L个第四资源确定候选资源,第四资源为第一资源和第二资源以外的连续分布的部分感知资源,L为正整数。
采用该设计,可进一步提高候选资源确定的有效性。
在一种可能的设计中,候选资源可包括K个资源单元,K小于或等于第三门限,其中,第三门限可根据以下中的一种或多种信息确定,K为正整数:第一数据包的N次传输需要的资源单元数量,N为正整数;或者,资源池上的信道状态参数值;或者,第一数据包的优先级;或者,配置信令;或者,预定义的数值。
在一种可能的设计中,DRX配置信息可包第一终端装置的DRX配置信息和/或第二终端装置的DRX配置信息,其中,第二终端装置为第一数据包的接收装置。
在一种可能的设计中,候选资源可以位于第二终端装置的接收时间。
在一种可能的设计中,DRX配置信息可包括DRX的周期、开始时间、DRX接收时长或者DRX非接收时长中的一项或多项。
第二方面,提供一种通信方法,该方法由第一终端装置执行。其中,第一终端装置包括第一终端设备或第一终端设备中的部件,第一终端设备可以为V2X通信中的数据发送端,例如可以为在行驶过程中遇到突发交通事故而需要将此事故的相关信息发送给其它车辆的发送端车辆,或者可以为检测到了此突发交通事故的路边单元,而第一终端设备中的部件例如可以为装载于发送端车辆中的处理器、车载通信模组、芯片或芯片系统等。其中,第一终端装置支持直接通信接口通信。
第二方面提供的方法包括,第一终端装置可根据第一信息确定第一时隙的用于信号质量测量的资源,其中,第一信息指示第一终端装置进行节能操作和/或用于指示资源。第一终装置还可在资源上进行信号质量的测量。
采用以上方法,第一终端装置可根据第一信息确定在用于信号质量测量的资源上进行信号质量的测量,从而提高信号质量测量的准确性。
在一种可能的设计中,节能操作包括以下中的至少一种:不连续接收;或者,节能的资源选择方式;或者,不连续发送。
在一种可能的设计中,节能的资源选择方式包括以下中的任意一种:随机资源选择;或者,部分感知的资源选择;或者,基于配置的调度类型1的资源选择;或者,基于配置的调度类型2的资源选择。
在一种可能的设计中,用于信号质量测量的资源包括第一时隙中的控制信道的解调参考信号占用的资源,控制信道指示的数据信道的子信道的大小于20个物理资源块PRB。
采用以上方法,第一终端装置可以不在数据信道的DMRS占用的资源进行信号质量的测量,以节省功耗。
在一种可能的设计中,资源包括第一时隙中控制信道的解调参考信号占用的资源,和 /或,第一时隙中控制信道占用的符号上的数据信道的解调参考信号占用的资源。可选的,控制信道指示的数据信道的子信道的大于或等于20个物理资源块PRB。
采用以上方法,第一终端装置可以在控制信道中的DMRS占用的资源进行信号质量的测量,和控制信道和数据信道中的DMRS占用的资源均进行信号质量的测量,以提高测量准确度。
在一种可能的设计中,信号质量为接收信号强度指示RSSI,资源在时域上为第一时隙中控制信道所在的符号,在频域上为符号上控制信道和数据信道占用的频域资源。可选的,控制信道指示的数据信道的子信道的大于或等于20个物理资源块PRB。
采用以上方法,第一终端装置可在较少的资源上进行RSSI测量,以节省功耗。
在一种可能的设计中,控制信道为PSCCH,数据信道为PSSCH,信道质量包括RSRP和RSSI。
第三方面,本申请实施例提供一种通信装置,可以实现上述第一方面、第二方面或其任一可能的设计中由第一终端装置实现的方法。该装置包括用于执行上述方法的相应的单元或部件。该装置包括的单元可以通过软件和/或硬件方式实现。该装置例如可以为第一终端装置、或者为可支持第一终端装置中实现上述方法的部件或芯片、芯片系统、车载通信模组或处理器等。
示例性的,该通信装置可包括收发单元(或称通信模块、收发模块)和处理单元(或称处理模块)等等模块化组件,这些模块可以执行上述第一方面、第二方面或其任一可能的设计中第一终端装置的相应功能。当通信装置是第一终端装置时,收发单元在执行发送步骤时可以是发送单元,收发单元在执行接收步骤时可以是接收单元,而收发单元可以由收发器代替,发送单元可以由发送器代替,接收单元可以由接收器代替。收发单元可以包括天线和射频电路等,处理单元可以是处理器,例如基带芯片等。当通信装置是具有上述第一终端装置功能的部件时,收发单元可以是射频单元,处理单元可以是处理器。当通信装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理单元可以是芯片系统的处理器,例如:CPU。
收发单元可用于执行第一方面、第二方面或其任一可能的设计中由第一终端装置执行的接收和/或发送的动作。处理单元可用于执行第一方面、第二方面或其任一可能的设计中由第一终端装置执行的接收和发送以外的动作。
可选的,该通信装置可包括收发模块和/或通信模块。
可选的,该通信装置可包括处理器和/或收发器。该通信装置还可包括存储器。
第四方面,提供一种通信系统,该通信系统包括第三方面所示的通信装置和第二通信装置,第二通信装置可用于接收来自于第一通信装置的第一数据包,第二通信装置可支持侧行链路通信。
第五方面,提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机指令或程序,当该计算机指令或程序在计算机上运行时,使得该计算机执行上述第一方面、第二方面或其任意一种可能的实施方式中所述的方法。
第六方面,提供一种计算机程序产品,当其在计算机上运行时,使得该计算机执行上述第一方面、第二方面或其任意一种可能的设计中所述的方法。
第七方面,提供一种电路,该电路与存储器耦合,该电路被用于执行上述第一方面、第二方面或其任意一种可能的实施方式中所述的方法。该电路可包括芯片电路、芯片或芯 片系统等。
以上第二方面至第七方面及其可能的设计的有益效果可参照第一方面及其可能的设计中的有益效果。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的另一种通信系统的架构示意图;
图3为本申请实施例提供的一种资源感知的时域示意图;
图4为本申请实施例提供的一种DRX的时域结构示意图;
图5为本申请实施例提供的一种通信装置的结构示意图;
图6为本申请实施例提供的另一种通信装置的结构示意图;
图7为本申请实施例提供的一种通信方法的流程示意图;
图8为本申请实施例提供的另一种资源感知的时域示意图;
图9为本申请实施例提供的另一种资源感知的时域示意图;
图10为本申请实施例提供的另一种资源感知的时域示意图;
图11为本申请实施例提供的另一种资源感知的时域示意图;
图12为本申请实施例提供的另一种资源感知的时域示意图;
图13为本申请实施例提供的另一种资源感知的时域示意图;
图14为本申请实施例提供的另一种通信方法的流程示意图;
图15为本申请实施例提供的一种DMRS符号的时域示意图;
图16为本申请实施例提供的另一种DMRS符号的时域示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端装置,例如是终端设备,或者是用于实现终端设备的功能的模块,例如芯片系统,该芯片系统可以设置在终端设备中。终端设备包括向用户提供数据连通性的设备,具体的,包括向用户提供数据连通性的设备,或包括向用户提供数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换数据,或与RAN交互数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备。最典型的,终端装置可以为车辆或终端型路边单元,或内置于车辆或路边单元的通信模块或芯片。
本申请实施例中,终端装置之间支持直接通信(PC5)接口通信,即支持通过侧行链路进行传输。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智 能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(onBoard unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
下文中,可通过终端装置为例对于本申请实施例提供的通信方法进行说明。比如,发送端终端设备可由发送端终端装置或发送终端装置代替,接收端终端设备可由接收端终端装置或接收终端装置代替,辅助终端设备可由辅助终端装置代替。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与终端装置通信的设备,或者例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU)。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备可以包括第五代移动通信技术(the 5th generation,5G)新空口(new radio,NR)系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB),或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
因为本申请实施例主要涉及接入网设备,因此在下文中,如无特殊说明,则所述的网络设备均是指接入网设备。下文中,可通过基站来代表网络设备和/或接入网设备。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
(3)侧行通信,在本申请中是指终端装置与终端装置之间进行的通信。
在第三代移动通信合作伙伴计划(3GPP)标准R16架构下,侧行通信的模式(mode)包括mode 1和mode 2两种。在本申请中,在mode1下,有基于配置的调度类型1和基于配置的调度类型2。其中,基于配置的调度类型1是指:基站配置终端设备进行传输的资源,终端设备根据业务的情况在无需进一步调度的情况下,按配置的资源进行传输。基于配置的调度类型2是指,基站配置一个可用于传输的资源,终端装置使用配置的资源进行持续的传输。其中,如图1所示,在mode 1中,可由基站向终端装置1和/或终端装置2调度用于侧行传输的资源(或称侧行通信资源),由终端装置1根据基站调度的资源向终端装置2进行侧行传输。在mode 2中,可由基站配置或预配置资源池,终端装置1在资源池进行资源感知(或称为侦听、资源感知或感知等)和资源选择,通过选择的资源向终端装置2进行侧行传输。对做mode侧行传输的终端装置1,其需具备感知能力或支持通过感知选择侧行链路通信的传输资源。可选的,资源池在时域上可以是连续或不连续的,在频域上也可以是连续或不连续的。本申请对此不做限定。
侧行通信资源,在本申请中指基站调度的用于侧行传输的资源,或者是指用于侧行通信的资源池中的时频资源。终端装置1可以在该资源上进行侧行链路发送。其中,在一个资源上可以承载物理侧行控制信道(physical sidelink control channel,PSCCH)、物理侧行链路共享信道(physical sidelink share channel,PSSCH)、物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH),和/或,承载解调参考信号(demodulation reference signal,DMRS)等信号。其中,参考信号可承载于一个或多个资源单元(resource element,RE),RE在时域上可占用一个符号,在频域上占用一个子载波。侧行资源的时域调度单位为一个时隙,频域调度单位为子信道。
在mode2中,终端装置1可测量监听窗(sensing window)内资源的信号强度,比如,检测资源的参考信号接收功率(reference signal received power,RSRP)测量值,如果RSRP测量值大于或等于某个阈值(如RSRP门限Th RSRP,以下称为RSRP门限),则认为该资源被其他终端装置占用。
终端装置1从候选资源集中排除该资源对应的资源选择窗内的资源。例如,该被排除的资源对应的资源选择窗内的资源,可以是按照该资源和资源预留周期确定的资源。资源预留周期是信令配置的或预定义的周期值,该预留周期可以通过SCI来指示。SCI可以指示预留周期、当前使用的时频资源。由当前使用的时频资源以及预留周期,可对应出在SCI发送时刻之后被预留的资源,在本申请中可称为周期预留资源。从发送设备看,周期预留资源是该发送设备通过它发送的SCI来预留的。从接收设备来看,它接收到其他设备发送的SCI,从而确定这些设备通过它发送的SCI来周期预留的资源。
本申请中,可选的,RSRP门限根据终端装置1需要发送的数据的优先级和该资源对应的数据的优先级确定。该资源对应的数据包括该资源正在传输的数据和/或预约在对应资源上传输的数据。该资源对应的数据的优先级可通过对监听窗内资源的感知获得。比如,终端装置1可通过对资源1的感知,获得资源1上正在传输的数据的优先级的指示信息,从而获知该资源1上正在传输的数据的优先级。或者,终端装置1可通过对监听窗内的资源2的感知,在资源2获得优先级指示信息,该指示信息可指示预约在资源选择窗内的资源1传输的数据的优先级,其中,资源2可位于资源1之前。
应理解,本申请中,信号强度可以包括接收信号强度指示(received signal strength indicator,RSSI)、参考信号接收质量(reference signal received quality,RSRQ)或者其他可以代表信号强度的参数。或者说,本申请中的RSRP可替换为RSSI或RSRQ。子信道是指,频域上连续占用的L个连续或不连续的物理资源块(physical resource block,PRB)够成的一个频域资源单元的集合。L为预设的正整数,例如:8,10,12,15,20,25或者50等。对具体的值,本申请实施例不做限制。
应理解,本申请中,对于资源池的在特定时刻被占用的闲忙程度,可以使用一定的测量量来描述。信道忙碌比率(channel busy rate,CBR)或信道占用比率(channel occupancy ratio,CR)。其中,CBR定义为:在资源池上,在时间单元[n-a,n-1]超过特定RSSI门限的子信道数占总的子信道的比。可选的,CBR的测量可以是时域上的连续的时间单元上测量得到的,也可以是在非连续的时间单元上得到的,本申请实施例对此不做限制。可选的,CBR的值越大,则表明信道被更多地用户在使用,或被更多地传输在占用,和/或,说明信道越拥挤。反之,如果CBR的值越小,则信道越空闲。其中,CR定义为:在资源池上,在时间单元[n-a,n-1]上被用于传输的子信道数量S1,以及在时间单元[n,n+b]上将被用于人 的子信道数量S2;将S1与S2之和除以[n-a,n+b]上的所有总的子信道数量S的比值。即CR的值为(S1+S2)/S。其中,n为触发资源选择的时刻,a和b为非负整数。可选的,a+b+1≥c,c为预定义的常数,例如,c为1000或1000*2 u。u为传输时使用的载波间隔值。可选的,CR的测量可以是时域上的连续的时间单元上测量得到的,也可以是在非连续的时间单元上得到的,本申请实施例对此不做限制。可选的,CR的值越大,则表明信道被更多地用户在使用,或被更多地传输在占用。说明信道越拥挤。反之,则信道越空闲。
在资源感知过程中,终端装置1可通过资源感知排除候选资源集中该资源的周期性预留资源。监听窗内剩余的资源(即未被排除的资源)可以用于侧行传输,或者说,剩余的资源可作为用于侧行传输的候选资源。用于侧行传输的资源或候选资源,是指发送终端装置向接收终端装置进行侧行传输所采用或所考虑的资源或资源的集合。应理解,本申请中的资源是指时频资源。
(4)触发资源选择的时刻
触发资源选择的时刻或称资源选择触发时刻,即资源选择触发所在的时间点。高层(higer layer)请求终端装置去确定一组资源集的时刻,这组资源集用于数据传输时的资源选择。这里的高层可以是基站的协议或信令,也可以是终端装置的上层协议栈(如上层软件,媒体接入控制(media access control,MAC)层等)。如图3所示,这个触发时刻可以表示为n。该时刻可以是某个符号、某个时隙、某个迷你时隙(占用的符号数为1至12或1至14个符号中的任意数量的符号)、某个子帧或无线帧等的位置。以时隙n为例,为了解发资源选择,在触发时隙n,高层会向终端装置提供用于进行资源选择的参数。这些参数包括以下的一种或多种:使用的资源池,物理层的优先级,剩余的PDB,在一个时隙上要求的子信道的数量,资源预留的间隔等。可选的,触发资源选择的时刻通常是应用层数据在协议栈已经组好了包即将要通过物理层下发的时刻。例如,触发资源选择的时刻可以是MAC层的传输块(transport block,TB)到达(或即将发送,或即将到达)物理层的时间。在不做特别说明的情况以,本申请实施例中以时隙n为例来描述触发资源选择的时刻,但并不排除这里的时隙n可以替换成符号n,迷你时隙n等其他时长单位的传输的时刻n。
应理解,本申请中,一个传输块(transport block,TB)可用于承载通过侧行链路传输的一个或多个数据包。
(5)监听窗
本申请中,监听窗也可以称之为资源监听窗,或者也可以称之为侦听窗、检测窗或等感知窗。示例性的,监听窗是终端装置在触发资源选择的时刻之前的一段时间内的时频资源集合。因为终端装置需要进行物理层的资源选择的时刻发生在触发资源选择的时刻,只有触发资源选择的时刻到达后,终端装置才知道是否需要进行资源选择。所以,终端装置会在一直进行资源的感知,以便在触发资源选择的时刻到达时,根据触发资源选择的时刻之前的感知结果来确定触发资源选择的时刻之后的合适的传输资源。可选的,终端装置通常以监听窗的长度一直往前进行检测和分析。
可参考图3,监听窗的时域位置为[n-T 0,n-T proc,0)。其中,n-T 0为资源监听窗的起始位置,例如T 0可以为1100毫秒(ms)或100ms,或者也可以为其他值。以15千赫兹(kHz)的子载波间隔为例,T 0=1100时隙或100时隙;或者,若以60kHz子载波间隔为例,T 0=4400时隙或400时隙。T proc,0是发送终端装置处理监听结果的时间,根据终端装置能力的不同T proc,0的取值会有所不同,T proc,0≥0。
(6)选择窗
本申请中,选择窗也可以称之为资源选择窗。是在触发资源选择的时刻之后剩余的包时延余量(packet delay budget,PDB)之内的部分或全部时域资源。可继续参考图3,终端装置可根据感知结果,在资源选择窗[n+T 1,n+T 2]内排除不可用的时频资源,进而发送终端装置获得可用的用于发送TB的时频资源,用于通过资源选择获得侧行传输所采用的资源。其中,T 1为非负的常数,T 2为不超过剩余的PDB的常数。终端装置需要在选择窗内为待传输TB确定传输资源。可选的,终端装置需要在选择窗内按确定的传输资源发送待传输的TB。可选地,终端装置(如物理层)可在选择窗中确定候选的或可用的资源集(可称为候选资源集,其中的资源可称为候选资源),然后将这些资源集上报给高层(如MAC层),然后高层从这个资源集中确定出传输资源。可选地,终端装置的物理层可以直接根据确定出的候选的或可用的资源集,直接确定出传输资源,并发送待传输的TB。
其中,终端装置业务层产生数据时刻是PDB的开始时间,PBD是最大时延,该开始时间可能位于时刻n之前。n时刻之后的PDB是剩余PDB。
作为示例而非限定,本申请中监听窗的时域范围也可以不局限于[n-T 0,n-T proc,0),和/或资源选择窗的时间范围也可以不局限于[n+T 1,n+T 2]。也就是说,可以不对监听窗和/或资源选择窗的时域范围做具体约束。
(7)资源选择方式
目前,在mode 2中,终端装置从资源池中选择用于进行侧行链路传输的资源的方式包括随机资源选择(random selection)、部分感知(partial sensing)的资源选择和完全感知(full sensing)的资源选择等。
其中,随机资源选择是指终端装置从资源选择窗中通过随机选择的方式确定资源,此种资源选择方式不需要终端装置支持感知,终端装置甚至可以没有资源感知的能力。可选的,做随机资源选择的终端也可以具有感知能力,本申请实施例对此不做限制。
部分感知下,终端装置只感知资源池中的一部分资源的被占用情况,而不感知其它资源,然后终端装置可从感知到的未被占用的资源中和/或未进行感知的资源中选择传输资源。采用该方式选择资源的终端设备为部分感知设备,这些设备例如在3GPP标准R17中正在研究的部分感知设备。
部分感知包括基于周期的部分感知(periodical based partial sensing,PPS)和/或短时的感知(short term sensing,STS)。
基于周期的部分感知或称周期性感知,是指终端装置会在时间轴上的部分时域资源上每隔步长Pstep来用确定用于检测的部分感知资源。然后从这些部分感资源中的全部或部分资源上感知可能出现的侧行传输。可以描述为:t y-k*Pstep
其中,k为整数,步长Pstep可以是所有预留周期值构成的集合中的全集或子集,预留周期为信令配置的或预定义的。t y可以是根据基于周期的部分感知,从选择窗中确定的大小为Y的候选资源中的一个候选时隙。可选的,t y中的y可以取值为y 0,y 1,…,y Y-1
然后基于检测结果,在选择窗内选择出用于传输的时频资源。例如以间隔Pstep等间隔地配置10个候选感知资源子集为例,每个候选感知资源子集可称为一组感知资源,其位置分别为:t y-10Pstep、t y-9Pstep、……和t y-Pstep,可通过t y-10Pstep、t y-9Pstep、……和t y-Pstep分别表示这些候选感知资源子集。其中,每个候选感知资源听子集的大小(或长度)为Y个时隙(或子帧)。根据y的值不同,t y可以是Y中的第一个时隙,也可以是中间某个时隙,也可以是最后一个时隙。后续为方便说明,可将基于周期的部分感知中,终端装置所感知 的资源称为周期间隔的部分感知资源或周期性部分感知资源等。应理解,周期间隔的部分感知资源可包括t y-10Pstep、t y-9Pstep、……和t y-Pstep中的一组或多组感知资源。
可选的,对于周期的部分感知操作,进行部分感知操作的时隙可以是一组或多组感知资源,每组感知资源是由t y-k*Pstep按相应的k值确定的。例如,如果k值固定为一个预定义的整数,则仅有k值对应的这一组。例如,如果k值可以取1,2则可以有t y-Pste和t y-2*Pste这两组。例如,如果k值可以取1,2,3则可以有t y-Pste、t y-2*Pste和t y-3*Pste这三组。因此,在本申请实施例中,周期的部分感知操作,中的“周期”,更多地是指进行部分感知的资源是基于间隔Pstep来确定的。当它仅有一组时,并不表示要进行其他的在操作。当它有多组时,是指按间隔Pstep确定的多组。
可选地,当Pstep有不同的数值时,则不同的Pstep按t y-k*Pstep会确定出不同的部发感知资源。可选地,Pstep的取值可以关联与之对应的k的取值数值和数值数量。例如:Pstep=5ms,则k=2、k=5。例如,Pstep=10ms,则k=1,2。例如,Pstep=100ms,则k=1。
可选地,周期的部分感知可以是在时隙n之前,或者是在时隙n之后。本申请实施例对此不做限定。
下面以V2X通信为例,说明终端装置进行基于周期的部分感知的方式。
在监听窗中,终端装置检测到其他设备发送的SCI,这些SCI中会指示以下信息中的至少一个:在当前时隙中的对应的数据占用的时频资源、为后续1个或2个重传对应的预留资源或者发送周期。终端装置可以根据这些占用资源、预留资源可以确定出当前数据包的传输和后续的重传所分别占用或预留的资源。进一步地,结合SCI中指示的周期,还可以确定出后续周期上对应的时频资源上所占用的资源。当周期不断向前拓展时,就可以确定出未来在资源选择窗中占用的资源。例如,终端装置检测到另一个终端装置占用或预留的资源为R(x,y),其中x表示频域位置,y表示检测到SCI的时域位置或当前SCI指示的预留位置。则终端装置可以确定出在所有的资源R(x,y+j*P)均是为被该另一个终端装置预留的资源,其中j为非负整数,P为检测到的SCI上指示的周期值。据此,终端装置结合这些信息可以在感知窗和资源选择窗上确定出被其它的终端装置占用或预留的资源,从而可以将这些资源从资源选择窗中排除。应理解,本申请中除特别说明外,排除资源是指不将某些资源作为候选资源集中的资源和/或不将某些资源作为用于侧行传输的资源。
短时的感知或称短时部分感知或连续部分感知,在本申请中是指终端装置在资源选择窗和/或感知窗中确定出来的一段时间中的全部或部分时间单元上做感知。终端装置根据感知结果确定候选资源。与基于周期的部分感知的区别是,短时的感知的资源不是按预设的间隔Pstep来确定出来的,仅需要测量一段时间位置即可。可选地,如图3所述,短时感知的资源可位于触发资源选择的时刻之后并位于t y之前,因此短时的感知不需要时常执行,只需要在触发资源选择后执行即可,以节省功耗。例如,终端装置可根据选择窗中的短时部分感知,获得其他终端装置对于选择窗中的资源的预约或占用情况,从而排除选择窗中被其他终端装置预约和/或占用的资源。
可选的,部分感知中,终端装置可利用基于周期的部分感知的监听窗来确定周期业务的资源占用信息,和/或,利用短时感知的感知资源监听周期或非周期业务的占用信息。终端装置可以结合这两部分资源的占用信息,获得完整的监听结果。
另外,完全感知需要终端装置在监听窗内的全部资源进行感知。
可选的,部分感知和完全感知的资源选择方式都要求终端装置具备感知能力。
仍以图3为例,发送终端装置的感知和资源选择过程可包括以下步骤:
1、发送终端装置在感知资源上接收来自其他终端装置的SCI,所述SCI包含其他终端装置的资源预留信息。其中,n表示触发发送终端装置进行资源选择的时刻。进一步地,所述SCI为第一级SCI(1st-stage SCI),在PSCCH上发送。其中,如果采取部分感知,则这里的感知资源包括基于周期的部分感知的感知资源和/或短时感知的感知资源,如果是完全感知,则感知资源可包括监听窗内的全部资源。
如图3所示,监听窗中的资源可以是根据时刻n确定的资源池中的一部分资源。
其中,一个SCI可以调度同一个TB的3次传输,例如,这3次传输中第一次传输是初传,后两次传输是重传,或者这3次传输都是重传。所述SCI包括的感知信息包含第二次和第三次的重传的调度数据的时频资源信息、体现数据业务周期的周期性时频资源信息和数据优先级信息等。可以理解的,在给定的一个时刻,一个终端装置通过发送一个SCI来预约在该时刻之后的资源(包括时频资源)用于数据的重传和新的周期性的数据的传输。
2、如果发送终端装置从接收到的来自终端装置1的SCI的感知信息中得知,终端装置1预约的时频资源位于发送终端装置的资源选择窗[n+T 1,n+T 2]内,则发送终端装置根据该感知信息,对终端装置1需要在该时频资源上发送的数据和/或控制信道的DMRS进行测量,得到RSRP测量值。如果该RSRP测量值大于RSRP门限,则发送终端装置从集合S A中排除该时频资源对应的周期预留资源。
另外,如果终端装置因为半双工等原因未对监听窗内的资源进行感知,则终端装置可按照监听窗内未感知的资源的时域位置和针对资源池配置的业务周期集合中的所有周期,从集合S A中排除资源。
其中,集合S A的初始化状态为资源选择窗中所有候选单时隙资源的集合。候选单时隙资源是指是时域长度为1个时隙的时频资源。S A表示候选资源集,候选资源集的初始状态包括资源选择窗内的全部候选单时隙资源。
3、发送终端装置在排除监听窗内的不可用的时频资源后,可以确定监听窗内剩余的资源中的可用的时频资源。从而发送终端装置从可用的时频资源中选择时频资源以发送数据。
4、确定集合S A中剩余的候选单时隙资源的数量,如果剩余的候选单时隙资源的数量小于0.2·M total,则在步骤2中的,对每个优先级将Th(p i)加3dB,之后重复执行步骤2和3,直到剩余的候选单时隙资源的数量达到0.2·M total。其中,M total为资源选择窗内所有候选单时隙资源的总数,或者,M total为资源选择窗内所有可以用于第二终端侧行传输的资源的总数。
应理解,以上步骤1至步骤4也被称为确定候选资源的过程,本申请中确定候选资源的过程可参照上述步骤1至步骤4实施,或采用其他方式实现。
基于上述资源选择方式,在现有机制中,发送终端装置在发送数据时所使用的时频资源,是基于发送终端装置在资源监听窗内的监听结果,在资源选择窗内选择的。感知结果可视为在监听结果的基础上获得的。本申请实施例提供的技术方案中,除特殊说明,侦听结果包括通过上述1、2和3或者1、2、3和4这几步骤确定的结果。该感知结果即经过资源排除后剩余的资源的集合。但是发送终端装置并不知晓接收终端装置周围的信道情况。如果在接收终端装置周围还存在其他终端装置在通信,但是发送终端装置没有感知到,则对于接收终端装置而言,其在接收来自发送终端装置数据时,就有可能受到其他终端装置 的侧行通信所带来的强干扰,导致接收终端装置的信号接收质量较差,甚至可能接收失败。
(8)数据的优先级
本申请中,数据的优先级可以是数据所属业务的优先级。对于发送端终端装置来说,期待发送的数据的优先级是已知的,比如从高层获取。另外,终端装置可根据SCI中携带的优先级信息获知其他终端装置传输的业务的优先级。可选地,业务优先级越高,是指待传输的业务对应的数据包中的数据更重要。可选地,业务的优先级越高,表明业务的服务质量(quality of service,QoS)参数要求越高。其中,业务的QoS参数包括以下中的至少一项:业务的可靠性要求、业务的传输时延要求、业务的传输速率或传输吞吐量要求。可选地,业务的优先级可以与SCI中指示的优先级数值负相关,也可以正相关。以负相关为例,SCI中指示的优先级数值越小,表明业务越重要,反之越大,表明业务的重要性越低。例如,SCI中优先级可以通过3比特指示,则其取值可以对应为1至8的整数。SCI指示为1时,表明业务优先级更高;SCI指示为8时表示业务优先级更低。
可选的,数据的优先级,可以是MAC层传给物理层的待发送的TB的优先级。一个待传输业务的TB可以包括:至少一个MAC控制元和/或至少一个逻辑信道。可选地,每个MAC控制元对应一个优先级,每个逻辑信道对应一个优先级。可选地,可将待传输业务包括的至少一个MAC控制元和/或至少一个逻辑信道中的最高优先级确定为待传输业务的整个TB的优先级。
(9)信令配置,在本申请中也可以描述成配置信令。
在本申请中,信令配置包括由基站发送的信令进行配置,这些信令可以是无线资源控制(radio resource control,RRC)消息,下行控制信息(downlink control information,DCI)或系统信息块(system information block,SIB)。可选的,信令配置还可以是由预配置的信令配置给终端装置,或者,通过预配置的方式配置给终端装置。这处的预配置,是以协议的方式提前定义或配置相应参数的取值,在与终端装置通信之时存入终端装置中。预配置的消息,在终端装置连网的条件下可以修改或更新。进一步可选地,信令配置可以将相关的参数的取值或配置信息限定在终端装置发送或接收的资源池上。所述资源池为特定载波或带宽部分上的进行传输所使用的资源的集合。
(10)DRX或者SL-DRX
如图4所示,DRX是指终端装置周期重复地在非接收时间上进行的睡眠模式和在接收时间上进行接收的工作模式。此处非接收时间或称休眠时间,是指:在一个DRX周期上,时域位置中的非接收期间(DRX off duration)或非接收的时长,此时终端装置处于非接收状态或称休眠状态。此处,接收时间是指:在一个DRX周期上,时域位置中的接收期间(DRX on duration)或接收时长,此时终端装置处于接收状态。一个非接收时间和接收时间合在一起可称为DRX周期(DRX cycle)。处于非接收时间的终端装置不进行感知,或者说,该终端装置不根据感知结果确定候选资源。处于接收时间的终端装置可进行感知,或者说,该终端装置可根据感知结果确定候选资源。应理解,DRX周期可由DRX配置信息或其他信令配置。
通常而言,DRX的配置是基于sidelink上收发UE之间的业务特性确定的。例如,根据业务的周期、优先级或可靠性要求等信息确定。比如,终端装置1发送的业务的周期为100ms,业务的发送持续时长是10ms,则终端装置2的接收的DRX的配置与终端装置1发送业务的周期和发送持续时长地齐即可。在这种条件下,终端装置2只需要接收10%的 时间,余下的90%的时间可以关机休眠。从而可以做到在不影响业务接收的条件下,最大程度地节省终端装置2的接收功耗。
一个理想的DRX的配置(包括周期以及周期内的接收时间和休眠时间),是仅根据发送端终端装置的业务特性确定的。在个别情况下,还可以根据接收端终端装置的多个并行待接收的业务进行协调。但即使如此,DRX的配置也主要是基于终端装置之间传输的业务确定的。并且可以理解,这个DRX的配置信息,可以在相互通信的终端装置之间进行交互或共享。
如果不连续接收和部分感知机制并存,接收端终端装置原本需要在非接收时间内对资源进行的感知无法进行,会对资源选择的结果产生不利影响。因此,在不连续接收和部分感知的功能联合(或同时)使用(或配置或激活)时,需要考虑在尽量降低终端装置的功耗的条件下,尽可能不降低做部分感知时的资源选择效果,以达到对系统通信性能影响最小化的目的。然而,目前能够令终端装置的非连续接收和部分感知机制有效共存的方案仍有待研究,因为在非连续接收和部分感知机制共存的情况下,终端装置难以有效获得这两个机制的节能效果,或者,这两个机制的结合可能对终端装置的资源选择结果产生较大影响,造成侧行链路通信质量降低。
本申请实施例提供一种通信方法,用于提供非连续接收和部分感知共存的解决方案,在确保终端装置的侧行链路通信性能不受较大影响的前提下,令终端装置获得非连续接收和部分感知两种机制带来的节能效果。
该通信方法可由第一终端装置实施,其中,第一终端装置是指侧行链路通信中的发送端终端装置。第一终端装置可根据本申请实施例提供的通信方法确定候选资源,并根据候选资源向第二终端装置发送侧行链路数据(或简称为数据)。本申请中的第二终端装置可以是指侧行链路通信中的接收端终端装置。
如图5和图6所示,为本申请实施例提供的终端装置的结构示意图,用于实施本申请实施例提供的通信方法。
示例性的,图5示出了一种可能的终端装置的结构示意图,该结构可包括处理模块(或处理单元)510和收发模块(或收发单元)520。示例性地,图5所示结构可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有本申请所示终端设备功能的组合器件、部件(或称组件)等。当该结构是终端设备时,收发模块520可以是收发器,收发器可以包括天线和射频电路等,处理模块510可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当该结构是具有本申请所示终端设备功能的部件时,收发模块520可以是射频单元,处理模块510可以是处理器,例如基带处理器。当该结构是芯片系统时,收发模块520可以是芯片(例如基带芯片)的输入输出接口、处理模块510可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块510可以由处理器或处理器相关电路组件实现,收发模块520可以由收发器或收发器相关电路组件实现。
例如,处理模块510可以用于执行本申请任一实施例中由第一终端装置所执行的除了收发操作之外的全部操作,例如处理操作,和/或用于支持本文所描述的技术的其它过程,比如生成由收发模块520发送的消息、信息和/或信令,和对由收发模块520接收的消息、信息和/或信令进行处理。收发模块520可以用于执行本申请任一实施例中由第一终端装置所执行的全部接收和发送操作,和/或用于支持本文所描述的技术的其它过程,例如数据的 发送和/或接收。
另外,收发模块520可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块520可以用于执行由中继节点和/或远端节点所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块520是发送模块,而在执行接收操作时,可以认为收发模块520是接收模块;或者,收发模块520也可以是两个功能模块,收发模块520可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行由第一终端装置所执行的全部发送操作,接收模块用于完成接收操作,接收模块可以用于执行由中继节点和/或远端节点所执行的全部接收操作。
图6示出了另一种终端装置的结构示意图,用于执行本申请实施例提供的由第一终端装置执行的动作。便于理解和图示方便。如图6所示,终端装置可包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端装置进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端装置可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图6中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端装置的收发单元(收发单元可以是一个功能单元,该功能单元能够实现发送功能和接收功能;或者,收发单元也可以包括两个功能单元,分别为能够实现接收功能的接收单元和能够实现发送功能的发送单元),将具有处理功能的处理器视为终端装置的处理单元。如图6所示,终端装置包括收发单元610和处理单元620。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元610中用于实现接收功能的器件视为接收单元,将收发单元610中用于实现发送功能的器件视为发送单元,即收发单元610包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元610可与收发模块520对应,或者说,收发模块520可由收发单元610实现。收发单元610用于执行本申请所示实施例中的第一终端装置的发送操作和接收操作,和/或用于支持本文所描述的技术的其它过程。处理单元620可与处理模块510对应,或者说,处理模块510可由处理单元620实现。处理单元620用于执行本申请所示实施例第一终端装置除了收发操作之外的其他操作,例如用于执行本申请所示实施例中由第一终 端装置所执行的除接收和发送以外的全部操作,和/或用于支持本文所描述的技术的其它过程。
应理解,本申请实施例提供的通信方法可由第一终端装置实施。其中,第一终端装置可作为发送的终端装置或发送的终端装置中的组件,用于向第二终端装置进行侧行链路发送。第二终端装置可作为接收端终端装置或接收到终端装置中的组件。
其中,第一终端装置的结构如图5和/或图6所示。收发模块520和/或收发单元610可用于执行该通信方法中由第一终端装置执行的发送和/或接收操作。处理模块510和/或处理单元620可用于执行该通信方法中由第一终端装置执行的处理操作和/或除接收和发送以外的全部操作。
如图7所述,本申请实施例提供的通信方法可包括以下步骤:
S101:第一终端装置根据DRX配置信息、第一资源或第二资源中的至少一个确定候选资源。
其中,第一资源和第二资源分别为周期间隔的部分感知资源或连续分布的部分感知资源。周期间隔的部分感知资源即用于周期性部分感知的资源,例如监听窗中间隔Pstep分布的多个候选感知资源子集。连续分布的部分感知资源即用于短时部分感知的资源,例如图3所示的短时感知的资源。
DRX配置信息用于确定接收时间和非接收时间。这里的DRX配置信息可以是第一终端装置的DRX配置信息和/或第二终端装置的DRX配置信息,本申请不予具体限定。DRX配置信息具体可用于配置DRX的周期、DRX的开始时间、DRX接受时长或DRX非接收时长中的一项或多项。其中,DRX接受时长为DRX接收时间的时域长度,DRX非接收时长为DRX非接收时间的时域长度。
本申请中,第一终端装置根据DRX配置信息、第一资源或第二资源中的至少一个确定候选资源,包括第一终端装置根据DRX配置信息、第一资源或第二资源中的至少一个,确定根据第一资源和/或第二资源确定候选资源,并根据第一资源和/或第二资源确定候选资源。或者,第一终端装置根据DRX配置信息、第一资源或第二资源中的至少一个确定候选资源,包括第一终端装置根据DRX配置信息、第一资源或第二资源中的至少一个,确定通过随机资源选择确定候选资源。
其中,根据第一资源和/或第二资源确定候选资源,是指第一终端装置根据对第一资源进行感知获得感知结果和/或对第二资源进行感知获得的感知结果确定候选资源。
可选的,第一资源为周期间隔的部分感知资源,第二资源为连续分布的部分感知资源。或者,第一资源为连续分布的部分感知资源,第二资源为周期间隔的部分感知资源。
应理解,该候选资源可以是第一终端装置的物理层向MAC层上报的候选资源集中的资源。
S102:第一终端装置根据候选资源发送第一数据包。
其中,该第一数据包可由第二终端装置接收。
可选的,在本申请实施例中,第二终端装置可以是一个确定的第一终端装置的接收装置;也可以是第一终端装置在组播下的一组接收装置;还可以为不限定特定接收对象的一个或多个接收装置,本申请实施例对此不做限制。
可选的,第一终端装置可通过该候选资源中的部分或全部资源发送第一数据包。
可选的,第一终端装置可通过该候选资源中位于第二终端装置的接收时间的资源,发 送第一数据包,或者说,该候选资源位于第二终端装置的接收时间,以确保发送的数据能够被第二终端装置接收到,以提高通信可靠性。
采用以上图7所示流程,第一终端装置在确定候选资源的过程中考虑了DRX配置和部分感知资源,为DRX机制和部分感知机制的共存提供了可能,使得终端装置在享受非连续接收和部分感知两种机制带来的节能效果的同时,能够提高第一终端装置侧行链路通信的质量。
可选的,如果第一终端装置配置有第一资源和第二资源,则在满足第一条件时,第一终端装置可根据第一资源确定候选资源。此时第一终端装置可不对该第二资源进行感知,以进一步节省功耗。其中,第一资源和第二资源可以分别是周期间隔的部分感知资源或连续分布的部分感知资源中的一个。其中,第一条件包括:第二资源位于非接收时间,和/或,第一资源的部分或全部资源位于接收时间。其中,如果第二资源为周期间隔的部分感知资源,则第二资源位于非接收时间可以是指第一终端装置的监听窗中的全部资源位于非接收时间。
应理解,本申请中除特殊说明,资源位于非接收时间,是指资源的起始位置和结束位置均在同一个非接收时间内,或者说,该资源的全部时域位置均属于非接收时间,或者,该资源的全部时域位置均不属于接收时间。同理,资源位于接收时间,是指资源的起始位置和结束位置均在同一个接收时间内,或者说,该资源的全部时域位置均属于接收时间,或者,该资源的全部时域位置均不属于非接收时间。
以第一资源为周期间隔的部分感知资源,且第二资源为连续分布的部分感知资源为例,例如图8所示,当连续分布的部分感知资源位于第一终端装置的非接收时间内,和/或,周期间隔的部分感知资源中的部分或全部资源位于第一终端装置的接收时间内时,第一终端装置可根据周期间隔的部分感知资源确定候选资源。其中,第一终端装置可根据位于接收时间内的周期间隔的部分感知资源的感知结果,确定候选资源。
可选的,如果第二资源为连续分布的部分感知资源,在满足该第一条件时,第一终端装置确定候选资源的过程不考虑对该第二资源的感知结果,或者说,第一终端装置在满足第一条件时可不对该第二资源进行感知。可选的,第一终端装置配置有该第二资源,但未采用第二资源的感知结果确定候选资源时,第一终端装置可以对确定的候选资源进行重评估或抢占评估。可选的,重评估是指在发送之前,对确定出的资源再检查的过程。抢占评估是指,在传输发起之后,在做进一步新的传输之前,需先对先前传输预留的资源进行检查的过程。
另外在图8所示的示例中,如果第一资源为周期间隔的部分感知资源,且周期间隔的部分感知资源中的M个时间单元位于非接收时间内,则第一终端装置确定的候选资源中不包括该M个时间单元在选择窗中关联的资源。本申请中,时间单元可以是时隙、符号、多个时隙或符号的组合等,M为正整数。或者说,第一终端装置排除该M个时间单元关联的选择窗中的资源。这里的与M个时间单元间隔关联的资源,是指与M个时间单元间隔为m个传输周期P的资源,m为正整数。比如,i为M个时间单元中的任一时间单元的索引,i=1、2……M,则候选资源中不包括索引为(i+m*P)的时间单元。可选的,P为第一终端装置所在的资源池上配置的传输周期值。
可选的,如果第一资源为周期间隔的部分感知资源,且第一资源中的部分或全部感知资源位于第一终端装置的非接收时间,则在S103中,第一终端装置可根据第三资源的感 知结果确定候选资源。其中,第三资源为距离第一时刻最近的一组或多组感知资源,该第一时刻可以是触发资源选择的时刻。可选的,第三资源的部分或全部资源位于感知窗中。该一组或多组感知资源属于根据步长Pstep确定的候选感知资源子集。可选的,该第三资源的部分或全部资源可位于第二通信装置的接收时间内,以进一步提高侧行链路通信质量。
以图9为例,如果第一资源包括图9所示的t y-2Pstep,且不包括t y-Pstep,其中,t y-Pstep为距离触发候选资源选择的时刻最近的一组感知资源,则在t y-2Pstep位于第一终端装置的非接收时间内时,第一终端装置可对t y-Pstep进行感知,并根据感知结果确定候选资源。可选的,第一终端装置可不对t y-2Pstep进行感知,以降低功耗。
可选的,若第一资源为连续分布的部分感知资源,且第二资源为周期间隔的部分感知资源,则在周期间隔的部分感知资源位于第一终端装置的非接收时间内,和/或,连续分布的部分感知资源中的部分或全部资源位于第一终端装置的接收时间内时,第一终端装置可根据连续分布的部分感知资源确定候选资源。其中,第一终端装置可根据位于接收时间内的连续分布的部分感知资源的感知结果,确定候选资源。
如图10所示,在连续分布的部分感知资源中的全部资源位于第一终端装置的接收时间内时,第一终端装置可根据连续分布的部分感知资源的感知结果,确定候选资源。
另外,如果第一资源的部分或全部资源位于接收时间内,或者,如果第一资源位于非接收时间且满足第二条件,则在S101中,第一终端装置可至少根据第一资源中的部分或全部资源确定候选资源。其中,第一资源可以是周期间隔的部分感知资源或连续分布的部分感知资源。此种情况下,即便第一资源位于非接收时间,第一终端装置仍然可以对第一资源中的部分或全部资源进行感知,并根据感知结果确定候选资源,以提高候选资源确定的有效性,以及传输的可靠性。
其中,第二条件包括以下条件中的至少一个:
条件1,第一终端装置接收到第二数据包的否定应答或者未收到肯定的应答。其中,第二数据包为所述第一数据包之前发送的数据包。其中,第二数据包为第一终端装置在发送第一数据包之前(或触发针对第一数据包的资源选择之前)发送的一个数据包。比如,第一数据包和第二数据包均为相同的初传数据包的重传数据包,且第二数据包的发送在第一数据包的发之前;或者,第一数据包和第二数据包分别是不同的数据包,且第二数据包的发送在第一数据包的发送之前。该否定应答(或者未收到肯定的应答)可能表示第二数据包的接收失败,其原因可能是第一终端装置此前确定的候选资源信道质量较差,因此在针对第一数据包进行资源选择时需要提高感知精度来提升通信质量。此时第一终端装置可以对第一资源进行感知,并根据感知结果确定候选资源。
条件2,第一数据包的优先级不低于第一门限。如果第一终端装置进行传输的数据包的优先级较高,则第一终端装置可对第一资源进行感知,并根据感知结果确定候选资源,以提高资源选择的有效性,确保第一数据包的传输可靠。其中,第一门限可以是信令配置的值。
条件3,候选资源所在的资源池上的信道状态参数值不低于第二门限。这里的信道状态参数值包括但不限于第一终端装置获得的资源池中资源的CBR、CR、RSRP或RSSI等。当这些参数值较高时,第一终端装置的资源池中的资源的信道状态不佳,此时第一终端装置可对第一资源进行感知,并根据感知结果确定候选资源,以提高资源选择的有效性,确保第一数据包的传输可靠性。其中,第二门限可以是信令配置的值。
条件4,第一终端装置被配置(或被激活或使能)重评估或抢占评估。如果第一终端装置被配置重评估或抢占评估,表示第一终端装置需要通过重评估或抢占评估确保侧行链路通信的可靠性,也就是说第一数据包的传输对于侧行链路通信质量有一定要求。此时第一终端装置可对第一资源进行感知,并根据感知结果确定候选资源,以提高资源选择的有效性,确保第一数据包的传输可靠。
条件5,第一终端装置接收到第一指示信息,其中,该第一指示信息用于指示在第一资源位于非接收时间时,第一终端装置至少根据第一资源对应的感知结果确定候选资源。在满足该条件时,第一终端装置可基于该第一指示信息执行候选资源的确定,也就是说,在接收到该第一指示信息时,即便第一资源位于非接收时间,第一终端装置仍然对第一资源进感知,并根据感知结果确定候选资源。
因此,在满足上述第二条件中的任意一个时,第一终端装置仍然需要对第一资源进行感知,并根据第一资源的感知结果确定候选资源。相比于满足第一条件时确定候选资源的方案,满足第二条件时第一终端装置至少需要根据第一资源的感知结果确定候选资源,能够提高候选资源选择的有效性,进而提高侧行链路通信质量。
示例性的,在第一资源位于非接收时间,且满足该第二条件时,第二终端装置可根据第一资源和第二资源确定候选资源,也就是说,第一终端装置可根据第一资源的感知结果和第二资源的感知结果确定候选资源,进一步提高侧行链路通信质量。
以第一资源为连续分布的部分感知资源,且第二资源为周期间隔的部分感知资源为例,如果第一终端装置确定的连续分布的部分感知资源位于第一终端装置的非接收时间内,且满足第二条件,则第一终端装置可根据该连续分布的部分感知资源的感知结果确定候选资源。在第一资源为周期间隔的部分感知资源,第二资源为连续分布的部分感知资源时,如果第一终端装置确定的连续分布的部分感知资源位于第一终端装置的非接收时间内,且满足第二条件,则第一终端装置可以在第一资源中的部分感知资源上进行感知,并根据感知结果确定候选资源,其中,第一资源中的部分感知资源例如是第一资源中的一组或多组感知资源。
同理,如果第二资源的部分或全部资源位于接收时间内,或者,如果第二资源位于非接收时间且满足第二条件,则在S101中,第一终端装置可至少根据第二资源中的部分或全部资源确定候选资源。其中,第二资源可以是周期间隔的部分感知资源或连续分布的部分感知资源。
在S101的另一种可能的实现方式中,如果第一资源的部分或全部资源位于第一终端装置的非接收时间内,且第二资源的部分或全部资源位于第一终端装置的非接收时间内,则在S101中,第一终端装置可通过随机资源选择确定候选资源,以降低感知产生的功耗。
例如,第一资源为图11所示的周期间隔的部分感知资源,第二资源为图11所示的连续分布的部分感知资源,由于第一资源和第二资源位于第一装置的非接收时间内,因此第一终端装置可通过随机资源选择确定候选资源。
可选的,在S101中,如果第一资源的部分或全部资源位于第一终端装置的非接收时间内,且满足第二条件,则在S101中,第一终端装置可根据第一资源和/或第二资源确定候选资源,以提高通信质量。其中,根据第一资源和/或第二资源确定候选资源的方式可参照前述满足第二条件时,根据第一资源确定候选资源和/或根据第二资源确定候选资源的方式,这里不再重复展开。
应理解,对于第一资源的部分或全部资源位于第一终端装置的非接收时间内的情况,第一指示信息可以是用于指示第一终端装置在第一资源的部分或全部资源位于第一终端装置的非接收时间内时,根据第一资源和/或第二资源对应的感知结果确定候选资源。
可选的,在S101中,如果第一资源的部分或全部资源位于第一终端装置的接收时间内,且第二资源的部分或全部资源位于第一终端装置的接收时间内,则第一终端装置可根据第一资源和第二资源确定候选资源。
本申请中,如果第一终端装置根据第一资源和第二资源确定候选资源,则第一终端装置可至少根据选择窗中的第四资源确定候选资源。其中,所述第四资源为不与第一资源和第二资源重合的至少一组连续分布的部分感知资源。或者,第四资源为第一资源和/或第二资源在选择窗中的部分资源。因此,根据第四资源确定候选资源可更加准确地确定候选资源,可进一步提高侧行链路通信质量。可选的,第一终端装置可根据第一资源、第二资源以及该第四资源确定候选资源。
应理解,本申请中根据第四资源确定候选资源,可以是第一终端装置在根据第一资源和第二资源确定第一候选资源子集的基础上,再根据第四资源和第一候选资源子集确定第二候选资源子集,该第二候选资源子集作为资源选择的结果(即作为候选资源)。比如,确定第二候选资源子集的过程。例如,第一终端装置可根据第四资源的感知结果,从第一候选资源子集中排除第四资源的感知结果为被占用资源的资源,和/或,将第四资源的感知结果为未被占用的资源增加至第一候选资源子集。或者,第一终端装置可分别根据第一资源、第二资源和第四资源确定候选资源,而不需要先确定第一候选资源子集再确定第二候选资源子集,本申请不具体限定。
如图12所示,第一资源为连续分布的部分感知资源,可表示为STS1,第二资源为周期间隔的部分感知资源,包括但不限于图12所示的t y-2Pstep和t y-Pstep,第四资源可以是图11所示STS2,时域位置为[n+T c,n+T d]。其中,第四资源的数量和/或大小(或T c和/或T d的取值)可以是信令配置的或预定义的。
在实施中,可选的,第四资源可根据第二终端装置的接收时间确定,以提高资源选择的有效性。例如,第四资源的时域位置位于第二终端装置的接收时间的起始时刻(或起始时刻所在时隙)之前的Tu个时隙。Tu可以是信令配置或预定义的值。例如,Tu的取值可以是0个时隙、1个时隙或2个时隙等。或者,可选地,Tu可以是0至32个时隙间的取值。在第二终端装置的接收时间的起始时刻之前,是为了确保第一终端装置在第二终端装置开始接收之前,有足够的时间通过STS2确定出合适的候选资源。
可选的,第一终端装置可在满足以下第四条件时,至少根据第四资源确定候选资源。其中,第四条件包括:根据第一资源和第二资源确定的候选资源包括K个资源单元,K小于或等于第三门限,其中,第三门限根据第一数据包的N次传输(包括第一数据包的初传和/或重传)需要的资源单元数量、第一终端装置的资源池的信道状态参数值、第一数据包的优先级、配置信令或者预定义的数值中的一种或多种信息确定。这里的信道状态参数值,例如是信道忙碌比、信道占用比、RSRP或RSSI等中的任意一种或多种。
可选的,如果在S102中,第一终端装置根据第一资源的感知结果和第二资源的感知结果确定所述的多组候选资源子集,则第四资源可包括多组子集。可选的,每个子集为一组连续分布的部分感知资源。可选地,第四资源包括周期间隔的部分感知资源在选择窗中确定出的第二个感知资源,以及在该第二个感知资源之前的连续分布的部分感知资源。例 如,第i组第四资源的子集的时域位置位于第i组候选资源子集的时域位置之后,和/或,位于第i+1组候选资源子集的时域位置之前。进一步的,第一终端装置可根据每个第四资源子集的感知结果,确定候选资源。比如,将根据第一资源的感知结果、第二资源的感知结果确定的候选资源子集的总集作为候选资源。其中,第四资源的子集数量和/或子集的大小可以是信令配置的或预定义的。
例如,在图13中,第一资源为连续分布的部分感知资源,第二资源为周期间隔的部分感知资源,包括但不限于图13所示的t y-2Pstep和t y-Pstep,根据第二资源确定的资源选择窗中的候选资源的子集包括t y、t y+Pstep……t y+p*Pstep。此时第四资源可包括第四资源子集#1、第四资源子集#2(图13中未示出)……和第四资源子集#p,其中,j=1、2……p,p为正整数。示例地,第四资源子集#j位于t y+j*Pstep之前,且位于t y+(j-1)*Pstep之后。
可选的,第一终端装置在根据第一资源、第二资源和第四资源确定候选资源时,可根据第二资源确定候选资源的子集包括t y、t y+Pstep……t y+p*Pstep,进一步根据第一资源、第四资源子集#1、第四资源子集#2……和第四资源子集#p分别的感知结果,进一步排除t y、t y+Pstep……t y+p*Pstep中的资源。可选的,图13中,每个候选资源子集和每个第四资源的子集都位于第二终端装置的接收时间内。
应理解,如果第一数据包所述的业务为周期性业务,则第一终端装置可根据本申请实施例确定的候选资源和该业务的业务周期,周期性地进行该业务的数据包的发送。其中,第一终端装置在每次发送中,可进行抢占评估,以提高侧行链路通信质量。
在进行抢占评估时,如果第一终端装置仍然处于非接收时间,则第一终端装置可在满足第五条件时执行抢占评估,否则,第一终端装置可不进行抢占评估。第五条件可包括前述条件1至条件4或条件6中的至少一个。其中,条件1至条件4可参见前述说明。条件6包括:第一终端装置接收到第二指示信息,其中,该第二指示信息用于指示在抢占评估的感知资源位于非接收时间时,第一终端装置至少根据抢占评估的感知资源对应的感知结果确定候选资源。
应理解,本申请中第一终端装置根据连续分布的部分感知资源确定候选资源的方式包括:执行一个定时器(如非激活定时器(in-active-timer))的计时,根据定时器计数确定感知、重评估或抢占评估中的至少一个的起止时间。可选的,该定时器的计时开始和结束时刻位于第一候选资源集合之前。该第一候选资源可以是根据周期性的部分感知资源确定的候选资源集合和/或周期性的用于抢占评估的资源。
还应理解,在本申请中,当第一终端装置本处于非接收状态,但因为满足本申请实施例中提供的条件而使第一终端装置执行接收操作(比如感知中的接收操作)时,在非接收时间内,第一终端装置开始执行接收操作的时间和结束操作的时间可以使用定时器来维护。可选的,可以通过启动的定时器的计数开始时刻以及技术截止时间来确定进行接收操作的开始时间和结束时间。
可选的,本申请实施例中的定时器的大小(或开始时刻的取值、或结束时刻的取值)是资源池上的信令配置的,这个大小可以与发送数据包的优先级或资源池的信号质量相关联。可选地,引处的信号质量可以是CBR、CR、RSSI或RSRP中的一种或多种。
如图14所示,本申请实施例还提供另一种通信方法,用于降低进行侧行链路通信的终端装置的功耗。该方法可由第一终端装置和网络设备实施。
S201:第一终端装置根据第一信息确定第一时隙的用于信号质量测量的资源。
其中,第一信息指示第一终端装置进行节能操作和/或用于指示该资源。节能操作在本申请中可以是DRX、节能的资源选择方式或者不连续发送。节能的资源选择方式可包括部分感知的资源选择,或者,基于配置的调度类型1的资源选择,或者,基于配置的调度类型2的资源选择。是否进行节能操作可以根据第一终端装置的资源池配置,比如,第一终端装置可能在某些资源池进行节能操作,而在另外的一些资源池不进行节能操作。从而达到了在支持终端装置在测量时进一步降低了不必要的功率消耗。
该第一信息是信令配置的,可来自于网络设备(如基站);或者,还可以预配置的方式确定的。相应地,网络设备可用于确定并发送第一信息。其中,第一信息的发送方式可以是单播、组播或广播。
可选的,该信号质量包括RSRP和/或RSSI。
该资源可以是第一时隙中的控制信道中DMRS占用的符号中的部分或全部资源,和/或,第一时隙中的数据信道中DMRS占用的符号中的部分或全部资源。应理解,本申请中的控制信道包括PSCCH,数据信道包括PSSCH。
本申请中,如图15和图16所示,DMRS可能位于PSCCH占用的符号,和/或位于由PSCCH调度的PSSCH占用的符号。其中,由PSCCH调度的PSSCH占用的符号包括时隙中位于PSCCH之后且位于间隔(gap)符号之前的至少一个符号。在图15和图16中,还包括自动增益控制(automatic gain control,AGC)符号,用于承载AGC信息,AGC信息用于使接收端终端装置将接收信号的强度调整为准确译码所需的强度),也可能位于由PSCCH调度的PSSCH占用的符号。
可选的,用于信号质量测量的资源包括时隙中控制信道的DMRS占用的资源,和/或,时隙中控制信道占用的符号上的数据信道的DMRS占用的资源。
可选的,用于信号质量测量的资源不包括时隙中首个用于做AGC操作的符号。
S202:第一终端装置在该资源上进行信号质量的测量。
可选的,第一终端装置可在第一时隙中的控制信道和/或数据信道中的DMRS占用的资源进行信号质量的测量。
具体的,如果第一时隙中的控制信道指示的数据信道的子信道的大小小于20个PRB,则第一终端装置可在第一时隙中的控制信道的DMRS占用的资源进行信号质量的测量。其中,控制信道指示的数据信道,也可替换为控制信道SCI指示的数据信道。此时,第一终端装置可以不在数据信道的DMRS占用的资源进行信号质量的测量,以节省功耗。
反之,如果数据信道的子信道的大小大于或等于20个PRB,则第一终端装置可在第一时隙中的控制信道和/或数据信道中的DMRS占用的资源进行信号质量的测量,比如第一终端装置可以在控制信道中的DMRS占用的资源进行信号质量的测量,和/或控制信道和数据信道中的DMRS占用的资源均进行信号质量的测量,以提高测量准确度。
另外,如果信号质量包括RSSI,则该资源在时域上为第一时隙中控制信道所在的符号,在频域上为该符号上的控制信道和数据信道占用的频域资源。因此,第一终端装置可在较少的资源上进行RSSI测量,以节省功耗。可选的,此种方式下数据信道的子信道的大小大于或等于20个PRB。
应理解,以上第一信息可以是一个配置信令,用于指示允许执行如图7和/或图14所述的方法执行。这种配置信令,可以是直接的信令指示的,也可以是通过其他信令隐式指示的。例如,在执行图14所示方法的情况下,可使用一个字段直接地指示执行如图7和/ 或图14所述的方法,和/或指示第一终端装置进行节能操作和/或用于指示图14所示实施例中涉及的用于信号质量测量的资源,相应地,第一终端装置可根据图14所示方法执行信号质量的处理。另外,在不执行图14所示方法的情况下,可使用一个字段直接地指示第一终端装置不执行如图7和/或图14所述的方法,和/或,指示第一终端装置不进行节能操作,或者,可以指示在整个第一时隙上进行信号质量的测量,相应地,第一终端装置不根据图14所示方法执行信号质量的处理,或者说,第一终端装置在整个第一时隙上进行信号质量的测量。
基于相同的发明构思,本申请实施例还提供一种通信装置,用于实现以上由第一终端装置实现的功能。该装置可包括图5和/或图6所示结构。
具体的,图5收发模块520和/或收发单元610可用于执行S102所示动作,和/或,执行本申请中由第一终端装置在感知资源上进行的接收动作,和/或,对于DMRS等信号的接收动作。处理模块510和/或处理单元620可用于S101、S201和S202所示动作,和/或,执行除在感知资源上进行的接收动作以外的资源选择动作,和/或,根据接收的DMRS等信号进行信号质量测量。
本申请实施例提供一种通信系统。该通信系统可以包括上述实施例所涉及的第一终端装置和/或第二终端装置。可选的,该通信系统可包括图1至图2中任一所示结构。该通信装置可用于实现图7和/或图14所示的通信方法中由第一终端装置实现的步骤。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,计算机可以实现上述方法实施例提供的图7和/或图14所示的实施例中与第一终端装置相关的流程。
本申请实施例还提供一种计算机程序产品,计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,计算机可以实现上述方法实施例提供的图7和/或图14所示的实施例中与第一终端装置相关的流程。
本申请实施例还提供一种芯片或芯片系统(或电路),该芯片可包括处理器,该处理器可用于调用存储器中的程序或指令,执行上述方法实施例提供的图7和/或图14所示的实施例中与第一终端装置相关的流程。该芯片系统可包括该芯片,还可存储器或收发器等其他组件。
可以理解的是,本申请的实施例中的处理器可以是CPU,还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于第一终端装置中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (28)

  1. 一种通信方法,其特征在于,包括:
    第一终端装置根据非连续接收DRX配置信息、第一资源或者第二资源中的至少一个确定候选资源;其中,所述第一资源为周期间隔的部分感知资源,所述第二资源为连续分布的部分感知资源;或者,所述第一资源为连续分布的部分感知资源,所述第二资源为周期间隔的部分感知资源;所述DRX配置信息用于确定接收时间和非接收时间;
    所述第一终端装置根据所述候选资源发送第一数据包。
  2. 如权利要求1所述的方法,其特征在于,在满足第一条件时,所述第一终端装置根据DRX配置信息、第一资源或者第二资源中的至少一个确定候选资源,包括:
    所述第一终端装置根据所述第一资源确定候选资源,其中,所述第一条件包括以下中的至少一个:
    所述第二资源位于所述非接收时间;或者,
    所述第一资源位于所述接收时间。
  3. 如权利要求1所述的方法,其特征在于,所述第一资源位于所述非接收时间,所述第一终端装置根据DRX配置信息、第一资源或者第二资源中的至少一个确定候选资源,包括:
    在满足第二条件时,所述第一终端装置至少根据所述第一资源确定候选资源。
  4. 如权利要求1-3中任一所述的方法,其特征在于,所述第一终端装置根据DRX配置信息、第一资源或者第二资源中的至少一个确定候选资源,包括:
    在所述第二资源位于所述接收时间时,或者,在所述第二资源位于所述非接收时间并且满足第二条件时,所述第一终端装置至少根据所述第二资源的监听结果确定候选资源。
  5. 如权利要求3或4所述的方法,其特征在于,所述第二条件包括以下中的至少一个:
    所述第一终端装置接收到第二数据包的否定应答,其中,所述第二数据包为所述第一数据包之前发送的数据包;或者,
    第一数据包的优先级不低于第一门限;或者,
    所述候选资源所在的资源池的信道状态参数值不低于第二门限;或者,
    所述第一终端装置被配置进行重评估或抢占评估;或者,
    所述第一资源位于所述非接收时间,且所述第一终端装置接收到第一指示信息,其中,所述第一指示信息用于指示:在所述第一资源位于所述非接收时间时,所述第一终端装置至少根据所述第一资源对应的感知结果确定所述候选资源。
  6. 如权利要求1-3中任一所述的方法,其特征在于,
    所述第一资源为周期间隔的部分感知资源,所述第二资源为连续分布的部分感知资源,所述第一资源的部分或全部资源位于所述非接收时间,所述第一终端装置根据DRX配置信息、第一资源或者第二资源中的至少一个确定候选资源,包括:
    所述第一终端装置至少根据感知窗中第三资源的监听结果确定候选资源,其中,所述第三资源为距离第一时刻最近的一组或多组监听资源,所述第一时刻为触发所述第一终端装置确定所述上行资源的时刻。
  7. 如权利要求6所述的方法,其特征在于,所述DRX配置用于确定所述第二终端装置的接收时间,所述一组或多组监听资源位于所述第二终端装置的接收时间,所述第二终端 装置为所述第一数据包的接收装置。
  8. 如权利要求1-3中任一所述的方法,其特征在于,所述第一资源为周期间隔的部分感知资源,所述第二资源为连续分布的部分感知资源;
    在所述第一资源中的M个时间单元位于所述非接收时间时,所述候选资源不包括所述M个时间单元在选择窗中关联的资源,M为正整数。
  9. 如权利要求1所述的方法,其特征在于,所述第一终端装置根据DRX配置信息、第一资源或者第二资源中的至少一个确定候选资源,包括:
    在满足以下条件时,所述第一终端装置根据随机选择方式确定所述候选资源:
    所述第一资源的部分或全部资源和所述第二资源的部分或全部资源,位于所述非接收时间。
  10. 如权利要求1所述的方法,其特征在于,所述第一终端装置根据DRX配置信息、第一资源或者第二资源中的至少一个确定候选资源,包括:
    所述第一资源和所述第二资源位于所述DRX配置确定的接收时间,所述第一终端装置根据所述第一资源和所述第二资源确定候选资源。
  11. 如权利要求1-10中任一所述的方法,其特征在于,所述第一终端装置根据DRX配置信息、第一资源或者第二资源中的至少一个确定候选资源,包括:
    所述第一终端装置至少根据选择窗中的L个第四资源确定所述候选资源,所述第四资源为所述第一资源和所述第二资源以外的连续分布的部分感知资源,L为正整数。
  12. 如权利要求10或11所述的方法,其特征在于,
    所述候选资源包括K个资源单元,K小于或等于第三门限,其中,所述第三门限根据以下中的一种或多种信息确定,K为正整数:
    第一数据包的N次传输需要的资源单元数量,N为正整数;或者,
    资源池上的信道状态参数值;或者,
    第一数据包的优先级;或者,
    配置信令;或者,
    预定义的数值。
  13. 一种通信装置,其特征在于,包括处理模块和收发模块:
    所述收发模块,用于所述通信装置进行通信;
    所述处理模块,用于通过所述收发模块执行:
    根据DRX配置信息、第一资源或者第二资源中的至少一个确定候选资源;其中,所述第一资源为周期间隔的部分感知资源,所述第二资源为连续分布的部分感知资源;或者,所述第一资源为连续分布的部分感知资源,所述第二资源为周期间隔的部分感知资源;所述DRX配置信息用于确定接收时间和非接收时间;
    根据所述候选资源发送第一数据包。
  14. 如权利要求13所述的通信装置,其特征在于,在满足第一条件时,所述处理模块具体用于:
    根据所述第一资源确定候选资源,其中,所述第一条件包括以下中的至少一个:
    所述第二资源位于所述非接收时间;或者,
    所述第一资源位于所述接收时间。
  15. 如权利要求13所述的通信装置,其特征在于,所述第一资源位于所述非接收时间,所述处理模块具体用于:
    在满足第二条件时,至少根据所述第一资源确定候选资源。
  16. 如权利要求13-15中任一所述的通信装置,其特征在于,所述处理模块具体用于:
    在所述第二资源位于所述接收时间时,或者,在所述第二资源位于所述非接收时间并且满足第二条件时,所述第一终端装置至少根据所述第二资源的监听结果确定候选资源。
  17. 如权利要求15或16所述的通信装置,其特征在于,所述第二条件包括以下中的至少一个:
    所述第一终端装置接收到第二数据包的否定应答,其中,所述第二数据包为所述第一数据包之前发送的数据包;或者,
    第一数据包的优先级不低于第一门限;或者,
    所述候选资源所在的资源池的信道状态参数值不低于第二门限;或者,
    所述第一终端装置被配置进行重评估或抢占评估;或者,
    所述第一资源位于所述非接收时间,且所述第一终端装置接收到第一指示信息,其中,所述第一指示信息用于指示:在所述第一资源位于所述非接收时间时,所述第一终端装置至少根据所述第一资源对应的感知结果确定所述候选资源。
  18. 如权利要求13-15中任一所述的通信装置,其特征在于,所述第一资源为周期间隔的部分感知资源,所述第二资源为连续分布的部分感知资源,所述第一资源的部分或全部资源位于所述非接收时间,所述处理模块具体用于:
    至少根据感知窗中第三资源的监听结果确定候选资源,其中,所述第三资源为距离第一时刻最近的一组或多组监听资源,所述第一时刻为触发所述第一终端装置确定所述上行资源的时刻。
  19. 如权利要求18所述的通信装置,其特征在于,所述DRX配置用于确定所述第二终端装置的接收时间,所述一组或多组监听资源位于所述第二终端装置的接收时间,所述第二终端装置为所述第一数据包的接收装置。
  20. 如权利要求13-15中任一所述的通信装置,其特征在于,所述第一资源为周期间隔的部分感知资源,所述第二资源为连续分布的部分感知资源;
    在所述第一资源中的M个时间单元位于所述非接收时间时,所述候选资源不包括所述M个时间单元在选择窗中关联的资源,M为正整数。
  21. 如权利要求13所述的通信装置,其特征在于,所述处理模块具体用于:
    在满足以下条件时,根据随机选择方式确定所述候选资源:
    所述第一资源的部分或全部资源和所述第二资源的部分或全部资源,位于所述非接收时间。
  22. 如权利要求13所述的通信装置,其特征在于,所述处理模块具体用于:
    所述第一资源和所述第二资源位于所述DRX配置确定的接收时间,所述第一终端装置根据所述第一资源和所述第二资源确定候选资源。
  23. 如权利要求13-22中任一所述的通信装置,其特征在于,所述处理模块具体用于:
    至少根据选择窗中的L个第四资源确定所述候选资源,所述第四资源为所述第一资源和所述第二资源以外的连续分布的部分感知资源,L为正整数。
  24. 如权利要求22或23所述的通信装置,其特征在于,
    所述候选资源包括K个资源单元,K小于或等于第三门限,其中,所述第三门限根据以下中的一种或多种信息确定,K为正整数:
    第一数据包的N次传输需要的资源单元数量,N为正整数;或者,
    资源池上的信道状态参数值;或者,
    第一数据包的优先级;或者,
    配置信令;或者,
    预定义的数值。
  25. 一种终端装置,其特征在于,包括处理器,所述处理器与至少一个存储器耦合,所述处理器用于读取所述至少一个存储器所存储的计算机程序,以执行如权利要求1~12中任意一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~12中任意一所述的方法。
  27. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行如权利要求1~12中任意一项所述的方法。
  28. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于读取指令以执行权利要求1~12中任意一项所述的方法。
PCT/CN2022/072883 2021-04-06 2022-01-20 一种通信方法及装置 WO2022213705A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110369478.1A CN115190454A (zh) 2021-04-06 2021-04-06 一种通信方法及装置
CN202110369478.1 2021-04-06

Publications (1)

Publication Number Publication Date
WO2022213705A1 true WO2022213705A1 (zh) 2022-10-13

Family

ID=83512296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072883 WO2022213705A1 (zh) 2021-04-06 2022-01-20 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN115190454A (zh)
WO (1) WO2022213705A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116567818B (zh) * 2023-07-04 2023-11-17 阿里巴巴(中国)有限公司 信息感知方法、信息处理方法、设备及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190090250A1 (en) * 2016-04-07 2019-03-21 Lg Electronics Inc. Method for performing sensing during terminal-specific sensing period in wireless communication system, and terminal using same
CN112312526A (zh) * 2019-08-01 2021-02-02 华硕电脑股份有限公司 无线通信系统装置到装置通信监测功率节省的方法和设备
US20210051653A1 (en) * 2019-08-15 2021-02-18 Comcast Cable Communications, Llc Sidelink Communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190090250A1 (en) * 2016-04-07 2019-03-21 Lg Electronics Inc. Method for performing sensing during terminal-specific sensing period in wireless communication system, and terminal using same
CN112312526A (zh) * 2019-08-01 2021-02-02 华硕电脑股份有限公司 无线通信系统装置到装置通信监测功率节省的方法和设备
US20210051653A1 (en) * 2019-08-15 2021-02-18 Comcast Cable Communications, Llc Sidelink Communications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Discussion on sidelink resource allocation for power saving", 3GPP TSG RAN WG1 #104E R1-2101630, 19 January 2021 (2021-01-19), XP051971785 *
QUALCOMM INC.: "Power Savings for Sidelink", 3GPP TSG RAN WG1 MEETING #104-E R1-2101485, 19 January 2021 (2021-01-19), XP051971650 *

Also Published As

Publication number Publication date
CN115190454A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
CN115443694A (zh) 用于在侧链路上执行非连续接收的方法
CN114830806A (zh) 用于在侧行链路通信中支持drx的装置及方法
CN115245009A (zh) 用于功率节省侦听和资源分配的方法
CN113382379B (zh) 无线通信方法和通信装置
WO2021031043A1 (zh) 一种通信方法及装置
CN115211066A (zh) 用于在新空口(nr)车辆到万物(v2x)中执行同时性侧行链路非连续接收(drx)和上行链路drx的方法和装置
WO2021218740A1 (zh) 一种确定侧行链路资源的方法、装置以及系统
CN116528340A (zh) 一种设备、方法和系统
CN113518381A (zh) 一种资源确定的方法、装置及终端设备
WO2022171173A1 (zh) 一种侧行链路通信方法及装置
WO2022022433A1 (zh) 一种侧行链路通信方法及装置
WO2022213705A1 (zh) 一种通信方法及装置
US20230319950A1 (en) Consideration of Active Reception Status in Resource Selection for D2D Communication
CN115190617A (zh) 用于资源确定的方法及装置
WO2021062855A1 (zh) 一种通信方法及装置
WO2022198666A1 (zh) 一种通信方法、终端装置及系统
WO2022027246A1 (en) Adaptive sensing based resource selection for d2d communication
CN116420360A (zh) 侧行传输方法和通信装置
WO2023165468A9 (zh) 一种资源确定方法及装置
WO2024032580A1 (zh) 测量方法、装置和系统
WO2023206042A1 (en) Coexistence of different sidelink protocols
WO2022217374A1 (en) Methods and apparatuses for sidelink communication
WO2024012129A1 (zh) 指示信息发送方法、装置及系统
WO2023011421A1 (zh) 通信方法及装置
WO2022077505A1 (zh) 一种传输资源确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22783776

Country of ref document: EP

Kind code of ref document: A1