WO2023011421A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2023011421A1
WO2023011421A1 PCT/CN2022/109494 CN2022109494W WO2023011421A1 WO 2023011421 A1 WO2023011421 A1 WO 2023011421A1 CN 2022109494 W CN2022109494 W CN 2022109494W WO 2023011421 A1 WO2023011421 A1 WO 2023011421A1
Authority
WO
WIPO (PCT)
Prior art keywords
duration
resources
resource selection
resource
lbt
Prior art date
Application number
PCT/CN2022/109494
Other languages
English (en)
French (fr)
Inventor
郭文婷
苏宏家
董蕾
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22852133.2A priority Critical patent/EP4369813A1/en
Publication of WO2023011421A1 publication Critical patent/WO2023011421A1/zh
Priority to US18/432,488 priority patent/US20240179681A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0085Timing of allocation when channel conditions change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • Enabling sidelink (sidelink, SL) communication in unlicensed spectrum is an important evolution direction in the development of communication systems.
  • the terminal device also needs to perform listen-before-talk (LBT) when communicating in the unlicensed spectrum, that is, the terminal device needs to monitor whether the channel is idle (idle) before accessing the channel and starting to send data. If the channel remains idle for a certain period of time, the channel can be occupied. If the channel is not idle, the channel can only be occupied after the channel becomes idle again.
  • LBT listen-before-talk
  • resource reservation is supported in SL communication, that is, a terminal device can reserve resources to be used for a period of time in the resource selection window, and send control information (such as sidelink control information (sidelink control information, SCI)) indicates resource reservation information for a period of time in the future.
  • control information such as sidelink control information (sidelink control information, SCI)
  • SCI sidelink control information
  • the terminal device needs to perform LBT before communicating on the reserved resources, that is, the terminal device needs to determine the length of time to wait according to the randomly generated initial value of the backoff counter, and each terminal user generates The initial values are different, resulting in the randomness of whether the LBT can succeed before the reserved resources, so that the terminal device may not be able to communicate on the reserved resources.
  • the present application provides a communication method and device, which can improve resource utilization.
  • the present application provides a communication method.
  • the execution body of the method may be a terminal device, or a combined device or component with the function of a terminal device, or a chip or a circuit system (such as processor, baseband chip, or chip system, etc.).
  • the method includes: determining the starting time point of a resource selection window according to the first time point triggering resource selection, and selecting transmission resources within the resource selection window. Wherein, the time interval between the starting time point of the resource selection window and the first time point is not less than the time required for the terminal device to execute the first type of listen-before-talk LBT.
  • the starting time point of the resource selection window is determined according to the duration required for the first type of LBT, so that as many resources in the resource selection window as possible are located after the end of the LBT, thereby improving the reserved resources.
  • the probability of LBT success before communication which in turn can improve resource utilization.
  • the terminal device on the receiving side does not need to detect information on resources before the terminal device on the transmitting side succeeds in LBT, thereby reducing the power consumption of the terminal device on the receiving side for receiving information.
  • the number of time slots T1 corresponding to the time interval between the starting time point of the resource selection window and the first time point can satisfy:
  • T is the number of time slots corresponding to the first duration.
  • the first duration is determined according to the initial value of the random backoff counter corresponding to the first type of LBT.
  • the interruption of the counting period of the random backoff counter can be ignored, and the calculation complexity can be reduced by estimating the first duration according to the initial value of the random backoff timer, which can save computing resources.
  • the first duration may be determined according to the initial value of the random backoff counter corresponding to the first type of LBT and the first interval in the first type of LBT.
  • the probability of LBT success before communication on the reserved resources can be further improved, thereby improving resource utilization.
  • the first interval may be the duration of channel idleness in the first type of LBT, that is, the duration of continuous channel idleness that the terminal device needs to wait for when performing the first type of LBT.
  • the first interval may be the DIFS duration in the WIFI protocol, or the first interval may also be the delay duration (The defer duration) in the 3GPP protocol.
  • the number T of time slots corresponding to the first duration satisfies:
  • counter is the initial value of the random backoff counter, and ⁇ corresponds to the subcarrier spacing.
  • candidate resources located in the resource selection window after the end of the LBT time point in the resource selection window may be selected as transmission resources in a sequence from front to back in time.
  • the first duration may be determined according to the initial value of the random backoff counter corresponding to the first type of LBT and the second duration, where the second duration is the number of time slots occupied by N reserved resources, or, The second duration is determined according to the number of time slots occupied by the N reserved resources and the N first intervals.
  • the first interval is the idle duration of the channel after the corresponding reserved resources, and the first interval and the corresponding reserved resources are at the same time. continuous in the domain.
  • the N reserved resources are resources reserved within the first duration, and N is a positive integer.
  • the random backoff counter is interrupted, and thus the time required for LBT to succeed increases.
  • the probability of LBT success before communicating on the reserved resources can be further improved, and the terminal device can improve the resource selection window. Possibility to send information on selected resources within.
  • the number T of time slots corresponding to the first duration can satisfy:
  • counter is the initial value of the random backoff counter
  • corresponds to the subcarrier interval
  • reservation i is the number of time slots occupied by the i-th reserved resource among the N reserved resources.
  • the interrupted duration of the random backoff counter can be determined according to the number of time slots occupied by the reserved resources, which has low complexity, can save computing resources, and reduce power consumption.
  • the number T of time slots corresponding to the first duration can satisfy:
  • counter is the initial value of the random backoff counter
  • corresponds to the subcarrier interval
  • reservation i is the number of time slots occupied by the i-th reserved resource among the N reserved resources
  • t is the first interval.
  • the N reserved resources are indicated by M pieces of sideline control information within the resource listening window, and M is a positive integer; wherein, each sideline control information in the M pieces of sideline control information
  • the corresponding reference signal received power RSRP is greater than the first threshold, and the first threshold is the RSRP threshold used for resource selection; or, the received signal strength indicator RSSI corresponding to each of the M sidelink control information is greater than the second Threshold, the second threshold is the RSSI threshold used for LBT; or, the RSRP corresponding to each side row control information in the M pieces of sideline control information is greater than the first threshold, and each sideline control information in the M pieces of sideline control information The RSSI corresponding to the control information is greater than the second threshold.
  • an embodiment of the present application provides a communications device that can implement the method described in the foregoing first aspect or any possible design thereof.
  • the apparatus comprises corresponding units or components for performing the method described above.
  • the units included in the device may be implemented by software and/or hardware.
  • the apparatus may be, for example, a terminal device, or a component or a baseband chip, a chip system, or a processor that can support the terminal device to implement the foregoing method.
  • the communication device may include a processing unit (or called a processing module), and may also include modular components such as a transceiver unit (or called a communication module, a transceiver module), etc., and these modules may perform the above-mentioned first aspect or any one thereof. methods described in Possible Designs.
  • the transceiver unit may be a transmitter and a receiver, or a transceiver obtained by integrating a transmitter and a receiver.
  • the transceiver unit may include an antenna and a radio frequency circuit, etc.
  • the processing unit may be a processor, such as a baseband chip.
  • the transceiver unit may be a radio frequency unit, and the processing unit may be a processor.
  • the transceiver unit may be an input-output interface of the system-on-a-chip, and the processing unit may be a processor of the system-on-a-chip, such as a central processing unit (CPU).
  • CPU central processing unit
  • the transceiver unit may be used to perform the receiving and/or sending actions in the first aspect or any possible design thereof.
  • the processing unit may be used to perform actions other than receiving and sending in the first aspect or any possible design thereof, such as determining the starting time point of a resource selection window, selecting transmission resources within the resource selection window, and so on.
  • a communication device including one or more processors, the one or more processors are coupled with a memory, and can be used to execute programs or instructions in the memory, so that the device performs the above-mentioned first aspect or A method in any possible design of this aspect.
  • the device further includes one or more memories.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • a computer-readable storage medium is provided.
  • the computer-readable storage medium is used to store computer instructions.
  • the computer instructions When the computer instructions are run on a computer, the computer is made to execute the above-mentioned first aspect or any one of its possible options. method in design.
  • a computer program product containing instructions, the computer program product is used to store computer instructions, and when the computer instructions are run on a computer, the computer is made to execute the above first aspect or any possible design thereof method in .
  • a processing device is provided, the processing device is coupled to a memory, and the processing device invokes a program in the memory to execute the method in the above first aspect or any possible design thereof.
  • the processing means may comprise, for example, a system-on-a-chip.
  • the chip system in the above aspect can be a system on chip (system on chip, SOC), and can also be a baseband chip, etc., wherein the baseband chip can include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • SOC system on chip
  • baseband chip can include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • FIG. 1 is a schematic diagram of V2X communication according to an embodiment of the present application.
  • Fig. 2 is four kinds of LBT schematic diagrams of the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a random backoff in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a network architecture according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another network architecture according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another network architecture according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a resource selection window in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another resource selection window in the embodiment of the present application.
  • FIG. 12 is a schematic diagram of resource selection in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another resource selection in the embodiment of the present application.
  • FIG. 14 is a schematic diagram of a resource selection window in an embodiment of the present application.
  • FIG. 15 is a schematic diagram of resource selection according to an embodiment of the present application.
  • Terminal equipment including equipment that provides voice and/or data connectivity to users, specifically, equipment that provides voice to users, or equipment that provides data connectivity to users, or equipment that provides voice and data connectivity to users sexual equipment. Examples may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (radio access network, RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • radio access network radio access network
  • the terminal equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (vehicle to everything, V2X) terminal equipment , machine-to-machine/machine-type communications (machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (internet of things, IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station) station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user Agent (user agent), or user equipment (user device), etc.
  • IoT Internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket, hand-held, computer built-in mobile devices, and the like.
  • PCS personal communication service
  • cordless telephone cordless telephone
  • session initiation protocol session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, etc.
  • it includes barcodes, radio frequency identification (radio frequency identification, RFID), sensors, global positioning system (global positioning system, GPS), laser scanners and other information sensing devices.
  • the terminal equipment in the V2X technology can be a roadside unit (roadside unit, RSU), and the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • RSU roadside unit
  • the roadside unit can pass PC5
  • the interface exchanges messages with other entities supporting V2X applications.
  • the terminal device in the V2X technology can also be a complete vehicle, a communication module (such as a communication chip, a chip system, etc.), a telematics BOX (TBOX), etc. in the complete vehicle.
  • a communication module such as a communication chip, a chip system, etc.
  • TBOX telematics BOX
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc., which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as vehicle-mounted terminal devices, and the vehicle-mounted terminal devices are also called on-board units (OBU) for example. .
  • OBU on-board units
  • the terminal device may further include a relay (relay).
  • a relay relay
  • all devices capable of performing data communication with the base station can be regarded as terminal devices.
  • the device used to realize the function of the terminal device may be a terminal device, or a device applied to the terminal device that can support the terminal device to realize the function, such as a component or component with a communication function, or a chip system , the device can be installed in the terminal equipment.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • Network equipment for example including access network (access network, AN) equipment, such as base stations (for example, access points), can refer to equipment in the access network that communicates with wireless terminal equipment through one or more cells through the air interface , or for example, a network device in a V2X technology is a base station type RSU.
  • the base station is operable to convert received over-the-air frames to and from Internet Protocol (IP) packets, acting as a router between the terminal device and the rest of the access network, which may include an IP network.
  • IP Internet Protocol
  • the base station type RSU can be a fixed infrastructure entity supporting V2X applications, and can exchange messages with other entities supporting V2X applications.
  • the base station type RSU can exchange messages with other entities supporting V2X applications through the Uu interface.
  • the network device can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in the LTE system or long term evolution-advanced (LTE-A), or may also include the fifth generation mobile
  • the next generation node B (next generation node B, gNB) in the communication technology (the 5th generation, 5G) NR system (also referred to as NR system) may also include the cloud access network (cloud radio access network, Cloud RAN) system
  • the centralized unit (centralized unit, CU) and/or distributed unit (distributed unit, DU) in this application are not limited in this embodiment.
  • the network device can be a CU in the Cloud RAN system, or a DU, or a whole of CU and DU.
  • the network device may also include a core network device, and the core network device includes, for example, an access and mobility management function (access and mobility management function, AMF) and the like. Since the embodiments of the present application mainly relate to the access network, unless otherwise specified in the following, the network equipment mentioned refers to the access network equipment.
  • AMF access and mobility management function
  • the device for realizing the function of the network device may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described by taking the network device as an example for realizing the function of the network device.
  • V2X is the interconnection between the car and the outside world, which is the foundation and key technology of future smart cars, autonomous driving, and intelligent transportation systems. V2X will optimize the specific application requirements of V2X on the basis of the existing device-to-device (D2D) technology. It is necessary to further reduce the access delay of V2X devices and solve the problem of resource conflicts.
  • D2D device-to-device
  • V2X specifically includes direct communication between vehicles (vehicle-to-vehicle, V2V), vehicles and roadside infrastructure (vehicle-to-infrastructure, V2I), vehicles and pedestrians (vehicle-to-pedestrian, V2P), and Several application requirements such as vehicle-to-network (V2N) communication interaction.
  • V2V refers to the communication between vehicles
  • V2P refers to the communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers)
  • V2I refers to the communication between vehicles and network equipment, such as RSU, in addition
  • V2N refers to the communication between the vehicle and the base station/network.
  • the resource selection window is the time slot corresponding to [n+T 1 , n+T 2 ] after the resource selection trigger of the terminal device.
  • n is the time point at which the terminal device triggers resource selection, that is, the time point at which the resource selection process is triggered.
  • the resource selection process may be a process in which the terminal device determines the PSSCH resources reported to the upper layer, or the terminal device selects from the upper layer to use The process of determining a subset of resources in the resources transmitted by PSSCH/PSCCH; T1 is determined by the terminal device, and is used to trigger the resource selection after the time point when the terminal device processes the interception result and determines the processing delay of the candidate resources.
  • T 1 can satisfy For the maximum value of T1 defined by the standard, an example, It can be defined by Table 1, where ⁇ can be configured by sub-carrier spacing (sub-carrier spacing, SCS) corresponding to SL part bandwidth (bandwidth part, BWP), for example, ⁇ can be defined by Table 2.
  • T 2 is determined by the terminal device, and T 2 is a value smaller than a packet delay budget (packet delay budget, PDB) requirement of the data packet to be sent.
  • PDB packet delay budget
  • the resource listening window is a set of time slots, which is the basis for the terminal device to sense.
  • the terminal device judges whether the candidate resources in the resource selection window have been reserved, that is, whether they are available, according to the information carried by the SCI correctly received in the corresponding resource listening window.
  • the time range of the resource listening window is [nt 0 ,nt proc,0 ].
  • t 0 is a boundary value of the resource listening window, and the specific value is configured or preconfigured by the network side.
  • the time size of t 0 can be 1100ms or 100ms (or other values).
  • t proc,0 is the time for the terminal device to process the interception results, the maximum value of t proc,0 under different subcarrier intervals defined by the standard, according to the different capabilities of the terminal device, the terminal device can automatically Determine the value of t proc,0 , and t proc,0 ⁇ 0.
  • LBT In the wireless communication system, according to the different frequency bands used, it can be divided into authorized frequency bands and unlicensed frequency bands. In the unlicensed frequency band, the sending node needs to perform LBT when communicating. That is, the sending node needs to monitor whether the channel is idle before accessing the channel and starting to send data. If the channel is not idle, it cannot send signals on the channel; if the channel has been kept idle and the idle time meets the LBT requirements, it can be occupied channel.
  • Four types of channel access are introduced below. The difference between the four types of channel access is the length of waiting time, as shown in FIG. 2 .
  • the sending node sends after a short switching interval, for example, the sending node waits for the channel to be idle for a short frame interval (The short inter-frame space, SIFS) time to access the channel.
  • SIFS includes a 9us time slot.
  • the delay defined by SIFS may include the propagation delay of the radio wave carrying the signal in space, the signal processing delay of the user at the receiving end, and the switching delay of sending and receiving of the user at the receiving end.
  • the sending node performs LBT without random backoff. For example, the sending node waits for the channel to be continuously idle for a point coordination function inter-frame space (PIFS) period before accessing the channel.
  • PIFS may be equal to (SIFS+slotTime)
  • slotTime is the length of a time slot, which may last for 9 microseconds in time.
  • the duration that the channel is detected as idle is deterministic before the sending node accesses the channel.
  • the sending node waits for the channel to be continuously idle for a period of distributed coordination function interframe space (DIFS) before accessing the channel, where DIFS can be equal to ( SIFS+2*slotTime), the successful access of the sending node to the channel may be called DIFS success.
  • DIFS distributed coordination function interframe space
  • the sending node After the sending node judges that the channel has been idle for DIFS, it waits for the channel to be idle for a random backoff time based on the random backoff mechanism. Then access the channel.
  • the random backoff mechanism requires the sending node to select an initial value of a random backoff count (random backoff count).
  • the initial value of the random backoff count indicates the number of slottimes the sending node needs to wait for the channel to be idle after DIFS succeeds.
  • the slotTime can be non- The minimum time granularity for channel resource sensing on licensed frequency bands.
  • the sending node When the value of the random backoff counter is decremented to 0, it is judged that the access is successful, and the sending node sends a signal on the channel ( Or called the access channel, or use the channel, or occupy the channel).
  • the access channel Or called the access channel, or use the channel, or occupy the channel.
  • the sending node sends a signal on the channel ( Or called the access channel, or use the channel, or occupy the channel).
  • the access channel Or called the access channel, or use the channel, or occupy the channel.
  • the threshold that is, when a sending node is sending a signal, other sending nodes detect that the channel is busy.
  • STA1 starts to transmit signals on the channel of the unlicensed frequency band at the initial moment, other transmitting nodes perform LBT.
  • the initial value of the random backoff count indicates the number of slotTimes for which the sending node needs to wait for the channel to be idle after the DIFS succeeds.
  • the initial value of the random backoff count is a positive integer randomly selected by the sending node within the competition window [0, CW], and it is evenly distributed in the window, that is, 0 ⁇ random backoff count ⁇ CW.
  • CW represents the length of the contention window, and its initial value is CW min .
  • the sending of invalid data means that the sending node has not received the ACK response fed back by the receiving node.
  • the values of CW min and CW max can be as shown in Table 3, and the values of CW min and CW max can be related to the priority p of channel access, and different priorities correspond to different CW min,p and CW max,p , the maximum allowable access duration (that is, the maximum continuous use duration of the channel) T ulm cot,p is different.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b, or c can represent: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • first and second are used to distinguish multiple objects, and are not used to limit the size, content, order, and timing of multiple objects , priority or importance, etc.
  • first threshold value and the second threshold value are only used to distinguish different threshold values, and do not represent the difference in priority or importance of the two threshold values.
  • a terminal device can reserve resources to be used in a future period of time within a resource selection window. Because in the unlicensed spectrum, the sending node needs to perform LBT when communicating. Therefore, when the terminal device performs lateral communication in the unlicensed spectrum, the terminal device also needs to perform LBT before communicating on the reserved resources, that is, the terminal device needs to determine the length of time to wait according to the initial value of the backoff counter generated randomly.
  • the embodiment of the present application provides a communication method and device, by determining the start time point of the resource selection window according to the duration required for the terminal device to perform LBT, so that as many resources in the resource selection window as possible are located after the end of the LBT , so that the probability of LBT success before communicating on the reserved resource can be improved, the possibility of the terminal device sending information on the resource selected in the resource selection window, and the probability of the opposite terminal device receiving information on the resource Possibilities, which in turn can reduce the power consumption of receiving information by the opposite terminal device.
  • the method and the device are based on the same inventive concept, and since the principles of the method and the device to solve problems are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the technical solutions provided by the embodiments of the present application can be applied to protocol frameworks such as LTE, NR, or 6G. Specifically, it can be applied to D2D scenarios, such as V2X, LTE-V, V2V, etc. in the Internet of Vehicles scene.
  • the Internet of Vehicles scene can include but not limited to intelligent driving, intelligent networked vehicles, etc.
  • the embodiments of the present application may be applied to unlicensed spectrum, for example, the embodiments of the present application may be applied to a frame-based-equipment (frame-based-equipment, FBE) scenario of the unlicensed spectrum.
  • frame-based-equipment frame-based-equipment, FBE
  • the technical solutions provided by the embodiments of the present application may be applicable to a mode in which users independently select resources in communication scenarios with or without network coverage.
  • the network architecture applied in the embodiment of the present application is introduced below. Please refer to FIG. 4-FIG. 6, which are a kind of network architecture applied in the embodiment of this application.
  • 4-6 include a network device and two terminal devices, which are terminal device 1 and terminal device 2 respectively. Both of the two terminal devices can be within the coverage of the network device, as shown in Figure 4; or among the two terminal devices, only terminal device 1 is within the coverage of the network device, and terminal device 2 is not in the network within the coverage of the network device, as shown in FIG. 5 ; or neither of the two terminal devices is within the coverage of the network device, as shown in FIG. 6 .
  • the two terminal devices can communicate through sidelink.
  • the numbers of terminal devices in FIG. 4-FIG. 6 are just examples. In practical applications, a network device may provide services for multiple terminal devices.
  • the network devices in FIGS. 4-6 are, for example, access network devices, such as base stations.
  • the access network equipment corresponds to different equipment in different systems, for example, in the fourth generation mobile communication technology (the 4th generation, 4G) system, it can correspond to eNB, and in the 5G system, it can correspond to the access network equipment in 5G, for example gNB, or an access network device in a subsequent evolved communication system.
  • 4G fourth generation mobile communication technology
  • 5G for example gNB
  • terminal devices in FIGS. 4-6 are vehicle-mounted terminal devices or cars as examples, but the terminal devices in the embodiments of the present application are not limited thereto.
  • Fig. 7 shows a possible structural schematic diagram of the device.
  • the device shown in Figure 7 can be a terminal device, or a chip, a communication module, a telematics BOX (TBOX), or other combined devices with the functions of the terminal device shown in this application, which are applied in the terminal device, Components (or components), etc.
  • the device may include a processing module 710 and may further include a transceiver module 720 .
  • the transceiver module 720 can be a functional module, which can complete both the sending operation and the receiving operation.
  • the transceiver module 720 is a sending module, and when performing a receiving operation, it can be considered that the transceiver module 720 is a receiving module; perhaps, the transceiver module 720 can also be two functional modules, and the transceiver module 720 can be regarded as the two functional modules.
  • the general term for functional modules, these two functional modules are the sending module and the receiving module, the sending module is used to complete the sending operation, for example, the sending module can be used to perform the sending operation performed by the terminal device, and the receiving module is used to complete the receiving operation,
  • the receiving module can be used to perform the receiving operation performed by the terminal device.
  • the transceiver module 720 may include a transceiver and/or a communication interface.
  • Transceivers may include antennas and radio frequency circuits, among others.
  • the communication interface is such as an optical fiber interface.
  • the processing module 710 may be a processor, such as a baseband processor, and the baseband processor may include one or more central processing units (central processing unit, CPU).
  • the transceiver module 720 may be a radio frequency unit, and the processing module 710 may be a processor, such as a baseband processor.
  • the transceiver module 720 may be an input-output interface of a chip (such as a baseband chip), and the processing module 710 may be a processor of the system-on-a-chip, and may include one or more central processing units.
  • processing module 710 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 720 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 710 may be used to perform operations performed by the terminal device in the embodiment of the present application other than the transceiving operation, such as processing operations, and/or other processes for supporting the technologies described herein For example, determining the start time point of the resource selection window, selecting transmission resources within the resource selection window, processing messages, information and/or signaling received by the transceiver module 720 , and the like.
  • the transceiver module 720 may be used to perform receiving and/or sending operations performed by the terminal device in the embodiment of the present application, and/or to support other processes of the technology described herein.
  • the processing module 710 may control the transceiver module 720 to perform receiving and/or sending operations.
  • Fig. 8 shows another possible structural diagram of a terminal device.
  • the terminal device includes a processor, and may also include structures such as a memory, a radio frequency unit (or radio frequency circuit), an antenna, or an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control devices, execute software programs, process data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the radio frequency unit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 8 only one memory and processor are shown in FIG. 8 .
  • a memory may also be called a storage medium or a storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with the transceiver function can be regarded as the transceiver unit of the terminal equipment (the transceiver unit can be a functional unit, and the functional unit can realize the sending function and the receiving function; or, the transceiver unit can also be It includes two functional units, namely a receiving unit capable of receiving functions and a sending unit capable of transmitting functions), and the processor with processing functions is regarded as the processing unit of the terminal device.
  • the terminal device includes a processing unit 820 and may further include a transceiver unit 810 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • a processing unit may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device in the transceiver unit 810 for realizing the receiving function may be regarded as a receiving unit
  • the device in the transceiver unit 810 for realizing the sending function may be regarded as a sending unit, that is, the transceiver unit 810 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the transceiver unit 810 may correspond to the transceiver module 720 , or in other words, the transceiver module 720 may be implemented by the transceiver unit 810 .
  • the transceiver unit 810 is configured to perform the sending operation and the receiving operation of the terminal device in the embodiments shown in this application, and/or other processes for supporting the technology described herein.
  • the processing unit 820 may correspond to the processing module 710 , or in other words, the processing module 710 may be implemented by the processing unit 820 .
  • the processing unit 820 is configured to perform other operations on the terminal device in the embodiment shown in the present application except the transceiving operation, for example, to perform receiving and/or sending operations performed by the terminal device in the embodiment shown in the present application, and and/or other processes used to support the techniques described herein.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application. With the evolution of architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • time units are used as time units for illustration, and in specific embodiments, time units can also be replaced by other time units such as frame, subframe, half frame, mini-slot or symbol, etc. , the time unit is not limited here.
  • FIG. 9 it is a schematic flowchart of a communication method provided by the present application.
  • the subject of execution of the method may be a terminal device, or a combination device or component having functions of a terminal device, or a communication chip (such as a processor, a baseband chip, or a system-on-a-chip, etc.) applied to a terminal device.
  • a communication chip such as a processor, a baseband chip, or a system-on-a-chip, etc.
  • the time interval between the start time point of the resource selection window and the time point n (hereinafter referred to as the first time point) that triggers resource selection is not less than (that is, greater than or equal to) the first duration, and the first duration is the terminal device The time required to perform the first type of LBT.
  • the first time point n may be a time slot selected by the trigger resource. The description of the first duration will be introduced in detail below.
  • the time point of triggering resource selection can be understood as the time point of triggering the resource selection process, wherein the resource selection process can refer to the process in which the terminal device determines the PSSCH resources reported to the upper layer, or the resource selection process can also refer to the process in which the terminal device determines the PSSCH resource to be reported to the upper layer.
  • the process of selecting a subset of resources for PSSCH/PSCCH transmission can refer to the process in which the terminal device determines the PSSCH resources reported to the upper layer, or the resource selection process can also refer to the process in which the terminal device determines the PSSCH resource to be reported to the upper layer.
  • the first type of LBT can be the fourth channel access method in the introduction of the preceding terms, that is, the Cat 4 LBT in the WIFI protocol, or the Type 1 LBT in the 3GPP protocol.
  • step S901 the starting time point of the resource selection window may be determined in at least one of the following two ways:
  • the value of T1 is determined by the terminal device itself, and the value range of T1 satisfies
  • T 1 T.
  • T1 T.
  • the first processing time length may include a processing delay of a sensing result, report the physical layer sensing result to a media access control (media access control, MAC) layer, and complete the final processing at the MAC layer
  • the processing time required for the resource selection process, the processing time required for data transmission, or the processing delay such as switching delay can be found in Table 1 above.
  • T is the number of time slots corresponding to the first duration
  • T1 is the number of time slots corresponding to the time interval between the starting time point of the resource selection window and the time point n when resource selection is triggered.
  • step S901 may be executed by the processing module 710 .
  • Step S902 may be executed by the processing module 710 .
  • the manner in which the terminal device selects transmission resources within the resource selection window will be described in detail below in conjunction with the manner of determining the start time point of the resource selection window.
  • vehicle 1 communicates with the opposing vehicle in the unlicensed spectrum. If vehicle 1 does not succeed in LBT before its reserved resources, vehicle 1 cannot communicate with the opposite vehicle in its reserved resources. Since the vehicle 1 sends the SCI to other vehicles to indicate that the resource is reserved after the resource is reserved, other vehicles cannot use the resource, resulting in resource waste.
  • vehicle 1 cannot communicate with the opposite vehicle in its reserved resources, the opposite vehicle cannot receive the information of vehicle 1 in time, which may lead to unexpected traffic conditions, for example, when vehicle 1 is driving on the expressway Resource 1 is reserved for sending the driving information of vehicle 1 at the intersection (such as vehicle speed, direction, etc.), but vehicle 1 has not succeeded in LBT before resource 1, and other vehicles have not obtained the driving information of vehicle 1 at the intersection on resource 1 , leading to traffic safety hazards.
  • the starting time point of the resource selection window is determined according to the duration required for the first type of LBT, so that as many resources in the resource selection window as possible are located after the end of the LBT, thereby improving the reserved resources.
  • the probability of LBT success before communication which in turn can improve resource utilization.
  • the above solution can improve the possibility of the terminal device sending information on the resource selected in the resource selection window, and the possibility of receiving information by the terminal device on the called side.
  • the terminal device on the receiving side does not need to detect information on the resources of the terminal device on the transmitting side before the LBT succeeds, so that the power consumption of the terminal device on the receiving side for receiving information can be reduced.
  • the first duration may be a duration estimated by the terminal device that the LBT may be required, rather than a duration actually required by the terminal device to perform the LBT.
  • the terminal device may consider the interruption of the counting period of the random backoff counter, or may not consider the interruption of the counting period of the random backoff counter, wherein the interruption of the counting period of the random backoff counter may be but not limited to :
  • the random backoff counter is interrupted by N reserved resources, where the N reserved resources are resources reserved within the first duration, and N is a positive integer.
  • the N reserved resources can be reserved resources indicated by the SCI detected by the terminal device in the resource listening window.
  • the specific process is that the terminal device can detect the SCI in the resource listening window, and determine according to the detected SCI Resources reserved for the first duration.
  • the specific way of determining the reserved resources will be described in detail below when the terminal device determines the first duration in consideration of the interruption of the counting period of the random backoff counter.
  • the terminal device may default to not reserve resources during the counting period of the random backoff counter (that is, the number of reserved resources is 0). In this manner, the terminal device may estimate the first duration according to the initial value of the random backoff timer. That is, the first duration may be determined according to the initial value of the random backoff counter corresponding to the first type of LBT.
  • the random backoff counter can record the random backoff count selected by the terminal device during the first LBT process, and it can also be understood that the initial value of the random backoff counter is the initial value of the random backoff count selected by the terminal device during the first LBT process.
  • the initial value of the random backoff count please refer to the relevant description of the initial value of the random backoff count in 6) of the terminology introduction above, and details will not be repeated here.
  • the first duration is determined according to the initial value of the random backoff counter corresponding to the first type of LBT, which can also be understood as being determined according to the initial value of the random backoff counter selected by the terminal device during the first LBT process.
  • the number T of time slots corresponding to the first duration can satisfy:
  • counter is the initial value of the random backoff counter (or the initial value of the random backoff count selected by the terminal device during the first LBT process)
  • 9e -3 means 9 microseconds, which is the minimum time granularity of channel resource sensing on the unlicensed frequency band
  • the terminal device judges whether the channel state is idle or busy within the duration based on the sensing results.
  • 2 - ⁇ is the duration corresponding to a time slot in the current communication system, and the unit is microseconds.
  • corresponds to the index of the subcarrier interval
  • corresponds to The subcarrier spacing
  • is a parameter corresponding to the subcarrier spacing
  • different subcarrier spacing sizes can correspond to different values of ⁇ .
  • the correspondence between ⁇ and the subcarrier spacing can be referred to in Table 2 above.
  • the time slots of the terminal device on the sending side and the terminal device on the receiving side are aligned, and the terminal devices on the sending and receiving sides use resources at the granularity of time slots, and represent the starting position of resources at the granularity of time slots.
  • rounding enables the sending terminal device to send effective data of information at integer multiples of time slots, and the meaning of rounding can be expressed as the index of the first complete time slot that the sending terminal device can use.
  • the sending side may send occupancy information, or redundant information, or independent control information, or copy information of the first complete frame between time n+(counter*9e -3 ) and time n+T.
  • the number of time slots T 1 between the start time point n+T 1 of the resource selection window [n+T 1 , n+T 2 ] and the time point n that triggers resource selection satisfies :
  • the value of T1 is determined by the terminal device itself, and the value range of T1 satisfies exist in the case of,
  • the resource selection window may be as shown in FIG. 10 .
  • time slots are taken as an example for illustration, and other time units, such as symbols, frames, subframes, half frames, control information transmission intervals, etc., may also be used in specific implementations.
  • time unit A the number of time slots corresponding to the first duration, or the number of time slots between the starting time point of the resource selection window and the time point triggering resource selection can be used.
  • XXX is the duration of time unit A, in milliseconds, to obtain the number of time units A corresponding to the first duration, or the difference between the starting time point of the resource selection window and the time point when resource selection is triggered The number of time units A in the interval.
  • the time unit A is a subframe, and XXX is 0.5 milliseconds.
  • the time unit A is a half frame, and XXX is 0.25 milliseconds.
  • the number a of A corresponding to the first duration can satisfy:
  • the number a1 of the time unit A between the start time point of the resource selection window and the time point when the resource selection is triggered can satisfy: in the case of, exist in the case of,
  • the number of time slots corresponding to the first duration or the number of time slots between the start time point of the resource selection window and the time point that triggers resource selection can also be processed similarly to obtain the time unit corresponding to the first duration
  • the number of A or the number of time units A between the start time point of the resource selection window and the time point when resource selection is triggered will not be described repeatedly.
  • the first interval in the first type of LBT can be considered when determining the first duration, that is, the first duration can be based on the initial value of the random backoff counter corresponding to the first type of LBT and A first interval determination in a first type of LBT.
  • the first interval can be understood as the duration of channel idleness in the first type of LBT, that is, the duration of continuous idleness of the channel that the terminal device needs to wait for when performing LBT.
  • Different types of LBT have different values for the interval.
  • the interval in the first channel access method (corresponding to Cat 1 LBT in the WIFI protocol, or Type 2B type LBT in the 3GPP protocol), the interval can be SIFS.
  • the second channel access method corresponding to Cat 2 LBT in the WIFI protocol, or Type 2A LBT in the 3GPP protocol
  • the interval can be PIFS, etc.
  • the first interval may be the DIFS duration in the WIFI protocol, or the first interval may also be the delay duration (The defer duration) in the 3GPP protocol. It can be understood that the first interval may also be referred to as a first duration, a first preset duration, and the like.
  • the number T of time slots corresponding to the first duration can satisfy: Alternatively, it can also be understood that the number of time slots corresponding to the first duration can be determined according to the above formula, where t is the first interval.
  • the time slot T 1 between the starting time point n+T 1 of the resource selection window [n+T 1 , n+T 2 ] and the time point n triggering resource selection satisfies : in the case of, exist in the case of,
  • the resource selection window may be as shown in FIG. 11 .
  • step S902 is to select from the first resource set in the order from front to back in time Transmission resources (or occupied COT), wherein, the first set of resources is a subset of the set of candidate resources in the resource selection window, and the first set of resources includes the candidate resources in the resource selection window after the end time point of LBT, for example
  • the first resource set may include all candidate resources in the resource selection window after the time point when the LBT ends, or the first resource set may also include some candidate resources in the resource selection window after the time point when the LBT ends.
  • the selected transmission resource may be as shown in FIG. 12 or FIG. 13 .
  • the success rate of LBT access can be improved, and the possibility of communication on the selected resources can be improved.
  • the random backoff counter is interrupted, and thus the time required for LBT to succeed increases.
  • the LBT access success rate can be further improved, and the terminal device can increase the probability of sending information on the resource selected in the resource selection window. possibility.
  • the second duration is the number of time slots occupied by the N reserved resources. Then the number T of time slots corresponding to the first duration can satisfy: Alternatively, it can also be understood that the number of time slots corresponding to the first duration can be determined according to the above formula.
  • reservation i is the number of time slots occupied by the i-th reserved resource of the N reserved resources by the random backoff counter, and 1 ⁇ i ⁇ N. For example, assuming that one reserved resource occupies one time slot, the number of time slots corresponding to the second duration is N.
  • the number of time slots T 1 between the start time point n+T 1 of the resource selection window [n+T 1 , n + T 2 ] and the time point n that triggers resource selection satisfies: in the case of, Among them, the value of T1 is determined by the terminal device itself, and the value range of T1 satisfies exist in the case of, For example, assuming that N is 3 and one reserved resource occupies one time slot, the resource selection window may be as shown in FIG. 14 .
  • the second duration may be determined according to the number of time slots occupied by the N reserved resources and the N first intervals. Then the number T of time slots corresponding to the first duration can satisfy: t is the first interval. Alternatively, it can also be understood that the number of time slots corresponding to the first duration can be determined according to the above formula.
  • the number of time slots T 1 between the start time point n+T 1 of the resource selection window [n+T 1 , n + T 2 ] and the time point n that triggers resource selection satisfies: in the case of, Among them, the value of T1 is determined by the terminal device itself, and the value range of T1 satisfies exist in the case of,
  • the above example can improve the accuracy of the time required for LBT by considering the first interval of performing LBT every time it is interrupted by the reserved resources.
  • step S902 is to set the candidate resources in the resource selection window in the sequence from front to back in time Select the transmission resource (or occupy the COT).
  • the selected transmission resources may be as shown in FIG. 15 .
  • the probability of LBT success before communicating on the reserved resources can be improved.
  • LBT access success rate Increase the likelihood of communication on the selected resource.
  • the method for determining the reserved resources is introduced below.
  • the terminal device can detect the SCI within the resource listening window, and if the SCI meets the following conditions, it can determine that the resource indicated by the SCI is a reserved resource: the reference signal received power (reference signal received power) corresponding to the SCI received power, RSRP) is greater than a first threshold, and the first threshold is an RSRP threshold for resource selection.
  • the first threshold may be the threshold used for resource exclusion in the user-selected resource mode (mode-2), and the threshold may be the priority corresponding to the data indicated in the received SCI and the to-be-sent priority of the terminal device. A function of the corresponding priority of the data.
  • the RSRP corresponding to the SCI when the RSRP corresponding to the SCI is greater than the first threshold, the resource indicated by the SCI is excluded from the candidate resource set corresponding to the resource selection window.
  • the RSRP of the SCI is compared with the first threshold, and when the RSRP corresponding to the SCI is greater than the first threshold, it can be determined that the resources indicated by the SCI are reserved resources for interrupting the random backoff counter.
  • the terminal device may detect the SCI within the resource listening window, and if the SCI satisfies the following conditions, it may determine that the resource indicated by the SCI is a reserved resource: the received signal strength indication (received signal strength) corresponding to the SCI indicator, RSSI) is greater than a second threshold, and the second threshold is an RSSI threshold for LBT.
  • the second threshold may be a threshold for judging whether the channel is idle during the LBT process.
  • the RSSI corresponding to the SCI when the RSSI corresponding to the SCI is greater than the second threshold, it may be determined that the channel is not idle.
  • the RSSI of the SCI is compared with the second threshold, and when the RSSI corresponding to the SCI is greater than the second threshold, it can be determined that the resources indicated by the SCI are reserved resources for interrupting the random backoff counter.
  • the terminal device may detect the SCI within the resource listening window, and if the SCI satisfies the following conditions, it may determine that the resource indicated by the SCI is a reserved resource: the RSRP corresponding to the SCI is greater than the first threshold, and/ Or, the RSSI corresponding to the SCI is greater than the second threshold.
  • the resources indicated by the SCI are reserved resources for interrupting the random backoff counter, in addition to meeting the conditions described in the above three implementation manners, the following conditions are also met: the indicated reserved resources may be located before the PDB time.
  • the terminal device can determine that the M SCIs detected in the resource listening window meet the above conditions and the N reserved resources indicated by the M SCIs are located before the PDB time, then the M SCIs indicated The N reserved resources may be used to determine the above-mentioned first duration.
  • the method for determining the reserved resources is described above, and the following describes a possible method for determining the first duration based on the reserved resources.
  • the first duration can be determined through the following process:
  • A1 confirm whether there are reserved resources in the first time window. If yes, go to A2, if not, go to A3.
  • the starting position of the first time window is the time point n when resource selection is triggered, and the ending position may be determined according to the random backoff counter, specifically, the moment when the random backoff timer is decremented to 0.
  • the initial end position of the first time window is n+(counter*9e ⁇ 3 +t).
  • the first interval t may not be considered in the above steps, that is, the initial end position of the first time window is n+(counter*9e ⁇ 3 ).
  • the first time window includes N j reserved resources
  • reservation i is the number of time slots corresponding to the duration when the random backoff counter is interrupted by the i-th reserved resource among the N j reserved resources
  • the first interval t after the reserved resource the first The time window ends at Without considering the first interval t after the reserved resources, the initial end position of the first time window is
  • A3. Determine the duration corresponding to the first time window as the first duration.
  • LBT is satisfied between the transmission resources (or COTs).
  • P random backoff count initial values can be randomly generated at the first time point n, and the resource selection window can be determined using the above scheme based on one of the random backoff count initial values. The starting time point and the occupation of the first COT. After the first COT is occupied, the above solution may be used to re-determine the start time point of the resource selection window and occupy the second COT based on another initial value of the random backoff count. and so on.
  • the transmission resource selected by the terminal device may be granular in the frequency domain, and the granularity in the time domain may be a time unit such as a time slot or a COT, where the COT includes multiple consecutive time slots.
  • the terminal device on the receiving side can start receiving at the position indicated by the indication information. state, instead of performing detection and reception between the positions, so that the power consumption of the terminal equipment on the receiving side can be reduced.
  • the communication device can be used to realize the functions of the terminal equipment involved in the above embodiments.
  • the communication device can be the terminal equipment itself, such as an integral terminal equipment such as a vehicle terminal device or a roadside unit (RSU), or the communication device It can also be a device that can support the terminal equipment to realize this function, such as a chip, module, TBOX applied in the terminal equipment, or other combined devices, components (or components) that have the functions of the terminal equipment shown in this application, for example , the communication device may be a chip, a module or a component in equipment such as a vehicle-mounted terminal equipment or a roadside unit.
  • the communication device may include the structure shown in FIG. 7 and/or FIG. 8 .
  • An embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium.
  • the computer program When the computer program is executed by a computer, the computer can implement the processes related to the terminal device in the foregoing embodiments.
  • An embodiment of the present application further provides a computer program product, where the computer program product is used to store a computer program.
  • the computer program product is used to store a computer program.
  • An embodiment of the present application also provides a chip or a chip system, where the chip may include a processor, and the processor may be used to call a program or an instruction in a memory to execute the processes related to the terminal device in the foregoing embodiments.
  • the system-on-a-chip may include the chip, and other components such as a memory or a transceiver.
  • the embodiment of the present application further provides a circuit, which can be coupled with a memory, and can be used to execute the processes related to the terminal device in the foregoing embodiments.
  • the system-on-a-chip may include the chip, and other components such as a memory or a transceiver.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,可以应用于侧行链路通信,或车联网,例如V2X,或可以应用于智能驾驶等领域。该方法包括:根据触发资源选择的第一时间点确定资源选择窗的起始时间点,并在资源选择窗内选择传输资源。其中,资源选择窗的起始时间点与该第一时间点之间的时间间隔不小于终端设备执行第一类先听后说(LBT)需要的时长。通过该方法使得资源选择窗内的资源尽可能多的位于LBT结束之后,从而可以提高在预留的资源上进行通信之前LBT成功的概率,进而可以提高资源利用率。

Description

通信方法及装置
相关申请的交叉引用
本申请要求在2021年08月05日提交中国专利局、申请号为202110894164.3、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在通信系统发展中使能非授权频谱的侧行链路(sidelink,SL)通信是一个重要演进方向。终端设备在非授权频谱通信时也需要进行先听后说(listen-before-talk,LBT),即终端设备在接入信道并开始发送数据之前需要侦听信道是否空闲(idle),如果信道已经保持空闲一定时间则可以占用信道,如果信道非空闲则需要等待信道重新恢复为空闲后才可以占用信道。
目前,在SL通信中支持资源预留,即终端设备可以在资源选择窗内预留未来一段时间内要使用的资源,并在发送的控制信息(例如侧行链路控制信息(sidelink control information,SCI))中指示未来一段时间内的资源预留信息。其他用户接收到该控制信息以后,可以排除该控制信息指示的预留资源,从而可以避免资源碰撞。但是非授权频谱进行侧行通信中,终端设备在预留的资源上进行通信之前需要进行LBT,即终端设备需要根据随机生成的退避计数器初始值确定需要等待的时间长度,每个终端用户生成的初始值不同,造成LBT能否在预留的资源之前成功具有随机性,导致终端设备可能无法在其预留的资源上进行通信。
发明内容
本申请提供一种通信方法及装置,可以提高资源利用率。
第一方面,本申请提供一种通信方法,该方法的执行主体可以是终端设备,也可以是具备终端设备功能的组合器件或部件,也可以是应用于终端设备中的芯片或电路系统(例如处理器、基带芯片、或芯片系统等)。方法包括:根据触发资源选择的第一时间点确定资源选择窗的起始时间点,并在资源选择窗内选择传输资源。其中,资源选择窗的起始时间点与该第一时间点之间的时间间隔不小于终端设备执行第一类先听后说LBT需要的时长。
本申请实施例中通过根据第一类LBT时长需要的时长确定资源选择窗的起始时间点,使得资源选择窗内的资源尽可能多的位于LBT结束之后,从而可以提高在预留的资源上进行通信之前LBT成功的概率,进而可以提高资源利用率。并且,通过上述方案,接收侧终端设备可以不用在发送侧终端设备LBT成功之前的资源上检测信息,从而可以降低对侧终端设备接收信息的功耗。
一种可能的设计中,资源选择窗的起始时间点与第一时间点之间的时间间隔对应的时 隙个数T 1可以满足:
Figure PCTCN2022109494-appb-000001
的情况下,
Figure PCTCN2022109494-appb-000002
和/或,
Figure PCTCN2022109494-appb-000003
的情况下,T 1=T;
其中,
Figure PCTCN2022109494-appb-000004
为预定义的第一处理时长,T为第一时长对应的时隙个数。
一种可能的设计中,第一时长为根据第一类LBT对应的随机退避计数器的初始值确定的。上述设计中,可以不考虑随机退避计数器计数期间被中断的情况,根据随机退避计时器的初始值估计第一时长可以降低计算复杂度,节省计算资源。
一种可能的设计中,第一时长可以根据第一类LBT对应的随机退避计数器的初始值以及第一类LBT中的第一间隔确定。上述设计中,通过考虑LBT中需要监听的信道连续空闲时长(即第一间隔),可以进一步提升在预留的资源上进行通信之前LBT成功的概率,进而可以提高资源利用率。
一种可能的设计中,第一间隔可以为第一类LBT中信道空闲的时长,也就是,终端设备在进行第一类LBT时需要等待的信道连续空闲的时长。
一种可能的设计中,第一间隔可以为WIFI协议中DIFS时长,或者第一间隔也可以为3GPP协议中的延迟持续时间(The defer duration)。
一种可能的设计中,第一时长对应的时隙个数T满足:
Figure PCTCN2022109494-appb-000005
其中,counter为随机退避计数器的初始值,μ对应子载波间隔。
一种可能的设计中,在资源选择窗内选择传输资源时,可以按照在时间上从前往后的顺序选择在资源选择窗中位于LBT结束的时间点之后的候选资源作为传输资源。通过上述方式,可以提高在预留的资源上进行通信之前LBT成功的概率,提高在所选择的资源上进行通信的可能性。
一种可能的设计中,第一时长可以根据第一类LBT对应的随机退避计数器的初始值以及第二时长确定,其中,第二时长为N个预留资源占用的时隙个数,或者,第二时长根据N个预留资源占用的时隙个数以及N个第一间隔确定,第一间隔为对应的预留资源之后的信道空闲时长,且第一间隔与对应的预留资源在时域上连续。N个预留资源为第一时长内被预留的资源,N为正整数。
由于在终端设备的随机退避过程中,若有其他终端设备在该时隙上发送信号,则随机退避计数器被中断,从而LBT成功需要的时间增长。上述方案中,通过在确定资源选择窗的起始时间点时考虑随机退避计数器被中断的时长,可以进一步提高在预留的资源上进行通信之前LBT成功的概率,提高终端设备在该资源选择窗内选择的资源上发送信息的可能性。
一种可能的设计中,第一时长对应的时隙个数T可以满足:
Figure PCTCN2022109494-appb-000006
其中,counter为随机退避计数器的初始值,μ对应子载波间隔,reservation i为N个预留资源中第i个预留资源占用的时隙个数。上述设计中,可以根据预留资源占用的时隙个数确定随机退避计数器被中断的时长,复杂度较低,可以节省计算资源,降低功耗。
一种可能的设计中,第一时长对应的时隙个数T可以满足:
Figure PCTCN2022109494-appb-000007
其中,counter为随机退避计数器的初始值,μ对应子载波间隔,reservation i为N个预留资源中第i个预留资源占用的时隙个数,t为第一间隔。上述设计中考虑到随机退避计数器每次被中断以后重新LBT所需要的时长(即第一间隔),使得随机退避计数器被中断的时长更准确,从而可以进一步提高在预留的资源上进行通信之前LBT成功的概率。
一种可能的设计中,N个预留资源是由资源侦听窗内的M个侧行控制信息指示的,M为正整数;其中,M个侧行控制信息中的每个侧行控制信息对应的参考信号接收功率RSRP大于第一门限,第一门限为用于资源选择的RSRP门限;或者,M个侧行控制信息中的每个侧行控制信息对应的接收信号强度指示RSSI大于第二门限,第二门限为用于LBT的RSSI门限;或者,M个侧行控制信息中的每个侧行控制信息对应的RSRP大于第一门限,并且M个侧行控制信息中的每个侧行控制信息对应的RSSI大于第二门限。通过上述设计,可以考虑对终端设备干扰较大的预留资源,从而可以提升资源利用率。
第二方面,本申请实施例提供一种通信装置,可以实现上述第一方面或其任一可能的设计中所述的方法。该装置包括用于执行上述方法的相应的单元或部件。该装置包括的单元可以通过软件和/或硬件方式实现。该装置例如可以为终端设备、或者为可支持终端设备实现上述方法的部件或基带芯片、芯片系统、或处理器等。
示例性的,该通信装置可包括处理单元(或称处理模块),还可以包括收发单元(或称通信模块、收发模块)等等模块化组件,这些模块可以执行上述第一方面或其任一可能的设计中所述的方法。当通信装置是终端设备时,收发单元可以是发送器和接收器,或发送器和接收器整合获得的收发器。收发单元可以包括天线和射频电路等,处理单元可以是处理器,例如基带芯片等。当通信装置是具有上述终端设备功能的部件时,收发单元可以是射频单元,处理单元可以是处理器。当通信装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理单元可以是芯片系统的处理器,例如:中央处理单元(central processing unit,CPU)。
收发单元可用于执行第一方面或其任一可能的设计中的接收和/或发送的动作。处理单元可用于执行第一方面或其任一可能的设计中接收和发送以外的动作,如确定资源选择窗的起始时间点、在所述资源选择窗内选择传输资源等。
第三方面,提供了一种通信装置,包括一个或多个处理器,该一个或多个处理器与存储器耦合,可用于执行存储器中的程序或指令,以使得该装置执行上述第一方面或该方面中任一种可能设计中的方法。可选地,该装置还包括一个或多个存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
第四方面,提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机指令,当该计算机指令在计算机上运行时,使得该计算机执行上述第一方面或其任意一种可能的设计中的方法。
第五方面,提供一种包含指令的计算机程序产品,该计算机程序产品用于存储计算机指令,当该计算机指令在计算机上运行时,使得该计算机执行上述第一方面或其任意一种可能的设计中的方法。
第六方面,提供一种处理装置,该处理装置与存储器耦合,该处理装置调用所述存储器中的程序,执行上述第一方面或其任意一种可能的设计中的方法。该处理装置例如可以包括芯片系统。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
附图说明
图1为本申请实施例的一种V2X通信示意图;
图2为本申请实施例的四种LBT示意图;
图3为本申请实施例的一种随机退避示意图;
图4为本申请实施例的一种网络架构示意图;
图5为本申请实施例的另一种网络架构示意图;
图6为本申请实施例的另一种网络架构示意图;
图7为本申请实施例的一种通信装置的结构示意图;
图8为本申请实施例的一种终端设备的结构示意图;
图9为本申请实施例的一种通信方法的流程示意图;
图10为本申请实施例的一种资源选择窗示意图;
图11为本申请实施例的另一种资源选择窗示意图;
图12为本申请实施例的一种资源选择示意图;
图13为本申请实施例的另一种资源选择示意图;
图14为本申请实施例的一种资源选择窗示意图;
图15为本申请实施例的一种资源选择示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
V2X技术中的终端设备可以为路侧单元(road side unit,RSU),RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息,例如该路侧单元可以通过PC5口与支持V2X应用的其他实体交换消息。
V2X技术中的终端设备还可以为整车、整车中的通信模块(例如通信芯片、芯片系统等)、远程信息处理器(telematics BOX,TBOX)等等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内,都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是应用于终端设备中能够支持终端设备实现该功能的装置,例如具备通信功能的部件或组件,或者芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种V2X技术中的网络设备为基站型RSU。基站可用于将收到的空中帧与互联网协议(internet protocol,IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站型RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息,例如该基站型路侧单元可以通过Uu口与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和/或分布式单元(distributed unit,DU),本申请实施例并不限定。例如网络设备可以为Cloud RAN系统中的CU,或为DU,或为CU和DU的整体。
网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)等。本申请实施例由于主要涉及接入网,因此在后文中如无特殊说明,则所述的网络设备均是指接入网设备。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支 持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
3)V2X,就是车与外界进行互联互通,这是未来智能汽车、自动驾驶、智能交通运输系统的基础和关键技术。V2X将在已有的设备到设备(device-to-device,D2D)技术的基础上对V2X的具体应用需求进行优化,需要进一步减少V2X设备的接入时延,解决资源冲突问题。
V2X具体又包括车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)的通信交互等几种应用需求。如图1所示。V2V指的是车辆间的通信;V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客)的通信;V2I指的是车辆与网络设备的通信,网络设备例如RSU,另外还有一种V2N可以包括在V2I中,V2N指的是车辆与基站/网络的通信。
4)资源选择窗为终端设备资源选择触发之后的[n+T 1,n+T 2]对应的时隙。其中n为终端设备触发资源选择的时间点,也即触发资源选择过程的时间点,其中,资源选择过程可以为终端设备确定报告给高层的PSSCH资源的过程,或者,终端设备从高层选择用于PSSCH/PSCCH传输的资源中确定资源的子集的过程;T 1由终端设备确定,用于触发资源选择的时间点之后终端设备处理侦听结果和确定候选资源的处理时延,示例性的,T 1可以满足
Figure PCTCN2022109494-appb-000008
为标准定义的T 1的最大值,一个示例中,
Figure PCTCN2022109494-appb-000009
可以由表1定义,其中,μ可以由SL部分带宽(bandwidth part,BWP)对应的子载波间隔(sub-carrier spacing,SCS)配置,例如,μ可以由表2定义。T 2由终端设备确定,T 2为小于待发数据包的数据包时延预算(packet delay budget,PDB)要求的数值。
表1
Figure PCTCN2022109494-appb-000010
表2
μ 子载波间隔(kHz)
0 15
1 30
2 60
3 120
4 240
5)资源侦听窗为一个时隙集合,是终端设备进行感知的依据。当终端设备在时间点n,触发进行资源选择时,终端设备根据对应的资源侦听窗内的正确接收的SCI承载的信息判 断资源选择窗内的候选资源是否已经被预留,即是否可用。资源侦听窗的时间范围是[n-t 0,n-t proc,0]。其中,t 0为资源侦听窗的边界值,具体数值由网络侧配置或者预配置。例如t 0的时间大小可以为1100ms或100ms(也可以为其他值),以15kHz子载波间隔为例,t 0=1100slots或100slots,若以60kHz子载波间隔为例,t 0=4400slots或400slots;t proc,0为终端设备的处理侦听结果的时间,标准定义的不同子载波间隔下的t proc,0最大值,根据终端设备能力的不同,终端设备可以在满足最大值约束的条件下自行确定t proc,0取值,且t proc,0≥0。
6)LBT:在无线通信系统中,按照使用频段的不同,可以分为授权频段和非授权频段。在非授权频段中,发送节点在通信时需要进行LBT。即发送节点在接入信道并开始发送数据之前需要侦听信道是否空闲(idle),如果信道非空闲则不能在该信道上发送信号;如果信道已经保持空闲,且空闲时间满足LBT要求则可以占用信道。下面介绍四种信道接入类型,四种信道接入类型的区别是需等待的时间长度不同,如图2所示。
第一种信道接入方式(对应WIFI协议中的Cat 1 LBT,或者3GPP协议中Type 2B类型的LBT)中,发送节点在短暂的切换间隔后进行发送,例如发送节点等待信道连续空闲短帧间隔(The short inter-frame space,SIFS)时长后接入信道。一种举例说明中,SIFS中包含一个9us的时隙,当终端设备检测到在该9us的时隙上,信道至少空闲了5微秒,则可以认为该SIFS时间内,信道空闲。其中,SIFS定义的时延可以包含承载信号的无线电波在空间的传播时延,接收端用户的信号处理时延,以及接收端用户收发切换时延。
第二种信道接入方式(对应WIFI协议中的Cat 2 LBT,或者3GPP协议中Type 2A类型的LBT)中,发送节点进行无随机退避的LBT。例如,发送节点等待信道连续空闲点协调功能帧间间隔(point coordination function inter-frame space,PIFS)时长后接入信道。其中,PIFS可以等于(SIFS+slotTime),slotTime为一个时隙的长度,在时间上可以持续9微秒。在第二种信道接入方式中,在发送节点接入信道之前,信道被检测为空闲的持续时间是确定性的。
第三种信道接入方式(对应WIFI协议中的Cat 3 LBT)中,发送节点等待信道连续空闲分布式协调帧间隔(distributed coordination function interframe space,DIFS)时长后接入信道,其中DIFS可以等于(SIFS+2*slotTime),发送节点成功接入信道可以称为DIFS成功。
第四种信道接入方式(对应WIFI协议中的Cat 4 LBT,或者3GPP协议中Type 1类型的LBT)中,发送节点判断信道连续空闲DIFS时长后,基于随机退避机制等待随机退避时长的信道空闲后接入信道。随机退避机制要求发送节点选择一个随机退避计数(random backoff count)初始值,该随机退避计数初始值表示的是发送节点在DIFS成功后需要等待的信道空闲的slotTime数量,其中,该slotTime可以为非授权频段上信道资源感知的最小时间粒度。当发送节点判断信道连续DIFS时长处于空闲时间以后,启动随机退避计数器(counter)开始进入退避计数,该随机退避计数器的初始值为发送节点选择的随机退避计数初始值,当发送节点判断信道在一个连续slotTime时长内处于空闲,则随机退避计数器减一,否则判断所述信道处于繁忙状态,随机退避计数器中断,并记录随机退避计数器当前数值。在发送节点在随机退避计数器中断后重新开始侦听,直到DIFS成功,随机退避计数器继续进行递减操作,当随机退避计数器的数值递减到0,判断接入成功,发送节点在信道上进行信号发送(或者称为接入信道,或者使用信道,或者占用信道)。如图3所示,假设在空间范围内有4个发送节点分别为STA1,STA2,STA3,STA4,4个发送节 点都能接收到对方发的信号,且接收信号的能量较大在阈值之上,即其中给一个发送节点在进行信号发送时,其他发送节点均检测为信道繁忙状态。假设初始时刻STA1开始在非授权频段的信道上进行信号发送,则其他发送节点进行LBT。以STA2随机生成的随机退避计数器数值最大,STA4次之,STA3的随机退避计数器数值最小为例,当STA1的信号发送完成以后,其他发送节点均检测到信道处于空闲状态,经过DIFS定义的时长以后,STA2、STA 3、和STA 4的随机退避计数器均开始进行递减计数,但STA3的随机退避计数器由于数值最小,率先递减到0,并进行数据发送,STA2和STA 4在STA3开始发送的信号以后,检测到信道又处于繁忙状态,则随机退避计数器停止递减。STA2和STA 4继续进行能量检测,直至信道处于空闲状态(即STA3的信号发送完)以后,重新开始随机退避计数器数值递减。由于STA4的随机退避计数器数值比STA2的随机退避计数器数值小,则STA4递减到0,并进行数据发送。STA2在STA4开始发送的信号以后,检测到信道又处于繁忙状态,则随机退避计数器再次停止递减。STA2继续进行能量检测,直至信道处于空闲状态(即STA4的信号发送完)以后,重新开始随机退避计数器数值递减,直到随机退避计数器递减到0后开始发送信号。
7)随机退避计数初始值表示发送节点在DIFS成功后需要等待的信道空闲的slotTime数量。随机退避计数初始值为发送节点在竞争窗[0,CW]内随机选择得到的正整数,且在窗内均匀分布,即0≤random backoff count≤CW。其中CW表示竞争窗窗长,其初始值为CW min,当用户发生无效数据发送时,CW的值翻倍,即CW=CW*2,直至CW=CW max。其中无效数据发送表示发送节点没有收到接收节点反馈的ACK响应。示例性的,CW min和CW max的取值可以如表3所示,CW min和CW max的取值可以与信道接入的优先级p相关,不同的优先级对应不同CW min,p和CW max,p,允许的最大接入时长(即信道最大可连续使用时长)T ulm cot,p不同。
表3
Figure PCTCN2022109494-appb-000011
本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个 对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一门限值和第二门限值,只是为了区分不同的门限值,而并不是表示这两个门限值的优先级或者重要程度等的不同。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。
目前,在侧行通信中支持资源预留,即终端设备可以在资源选择窗内预留未来一段时间内要使用的资源。由于在非授权频谱中,发送节点在通信时需要进行LBT。因此终端设备在非授权频谱中进行侧行通信时,终端设备在预留的资源上进行通信之前也需要进行LBT,即终端设备需要根据随机生成的退避计数器初始值确定需要等待的时间长度,每个终端用户生成的初始值不同,造成LBT能否在预留的资源之前成功具有随机性,尤其在第四种信道接入方式(即WIFI协议中的Cat 4 LBT,或者3GPP协议中Type 1类型的LBT)中,终端设备在进行LBT时随机退避计数器可能被中断,从而终端设备在其预留的资源之前能否LBT成功具有随机性,导致终端设备可能无法在其预留的资源上进行通信。
基于此,本申请实施例提供一种通信方法及装置,通过根据终端设备进行LBT所需要的时长确定资源选择窗的起始时间点,使得资源选择窗内的资源尽可能多的位于LBT结束之后,从而可以提高在预留的资源上进行通信之前LBT成功的概率,提高终端设备在该资源选择窗内选择的资源上发送信息的可能性,以及,对侧终端设备在该资源上接收信息的可能性,进而可以降低对侧终端设备接收信息的功耗。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以应用于LTE、或NR或6G等协议框架。具体的,可以应用于D2D场景,例如车联网场景中的V2X、LTE-V、V2V等,车联网场景可以包括但不限于智能驾驶,智能网联车等。
本申请实施例可以应用于非授权频谱,例如,本申请实施例可以应用于非授权频谱的基于帧的设备(framebased-equipment,FBE)场景中。
本申请实施例提供的技术方案可以适用于有网络覆盖或无网络覆盖的通信场景中的用户自主选择资源的模式。下面介绍本申请实施例所应用的网络架构。请参考图4-图6,为本申请实施例所应用的一种网络架构。
图4-图6包括网络设备和两个终端设备,分别为终端设备1和终端设备2。这两个终端设备均可以处于该网络设备的覆盖范围内,如图4所示;或者这两个终端设备可以只有终端设备1处于该网络设备的覆盖范围内,而终端设备2不处于该网络设备的覆盖范围内,如图5所示;或者这两个终端设备均不处于该网络设备的覆盖范围内,如图6所示。这两个终端设备之间可以通过sidelink进行通信。当然图4-图6中的终端设备的数量只是举例,在实际应用中,网络设备可以为多个终端设备提供服务。
图4-图6中的网络设备例如为接入网设备,例如基站。其中,接入网设备在不同的系统对应不同的设备,例如在第四代移动通信技术(the 4th generation,4G)系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB,或为后续演进的通信系统中的接入网设备。
其中,图4-图6中的终端设备是以车载终端设备或车为例,但本申请实施例中的终端设备不限于此。
下面结合附图,对终端设备可能的结构进行介绍。
示例性的,图7示出了装置的一种可能的结构示意图。图7所示装置可以是终端设备,也可以是应用于终端设备中的芯片、通信模组、远程信息处理器(telematics BOX,TBOX)、或者其他具有本申请所示终端设备功能的组合器件、部件(或称组件)等。该装置可包括处理模块710,还可以包括收发模块720。其中,收发模块720可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块720可以用于执行由终端设备所执行的发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块720是发送模块,而在执行接收操作时,可以认为收发模块720是接收模块;或者,收发模块720也可以是两个功能模块,收发模块720可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行由终端设备所执行的发送操作,接收模块用于完成接收操作,接收模块可以用于执行由终端设备所执行的接收操作。
示例性的,当该装置是终端设备时,收发模块720可包括收发器和/或通信接口。收发器可以包括天线和射频电路等。通信接口例如光纤接口。处理模块710可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。
当该装置是具有本申请所示终端设备功能的部件时,收发模块720可以是射频单元,处理模块710可以是处理器,例如基带处理器。
当该装置是芯片系统时,收发模块720可以是芯片(例如基带芯片)的输入输出接口,处理模块710可以是芯片系统的处理器,可以包括一个或多个中央处理单元。
应理解,本申请实施例中的处理模块710可以由处理器或处理器相关电路组件实现,收发模块720可以由收发器或收发器相关电路组件实现。
一种实现方式中,处理模块710可以用于执行本申请实施例中由终端设备所执行的除了收发操作之外的操作,例如处理操作,和/或用于支持本文所描述的技术的其它过程,比如确定资源选择窗的起始时间点、在所述资源选择窗内选择传输资源,对由收发模块720接收的消息、信息和/或信令进行处理等。收发模块720可以用于执行本申请实施例中由终端设备所执行的接收和/或发送操作,和/或用于支持本文所描述的技术的其它过程。可选的,处理模块710可以控制收发模块720执行接收和/或发送的操作。
图8示出了终端设备的另一种可能的结构示意图。如图8所示,该终端设备包括处理器,还可以包括存储器、射频单元(或射频电路)、天线或输入输出装置等结构。处理器主要用于对通信协议以及通信数据进行处理,以及对装置进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频单元主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏、键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图8中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在 一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元(收发单元可以是一个功能单元,该功能单元能够实现发送功能和接收功能;或者,收发单元也可以包括两个功能单元,分别为能够实现接收功能的接收单元和能够实现发送功能的发送单元),将具有处理功能的处理器视为终端设备的处理单元。如图8所示,终端设备包括处理单元820,还可以包括收发单元810。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元810中用于实现接收功能的器件视为接收单元,将收发单元810中用于实现发送功能的器件视为发送单元,即收发单元810包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元810可与收发模块720对应,或者说,收发模块720可由收发单元810实现。收发单元810用于执行本申请所示实施例中终端设备的发送操作和接收操作,和/或用于支持本文所描述的技术的其它过程。处理单元820可与处理模块710对应,或者说,处理模块710可由处理单元820实现。处理单元820用于执行本申请所示实施例中终端设备上除了收发操作之外的其他操作,例如用于执行本申请所示实施例中由终端设备所执行的接收和/或发送操作,和/或用于支持本文所描述的技术的其它过程。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题同样适用。
需要说明的是,本申请实施例中仅以时隙为时间单位进行举例说明,在具体实施例中时间单位也可以替换为其他时间单位如帧、子帧、半帧、迷你时隙或符号等,这里并不对时间单位进行限定。
参见图9,为本申请提供的一种通信方法的流程示意图。该方法执行主体可以是终端设备,也可以是具备终端设备功能的组合器件或部件,也可以是应用于终端设备中的通信芯片(例如处理器、基带芯片、或芯片系统等)。
S901,确定资源选择窗的起始时间点。
其中,资源选择窗的起始时间点与触发资源选择的时间点n(下面称为第一时间点)之间的时间间隔不小于(即大于或等于)第一时长,第一时长为终端设备执行第一类LBT需要的时长。一种举例中,第一时间点n可以为触发资源选择的时隙。对于第一时长的说明将在下文详细介绍。
触发资源选择的时间点可以理解为触发资源选择过程的时间点,其中,资源选择过程可以指终端设备确定报告给高层的PSSCH资源的过程,或者,资源选择过程也可以指终端设备从用于高层选择PSSCH/PSCCH传输的资源中确定子集的过程。
示例性的,第一类LBT可以是前文术语介绍中的第四种信道接入方式,也就是WIFI协议中的Cat 4 LBT,或者3GPP协议中Type 1类型的LBT。
一个实施例中,步骤S901中,可以通过如下两种方式中至少一种方式确定资源选择 窗的起始时间点:
方式一,在
Figure PCTCN2022109494-appb-000012
的情况下,
Figure PCTCN2022109494-appb-000013
在该方式中,T1的取值由终端设备自己确定,且T1的取值范围满足
Figure PCTCN2022109494-appb-000014
方式二,在
Figure PCTCN2022109494-appb-000015
的情况下,T 1=T。在该方式中,T1的取值为T。
其中,
Figure PCTCN2022109494-appb-000016
可以是预定义的第一处理时长,其中,第一处理时长可以包含感知结果的处理时延,将物理层感知结果上报到媒体接入控制(media access control,MAC)层,到MAC层完成最终资源选择流程所需要的处理时间,以及数据发送所需要的处理时间,或者,开关切换时延等处理时延。
Figure PCTCN2022109494-appb-000017
的定义可以参阅前文表1所述。T为第一时长对应的时隙个数,T 1为资源选择窗的起始时间点与触发资源选择的时间点n之间的时间间隔对应的时隙个数。
示例性的,步骤S901可以由处理模块710执行。
S902,在资源选择窗内选择传输资源。
步骤S902可以由处理模块710执行。
具体的,终端设备在资源选择窗内选择传输资源的方式,将在下文结合资源选择窗的起始时间点的确定方式进行详细说明。
在V2X通信时,车辆1在非授权频谱中与对侧车辆进行通信,若车辆1在其预留的资源之前没有LBT成功,导致车辆1无法在其预留的资源与对侧车辆进行通信,由于车辆1在预留该资源后向其他车辆发送SCI以指示该资源被预留,这就导致其他车辆也无法使用该资源,从而造成资源浪费。并且由于车辆1无法在其预留的资源与对侧车辆进行通信,导致对侧车辆无法及时收到车辆1的信息,这可能导致突发交通状况,例如,车辆1在高速公路上行驶时预留资源1用于发送车辆1在交叉路口的行驶信息(例如车速、方向等),但是车辆1在资源1之前没有LBT成功,其他车辆在资源1上未获取到车辆1在交叉路口的行驶信息,导致存在交通安全隐患。
本申请实施例中通过根据第一类LBT时长需要的时长确定资源选择窗的起始时间点,使得资源选择窗内的资源尽可能多的位于LBT结束之后,从而可以提高在预留的资源上进行通信之前LBT成功的概率,进而可以提高资源利用率。并且,通过上述方案可以提高终端设备在该资源选择窗内选择的资源上发送信息的可能性,以及,对侧终端设备接收信息的可能性。此外,上述方案中,接收侧终端设备可以不用在发送侧终端设备在LBT成功之前的资源上检测信息,从而可以降低对侧终端设备接收信息的功耗。
本申请实施例中,第一时长可以是终端设备估计的LBT可能需要的时长,而不是终端设备进行LBT实际需要的时长。终端设备在确定第一时长时可以考虑随机退避计数器计数期间被中断的情况,也可以不考虑随机退避计数器计数期间被中断的情况,其中,随机退避计数器计数期间被中断的情况可以为但不限于:随机退避计数器被N个预留资源中断,N个预留资源为所述第一时长内被预留的资源,N为正整数。例如,N个预留资源可以为终端设备在资源侦听窗内检测到的SCI指示预留的资源,具体过程为,终端设备可以在资源侦听窗内检测SCI,并根据检测到的SCI确定第一时长内被预留的资源。预留资源的具体确定方式将在下文介绍终端设备在考虑随机退避计数器计数期间被中断的情况下确定 第一时长的方案时进行详细说明。
下面,首先对上述两种确定第一时长的方式进行详细说明。
在终端设备在不考虑随机退避计数器计数期间被中断的情况下确定第一时长的方案中,终端设备可以默认在随机退避计数器计数期间没有预留资源(即预留资源的数量为0),在该方式中,终端设备可以根据随机退避计时器的初始值估计第一时长。也就是,第一时长可以根据第一类LBT对应的随机退避计数器的初始值确定。其中,该随机退避计数器可以记录终端设备进行第一LBT过程中选择的随机退避计数,也可以理解为该随机退避计数器的初始值为终端设备进行第一LBT过程中选择的随机退避计数初始值。随机退避计数初始值的含义具体可以参阅前文术语介绍6)中对随机退避计数初始值的相关描述,这里不再赘述。
在本方案中,第一时长根据第一类LBT对应的随机退避计数器的初始值确定,也可以理解为根据终端设备进行第一LBT过程中选择的随机退避计数初始值确定。
一种实现方式中,第一时长对应的时隙个数T可以满足:
Figure PCTCN2022109494-appb-000018
或者,也可以理解为,第一时长对应的时隙个数可以根据上述公式确定。其中,counter为随机退避计数器的初始值(或者终端设备进行第一LBT过程中选择的随机退避计数初始值),9e -3表示9微秒,为非授权频段上信道资源感知的最小时间粒度,终端设备基于感知结果判断在该时长内信道状态为空闲或者繁忙,2 为当前通信系统的一个时隙对应的持续时长,单位为微秒,μ对应子载波间隔的索引,其中,μ对应子载波间隔也可以理解为μ是与子载波间隔对应的参数,不同子载波间隔大小可以对应不同的μ的取值。例如,μ与子载波间隔之间的对应关系可以参阅上述表2所示。
发送侧终端设备和接收侧终端设备的时隙是对齐的,且收发两侧终端设备以时隙为粒度使用资源,以时隙为粒度表征资源的起始位置。上述公式中通过取整使得发送侧终端设备可以在整数倍时隙的位置发送信息的有效数据,取整的含义可以表示为发送侧终端设备可以使用的第一个完整时隙的索引。
可选的,当(counter*9e -3)不是2 的整数倍时,或者当退避成功,退避计数器的数值递减到0的时刻不是2 的整数倍时,为了抢占资源,发送侧终端设备可以在n+(counter*9e -3)至n+T时刻之间发送占位信息,或者冗余信息,或者独立的控制信息,或者第一个完整帧的复制信息等信息。
相应的,资源选择窗[n+T 1,n+T 2]的起始时间点n+T 1与触发资源选择的时间点n之间间隔的时隙个数T 1满足:
Figure PCTCN2022109494-appb-000019
的情况下,
Figure PCTCN2022109494-appb-000020
其中,T1的取值由终端设备自己确定,且T1的取值范围满足
Figure PCTCN2022109494-appb-000021
Figure PCTCN2022109494-appb-000022
Figure PCTCN2022109494-appb-000023
的情况下,
Figure PCTCN2022109494-appb-000024
例如,资源选择窗可以如图10所示。
可以理解的,本申请实施例中仅以时隙为例进行说明,在具体实施中,也可以采用其他时间单位,例如符号、帧、子帧、半帧、控制信息发送间隔等。以时间单位A为例,可以将第一时长对应的时隙个数、或资源选择窗的起始时间点与触发资源选择的时间点之间间隔的时隙个数中涉及的2 可以替换为XXX,XXX为时间单位A的持续时长(duration),单位为毫秒,得到第一时长对应的时间单位A的个数、或资源选择窗的起始时间点与触发 资源选择的时间点之间间隔的时间单位A的个数。例如,当子载波间隔为30kHz时,时间单位A为子帧,XXX为0.5毫秒,又例如,当子载波间隔为30kHz时,时间单位A为半帧,XXX为0.25毫秒等等。
举例说明,第一时长对应的A的个数a可以满足:
Figure PCTCN2022109494-appb-000025
资源选择窗的起始时间点与触发资源选择的时间点之间间隔的时间单位A的个数a1可以满足:在
Figure PCTCN2022109494-appb-000026
的情况下,
Figure PCTCN2022109494-appb-000027
Figure PCTCN2022109494-appb-000028
的情况下,
Figure PCTCN2022109494-appb-000029
下文中第一时长对应的时隙个数或资源选择窗的起始时间点与触发资源选择的时间点之间间隔的时隙个数也可以做类似的处理,得到第一时长对应的时间单位A的个数或资源选择窗的起始时间点与触发资源选择的时间点之间间隔的时间单位A的个数,重复之处不再赘述。
进一步的,一种具体的实施方式中,在确定第一时长时可以考虑第一类LBT中的第一间隔,也就是,第一时长可以根据第一类LBT对应的随机退避计数器的初始值以及第一类LBT中的第一间隔确定。
其中,第一间隔可以理解为第一类LBT中信道空闲的时长,也就是,终端设备在进行LBT时需要等待的信道连续空闲的时长。不同类型的LBT中间隔的取值不同,例如,在第一种信道接入方式(对应WIFI协议中的Cat 1 LBT,或者3GPP协议中Type 2B类型的LBT)中,间隔可以为SIFS。第二种信道接入方式(对应WIFI协议中的Cat 2 LBT,或者3GPP协议中Type 2A类型的LBT)中,间隔可以为PIFS,等等。本申请实施例中,第一间隔可以为WIFI协议中DIFS时长,或者第一间隔也可以为3GPP协议中的延迟持续时间(The defer duration)。可以理解的,第一间隔也可以称为第一持续时长、第一预设时长等。
基于上述实施方案,第一时长对应的时隙个数T可以满足:
Figure PCTCN2022109494-appb-000030
Figure PCTCN2022109494-appb-000031
或者,也可以理解为,第一时长对应的时隙个数可以根据上述公式确定,其中,t为第一间隔。
相应的,资源选择窗[n+T 1,n+T 2]的起始时间点n+T 1与触发资源选择的时间点n之间间隔的时隙T 1满足:在
Figure PCTCN2022109494-appb-000032
的情况下,
Figure PCTCN2022109494-appb-000033
Figure PCTCN2022109494-appb-000034
Figure PCTCN2022109494-appb-000035
的情况下,
Figure PCTCN2022109494-appb-000036
Figure PCTCN2022109494-appb-000037
例如,资源选择窗可以如图11所示。
在终端设备在不考虑随机退避计数器计数期间被中断的情况下确定第一时长的方案中,步骤S902的一种实现方式为,可以按照在时间上从前往后的顺序在第一资源集合中选择传输资源(或者占用COT),其中,第一资源集合为资源选择窗中的候选资源集合的子集,且第一资源集合包括资源选择窗中位于LBT结束的时间点之后的候选资源,举例说明,第一资源集合可以包括资源选择窗中位于LBT结束的时间点之后的所有候选资源,或者,第一资源集合也可以包括资源选择窗中位于LBT结束的时间点之后的部分候选资源。选择的传输资源可以如图12或图13所示。
上述实现方式,通过按照在时间上从前往后的顺序选择资源选择窗中位于LBT结束的时间之后的资源,从而可以提高LBT接入成功率,提高在所选择的资源上进行通信的可能 性。
在终端设备在考虑随机退避计数器计数期间被中断的情况下确定第一时长的方案中,终端设备可以先确定随机退避计数器计数期间的预留资源(假设有N个预留资源)。终端设备确定随机退避计数器被该N个预留资源中断的时长,从而可以根据随机退避计时器的初始值以及随机退避计数器被该N个预留资源中断的时长确定第一时长。也就是,第一时长可以根据第一类LBT对应的随机退避计数器以及第二时长确定,其中,第二时长为第一类LBT对应的随机退避计数器被该N个预留资源中断的时长。
由于在终端设备的随机退避过程中,若有其他终端设备在该时隙上发送信号,则随机退避计数器被中断,从而LBT成功需要的时间增长。上述方案中,通过在确定资源选择窗的起始时间点时考虑随机退避计数器被中断的时长,可以进一步提高LBT接入成功率,提高终端设备在该资源选择窗内选择的资源上发送信息的可能性。
一种实现方式中,第二时长为N个预留资源占用的时隙个数。则第一时长对应的时隙个数T可以满足:
Figure PCTCN2022109494-appb-000038
或者,也可以理解为,第一时长对应的时隙个数可以根据上述公式确定。
其中,counter、μ的参数可以参阅前文描述,这里不再赘述,reservation i为随机退避计数器被N个预留资源中第i个预留资源占用的时隙个数,1≤i≤N。举例说明,假设一个预留资源占用1个时隙,则第二时长对应的时隙个数为N。
相应的,资源选择窗[n+T 1,n+T 2]的起始时间点n+T 1与触发资源选择的时间点n之间间隔的时隙个数T 1满足:在
Figure PCTCN2022109494-appb-000039
的情况下,
Figure PCTCN2022109494-appb-000040
其中,T1的取值由终端设备自己确定,且T1的取值范围满足
Figure PCTCN2022109494-appb-000041
Figure PCTCN2022109494-appb-000042
的情况下,
Figure PCTCN2022109494-appb-000043
Figure PCTCN2022109494-appb-000044
例如,假设N为3,且一个预留资源占用一个时隙,资源选择窗可以如图14所示。
另一种实现方式中,第二时长可以根据N个预留资源占用的时隙个数以及N个第一间隔确定。则第一时长对应的时隙个数T可以满足:
Figure PCTCN2022109494-appb-000045
t为第一间隔。或者,也可以理解为,第一时长对应的时隙个数可以根据上述公式确定。
相应的,资源选择窗[n+T 1,n+T 2]的起始时间点n+T 1与触发资源选择的时间点n之间间隔的时隙个数T 1满足:在
Figure PCTCN2022109494-appb-000046
的情况下,
Figure PCTCN2022109494-appb-000047
其中,T1的取值由终端设备自己确定,且T1的取值范围满足
Figure PCTCN2022109494-appb-000048
Figure PCTCN2022109494-appb-000049
Figure PCTCN2022109494-appb-000050
的情况下,
Figure PCTCN2022109494-appb-000051
Figure PCTCN2022109494-appb-000052
上述示例通过考虑每次被预留资源中断后的进行LBT的第一间隔,可以提高LBT所需时间的准确性。
在终端设备在考虑随机退避计数器计数期间被中断的情况下确定第一时长的方案中,步骤S902的一种实现方式为,可以按照在时间上从前往后的顺序在资源选择窗的候选资源集合中选择传输资源(或者占用COT)。例如,选择的传输资源可以如图15所示。
上述实现方式,通过按照在时间上从前往后的顺序选择资源选择窗中位于LBT结束的时间之后的资源,从而可以提高在预留的资源上进行通信之前LBT成功的概率LBT接入成功率,提高在所选择的资源上进行通信的可能性。
下面对预留资源的确定方式进行介绍。
一种可能的实施方式中,终端设备可以在资源侦听窗内检测SCI,若SCI满足如下条件,则可以确定该SCI指示的资源为预留资源:该SCI对应的参考信号接收功率(reference signal received power,RSRP)大于第一门限,所述第一门限为用于资源选择的RSRP门限。示例性的,第一门限可以为用户自选资源模式(mode-2)中用于进行资源排除的门限,该门限可以为接收到的SCI中所指示的数据对应的优先级和终端设备的待发送数据对应的优先级的函数。
在用户自选资源模式(mode-2)中,当SCI对应的RSRP大于该第一门限时,则该SCI指示的资源在资源选择窗对应的候选资源集合中被排除。在本实施方式中,将SCI的RSRP与该第一门限进行对比,当SCI对应的RSRP大于该第一门限时,可以确定该SCI指示的资源为中断随机退避计数器的预留资源。
另一种实施方式中,终端设备可以在资源侦听窗内检测SCI,若SCI满足如下条件,则可以确定该SCI指示的资源为预留资源:该SCI对应的接收信号强度指示(received signal strength indicator,RSSI)大于第二门限,所述第二门限为用于LBT的RSSI门限。示例性的,第二门限可以为LBT过程中判断信道是否空闲的门限。
在LBT过程中,当SCI对应的RSSI大于该第二门限时,可以判断信道非空闲。在本实施方式中,将SCI的RSSI与该第二门限进行对比,当SCI对应的RSSI大于该第二门限时,可以确定该SCI指示的资源为中断随机退避计数器的预留资源。
又一种实施方式中,终端设备可以在资源侦听窗内检测SCI,若SCI满足如下条件,则可以确定该SCI指示的资源为预留资源:该SCI对应的RSRP大于第一门限,和/或,该SCI对应的RSSI大于第二门限。
本实施方式为上述两种实施方式的合集,将SCI与上述两个条件(即条件一:RSRP大于第一门限、条件二:RSSI大于第二门限),若SCI满足上述两个条件中的任意一个,则可以确定该SCI指示的资源为中断随机退避计数器的预留资源。
可选的,将SCI指示的资源为中断随机退避计数器的预留资源,除了满足上述三种实施方式所述的条件以外,还满足如下条件:指示的预留资源可以位于PDB时刻之前。
通过上述三种实施方式,终端设备可以确定在资源侦听窗内检测到的M个SCI满足上述条件且该M个SCI指示的N个预留资源位于PDB时刻之前,则该M个SCI指示的N个预留资源可以用于确定上述第一时长。
以上介绍了预留资源的确定方式,下面介绍基于预留资源确定第一时长的可能的方式。第一时长可以通过如下过程确定:
A1,确认第一时间窗内是否有预留资源。若是,执行A2,若否,执行A3。
其中,第一时间窗的起始位置为触发资源选择的时间点n,结束位置可以根据随机退避计数器确定,具体可以为随机退避计时器递减到0的时刻。第一时间窗初始的结束位置为n+(counter*9e -3+t)。第一时间窗内预留资源的确定方式可以参阅前文所述,这里不再重复赘述。
可以理解的,上述步骤中也可以不考虑第一间隔t,即第一时间窗初始的结束位置为n+(counter*9e -3)。
A2,根据第一时间窗内包括的预留资源更新第一时间窗的结束位置。执行A1。
假设第一时间窗内包括N j个预留资源,则确定随机退避计数器至少延后
Figure PCTCN2022109494-appb-000053
Figure PCTCN2022109494-appb-000054
其中,reservation i为随机退避计数器被N j个预留资源中第i个预留资源中断的时长对应的时隙个数,则在考虑预留资源之后的第一间隔t的情况下,第一时间窗的结束位置为
Figure PCTCN2022109494-appb-000055
在不考虑预留资源之后的第一间隔t的情况下,第一时间窗初始的结束位置为
Figure PCTCN2022109494-appb-000056
A3,确定第一时间窗对应的时长为第一时长。
可选的,当终端设备需要在资源选择窗中选择一个以上的传输资源(或者占用一个以上的COT)时,传输资源(或COT)之间满足LBT。例如,假设终端设备需要在资源选择窗内占用P个COT,可以在第一时间点n随机生成P个随机退避计数初始值,并基于其中一个随机退避计数初始值采用上述方案确定资源选择窗的起始时间点以及占用第1个COT。在占用第一个COT之后,可以基于另一个随机退避计数初始值采用上述方案重新确定资源选择窗的起始时间点以及占用第2个COT。以此类推。
示例性的,本申请实施例中,终端设备选择的传输资源在频域上可以以信道为粒度,在时域上的粒度可以是时隙等时间单位也可以为COT,其中,COT包括多个连续的时隙。
本申请实施例中通过根据LBT结束的时间点确定资源选择窗的起始时间点,使得资源选择窗内的资源尽可能多的位于LBT结束之后,从而可以提高在预留的资源上进行通信之前LBT成功的概率,提高终端设备在该资源选择窗内选择的资源上发送信息的可能性。通过本申请实施例提供的方案,接收侧终端设备在接收到发送侧终端设备发送的指示信息(该指示信息用于指示传输资源或者占用的COT)后,可以在指示信息指示的位置开始进入接收状态,而不用在该位置之间进行检测接收,从而可以降低接收侧终端设备的功耗。
本申请实施例提供一种通信装置。该通信装置可用于实现上述实施例所涉及的终端设备的功能,例如,该通信装置可以为终端设备本身,例如车载终端设备或者路边单元RSU等等整体性的终端设备,或者,该通信装置也可以为能够支持终端设备实现该功能的装置,例如应用于终端设备中的芯片、模组、TBOX、或者其他具有本申请所示终端设备功能的组合器件、部件(或称组件),举例说明,该通信装置可以为车载终端设备或者路边单元等设备内的芯片、模组或者组件等。该通信装置可包括图7和/或图8所示结构。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,该计算机可以实现上述实施例中与终端设备相关的 流程。
本申请实施例还提供一种计算机程序产品,该计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,该计算机可以实现上述实施例中与终端设备相关的流程。
本申请实施例还提供一种芯片或芯片系统,该芯片可包括处理器,该处理器可用于调用存储器中的程序或指令,执行上述实施例中与终端设备相关的流程。该芯片系统可包括该芯片,还可存储器或收发器等其他组件。
本申请实施例还提供一种电路,该电路可与存储器耦合,可用于执行上述实施例中与终端设备相关的流程。该芯片系统可包括该芯片,还可存储器或收发器等其他组件。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (21)

  1. 一种通信方法,其特征在于,所述方法包括:
    确定资源选择窗的起始时间点,其中,所述资源选择窗的起始时间点与第一时间点之间的时间间隔不小于第一时长,所述第一时间点为触发资源选择的时间点,所述第一时长为终端设备执行第一类先听后说LBT需要的时长;
    在所述资源选择窗内选择传输资源。
  2. 如权利要求1所述的方法,其特征在于,所述资源选择窗的起始时间点与第一时间点之间的时间间隔对应的时隙个数T 1满足:
    Figure PCTCN2022109494-appb-100001
    的情况下,
    Figure PCTCN2022109494-appb-100002
    和/或,
    Figure PCTCN2022109494-appb-100003
    的情况下,T 1=T;
    其中,所述
    Figure PCTCN2022109494-appb-100004
    为预定义的第一处理时长,所述T为所述第一时长对应的时隙个数。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一时长为根据所述第一类LBT对应的随机退避计数器的初始值确定的。
  4. 如权利要求3所述的方法,其特征在于,所述第一时长对应的时隙个数T满足:
    Figure PCTCN2022109494-appb-100005
    其中,所述counter为所述随机退避计数器的初始值,所述μ对应子载波间隔。
  5. 如权利要求3或4所述的方法,其特征在于,所述在所述资源选择窗内选择传输资源,包括:
    按照在时间上从前往后的顺序在第一资源集合中选择传输资源,其中,所述第一资源集合为所述资源选择窗中的候选资源的子集,且所述第一资源集合包括所述资源选择窗中位于LBT结束的时间点之后的候选资源。
  6. 如权利要求1或2所述的方法,其特征在于,所述第一时长根据所述第一类LBT对应的随机退避计数器的初始值以及第二时长确定;
    其中,所述第二时长为所述N个预留资源占用的时隙个数,或者,所述第二时长根据所述N个预留资源占用的时隙个数以及N个第一间隔确定,所述第一间隔为对应的预留资源之后的信道空闲时长,且所述第一间隔与对应的预留资源在时域上连续,所述N个预留资源为所述第一时长内被预留的资源,所述N为正整数。
  7. 如权利要求6所述的方法,其特征在于,所述第一时长对应的时隙个数T满足:
    Figure PCTCN2022109494-appb-100006
    其中,所述counter为所述随机退避计数器的初始值,所述μ对应子载波间隔,所述reservation i为所述N个预留资源中第i个预留资源占用的时隙个数。
  8. 如权利要求6所述的方法,其特征在于,所述第一时长对应的时隙个数T满足:
    Figure PCTCN2022109494-appb-100007
    其中,所述counter为所述随机退避计数器的初始值,所述μ对应子载波间隔,所述reservation i为所述N个预留资源中第i个预留资源占用的时隙个数,所述t为所述第一间隔。
  9. 如权利要求6-8任一项所述的方法,其特征在于,所述N个预留资源是由资源侦听窗内的M个侧行控制信息指示的,所述M为正整数;其中,
    所述M个侧行控制信息中的每个侧行控制信息对应的参考信号接收功率RSRP大于第一门限,所述第一门限为用于资源选择的RSRP门限;或者
    所述M个侧行控制信息中的每个侧行控制信息对应的接收信号强度指示RSSI大于第 二门限,所述第二门限为用于LBT的RSSI门限;或者
    所述M个侧行控制信息中的每个侧行控制信息对应的RSRP大于所述第一门限,并且所述M个侧行控制信息中的每个侧行控制信息对应的RSSI大于所述第二门限。
  10. 一种通信装置,其特征在于,所述装置包括:
    处理模块,用于确定资源选择窗的起始时间点,其中,所述资源选择窗的起始时间点与第一时间点之间的时间间隔不小于第一时长,所述第一时间点为触发资源选择的时间点,所述第一时长为终端设备执行第一类先听后说LBT需要的时长;
    所述处理模块,还用于在所述资源选择窗内选择传输资源。
  11. 如权利要求10所述的装置,其特征在于,所述资源选择窗的起始时间点与第一时间点之间的时间间隔对应的时隙个数T 1满足:
    Figure PCTCN2022109494-appb-100008
    的情况下,
    Figure PCTCN2022109494-appb-100009
    和/或,
    Figure PCTCN2022109494-appb-100010
    的情况下,T 1=T;
    其中,所述
    Figure PCTCN2022109494-appb-100011
    为预定义的第一处理时长,所述T为所述第一时长对应的时隙个数。
  12. 如权利要求10或11所述的装置,其特征在于,所述第一时长为根据所述第一类LBT对应的随机退避计数器的初始值确定的。
  13. 如权利要求12所述的装置,其特征在于,所述第一时长对应的时隙个数T满足:
    Figure PCTCN2022109494-appb-100012
    其中,所述counter为所述随机退避计数器的初始值,所述μ对应子载波间隔。
  14. 如权利要求12或13所述的装置,其特征在于,所述处理模块,在所述资源选择窗内选择传输资源时,具体用于:
    按照在时间上从前往后的顺序在第一资源集合中选择传输资源,其中,所述第一资源集合为所述资源选择窗中的候选资源的子集,且所述第一资源集合包括所述资源选择窗中位于LBT结束的时间点之后的候选资源。
  15. 如权利要求10或11所述的装置,其特征在于,所述第一时长根据所述第一类LBT对应的随机退避计数器的初始值以及第二时长确定,其中,所述第二时长为所述第一类LBT对应的随机退避计数器被N个预留资源中断的时长,所述N个预留资源为所述第一时长内被预留的资源,所述N为正整数。
  16. 如权利要求15所述的装置,其特征在于,所述第一时长对应的时隙个数T满足:
    Figure PCTCN2022109494-appb-100013
    其中,所述counter为所述随机退避计数器的初始值,所述μ对应子载波间隔,所述reservation i为所述N个预留资源中第i个预留资源占用的时隙个数。
  17. 如权利要求15所述的装置,其特征在于,所述第一时长对应的时隙个数T满足:
    Figure PCTCN2022109494-appb-100014
    其中,所述counter为所述随机退避计数器的初始值,所述μ对应子载波间隔,所述reservation i为所述N个预留资源中第i个预留资源占用的时隙个数,所述t为所述第一间隔。
  18. 如权利要求15-17任一项所述的装置,其特征在于,所述N个预留资源是由资源侦听窗内的M个侧行控制信息指示的,所述M为正整数;其中,
    所述M个侧行控制信息中的每个侧行控制信息对应的参考信号接收功率RSRP大于第一门限,所述第一门限为用于资源选择的RSRP门限;或者
    所述M个侧行控制信息中的每个侧行控制信息对应的接收信号强度指示RSSI大于第 二门限,所述第二门限为用于LBT的RSSI门限;或者
    所述M个侧行控制信息中的每个侧行控制信息对应的RSRP大于所述第一门限,并且所述M个侧行控制信息中的每个侧行控制信息对应的RSSI大于所述第二门限。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~9中任意一项所述的方法。
  20. 一种计算机程序产品,其特征在于,包括计算机程序或指令,其特征在于,所述计算机程序或指令被处理器执行时实现权利要求1~9任一项所述的方法。
  21. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于读取指令以执行权利要求1~9中任意一项所述的方法。
PCT/CN2022/109494 2021-08-05 2022-08-01 通信方法及装置 WO2023011421A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22852133.2A EP4369813A1 (en) 2021-08-05 2022-08-01 Communication method and apparatus
US18/432,488 US20240179681A1 (en) 2021-08-05 2024-02-05 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110894164.3A CN115707111A (zh) 2021-08-05 2021-08-05 通信方法及装置
CN202110894164.3 2021-08-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/432,488 Continuation US20240179681A1 (en) 2021-08-05 2024-02-05 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2023011421A1 true WO2023011421A1 (zh) 2023-02-09

Family

ID=85154395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109494 WO2023011421A1 (zh) 2021-08-05 2022-08-01 通信方法及装置

Country Status (4)

Country Link
US (1) US20240179681A1 (zh)
EP (1) EP4369813A1 (zh)
CN (1) CN115707111A (zh)
WO (1) WO2023011421A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200029340A1 (en) * 2018-07-19 2020-01-23 Samsung Electronics Co., Ltd. Method and apparatus for nr v2x resource selection
CN111294942A (zh) * 2019-03-29 2020-06-16 展讯半导体(南京)有限公司 感知窗口长度的确定、发送方法及装置、存储介质、终端、基站
WO2021062774A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种侧行链路资源处理的方法、装置和系统
US20220061095A1 (en) * 2020-08-20 2022-02-24 Qualcomm Incorporated Listen-before-talk (lbt) aware autonomous sensing for sidelink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200029340A1 (en) * 2018-07-19 2020-01-23 Samsung Electronics Co., Ltd. Method and apparatus for nr v2x resource selection
CN111294942A (zh) * 2019-03-29 2020-06-16 展讯半导体(南京)有限公司 感知窗口长度的确定、发送方法及装置、存储介质、终端、基站
WO2021062774A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种侧行链路资源处理的方法、装置和系统
US20220061095A1 (en) * 2020-08-20 2022-02-24 Qualcomm Incorporated Listen-before-talk (lbt) aware autonomous sensing for sidelink

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Sidelink resource allocation mode 2 for NR V2X", 3GPP DRAFT; R1-1911884, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823066 *

Also Published As

Publication number Publication date
CN115707111A (zh) 2023-02-17
US20240179681A1 (en) 2024-05-30
EP4369813A1 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
US8792900B2 (en) Autonomous unlicensed band reuse in mixed cellular and device-to-device network
US20150257105A1 (en) Power management method for station in wireless lan system and station that supports same
US20210329568A1 (en) Signal sending method, priority configuration method, and device
WO2021031043A1 (zh) 一种通信方法及装置
WO2020238428A1 (zh) 一种通信方法及装置
WO2021204173A1 (zh) 一种资源确定的方法、装置及终端设备
CN112398888A (zh) 一种通信方法及装置
WO2023051086A1 (zh) 数据传输的方法、终端装置及系统
WO2012172156A1 (en) Method and apparatus for wireless medium access
WO2021036834A1 (zh) 资源指示方法及装置
WO2022011699A1 (zh) 一种通信方法及侧行设备
WO2023273743A1 (zh) 一种侧行通信方法及装置
WO2023011421A1 (zh) 通信方法及装置
WO2022213705A1 (zh) 一种通信方法及装置
WO2022198666A1 (zh) 一种通信方法、终端装置及系统
EP4138475A1 (en) Method, apparatus and system for determining resource
WO2021212510A1 (zh) 一种通信方法及装置
WO2021184386A1 (zh) 一种通信方法及装置
WO2020259293A1 (zh) 一种通信方法和装置
WO2021212505A1 (zh) 一种通信方法、装置及系统
WO2023165468A1 (zh) 一种资源确定方法及装置
WO2023274030A1 (zh) 一种通信方法及装置
WO2024012129A1 (zh) 指示信息发送方法、装置及系统
WO2023078038A1 (zh) 侧行传输方法以及通信装置
WO2023165416A1 (zh) 通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852133

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022852133

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022852133

Country of ref document: EP

Effective date: 20240206

NENP Non-entry into the national phase

Ref country code: DE