WO2024032557A1 - 定位方法及装置 - Google Patents

定位方法及装置 Download PDF

Info

Publication number
WO2024032557A1
WO2024032557A1 PCT/CN2023/111513 CN2023111513W WO2024032557A1 WO 2024032557 A1 WO2024032557 A1 WO 2024032557A1 CN 2023111513 W CN2023111513 W CN 2023111513W WO 2024032557 A1 WO2024032557 A1 WO 2024032557A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
virtual
difference
measurement
carrier
Prior art date
Application number
PCT/CN2023/111513
Other languages
English (en)
French (fr)
Inventor
方荣一
任斌
于哲
师源谷
达人
肖国军
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2024032557A1 publication Critical patent/WO2024032557A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a positioning method and device.
  • GNSS Global Navigation Satellite System
  • the phase-locked loop design needs to consider the need to re-lock and correctly handle the cycle slip effect when the signal is interrupted, which is very important. This greatly increases the processing complexity and also causes additional power consumption.
  • NR New Radio
  • Embodiments of the present disclosure provide a positioning method and device to solve the defects of high processing complexity and high power consumption in related technologies, thereby reducing processing complexity and saving power consumption.
  • inventions of the present disclosure provide a positioning method applied to a first device.
  • the positioning method includes:
  • the multiple virtual carriers have different virtual double-difference phases, different virtual wavelengths, and different virtual double-differences.
  • the location information of the target terminal is obtained.
  • determining the double-difference carrier phase measurements of multiple first carriers includes:
  • Receive positioning measurement information of a plurality of first carriers where the positioning measurement information includes at least one of the following: delay measurement information, reliability measurement information of the delay measurement information, carrier phase measurement information, and the carrier phase measurement information. reliability measurement information;
  • obtaining double-difference integer ambiguities of the plurality of virtual carriers includes:
  • the virtual double difference phase of the Nth virtual carrier, the Nth One or more of the virtual wavelength of the N-th virtual carrier, the virtual double-difference integer ambiguity of the N-th virtual carrier, and the recovered double-difference distance measurement value of the N-1th virtual carrier are obtained.
  • the measurement equation of the Nth virtual carrier, the recovered double-difference distance measurement value of the N-1th virtual carrier is calculated by the sum of the double-difference integer ambiguity integer solution of the measurement equation of the N-1th virtual carrier.
  • the wavelength and double-difference carrier phase measurement values of the N-1th virtual carrier are constructed;
  • N is equal to 1, for the first virtual carrier among the plurality of virtual carriers, based on the delay measurement values of all virtual carriers, the virtual double difference phase of the first virtual carrier, the first One or more of the virtual wavelength of the first virtual carrier and the virtual double-difference integer ambiguity of the first virtual carrier, and obtain the measurement equation of the Nth virtual carrier;
  • N is greater than 1 and N is less than or equal to M, where M is the number of virtual carriers.
  • obtaining double-difference integer ambiguities of the plurality of virtual carriers further includes:
  • obtaining the measurement equation of the Nth virtual carrier includes:
  • the double difference distance in the measurement equation of the Nth virtual carrier is linearized to obtain a processed linear measurement equation.
  • linearizing the double difference distance in the measurement equation of the Nth virtual carrier according to the initial estimated position of the positioning target includes:
  • the double difference distance in the measurement equation of the Nth virtual carrier is linearized.
  • the method further includes:
  • the order from the first virtual carrier to the Nth virtual carrier is determined based on the wavelength of each virtual carrier from large to small.
  • solving the measurement equation based on the Nth virtual carrier to obtain the double-difference integer ambiguity of the Nth virtual carrier includes:
  • the measurement equation of the Nth virtual carrier is solved to obtain The floating-point solution of the double-differenced integer ambiguity of the Nth virtual carrier is obtained.
  • the error of the measurement equation includes at least one of the following: ARP and/or PCO error, measurement error between different virtual carriers, different base stations The measurement error between different terminals, or the measurement error between different terminals;
  • an integer of the double difference integer ambiguity of the Nth virtual carrier is obtained untie.
  • the estimated error covariance matrix is based on preconfiguration or error information obtained based on signaling instructions or training, where the error information includes ARP and/or PCO errors.
  • an embodiment of the present disclosure also provides a first device, including a memory, a transceiver, and a processor, wherein:
  • Memory used to store computer programs
  • transceiver used to send and receive data under the control of the processor
  • processor used to read the computer program in the memory and perform the following operations:
  • the multiple virtual carriers have different virtual double-difference phases, different virtual wavelengths, and different virtual double-differences.
  • the location information of the target terminal is obtained.
  • determining the double-difference carrier phase measurements of multiple first carriers includes:
  • Receive positioning measurement information of a plurality of first carriers where the positioning measurement information includes at least one of the following: delay measurement information, reliability measurement information of the delay measurement information, carrier phase measurement information, and the carrier phase measurement information. reliability measurement information;
  • obtaining double-differenced integer ambiguities of the plurality of virtual carriers includes:
  • the virtual double difference phase of the Nth virtual carrier, the Nth One or more of the virtual wavelength of the N-th virtual carrier, the virtual double-difference integer ambiguity of the N-th virtual carrier, and the recovered double-difference distance measurement value of the N-1th virtual carrier are obtained.
  • the measurement equation of the Nth virtual carrier, the recovered double-difference distance measurement value of the N-1th virtual carrier is calculated by the sum of the double-difference integer ambiguity integer solution of the measurement equation of the N-1th virtual carrier.
  • the wavelength and double-difference carrier phase measurement values of the N-1th virtual carrier are constructed;
  • N is equal to 1, for the first virtual carrier among the plurality of virtual carriers, based on the delay measurement values of all virtual carriers, the virtual double difference phase of the first virtual carrier, the first One or more of the virtual wavelength of the first virtual carrier and the virtual double-difference integer ambiguity of the first virtual carrier, and obtain the measurement equation of the Nth virtual carrier;
  • N is greater than 1 and N is less than or equal to M, where M is the number of virtual carriers.
  • obtaining double-difference integer ambiguities of the plurality of virtual carriers further includes:
  • obtaining the measurement equation of the Nth virtual carrier includes:
  • the double difference distance in the measurement equation of the Nth virtual carrier is linearized to obtain a processed linear measurement equation.
  • linearizing the double difference distance in the measurement equation of the Nth virtual carrier according to the initial estimated position of the positioning target includes:
  • the double difference distance in the measurement equation of the Nth virtual carrier is linearized.
  • the operations further include:
  • the order from the first virtual carrier to the Nth virtual carrier is determined based on the wavelength of each virtual carrier from large to small.
  • solving the measurement equation based on the Nth virtual carrier to obtain the double-difference integer ambiguity of the Nth virtual carrier includes:
  • the measurement equation of the Nth virtual carrier is solved to obtain the floating point solution of the double-differenced integer ambiguity of the Nth virtual carrier.
  • the error of the measurement equation includes at least the following: One item: ARP and/or PCO error, measurement error between different virtual carriers, measurement error between different base stations, or measurement error between different terminals;
  • an integer of the double difference integer ambiguity of the Nth virtual carrier is obtained untie.
  • the estimated error covariance matrix is based on preconfiguration or error information obtained based on signaling instructions or training, where the error information includes ARP and/or PCO errors.
  • embodiments of the present disclosure also provide a positioning device, including:
  • a first determination module configured to determine double-difference carrier phase measurements of multiple first carriers
  • a virtual carrier construction module used to linearly combine the double-difference carrier phase measurements of the plurality of first carriers to construct multiple virtual carriers.
  • the multiple virtual carriers have different virtual double-difference phases and different virtual wavelengths. , and different virtual double difference integer ambiguities;
  • a first acquisition module configured to obtain double-difference integer ambiguities of the plurality of virtual carriers
  • a second acquisition module configured to obtain double-difference integer ambiguities corresponding to the plurality of first carriers based on the double-difference integer ambiguities of the plurality of virtual carriers;
  • the third acquisition module is configured to obtain the location information of the target terminal based on the double-difference integer ambiguities corresponding to the plurality of first carriers.
  • the first determining module is used to:
  • Receive positioning measurement information of multiple first carriers where the positioning measurement information includes at least one of the following: Items: delay measurement information, reliability measurement information of the delay measurement information, carrier phase measurement information, reliability measurement information of the carrier phase measurement information;
  • the first acquisition module is used for:
  • the virtual double difference phase of the Nth virtual carrier, the Nth One or more of the virtual wavelength of the N-th virtual carrier, the virtual double-difference integer ambiguity of the N-th virtual carrier, and the recovered double-difference distance measurement value of the N-1th virtual carrier are obtained.
  • the measurement equation of the Nth virtual carrier, the recovered double-difference distance measurement value of the N-1th virtual carrier is calculated by the sum of the double-difference integer ambiguity integer solution of the measurement equation of the N-1th virtual carrier.
  • the wavelength and double-difference carrier phase measurement values of the N-1th virtual carrier are constructed;
  • N is equal to 1, for the first virtual carrier among the plurality of virtual carriers, based on the delay measurement values of all virtual carriers, the virtual double difference phase of the first virtual carrier, the first One or more of the virtual wavelength of the first virtual carrier and the virtual double-difference integer ambiguity of the first virtual carrier, and obtain the measurement equation of the Nth virtual carrier;
  • N is greater than 1 and N is less than or equal to M, where M is the number of virtual carriers.
  • the first acquisition module is used for:
  • the first acquisition module is used for:
  • the double difference distance in the measurement equation of the Nth virtual carrier is linearized to obtain a processed linear measurement equation.
  • the first acquisition module is used for:
  • the double difference distance in the measurement equation of the Nth virtual carrier is linearized deal with.
  • the device further includes:
  • the fourth acquisition module is used to acquire the location information of the base station and/or the ARP and/or PCO error of the location information of the base station;
  • the order from the first virtual carrier to the Nth virtual carrier is determined based on the wavelength of each virtual carrier from large to small.
  • the first acquisition module is used for:
  • the measurement equation of the Nth virtual carrier is solved to obtain the floating point solution of the double-differenced integer ambiguity of the Nth virtual carrier.
  • the error of the measurement equation includes at least the following: One item: ARP and/or PCO error, measurement error between different virtual carriers, measurement error between different base stations, or measurement error between different terminals;
  • an integer of the double difference integer ambiguity of the Nth virtual carrier is obtained untie.
  • the estimated error covariance matrix is based on preconfiguration or error information obtained based on signaling instructions or training, where the error information includes ARP and/or PCO errors.
  • embodiments of the present disclosure also provide a processor-readable storage medium, the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the first aspect as described above. The positioning method described.
  • an embodiment of the present disclosure also provides a communication device, a computer program is stored in the communication device, and the computer program is used to cause the communication device to execute the positioning method described in the first aspect.
  • embodiments of the present disclosure also provide a processor-readable storage medium that stores a computer program, and the computer program is used to cause the processor to execute the above-described first aspect. positioning method.
  • embodiments of the present disclosure also provide a chip product, the chip product stores Computer program, the computer program is used to cause the chip product to perform the positioning method described in the first aspect above.
  • the positioning method and device construct multiple virtual carriers through a linear combination of double-difference carrier phase measurements based on multiple first carriers, and obtain the double-difference integer ambiguity of the multiple virtual carriers, and then Recover the double-difference integer ambiguity of multiple first carriers to obtain the location information of the target terminal; by using the phase measurement values of multiple first carriers, the positioning time is reduced and the carrier phase caused by channel time variability is avoided. Measuring the cycle slip problem and the time overhead caused by re-locking after phase loss can achieve single-moment position locking, greatly improving positioning accuracy and robustness, effectively reducing processing complexity and saving power consumption.
  • Figure 1 is a schematic flowchart of a positioning method provided by an embodiment of the present disclosure
  • Figure 2 is one of the structural schematic diagrams of a first device provided by an embodiment of the present disclosure
  • Figure 3 is a second structural schematic diagram of a first device provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic structural diagram of a positioning device provided by an embodiment of the present disclosure.
  • the term "and/or” describes the association relationship of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone. these three situations.
  • the character "/” generally indicates that the related objects are in an "or” relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar to it.
  • Embodiments of the present disclosure provide positioning methods and devices to achieve position locking at a single moment, greatly improving positioning accuracy and robustness, effectively reducing processing complexity, and saving power consumption.
  • the method and the device are based on the same application concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated details will not be repeated.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS Universal mobile telecommunication system
  • WiMAX microwave access
  • 5G New Radio, NR 5G New Radio
  • EPS Evolved Packet System
  • 5GS 5G system
  • EPS Evolved Packet System
  • 5GS 5G system
  • the basic principle of wireless positioning technology is that the transmitter transmits a pilot signal, the receiver receives and measures the signal, obtains measured values such as delay, angle, phase, etc., and then performs corresponding position calculation to obtain the position estimate.
  • positioning solutions that rely on phase measurement values rely on the high-resolution measurement accuracy brought by its short wavelength. For example, under the 3.5G carrier frequency, the wavelength is 8.6cm, and the measurement resolution is below 8mm. Under suitable conditions, the positioning accuracy can be improved. to the millimeter level, so it is mainly used in the Global Navigation Satellite System (GNSS).
  • GNSS Global Navigation Satellite System
  • GNSS carrier phase measurement values can be reported, but reporting of NR carrier phase measurement values is not yet supported, and there is a lack of use of reported NR carrier phase measurement values.
  • a positioning solution that solves the entire cycle at a single moment; a common method for GNSS is to use single-frequency point phase measurements at multiple moments for temporal filtering, such as Kalman filtering. This solution requires the receiver to continuously track the signal to ensure that the phase-locked loop is always locked to the signal carrier phase.
  • the single-moment full-cycle positioning solution can avoid the carrier phase measurement cycle slip problem caused by channel time variability and greatly improve the positioning accuracy and stability. Therefore, it is necessary to provide a single-moment multi-carrier phase positioning solution for 5G NR. .
  • FIG. 1 is a schematic flowchart of a positioning method provided by an embodiment of the present disclosure. As shown in Figure 1, the execution subject of the positioning method is a first device. The positioning method includes the following steps:
  • Step 100 Determine the double-difference carrier phase measurements of multiple first carriers
  • the first carrier is the original carrier in the positioning process of the target terminal
  • Step 110 Linearly combine the double-difference carrier phase measurements of the multiple first carriers to construct multiple virtual carriers.
  • the multiple virtual carriers have different virtual double-difference phases, different virtual wavelengths, and different Virtual double difference integer ambiguity;
  • the multiple first carriers may include any of the following: multiple carrier frequencies, or multiple subcarriers on one component carrier (Component Carrier, CC), or multiple subcarriers on different CCs;
  • the double-difference carrier phase measurements of Q (Q ⁇ 2) carriers at a single measurement moment can be linearly combined to construct P (P ⁇ 2) virtual carrier double-difference carrier phase measurements
  • P (P ⁇ 2) virtual carrier double-difference carrier phase measurements The P virtual double-difference carrier phase measurement quantities have different virtual double-difference phases, virtual double-difference wavelengths (frequencies) and virtual double-difference integer ambiguities;
  • Step 120 Obtain double-difference integer ambiguities of the multiple virtual carriers
  • the double-difference integers corresponding to the multiple virtual carriers can be calculated and obtained. fuzziness;
  • the constructed multiple virtual carriers respectively have virtual double difference phases, virtual Wavelength, and virtual double difference integer ambiguity can be regarded as known quantities;
  • Step 130 Obtain double-difference integer ambiguities corresponding to the plurality of first carriers based on the double-difference integer ambiguities of the plurality of virtual carriers;
  • obtaining the double-difference integer ambiguity corresponding to the plurality of first carriers may be to obtain the double-difference integer ambiguity of each first carrier respectively;
  • obtaining the double difference integer ambiguity corresponding to the plurality of first carriers may be to obtain the double difference integer ambiguity of the first carrier with the shortest wavelength among the plurality of first carriers;
  • Step 140 Obtain the location information of the target terminal based on the double-difference integer ambiguities corresponding to the plurality of first carriers.
  • the location information of the target terminal may be obtained based on the double-difference integer ambiguity of the first carrier with the shortest wavelength among the plurality of first carriers;
  • the location information of the target terminal may be obtained based on the double-difference integer ambiguity of the first carrier of a preset wavelength among the plurality of first carriers;
  • the location information of the target terminal may be obtained based on the double-difference integer ambiguity of a preset first carrier among the plurality of first carriers;
  • the wavelength level can be recovered by using the double-difference integer ambiguity (integer solution) of the original carrier (the plurality of first carriers) and the known reference UE or Positioning Reference Unit (PRU) location information.
  • the precise Time Difference of Arrival (TDOA) measurement is substituted into a positioning algorithm such as the CHAN algorithm to calculate the position;
  • PRU positioning reference unit
  • ARP antenna reference point
  • PCO Phase Center Offset
  • the first device may be a device on the positioning side
  • the first device may be a Location Management Function (LMF) (also called a location server) or a terminal to be located;
  • LMF Location Management Function
  • the first device may be a Location Management Function (LMF) (also called a location server) or a terminal to be located;
  • LMF Location Management Function
  • the terminal to be located may also be called a target terminal
  • the positioning side device or the first device may be the positioning server LMF;
  • the positioning side device or the first device may be the target UE to be positioned.
  • more accurate location information of the target terminal can be further obtained.
  • cellular network positioning is adopted, which has the advantage of having more carriers than GNSS in related technologies, that is, rich carrier resources in the frequency domain.
  • the disclosed embodiments can be applied to 5G NR single-moment multi-carrier phase positioning, which does not require the receiver to continuously track the signal carrier phase, reducing processing complexity.
  • the positioning method provided by the embodiments of the present disclosure constructs multiple virtual carriers through a linear combination based on the double-difference carrier phase measurements of multiple first carriers, and obtains the double-difference integer ambiguities of the multiple virtual carriers, and then recovers Double-difference integer ambiguities of multiple first carriers are used to obtain the location information of the target terminal; by using phase measurement values of multiple first carriers, positioning time is reduced and carrier phase measurement cycles caused by channel time variability are avoided. It can achieve single-moment position locking, greatly improve positioning accuracy and robustness, and effectively reduce processing complexity and save power consumption.
  • determining the double-difference carrier phase measurements of multiple first carriers includes:
  • Receive positioning measurement information of a plurality of first carriers where the positioning measurement information includes at least one of the following: delay measurement information, reliability measurement information of the delay measurement information, carrier phase measurement information, and the carrier phase measurement information. reliability measurement information;
  • the reliability metric information can represent the quantified measurement value error size, reflect reliability, and can be used to set the error covariance matrix.
  • the reliability measurement information may be an error value, an error range, or identification information used to indicate the error range.
  • the error range may be represented by variance or standard deviation, and the embodiments of the present disclosure are not limited to this.
  • the reference device includes a reference UE or PRU (including UE-type or TRP-type);
  • the double difference delay measurement quantity includes at least one of the following: uplink relative to Uplink Relative Time of Arrival (UL-RTOA), Downlink Time Difference of Arrival (DL-TDOA), UE Rx ⁇ Tx time difference, Transmit Receive Point Rx ⁇ Tx time difference,TRP Rx ⁇ Tx time difference);
  • UL-RTOA Uplink Relative Time of Arrival
  • DL-TDOA Downlink Time Difference of Arrival
  • UE Rx ⁇ Tx time difference Transmit Receive Point Rx ⁇ Tx time difference
  • TRP Rx ⁇ Tx time difference Transmit Receive Point
  • positioning measurement information corresponding to one or more items of the target terminal, the reference device, and the base station can be obtained, where the positioning measurement information is positioning measurement information for multiple first carriers;
  • the location information of the base station and the reference device can be obtained
  • differential processing can be performed on the positioning measurement information of the plurality of first carriers to obtain double-difference delay measurements and double-difference carrier phase measurements.
  • the double-difference carrier phase measurements are used to construct virtual carriers. .
  • the first device may receive phase measurement quantities of Q (Q ⁇ 2) carriers at a single measurement time reported by the target terminal, reference UE or PRU (including UE-type or TRP-type) or multiple base stations. and corresponding carrier phase measurement related information.
  • the Q carriers may be multiple carrier frequencies, or multiple subcarriers on one CC or multiple subcarriers on different CCs.
  • the first device can perform a double-difference operation on the received carrier phase measurement to eliminate the impact of time-frequency offset on the phase, and obtain the double-differenced carrier phase of Q (Q ⁇ 2) carriers at a single measurement moment. Measured quantity.
  • the subscripts a and b are the target UE and the reference UE respectively, and the superscripts i and j are the i-th and j-th transceiver points (Transmit Receive Point, TRP) respectively.
  • the jth TRP is the reference TRP
  • the double-difference carrier phase measurement quantity on the f m carrier (the unit can be meters or other distance units, and the embodiments of the present disclosure do not limit this)
  • ⁇ m is the wavelength corresponding to the f m carrier
  • the measurement error of the double-difference carrier phase measurement of a wave is the double-difference carrier phase measurement of a wave.
  • target terminal a for the i-th TRP is the carrier phase measurement value error of target terminal a for the i-th TRP, target terminal a for the j-th TRP, reference terminal b for the i-th TRP, and reference terminal b for the j-th TRP, at the m-th frequency;
  • the carrier phase measurement value error and carrier at the n-th frequency Phase measurement error For the target terminal a for the i-th TRP, the target terminal a for the j-th TRP, the reference terminal b for the i-th TRP, and the reference terminal b for the j-th TRP, the carrier phase measurement value error and carrier at the n-th frequency Phase measurement error.
  • m1 and m2 represent the number of the original frequency, and the value is [1, Q], Calculated from formulas (2) and (3).
  • virtual wavelength and error mean square error need to be comprehensively considered to appropriately select a combination of virtual carrier combination coefficients.
  • obtaining double-differenced integer ambiguities of the plurality of virtual carriers includes:
  • the virtual double difference phase of the Nth virtual carrier, the Nth One or more of the virtual wavelength of the N-th virtual carrier, the virtual double-difference integer ambiguity of the N-th virtual carrier, and the recovered double-difference distance measurement value of the N-1th virtual carrier are obtained.
  • the measurement equation of the Nth virtual carrier, the recovered double-difference distance measurement value of the N-1th virtual carrier is calculated by the sum of the double-difference integer ambiguity integer solution of the measurement equation of the N-1th virtual carrier.
  • the wavelength and double-difference carrier phase measurement values of the N-1th virtual carrier are constructed;
  • N is equal to 1, for the first virtual carrier among the plurality of virtual carriers, based on the delay measurement values of all virtual carriers, the virtual double difference phase of the first virtual carrier, the first One or more of the virtual wavelength of the first virtual carrier and the virtual double-difference integer ambiguity of the first virtual carrier, and obtain the measurement equation of the Nth virtual carrier;
  • N is greater than 1 and N is less than or equal to M, where M is the number of virtual carriers.
  • the order from the first virtual carrier to the Nth virtual carrier is determined based on the wavelength of each virtual carrier from large to small.
  • the measurement equation can be iteratively constructed from large to small based on the wavelength size and the solution of the measurement equation can be solved;
  • the measurement equation is determined and solved step by step starting from the longest double-difference carrier phase measurement quantity of the virtual double-difference wavelength to the shortest virtual double-difference wavelength;
  • the process of constructing and solving the measurement equation needs to be performed at least P-1 times, starting from the longest double-difference carrier phase measurement quantity of the virtual double-difference wavelength to the shortest virtual double-difference wavelength.
  • the quasi-double difference carrier phase measurement is performed step by step.
  • Delay measurement value ideal double difference distance + noise
  • Virtual double difference carrier phase + virtual wavelength ⁇ estimated double difference integer ambiguity ideal double difference distance + noise.
  • the physical meanings of both sides of the equal sign of the measurement equation of the Nth virtual carrier are:
  • Virtual double difference carrier phase + virtual wavelength ⁇ estimated double difference integer ambiguity ideal double difference distance + noise;
  • the virtual double difference phase of the first virtual carrier (the virtual carrier with the largest wavelength), the virtual wavelength of the first virtual carrier, and the first virtual carrier.
  • One or more of the virtual double-difference integer ambiguities of the carrier are used to obtain the measurement equation of the Nth virtual carrier, and then the measurement equation of the first virtual carrier can be solved to obtain the corresponding value of the first virtual carrier.
  • the double-difference integer ambiguity of the first virtual carrier can be further used to obtain the restored double-difference distance measurement of the first virtual carrier based on the double-difference integer ambiguity of the first virtual carrier and the double-difference phase of the first virtual carrier. value;
  • the recovered double-difference distance measurement value of the first virtual carrier can be substituted into the construction of the measurement equation of the second virtual carrier (the virtual carrier with the second longest wavelength), that is, the delay measurement of all virtual carriers can be based on value, the virtual double difference phase of the second virtual carrier, the virtual wavelength of the second virtual carrier, the virtual double difference integer ambiguity of the second virtual carrier, and the recovery of the first virtual carrier
  • the measurement equation of the second virtual carrier can be solved to obtain the double difference value corresponding to the second virtual carrier.
  • Difference integer ambiguity and then based on the double difference integer ambiguity of the second virtual carrier and the double difference phase of the second virtual carrier, the restored double difference distance measurement value of the second virtual carrier can be obtained;
  • the recovered double-difference distance measurement value of the second virtual carrier can be substituted into the construction of the measurement equation of the third virtual carrier (the virtual carrier with the third longest wavelength)...and so on, to obtain the result.
  • the third virtual carrier the virtual carrier with the third longest wavelength.
  • each virtual carrier can be as follows:
  • W represents the weighting matrix, that is, the inverse of the carrier phase measurement error covariance matrix between different TRPs for the same virtual carrier.
  • A1 and L1 are expressed by The relationship between the carrier phase measurement value and wavelength, distance, etc. is determined.
  • inv() represents the inversion. For details, please refer to the description of formula (23).
  • Whether the distance in the least squares measurement equation is linearized, such as Taylor expansion, can be divided into non-expansion method and expansion method.
  • the integer double difference integer ambiguities on different virtual carriers can be combined with the combination coefficient to recover the double difference integer of the original carrier. fuzziness;
  • the integer solution of the double-differenced integer ambiguity on the virtual carrier Substitute into formula (5) for inverse solution to obtain the integer solution of the double-difference integer ambiguity of the original carrier.
  • obtaining double-difference integer ambiguities of the plurality of virtual carriers further includes:
  • the double-difference phase of the virtual carrier and the integer solution of the double-difference integer ambiguity of the virtual carrier can be used to recover the double-difference distance measurement value of the virtual frequency point and substitute it into the measurement equation of the next virtual frequency point;
  • the measurement equation of the N+1th virtual carrier in order to construct the measurement equation of the N+1th virtual carrier, after obtaining the Nth virtual carrier, it can be based on the double difference integer ambiguity of the Nth virtual carrier and the Nth virtual carrier of the double difference phase, obtain the recovered double difference distance measurement value of the Nth virtual carrier, and substitute the restored double difference distance measurement value of the Nth virtual carrier into the construction of the measurement equation of the N+1th virtual carrier middle.
  • each virtual carrier measurement equation there are two ways to construct each virtual carrier measurement equation:
  • Method 1 Use the initial estimation point of the UE position (for example, determine the rough position of the UE through a TDOA positioning method such as CHAN) to perform Taylor expansion to construct each virtual carrier measurement equation;
  • Method 2 It is not necessary to use the initial estimation point of the UE position to construct each virtual carrier measurement equation.
  • the virtual double difference phase of the Nth virtual carrier based on the delay measurement values of all virtual carriers, the virtual double difference phase of the Nth virtual carrier, the virtual wavelength of the Nth virtual carrier, the virtual One or more of the double difference integer ambiguity and the recovered double difference distance measurement value of the N-1th virtual carrier.
  • linearization may not be performed. Process to obtain the measurement equation.
  • obtaining the measurement equation of the Nth virtual carrier includes:
  • the double difference distance in the measurement equation of the Nth virtual carrier is linearized to obtain a processed linear measurement equation.
  • the linearization process may be a Taylor expansion process
  • no processing means non-expansion mode
  • linearizing the double difference distance in the measurement equation of the Nth virtual carrier according to the initial estimated position of the positioning target includes:
  • the double difference distance in the measurement equation of the Nth virtual carrier is linearized.
  • the ARP error generally refers to the difference between the true coordinates of the antenna reference center (generally the antenna physical center) and the antenna reference center coordinates provided by the BS to the LMF for position calculation.
  • the antenna reference point ARP and/or phase center offset PCO error may include one or more of the following: error identification information of ARP or PCO;
  • the error range can include variance or standard deviation, etc., that is, the error range of ARP or PCO can be characterized by variance or standard deviation.
  • the error range is centimeter level, such as ⁇ 1cm, ⁇ 5cm, etc., and the embodiments of the present disclosure are not limited thereto.
  • the identification information can be used to indicate the error range of the ARP or PCO of the current device, where different error identification information of ARP or PCO corresponds to different error identification information of ARP or PCO. For example: if the error identification information (ARP and/or PCO Error ID) of ARP or PCO is 0, it means that the error range of ARP or PCO is ⁇ 1cm; if the ARP and/or PCO Error ID is 1, it means that the error range of ARP or PCO is ⁇ 5cm. etc., the above are only examples of ARP and/or PCO, and the embodiments of the present disclosure are not limited thereto.
  • the PCO error generally refers to the difference between the real antenna phase center and the antenna physical center.
  • the target accuracy of NR CPP positioning is centimeter level.
  • the error of ARP/PCO is generally in the centimeter range. Therefore, NR CPP needs to consider how to reduce the impact of ARP error on integer ambiguity solution and positioning accuracy.
  • the method further includes:
  • the method before linearizing the double difference distance in the measurement equation of the Nth virtual carrier according to the initial estimated position of the positioning target with reference to ARP and/or PCO errors, the method also includes:
  • the antenna reference point ARP/average phase center PCO error related information is considered to affect the measurement, the error covariance matrix of the base station and reference equipment can be obtained in advance. ARP and/or PCO errors need to be taken into account.
  • solving the measurement equation based on the Nth virtual carrier to obtain the double-difference integer ambiguity of the Nth virtual carrier includes:
  • the measurement equation of the Nth virtual carrier is solved to obtain the floating point solution of the double-differenced integer ambiguity of the Nth virtual carrier.
  • the error of the measurement equation includes at least the following: One item: ARP and/or PCO error, measurement error between different virtual carriers, measurement error between different base stations, or measurement error between different terminals;
  • an integer of the double difference integer ambiguity of the Nth virtual carrier is obtained untie.
  • the double difference integer ambiguity of the Nth virtual carrier may be first obtained.
  • the floating-point solution of degree further obtains the integer solution of the double-difference integer ambiguity of the Nth virtual carrier;
  • the error of the measurement equation may be expressed in the form of a measurement error covariance matrix
  • the error of the measurement equation may be determined based on the current virtual carrier measurement error + ARP error and the previous virtual carrier measurement error and virtual carrier error;
  • the measurement error covariance matrix used to characterize the correlation of measurement errors between different virtual carriers, different base stations, and different terminals can be determined in advance, and then the double-difference integer ambiguity of the Nth virtual carrier is obtained.
  • the measurement equation of the Nth virtual carrier can be solved based on the error covariance matrix of the measurement equation to obtain the floating point of the double difference integer ambiguity of the Nth virtual carrier.
  • the measurement equation of the Nth virtual carrier can be solved through a weighted least squares algorithm based on the error covariance matrix of the measurement equation;
  • the floating-point solution corresponding to the double-difference integer ambiguity of the virtual carrier and the error covariance matrix used in the weighted least squares algorithm are calculated through weighted least squares (taking into account the correlation of measurement errors between different frequency points) property), which can be obtained through pre-configuration, signaling notification or training;
  • the estimated error covariance matrix can be predetermined, and then the estimated error covariance matrix can be based on the floating point solution of the double-differenced integer ambiguity of the Nth virtual carrier and the corresponding estimated error covariance matrix of the floating point solution, Substituting into the LAMBDA algorithm, the integer solution of the double-difference integer ambiguity of the Nth virtual carrier is obtained.
  • the estimated error covariance matrix is used to reflect the error of the floating point solution obtained by the least squares algorithm
  • the estimated error covariance matrix corresponding to the floating-point solution of the double-differenced integer ambiguity of the second virtual carrier can be:
  • A2 represents the matrix coefficient of the second virtual frequency point
  • W2 represents the weighting matrix of different equations in the equation system
  • M represents the number of TRPs.
  • the estimated error covariance matrix corresponding to the floating-point solution of the double-differenced integer ambiguity of the third virtual carrier can be:
  • A3 represents the matrix coefficient of the third virtual frequency point
  • W3 represents the weighting matrix of different equations in the equation system
  • M represents the number of TRPs.
  • the estimated error covariance matrix corresponding to the floating-point solution of the double-differenced integer ambiguities of all virtual carriers can be determined.
  • the estimated error covariance matrix can be determined based on correlation techniques
  • the floating-point solution of the double-differenced integer ambiguity of each virtual carrier and the corresponding estimated error covariance matrix can be substituted into the LAMBDA algorithm to obtain the integer solution of the double-differenced integer ambiguity on the corresponding virtual carrier;
  • the estimated error covariance matrix is based on preconfiguration or error information obtained based on signaling instructions or training, where the error information includes ARP and/or PCO errors.
  • Step (1) double difference measurement value and difference error covariance matrix: use 3 original carriers to construct 3 virtual double difference carriers, as well as their phase, integer, wavelength and the covariance matrix of the constructed phase error:
  • the subscripts a and b are the target and reference UE respectively, and the superscripts i and j are the i-th and j-th TRP respectively.
  • the jth TRP is the reference TRP
  • the double-difference carrier phase measurement quantity on the f m carrier (unit is meter)
  • ⁇ m is the wavelength corresponding to the f m carrier
  • the double-difference integer ambiguity corresponding to the f m carrier is the measurement error of the double-difference carrier phase measurement quantity of f m carrier.
  • New virtual double-difference carrier phase combination measurements can be combined in the following ways:
  • f 1 , f 2 and f 3 represent the frequency values of different original carriers, and the combination coefficients I, J and K are arbitrary integers;
  • ⁇ 1 , ⁇ 2 , and ⁇ 3 represent the wavelengths of different original carriers.
  • ⁇ I,J,K represents the virtual wavelength
  • ⁇ I1,J1,K1 , ⁇ I2,J2,K2 , ⁇ I2,J2,K2 represents the wavelength of the first, second and third virtual frequencies.
  • the measurement noise among different TRPs, UEs, and carriers f m is independent. If they are not independent, they need to be re-derived;
  • Step (2) construct the measurement equation of each virtual carrier
  • L1 represents a matrix composed of carrier phase measurement values of virtual carriers of different TRPs
  • B1 represents a matrix composed of errors of carrier phase measurement values of virtual carriers of different TRPs
  • A1 is the coefficient matrix of the equation, obtained according to the physical model.
  • Step (3) step by step calculate the floating-point solution of the double-difference integer ambiguity of each virtual carrier and the corresponding error
  • the covariance matrix is substituted into the LAMBDA algorithm to obtain the integer solution of the double-difference integer ambiguity corresponding to the virtual carrier;
  • Step (4) use the double difference phase of the virtual carrier and the integer solution of the double difference integer ambiguity of the virtual carrier to recover the double difference distance measurement value of the virtual frequency point and substitute it into the measurement equation of the next virtual frequency point.
  • STEP2 Virtual frequency point F I2, J2, K2
  • Step (5) Substitute the floating-point solution of the double-difference integer ambiguity of each virtual carrier and the corresponding error covariance matrix into the LAMBDA algorithm step by step to obtain the integer solution of the double-difference integer ambiguity on the corresponding virtual carrier;
  • the estimated error covariance matrix corresponding to the floating-point solution of the double-differenced integer ambiguity of the second virtual carrier can be:
  • Step (6) Use the double difference phase of the virtual carrier and the integer solution of the double difference integer ambiguity of the virtual carrier to recover the double difference distance measurement value of the virtual frequency point and substitute it into the measurement equation of the next virtual frequency point.
  • STEP3 Virtual frequency point F I3, J3, K3
  • Step (7) Substitute the floating-point solution of the double-difference integer ambiguity of each virtual carrier and the corresponding error covariance matrix into the LAMBDA algorithm step by step to obtain the integer solution of the double-difference integer ambiguity on the corresponding virtual carrier;
  • the estimated error covariance matrix corresponding to the floating-point solution of the double-differenced integer ambiguity of the third virtual carrier can be:
  • Step (8) combine the integer double-difference integer ambiguities on different virtual carriers with the combination coefficient to restore the double-difference integer ambiguity of the original carrier;
  • the virtual frequency points F I1, J1, K1 , F I2, J2, K2 , F I3, J3, K3 can be used to estimate the double-difference integer ambiguity Substituting it into equation (16) for inverse solution, the integer ambiguity of the original carrier for each carrier phase can be calculated
  • appropriate i, j, k combination coefficients can be selected so that the integer ambiguity standard deviation under the corresponding combination meets the conditions of direct rounding and fixation.
  • Step (9) use the double-difference integer ambiguity integer solution of the original carrier and the known reference UE or positioning reference unit (PRU) position information to recover the accurate TDOA measurement at the wavelength level, and substitute it into the positioning algorithm such as CHAN , perform position calculation.
  • PRU positioning reference unit
  • the above steps can be used to solve the double-difference integer ambiguity in a single measurement time, thereby recovering the accurate TDOA measurement value at the wavelength level, substituting it into the CHAN algorithm, and finally solving the UE position.
  • linear expansion of the measurement equations of each virtual carrier is taken as an example:
  • Step (1) double difference measurement value and difference error covariance matrix: use 3 original carriers to construct 3 virtual double difference carriers, as well as their phase, integer, wavelength and the covariance matrix of the constructed phase error.
  • Variance matrix
  • the subscripts a and b are the target and reference UE respectively, and the superscripts i and j are the i-th and j-th TRP respectively.
  • the jth TRP is the reference TRP, is the double-difference carrier phase measurement quantity on the f m carrier (unit is meter), is the double-difference geometric distance between the UE and the TRP, ⁇ m is the wavelength corresponding to the f m carrier, is the double-difference integer ambiguity corresponding to the f m carrier, is the measurement error of the double-difference carrier phase measurement quantity of f m carrier.
  • the combination coefficients I, J, and K are arbitrary integers
  • the measurement noise among different TRPs, UEs, and carriers f m is independent. If they are not independent, they need to be re-derived;
  • Step (2) construct the measurement equation of each virtual carrier
  • STEP1 Virtual frequency points F I1, J1, K1 ;
  • Step (3) Substitute the floating-point solution of the double-difference integer ambiguity of each virtual carrier and the corresponding error covariance matrix into the LAMBDA algorithm step by step to obtain the integer solution of the double-difference integer ambiguity on the corresponding virtual carrier;
  • Step (4) use the double difference phase of the virtual carrier and the integer solution of the double difference integer ambiguity of the virtual carrier to recover the double difference distance measurement value of the virtual frequency point and substitute it into the measurement equation of the next virtual frequency point.
  • STEP2 Virtual frequency point F I2, J2, K2
  • s i , and ⁇ s i are respectively the true position of the BS antenna, the known value of the antenna position (with deviation), and the ARP and/or PCO error of the known value of the antenna position.
  • w z represents the delay measurement error of the original frequency point and the carrier phase measurement error of the virtual frequency point
  • w v represents the ARP and/or PCO error
  • w u represents the delay measurement error of the original frequency point and the virtual frequency point.
  • the error in the measurement equation consisting of the carrier phase measurement error of the point and the ARP and/or PCO error Indicates the direction vector of target terminal a on the i-th TRP, the direction vector of target terminal a on the j-th TRP, the direction vector of reference terminal b on the i-th TRP, and the direction vector of reference terminal b on the j-th TRP.
  • the direction vector, R T, I1, J1, K1 represents the covariance matrix of the delay measurement error of the virtual carrier, Represents the covariance matrix of the carrier phase measurement error of this virtual carrier, and R v represents the covariance matrix due to ARP and/or PCO errors.
  • R u represents the covariance matrix due to the delay measurement error of the original frequency point, the carrier phase measurement error of the virtual frequency point, and the ARP and/or PCO error.
  • the reliability metric information can represent the quantified measurement value error size, reflect reliability, and can be used to set the error covariance matrix.
  • the reliability measurement information may be an error value, an error range, or identification information used to indicate the error range.
  • the error range may be represented by variance or standard deviation, and the embodiments of the present disclosure are not limited to this.
  • Step (5) Substitute the floating-point solution of the double-difference integer ambiguity of each virtual carrier and the corresponding error covariance matrix into the LAMBDA algorithm step by step to obtain the integer solution of the double-difference integer ambiguity on the corresponding virtual carrier;
  • the estimated error covariance matrix corresponding to the floating-point solution of the double-differenced integer ambiguity of the second virtual carrier can be:
  • Step (6) use the double difference phase of the virtual carrier and the integer solution of the double difference integer ambiguity of the virtual carrier to recover the double difference distance measurement value of the virtual frequency point and substitute it into the measurement equation of the next virtual frequency point.
  • STEP3 Virtual frequency points F I3, J3, K3 ;
  • Step (7) Substitute the floating-point solution of the double-difference integer ambiguity of each virtual carrier and the corresponding error covariance matrix into the LAMBDA algorithm step by step to obtain the integer solution of the double-difference integer ambiguity on the corresponding virtual carrier;
  • the estimated error covariance matrix corresponding to the floating-point solution of the double-differenced integer ambiguity of the third virtual carrier can be:
  • Step (8) combine the integer double-difference integer ambiguities on different virtual carriers with the combination coefficient to restore the double-difference integer ambiguity of the original carrier;
  • Step (9) use the double-difference integer ambiguity integer solution of the original carrier and the known reference UE or positioning reference unit (PRU) position information to recover the accurate TDOA measurement at the wavelength level, and substitute it into the positioning algorithm such as CHAN , perform position calculation.
  • PRU positioning reference unit
  • the above method can be used to solve the double-difference integer ambiguity in a single measurement time, thereby recovering the accurate TDOA measurement value at the wavelength level, substituting it into the CHAN algorithm, and finally solving the UE position.
  • the above embodiment mainly uses three original carriers to construct three virtual double-difference carriers as an example.
  • the positioning method provided by this application can also be applied to the number of original carriers greater than or equal to 2, and the number of constructed virtual double-difference carriers. Other situations greater than or equal to 2.
  • the embodiments of the present disclosure can be applied to the 5G NR single-moment positioning solution based on multi-carrier phases, which can To make full use of the rich frequency domain resources of 5G NR, the phase measurement values of multiple first carriers can be used to reduce positioning time and avoid carrier phase measurement cycle slip problems caused by channel time variability and re-locking after phase loss.
  • the time overhead, combined with the resolution of the carrier phase, can greatly improve positioning accuracy and stability.
  • the positioning method provided by the embodiments of the present disclosure constructs multiple virtual carriers through a linear combination based on the double-difference carrier phase measurements of multiple first carriers, and obtains the double-difference integer ambiguities of the multiple virtual carriers, and then recovers Double-difference integer ambiguities of multiple first carriers are used to obtain the location information of the target terminal; by using phase measurement values of multiple first carriers, positioning time is reduced and carrier phase measurement cycles caused by channel time variability are avoided. It can achieve single-moment position locking, greatly improve positioning accuracy and robustness, and effectively reduce processing complexity and save power consumption.
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem, etc.
  • the names of terminal equipment may also be different.
  • the terminal equipment may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via the Radio Access Network (RAN).
  • the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (or "cell phone").
  • “Phone”) and computers with mobile terminal devices which may be, for example, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted mobile devices, which exchange speech and/or data with the radio access network.
  • mobile terminal devices may be, for example, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted mobile devices, which exchange speech and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • Wireless terminal equipment can also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, and an access point.
  • remote terminal equipment remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), user device (user device), are not limited in the embodiments of the present disclosure.
  • the network device involved in the embodiment of the present disclosure may be a base station, and the base station may include multiple terminals.
  • a base station can also be called an access point, or it can be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or it can be named by another name.
  • the network device may be used to exchange received air frames with Internet Protocol (IP) packets and act as a router between the wireless terminal device and the rest of the access network, where the remainder of the access network may include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • Network devices also coordinate attribute management of the air interface.
  • the network equipment involved in the embodiments of the present disclosure may be a network equipment (Base Transceiver Station, BTS) in Global System for Mobile communications (GSM) or Code Division Multiple Access (CDMA). ), or it can be a network device (NodeB) in a Wide-band Code Division Multiple Access (WCDMA), or an evolutionary network device in a long term evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in the 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) , home base station (femto), pico base station (pico), etc., are not limited in the embodiments of the present disclosure.
  • network devices may include centralized unit (CU) nodes and distributed unit (DU) nodes, and the centralized units and distributed units may also be arranged geographically separately.
  • the first device may be a network-side device such as a location management function (LMF) or a terminal to be located;
  • LMF location management function
  • Figure 2 is one of the structural schematic diagrams of a first device provided by an embodiment of the present disclosure.
  • the first device includes a memory 220, transceiver 200, processor 210, wherein:
  • Memory 220 is used to store computer programs; transceiver 200 is used to send and receive data under the control of the processor 210; processor 210 is used to read the computer program in the memory 220 and perform the following operations:
  • the multiple virtual carriers have different virtual double-difference phases, different virtual wavelengths, and and different virtual double difference integer ambiguities;
  • the location information of the target terminal is obtained.
  • the transceiver 200 is used to receive and send data under the control of the processor 210.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 210 and various circuits of the memory represented by memory 220 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the transceiver 200 may be a plurality of components, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the processor 210 is responsible for managing the bus architecture and general processing, and the memory 220 can store data used by the processor 210 when performing operations.
  • the processor 210 may be a central processing unit (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex). Programmable Logic Device (CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • Complex complex programmable logic device
  • CPLD Programmable Logic Device
  • the processor can also adopt a multi-core architecture.
  • processor 210 is used to:
  • Receive positioning measurement information of a plurality of first carriers where the positioning measurement information includes at least one of the following: delay measurement information, reliability measurement information of the delay measurement information, carrier phase measurement information, and the carrier phase measurement information. reliability measurement information;
  • processor 210 is used to:
  • the base When N is greater than 1, for the Nth virtual carrier among the plurality of virtual carriers, the base The delay measurement values of all virtual carriers, the virtual double difference phase of the Nth virtual carrier, the virtual wavelength of the Nth virtual carrier, the virtual double difference integer ambiguity of the Nth virtual carrier, and one or more of the recovered double-difference distance measurement values of the N-1th virtual carrier, to obtain the measurement equation of the N-th virtual carrier, and the recovered double-difference distance measurement value of the N-1th virtual carrier
  • the double-difference distance measurement value is constructed from the double-difference integer ambiguity integer solution of the measurement equation of the N-1th virtual carrier and the wavelength and double-difference carrier phase measurement value of the N-1th virtual carrier;
  • N is equal to 1, for the first virtual carrier among the plurality of virtual carriers, based on the delay measurement values of all virtual carriers, the virtual double difference phase of the first virtual carrier, the first One or more of the virtual wavelength of the first virtual carrier and the virtual double-difference integer ambiguity of the first virtual carrier, and obtain the measurement equation of the Nth virtual carrier;
  • N is greater than 1 and N is less than or equal to M, where M is the number of virtual carriers.
  • processor 210 is used to:
  • processor 210 is used to:
  • the double difference distance in the measurement equation of the Nth virtual carrier is linearized to obtain a processed linear measurement equation.
  • processor 210 is used to:
  • the double difference distance in the measurement equation of the Nth virtual carrier is linearized.
  • processor 210 is used to:
  • the order from the first virtual carrier to the Nth virtual carrier is determined based on the wavelength of each virtual carrier from large to small.
  • processor 210 is used to:
  • the measurement equation of the Nth virtual carrier is solved to obtain the floating point solution of the double-differenced integer ambiguity of the Nth virtual carrier.
  • the error of the measurement equation includes at least the following: One item: ARP and/or PCO error, measurement error between different virtual carriers, measurement error between different base stations, or measurement error between different terminals;
  • an integer of the double difference integer ambiguity of the Nth virtual carrier is obtained untie.
  • the estimated error covariance matrix is based on preconfiguration or error information obtained based on signaling instructions or training, where the error information includes ARP and/or PCO errors.
  • the above-mentioned first device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment in which the execution subject is the first device, and can achieve the same technical effect, which will not be discussed here.
  • the parts and beneficial effects in this embodiment that are the same as those in the method embodiment will be described in detail.
  • the first device may be a terminal to be located
  • Figure 3 is a second structural schematic diagram of a first device provided by an embodiment of the present disclosure.
  • the first device includes a memory 320, a transceiver Machine 300, processor 310, where:
  • Memory 320 is used to store computer programs; transceiver 300 is used to send and receive data under the control of the processor 310; processor 310 is used to read the computer program in the memory 320 and perform the following operations:
  • the multiple virtual carriers have different virtual double-difference phases, different virtual wavelengths, and different virtual double-differences.
  • the location information of the target terminal is obtained.
  • the transceiver 300 is used to receive and send data under the control of the processor 310.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 310 and various circuits of the memory represented by memory 320 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, which are all well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • the transceiver 300 may be a plurality of components, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the user interface 330 can also be an interface capable of externally connecting internal and external required equipment.
  • the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 310 is responsible for managing the bus architecture and general processing, and the memory 320 can store data used by the processor 310 when performing operations.
  • the processor 310 can be a central processing unit (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable Logic device (Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the processor is configured to execute any of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory can also be physically separated.
  • processor 310 is used to:
  • Receive positioning measurement information of a plurality of first carriers where the positioning measurement information includes at least one of the following: delay measurement information, reliability measurement information of the delay measurement information, carrier phase measurement information, and the carrier phase measurement information. reliability measurement information;
  • processor 310 is used to:
  • the virtual double difference phase of the Nth virtual carrier, the Nth One or more of the virtual wavelength of the N-th virtual carrier, the virtual double-difference integer ambiguity of the N-th virtual carrier, and the recovered double-difference distance measurement value of the N-1th virtual carrier are obtained.
  • the measurement equation of the Nth virtual carrier, the recovered double-difference distance measurement value of the N-1th virtual carrier is calculated by the sum of the double-difference integer ambiguity integer solution of the measurement equation of the N-1th virtual carrier.
  • the wavelength and double-difference carrier phase measurement values of the N-1th virtual carrier are constructed;
  • N is equal to 1, for the first virtual carrier among the plurality of virtual carriers, based on the delay measurement values of all virtual carriers, the virtual double difference phase of the first virtual carrier, the first One or more of the virtual wavelength of the first virtual carrier and the virtual double-difference integer ambiguity of the first virtual carrier, and obtain the measurement equation of the Nth virtual carrier;
  • N is greater than 1 and N is less than or equal to M, where M is the number of virtual carriers.
  • processor 310 is used to:
  • processor 310 is used to:
  • the double difference distance in the measurement equation of the Nth virtual carrier is linearized to obtain a processed linear measurement equation.
  • processor 310 is used to:
  • the double difference distance in the measurement equation of the Nth virtual carrier is linearized.
  • processor 310 is used to:
  • the order from the first virtual carrier to the Nth virtual carrier is determined based on the wavelength of each virtual carrier from large to small.
  • processor 310 is used to:
  • the measurement equation of the Nth virtual carrier is solved to obtain the floating point solution of the double-differenced integer ambiguity of the Nth virtual carrier.
  • the error of the measurement equation includes at least the following: One item: ARP and/or PCO error, measurement error between different virtual carriers, measurement error between different base stations, or measurement error between different terminals;
  • an integer of the double difference integer ambiguity of the Nth virtual carrier is obtained untie.
  • the estimated error covariance matrix is based on preconfiguration or error information obtained based on signaling instructions or training, where the error information includes ARP and/or PCO errors.
  • the above-mentioned first device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment in which the execution subject is the first device, and can achieve the same technical effect, which will not be discussed here.
  • the parts and beneficial effects in this embodiment that are the same as those in the method embodiment will be described in detail.
  • FIG. 4 is a schematic structural diagram of a positioning device provided by an embodiment of the present disclosure.
  • the positioning device 400 includes: a first determination module 410, a virtual carrier construction module 420, a first acquisition module 430, and a second acquisition module 440. , the third acquisition module 450; where:
  • the first determining module 410 is configured to determine double-difference carrier phase measurements of multiple first carriers
  • the virtual carrier construction module 420 is used to linearly combine the double-difference carrier phase measurements of the plurality of first carriers to construct multiple virtual carriers.
  • the multiple virtual carriers have different virtual double-difference phases and different virtual wavelengths. , and different virtual double difference integer ambiguities;
  • the first acquisition module 430 is configured to obtain double-difference integer ambiguities of the multiple virtual carriers
  • the second acquisition module 440 is configured to obtain, based on the double-difference integer ambiguities of the multiple virtual carriers Double-difference integer ambiguities corresponding to the plurality of first carriers;
  • the third acquisition module 450 is configured to obtain the location information of the target terminal based on the double-difference integer ambiguities corresponding to the plurality of first carriers.
  • the first determining module 410 is used to:
  • Receive positioning measurement information of a plurality of first carriers where the positioning measurement information includes at least one of the following: delay measurement information, reliability measurement information of the delay measurement information, carrier phase measurement information, and the carrier phase measurement information. reliability measurement information;
  • the first acquisition module 430 is used to:
  • the virtual double difference phase of the Nth virtual carrier, the Nth One or more of the virtual wavelength of the N-th virtual carrier, the virtual double-difference integer ambiguity of the N-th virtual carrier, and the recovered double-difference distance measurement value of the N-1th virtual carrier are obtained.
  • the measurement equation of the Nth virtual carrier, the recovered double-difference distance measurement value of the N-1th virtual carrier is calculated by the sum of the double-difference integer ambiguity integer solution of the measurement equation of the N-1th virtual carrier.
  • the wavelength and double-difference carrier phase measurement values of the N-1th virtual carrier are constructed;
  • N is equal to 1, for the first virtual carrier among the plurality of virtual carriers, based on the delay measurement values of all virtual carriers, the virtual double difference phase of the first virtual carrier, the first One or more of the virtual wavelength of the first virtual carrier and the virtual double-difference integer ambiguity of the first virtual carrier, and obtain the measurement equation of the Nth virtual carrier;
  • N is greater than 1 and N is less than or equal to M, where M is the number of virtual carriers.
  • the first acquisition module 430 is used to:
  • the first acquisition module 430 is used to:
  • the double difference distance in the measurement equation of the Nth virtual carrier is linearized to obtain a processed linear measurement equation.
  • the first acquisition module 430 is used to:
  • the double difference distance in the measurement equation of the Nth virtual carrier is linearized.
  • the device further includes:
  • the fourth acquisition module is used to acquire the location information of the base station and/or the ARP and/or PCO error of the location information of the base station;
  • the order from the first virtual carrier to the Nth virtual carrier is determined based on the wavelength of each virtual carrier from large to small.
  • the first acquisition module 430 is used to:
  • the measurement equation of the Nth virtual carrier is solved to obtain the floating point solution of the double-differenced integer ambiguity of the Nth virtual carrier.
  • the error of the measurement equation includes at least the following: One item: ARP and/or PCO error, measurement error between different virtual carriers, measurement error between different base stations, or measurement error between different terminals;
  • an integer of the double difference integer ambiguity of the Nth virtual carrier is obtained untie.
  • the estimated error covariance matrix is based on preconfiguration or error information obtained based on signaling instructions or training, where the error information includes ARP and/or PCO errors.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solution of the present disclosure is essentially or contributes to the relevant technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, It includes several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
  • embodiments of the present disclosure also provide a processor-readable storage medium.
  • the processor-readable storage medium stores a computer program.
  • the computer program is used to cause the processor to execute the methods provided by the above embodiments. method.
  • the processor-readable storage medium may be any available media or data storage device that the processor can access, including but not limited to magnetic storage (such as floppy disks, hard disks, tapes, magneto-optical disks (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memories (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)), etc.
  • magnetic storage such as floppy disks, hard disks, tapes, magneto-optical disks (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memories such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)
  • embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, magnetic disk storage, optical storage, and the like) embodying computer-usable program code therein.
  • a computer-usable storage media including, but not limited to, magnetic disk storage, optical storage, and the like
  • These computer-executable instructions may be provided to a processor of a general-purpose computer, special-purpose computer, embedded processor, or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a process or processes of a flowchart and/or a block or blocks of a block diagram.
  • processor-executable instructions may also be stored in a processor-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the generation of instructions stored in the processor-readable memory includes the manufacture of the instruction means product, the instruction device implements the function specified in one process or multiple processes in the flow chart and/or one block or multiple blocks in the block diagram.
  • processor-executable instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby causing the computer or other programmable device to
  • the instructions that are executed provide steps for implementing the functions specified in a process or processes of the flowchart diagrams and/or a block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本公开实施例提供一种定位方法及装置,属于通信技术领域;确定多个第一载波的双差载波相位测量量;对所述多个第一载波的双差载波相位测量量进行线性组合,构造多个虚拟载波,所述多个虚拟载波具备不同的虚拟双差相位、不同的虚拟波长、以及不同的虚拟双差整周模糊度;获得所述多个虚拟载波的双差整周模糊度;基于所述多个虚拟载波的双差整周模糊度,获得所述多个第一载波对应的双差整周模糊度;基于所述多个第一载波对应的双差整周模糊度,获得所述目标终端的位置信息。

Description

定位方法及装置
相关申请的交叉引用
本申请要求于2022年08月12日提交的申请号为202210969138.7,发明名称为“定位方法及装置”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及通信技术领域,尤其涉及一种定位方法及装置。
背景技术
载波相位定位技术获取高精度定位结果的前提是获取高精度的相位值,而载波相位测量量需要获取整周模糊度才能反映收发端的真实距离。为了估计整周模糊度,全球导航卫星系统(Global Navigation Satellite System,GNSS)常用的方法是利用多个时刻的单频点相位测量值进行时间上的滤波处理,如卡尔曼滤波。但是该技术方案,需要接收机连续追踪信号,保证锁相环一直锁定的信号载波相位。
由于新空口(New Radio,NR)定位信号本身的非连续性,以及时变信道导致的周跳影响,锁相环设计需要考虑在信号中断时,需要重新锁定以及正确地处理周跳影响,极大的加重了处理的复杂度,同时也造成了额外功耗。
发明内容
本公开实施例提供一种定位方法及装置,用以解决相关技术中处理复杂度高且功耗大的缺陷,实现降低处理复杂度,节省功耗。
第一方面,本公开实施例提供一种定位方法,应用于第一设备,所述定位方法包括:
确定多个第一载波的双差载波相位测量量;
对所述多个第一载波的双差载波相位测量量进行线性组合,构造多个虚拟载波,所述多个虚拟载波具备不同的虚拟双差相位、不同的虚拟波长、以及不同的虚拟双差整周模糊度;
获得所述多个虚拟载波的双差整周模糊度;
基于所述多个虚拟载波的双差整周模糊度,获得所述多个第一载波对应的双差整周模糊度;
基于所述多个第一载波对应的双差整周模糊度,获得所述目标终端的位置信息。
在一些实施例中,根据本公开一个实施例的定位方法,所述确定多个第一载波的双差载波相位测量量,包括:
接收多个第一载波的定位测量信息,所述定位测量信息包括以下至少一项:时延测量信息、所述时延测量信息的可靠性度量信息、载波相位测量信息、所述载波相位测量信息的可靠性度量信息;
对所述多个第一载波的定位测量信息进行差分处理,得到双差时延测量量和双差载波相位测量量。
在一些实施例中,根据本公开一个实施例的定位方法,所述获得所述多个虚拟载波的双差整周模糊度,包括:
在N大于1的情况下,针对所述多个虚拟载波中的第N个虚拟载波,基于所有虚拟载波的时延测量值、所述第N个虚拟载波的虚拟双差相位、所述第N个虚拟载波的虚拟波长、所述第N个虚拟载波的虚拟双差整周模糊度、和第N-1个虚拟载波的恢复后的双差距离测量值中的一项或多项,获得所述第N个虚拟载波的测量方程,所述第N-1个虚拟载波的恢复后的双差距离测量值由第N-1个虚拟载波的测量方程的双差整周模糊度整数解和所述第N-1个虚拟载波的波长及双差载波相位测量值构造得到;
在N等于1的情况下,针对所述多个虚拟载波中的第1个虚拟载波,基于所有虚拟载波的时延测量值、所述第1个虚拟载波的虚拟双差相位、所述第1个虚拟载波的虚拟波长、和所述第1个虚拟载波的虚拟双差整周模糊度中的一项或多项,获得所述第N个虚拟载波的测量方程;
基于所述第N个虚拟载波的测量方程,解算获得所述第N个虚拟载波的双差整周模糊度;
其中,N大于1且N小于或等于M,M为虚拟载波的数量。
在一些实施例中,根据本公开一个实施例的定位方法,所述获得所述多个虚拟载波的双差整周模糊度,还包括:
基于所述第N个虚拟载波的双差整周模糊度和所述第N个虚拟载波的双差相位,获得第N个虚拟载波的双差距离测量值。
在一些实施例中,根据本公开一个实施例的定位方法,所述获得所述第N个虚拟载波的测量方程,包括:
根据所述目标终端的初始估计位置,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理,获得处理后的线性测量方程。
在一些实施例中,根据本公开一个实施例的定位方法,所述根据定位目标的初始估计位置,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理,包括:
根据定位目标的初始估计位置,以及,天线参考点ARP和/或相位中心偏移PCO误差,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理。
在一些实施例中,所述方法还包括:
获取所述基站的位置信息和/或所述基站的位置信息的ARP和/或PCO误差;
获取所述参考设备的位置信息和/或所述参考设备的位置信息的ARP和/或PCO误差。
在一些实施例中,根据本公开一个实施例的定位方法,从第一个虚拟载波到第N个虚拟载波的顺序是基于各个虚拟载波的波长由大至小确定的。
在一些实施例中,根据本公开一个实施例的定位方法,所述基于所述第N个虚拟载波的测量方程,解算获得所述第N个虚拟载波的双差整周模糊度,包括:
基于测量方程的误差,对所述第N个虚拟载波的测量方程进行解算,获 得所述第N个虚拟载波的双差整周模糊度的浮点解,所述测量方程的误差包括以下至少一项:ARP和/或PCO误差、不同虚拟载波之间的测量误差、不同基站之间的测量误差、或者不同终端之间的测量误差;
基于所述第N个虚拟载波的双差整周模糊度的浮点解和所述浮点解对应的估计误差协方差矩阵,获得所述第N个虚拟载波的双差整周模糊度的整数解。
在一些实施例中,根据本公开一个实施例的定位方法,所述估计误差协方差矩阵基于预配置或基于信令指示或训练得到的误差信息,其中误差信息包括ARP和/或PCO误差。
第二方面,本公开实施例还提供一种第一设备,包括存储器,收发机,处理器,其中:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
确定多个第一载波的双差载波相位测量量;
对所述多个第一载波的双差载波相位测量量进行线性组合,构造多个虚拟载波,所述多个虚拟载波具备不同的虚拟双差相位、不同的虚拟波长、以及不同的虚拟双差整周模糊度;
获得所述多个虚拟载波的双差整周模糊度;
基于所述多个虚拟载波的双差整周模糊度,获得所述多个第一载波对应的双差整周模糊度;
基于所述多个第一载波对应的双差整周模糊度,获得目标终端的位置信息。
在一些实施例中,所述确定多个第一载波的双差载波相位测量量,包括:
接收多个第一载波的定位测量信息,所述定位测量信息包括以下至少一项:时延测量信息、所述时延测量信息的可靠性度量信息、载波相位测量信息、所述载波相位测量信息的可靠性度量信息;
对所述多个第一载波的定位测量信息进行差分处理,得到双差时延测量量和双差载波相位测量量。
在一些实施例中,所述获得所述多个虚拟载波的双差整周模糊度,包括:
在N大于1的情况下,针对所述多个虚拟载波中的第N个虚拟载波,基于所有虚拟载波的时延测量值、所述第N个虚拟载波的虚拟双差相位、所述第N个虚拟载波的虚拟波长、所述第N个虚拟载波的虚拟双差整周模糊度、和第N-1个虚拟载波的恢复后的双差距离测量值中的一项或多项,获得所述第N个虚拟载波的测量方程,所述第N-1个虚拟载波的恢复后的双差距离测量值由第N-1个虚拟载波的测量方程的双差整周模糊度整数解和所述第N-1个虚拟载波的波长及双差载波相位测量值构造得到;
在N等于1的情况下,针对所述多个虚拟载波中的第1个虚拟载波,基于所有虚拟载波的时延测量值、所述第1个虚拟载波的虚拟双差相位、所述第1个虚拟载波的虚拟波长、和所述第1个虚拟载波的虚拟双差整周模糊度中的一项或多项,获得所述第N个虚拟载波的测量方程;
基于所述第N个虚拟载波的测量方程,解算获得所述第N个虚拟载波的双差整周模糊度;
其中,N大于1且N小于或等于M,M为虚拟载波的数量。
在一些实施例中,所述获得所述多个虚拟载波的双差整周模糊度,还包括:
基于所述第N个虚拟载波的双差整周模糊度和所述第N个虚拟载波的双差相位,获得第N个虚拟载波的双差距离测量值。
在一些实施例中,所述获得所述第N个虚拟载波的测量方程,包括:
根据所述目标终端的初始估计位置,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理,获得处理后的线性测量方程。
在一些实施例中,所述根据定位目标的初始估计位置,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理,包括:
根据定位目标的初始估计位置,以及,天线参考点ARP和/或相位中心偏移PCO误差,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理。
在一些实施例中,所述操作还包括:
获取基站的位置信息和/或所述基站的位置信息的ARP和/或PCO误差;
获取参考设备的位置信息和/或所述参考设备的位置信息的ARP和/或PCO误差。
在一些实施例中,从第一个虚拟载波到第N个虚拟载波的顺序是基于各个虚拟载波的波长由大至小确定的。
在一些实施例中,所述基于所述第N个虚拟载波的测量方程,解算获得所述第N个虚拟载波的双差整周模糊度,包括:
基于测量方程的误差,对所述第N个虚拟载波的测量方程进行解算,获得所述第N个虚拟载波的双差整周模糊度的浮点解,所述测量方程的误差包括以下至少一项:ARP和/或PCO误差、不同虚拟载波之间的测量误差、不同基站之间的测量误差、或者不同终端之间的测量误差;
基于所述第N个虚拟载波的双差整周模糊度的浮点解和所述浮点解对应的估计误差协方差矩阵,获得所述第N个虚拟载波的双差整周模糊度的整数解。
在一些实施例中,所述估计误差协方差矩阵基于预配置或基于信令指示或训练得到的误差信息,其中误差信息包括ARP和/或PCO误差。
第三方面,本公开实施例还提供一种定位装置,包括:
第一确定模块,用于确定多个第一载波的双差载波相位测量量;
虚拟载波构造模块,用于对所述多个第一载波的双差载波相位测量量进行线性组合,构造多个虚拟载波,所述多个虚拟载波具备不同的虚拟双差相位、不同的虚拟波长、以及不同的虚拟双差整周模糊度;
第一获取模块,用于获得所述多个虚拟载波的双差整周模糊度;
第二获取模块,用于基于所述多个虚拟载波的双差整周模糊度,获得所述多个第一载波对应的双差整周模糊度;
第三获取模块,用于基于所述多个第一载波对应的双差整周模糊度,获得目标终端的位置信息。
在一些实施例中,所述第一确定模块用于:
接收多个第一载波的定位测量信息,所述定位测量信息包括以下至少一 项:时延测量信息、所述时延测量信息的可靠性度量信息、载波相位测量信息、所述载波相位测量信息的可靠性度量信息;
对所述多个第一载波的定位测量信息进行差分处理,得到双差时延测量量和双差载波相位测量量。
在一些实施例中,所述第一获取模块用于:
在N大于1的情况下,针对所述多个虚拟载波中的第N个虚拟载波,基于所有虚拟载波的时延测量值、所述第N个虚拟载波的虚拟双差相位、所述第N个虚拟载波的虚拟波长、所述第N个虚拟载波的虚拟双差整周模糊度、和第N-1个虚拟载波的恢复后的双差距离测量值中的一项或多项,获得所述第N个虚拟载波的测量方程,所述第N-1个虚拟载波的恢复后的双差距离测量值由第N-1个虚拟载波的测量方程的双差整周模糊度整数解和所述第N-1个虚拟载波的波长及双差载波相位测量值构造得到;
在N等于1的情况下,针对所述多个虚拟载波中的第1个虚拟载波,基于所有虚拟载波的时延测量值、所述第1个虚拟载波的虚拟双差相位、所述第1个虚拟载波的虚拟波长、和所述第1个虚拟载波的虚拟双差整周模糊度中的一项或多项,获得所述第N个虚拟载波的测量方程;
基于所述第N个虚拟载波的测量方程,解算获得所述第N个虚拟载波的双差整周模糊度;
其中,N大于1且N小于或等于M,M为虚拟载波的数量。
在一些实施例中,所述第一获取模块用于:
基于所述第N个虚拟载波的双差整周模糊度和所述第N个虚拟载波的双差相位,获得第N个虚拟载波的双差距离测量值。
在一些实施例中,所述第一获取模块用于:
根据所述目标终端的初始估计位置,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理,获得处理后的线性测量方程。
在一些实施例中,所述第一获取模块用于:
根据定位目标的初始估计位置,以及,天线参考点ARP和/或相位中心偏移PCO误差,对所述第N个虚拟载波的测量方程中的双差距离进行线性化 处理。
在一些实施例中,所述装置还包括:
第四获取模块,用于获取所述基站的位置信息和/或所述基站的位置信息的ARP和/或PCO误差;
获取所述参考设备的位置信息和/或所述参考设备的位置信息的ARP和/或PCO误差。
在一些实施例中,从第一个虚拟载波到第N个虚拟载波的顺序是基于各个虚拟载波的波长由大至小确定的。
在一些实施例中,所述第一获取模块用于:
基于测量方程的误差,对所述第N个虚拟载波的测量方程进行解算,获得所述第N个虚拟载波的双差整周模糊度的浮点解,所述测量方程的误差包括以下至少一项:ARP和/或PCO误差、不同虚拟载波之间的测量误差、不同基站之间的测量误差、或者不同终端之间的测量误差;
基于所述第N个虚拟载波的双差整周模糊度的浮点解和所述浮点解对应的估计误差协方差矩阵,获得所述第N个虚拟载波的双差整周模糊度的整数解。
在一些实施例中,所述估计误差协方差矩阵基于预配置或基于信令指示或训练得到的误差信息,其中误差信息包括ARP和/或PCO误差。
第四方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上所述第一方面所述的定位方法。
第五方面,本公开实施例还提供一种通信设备,所述通信设备中存储有计算机程序,所述计算机程序用于使通信设备执行如上所述第一方面所述的定位方法。
第六方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使处理器执行如上所述第一方面所述的定位方法。
第七方面,本公开实施例还提供一种芯片产品,所述芯片产品中存储有 计算机程序,所述计算机程序用于使芯片产品执行如上所述第一方面所述的定位方法。
本公开实施例提供的定位方法及装置,通过基于多个第一载波的双差载波相位测量量线性组合构造多个虚拟载波,并获得所述多个虚拟载波的双差整周模糊度,进而恢复出多个第一载波的双差整周模糊度,获得所述目标终端的位置信息;通过使用多个第一载波的相位测量值,减小定位时间,并且避免信道时变性引起的载波相位测量周跳问题以及相位失锁后重新锁定带来的时间开销,能够实现单时刻的位置锁定,极大地提升定位精度和鲁棒性,且有效降低处理复杂度,节省功耗。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的定位方法的流程示意图;
图2是本公开实施例提供的一种第一设备的结构示意图之一;
图3是本公开实施例提供的一种第一设备的结构示意图之二;
图4是本公开实施例提供的定位装置的结构示意图。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行 清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了定位方法及装置,用以实现单时刻的位置锁定,极大地提升定位精度和鲁棒性,且有效降低处理复杂度,节省功耗。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
首先对以下内容进行介绍:
无线定位技术的基本原理是发送机发射导频信号,接收机接收并测量该信号,获取时延、角度、相位等测量值,随后进行相应的位置解算得到位置估计值。其中依赖相位测量值的定位方案凭借其短波长带来的高分辨率的测量精度,如3.5G载频下,波长为8.6cm,测量分辨率在8mm以下,在合适条件下,能够提升定位精度到毫米级,因而被重点应用在全球导航卫星系统(GNSS)中。
面向蜂窝网的相关技术中,可以上报GNSS载波相位测量值,但尚不支持上报NR载波相位测量值,并且缺乏利用上报的NR载波相位测量值进行 单时刻整周解算的定位方案;GNSS常用的方法是利用多个时刻的单频点相位测量值进行时间上的滤波处理,如卡尔曼滤波。该方案,需要接收机连续追踪信号,保证锁相环一直锁定的信号载波相位。
由于NR定位信号本身的非连续性,以及时变信道导致的周跳影响,锁相环设计需要考虑在信号中断时,如何重新锁定以及正确地处理周跳影响。这一方面极大的加重了处理的复杂度,同时也造成了额外功耗。而单时刻整周解算的定位能够,避免信道时变性引起的载波相位测量周跳问题,极大的提升定位精度和稳定性,因此有必要给出针对5G NR的单时刻多载波相位定位方案。
图1是本公开实施例提供的定位方法的流程示意图,如图1所示,该定位方法的执行主体为第一设备,该定位方法包括如下步骤:
步骤100,确定多个第一载波的双差载波相位测量量;
在一些实施例中,第一载波即为目标终端的定位流程中的原始载波;
步骤110,对所述多个第一载波的双差载波相位测量量进行线性组合,构造多个虚拟载波,所述多个虚拟载波具备不同的虚拟双差相位、不同的虚拟波长、以及不同的虚拟双差整周模糊度;
在一些实施例中,多个第一载波可以包括以下任一项:多个载频、或一个分量载波(Component Carrier,CC)上的多个子载波、或不同CC上的多个子载波;
在一些实施例中,可以将在单一测量时刻的、Q(Q≥2)个载波的双差载波相位测量量进行线性组合,构造P(P≥2)个虚拟载波双差载波相位测量量,这P个虚拟双差载波相位测量量具有不同虚拟双差相位、虚拟双差波长(频率)和虚拟双差整周模糊度;
步骤120,获得所述多个虚拟载波的双差整周模糊度;
在一些实施例中,由于多个虚拟载波具备不同的虚拟双差相位、不同的虚拟波长、以及不同的虚拟双差整周模糊度,因此可以计算获得多个虚拟载波分别对应的双差整周模糊度;
在一些实施例中,构造的多个虚拟载波分别具备的虚拟双差相位、虚拟 波长、以及虚拟双差整周模糊度可以看做已知量;
步骤130,基于所述多个虚拟载波的双差整周模糊度,获得所述多个第一载波对应的双差整周模糊度;
在一些实施例中,获得所述多个第一载波对应的双差整周模糊度可以是分别获得每一个第一载波的双差整周模糊度;
在一些实施例中,获得所述多个第一载波对应的双差整周模糊度可以是获得所述多个第一载波中波长最短的第一载波的双差整周模糊度;
步骤140,基于所述多个第一载波对应的双差整周模糊度,获得所述目标终端的位置信息。
在一些实施例中,可以基于所述多个第一载波中波长最短的第一载波的双差整周模糊度,获得所述目标终端的位置信息;
在一些实施例中,可以基于所述多个第一载波中预设波长的第一载波的双差整周模糊度,获得所述目标终端的位置信息;
在一些实施例中,可以基于所述多个第一载波中预设的第一载波的双差整周模糊度,获得所述目标终端的位置信息;
比如,可以利用原始载波(所述多个第一载波)的双差整周模糊度(整数解)以及已知的参考UE或定位参考单元(Positioning Reference Unit,PRU)位置信息,恢复出波长级别的精确到达时间差(Time Difference of Arrival,TDOA)测量量,将其代入定位算法如CHAN算法中,进行位置解算;
在一些实施例中,定位参考单元(PRU)位置信息可能存在误差,取决于天线参考点(Antenna Reference Point,ARP)和/或相位中心偏移(Phase Center Offset,PCO)误差;
在一些实施例中,第一设备可以是定位侧的设备;
在一些实施例中,第一设备可以是定位管理功能(Location Management Function,LMF)(还可以称为定位服务器)或待定位终端;
在一些实施例中,待定位终端还可以称为目标终端;
在一些实施例中,对于UE-assisted定位,定位侧设备或第一设备可以是定位服务器LMF;
在一些实施例中,对于UE-based定位,定位侧设备或第一设备可以是待定位的目标UE。
在一些实施例中,在获得多个第一载波的双差整周模糊度后,可以进一步获得目标终端的较为准确的位置信息。
本公开实施例中采用针对蜂窝网定位,比相关技术中的GNSS具有更多的载波的优势,即频域丰富的载波资源。
本公开实施例可以应用于5G NR单时刻多载波相位定位,不要求接收机连续追踪信号载波相位,减少处理复杂度。
本公开实施例提供的定位方法,通过基于多个第一载波的双差载波相位测量量线性组合构造多个虚拟载波,并获得所述多个虚拟载波的双差整周模糊度,进而恢复出多个第一载波的双差整周模糊度,获得所述目标终端的位置信息;通过使用多个第一载波的相位测量值,减小定位时间,并且避免信道时变性引起的载波相位测量周跳问题以及相位失锁后重新锁定带来的时间开销,能够实现单时刻的位置锁定,极大地提升定位精度和鲁棒性,且有效降低处理复杂度,节省功耗。
在一些实施例中,所述确定多个第一载波的双差载波相位测量量,包括:
接收多个第一载波的定位测量信息,所述定位测量信息包括以下至少一项:时延测量信息、所述时延测量信息的可靠性度量信息、载波相位测量信息、所述载波相位测量信息的可靠性度量信息;
对所述多个第一载波的定位测量信息进行差分处理,得到双差时延测量量和双差载波相位测量量。
在一些实施例中,本公开各实施例中,可靠性度量信息可以表示量化的测量值误差大小,反映可靠性,可以用于误差协方差矩阵的设定。例如:可靠性度量信息可以是误差值、误差范围或者用于指示误差范围的标识信息等,其中,误差范围可以通过方差或标准差等表示,本公开各实施例不以此为限。
在一些实施例中,参考设备包括参考UE或PRU(包括UE-type或TRP-type);
在一些实施例中,双差时延测量量包括以下至少一项:上行链路相对到 达时间(Uplink Relative Time of Arrival,UL-RTOA)、下行到达时间差(Downlink Time Difference of Arrival,DL-TDOA)、终端收发时间差(UE Rx\Tx time difference),收发点收发时间差(Transmit Receive Point Rx\Tx time difference,TRP Rx\Tx time difference);
在一些实施例中,可以获取目标终端、参考设备、和基站中的一项或多项分别对应的定位测量信息,所述定位测量信息是针对多个第一载波的定位测量信息;
在一些实施例中,可以获取所述基站和所述参考设备的位置信息;
在一些实施例中,可以对所述多个第一载波的定位测量信息进行差分处理,得到双差时延测量量和双差载波相位测量量,该双差载波相位测量量用于构建虚拟载波。
在一些实施例中,第一设备可以接收目标终端、参考UE或PRU(包括UE-type或TRP-type)或多个基站上报的、单一测量时刻Q(Q≥2)个载波的相位测量量以及相应载波相位测量相关信息。
在一些实施例中,这Q个载波可以是多个载频、或一个CC上的多个子载波或不同CC上的多个子载波。
在一些实施例中,第一设备可以对所接收的载波相位测量进行双差分操作,以消除时频偏对相位的影响,得到单一测量时刻、Q(Q≥2)个载波的双差载波相位测量量。
比如,假定由Q个载波fm(m=1,2,…,Q)的载波信号获取双差载波相位测量量如下式所示:
其中,下标a,b分别为目标UE和参考UE,上标i,j分别为第i个和第j个收发点(Transmit Receive Point,TRP)。假如,第j个TRP为参考TRP,为fm载波上的双差载波相位测量量(单位可以为米,还可以为其他距离单位,本公开各实施例对此不作限定),为UE与TRP间的双差几何距离,即目标终端a、参考终端b对于第i个TRP和第j个TRP的双差几何距离,λm为fm载波对应的波长,为fm载波对应的双差整周模糊度,为fm载 波的双差载波相位测量量的测量误差。
本方案假定不同收发点(TRP)、UE相位测量量之间测量噪声独立,而不同频率间测量噪声存在相关性,并假定测量噪声的协方差系数可以通过预配置、信令通知或训练得到。于是有双差后相位测量量之间的测量噪声协方差可以表示为:

其中,为目标终端a、参考终端b对于第i个TRP和第j个TRP,在第m个频率的载波相位测量值的标准差;
为目标终端a、参考终端b对于第i个TRP和第j个TRP,在第m个频率的载波相位测量值和在第n个频率的载波相位测量值的协方差的平方根;
为目标终端a对于第i个TRP、目标终端a对于第j个TRP、参考终端b对于第i个TRP和参考终端b对于第j个TRP,在第m个频率的载波相位测量值误差;
为目标终端a对于第i个TRP、目标终端a对于第j个TRP、参考终端b对于第i个TRP和参考终端b对于第j个TRP,在第n个频率的载波相位测量值误差和载波相位测量值误差。
比如,用Q个原始载波fk(k=1,2,…,Q)构造P个双差虚拟载波Fk(k=1,2,…,P),以及其相位、整周、波长以及构造后相位误差的协方差矩阵:
用以下方式组合新的虚拟双差载波相位组合测量量:
式中,fm表示第m个频率的频率值,组合系数为其中m=1,2,…,Q;k=1,2,…,P为任意整数,这里是指第k个虚拟载波的第m个系数;
对应于组合后第k个虚拟双差相位组合测量量的虚拟整周模糊度虚拟频率Fk、虚拟波长Γk和虚拟测量误差分别为:


其中,代表原始双差整周模糊度值,包括整数值部分和浮点值部分,c为光速。
经过上述虚拟载波处理后的组合测量量的测量误差如下式所示:
其中,代表虚拟频点的组合系数的单位转换后的系数。
定义
那么其协方差矩阵其中 中的第m行、第n列协方差系数(对应第m个基站和第n的基站)如下所示:
其中,m1和m2表示原始频率的编号,取值为[1,Q],由公式(2)、(3)计算得到。
根据式(7)和式(11)可得组合后虚拟波长和协方差。不同虚拟载波组 合系数会产生不同波长和不同的误差均方差。
在一些实施例中,虚拟波长越长,正确解算出虚拟整周模糊度的可能性越高,而误差均方差越大,正确解算出虚拟整周模糊度的可能性越小。实际应用中,需要综合考虑虚拟波长和误差均方差,合适地选取虚拟载波组合系数组合。
在一些实施例中,所述获得所述多个虚拟载波的双差整周模糊度,包括:
在N大于1的情况下,针对所述多个虚拟载波中的第N个虚拟载波,基于所有虚拟载波的时延测量值、所述第N个虚拟载波的虚拟双差相位、所述第N个虚拟载波的虚拟波长、所述第N个虚拟载波的虚拟双差整周模糊度、和第N-1个虚拟载波的恢复后的双差距离测量值中的一项或多项,获得所述第N个虚拟载波的测量方程,所述第N-1个虚拟载波的恢复后的双差距离测量值由第N-1个虚拟载波的测量方程的双差整周模糊度整数解和所述第N-1个虚拟载波的波长及双差载波相位测量值构造得到;
在N等于1的情况下,针对所述多个虚拟载波中的第1个虚拟载波,基于所有虚拟载波的时延测量值、所述第1个虚拟载波的虚拟双差相位、所述第1个虚拟载波的虚拟波长、和所述第1个虚拟载波的虚拟双差整周模糊度中的一项或多项,获得所述第N个虚拟载波的测量方程;
基于所述第N个虚拟载波的测量方程,解算获得所述第N个虚拟载波的双差整周模糊度;
其中,N大于1且N小于或等于M,M为虚拟载波的数量。
在一些实施例中,从第一个虚拟载波到第N个虚拟载波的顺序是基于各个虚拟载波的波长由大至小确定的。
在一些实施例中,对于多个虚拟载波,可以基于波长大小由大至小依次迭代构造测量方程并解算测量方程的解;
在一些实施例中,由虚拟双差波长的最长的双差载波相位测量量开始,到虚拟双差波长最短的虚拟双差波长逐级进行测量方程的确定和求解;
在一些实施例中,构造测量方程并解算的过程至少需要执行P-1次,由虚拟双差波长的最长的双差载波相位测量量开始,到虚拟双差波长最短的虚 拟双差载波相位测量量逐级进行。
在一些实施例中,N=1时,对于第一个虚拟载波由于其波长最长,可以只是用自身的时延和载波相位测量值构造测量方程;其中,第一虚拟载波的测量方程的构造原理可以是:
时延测量值=理想双差距离+噪声;和/或
虚拟双差载波相位+虚拟波长×估计的双差整周模糊度=理想双差距离+噪声。
在一些实施例中,第N个虚拟载波的测量方程等号两边的物理含义是:
虚拟双差载波相位+虚拟波长×估计的双差整周模糊度=理想双差距离+噪声;
比如,可以首先基于所有虚拟载波的时延测量值、第一个虚拟载波(波长最大的虚拟载波)的虚拟双差相位、所述第1个虚拟载波的虚拟波长、和所述第1个虚拟载波的虚拟双差整周模糊度中的一项或多项,获得所述第N个虚拟载波的测量方程,进而可以对第1个虚拟载波的测量方程进行解算获得第1个虚拟载波对应的双差整周模糊度,进而可以基于第1个虚拟载波的双差整周模糊度和所述第1个虚拟载波的双差相位,获得第1个虚拟载波的恢复后的双差距离测量值;
进而可以将第1个虚拟载波的恢复后的双差距离测量值代入至第2个虚拟载波(波长第二长的虚拟载波)的测量方程的构建中,即可以基于所有虚拟载波的时延测量值、所述第2个虚拟载波的虚拟双差相位、所述第2个虚拟载波的虚拟波长、所述第2个虚拟载波的虚拟双差整周模糊度、和第1个虚拟载波的恢复后的双差距离测量值中的一项或多项,获得所述第2个虚拟载波的测量方程,进而可以对第2个虚拟载波的测量方程进行解算获得第2个虚拟载波对应的双差整周模糊度,进而可以基于第2个虚拟载波的双差整周模糊度和所述第2个虚拟载波的双差相位,获得第2个虚拟载波的恢复后的双差距离测量值;
进而可以将第2个虚拟载波的恢复后的双差距离测量值代入至第3个虚拟载波(波长第三长的虚拟载波)的测量方程的构建中…依此类推,获得所 有虚拟载波分别对应的双差整周模糊度。
比如,构造各虚拟载波的测量方程可以如下所示:
上式中,表示第j个TRP的虚拟频点的双差整周模糊度的浮点解,W表示加权矩阵,即同一虚拟载波,不同TRP间的载波相位测量误差协方差矩阵的逆,A1和L1则由载波相位测量值和波长、距离等的关系确定,inv()表示求逆,具体请参考公式(23)的描述。
可以按照最小二乘测量方程中距离是否采用线性化,如泰勒展开,可以分为非展开方式和展开方式。
在一些实施例中,在获得不同虚拟载波上的整数双差整周模糊度后,可以将不同虚拟载波上的整数双差整周模糊度,结合组合系数,恢复出原始载波的双差整周模糊度;
比如,将虚拟载波上的双差整周模糊度的整数解代入公式(5)进行反解,得到原始载波的双差整周模糊度的整数解
在一些实施例中,所述获得所述多个虚拟载波的双差整周模糊度,还包括:
基于所述第N个虚拟载波的双差整周模糊度和所述第N个虚拟载波的双差相位,获得第N个虚拟载波的双差距离测量值。
在一些实施例中,可以利用虚拟载波的双差相位和虚拟载波双差整周模糊度的整数解,恢复出该虚拟频点的双差距离测量值,代入下一虚拟频点的测量方程;
在一些实施例中,为了第N+1个虚拟载波的测量方程的构建,在获得第N个虚拟载波后可以基于第N个虚拟载波的双差整周模糊度和所述第N个虚拟载波的双差相位,获得第N个虚拟载波的恢复后的双差距离测量值,并将第N个虚拟载波的恢复后的双差距离测量值代入第N+1个虚拟载波的测量方程的构建中。
在一些实施例中,构造各虚拟载波测量方程的方式有两种:
方式1:利用UE位置初始估计点(例如通过TDOA定位方法如CHAN确定UE粗略位置)进行泰勒展开构造各虚拟载波测量方程;
方式2:不需利用UE位置初始估计点构造各虚拟载波测量方程。
在一些实施例中,在基于所有虚拟载波的时延测量值、所述第N个虚拟载波的虚拟双差相位、所述第N个虚拟载波的虚拟波长、所述第N个虚拟载波的虚拟双差整周模糊度、和第N-1个虚拟载波的恢复后的双差距离测量值中的一项或多项,获得所述第N个虚拟载波的测量方程时,可以不进行线性化处理,获得测量方程。
在一些实施例中,所述获得所述第N个虚拟载波的测量方程,包括:
根据所述目标终端的初始估计位置,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理,获得处理后的线性测量方程。
在一些实施例中,线性化处理可以是泰勒展开处理;
可选的,不处理即为非展开方式;
在一些实施例中,所述根据定位目标的初始估计位置,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理,包括:
根据定位目标的初始估计位置,以及,天线参考点ARP和/或相位中心偏移PCO误差,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理。
在一些实施例中,ARP误差通常是指天线参考中心(一般是天线物理中心)的真实坐标与BS提供给LMF用于位置计算的天线参考中心坐标的差异。
在一些实施例中,天线参考点ARP和/或相位中心偏移PCO误差可以包括以下一项或多项:ARP或PCO的误差标识信息;
ARP和/或PCO的误差值;
ARP和/或PCO的误差范围。
例如:误差范围可以包括方差或标准差等,即可以通过方差或标准差表征ARP或PCO的误差范围。在一些实施例中,误差范围为厘米级,如误差范围为±1cm、±5cm等,本公开实施例不以此为限。
例如:该标识信息可以用于指示当前设备的ARP或PCO的误差范围,其中不同的ARP或PCO的误差标识信息对应不同的ARP或PCO的误差标识信息。例如:ARP或PCO的误差标识信息(ARP和/或PCO Error ID)为0,表示ARP或PCO误差范围为±1cm;ARP和/或PCO Error ID为1,表示ARP或PCO误差范围为±5cm等,以上仅为对ARP和/或PCO的示例,本公开实施例不以此为限。
在一些实施例中,PCO误差通常是指真实天线相位中心与天线物理中心的差异。NR CPP定位的目标精度为厘米级。而ARP/PCO的误差一般也在厘米级范围。因此,NR CPP需要考虑如何减小ARP误差对整数模糊度解和定位精度的影响。
在一些实施例中,在根据定位目标的初始估计位置,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理时,由于可能存在天线参考点ARP/平均相位中心PCO误差,因此在对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理可以考虑天线参考点ARP/平均相位中心PCO误差相关信息的影响,以获得更合适的测量方程,获得更准确的定位结果。
在一些实施例中,所述方法还包括:
获取所述基站的位置信息和/或所述基站的位置信息的ARP和/或PCO误差;
获取所述参考设备的位置信息和/或所述参考设备的位置信息的ARP和/或PCO误差。
在一些实施例中,在所述根据定位目标的初始估计位置,参考ARP和/或PCO误差,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理之前,所述方法还包括:
获取基站和参考设备的所述ARP和/或PCO误差。
在一些实施例中,由于基站和参考UE、或基站和PRU的位置可能存在误差,取决于ARP和/或PCO误差,因此对于展开方式需考虑其影响;
在一些实施例中,为了在对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理考虑天线参考点ARP/平均相位中心PCO误差相关信息的 影响测量,可以预先获取基站和参考设备的误差协方差矩阵需要考虑ARP和/或PCO误差。
在一些实施例中,所述基于所述第N个虚拟载波的测量方程,解算获得所述第N个虚拟载波的双差整周模糊度,包括:
基于测量方程的误差,对所述第N个虚拟载波的测量方程进行解算,获得所述第N个虚拟载波的双差整周模糊度的浮点解,所述测量方程的误差包括以下至少一项:ARP和/或PCO误差、不同虚拟载波之间的测量误差、不同基站之间的测量误差、或者不同终端之间的测量误差;
基于所述第N个虚拟载波的双差整周模糊度的浮点解和所述浮点解对应的估计误差协方差矩阵,获得所述第N个虚拟载波的双差整周模糊度的整数解。
可选的,在基于所述第N个虚拟载波的测量方程,解算获得所述第N个虚拟载波的双差整周模糊度时,可以首先获得第N个虚拟载波的双差整周模糊度的浮点解,进一步获得第N个虚拟载波的双差整周模糊度的整数解;
在一些实施例中,测量方程的误差可以采用测量误差协方差矩阵的形式表示;
在一些实施例中,测量方程的误差可以基于当前虚拟载波测量误差+ARP误差和上一虚拟载波测量误差和虚拟载波误差确定;
在一些实施例中,可以预先确定用于表征不同虚拟载波、不同基站、不同终端之间的测量误差的相关性的测量误差协方差矩阵,则在获得第N个虚拟载波的双差整周模糊度的浮点解时,可以基于测量方程的误差协方差矩阵,对所述第N个虚拟载波的测量方程进行解算,获得所述第N个虚拟载波的双差整周模糊度的浮点解;
在一些实施例中,可以基于测量方程的误差协方差矩阵,通过加权最小二乘算法,对所述第N个虚拟载波的测量方程进行解算;
在一些实施例中,通过加权最小二乘,解算出对应虚拟载波双差整周模糊度的浮点解及加权最小二乘算法所用到的误差协方差矩阵(考虑不同频点间测量误差的相关性),可以通过预配置、信令通知或训练得到;
在一些实施例中,可以预先确定估计误差协方差矩阵,则可以基于所述第N个虚拟载波的双差整周模糊度的浮点解和所述浮点解对应的估计误差协方差矩阵,代入LAMBDA算法,获得所述第N个虚拟载波的双差整周模糊度的整数解。
在一些实施例中,估计误差协方差矩阵用于体现最小二乘算法得到的浮点解的误差;
比如,第2个虚拟载波的双差整周模糊度的浮点解对应的估计误差协方差矩阵可以为:
其中,A2表示第2个虚拟频点的矩阵系数,W2代表方程组中不同方程的加权矩阵,M表示TRP个数,具体请参考公式26。
比如,第3个虚拟载波的双差整周模糊度的浮点解对应的估计误差协方差矩阵可以为:
其中,A3表示第3个虚拟频点的矩阵系数,W3代表方程组中不同方程的加权矩阵,M表示TRP个数,具体请参考公式28。
依次类推可以确定所有虚拟载波的双差整周模糊度的浮点解对应的估计误差协方差矩阵。
可选的,估计误差协方差矩阵可以基于相关技术确定;
在一些实施例中,可以将各虚拟载波的双差整周模糊度的浮点解及对应的估计误差协方差矩阵代入LAMBDA算法,得到对应虚拟载波上的双差整周模糊度的整数解;
在一些实施例中,所述估计误差协方差矩阵基于预配置或基于信令指示或训练得到的误差信息,其中误差信息包括ARP和/或PCO误差。
在一个实施例中,以不对各虚拟载波的测量方程进行线性展开为例:
步骤(1),双差分测量值以及差分后误差协方差矩阵:用3个原始载波构造3个虚拟双差载波,以及其相位、整周、波长以及构造后相位误差的协方差矩阵:
假定由3个载波fm(m=1,2,3)的载波信号获取双差载波相位测量量如下所示:

其中,下标a,b分别为目标和参考UE,上标i,j分别为第i个和第j个TRP。假如第j个TRP为参考TRP,为fm载波上的双差载波相位测量量(单位为米),为UE与TRP间的双差几何距离,λm为fm载波对应的波长,为fm载波对应的双差整周模糊度,为fm载波的双差载波相位测量量的测量误差。
其中,的具体表达式见式(1)(2)(3);
可以用以下方式组合新的虚拟双差载波相位组合测量量:
式中,f1、f2和f3表示不同原始载波的频率值,组合系数I,J,K为任意整数;
对应于组合后双差相位组合测量量的双差整周模糊度频率FI,J,K、波长ΓI,J,K和测量误差分别为:

FI,J,K=I·f1+J·f2+K·f3       (17)
式中,λ1、λ2、λ3表示不同原始载波的波长。ΓI,J,K表示虚拟波长,ΓI1,J1,K1、ΓI2,J2,K2、ΓI2,J2,K2表示第1、第2、第3个虚拟频率的波长。
经过上述虚拟载波处理后的组合测量量的测量误差及其协方差如式(7)-(10)所示:



在一些实施例中,本公开各实施例涉及的协方差矩阵的推导中,可以均假定不同TRP、UE、载波fm间测量噪声独立,当不独立时需重新推导;
步骤(2),构造各虚拟载波的测量方程;
可以采用3组组合系数为来构造虚拟载波双差载波相位测量量,且ΓI1,J1,K1I2,J2,K2I3,J3,K3,基于三载波的整周模糊度解算算法步骤如下所示:
STEP1:虚拟频点FI1,J1,K1
式中,L1表示不同TRP的虚拟载波的载波相位测量值构成的矩阵,B1表示不同TRP的虚拟载波的载波相位测量值的误差构成的矩阵,A1为方程的系数矩阵,根据物理模型获得。
步骤(3),逐级将各虚拟载波的双差整周模糊度的浮点解及对应的误差 协方差矩阵代入LAMBDA算法,得到对应虚拟载波上的双差整周模糊度的整数解;
当虚拟波长最长的频点虚拟波长远远大于的双差达到时间(Time of Arrival,TOA)误差的频点,可以直接使用取整方式,即round(虚拟载波双差TOA-虚拟载波双差相位),来估计该虚拟频点的双差整周模糊度的整数解。
式中,表示第(M-1)j个TRP的虚拟频点的双差整周模糊度的浮点解,表示第(M-1)j个TRP的虚拟频点的双差整周模糊度的整数解。
可选的,在解算误差小于0.5cycle时,可以直接四舍五入;
步骤(4),利用虚拟载波的双差相位和虚拟载波双差整周模糊度的整数解,恢复出该虚拟频点的双差距离测量值,代入下一虚拟频点的测量方程。
STEP2:虚拟频点FI2,J2,K2

其中,为对应于第2个虚拟频率的双差TOA测量量及其测量误差。
其中,为目标终端a对于第i个TRP、目标终端a对于第j个TRP、参考终端b对于第i个TRP和参考终端b对于第j个TRP,在第1个原始频率的TOA测量值;同理,对应第2、第3个原始频率的TOA测量值。
为目标终端a对于第i个TRP、目标终端a对于第j个TRP、参考终端b对于第i个TRP和参考终端b对于第j个TRP,在第1个原始频率的TOA测量值误差;同理,对应第2、第3个原始频率的TOA测量值误差。
为目标终端a对于第i个TRP、目标终端a对于第j个TRP、参考终端b对于第i个TRP和参考终端b对于第j个TRP,在第1个虚拟频率的TOA测量值误差;同理,对应第2、第3个虚拟频率的TOA测量值误差。
步骤(5),逐级将各虚拟载波的双差整周模糊度的浮点解及对应的误差协方差矩阵代入LAMBDA算法,得到对应虚拟载波上的双差整周模糊度的整数解;
根据公式(21-22)计算协方差矩阵W2(可以是第2虚拟载波对应的测量 方程的误差的一种表现形式),并将中的双差整周的浮点解一同带入LAMBDA算法,得到虚拟频点FI2,J2,K2双差整周估计值
可选的,在解算误差小于0.5cycle时,可以直接四舍五入;
比如,第2个虚拟载波的双差整周模糊度的浮点解对应的估计误差协方差矩阵可以为:
步骤(6),利用虚拟载波的双差相位和虚拟载波双差整周模糊度的整数解,恢复出该虚拟频点的双差距离测量值,代入下一虚拟频点的测量方程。
STEP3:虚拟频点FI3,J3,K3

其中,为对应于频率f3的双差TOA测量量及其测量误差。
步骤(7),逐级将各虚拟载波的双差整周模糊度的浮点解及对应的误差协方差矩阵代入LAMBDA算法,得到对应虚拟载波上的双差整周模糊度的整数解;
据公式(21-22)计算协方差矩阵W3(可以是第3虚拟载波对应的测量方程的误差的一种表现形式),并将中的双差整周模糊度的浮点解一同带入LAMBDA算法,得到虚拟频点FI2,J2,K2双差整周模糊度估计值
可选的,在解算误差小于0.5cycle时,可以直接四舍五入;
比如,第3个虚拟载波的双差整周模糊度的浮点解对应的估计误差协方差矩阵可以为:
步骤(8),将不同虚拟载波上的整数双差整周模糊度,结合组合系数,恢复出原始载波的双差整周模糊度;
可以将虚拟频点FI1,J1,K1、FI2,J2,K2、FI3,J3,K3双差整周模糊度估计值其代入式(16)进行反解,即可解算出各载波相位的原始载波的整周模糊度
需要注意的是,不同虚拟载波组合系数会产生不同波长和不同的误差均方差。
一般而言,虚拟波长越长,正确解算出虚拟整周模糊度的可能性越高,而误差均方差越大,正确解算出虚拟整周模糊度的可能性越小。
若组合后载波相位值的标准差大于0.5,则无法通过单历元取整方式固定观测量模糊度,需采用其余方法。
可选的,可以选取合适的i,j,k组合系数,使对应组合下的整周模糊度标准差满足直接取整固定的条件。
步骤(9),利用原始载波的双差整周模糊度整数解以及已知的参考UE或定位参考单元(PRU)位置信息,恢复出波长级别的精确TDOA测量量,将其代入定位算法如CHAN中,进行位置解算。
利用上述步骤可在单一测量时间内求解出双差整周模糊度,从而恢复出波长级别的精确TDOA测量值,将其代入CHAN算法,最终解算出UE位置。
在一个实施例中,以对各虚拟载波的测量方程进行线性展开为例:
步骤(1),双差分测量值以及差分后误差协方差矩阵:用3个原始载波构造3个虚拟双差载波,以及其相位、整周、波长以及构造后相位误差的协 方差矩阵:
假定由3个载波fm(m=1,2,3)的载波信号获取双差载波相位测量量如下所示:

其中,下标a,b分别为目标和参考UE,上标i,j分别为第i个和第j个TRP。第j个TRP为参考TRP,为fm载波上的双差载波相位测量量(单位为米),为UE与TRP间的双差几何距离,λm为fm载波对应的波长,为fm载波对应的双差整周模糊度,为fm载波的双差载波相位测量量的测量误差。
接着,用以下方式组合新的虚拟双差载波相位组合测量量:
式中,组合系数I,J,K为任意整数;
对应于组合后双差相位组合测量量的整周模糊度频率FI,J,K、波长ΓI,J,K和测量误差分别为:

FI,J,K=I·f1+J·f2+K·f3        (34)
经过上述虚拟载波处理后的组合测量量的测量误差及其协方差如式(7)-(10)所示:



因为不同频率的载波相位测量值的误差互不相关,因此
可选的,本公开各实施例涉及的协方差矩阵的推导中,均假定不同TRP、UE、载波fm间测量噪声独立,当不独立时需重新推导;
步骤(2),构造各虚拟载波的测量方程;
基于三载波的整周模糊度解算算法步骤如下所示:
(假设ΓI1,J1,K1I2,J2,K2I3,J3,K3)
STEP1:虚拟频点FI1,J1,K1

步骤(3),逐级将各虚拟载波的双差整周模糊度的浮点解及对应的误差协方差矩阵代入LAMBDA算法,得到对应虚拟载波上的双差整周模糊度的整数解;
当虚拟波长最长的频点虚拟波长远远大于的双差TOA误差的频点,可以直接使用取整方式,即round(虚拟载波双差TOA-虚拟载波双差相位),来估 计该虚拟频点的双差整周模糊度的整数解。
可选的,在解算误差小于0.5cycle时,可以直接四舍五入;
步骤(4),利用虚拟载波的双差相位和虚拟载波双差整周模糊度的整数解,恢复出该虚拟频点的双差距离测量值,代入下一虚拟频点的测量方程。
STEP2:虚拟频点FI2,J2,K2
将初始TDOA代入CHAN算法中,得到目标UE初始估计位置在该点进行线性化如泰勒展开,但需要将非线性测量方程在目标UE初始估计位置进行线性化并考虑到ARP和/或PCO误差的影响。
其中si和δsi分别为BS天线的真实位置、天线位置的已知值(存在偏差)和天线位置的已知值的ARP和/或PCO误差。
可得:
其中,
可得:
其中,

于是得到如下线性化方程:

wu=wz+wv        (51)

其中,wz表示原始频点的的时延测量误差和虚拟频点的载波相位测量误差,wv表示ARP和/或PCO误差,wu表示由于原始频点的的时延测量误差、虚拟频点的载波相位测量误差以及ARP和/或PCO误差构成的测量方程的误差,表示目标终端a在第i个TRP上的方向矢量、目标终端a在第j个TRP上的方向矢量、参考终端b在第i个TRP上的方向矢量、参考终端b在第j个TRP上的方向矢量,RT,I1,J1,K1表示该虚拟载波的时延测量误差的协方差矩阵,表示该虚拟载波的载波相位测量误差的协方差矩阵,Rv表示由于ARP和/或PCO误差产生的协方差矩阵。Ru表示由于原始频点的时延测量误差、虚拟频点的载波相位测量误差以及ARP和/或PCO误差的协方差矩阵。
在一些实施例中,本公开各实施例中,可靠性度量信息可以表示量化的测量值误差大小,反映可靠性,可以用于误差协方差矩阵的设定。例如:可靠性度量信息可以是误差值、误差范围或者用于指示误差范围的标识信息等,其中,误差范围可以通过方差或标准差等表示,本公开各实施例不以此为限。


步骤(5),逐级将各虚拟载波的双差整周模糊度的浮点解及对应的误差协方差矩阵代入LAMBDA算法,得到对应虚拟载波上的双差整周模糊度的整数解;
根据公式(21)-(22)、和(32)计算协方差矩阵W2(可以是第2虚拟载波对应的测量方程的误差的一种表现形式),并将中的双差整周模糊度的浮点解一同带入LAMBDA算法,得到虚拟频点FI2,J2,K2双差整周模糊度估计值
可选的,在解算误差小于0.5cycle时,可以直接四舍五入;
比如,第2个虚拟载波的双差整周模糊度的浮点解对应的估计误差协方差矩阵可以为:
步骤(6),利用虚拟载波的双差相位和虚拟载波双差整周模糊度的整数解,恢复出该虚拟频点的双差距离测量值,代入下一虚拟频点的测量方程。
STEP3:虚拟频点FI3,J3,K3
将初始TDOA代入CHAN算法中,得到目标UE初始估计位置在该点进行线性化如泰勒展开,但需要将非线性测量方程在UE真实位置sa的近似值进行线性化并考虑到ARP和/或PCO误差的影响。(同上一频点);
于是得到如下线性化方程:


步骤(7),逐级将各虚拟载波的双差整周模糊度的浮点解及对应的误差协方差矩阵代入LAMBDA算法,得到对应虚拟载波上的双差整周模糊度的整数解;
据公式(21)-(22)、和(32)计算协方差矩阵W3(可以是第3虚拟载波对应的测量方程的误差的一种表现形式),并将中的双差整周模糊度的浮点解一同带入LAMBDA算法,得到虚拟频点FI3,J3,K3双差整周模糊度估计值
可选的,在解算误差小于0.5cycle时,可以直接四舍五入;
比如,第3个虚拟载波的双差整周模糊度的浮点解对应的估计误差协方差矩阵可以为:
步骤(8),将不同虚拟载波上的整数双差整周模糊度,结合组合系数,恢复出原始载波的双差整周模糊度;
接着,将虚拟频点FI1,J1,K1、FI2,J2,K2、FI3,J3,K3双差整周模糊度估计值其代入式(16)进行反解,即可解算出各载波相位的原始载波的整周模糊度
需要注意的是,不同虚拟载波组合系数会产生不同波长和不同的误差均方差。一般而言,虚拟波长越长,正确解算出虚拟整周模糊度的可能性越高,而误差均方差越大,正确解算出虚拟整周模糊度的可能性越小。若组合后载波相位值的标准差大于0.5,则无法通过单历元取整方式固定观测量模糊度,需采用其余方法。因此,需要选取合适的i,j,k组合,使对应组合下的整周模糊度标准差满足直接取整固定的条件。
步骤(9),利用原始载波的双差整周模糊度整数解以及已知的参考UE或定位参考单元(PRU)位置信息,恢复出波长级别的精确TDOA测量量,将其代入定位算法如CHAN中,进行位置解算。
利用上述方法可在单一测量时间内求解出双差整周模糊度,从而恢复出波长级别的精确TDOA测量值,将其代入CHAN算法,最终解算出UE位置。
上述实施例主要以3个原始载波,构造3个虚拟双差载波为例进行说明,而本申请提供的定位方法也可适用于原始载波的个数大于等于2,构造的虚拟双差载波个数大于等于2的其他情形。
本公开实施例可以应用与5G NR单时刻基于多载波相位的定位方案,可 以充分利用5G NR丰富的频域资源,可以使用多个第一载波的相位测量值,减小定位时间,并且避免信道时变性引起的载波相位测量周跳问题以及相位失锁后重新锁定带来的时间开销,结合载波相位的分辨率,能够极大地提升定位精度和稳定性。
本公开实施例提供的定位方法,通过基于多个第一载波的双差载波相位测量量线性组合构造多个虚拟载波,并获得所述多个虚拟载波的双差整周模糊度,进而恢复出多个第一载波的双差整周模糊度,获得所述目标终端的位置信息;通过使用多个第一载波的相位测量值,减小定位时间,并且避免信道时变性引起的载波相位测量周跳问题以及相位失锁后重新锁定带来的时间开销,能够实现单时刻的位置锁定,极大地提升定位精度和鲁棒性,且有效降低处理复杂度,节省功耗。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终 端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
可选的,第一设备可以是网络侧设备比如定位管理功能(location management function,LMF)或待定位终端;
可选的,在第一设备是网络侧层设备的情况下,图2是本公开实施例提供的一种第一设备的结构示意图之一,如图2所示,所述第一设备包括存储器220,收发机200,处理器210,其中:
存储器220,用于存储计算机程序;收发机200,用于在所述处理器210的控制下收发数据;处理器210,用于读取所述存储器220中的计算机程序并执行以下操作:
确定多个第一载波的双差载波相位测量量;
对所述多个第一载波的双差载波相位测量量进行线性组合,构造多个虚拟载波,所述多个虚拟载波具备不同的虚拟双差相位、不同的虚拟波长、以 及不同的虚拟双差整周模糊度;
获得所述多个虚拟载波的双差整周模糊度;
基于所述多个虚拟载波的双差整周模糊度,获得所述多个第一载波对应的双差整周模糊度;
基于所述多个第一载波对应的双差整周模糊度,获得所述目标终端的位置信息。
具体地,收发机200,用于在处理器210的控制下接收和发送数据。
其中,在图2中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器210代表的一个或多个处理器和存储器220代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机200可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器210负责管理总线架构和通常的处理,存储器220可以存储处理器210在执行操作时所使用的数据。
处理器210可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
在一些实施例中,处理器210用于:
接收多个第一载波的定位测量信息,所述定位测量信息包括以下至少一项:时延测量信息、所述时延测量信息的可靠性度量信息、载波相位测量信息、所述载波相位测量信息的可靠性度量信息;
对所述多个第一载波的定位测量信息进行差分处理,得到双差时延测量量和双差载波相位测量量。
在一些实施例中,处理器210用于:
在N大于1的情况下,针对所述多个虚拟载波中的第N个虚拟载波,基 于所有虚拟载波的时延测量值、所述第N个虚拟载波的虚拟双差相位、所述第N个虚拟载波的虚拟波长、所述第N个虚拟载波的虚拟双差整周模糊度、和第N-1个虚拟载波的恢复后的双差距离测量值中的一项或多项,获得所述第N个虚拟载波的测量方程,所述第N-1个虚拟载波的恢复后的双差距离测量值由第N-1个虚拟载波的测量方程的双差整周模糊度整数解和所述第N-1个虚拟载波的波长及双差载波相位测量值构造得到;
在N等于1的情况下,针对所述多个虚拟载波中的第1个虚拟载波,基于所有虚拟载波的时延测量值、所述第1个虚拟载波的虚拟双差相位、所述第1个虚拟载波的虚拟波长、和所述第1个虚拟载波的虚拟双差整周模糊度中的一项或多项,获得所述第N个虚拟载波的测量方程;
基于所述第N个虚拟载波的测量方程,解算获得所述第N个虚拟载波的双差整周模糊度;
其中,N大于1且N小于或等于M,M为虚拟载波的数量。
在一些实施例中,处理器210用于:
基于所述第N个虚拟载波的双差整周模糊度和所述第N个虚拟载波的双差相位,获得第N个虚拟载波的双差距离测量值。
在一些实施例中,处理器210用于:
根据所述目标终端的初始估计位置,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理,获得处理后的线性测量方程。
在一些实施例中,处理器210用于:
根据定位目标的初始估计位置,以及,天线参考点ARP和/或相位中心偏移PCO误差,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理。
在一些实施例中,处理器210用于:
获取所述基站的位置信息和/或所述基站的位置信息的ARP和/或PCO误差;
获取所述参考设备的位置信息和/或所述参考设备的位置信息的ARP和/或PCO误差。
在一些实施例中,从第一个虚拟载波到第N个虚拟载波的顺序是基于各个虚拟载波的波长由大至小确定的。
在一些实施例中,处理器210用于:
基于测量方程的误差,对所述第N个虚拟载波的测量方程进行解算,获得所述第N个虚拟载波的双差整周模糊度的浮点解,所述测量方程的误差包括以下至少一项:ARP和/或PCO误差、不同虚拟载波之间的测量误差、不同基站之间的测量误差、或者不同终端之间的测量误差;
基于所述第N个虚拟载波的双差整周模糊度的浮点解和所述浮点解对应的估计误差协方差矩阵,获得所述第N个虚拟载波的双差整周模糊度的整数解。
在一些实施例中,所述估计误差协方差矩阵基于预配置或基于信令指示或训练得到的误差信息,其中误差信息包括ARP和/或PCO误差。
在此需要说明的是,本公开实施例提供的上述第一设备,能够实现上述执行主体为第一设备的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选的,第一设备可以是待定位终端;
可选的,在第一设备是终端的情况下,图3是本公开实施例提供的一种第一设备的结构示意图之二,如图3所示,所述第一设备包括存储器320,收发机300,处理器310,其中:
存储器320,用于存储计算机程序;收发机300,用于在所述处理器310的控制下收发数据;处理器310,用于读取所述存储器320中的计算机程序并执行以下操作:
确定多个第一载波的双差载波相位测量量;
对所述多个第一载波的双差载波相位测量量进行线性组合,构造多个虚拟载波,所述多个虚拟载波具备不同的虚拟双差相位、不同的虚拟波长、以及不同的虚拟双差整周模糊度;
获得所述多个虚拟载波的双差整周模糊度;
基于所述多个虚拟载波的双差整周模糊度,获得所述多个第一载波对应的双差整周模糊度;
基于所述多个第一载波对应的双差整周模糊度,获得所述目标终端的位置信息。
具体地,收发机300,用于在处理器310的控制下接收和发送数据。
其中,在图3中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器310代表的一个或多个处理器和存储器320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机300可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口330还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器310负责管理总线架构和通常的处理,存储器320可以存储处理器310在执行操作时所使用的数据。
可选的,处理器310可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
在一些实施例中,处理器310用于:
接收多个第一载波的定位测量信息,所述定位测量信息包括以下至少一项:时延测量信息、所述时延测量信息的可靠性度量信息、载波相位测量信息、所述载波相位测量信息的可靠性度量信息;
对所述多个第一载波的定位测量信息进行差分处理,得到双差时延测量 量和双差载波相位测量量。
在一些实施例中,处理器310用于:
在N大于1的情况下,针对所述多个虚拟载波中的第N个虚拟载波,基于所有虚拟载波的时延测量值、所述第N个虚拟载波的虚拟双差相位、所述第N个虚拟载波的虚拟波长、所述第N个虚拟载波的虚拟双差整周模糊度、和第N-1个虚拟载波的恢复后的双差距离测量值中的一项或多项,获得所述第N个虚拟载波的测量方程,所述第N-1个虚拟载波的恢复后的双差距离测量值由第N-1个虚拟载波的测量方程的双差整周模糊度整数解和所述第N-1个虚拟载波的波长及双差载波相位测量值构造得到;
在N等于1的情况下,针对所述多个虚拟载波中的第1个虚拟载波,基于所有虚拟载波的时延测量值、所述第1个虚拟载波的虚拟双差相位、所述第1个虚拟载波的虚拟波长、和所述第1个虚拟载波的虚拟双差整周模糊度中的一项或多项,获得所述第N个虚拟载波的测量方程;
基于所述第N个虚拟载波的测量方程,解算获得所述第N个虚拟载波的双差整周模糊度;
其中,N大于1且N小于或等于M,M为虚拟载波的数量。
在一些实施例中,处理器310用于:
基于所述第N个虚拟载波的双差整周模糊度和所述第N个虚拟载波的双差相位,获得第N个虚拟载波的双差距离测量值。
在一些实施例中,处理器310用于:
根据所述目标终端的初始估计位置,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理,获得处理后的线性测量方程。
在一些实施例中,处理器310用于:
根据定位目标的初始估计位置,以及,天线参考点ARP和/或相位中心偏移PCO误差,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理。
在一些实施例中,处理器310用于:
获取所述基站的位置信息和/或所述基站的位置信息的ARP和/或PCO误 差;
获取所述参考设备的位置信息和/或所述参考设备的位置信息的ARP和/或PCO误差。
在一些实施例中,从第一个虚拟载波到第N个虚拟载波的顺序是基于各个虚拟载波的波长由大至小确定的。
在一些实施例中,处理器310用于:
基于测量方程的误差,对所述第N个虚拟载波的测量方程进行解算,获得所述第N个虚拟载波的双差整周模糊度的浮点解,所述测量方程的误差包括以下至少一项:ARP和/或PCO误差、不同虚拟载波之间的测量误差、不同基站之间的测量误差、或者不同终端之间的测量误差;
基于所述第N个虚拟载波的双差整周模糊度的浮点解和所述浮点解对应的估计误差协方差矩阵,获得所述第N个虚拟载波的双差整周模糊度的整数解。
在一些实施例中,所述估计误差协方差矩阵基于预配置或基于信令指示或训练得到的误差信息,其中误差信息包括ARP和/或PCO误差。
在此需要说明的是,本公开实施例提供的上述第一设备,能够实现上述执行主体为第一设备的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图4是本公开实施例提供的定位装置的结构示意图,如图4所示,该定位装置400包括:第一确定模块410,虚拟载波构造模块420,第一获取模块430,第二获取模块440,第三获取模块450;其中:
第一确定模块410用于确定多个第一载波的双差载波相位测量量;
虚拟载波构造模块420用于对所述多个第一载波的双差载波相位测量量进行线性组合,构造多个虚拟载波,所述多个虚拟载波具备不同的虚拟双差相位、不同的虚拟波长、以及不同的虚拟双差整周模糊度;
第一获取模块430用于获得所述多个虚拟载波的双差整周模糊度;
第二获取模块440用于基于所述多个虚拟载波的双差整周模糊度,获得 所述多个第一载波对应的双差整周模糊度;
第三获取模块450用于基于所述多个第一载波对应的双差整周模糊度,获得所述目标终端的位置信息。
在一些实施例中,所述第一确定模块410用于:
接收多个第一载波的定位测量信息,所述定位测量信息包括以下至少一项:时延测量信息、所述时延测量信息的可靠性度量信息、载波相位测量信息、所述载波相位测量信息的可靠性度量信息;
对所述多个第一载波的定位测量信息进行差分处理,得到双差时延测量量和双差载波相位测量量。
在一些实施例中,第一获取模块430用于:
在N大于1的情况下,针对所述多个虚拟载波中的第N个虚拟载波,基于所有虚拟载波的时延测量值、所述第N个虚拟载波的虚拟双差相位、所述第N个虚拟载波的虚拟波长、所述第N个虚拟载波的虚拟双差整周模糊度、和第N-1个虚拟载波的恢复后的双差距离测量值中的一项或多项,获得所述第N个虚拟载波的测量方程,所述第N-1个虚拟载波的恢复后的双差距离测量值由第N-1个虚拟载波的测量方程的双差整周模糊度整数解和所述第N-1个虚拟载波的波长及双差载波相位测量值构造得到;
在N等于1的情况下,针对所述多个虚拟载波中的第1个虚拟载波,基于所有虚拟载波的时延测量值、所述第1个虚拟载波的虚拟双差相位、所述第1个虚拟载波的虚拟波长、和所述第1个虚拟载波的虚拟双差整周模糊度中的一项或多项,获得所述第N个虚拟载波的测量方程;
基于所述第N个虚拟载波的测量方程,解算获得所述第N个虚拟载波的双差整周模糊度;
其中,N大于1且N小于或等于M,M为虚拟载波的数量。
在一些实施例中,第一获取模块430用于:
基于所述第N个虚拟载波的双差整周模糊度和所述第N个虚拟载波的双差相位,获得第N个虚拟载波的双差距离测量值。
在一些实施例中,第一获取模块430用于:
根据所述目标终端的初始估计位置,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理,获得处理后的线性测量方程。
在一些实施例中,第一获取模块430用于:
根据定位目标的初始估计位置,以及,天线参考点ARP和/或相位中心偏移PCO误差,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理。
在一些实施例中,所述装置还包括:
第四获取模块,用于获取所述基站的位置信息和/或所述基站的位置信息的ARP和/或PCO误差;
获取所述参考设备的位置信息和/或所述参考设备的位置信息的ARP和/或PCO误差。
在一些实施例中,从第一个虚拟载波到第N个虚拟载波的顺序是基于各个虚拟载波的波长由大至小确定的。
在一些实施例中,第一获取模块430用于:
基于测量方程的误差,对所述第N个虚拟载波的测量方程进行解算,获得所述第N个虚拟载波的双差整周模糊度的浮点解,所述测量方程的误差包括以下至少一项:ARP和/或PCO误差、不同虚拟载波之间的测量误差、不同基站之间的测量误差、或者不同终端之间的测量误差;
基于所述第N个虚拟载波的双差整周模糊度的浮点解和所述浮点解对应的估计误差协方差矩阵,获得所述第N个虚拟载波的双差整周模糊度的整数解。
在一些实施例中,所述估计误差协方差矩阵基于预配置或基于信令指示或训练得到的误差信息,其中误差信息包括ARP和/或PCO误差。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
另一方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述各实施例提供的方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流 程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (31)

  1. 一种定位方法,应用于第一设备,所述方法包括:
    确定多个第一载波的双差载波相位测量量;
    对所述多个第一载波的双差载波相位测量量进行线性组合,构造多个虚拟载波,所述多个虚拟载波具备不同的虚拟双差相位、不同的虚拟波长、以及不同的虚拟双差整周模糊度;
    获得所述多个虚拟载波的双差整周模糊度;
    基于所述多个虚拟载波的双差整周模糊度,获得所述多个第一载波对应的双差整周模糊度;
    基于所述多个第一载波对应的双差整周模糊度,获得目标终端的位置信息。
  2. 根据权利要求1所述的定位方法,其中,所述确定多个第一载波的双差载波相位测量量,包括:
    接收多个第一载波的定位测量信息,所述定位测量信息包括以下至少一项:时延测量信息、所述时延测量信息的可靠性度量信息、载波相位测量信息、所述载波相位测量信息的可靠性度量信息;
    对所述多个第一载波的定位测量信息进行差分处理,得到双差时延测量量和双差载波相位测量量。
  3. 根据权利要求1或2所述的定位方法,其中,所述获得所述多个虚拟载波的双差整周模糊度,包括:
    在N大于1的情况下,针对所述多个虚拟载波中的第N个虚拟载波,基于所有虚拟载波的时延测量值、所述第N个虚拟载波的虚拟双差相位、所述第N个虚拟载波的虚拟波长、所述第N个虚拟载波的虚拟双差整周模糊度、和第N-1个虚拟载波的恢复后的双差距离测量值中的一项或多项,获得所述第N个虚拟载波的测量方程,所述第N-1个虚拟载波的恢复后的双差距离测量值由第N-1个虚拟载波的测量方程的双差整周模糊度整数解和所述第N-1个虚拟载波的波长及双差载波相位测量值构造得到;
    在N等于1的情况下,针对所述多个虚拟载波中的第1个虚拟载波,基 于所有虚拟载波的时延测量值、所述第1个虚拟载波的虚拟双差相位、所述第1个虚拟载波的虚拟波长、和所述第1个虚拟载波的虚拟双差整周模糊度中的一项或多项,获得所述第N个虚拟载波的测量方程;
    基于所述第N个虚拟载波的测量方程,解算获得所述第N个虚拟载波的双差整周模糊度;
    其中,N大于1且N小于或等于M,M为虚拟载波的数量。
  4. 根据权利要求3所述的定位方法,其中,所述获得所述多个虚拟载波的双差整周模糊度,还包括:
    基于所述第N个虚拟载波的双差整周模糊度和所述第N个虚拟载波的双差相位,获得第N个虚拟载波的双差距离测量值。
  5. 根据权利要求3所述的定位方法,其中,所述获得所述第N个虚拟载波的测量方程,包括:
    根据所述目标终端的初始估计位置,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理,获得处理后的线性测量方程。
  6. 根据权利要求3所述的定位方法,其中,所述根据定位目标的初始估计位置,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理,包括:
    根据定位目标的初始估计位置,以及,天线参考点ARP和/或相位中心偏移PCO误差,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理。
  7. 根据权利要求2至6中任一项所述的定位方法,其中,所述方法还包括:
    获取基站的位置信息和/或所述基站的位置信息的ARP和/或PCO误差;
    获取参考设备的位置信息和/或所述参考设备的位置信息的ARP和/或PCO误差。
  8. 根据权利要求3所述的定位方法,其中,从第一个虚拟载波到第N个虚拟载波的顺序是基于各个虚拟载波的波长由大至小确定的。
  9. 根据权利要求3所述的定位方法,其中,所述基于所述第N个虚拟载 波的测量方程,解算获得所述第N个虚拟载波的双差整周模糊度,包括:
    基于测量方程的误差,对所述第N个虚拟载波的测量方程进行解算,获得所述第N个虚拟载波的双差整周模糊度的浮点解,所述测量方程的误差包括以下至少一项:ARP和/或PCO误差、不同虚拟载波之间的测量误差、不同基站之间的测量误差、或者不同终端之间的测量误差;
    基于所述第N个虚拟载波的双差整周模糊度的浮点解和所述浮点解对应的估计误差协方差矩阵,获得所述第N个虚拟载波的双差整周模糊度的整数解。
  10. 根据权利要求9所述的定位方法,其中,所述估计误差协方差矩阵基于预配置或基于信令指示或训练得到的误差信息,其中误差信息包括ARP和/或PCO误差。
  11. 一种第一设备,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    确定多个第一载波的双差载波相位测量量;
    对所述多个第一载波的双差载波相位测量量进行线性组合,构造多个虚拟载波,所述多个虚拟载波具备不同的虚拟双差相位、不同的虚拟波长、以及不同的虚拟双差整周模糊度;
    获得所述多个虚拟载波的双差整周模糊度;
    基于所述多个虚拟载波的双差整周模糊度,获得所述多个第一载波对应的双差整周模糊度;
    基于所述多个第一载波对应的双差整周模糊度,获得目标终端的位置信息。
  12. 根据权利要求11所述的第一设备,其中,所述确定多个第一载波的双差载波相位测量量,包括:
    接收多个第一载波的定位测量信息,所述定位测量信息包括以下至少一项:时延测量信息、所述时延测量信息的可靠性度量信息、载波相位测量信息、所述载波相位测量信息的可靠性度量信息;
    对所述多个第一载波的定位测量信息进行差分处理,得到双差时延测量量和双差载波相位测量量。
  13. 根据权利要求11或12所述的第一设备,其中,所述获得所述多个虚拟载波的双差整周模糊度,包括:
    在N大于1的情况下,针对所述多个虚拟载波中的第N个虚拟载波,基于所有虚拟载波的时延测量值、所述第N个虚拟载波的虚拟双差相位、所述第N个虚拟载波的虚拟波长、所述第N个虚拟载波的虚拟双差整周模糊度、和第N-1个虚拟载波的恢复后的双差距离测量值中的一项或多项,获得所述第N个虚拟载波的测量方程,所述第N-1个虚拟载波的恢复后的双差距离测量值由第N-1个虚拟载波的测量方程的双差整周模糊度整数解和所述第N-1个虚拟载波的波长及双差载波相位测量值构造得到;
    在N等于1的情况下,针对所述多个虚拟载波中的第1个虚拟载波,基于所有虚拟载波的时延测量值、所述第1个虚拟载波的虚拟双差相位、所述第1个虚拟载波的虚拟波长、和所述第1个虚拟载波的虚拟双差整周模糊度中的一项或多项,获得所述第N个虚拟载波的测量方程;
    基于所述第N个虚拟载波的测量方程,解算获得所述第N个虚拟载波的双差整周模糊度;
    其中,N大于1且N小于或等于M,M为虚拟载波的数量。
  14. 根据权利要求13所述的第一设备,其中,所述获得所述多个虚拟载波的双差整周模糊度,还包括:
    基于所述第N个虚拟载波的双差整周模糊度和所述第N个虚拟载波的双差相位,获得第N个虚拟载波的双差距离测量值。
  15. 根据权利要求13所述的第一设备,其中,所述获得所述第N个虚拟载波的测量方程,包括:
    根据所述目标终端的初始估计位置,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理,获得处理后的线性测量方程。
  16. 根据权利要求13所述的第一设备,其中,所述根据定位目标的初始估计位置,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理, 包括:
    根据定位目标的初始估计位置,以及,天线参考点ARP和/或相位中心偏移PCO误差,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理。
  17. 根据权利要求12至16中任一项所述的第一设备,其中,所述操作还包括:
    获取基站的位置信息和/或所述基站的位置信息的ARP和/或PCO误差;
    获取参考设备的位置信息和/或所述参考设备的位置信息的ARP和/或PCO误差。
  18. 根据权利要求13所述的第一设备,其中,从第一个虚拟载波到第N个虚拟载波的顺序是基于各个虚拟载波的波长由大至小确定的。
  19. 根据权利要求13所述的第一设备,其中,所述基于所述第N个虚拟载波的测量方程,解算获得所述第N个虚拟载波的双差整周模糊度,包括:
    基于测量方程的误差,对所述第N个虚拟载波的测量方程进行解算,获得所述第N个虚拟载波的双差整周模糊度的浮点解,所述测量方程的误差包括以下至少一项:ARP和/或PCO误差、不同虚拟载波之间的测量误差、不同基站之间的测量误差、或者不同终端之间的测量误差;
    基于所述第N个虚拟载波的双差整周模糊度的浮点解和所述浮点解对应的估计误差协方差矩阵,获得所述第N个虚拟载波的双差整周模糊度的整数解。
  20. 根据权利要求19所述的第一设备,其中,所述估计误差协方差矩阵基于预配置或基于信令指示或训练得到的误差信息,其中误差信息包括ARP和/或PCO误差。
  21. 一种定位装置,包括:
    第一确定模块,用于确定多个第一载波的双差载波相位测量量;
    虚拟载波构造模块,用于对所述多个第一载波的双差载波相位测量量进行线性组合,构造多个虚拟载波,所述多个虚拟载波具备不同的虚拟双差相位、不同的虚拟波长、以及不同的虚拟双差整周模糊度;
    第一获取模块,用于获得所述多个虚拟载波的双差整周模糊度;
    第二获取模块,用于基于所述多个虚拟载波的双差整周模糊度,获得所述多个第一载波对应的双差整周模糊度;
    第三获取模块,用于基于所述多个第一载波对应的双差整周模糊度,获得目标终端的位置信息。
  22. 根据权利要求21所述的定位装置,其中,所述第一确定模块用于:
    接收多个第一载波的定位测量信息,所述定位测量信息包括以下至少一项:时延测量信息、所述时延测量信息的可靠性度量信息、载波相位测量信息、所述载波相位测量信息的可靠性度量信息;
    对所述多个第一载波的定位测量信息进行差分处理,得到双差时延测量量和双差载波相位测量量。
  23. 根据权利要求21或22所述的定位装置,其中,所述第一获取模块用于:
    在N大于1的情况下,针对所述多个虚拟载波中的第N个虚拟载波,基于所有虚拟载波的时延测量值、所述第N个虚拟载波的虚拟双差相位、所述第N个虚拟载波的虚拟波长、所述第N个虚拟载波的虚拟双差整周模糊度、和第N-1个虚拟载波的恢复后的双差距离测量值中的一项或多项,获得所述第N个虚拟载波的测量方程,所述第N-1个虚拟载波的恢复后的双差距离测量值由第N-1个虚拟载波的测量方程的双差整周模糊度整数解和所述第N-1个虚拟载波的波长及双差载波相位测量值构造得到;
    在N等于1的情况下,针对所述多个虚拟载波中的第1个虚拟载波,基于所有虚拟载波的时延测量值、所述第1个虚拟载波的虚拟双差相位、所述第1个虚拟载波的虚拟波长、和所述第1个虚拟载波的虚拟双差整周模糊度中的一项或多项,获得所述第N个虚拟载波的测量方程;
    基于所述第N个虚拟载波的测量方程,解算获得所述第N个虚拟载波的双差整周模糊度;
    其中,N大于1且N小于或等于M,M为虚拟载波的数量。
  24. 根据权利要求23所述的定位装置,其中,所述第一获取模块用于:
    基于所述第N个虚拟载波的双差整周模糊度和所述第N个虚拟载波的双差相位,获得第N个虚拟载波的双差距离测量值。
  25. 根据权利要求23所述的定位装置,其中,所述第一获取模块用于:
    根据所述目标终端的初始估计位置,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理,获得处理后的线性测量方程。
  26. 根据权利要求23所述的定位装置,其中,所述第一获取模块用于:
    根据定位目标的初始估计位置,以及,天线参考点ARP和/或相位中心偏移PCO误差,对所述第N个虚拟载波的测量方程中的双差距离进行线性化处理。
  27. 根据权利要求22至26中任一项所述的定位装置,其中,所述装置还包括:
    第四获取模块,用于获取所述基站的位置信息和/或所述基站的位置信息的ARP和/或PCO误差;
    获取所述参考设备的位置信息和/或所述参考设备的位置信息的ARP和/或PCO误差。
  28. 根据权利要求23所述的定位装置,其中,从第一个虚拟载波到第N个虚拟载波的顺序是基于各个虚拟载波的波长由大至小确定的。
  29. 根据权利要求23所述的定位装置,其中,所述第一获取模块用于:
    基于测量方程的误差,对所述第N个虚拟载波的测量方程进行解算,获得所述第N个虚拟载波的双差整周模糊度的浮点解,所述测量方程的误差包括以下至少一项:ARP和/或PCO误差、不同虚拟载波之间的测量误差、不同基站之间的测量误差、或者不同终端之间的测量误差;
    基于所述第N个虚拟载波的双差整周模糊度的浮点解和所述浮点解对应的估计误差协方差矩阵,获得所述第N个虚拟载波的双差整周模糊度的整数解。
  30. 根据权利要求28所述的定位装置,其中,所述估计误差协方差矩阵基于预配置或基于信令指示或训练得到的误差信息,其中误差信息包括ARP和/或PCO误差。
  31. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至10任一项所述的方法。
PCT/CN2023/111513 2022-08-12 2023-08-07 定位方法及装置 WO2024032557A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210969138.7A CN117630994A (zh) 2022-08-12 2022-08-12 定位方法及装置
CN202210969138.7 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032557A1 true WO2024032557A1 (zh) 2024-02-15

Family

ID=89850872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111513 WO2024032557A1 (zh) 2022-08-12 2023-08-07 定位方法及装置

Country Status (2)

Country Link
CN (1) CN117630994A (zh)
WO (1) WO2024032557A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675874A (zh) * 2013-12-20 2014-03-26 北京遥测技术研究所 一种北斗导航系统三频载波相位整周模糊度确定方法
CN111239787A (zh) * 2020-02-28 2020-06-05 同济大学 一种集群自主协同中的gnss动态卡尔曼滤波方法
CN111435159A (zh) * 2019-01-11 2020-07-21 电信科学技术研究院有限公司 一种进行定位的方法和设备
CN112578423A (zh) * 2019-09-30 2021-03-30 阿里巴巴集团控股有限公司 整周模糊度确定方法、装置及设备
CN112987059A (zh) * 2021-04-16 2021-06-18 湖南联智科技股份有限公司 一种基于三频模糊度解算的整周模糊度计算方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675874A (zh) * 2013-12-20 2014-03-26 北京遥测技术研究所 一种北斗导航系统三频载波相位整周模糊度确定方法
CN111435159A (zh) * 2019-01-11 2020-07-21 电信科学技术研究院有限公司 一种进行定位的方法和设备
CN112578423A (zh) * 2019-09-30 2021-03-30 阿里巴巴集团控股有限公司 整周模糊度确定方法、装置及设备
CN111239787A (zh) * 2020-02-28 2020-06-05 同济大学 一种集群自主协同中的gnss动态卡尔曼滤波方法
CN112987059A (zh) * 2021-04-16 2021-06-18 湖南联智科技股份有限公司 一种基于三频模糊度解算的整周模糊度计算方法

Also Published As

Publication number Publication date
CN117630994A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2021227821A1 (zh) 定位方法及装置
TWI801768B (zh) 時鐘偏差確定方法及裝置
WO2020186959A1 (zh) 时钟偏移确定及其处理方法、装置、系统
US20230262647A1 (en) Positioning method and apparatus
WO2022100594A1 (zh) 定位方法、装置及处理器可读存储介质
WO2024032557A1 (zh) 定位方法及装置
WO2023284457A1 (zh) 终端设备的定位方法、装置及存储介质
WO2022089442A1 (zh) 一种定位方法、装置、终端及设备
TWI745909B (zh) 一種定位測量值的確定方法、裝置、電子設備及電腦存儲介質
WO2023208164A1 (zh) 信息传输方法、载波相位定位方法及装置
WO2022151897A1 (zh) 信息指示方法、装置、终端设备、网络设备及存储介质
TWI784342B (zh) 時鐘偏差確定方法、計算設備及電腦存儲介質
EP4319339A1 (en) Positioning method and apparatus, and readable storage medium
WO2024032646A1 (zh) 多频点定位方法、设备、装置及存储介质
WO2022134621A1 (zh) 一种载波相位测量方法及装置
US20240129880A1 (en) Method And Apparatus For Enhancements On Integer Cycle Report For Carrier Phase Positioning
CN117596660A (zh) 定位方法、位置管理功能lmf实体、终端及电子设备
CN116566446A (zh) 码本生成方法、信道估计方法、设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851778

Country of ref document: EP

Kind code of ref document: A1